The Power of Plasticity—Metabolic Regulation of Hepatic Stellate Cells

Hepatic stellate cells (HSCs) are resident non-parenchymal liver pericytes whose plasticity enables them to regulate a remarkable range of physiologic and pathologic responses. To support their functions in health and disease, HSCs engage pathways regulating carbohydrate, mitochondrial, lipid, and r...

Full description

Saved in:
Bibliographic Details
Published inCell metabolism Vol. 33; no. 2; pp. 242 - 257
Main Authors Trivedi, Parth, Wang, Shuang, Friedman, Scott L.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 02.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hepatic stellate cells (HSCs) are resident non-parenchymal liver pericytes whose plasticity enables them to regulate a remarkable range of physiologic and pathologic responses. To support their functions in health and disease, HSCs engage pathways regulating carbohydrate, mitochondrial, lipid, and retinoid homeostasis. In chronic liver injury, HSCs drive hepatic fibrosis and are implicated in inflammation and cancer. To do so, the cells activate, or transdifferentiate, from a quiescent state into proliferative, motile myofibroblasts that secrete extracellular matrix, which demands rapid adaptation to meet a heightened energy need. Adaptations include reprogramming of central carbon metabolism, enhanced mitochondrial number and activity, endoplasmic reticulum stress, and liberation of free fatty acids through autophagy-dependent hydrolysis of retinyl esters that are stored in cytoplasmic droplets. As an archetype for pericytes in other tissues, recognition of the HSC's metabolic drivers and vulnerabilities offer the potential to target these pathways therapeutically to enhance parenchymal growth and modulate repair. Hepatic stellate cells (HSCs) are resident non-parenchymal liver pericytes whose plasticity enables them to regulate a remarkable range of physiologic and pathologic responses. To support their functions in health and disease, HSCs engage pathways regulating carbohydrate, mitochondrial, lipid, and retinoid homeostasis. In chronic liver injury, HSCs drive hepatic fibrosis and are implicated in inflammation and cancer. To do so, the cells activate, or transdifferentiate, from a quiescent state into proliferative, motile myofibroblasts that secrete extracellular matrix, which demands rapid adaptation to meet a heightened energy need. Adaptations include reprogramming of central carbon metabolism, enhanced mitochondrial number and activity, endoplasmic reticulum stress, and liberation of free fatty acids through autophagy-dependent hydrolysis of retinyl esters that are stored in cytoplasmic droplets. As an archetype for pericytes in other tissues, recognition of the HSC's metabolic drivers and vulnerabilities offer the potential to target these pathways therapeutically to enhance parenchymal growth and modulate repair.
AbstractList Hepatic stellate cells (HSCs) are resident non-parenchymal liver pericytes whose plasticity enables them to regulate a remarkable range of physiologic and pathologic responses. To support their functions in health and disease, HSCs engage pathways regulating carbohydrate, mitochondrial, lipid, and retinoid homeostasis. In chronic liver injury, HSCs drive hepatic fibrosis and are implicated in inflammation and cancer. To do so, the cells activate, or transdifferentiate, from a quiescent state into proliferative, motile myofibroblasts that secrete extracellular matrix, which demands rapid adaptation to meet a heightened energy need. Adaptations include reprogramming of central carbon metabolism, enhanced mitochondrial number and activity, endoplasmic reticulum stress, and liberation of free fatty acids through autophagy-dependent hydrolysis of retinyl esters that are stored in cytoplasmic droplets. As an archetype for pericytes in other tissues, recognition of the HSCs’ metabolic drivers and vulnerabilities offer the potential to target these pathways therapeutically to enhance parenchymal growth and modulate repair.
Hepatic stellate cells (HSCs) are resident non-parenchymal liver pericytes whose plasticity enables them to regulate a remarkable range of physiologic and pathologic responses. To support their functions in health and disease, HSCs engage pathways regulating carbohydrate, mitochondrial, lipid, and retinoid homeostasis. In chronic liver injury, HSCs drive hepatic fibrosis and are implicated in inflammation and cancer. To do so, the cells activate, or transdifferentiate, from a quiescent state into proliferative, motile myofibroblasts that secrete extracellular matrix, which demands rapid adaptation to meet a heightened energy need. Adaptations include reprogramming of central carbon metabolism, enhanced mitochondrial number and activity, endoplasmic reticulum stress, and liberation of free fatty acids through autophagy-dependent hydrolysis of retinyl esters that are stored in cytoplasmic droplets. As an archetype for pericytes in other tissues, recognition of the HSC's metabolic drivers and vulnerabilities offer the potential to target these pathways therapeutically to enhance parenchymal growth and modulate repair.
Hepatic stellate cells (HSCs) are resident non-parenchymal liver pericytes whose plasticity enables them to regulate a remarkable range of physiologic and pathologic responses. To support their functions in health and disease, HSCs engage pathways regulating carbohydrate, mitochondrial, lipid, and retinoid homeostasis. In chronic liver injury, HSCs drive hepatic fibrosis and are implicated in inflammation and cancer. To do so, the cells activate, or transdifferentiate, from a quiescent state into proliferative, motile myofibroblasts that secrete extracellular matrix, which demands rapid adaptation to meet a heightened energy need. Adaptations include reprogramming of central carbon metabolism, enhanced mitochondrial number and activity, endoplasmic reticulum stress, and liberation of free fatty acids through autophagy-dependent hydrolysis of retinyl esters that are stored in cytoplasmic droplets. As an archetype for pericytes in other tissues, recognition of the HSC's metabolic drivers and vulnerabilities offer the potential to target these pathways therapeutically to enhance parenchymal growth and modulate repair. Hepatic stellate cells (HSCs) are resident non-parenchymal liver pericytes whose plasticity enables them to regulate a remarkable range of physiologic and pathologic responses. To support their functions in health and disease, HSCs engage pathways regulating carbohydrate, mitochondrial, lipid, and retinoid homeostasis. In chronic liver injury, HSCs drive hepatic fibrosis and are implicated in inflammation and cancer. To do so, the cells activate, or transdifferentiate, from a quiescent state into proliferative, motile myofibroblasts that secrete extracellular matrix, which demands rapid adaptation to meet a heightened energy need. Adaptations include reprogramming of central carbon metabolism, enhanced mitochondrial number and activity, endoplasmic reticulum stress, and liberation of free fatty acids through autophagy-dependent hydrolysis of retinyl esters that are stored in cytoplasmic droplets. As an archetype for pericytes in other tissues, recognition of the HSC's metabolic drivers and vulnerabilities offer the potential to target these pathways therapeutically to enhance parenchymal growth and modulate repair.
Author Friedman, Scott L.
Wang, Shuang
Trivedi, Parth
AuthorAffiliation 1 Division of Liver Diseases, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
AuthorAffiliation_xml – name: 1 Division of Liver Diseases, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
Author_xml – sequence: 1
  givenname: Parth
  surname: Trivedi
  fullname: Trivedi, Parth
  organization: Division of Liver Diseases, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
– sequence: 2
  givenname: Shuang
  surname: Wang
  fullname: Wang, Shuang
  organization: Division of Liver Diseases, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
– sequence: 3
  givenname: Scott L.
  surname: Friedman
  fullname: Friedman, Scott L.
  email: scott.friedman@mssm.edu
  organization: Division of Liver Diseases, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33232666$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1P20AQXSEqCLR_gAPykYvDfthrW0KVUFQIElVRm_tqPR4nGznesLtJxY0fwS_kl7BWIKKXnmb05s2bj3dCDnvbIyFnjI4ZZfJyOYYVhjGnfADGlMsDMmKV4GmRcXoY8zynacYEOyYn3i8pFVJU4ogcC8EFl1KOyHS2wOTB_kWX2DZ56LQPBkx4en1--YlB17YzkPzG-abTwdh-IE1xHXNI_gTsIorJJEb_lXxpdefx23s8JbObH7PJNL3_dXs3ub5PIecspHlWyqzNsZYUmOaiEaApr0XJ6lZQ0CXQDChvalFVqIuqaGQl2zYiFdQSxSn5vpNdb-oVNoB9cLpTa2dW2j0pq436t9KbhZrbrSrKvIxHR4GLdwFnHzfog1oZD8MlPdqNVzyTGSuLvBqofEcFZ7132O7HMKoGB9RSDQ6owYEBiw7EpvPPC-5bPl4eCVc7AsYvbQ065cFgD9gYhxBUY83_9N8A3hGbRw
CitedBy_id crossref_primary_10_1007_s00018_023_05032_y
crossref_primary_10_1016_j_jep_2023_116445
crossref_primary_10_1097_HEP_0000000000000012
crossref_primary_10_1016_j_jep_2023_117656
crossref_primary_10_1016_j_bbadis_2021_166121
crossref_primary_10_3390_antiox12040818
crossref_primary_10_1016_j_hermed_2023_100740
crossref_primary_10_1016_j_toxlet_2022_09_008
crossref_primary_10_1016_j_molmed_2021_10_005
crossref_primary_10_1111_cas_16023
crossref_primary_10_3390_ijms222212413
crossref_primary_10_1016_j_cmet_2023_06_013
crossref_primary_10_3390_ijms241512509
crossref_primary_10_1080_15384101_2024_2345477
crossref_primary_10_1016_j_celrep_2024_113875
crossref_primary_10_3390_biom13020261
crossref_primary_10_1016_j_jhepr_2023_100684
crossref_primary_10_1007_s13273_023_00336_3
crossref_primary_10_1016_j_yexcr_2024_113992
crossref_primary_10_1016_j_bbadis_2024_167102
crossref_primary_10_1097_HEP_0000000000000388
crossref_primary_10_1080_17474124_2021_1949288
crossref_primary_10_1016_j_biopha_2023_114415
crossref_primary_10_1186_s12964_024_01489_x
crossref_primary_10_1007_s12015_023_10592_4
crossref_primary_10_1016_j_bbrc_2022_01_094
crossref_primary_10_3389_fonc_2021_763519
crossref_primary_10_1016_j_jhep_2022_02_003
crossref_primary_10_3389_fphar_2022_930785
crossref_primary_10_3889_oamjms_2022_9119
crossref_primary_10_1111_imr_12972
crossref_primary_10_1126_scitranslmed_adi0759
crossref_primary_10_1016_j_mtbio_2023_100711
crossref_primary_10_1016_j_phrs_2023_106704
crossref_primary_10_1101_gad_351069_123
crossref_primary_10_3389_fimmu_2023_1200201
crossref_primary_10_1016_j_immuni_2022_08_002
crossref_primary_10_1016_j_ijbiomac_2023_126263
crossref_primary_10_1186_s13287_022_03049_x
crossref_primary_10_1021_acsami_3c03416
crossref_primary_10_1186_s13046_023_02729_7
crossref_primary_10_1042_BCJ20210071
crossref_primary_10_1002_adma_202212206
crossref_primary_10_1016_j_bcp_2024_116044
crossref_primary_10_1016_j_bbcan_2024_189086
crossref_primary_10_3389_fmolb_2023_1258870
crossref_primary_10_1016_j_bcp_2022_115157
crossref_primary_10_3389_fmolb_2022_835508
crossref_primary_10_1016_j_gastrohep_2022_02_005
crossref_primary_10_1016_j_jff_2022_105226
crossref_primary_10_1016_j_phrs_2023_106657
crossref_primary_10_1002_ccs3_12033
crossref_primary_10_1016_j_jphs_2022_01_003
crossref_primary_10_1002_hep_32793
crossref_primary_10_1016_j_snb_2023_133891
crossref_primary_10_3389_fphar_2022_858137
crossref_primary_10_1016_j_metabol_2023_155663
crossref_primary_10_1016_j_cellsig_2023_110935
crossref_primary_10_3389_fimmu_2024_1337105
crossref_primary_10_1186_s10020_024_00867_y
crossref_primary_10_3892_ijmm_2023_5243
crossref_primary_10_3389_fphar_2022_814871
crossref_primary_10_1111_jcmm_17884
crossref_primary_10_3390_cells10071764
crossref_primary_10_1016_j_gastre_2022_02_004
crossref_primary_10_1111_joim_13380
crossref_primary_10_1016_j_cmet_2024_05_003
crossref_primary_10_1016_j_prmcm_2022_100085
crossref_primary_10_1016_j_omtn_2023_07_012
crossref_primary_10_3390_ijms23073668
crossref_primary_10_1002_agt2_530
crossref_primary_10_1016_j_ejmech_2022_114323
crossref_primary_10_3389_fmolb_2021_766855
crossref_primary_10_2174_0113816128265631231025071732
crossref_primary_10_1038_s41419_024_06509_9
crossref_primary_10_1016_j_jep_2024_118143
crossref_primary_10_1016_j_microc_2024_110617
crossref_primary_10_3390_antiox12091653
crossref_primary_10_3390_cells10123604
crossref_primary_10_1016_j_ajpath_2024_02_021
crossref_primary_10_1016_j_cbi_2024_111119
crossref_primary_10_2147_IJN_S450284
crossref_primary_10_1002_ptr_8106
crossref_primary_10_1038_s42003_023_04473_2
crossref_primary_10_1097_CM9_0000000000003144
crossref_primary_10_1515_chem_2022_0192
crossref_primary_10_3389_fendo_2023_1207574
crossref_primary_10_3390_antiox12081567
crossref_primary_10_1038_s41419_022_04802_z
crossref_primary_10_1038_s41419_024_06773_9
crossref_primary_10_1016_j_freeradbiomed_2024_06_001
crossref_primary_10_1016_j_redox_2022_102286
crossref_primary_10_1038_s41420_023_01602_y
crossref_primary_10_1136_gutjnl_2023_329671
crossref_primary_10_1016_j_lfs_2024_122798
crossref_primary_10_1126_scitranslmed_ade2966
crossref_primary_10_3390_ijms23136996
crossref_primary_10_1038_s41419_021_04377_1
crossref_primary_10_1016_j_jep_2024_117720
crossref_primary_10_1186_s12951_023_01876_5
crossref_primary_10_1007_s12033_021_00441_5
crossref_primary_10_1016_j_jhep_2023_07_004
crossref_primary_10_1016_j_intimp_2024_111981
crossref_primary_10_1097_HEP_0000000000000182
crossref_primary_10_1038_s41419_022_05409_0
crossref_primary_10_1038_s41575_023_00807_x
crossref_primary_10_12677_acm_2024_1441345
crossref_primary_10_1016_j_psj_2022_102363
crossref_primary_10_1016_j_bioorg_2023_106723
crossref_primary_10_1016_j_cld_2023_01_013
crossref_primary_10_1142_S0192415X23500647
crossref_primary_10_3389_fmolb_2023_1221669
crossref_primary_10_1002_ame2_12327
crossref_primary_10_1186_s12964_023_01204_2
crossref_primary_10_1002_mco2_417
crossref_primary_10_1016_j_jncc_2024_01_002
crossref_primary_10_3390_jcm10040792
crossref_primary_10_1002_hep_32569
crossref_primary_10_1016_j_fct_2024_114517
crossref_primary_10_3748_wjg_v27_i24_3581
crossref_primary_10_1016_j_bcp_2021_114730
crossref_primary_10_1186_s13046_023_02634_z
crossref_primary_10_1016_j_cellsig_2022_110304
crossref_primary_10_1016_j_xcrm_2024_101401
crossref_primary_10_1242_jcs_259243
crossref_primary_10_3389_fmolb_2023_1183808
crossref_primary_10_1016_j_celrep_2022_111422
crossref_primary_10_1016_j_apsb_2021_12_007
crossref_primary_10_1038_s41467_023_38406_8
crossref_primary_10_1038_s41401_022_01044_9
crossref_primary_10_12677_ACM_2022_125698
crossref_primary_10_1002_mnfr_202300553
crossref_primary_10_1016_j_mam_2023_101231
crossref_primary_10_1126_sciadv_abn0050
crossref_primary_10_32604_biocell_2023_025365
crossref_primary_10_3390_cells12010091
crossref_primary_10_1038_s41418_023_01130_3
crossref_primary_10_2217_nnm_2022_0083
crossref_primary_10_1002_cbin_11876
crossref_primary_10_3390_nu13103509
crossref_primary_10_1039_D1BM01499D
crossref_primary_10_1016_j_canlet_2023_216074
crossref_primary_10_1007_s12265_022_10303_3
crossref_primary_10_3390_ijms232416043
crossref_primary_10_1016_S2468_1253_23_00111_5
crossref_primary_10_1016_j_pharmthera_2024_108639
crossref_primary_10_1002_2211_5463_13749
crossref_primary_10_3389_fphys_2024_1331976
crossref_primary_10_1016_j_jhepr_2024_101036
crossref_primary_10_1016_j_freeradbiomed_2023_04_009
crossref_primary_10_1177_15353702231191109
crossref_primary_10_1016_j_intimp_2021_108051
crossref_primary_10_1016_j_engreg_2022_02_003
crossref_primary_10_1055_a_1955_5297
crossref_primary_10_1136_egastro_2023_100015
crossref_primary_10_1002_pdi3_29
crossref_primary_10_1016_j_bbadis_2024_167084
crossref_primary_10_1016_j_lfs_2024_122498
crossref_primary_10_3390_cancers15010023
crossref_primary_10_3390_life14020272
crossref_primary_10_1016_j_eujim_2023_102278
crossref_primary_10_1080_07853890_2022_2132418
crossref_primary_10_1016_j_bios_2022_114758
crossref_primary_10_1016_j_jcmgh_2023_02_010
crossref_primary_10_1038_s41467_023_41145_5
crossref_primary_10_3892_ijmm_2024_5383
crossref_primary_10_3389_fphys_2021_710420
crossref_primary_10_3390_biomedicines9081014
crossref_primary_10_3389_fcell_2021_762828
crossref_primary_10_3389_fphar_2021_750509
crossref_primary_10_1113_JP281061
crossref_primary_10_3390_biom13101464
crossref_primary_10_51335_organoid_2022_2_e26
crossref_primary_10_1097_HC9_0000000000000411
Cites_doi 10.1016/j.bbrc.2020.09.075
10.1006/excr.1996.0010
10.1016/S1357-2725(01)00066-8
10.1111/jgh.12042
10.1016/j.jhep.2018.03.011
10.1053/j.gastro.2020.03.008
10.4161/auto.19947
10.1042/bj3000793
10.1038/nrgastro.2017.38
10.1016/S0168-8278(17)31776-2
10.1002/hep.510290346
10.1002/hep.28644
10.1194/jlr.M077487
10.1002/hep.26081
10.1016/S0021-9258(17)38759-8
10.1016/j.cld.2008.07.005
10.1016/j.jhep.2013.02.016
10.1189/jlb.2A0516-239R
10.2174/1574888X10666150528144905
10.1038/nature06639
10.1053/j.gastro.2012.06.036
10.1038/nbt.4096
10.1016/S0300-9084(02)01369-X
10.3892/ijmm.2017.3043
10.1053/jhep.2001.28055
10.1111/j.1523-1755.2004.00602.x
10.1152/physrev.00013.2007
10.1007/s11626-005-0002-6
10.1016/j.gendis.2019.10.007
10.1074/jbc.274.38.27161
10.1093/jn/127.2.218
10.1016/j.freeradbiomed.2014.05.002
10.1016/S0168-8278(02)00429-4
10.1074/jbc.M116.724054
10.1016/j.clim.2008.08.008
10.1016/S0092-8674(03)00269-1
10.1016/S0006-2952(96)00865-9
10.1016/S0140-6736(19)33041-7
10.1053/j.gastro.2017.12.022
10.1007/s00109-015-1313-z
10.1194/jlr.M062372
10.1371/journal.pone.0024993
10.1136/gutjnl-2019-320205
10.1172/JCI66025
10.1038/labinvest.2009.115
10.1016/j.cell.2019.05.031
10.1074/jbc.M100199200
10.1093/hmg/ddu121
10.1016/j.bbalip.2015.02.017
10.1053/jhep.2001.27828
10.4049/jimmunol.1303073
10.1136/gut.2009.204354
10.1038/ncomms3823
10.1126/scitranslmed.aat0344
10.1074/jbc.M410078200
10.1053/j.gastro.2016.01.038
10.1016/j.jcmgh.2019.12.006
10.1016/j.cmet.2019.11.013
10.1016/j.immuni.2006.11.011
10.1038/s41586-019-1631-3
10.1172/JCI116451
10.1016/j.freeradbiomed.2018.07.013
10.1016/S0003-9861(02)00058-9
10.1186/s13069-015-0031-z
10.1016/j.tibs.2015.12.001
10.1074/jbc.274.48.33881
10.1016/S0021-9258(18)34945-7
10.1016/j.bbalip.2016.10.013
10.1053/jhep.2001.28788
10.1002/hep.510250218
10.1016/j.mce.2010.03.005
10.1016/j.molcel.2019.07.028
10.1074/jbc.M210432200
10.1038/srep28432
10.1053/j.gastro.2011.12.044
10.1007/978-981-10-8684-7_4
10.1016/j.cmet.2020.03.010
10.1042/CBI20100321
10.1016/j.coph.2019.09.006
10.1002/hep.22721
10.1096/fj.201802675R
10.1016/S0021-9258(18)81686-6
10.1074/jbc.M112.431973
10.1016/j.febslet.2007.05.050
10.1053/j.gastro.2011.09.049
10.1053/j.gastro.2020.01.027
10.1074/jbc.M409381200
10.1002/hep.1840150211
10.1096/fasebj.5.3.2001786
10.1016/j.tox.2011.01.009
10.1016/0014-5793(90)81336-M
10.1038/46794
10.1016/j.biochi.2004.09.018
10.1002/hep.21867
10.1038/s41467-019-14138-6
10.1002/jlb.53.2.126
10.1016/j.jhep.2020.03.011
10.1111/his.12038
10.1002/neu.20242
10.1186/1471-230X-12-68
10.1002/hep.22285
10.1172/JCI18212
10.1038/nature21363
10.1038/nm1663
10.1371/journal.pone.0034945
10.3109/10715760903555836
10.2119/molmed.2011.00243
10.1111/liv.13476
10.1053/j.gastro.2019.11.311
10.1016/j.bbrc.2008.07.024
10.1517/14728220903307509
10.1002/hep.22560
10.1038/s41598-017-11212-1
10.1089/jir.2008.0036
10.1002/hep.30965
10.1074/jbc.M313204200
10.1007/s00535-007-2152-7
10.1016/S0022-2275(20)34272-3
10.1371/journal.pone.0045285
10.1038/nbt1396
10.1007/s00262-015-1790-5
10.1186/1476-5926-6-1
10.1002/jcp.22063
10.1073/pnas.90.1.30
10.1016/j.celrep.2019.10.024
10.1371/journal.pone.0074051
10.1073/pnas.1201840109
10.1016/j.ajpath.2020.08.002
10.1002/hep.26318
10.1038/labinvest.2009.93
10.1038/s41419-019-1327-5
10.1038/s41575-020-0304-x
10.3390/nu10010029
10.1016/S0168-8278(98)80296-1
10.1002/hep.22697
10.1053/j.gastro.2012.07.115
10.1002/hep.27376
10.1097/TP.0b013e31818bfd13
10.1371/journal.pone.0121939
10.1002/hep.1840030414
10.1016/j.mce.2010.12.028
10.1007/s12072-016-9758-x
10.1016/j.bbalip.2011.05.001
10.1074/jbc.M117.778472
10.1016/j.jhep.2020.04.037
10.1016/j.cell.2017.12.025
10.1002/hep.30655
10.1111/j.1440-1746.2006.04573.x
10.1016/j.cmet.2016.09.016
10.1055/s-2005-858989
10.1194/jlr.M010082
10.1016/j.jprot.2012.05.040
10.1038/srep39342
10.1002/hep.20719
10.1016/j.cell.2005.05.011
10.1016/j.redox.2016.12.021
10.1021/bi981679a
10.1111/jcmm.13501
10.1038/nm.3282
10.1016/j.addr.2017.05.007
10.1038/nature06734
10.1016/S0021-9258(18)61298-0
10.1002/hep.24484
10.1152/ajpgi.00263.2007
10.1097/01.alc.0000189279.92602.f0
10.1074/jbc.M114.550624
10.1002/hep.26604
10.1016/S0168-8278(18)30292-7
10.1016/j.cmet.2019.08.001
10.3390/cells8050503
10.1096/fj.06-7717com
10.1073/pnas.82.24.8681
10.1016/S0168-8278(99)80010-5
10.1016/j.bbadis.2015.10.009
10.1111/j.1440-1746.2011.07007.x
10.1126/science.1160809
10.1016/j.bbalip.2019.02.004
10.1016/j.yexcr.2016.01.012
10.1016/j.jhep.2020.02.005
10.1136/gut.2010.209551
10.1038/s41598-018-27686-6
10.1038/emm.2004.1
10.1002/(SICI)1097-4652(199910)181:1<24::AID-JCP3>3.0.CO;2-0
10.1053/j.gastro.2015.09.039
10.1016/j.redox.2015.09.009
10.1002/hep.24119
10.1152/ajpcell.00507.2009
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1016/j.cmet.2020.10.026
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1932-7420
EndPage 257
ExternalDocumentID 10_1016_j_cmet_2020_10_026
33232666
S1550413120305957
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R01 DK128289
– fundername: NCATS NIH HHS
  grantid: UH3 TR002077
– fundername: NIDDK NIH HHS
  grantid: R56 DK056621
– fundername: NIDDK NIH HHS
  grantid: R01 DK056621
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6J9
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AITUG
AKRWK
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IHE
IXB
J1W
JIG
M3Z
M41
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SES
SSZ
TR2
UNMZH
ZA5
0SF
AAEDT
AAMRU
ADVLN
AKAPO
CGR
CUY
CVF
ECM
EIF
NPM
6I.
AAIKJ
AAYXX
AGHFR
CITATION
EJD
HZ~
NCXOZ
OZT
7X8
5PM
ID FETCH-LOGICAL-c521t-54864f5eb60c1a23d3ca02b381bf30ca8c04c02db399ea797d696ff02d9cb6e3
IEDL.DBID ABVKL
ISSN 1550-4131
IngestDate Tue Sep 17 21:04:00 EDT 2024
Wed Dec 04 02:05:07 EST 2024
Thu Sep 26 16:07:20 EDT 2024
Sat Sep 28 08:27:24 EDT 2024
Mon Apr 15 04:49:40 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Copyright © 2020 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-54864f5eb60c1a23d3ca02b381bf30ca8c04c02db399ea797d696ff02d9cb6e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
OpenAccessLink https://www.cell.com/article/S1550413120305957/pdf
PMID 33232666
PQID 2464187592
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7858232
proquest_miscellaneous_2464187592
crossref_primary_10_1016_j_cmet_2020_10_026
pubmed_primary_33232666
elsevier_sciencedirect_doi_10_1016_j_cmet_2020_10_026
PublicationCentury 2000
PublicationDate 2021-02-02
PublicationDateYYYYMMDD 2021-02-02
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell metabolism
PublicationTitleAlternate Cell Metab
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Butler, Hoffman, Smibert, Papalexi, Satija (bib25) 2018; 36
Heine, Schilling, Grünwald, Krüger, Gevensleben, Held, Garbi, Kurts, Brossart, Knolle (bib72) 2016; 65
Siegmund, Qian, de Minicis, Harvey-White, Kunos, Vinod, Hungund, Schwabe (bib154) 2007; 21
Straub, Gyoengyoesi, Koenig, Hashani, Pawella, Herpel, Mueller, Macher-Goeppinger, Heid, Schirmacher (bib155) 2013; 62
Shao, Wang, Wei, Deng, Fu, Peng, Jiang, Ye, Xie, Lin (bib151) 2016; 11
Myung, Yoon, Gwak, Kim, Lee, Kim, Shin, Jang, Lee, Lee (bib122) 2007; 581
Du, Hyun, Premont, Choi, Michelotti, Swiderska-Syn, Dalton, Thelen, Rizi, Jung (bib44) 2018; 154
Paradis, Perlemuter, Bonvoust, Dargere, Parfait, Vidaud, Conti, Huet, Ba, Buffet (bib129) 2001; 34
Friedman, Wei, Blaner (bib58) 1993; 264
Mizushima, Levine, Cuervo, Klionsky (bib121) 2008; 451
DeLeve (bib38) 2013; 123
Urtasun, Conde de la Rosa, Nieto (bib171) 2008; 12
Friedman, Roll, Boyles, Arenson, Bissell (bib56) 1989; 264
Tomita, Teratani, Suzuki, Shimizu, Sato, Narimatsu, Okada, Kurihara, Irie, Yokoyama (bib161) 2014; 59
Kisseleva, Cong, Paik, Scholten, Jiang, Benner, Iwaisako, Moore-Morris, Scott, Tsukamoto (bib90) 2012; 109
Zhou, Cui, He, Guo, Pan, Zhang, Huang, Ge, Wang, Gonzalez (bib191) 2020; 11
Asahina, Zhou, Pu, Tsukamoto (bib9) 2011; 53
Gu, Yan, Wang, Meng, Xiang, Qiu, Han (bib67) 2020
Wang, Lee, Tiep, Yu, Ham, Kang, Evans (bib179) 2003; 113
Kang, Chen (bib88) 2009; 89
Hong, Li, Wang, Li (bib79) 2018; 8
Liu, Desai (bib108) 2015; 6
Blomhoff, Rasmussen, Nilsson, Norum, Berg, Blaner, Kato, Mertz, Goodman, Eriksson (bib20) 1985; 260
Taschler, Schreiber, Chitraju, Grabner, Romauch, Wolinski, Haemmerle, Breinbauer, Zechner, Lass (bib158) 2015; 1851
Serviddio, Bellanti, Stanca, Lunetti, Blonda, Tamborra, Siculella, Vendemiale, Capobianco, Giudetti (bib150) 2014; 73
Bhatt, Qin, Bennett, Qian, Fung, Hamilton, Lu (bib16) 2014; 192
Schneiderhan, Schmid-Kotsas, Zhao, Grünert, Nüssler, Weidenbach, Menke, Schmid, Adler, Bachem (bib144) 2001; 34
Blomhoff, Blomhoff (bib19) 2006; 66
Notas, Kisseleva, Brenner (bib124) 2009; 130
Tsuchida, Friedman (bib165) 2017; 14
Guo, Loke, Zheng, Hong, Yea, Fukata, Tarocchi, Abar, Huang, Sninsky (bib69) 2009; 49
Sato, Murase, Kato, Kobune, Sato, Kawano, Takimoto, Takada, Miyanishi, Matsunaga (bib142) 2008; 26
Iwamoto, Kanno, Hyogo, Yamagishi, Takeuchi, Tazuma, Chayama (bib82) 2008; 43
Tsukamoto, She, Hazra, Cheng, Miyahara (bib169) 2006; 21
Kluwe, Wongsiriroj, Troeger, Gwak, Dapito, Pradere, Jiang, Siddiqi, Piantedosi, O'Byrne (bib91) 2011; 60
Ramachandran, Matchett, Dobie, Wilson-Kanamori, Henderson (bib134) 2020; 17
Ikeda, Kawada, Sato, Inoue, Kaneda (bib81) 1997; 6
Watanabe, Hashmi, Gomes, Town, Badou, Flavell, Mehal (bib180) 2007; 46
Eichmann, Grumet, Taschler, Hartler, Heier, Woblistin, Pajed, Kollroser, Rechberger, Thallinger (bib46) 2015; 56
Vander Heiden, Cantley, Thompson (bib172) 2009; 324
Seki, De Minicis, Osterreicher, Kluwe, Osawa, Brenner, Schwabe (bib147) 2007; 13
Koo, Lee, Kim, Kim (bib92) 2016; 150
Ranganathan, Nelson, Rodriguez, Kim, Tower, Rutter, Brinckerhoff, Huang, Epstein, Jeffrey (bib135) 2001; 276
Ross (bib138) 1982; 257
Chen, Tang, Davis, Hsu, Kennedy, Song, Turk, Brunt, Newberry, Davidson (bib30) 2013; 57
Lee, Wollam, Olefsky (bib100) 2018; 172
Ottonello, Petrucco, Maraini (bib127) 1987; 262
Mejias, Gallego, Naranjo-Suarez, Ramirez, Pell, Manzano, Suñer, Bartrons, Mendez, Fernandez (bib117) 2020; 159
Roh, Seki (bib137) 2018; 1061
Bates, Vijayakumar, Ghoshal, Marchand, Yi, Kornyeyev, Zagorska, Hollenback, Walker, Liu (bib13) 2020; 73
Jain, Rivera, Monclus, Synenki, Zirk, Eisenbart, Feghali-Bostwick, Mutlu, Budinger, Chandel (bib83) 2013; 288
Saeed, Bartuzi, Heegsma, Dekker, Kloosterhuis, de Bruin, Jonker, van de Sluis, Faber (bib139) 2020
Du, Chitneni, Suzuki, Wang, Henao, Hyun, Premont, Naggie, Moylan, Bashir (bib43) 2020; 10
Liu, Wang, Xing, Peng, Huang, Fan (bib110) 2018; 17
Chandrashekaran, Das, Seth, Dattaroy, Alhasson, Michelotti, Nagarkatti, Nagarkatti, Diehl, Chatterjee (bib28) 2016; 1862
El Taghdouini, Najimi, Sancho-Bru, Sokal, van Grunsven (bib47) 2015; 8
Kumar, Wang, Thomson, Gandhi (bib94) 2017; 101
Bracey, Gershkovich, Chun, Vilaysane, Meijndert, Wright, Fedak, Beck, Muruve, Duff (bib22) 2014; 289
Leo, Rosman, Lieber (bib102) 1993; 17
Wan, Xia, Du, Liu, Xie, Zhang, Guan, Wu, Wang, Shi (bib173) 2019; 33
Troeger, Mederacke, Gwak, Dapito, Mu, Hsu, Pradere, Friedman, Schwabe (bib162) 2012; 143
García-Trevijano, Iraburu, Fontana, Domínguez-Rosales, Auster, Covarrubias-Pinedo, Rojkind (bib62) 1999; 29
Gao, Brigstock (bib61) 2004; 279
Higashi, Friedman, Hoshida (bib78) 2017; 121
Wang, Friedman (bib175) 2020; 73
Seo, Eun, Kim, Yi, Lee, Park, Jang, Jo, Kim, Han (bib149) 2016; 64
Schwabe, Tabas, Pajvani (bib146) 2020; 158
Wang, Huang, Guan, Xiao, Deng, Chen, Chen, Li, Huang, Shi (bib178) 2013; 8
De Minicis, Seki, Oesterreicher, Schnabl, Schwabe, Brenner (bib37) 2008; 48
Zhou, Jia, Qin, Lu, Zhu, Li, Han, Sun (bib192) 2010; 323
Zheng, Jiang, Qu, Yuan, Hu, He, Chen, Li, Tu, Lin (bib190) 2020; 190
Wang, Tankersley, Tang, Potter, Mezey (bib174) 2002; 401
Weng, Li, van Bennekum, Potter, Harrison, Blaner, Breslow, Fisher (bib182) 1999; 38
Breitkopf, Godoy, Ciuclan, Singer, Dooley (bib23) 2006; 44
Zhang, Zhao, Yao, Wang, Shao, Chen, Zhang, Zheng (bib189) 2017; 11
Evert, Dombrowski, Schirmacher, Pfeifer (bib48) 1998; 28
Mederacke, Hsu, Troeger, Huebener, Mu, Dapito, Pradere, Schwabe (bib115) 2013; 4
Maher, Saito, Neuschwander-Tetri (bib112) 1997; 53
Nakano, Kamiya, Sumiyoshi, Tsuruya, Kagawa, Inagaki (bib123) 2020; 71
Younossi, Ratziu, Loomba, Rinella, Anstee, Goodman, Bedossa, Geier, Beckebaum, Newsome (bib188) 2019; 394
Jung, Witek, Syn, Choi, Omenetti, Premont, Guy, Diehl (bib87) 2010; 59
Pirazzi, Valenti, Motta, Pingitore, Hedfalk, Mancina, Burza, Indiveri, Ferro, Montalcini (bib130) 2014; 23
Dobie, Wilson-Kanamori, Henderson, Smith, Matchett, Portman, Wallenborg, Picelli, Zagorska, Pendem (bib41) 2019; 29
Blaner, van Bennekum, Brouwer, Hendriks (bib18) 1990; 274
Liu, Xu, Rosenthal, Zhang, McCubbin, Meshgin, Shang, Koyama, Ma, Sharma (bib109) 2020; 158
Blomhoff, Wake (bib21) 1991; 5
Lee, Jeong (bib99) 2012; 27
Hanafusa, Ninomiya-Tsuji, Masuyama, Nishita, Fujisawa, Shibuya, Matsumoto, Nishida (bib70) 1999; 274
Feder, Todaro, Laskin (bib49) 1993; 53
Amann, Hellerbrand (bib5) 2009; 13
Lin, Zheng, Attie, Keller, Bernlohr, Blaner, Newberry, Davidson, Chen (bib106) 2018; 59
Stuart, Butler, Hoffman, Hafemeister, Papalexi, Mauck, Hao, Stoeckius, Smibert, Satija (bib156) 2019; 177
Bataller, Schwabe, Choi, Yang, Paik, Lindquist, Qian, Schoonhoven, Hagedorn, Lemasters (bib12) 2003; 112
Winau, Hegasy, Weiskirchen, Weber, Cassan, Sieling, Modlin, Liblau, Gressner, Kaufmann (bib183) 2007; 26
Bansal (bib10) 2016; 10
Mannaerts, Thoen, Eysackers, Cubero, Batista Leite, Coldham, Colle, Trautwein, van Grunsven (bib113) 2019; 10
Weiskirchen, Tacke (bib181) 2014; 3
Hernández-Gea, Hilscher, Rozenfeld, Lim, Nieto, Werner, Devi, Friedman (bib77) 2013; 59
Fehrenbach, Weiskirchen, Kasper, Gressner (bib50) 2001; 34
Sancho, Mainez, Crosas-Molist, Roncero, Fernández-Rodriguez, Pinedo, Huber, Eferl, Mikulits, Fabregat (bib141) 2012; 7
Hernández-Gea, Friedman (bib75) 2012; 8
Arab, Cabrera, Sehrawat, Jalan-Sakrikar, Verma, Simonetto, Cao, Yaqoob, Leon, Freire (bib7) 2020; 73
Oh, Shim, Lee, Choi, Baik, Eom (bib125) 2017; 40
Chen, Choi, Michelotti, Chan, Swiderska-Syn, Karaca, Xie, Moylan, Garibaldi, Premont (bib31) 2012; 143
Li, Ragheb, Lawler, Sturgis, Rajwa, Melendez, Robinson (bib103) 2003; 278
Shmarakov, Jiang, Liu, Fernandez, Blaner (bib153) 2019; 1864
Tsukada, Westwick, Ikejima, Sato, Rippe (bib167) 2005; 280
Lemoinne, Friedman (bib101) 2019; 49
Wang, Cai, Yang, Sonubi, Zheng, Ramakrishnan, Shi, Valenti, Pajvani, Sandhu (bib176) 2020; 31
Chang, Chen, Chang, Hou, Chan, Lee (bib29) 2004; 65
Bellovino, Lanyau, Garaguso, Amicone, Cavallari, Tripodi, Gaetani (bib14) 1999; 181
Trøen, Nilsson, Norum, Blomhoff (bib164) 1994; 300
Giorgio, Migliaccio, Orsini, Paolucci, Moroni, Contursi, Pelliccia, Luzi, Minucci, Marcaccio (bib63) 2005; 122
Miura, Yang, van Rooijen, Brenner, Ohnishi, Seki (bib120) 2012; 57
Adachi, Togashi, Suzuki, Kasai, Ito, Sugahara, Kawata (bib2) 2005; 41
Krenkel, Hundertmark, Ritz, Weiskirchen, Tacke (bib93) 2019; 8
Lin, Zheng, Chen (bib107) 2009; 89
Henderson, Arnold, Katamura, Giacomini, Rodriguez, McCarty, Pellicoro, Raschperger, Betsholtz, Ruminski (bib74) 2013; 19
Friedman (bib53) 2003; 38
Christofk, Vander Heiden, Harris, Ramanathan, Gerszten, Wei, Fleming, Schreiber, Cantley (bib34) 2008; 452
Ratziu, Harrison, Francque, Bedossa, Lehert, Serfaty, Romero-Gomez, Boursier, Abdelmalek, Caldwell (bib136) 2016; 150
Mello, Nakatsuka, Fears, Davis, Tsukamoto, Bosron, Sanghani (bib118) 2008; 374
Dong, Su, Esmaili, Iseli, Ramezani-Moghadam, Hu, Xu, George, Wang (bib42) 2015; 93
Golan-Gerstl, Oren, Brazovski, Hayardeny, Reif (bib64) 2017; 66
Mehrpour, Esclatine, Beau, Codogno (bib116) 2010; 298
Barcena-Varela, Paish, Alvarez, Uriarte, Latasa, Santamaria, Recalde, Garate, Claveria, Colyn (bib11) 2020
Sun, Fan, Chen, Tian, Li, Xu, Wu, Shao, Bian, Fang (bib157) 2016; 6
Tsuchida, Lee, Fujiwara, Ybanez, Allen, Martins, Fiel, Goossens, Chou, Hoshida (bib166) 2018; 69
Matsuura, Gad, Harrison, Ross (bib114) 1997; 127
Yoneda, Sakai-Sawada, Niitsu, Tamura (bib187) 2016; 341
Andueza, Garde, García-Garzón, Ansorena, López-Zabalza, Iraburu, Zalba, Martínez-Irujo (bib6) 2018; 126
Teratani, Tomita, Suzuki, Oshikawa, Yokoyama, Shimamura, Tominaga, Hiroi, Irie, Okada (bib159) 2012; 142
Ramachandran, Dobie, Wilson-Kanamori, Dora, Henderson, Luu, Portman, Matchett, Brice, Marwick (bib133) 2019; 575
Kim, Hasegawa, Goossens, Tsuchida, Athwal, Sun, Robinson, Bhattacharya, Chou, Zhang (bib89) 2016; 6
Grumet, Eichmann, Taschler, Zierler, Leopold, Moustafa, Radovic, Romauch, Yan, Du (bib66) 2016; 291
Jin, Gao, Wang, Yang, Wang, Liu, Yang, Yan, Chen, Zhao (bib86) 2017; 37
D'Ambrosio, Walewski, Clugston, Berk, Rippe, Blaner (bib35) 2011; 6
Hernández–Gea, Ghiassi-Nejad, Rozenfeld, Gordon, Fiel, Yue, Czaja, Friedman (bib76) 2012; 142
M
Teratani (10.1016/j.cmet.2020.10.026_bib159) 2012; 142
Kumar (10.1016/j.cmet.2020.10.026_bib94) 2017; 101
Serviddio (10.1016/j.cmet.2020.10.026_bib150) 2014; 73
Ramachandran (10.1016/j.cmet.2020.10.026_bib134) 2020; 17
Desroches-Castan (10.1016/j.cmet.2020.10.026_bib40) 2019; 70
Qin (10.1016/j.cmet.2020.10.026_bib132) 2012; 75
Watanabe (10.1016/j.cmet.2020.10.026_bib180) 2007; 46
Arab (10.1016/j.cmet.2020.10.026_bib7) 2020; 73
Choi (10.1016/j.cmet.2020.10.026_bib33) 2019; 30
Wang (10.1016/j.cmet.2020.10.026_bib174) 2002; 401
Allenby (10.1016/j.cmet.2020.10.026_bib4) 1993; 90
Vander Heiden (10.1016/j.cmet.2020.10.026_bib172) 2009; 324
Gao (10.1016/j.cmet.2020.10.026_bib61) 2004; 279
Evert (10.1016/j.cmet.2020.10.026_bib48) 1998; 28
Lee (10.1016/j.cmet.2020.10.026_bib98) 2010; 223
Dobie (10.1016/j.cmet.2020.10.026_bib41) 2019; 29
Friedman (10.1016/j.cmet.2020.10.026_bib55) 1992; 15
Friedman (10.1016/j.cmet.2020.10.026_bib57) 1985; 82
Hernández-Gea (10.1016/j.cmet.2020.10.026_bib75) 2012; 8
Cheng (10.1016/j.cmet.2020.10.026_bib32) 2008; 294
Henderson (10.1016/j.cmet.2020.10.026_bib74) 2013; 19
Tsukamoto (10.1016/j.cmet.2020.10.026_bib168) 2005; 29
Iwamoto (10.1016/j.cmet.2020.10.026_bib82) 2008; 43
Bhatt (10.1016/j.cmet.2020.10.026_bib16) 2014; 192
Jung (10.1016/j.cmet.2020.10.026_bib87) 2010; 59
Blomhoff (10.1016/j.cmet.2020.10.026_bib21) 1991; 5
Wang (10.1016/j.cmet.2020.10.026_bib176) 2020; 31
Blaner (10.1016/j.cmet.2020.10.026_bib17) 1985; 26
Breitkopf (10.1016/j.cmet.2020.10.026_bib23) 2006; 44
El Taghdouini (10.1016/j.cmet.2020.10.026_bib47) 2015; 8
Nakano (10.1016/j.cmet.2020.10.026_bib123) 2020; 71
Zhang (10.1016/j.cmet.2020.10.026_bib189) 2017; 11
Giorgio (10.1016/j.cmet.2020.10.026_bib63) 2005; 122
Heine (10.1016/j.cmet.2020.10.026_bib72) 2016; 65
Wang (10.1016/j.cmet.2020.10.026_bib179) 2003; 113
Mejias (10.1016/j.cmet.2020.10.026_bib117) 2020; 159
Chen (10.1016/j.cmet.2020.10.026_bib30) 2013; 57
Christofk (10.1016/j.cmet.2020.10.026_bib34) 2008; 452
Tomita (10.1016/j.cmet.2020.10.026_bib161) 2014; 59
DeLeve (10.1016/j.cmet.2020.10.026_bib39) 2015; 61
Fehrenbach (10.1016/j.cmet.2020.10.026_bib50) 2001; 34
Seki (10.1016/j.cmet.2020.10.026_bib147) 2007; 13
Wang (10.1016/j.cmet.2020.10.026_bib178) 2013; 8
Stuart (10.1016/j.cmet.2020.10.026_bib156) 2019; 177
Asahina (10.1016/j.cmet.2020.10.026_bib9) 2011; 53
Hernández-Gea (10.1016/j.cmet.2020.10.026_bib77) 2013; 59
Kisseleva (10.1016/j.cmet.2020.10.026_bib90) 2012; 109
Lane (10.1016/j.cmet.2020.10.026_bib95) 2020; 7
Krenkel (10.1016/j.cmet.2020.10.026_bib93) 2019; 8
Liberti (10.1016/j.cmet.2020.10.026_bib104) 2016; 41
Onichtchouk (10.1016/j.cmet.2020.10.026_bib126) 1999; 401
Mannaerts (10.1016/j.cmet.2020.10.026_bib113) 2019; 10
Schwabe (10.1016/j.cmet.2020.10.026_bib146) 2020; 158
Sato (10.1016/j.cmet.2020.10.026_bib142) 2008; 26
Weng (10.1016/j.cmet.2020.10.026_bib182) 1999; 38
Lin (10.1016/j.cmet.2020.10.026_bib106) 2018; 59
Grumet (10.1016/j.cmet.2020.10.026_bib66) 2016; 291
Casini (10.1016/j.cmet.2020.10.026_bib27) 1997; 25
Guo (10.1016/j.cmet.2020.10.026_bib69) 2009; 49
Seo (10.1016/j.cmet.2020.10.026_bib149) 2016; 64
Zheng (10.1016/j.cmet.2020.10.026_bib190) 2020; 190
Cai (10.1016/j.cmet.2020.10.026_bib26) 2020; 31
Langer (10.1016/j.cmet.2020.10.026_bib96) 2008; 47
Kang (10.1016/j.cmet.2020.10.026_bib88) 2009; 89
Blomhoff (10.1016/j.cmet.2020.10.026_bib20) 1985; 260
Jain (10.1016/j.cmet.2020.10.026_bib83) 2013; 288
Golan-Gerstl (10.1016/j.cmet.2020.10.026_bib64) 2017; 66
Fukushima (10.1016/j.cmet.2020.10.026_bib59) 2005; 41
Minato (10.1016/j.cmet.2020.10.026_bib119) 1983; 3
Jia (10.1016/j.cmet.2020.10.026_bib84) 2015; 10
Ottonello (10.1016/j.cmet.2020.10.026_bib127) 1987; 262
Jiang (10.1016/j.cmet.2020.10.026_bib85) 2008; 86
Bracey (10.1016/j.cmet.2020.10.026_bib22) 2014; 289
Mehrpour (10.1016/j.cmet.2020.10.026_bib116) 2010; 298
Proell (10.1016/j.cmet.2020.10.026_bib131) 2007; 6
Asahina (10.1016/j.cmet.2020.10.026_bib8) 2009; 49
Hanafusa (10.1016/j.cmet.2020.10.026_bib70) 1999; 274
Amann (10.1016/j.cmet.2020.10.026_bib5) 2009; 13
De Minicis (10.1016/j.cmet.2020.10.026_bib37) 2008; 48
Abraham (10.1016/j.cmet.2020.10.026_bib1) 2009; 29
Saeed (10.1016/j.cmet.2020.10.026_bib139) 2020
Sancho (10.1016/j.cmet.2020.10.026_bib141) 2012; 7
Liu (10.1016/j.cmet.2020.10.026_bib108) 2015; 6
Ratziu (10.1016/j.cmet.2020.10.026_bib136) 2016; 150
Gu (10.1016/j.cmet.2020.10.026_bib67) 2020
Lemoinne (10.1016/j.cmet.2020.10.026_bib101) 2019; 49
Pang (10.1016/j.cmet.2020.10.026_bib128) 2011; 52
Bates (10.1016/j.cmet.2020.10.026_bib13) 2020; 73
Notas (10.1016/j.cmet.2020.10.026_bib124) 2009; 130
García-Trevijano (10.1016/j.cmet.2020.10.026_bib62) 1999; 29
Koo (10.1016/j.cmet.2020.10.026_bib92) 2016; 150
Guimarães (10.1016/j.cmet.2020.10.026_bib68) 2012; 12
Kluwe (10.1016/j.cmet.2020.10.026_bib91) 2011; 60
Ikeda (10.1016/j.cmet.2020.10.026_bib81) 1997; 6
Ranganathan (10.1016/j.cmet.2020.10.026_bib135) 2001; 276
Foo (10.1016/j.cmet.2020.10.026_bib52) 2011; 282
Maher (10.1016/j.cmet.2020.10.026_bib111) 1993; 91
Wang (10.1016/j.cmet.2020.10.026_bib177) 2016; 24
Miura (10.1016/j.cmet.2020.10.026_bib120) 2012; 57
Pirazzi (10.1016/j.cmet.2020.10.026_bib130) 2014; 23
Chandrashekaran (10.1016/j.cmet.2020.10.026_bib28) 2016; 1862
Troeger (10.1016/j.cmet.2020.10.026_bib162) 2012; 143
Kim (10.1016/j.cmet.2020.10.026_bib89) 2016; 6
Saeed (10.1016/j.cmet.2020.10.026_bib140) 2017; 10
Weiskirchen (10.1016/j.cmet.2020.10.026_bib181) 2014; 3
Mederacke (10.1016/j.cmet.2020.10.026_bib115) 2013; 4
Tsuchida (10.1016/j.cmet.2020.10.026_bib166) 2018; 69
Maher (10.1016/j.cmet.2020.10.026_bib112) 1997; 53
Zhou (10.1016/j.cmet.2020.10.026_bib191) 2020; 11
Shao (10.1016/j.cmet.2020.10.026_bib151) 2016; 11
Eichmann (10.1016/j.cmet.2020.10.026_bib46) 2015; 56
Hellerbrand (10.1016/j.cmet.2020.10.026_bib73) 1999; 30
Friedman (10.1016/j.cmet.2020.10.026_bib56) 1989; 264
Urtasun (10.1016/j.cmet.2020.10.026_bib171) 2008; 12
Blaner (10.1016/j.cmet.2020.10.026_bib18) 1990; 274
Du (10.1016/j.cmet.2020.10.026_bib43) 2020; 10
Gajendiran (10.1016/j.cmet.2020.10.026_bib60) 2018; 22
Younossi (10.1016/j.cmet.2020.10.026_bib188) 2019; 394
D'Ambrosio (10.1016/j.cmet.2020.10.026_bib35) 2011; 6
Adachi (10.1016/j.cmet.2020.10.026_bib2) 2005; 41
Myung (10.1016/j.cmet.2020.10.026_bib122) 2007; 581
Wang (10.1016/j.cmet.2020.10.026_bib175) 2020; 73
Friedman (10.1016/j.cmet.2020.10.026_bib54) 2008; 88
Mello (10.1016/j.cmet.2020.10.026_bib118) 2008; 374
Tsuchida (10.1016/j.cmet.2020.10.026_bib165) 2017; 14
Higashi (10.1016/j.cmet.2020.10.026_bib78) 2017; 121
Tsukada (10.1016/j.cmet.2020.10.026_bib167) 2005; 280
Lin (10.1016/j.cmet.2020.10.026_bib105) 2011; 333
Lee (10.1016/j.cmet.2020.10.026_bib97) 2004; 36
Oh (10.1016/j.cmet.2020.10.026_bib125) 2017; 40
Shmarakov (10.1016/j.cmet.2020.10.026_bib153) 2019; 1864
Matsuura (10.1016/j.cmet.2020.10.026_bib114) 1997; 127
Taschler (10.1016/j.cmet.2020.10.026_bib158) 2015; 1851
Straub (10.1016/j.cmet.2020.10.026_bib155) 2013; 62
Bellovino (10.1016/j.cmet.2020.10.026_bib14) 1999; 181
Bataller (10.1016/j.cmet.2020.10.026_bib12) 2003; 112
Lin (10.1016/j.cmet.2020.10.026_bib107) 2009; 89
Bansal (10.1016/j.cmet.2020.10.026_bib10) 2016; 10
Blomhoff (10.1016/j.cmet.2020.10.026_bib19) 2006; 66
Jin (10.1016/j.cmet.2020.10.026_bib86) 2017; 37
Sun (10.1016/j.cmet.2020.10.026_bib157) 2016; 6
Friedman (10.1016/j.cmet.2020.10.026_bib58) 1993; 264
Fleury (10.1016/j.cmet.2020.10.026_bib51) 2002; 84
Zhu (10.1016/j.cmet.2020.10.026_bib193) 2018; 10
Paradis (10.1016/j.cmet.2020.10.026_bib129) 2001; 34
Schneiderhan (10.1016/j.cmet.2020.10.026_bib144) 2001; 34
Lee (10.1016/j.cmet.2020.10.026_bib99) 2012; 27
Lee (10.1016/j.cmet.2020.10.026_bib100) 2018; 172
Brunati (10.1016/j.cmet.2020.10.026_bib24) 2010; 44
Feder (10.1016/j.cmet.2020.10.026_bib49) 1993; 53
Chen (10.1016/j.cmet.2020.10.026_bib31) 2012; 143
Mizushima (10.1016/j.cmet.2020.10.026_bib121) 2008; 451
Siegmund (10.1016/j.cmet.2020.10.026_bib154) 2007; 21
Barcena-Varela (10.1016/j.cmet.2020.10.026_bib11) 2020
De Bleser (10.1016/j.cmet.2020.10.026_bib36) 1999; 274
Troeger (10.1016/j.cmet.2020.10.026_bib163) 2011; 54
Liu (10.1016/j.cmet.2020.10.026_bib110) 2018; 17
Yan (10.1016/j.cmet.2020.10.026_bib186) 2012; 18
Xiong (10.1016/j.cmet.2020.10.026_bib185) 2019; 75
Wan (10.1016/j.cmet.2020.10.026_bib173) 2019; 33
Friedman (10.1016/j.cmet.2020.10.026_bib53) 2003; 38
Harrison (10.1016/j.cmet.2020.10.026_bib71) 2018; 68
Li (10.1016/j.cmet.2020.10.026_bib103) 2003; 278
Sauvant (10.1016/j.cmet.2020.10.026_bib143) 2001; 33
Testerink (10.1016/j.cmet.2020.10.026_bib160) 2012; 7
Andueza (10.1016/j.cmet.2020.10.026_bib6) 2018; 126
Hong (10.1016/j.cmet.2020.10.026_bib79) 2018; 8
She (10.1016/j.cmet.2020.10.026_bib152) 2005; 280
Wu (10.1016/j.cmet.2020.10.026_bib184) 2017; 7
Liu (10.1016/j.cmet.2020.10.026_bib109) 2020; 158
Hernández–Gea (10.1016/j.cmet.2020.10.026_bib76) 2012; 142
Tuohetahuntila (10.1016/j.cmet.2020.10.026_bib170) 2017; 292
Eberlé (10.1016/j.cmet.2020.10.026_bib45) 2004; 86
Hotamisligil (10.1016/j.cmet.2020.10.026_bib80) 2017; 542
Bellovino (10.1016/j.cmet.2020.10.026_bib15) 1996; 222
Zhou (10.1016/j.cmet.2020.10.026_bib192) 2010; 323
Butler (10.1016/j.cmet.2020.10.026_bib25) 2018; 36
Leo (10.1016/j.cmet.2020.10.026_bib102) 1993; 17
Ramachandran (10.1016/j.cmet.2020.10.026_bib133) 2019; 575
Ajat (10.1016/j.cmet.2020.10.026_bib3) 2017; 1862
Senoo (10.1016/j.cmet.2020.10.026_bib148) 2010; 34
Trøen (10.1016/j.cmet.2020.10.026_bib164) 1994; 300
Goodwin (10.1016/j.cmet.2020.10.026_bib65) 2013; 28
DeLeve (10.1016/j.cmet.2020.10.026_bib38) 2013; 123
Ross (10.1016/j.cmet.2020.10.026_bib138) 1982; 257
Schreiber (10.1016/j.cmet.2020.10.026_bib145) 2012; 1821
Yoneda (10.1016/j.cmet.2020.10.026_bib187) 2016; 341
Tsukamoto (10.1016/j.cmet.2020.10.026_bib169) 2006; 21
Roh (10.1016/j.cmet.2020.10.026_bib137) 2018; 1061
Winau (10.1016/j.cmet.2020.10.026_bib183) 2007; 26
Du (10.1016/j.cmet.2020.10.026_bib44) 2018; 154
Chang (10.1016/j.cmet.2020.10.026_bib29) 2004; 65
Dong (10.1016/j.cmet.2020.10.026_bib42) 2015; 93
References_xml – volume: 60
  start-page: 1260
  year: 2011
  end-page: 1268
  ident: bib91
  article-title: Absence of hepatic stellate cell retinoid lipid droplets does not enhance hepatic fibrosis but decreases hepatic carcinogenesis
  publication-title: Gut
  contributor:
    fullname: O'Byrne
– volume: 262
  start-page: 3975
  year: 1987
  end-page: 3981
  ident: bib127
  article-title: Vitamin A uptake from retinol-binding protein in a cell-free system from pigment epithelial cells of bovine retina. Retinol transfer from plasma retinol-binding protein to cytoplasmic retinol-binding protein with retinyl-ester formation as the intermediate step
  publication-title: J. Biol. Chem.
  contributor:
    fullname: Maraini
– volume: 34
  start-page: 1247
  year: 2010
  end-page: 1272
  ident: bib148
  article-title: Hepatic stellate cell (vitamin A-storing cell) and its relative--past, present and future
  publication-title: Cell Biol. Int.
  contributor:
    fullname: Mezaki
– volume: 71
  start-page: 1437
  year: 2020
  end-page: 1452
  ident: bib123
  article-title: A deactivation factor of fibrogenic hepatic stellate cells induces regression of liver fibrosis in mice
  publication-title: Hepatology
  contributor:
    fullname: Inagaki
– volume: 158
  start-page: 1913
  year: 2020
  end-page: 1928
  ident: bib146
  article-title: Mechanisms of fibrosis development in nonalcoholic steatohepatitis
  publication-title: Gastroenterology
  contributor:
    fullname: Pajvani
– volume: 177
  start-page: 1888
  year: 2019
  end-page: 1902.e21
  ident: bib156
  article-title: Comprehensive integration of single-cell data
  publication-title: Cell
  contributor:
    fullname: Satija
– volume: 13
  start-page: 1411
  year: 2009
  end-page: 1427
  ident: bib5
  article-title: GLUT1 as a therapeutic target in hepatocellular carcinoma
  publication-title: Expert Opin. Ther. Targets
  contributor:
    fullname: Hellerbrand
– volume: 48
  start-page: 2016
  year: 2008
  end-page: 2026
  ident: bib37
  article-title: Reduced nicotinamide adenine dinucleotide phosphate oxidase mediates fibrotic and inflammatory effects of leptin on hepatic stellate cells
  publication-title: Hepatology
  contributor:
    fullname: Brenner
– volume: 4
  start-page: 2823
  year: 2013
  ident: bib115
  article-title: Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology
  publication-title: Nat. Commun.
  contributor:
    fullname: Schwabe
– volume: 44
  start-page: 57
  year: 2006
  end-page: 66
  ident: bib23
  article-title: TGF-beta/Smad signaling in the injured liver
  publication-title: Z. Gastroenterol.
  contributor:
    fullname: Dooley
– volume: 66
  start-page: S655
  year: 2017
  end-page: S656
  ident: bib64
  article-title: Anti-fibrotic effect of aramchol on fibrosis in TAA animal model
  publication-title: J. Hepatol.
  contributor:
    fullname: Reif
– volume: 291
  start-page: 17977
  year: 2016
  end-page: 17987
  ident: bib66
  article-title: Lysosomal acid lipase hydrolyzes retinyl ester and affects retinoid turnover
  publication-title: J. Biol. Chem.
  contributor:
    fullname: Du
– volume: 7
  start-page: e34945
  year: 2012
  ident: bib160
  article-title: Replacement of retinyl esters by polyunsaturated triacylglycerol species in lipid droplets of hepatic stellate cells during activation
  publication-title: PLoS One
  contributor:
    fullname: Vaandrager
– volume: 172
  start-page: 22
  year: 2018
  end-page: 40
  ident: bib100
  article-title: An integrated view of immunometabolism
  publication-title: Cell
  contributor:
    fullname: Olefsky
– volume: 101
  start-page: 429
  year: 2017
  end-page: 438
  ident: bib94
  article-title: Hepatic stellate cells increase the immunosuppressive function of natural Foxp3+ regulatory T cells via IDO-induced AhR activation
  publication-title: J. Leukoc. Biol.
  contributor:
    fullname: Gandhi
– volume: 65
  start-page: 273
  year: 2016
  end-page: 282
  ident: bib72
  article-title: The induction of human myeloid derived suppressor cells through hepatic stellate cells is dose-dependently inhibited by the tyrosine kinase inhibitors nilotinib, dasatinib and sorafenib, but not sunitinib
  publication-title: Cancer Immunol. Immun.
  contributor:
    fullname: Knolle
– volume: 292
  start-page: 12436
  year: 2017
  end-page: 12448
  ident: bib170
  article-title: Lysosome-mediated degradation of a distinct pool of lipid droplets during hepatic stellate cell activation
  publication-title: J. Biol. Chem.
  contributor:
    fullname: Vaandrager
– volume: 88
  start-page: 125
  year: 2008
  end-page: 172
  ident: bib54
  article-title: Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver
  publication-title: Physiol. Rev.
  contributor:
    fullname: Friedman
– volume: 31
  start-page: 969
  year: 2020
  end-page: 986
  ident: bib176
  article-title: Cholesterol stabilizes TAZ in hepatocytes to promote experimental non-alcoholic steatohepatitis
  publication-title: Cell Metab.
  contributor:
    fullname: Sandhu
– volume: 41
  start-page: 211
  year: 2016
  end-page: 218
  ident: bib104
  article-title: The Warburg effect: how does it benefit cancer cells?
  publication-title: Trends Biochem. Sci.
  contributor:
    fullname: Locasale
– volume: 6
  start-page: 1
  year: 2007
  ident: bib131
  article-title: TGF-beta dependent regulation of oxygen radicals during transdifferentiation of activated hepatic stellate cells to myofibroblastoid cells
  publication-title: Comp. Hepatol.
  contributor:
    fullname: Mikulits
– volume: 181
  start-page: 24
  year: 1999
  end-page: 32
  ident: bib14
  article-title: MMH cells: an in vitro model for the study of retinol-binding protein secretion regulated by retinol
  publication-title: J. Cell. Physiol.
  contributor:
    fullname: Gaetani
– volume: 401
  start-page: 480
  year: 1999
  end-page: 485
  ident: bib126
  article-title: Silencing of TGF-beta signalling by the pseudoreceptor BAMBI
  publication-title: Nature
  contributor:
    fullname: Niehrs
– volume: 90
  start-page: 30
  year: 1993
  end-page: 34
  ident: bib4
  article-title: Retinoic acid receptors and retinoid X receptors: interactions with endogenous retinoic acids
  publication-title: Proc. Natl. Acad. Sci. USA
  contributor:
    fullname: Chambon
– volume: 17
  start-page: 457
  year: 2020
  end-page: 472
  ident: bib134
  article-title: Single-cell technologies in hepatology: new insights into liver biology and disease pathogenesis
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  contributor:
    fullname: Henderson
– volume: 59
  start-page: 154
  year: 2014
  end-page: 169
  ident: bib161
  article-title: Free cholesterol accumulation in hepatic stellate cells: mechanism of liver fibrosis aggravation in nonalcoholic steatohepatitis in mice
  publication-title: Hepatology
  contributor:
    fullname: Yokoyama
– volume: 113
  start-page: 159
  year: 2003
  end-page: 170
  ident: bib179
  article-title: Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity
  publication-title: Cell
  contributor:
    fullname: Evans
– volume: 8
  start-page: 849
  year: 2012
  end-page: 850
  ident: bib75
  article-title: Autophagy fuels tissue fibrogenesis
  publication-title: Autophagy
  contributor:
    fullname: Friedman
– volume: 43
  start-page: 298
  year: 2008
  end-page: 304
  ident: bib82
  article-title: Advanced glycation end products enhance the proliferation and activation of hepatic stellate cells
  publication-title: J. Gastroenterol.
  contributor:
    fullname: Chayama
– volume: 49
  start-page: 998
  year: 2009
  end-page: 1011
  ident: bib8
  article-title: Mesenchymal origin of hepatic stellate cells, submesothelial cells, and perivascular mesenchymal cells during mouse liver development
  publication-title: Hepatology
  contributor:
    fullname: Tsukamoto
– volume: 192
  start-page: 5098
  year: 2014
  end-page: 5108
  ident: bib16
  article-title: All-trans retinoic acid induces arginase-1 and inducible nitric oxide synthase-producing dendritic cells with T cell inhibitory function
  publication-title: J. Immunol.
  contributor:
    fullname: Lu
– volume: 289
  start-page: 19571
  year: 2014
  end-page: 19584
  ident: bib22
  article-title: Mitochondrial NLRP3 protein induces reactive oxygen species to promote Smad protein signaling and fibrosis independent from the inflammasome
  publication-title: J. Biol. Chem.
  contributor:
    fullname: Duff
– volume: 401
  start-page: 262
  year: 2002
  end-page: 270
  ident: bib174
  article-title: Regulation of the murine alpha(2)(I) collagen promoter by retinoic acid and retinoid X receptors
  publication-title: Arch. Biochem. Biophys.
  contributor:
    fullname: Mezey
– volume: 451
  start-page: 1069
  year: 2008
  end-page: 1075
  ident: bib121
  article-title: Autophagy fights disease through cellular self-digestion
  publication-title: Nature
  contributor:
    fullname: Klionsky
– volume: 13
  start-page: 1324
  year: 2007
  end-page: 1332
  ident: bib147
  article-title: TLR4 enhances TGF-beta signaling and hepatic fibrosis
  publication-title: Nat. Med.
  contributor:
    fullname: Schwabe
– volume: 49
  start-page: 960
  year: 2009
  end-page: 968
  ident: bib69
  article-title: Functional linkage of cirrhosis-predictive single nucleotide polymorphisms of toll-like receptor 4 to hepatic stellate cell responses
  publication-title: Hepatology
  contributor:
    fullname: Sninsky
– volume: 8
  start-page: e74051
  year: 2013
  ident: bib178
  article-title: Hypoxia-inducible factor-1alpha and MAPK co-regulate activation of hepatic stellate cells upon hypoxia stimulation
  publication-title: PLoS One
  contributor:
    fullname: Shi
– volume: 40
  start-page: 576
  year: 2017
  end-page: 582
  ident: bib125
  article-title: 1-Methyl-L-tryptophan promotes the apoptosis of hepatic stellate cells arrested by interferon-gamma by increasing the expression of IFN-γRβ, IRF-1 and FAS
  publication-title: Int. J. Mol. Med.
  contributor:
    fullname: Eom
– volume: 5
  start-page: 271
  year: 1991
  end-page: 277
  ident: bib21
  article-title: Perisinusoidal stellate cells of the liver: important roles in retinol metabolism and fibrosis
  publication-title: FASEB J.
  contributor:
    fullname: Wake
– volume: 69
  start-page: 385
  year: 2018
  end-page: 395
  ident: bib166
  article-title: A simple diet- and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer
  publication-title: J. Hepatol.
  contributor:
    fullname: Hoshida
– volume: 75
  start-page: 4114
  year: 2012
  end-page: 4123
  ident: bib132
  article-title: Alteration of protein glycosylation in human hepatic stellate cells activated with transforming growth factor-beta1
  publication-title: J. Proteomics
  contributor:
    fullname: Li
– volume: 14
  start-page: 397
  year: 2017
  end-page: 411
  ident: bib165
  article-title: Mechanisms of hepatic stellate cell activation
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  contributor:
    fullname: Friedman
– volume: 86
  start-page: 1492
  year: 2008
  end-page: 1502
  ident: bib85
  article-title: Hepatic stellate cells preferentially expand allogeneic CD4+ CD25+ FoxP3+ regulatory T cells in an IL-2-dependent manner
  publication-title: Transplantation
  contributor:
    fullname: Lu
– volume: 86
  start-page: 839
  year: 2004
  end-page: 848
  ident: bib45
  article-title: SREBP transcription factors: master regulators of lipid homeostasis
  publication-title: Biochimie
  contributor:
    fullname: Foufelle
– volume: 122
  start-page: 221
  year: 2005
  end-page: 233
  ident: bib63
  article-title: Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis
  publication-title: Cell
  contributor:
    fullname: Marcaccio
– volume: 93
  start-page: 1327
  year: 2015
  end-page: 1339
  ident: bib42
  article-title: Adiponectin attenuates liver fibrosis by inducing nitric oxide production of hepatic stellate cells
  publication-title: J. Mol. Med. (Berl.)
  contributor:
    fullname: Wang
– volume: 280
  start-page: 10055
  year: 2005
  end-page: 10064
  ident: bib167
  article-title: SMAD and p38 MAPK signaling pathways independently regulate alpha1(I) collagen gene expression in unstimulated and transforming growth factor-beta-stimulated hepatic stellate cells
  publication-title: J. Biol. Chem.
  contributor:
    fullname: Rippe
– volume: 28
  start-page: 369
  year: 2013
  end-page: 376
  ident: bib65
  article-title: Advanced glycation end products augment experimental hepatic fibrosis
  publication-title: J. Gastroenterol. Hepatol.
  contributor:
    fullname: Angus
– volume: 324
  start-page: 1029
  year: 2009
  end-page: 1033
  ident: bib172
  article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation
  publication-title: Science
  contributor:
    fullname: Thompson
– volume: 26
  start-page: 1241
  year: 1985
  end-page: 1251
  ident: bib17
  article-title: Retinoids, retinoid-binding proteins, and retinyl palmitate hydrolase distributions in different types of rat liver cells
  publication-title: J. Lipid Res.
  contributor:
    fullname: Goodman
– volume: 10
  start-page: e0121939
  year: 2015
  ident: bib84
  article-title: Pyrroloquinoline-quinone suppresses liver fibrogenesis in mice
  publication-title: PLoS One
  contributor:
    fullname: Gu
– volume: 34
  start-page: 738
  year: 2001
  end-page: 744
  ident: bib129
  article-title: High glucose and hyperinsulinemia stimulate connective tissue growth factor expression: a potential mechanism involved in progression to fibrosis in nonalcoholic steatohepatitis
  publication-title: Hepatology
  contributor:
    fullname: Buffet
– volume: 33
  start-page: 8530
  year: 2019
  end-page: 8542
  ident: bib173
  article-title: Exosomes from activated hepatic stellate cells contain GLUT1 and PKM2: a role for exosomes in metabolic switch of liver nonparenchymal cells
  publication-title: FASEB J.
  contributor:
    fullname: Shi
– volume: 73
  start-page: 896
  year: 2020
  end-page: 905
  ident: bib13
  article-title: Acetyl-CoA carboxylase inhibition disrupts metabolic reprogramming during hepatic stellate cell activation
  publication-title: J. Hepatol.
  contributor:
    fullname: Liu
– volume: 109
  start-page: 9448
  year: 2012
  end-page: 9453
  ident: bib90
  article-title: Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis
  publication-title: Proc. Natl. Acad. Sci. USA
  contributor:
    fullname: Tsukamoto
– volume: 53
  start-page: 637
  year: 1997
  end-page: 641
  ident: bib112
  article-title: Glutathione regulation in rat hepatic stellate cells. Comparative studies in primary culture and in liver injury in vivo
  publication-title: Biochem. Pharmacol.
  contributor:
    fullname: Neuschwander-Tetri
– volume: 6
  start-page: 28432
  year: 2016
  ident: bib157
  article-title: Transcriptional repression of SIRT1 by protein inhibitor of activated STAT 4 (PIAS4) in hepatic stellate cells contributes to liver fibrosis
  publication-title: Sci. Rep.
  contributor:
    fullname: Fang
– volume: 75
  start-page: 644
  year: 2019
  end-page: 660.e5
  ident: bib185
  article-title: Landscape of intercellular crosstalk in healthy and NASH liver revealed by single-cell secretome gene analysis
  publication-title: Mol. Cell
  contributor:
    fullname: Guo
– volume: 24
  start-page: 848
  year: 2016
  end-page: 862
  ident: bib177
  article-title: Hepatocyte TAZ/WWTR1 promotes inflammation and fibrosis in nonalcoholic steatohepatitis
  publication-title: Cell Metab.
  contributor:
    fullname: Schwabe
– volume: 374
  start-page: 460
  year: 2008
  end-page: 464
  ident: bib118
  article-title: Expression of carboxylesterase and lipase genes in rat liver cell-types
  publication-title: Biochem. Biophys. Res. Commun.
  contributor:
    fullname: Sanghani
– volume: 222
  start-page: 77
  year: 1996
  end-page: 83
  ident: bib15
  article-title: Retinol binding protein and transthyretin are secreted as a complex formed in the endoplasmic reticulum in HepG2 human hepatocarcinoma cells
  publication-title: Exp. Cell Res.
  contributor:
    fullname: Gaetani
– volume: 84
  start-page: 131
  year: 2002
  end-page: 141
  ident: bib51
  article-title: Mitochondrial reactive oxygen species in cell death signaling
  publication-title: Biochimie
  contributor:
    fullname: Vayssière
– volume: 7
  start-page: e45285
  year: 2012
  ident: bib141
  article-title: NADPH oxidase NOX4 mediates stellate cell activation and hepatocyte cell death during liver fibrosis development
  publication-title: PLoS One
  contributor:
    fullname: Fabregat
– volume: 19
  start-page: 1617
  year: 2013
  end-page: 1624
  ident: bib74
  article-title: Targeting of alphav integrin identifies a core molecular pathway that regulates fibrosis in several organs
  publication-title: Nat. Med.
  contributor:
    fullname: Ruminski
– volume: 142
  start-page: 938
  year: 2012
  end-page: 946
  ident: bib76
  article-title: Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues
  publication-title: Gastroenterology
  contributor:
    fullname: Friedman
– volume: 59
  start-page: 98
  year: 2013
  end-page: 104
  ident: bib77
  article-title: Endoplasmic reticulum stress induces fibrogenic activity in hepatic stellate cells through autophagy
  publication-title: J. Hepatol.
  contributor:
    fullname: Friedman
– volume: 70
  start-page: 1392
  year: 2019
  end-page: 1408
  ident: bib40
  article-title: Bone morphogenetic protein 9 is a paracrine factor controlling liver sinusoidal endothelial cell fenestration and protecting against hepatic fibrosis
  publication-title: Hepatology
  contributor:
    fullname: Bailly
– volume: 36
  start-page: 1
  year: 2004
  end-page: 12
  ident: bib97
  article-title: Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions
  publication-title: Exp. Mol. Med.
  contributor:
    fullname: Kim
– volume: 288
  start-page: 770
  year: 2013
  end-page: 777
  ident: bib83
  article-title: Mitochondrial reactive oxygen species regulate transforming growth factor-beta signaling
  publication-title: J. Biol. Chem.
  contributor:
    fullname: Chandel
– volume: 11
  start-page: 322
  year: 2017
  end-page: 334
  ident: bib189
  article-title: Autophagy regulates turnover of lipid droplets via ROS-dependent Rab25 activation in hepatic stellate cell
  publication-title: Redox Biol.
  contributor:
    fullname: Zheng
– volume: 29
  start-page: 1832
  year: 2019
  end-page: 1847.e8
  ident: bib41
  article-title: Single-cell transcriptomics uncovers zonation of function in the mesenchyme during liver fibrosis
  publication-title: Cell Rep.
  contributor:
    fullname: Pendem
– volume: 46
  start-page: 1509
  year: 2007
  end-page: 1518
  ident: bib180
  article-title: Apoptotic hepatocyte DNA inhibits hepatic stellate cell chemotaxis via toll-like receptor 9
  publication-title: Hepatology
  contributor:
    fullname: Mehal
– volume: 57
  start-page: 2202
  year: 2013
  end-page: 2212
  ident: bib30
  article-title: Liver fatty acid binding protein (L-Fabp) modulates murine stellate cell activation and diet-induced nonalcoholic fatty liver disease
  publication-title: Hepatology
  contributor:
    fullname: Davidson
– volume: 44
  start-page: 363
  year: 2010
  end-page: 378
  ident: bib24
  article-title: Thiol redox systems and protein kinases in hepatic stellate cell regulatory processes
  publication-title: Free Radic. Res.
  contributor:
    fullname: Rigobello
– volume: 130
  start-page: 16
  year: 2009
  end-page: 26
  ident: bib124
  article-title: NK and NKT cells in liver injury and fibrosis
  publication-title: Clin. Immunol.
  contributor:
    fullname: Brenner
– volume: 21
  start-page: S102
  year: 2006
  end-page: S105
  ident: bib169
  article-title: Anti-adipogenic regulation underlies hepatic stellate cell transdifferentiation
  publication-title: J. Gastroenterol. Hepatol.
  contributor:
    fullname: Miyahara
– volume: 274
  start-page: 33881
  year: 1999
  end-page: 33887
  ident: bib36
  article-title: Glutathione levels discriminate between oxidative stress and transforming growth factor-beta signaling in activated rat hepatic stellate cells
  publication-title: J. Biol. Chem.
  contributor:
    fullname: Geerts
– volume: 57
  start-page: 577
  year: 2012
  end-page: 589
  ident: bib120
  article-title: TLR2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation
  publication-title: Hepatology
  contributor:
    fullname: Seki
– volume: 10
  start-page: 1
  year: 2020
  end-page: 21
  ident: bib43
  article-title: Increased glutaminolysis marks active scarring in nonalcoholic steatohepatitis progression
  publication-title: Cell. Mol. Gastroenterol. Hepatol.
  contributor:
    fullname: Bashir
– volume: 276
  start-page: 14264
  year: 2001
  end-page: 14270
  ident: bib135
  article-title: Manganese superoxide dismutase signals matrix metalloproteinase expression via H2O2-dependent ERK1/2 activation
  publication-title: J. Biol. Chem.
  contributor:
    fullname: Jeffrey
– volume: 17
  start-page: 2549
  year: 2018
  end-page: 2556
  ident: bib110
  article-title: Role of DDAH/ADMA pathway in TGF-beta1-mediated activation of hepatic stellate cells
  publication-title: Mol. Med. Rep.
  contributor:
    fullname: Fan
– volume: 6
  start-page: 39342
  year: 2016
  ident: bib89
  article-title: The XBP1 arm of the unfolded protein response induces fibrogenic activity in hepatic stellate cells through autophagy
  publication-title: Sci. Rep.
  contributor:
    fullname: Zhang
– volume: 65
  start-page: 1664
  year: 2004
  end-page: 1675
  ident: bib29
  article-title: Advanced glycosylation end products induce inducible nitric oxide synthase (iNOS) expression via a p38 MAPK-dependent pathway
  publication-title: Kidney Int.
  contributor:
    fullname: Lee
– volume: 274
  start-page: 27161
  year: 1999
  end-page: 27167
  ident: bib70
  article-title: Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-beta-induced gene expression
  publication-title: J. Biol. Chem.
  contributor:
    fullname: Nishida
– volume: 6
  start-page: 565
  year: 2015
  end-page: 577
  ident: bib108
  article-title: Reciprocal regulation of TGF-beta and reactive oxygen species: a perverse cycle for fibrosis
  publication-title: Redox Biol.
  contributor:
    fullname: Desai
– volume: 66
  start-page: 606
  year: 2006
  end-page: 630
  ident: bib19
  article-title: Overview of retinoid metabolism and function
  publication-title: J. Neurobiol.
  contributor:
    fullname: Blomhoff
– volume: 341
  start-page: 8
  year: 2016
  end-page: 17
  ident: bib187
  article-title: Vitamin A and insulin are required for the maintenance of hepatic stellate cell quiescence
  publication-title: Exp. Cell Res.
  contributor:
    fullname: Tamura
– volume: 34
  start-page: 729
  year: 2001
  end-page: 737
  ident: bib144
  article-title: Oxidized low-density lipoproteins bind to the scavenger receptor, CD36, of hepatic stellate cells and stimulate extracellular matrix synthesis
  publication-title: Hepatology
  contributor:
    fullname: Bachem
– volume: 22
  start-page: 2210
  year: 2018
  end-page: 2219
  ident: bib60
  article-title: Elevated mitochondrial activity distinguishes fibrogenic hepatic stellate cells and sensitizes for selective inhibition by mitotropic doxorubicin
  publication-title: J. Cell. Mol. Med.
  contributor:
    fullname: Ganapathy-Kanniappan
– volume: 121
  start-page: 27
  year: 2017
  end-page: 42
  ident: bib78
  article-title: Hepatic stellate cells as key target in liver fibrosis
  publication-title: Adv. Drug Deliv. Rev.
  contributor:
    fullname: Hoshida
– volume: 11
  start-page: 282
  year: 2016
  end-page: 289
  ident: bib151
  article-title: Peroxisome proliferator-activated receptor-gamma: master regulator of adipogenesis and obesity
  publication-title: Curr. Stem Cell Res. Ther.
  contributor:
    fullname: Lin
– volume: 300
  start-page: 793
  year: 1994
  end-page: 798
  ident: bib164
  article-title: Characterization of liver stellate cell retinyl ester storage
  publication-title: Biochem. J.
  contributor:
    fullname: Blomhoff
– volume: 158
  start-page: 1728
  year: 2020
  end-page: 1744.e14
  ident: bib109
  article-title: Identification of lineage-specific transcription factors that prevent activation of hepatic stellate cells and promote fibrosis resolution
  publication-title: Gastroenterology
  contributor:
    fullname: Sharma
– volume: 29
  start-page: 960
  year: 1999
  end-page: 970
  ident: bib62
  article-title: Transforming growth factor beta1 induces the expression of alpha1(I) procollagen mRNA by a hydrogen peroxide-C/EBPbeta-dependent mechanism in rat hepatic stellate cells
  publication-title: Hepatology
  contributor:
    fullname: Rojkind
– year: 2020
  ident: bib139
  article-title: Impaired hepatic vitamin A metabolism in NAFLD mice leading to vitamin A accumulation in hepatocytes
  publication-title: Cell. Mol. Gastroenterol. Hepatol.
  contributor:
    fullname: Faber
– volume: 30
  start-page: 77
  year: 1999
  end-page: 87
  ident: bib73
  article-title: The role of TGFbeta1 in initiating hepatic stellate cell activation in vivo
  publication-title: J. Hepatol.
  contributor:
    fullname: Brenner
– volume: 31
  start-page: 406
  year: 2020
  end-page: 421.e7
  ident: bib26
  article-title: Macrophage MerTK promotes liver fibrosis in nonalcoholic steatohepatitis
  publication-title: Cell Metab
  contributor:
    fullname: Chung
– volume: 30
  start-page: 877
  year: 2019
  end-page: 889.e7
  ident: bib33
  article-title: Glutamate signaling in hepatic stellate cells drives alcoholic steatosis
  publication-title: Cell Metab.
  contributor:
    fullname: Kim
– volume: 190
  start-page: 2267
  year: 2020
  end-page: 2281
  ident: bib190
  article-title: Pyruvate kinase M2 tetramerization protects against hepatic stellate cell activation and liver fibrosis
  publication-title: Am. J. Pathol.
  contributor:
    fullname: Lin
– volume: 6
  start-page: 127
  year: 1997
  end-page: 130
  ident: bib81
  article-title: In vitro evidence of retinol transfer from stellate cells to hepatocytes
  publication-title: Cells Hepatic Sinusoid
  contributor:
    fullname: Kaneda
– volume: 298
  start-page: C776
  year: 2010
  end-page: C785
  ident: bib116
  article-title: Autophagy in health and disease. 1. Regulation and significance of autophagy: an overview
  publication-title: Am. J. Physiol. Cell Physiol.
  contributor:
    fullname: Codogno
– volume: 581
  start-page: 2954
  year: 2007
  end-page: 2958
  ident: bib122
  article-title: Wnt signaling enhances the activation and survival of human hepatic stellate cells
  publication-title: FEBS Lett.
  contributor:
    fullname: Lee
– volume: 49
  start-page: 60
  year: 2019
  end-page: 70
  ident: bib101
  article-title: New and emerging anti-fibrotic therapeutics entering or already in clinical trials in chronic liver diseases
  publication-title: Curr. Opin. Pharmacol.
  contributor:
    fullname: Friedman
– volume: 25
  start-page: 361
  year: 1997
  end-page: 367
  ident: bib27
  article-title: Neutrophil-derived superoxide anion induces lipid peroxidation and stimulates collagen synthesis in human hepatic stellate cells: role of nitric oxide
  publication-title: Hepatology
  contributor:
    fullname: Surrenti
– year: 2020
  ident: bib11
  article-title: Epigenetic mechanisms and metabolic reprogramming in fibrogenesis: dual targeting of G9a and DNMT1 for the inhibition of liver fibrosis
  publication-title: Gut
  contributor:
    fullname: Colyn
– volume: 26
  start-page: 431
  year: 2008
  end-page: 442
  ident: bib142
  article-title: Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone
  publication-title: Nat. Biotechnol.
  contributor:
    fullname: Matsunaga
– volume: 33
  start-page: 1000
  year: 2001
  end-page: 1012
  ident: bib143
  article-title: Retinol mobilization from cultured rat hepatic stellate cells does not require retinol binding protein synthesis and secretion
  publication-title: Int. J. Biochem. Cell Biol.
  contributor:
    fullname: Rock
– volume: 1061
  start-page: 45
  year: 2018
  end-page: 53
  ident: bib137
  article-title: Chemokines and chemokine receptors in the development of NAFLD
  publication-title: Adv. Exp. Med. Biol.
  contributor:
    fullname: Seki
– volume: 54
  start-page: 1091
  year: 2011
  end-page: 1093
  ident: bib163
  article-title: Neuropilin and liver fibrosis: hitting three birds with one stone?
  publication-title: Hepatology
  contributor:
    fullname: Schwabe
– volume: 264
  start-page: 10756
  year: 1989
  end-page: 10762
  ident: bib56
  article-title: Maintenance of differentiated phenotype of cultured rat hepatic lipocytes by basement membrane matrix
  publication-title: J. Biol. Chem.
  contributor:
    fullname: Bissell
– volume: 123
  start-page: 1861
  year: 2013
  end-page: 1866
  ident: bib38
  article-title: Liver sinusoidal endothelial cells and liver regeneration
  publication-title: J. Clin. Invest.
  contributor:
    fullname: DeLeve
– volume: 8
  start-page: 9232
  year: 2018
  ident: bib79
  article-title: In vitro inhibition of hepatic stellate cell activation by the autophagy-related lipid droplet protein ATG2A
  publication-title: Sci. Rep.
  contributor:
    fullname: Li
– volume: 10
  start-page: 902
  year: 2016
  end-page: 908
  ident: bib10
  article-title: Hepatic stellate cells: fibrogenic, regenerative or both? Heterogeneity and context are key
  publication-title: Hepatol. Int.
  contributor:
    fullname: Bansal
– volume: 1862
  start-page: 32
  year: 2016
  end-page: 45
  ident: bib28
  article-title: Purinergic receptor x7 mediates leptin induced GLUT4 function in stellate cells in nonalcoholic steatohepatitis
  publication-title: BBA Mol. Basis Dis.
  contributor:
    fullname: Chatterjee
– volume: 264
  start-page: G947
  year: 1993
  end-page: G952
  ident: bib58
  article-title: Retinol release by activated rat hepatic lipocytes: regulation by Kupffer cell-conditioned medium and PDGF
  publication-title: Am. J. Physiol.
  contributor:
    fullname: Blaner
– volume: 1851
  start-page: 937
  year: 2015
  end-page: 945
  ident: bib158
  article-title: Adipose triglyceride lipase is involved in the mobilization of triglyceride and retinoid stores of hepatic stellate cells
  publication-title: Biochim. Biophys. Acta
  contributor:
    fullname: Lass
– volume: 41
  start-page: 1272
  year: 2005
  end-page: 1281
  ident: bib2
  article-title: NAD(P)H oxidase plays a crucial role in PDGF-induced proliferation of hepatic stellate cells
  publication-title: Hepatology
  contributor:
    fullname: Kawata
– volume: 8
  start-page: 503
  year: 2019
  ident: bib93
  article-title: Single cell RNA sequencing identifies subsets of hepatic stellate cells and myofibroblasts in liver fibrosis
  publication-title: Cells
  contributor:
    fullname: Tacke
– volume: 47
  start-page: 1983
  year: 2008
  end-page: 1993
  ident: bib96
  article-title: Nitric oxide promotes caspase-independent hepatic stellate cell apoptosis through the generation of reactive oxygen species
  publication-title: Hepatology
  contributor:
    fullname: Shah
– volume: 36
  start-page: 411
  year: 2018
  end-page: 420
  ident: bib25
  article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species
  publication-title: Nat. Biotechnol.
  contributor:
    fullname: Satija
– volume: 280
  start-page: 4959
  year: 2005
  end-page: 4967
  ident: bib152
  article-title: Adipogenic transcriptional regulation of hepatic stellate cells
  publication-title: J. Biol. Chem.
  contributor:
    fullname: Tsukamoto
– volume: 28
  start-page: 709
  year: 1998
  end-page: 716
  ident: bib48
  article-title: Nonparenchymal cells in chronically hyperinsulinemic liver acini of diabetic rats, with special regard to hepatic stellate cells
  publication-title: J. Hepatol.
  contributor:
    fullname: Pfeifer
– volume: 150
  start-page: 1147
  year: 2016
  end-page: 1159.e5
  ident: bib136
  article-title: Elafibranor, an agonist of the peroxisome proliferator-activated receptor-alpha and -delta, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening
  publication-title: Gastroenterology
  contributor:
    fullname: Caldwell
– volume: 73
  start-page: 149
  year: 2020
  end-page: 160
  ident: bib7
  article-title: Hepatic stellate cell activation promotes alcohol-induced steatohepatitis through Igfbp3 and SerpinA12
  publication-title: J. Hepatol.
  contributor:
    fullname: Freire
– volume: 1821
  start-page: 113
  year: 2012
  end-page: 123
  ident: bib145
  article-title: Retinyl ester hydrolases and their roles in vitamin A homeostasis
  publication-title: Biochim. Biophys. Acta
  contributor:
    fullname: Lass
– volume: 73
  start-page: 117
  year: 2014
  end-page: 126
  ident: bib150
  article-title: Silybin exerts antioxidant effects and induces mitochondrial biogenesis in liver of rat with secondary biliary cirrhosis
  publication-title: Free Radic. Biol. Med.
  contributor:
    fullname: Giudetti
– volume: 278
  start-page: 8516
  year: 2003
  end-page: 8525
  ident: bib103
  article-title: Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production
  publication-title: J. Biol. Chem.
  contributor:
    fullname: Robinson
– volume: 53
  start-page: 983
  year: 2011
  end-page: 995
  ident: bib9
  article-title: Septum transversum-derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver
  publication-title: Hepatology
  contributor:
    fullname: Tsukamoto
– volume: 29
  start-page: 132S
  year: 2005
  end-page: 133S
  ident: bib168
  article-title: Adipogenic phenotype of hepatic stellate cells
  publication-title: Alcohol. Clin. Exp. Res.
  contributor:
    fullname: Tsukamoto
– volume: 7
  start-page: 185
  year: 2020
  end-page: 198
  ident: bib95
  article-title: Metabolic reprogramming in tumors: contributions of the tumor microenvironment
  publication-title: Genes Dis.
  contributor:
    fullname: Fan
– volume: 89
  start-page: 1397
  year: 2009
  end-page: 1409
  ident: bib107
  article-title: Curcumin attenuates the effects of insulin on stimulating hepatic stellate cell activation by interrupting insulin signaling and attenuating oxidative stress
  publication-title: Lab. Investig.
  contributor:
    fullname: Chen
– volume: 17
  start-page: 977
  year: 1993
  end-page: 986
  ident: bib102
  article-title: Differential depletion of carotenoids and tocopherol in liver disease
  publication-title: Hepatology
  contributor:
    fullname: Lieber
– volume: 89
  start-page: 1275
  year: 2009
  end-page: 1290
  ident: bib88
  article-title: Curcumin eliminates oxidized LDL roles in activating hepatic stellate cells by suppressing gene expression of lectin-like oxidized LDL receptor-1
  publication-title: Lab. Investig.
  contributor:
    fullname: Chen
– volume: 150
  start-page: 181
  year: 2016
  end-page: 193.e8
  ident: bib92
  article-title: Endoplasmic reticulum stress in hepatic stellate cells promotes liver fibrosis via PERK-mediated degradation of HNRNPA1 and up-regulation of SMAD2
  publication-title: Gastroenterology
  contributor:
    fullname: Kim
– volume: 41
  start-page: 321
  year: 2005
  end-page: 324
  ident: bib59
  article-title: Adipose differentiation related protein induces lipid accumulation and lipid droplet formation in hepatic stellate cells. In Vitro Cell
  publication-title: Dev. Biol. Anim.
  contributor:
    fullname: Inoguchi
– volume: 10
  start-page: 29
  year: 2017
  ident: bib140
  article-title: Disturbed vitamin A metabolism in non-alcoholic fatty liver disease (NAFLD)
  publication-title: Nutrients
  contributor:
    fullname: Faber
– volume: 279
  start-page: 8848
  year: 2004
  end-page: 8855
  ident: bib61
  article-title: Connective tissue growth factor (CCN2) induces adhesion of rat activated hepatic stellate cells by binding of its C-terminal domain to integrin alpha(v)beta(3) and heparan sulfate proteoglycan
  publication-title: J. Biol. Chem.
  contributor:
    fullname: Brigstock
– volume: 294
  start-page: G39
  year: 2008
  end-page: G49
  ident: bib32
  article-title: Wnt antagonism inhibits hepatic stellate cell activation and liver fibrosis
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
  contributor:
    fullname: Tsukamoto
– volume: 3
  start-page: 559
  year: 1983
  end-page: 566
  ident: bib119
  article-title: The role of fat-storing cells in Disse space fibrogenesis in alcoholic liver disease
  publication-title: Hepatology
  contributor:
    fullname: Takeuchi
– volume: 257
  start-page: 2453
  year: 1982
  end-page: 2459
  ident: bib138
  article-title: Retinol esterification by rat liver microsomes. Evidence for a fatty acyl coenzyme A: retinol acyltransferase
  publication-title: J. Biol. Chem.
  contributor:
    fullname: Ross
– volume: 15
  start-page: 234
  year: 1992
  end-page: 243
  ident: bib55
  article-title: Isolated hepatic lipocytes and Kupffer cells from normal human liver: morphological and functional characteristics in primary culture
  publication-title: Hepatology
  contributor:
    fullname: Yamasaki
– volume: 37
  start-page: 1651
  year: 2017
  end-page: 1659
  ident: bib86
  article-title: Role and regulation of autophagy and apoptosis by nitric oxide in hepatic stellate cells during acute liver failure
  publication-title: Liver Int. : Off. J. Int. Assoc. Study Liver
  contributor:
    fullname: Zhao
– volume: 21
  start-page: 2798
  year: 2007
  end-page: 2806
  ident: bib154
  article-title: The endocannabinoid 2-arachidonoyl glycerol induces death of hepatic stellate cells via mitochondrial reactive oxygen species
  publication-title: FASEB J.
  contributor:
    fullname: Schwabe
– volume: 127
  start-page: 218
  year: 1997
  end-page: 224
  ident: bib114
  article-title: Lecithin:retinol acyltransferase and retinyl ester hydrolase activities are differentially regulated by retinoids and have distinct distributions between hepatocyte and nonparenchymal cell fractions of rat liver
  publication-title: J. Nutr.
  contributor:
    fullname: Ross
– volume: 260
  start-page: 13560
  year: 1985
  end-page: 13565
  ident: bib20
  article-title: Hepatic retinol metabolism. Distribution of retinoids, enzymes, and binding proteins in isolated rat liver cells
  publication-title: J. Biol. Chem.
  contributor:
    fullname: Eriksson
– volume: 394
  start-page: 2184
  year: 2019
  end-page: 2196
  ident: bib188
  article-title: Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial
  publication-title: Lancet
  contributor:
    fullname: Newsome
– volume: 323
  start-page: 193
  year: 2010
  end-page: 200
  ident: bib192
  article-title: Leptin inhibits PPARgamma gene expression in hepatic stellate cells in the mouse model of liver damage
  publication-title: Mol. Cell. Endocrinol.
  contributor:
    fullname: Sun
– volume: 1862
  start-page: 176
  year: 2017
  end-page: 187
  ident: bib3
  article-title: Hepatic stellate cells retain the capacity to synthesize retinyl esters and to store neutral lipids in small lipid droplets in the absence of LRAT
  publication-title: Biochim. Biophys. Acta Mol. Cell Biol. Lipids
  contributor:
    fullname: Helms
– volume: 143
  start-page: 1319
  year: 2012
  end-page: 1329.e11
  ident: bib31
  article-title: Hedgehog controls hepatic stellate cell fate by regulating metabolism
  publication-title: Gastroenterology
  contributor:
    fullname: Premont
– volume: 542
  start-page: 177
  year: 2017
  end-page: 185
  ident: bib80
  article-title: Inflammation, metaflammation and immunometabolic disorders
  publication-title: Nature
  contributor:
    fullname: Hotamisligil
– volume: 1864
  start-page: 629
  year: 2019
  end-page: 642
  ident: bib153
  article-title: Hepatic stellate cell activation: a source for bioactive lipids
  publication-title: Biochim. Biophys. Acta Mol. Cell Biol. Lipids
  contributor:
    fullname: Blaner
– volume: 59
  start-page: 416
  year: 2018
  end-page: 428
  ident: bib106
  article-title: Perilipin 5 and liver fatty acid binding protein function to restore quiescence in mouse hepatic stellate cells
  publication-title: J. Lipid Res.
  contributor:
    fullname: Chen
– volume: 575
  start-page: 512
  year: 2019
  end-page: 518
  ident: bib133
  article-title: Resolving the fibrotic niche of human liver cirrhosis at single-cell level
  publication-title: Nature
  contributor:
    fullname: Marwick
– year: 2020
  ident: bib67
  article-title: Microcystin-leucine-arginine induces liver fibrosis by activating the Hedgehog pathway in hepatic stellate cells
  publication-title: Biochem Biophys Res Commun
  contributor:
    fullname: Han
– volume: 274
  start-page: 89
  year: 1990
  end-page: 92
  ident: bib18
  article-title: Distribution of lecithin-retinol acyltransferase activity in different types of rat liver cells and subcellular fractions
  publication-title: FEBS Lett.
  contributor:
    fullname: Hendriks
– volume: 53
  start-page: 126
  year: 1993
  end-page: 132
  ident: bib49
  article-title: Characterization of interleukin-1 and interleukin-6 production by hepatic endothelial cells and macrophages
  publication-title: J. Leukoc. Biol.
  contributor:
    fullname: Laskin
– volume: 452
  start-page: 230
  year: 2008
  end-page: 233
  ident: bib34
  article-title: The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth
  publication-title: Nature
  contributor:
    fullname: Cantley
– volume: 26
  start-page: 117
  year: 2007
  end-page: 129
  ident: bib183
  article-title: Ito cells are liver-resident antigen-presenting cells for activating T cell responses
  publication-title: Immunity
  contributor:
    fullname: Kaufmann
– volume: 34
  start-page: 943
  year: 2001
  end-page: 952
  ident: bib50
  article-title: Up-regulated expression of the receptor for advanced glycation end products in cultured rat hepatic stellate cells during transdifferentiation to myofibroblasts
  publication-title: Hepatology
  contributor:
    fullname: Gressner
– volume: 38
  start-page: 38
  year: 2003
  end-page: 53
  ident: bib53
  article-title: Liver fibrosis -- from bench to bedside
  publication-title: J. Hepatol.
  contributor:
    fullname: Friedman
– volume: 23
  start-page: 4077
  year: 2014
  end-page: 4085
  ident: bib130
  article-title: PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells
  publication-title: Hum. Mol. Genet.
  contributor:
    fullname: Montalcini
– volume: 38
  start-page: 4143
  year: 1999
  end-page: 4149
  ident: bib182
  article-title: Intestinal absorption of dietary cholesteryl ester is decreased but retinyl ester absorption is normal in carboxyl ester lipase knockout mice
  publication-title: Biochemistry
  contributor:
    fullname: Fisher
– volume: 282
  start-page: 39
  year: 2011
  end-page: 46
  ident: bib52
  article-title: Alpha-lipoic acid inhibits liver fibrosis through the attenuation of ROS-triggered signaling in hepatic stellate cells activated by PDGF and TGF-beta
  publication-title: Toxicology
  contributor:
    fullname: Wang
– volume: 143
  start-page: 1073
  year: 2012
  end-page: 1083.e22
  ident: bib162
  article-title: Deactivation of hepatic stellate cells during liver fibrosis resolution in mice
  publication-title: Gastroenterology
  contributor:
    fullname: Schwabe
– volume: 29
  start-page: 1
  year: 2009
  end-page: 7
  ident: bib1
  article-title: Evidence for activation of the TGF-beta1 promoter by C/EBPbeta and its modulation by Smads
  publication-title: J. Interferon Cytokine Res.
  contributor:
    fullname: Amini
– volume: 10
  start-page: 98
  year: 2019
  ident: bib113
  article-title: Unfolded protein response is an early, non-critical event during hepatic stellate cell activation
  publication-title: Cell Death Dis.
  contributor:
    fullname: van Grunsven
– volume: 62
  start-page: 617
  year: 2013
  end-page: 631
  ident: bib155
  article-title: Adipophilin/perilipin-2 as a lipid droplet-specific marker for metabolically active cells and diseases associated with metabolic dysregulation
  publication-title: Histopathology
  contributor:
    fullname: Schirmacher
– volume: 10
  start-page: eaat0344
  year: 2018
  ident: bib193
  article-title: Hepatocyte Notch activation induces liver fibrosis in nonalcoholic steatohepatitis
  publication-title: Sci. Transl. Med.
  contributor:
    fullname: Diehl
– volume: 8
  start-page: 14
  year: 2015
  ident: bib47
  article-title: In vitro reversion of activated primary human hepatic stellate cells
  publication-title: Fibrogenesis Tissue Repair
  contributor:
    fullname: van Grunsven
– volume: 3
  start-page: 344
  year: 2014
  end-page: 363
  ident: bib181
  article-title: Cellular and molecular functions of hepatic stellate cells in inflammatory responses and liver immunology
  publication-title: Hepatobiliary Surg. Nutr.
  contributor:
    fullname: Tacke
– volume: 73
  start-page: 210
  year: 2020
  end-page: 211
  ident: bib175
  article-title: Hepatic fibrosis: a convergent response to liver injury that is reversible
  publication-title: J. Hepatol.
  contributor:
    fullname: Friedman
– volume: 154
  start-page: 1465
  year: 2018
  end-page: 1479.e13
  ident: bib44
  article-title: Hedgehog-YAP signaling pathway regulates glutaminolysis to control activation of hepatic stellate cells
  publication-title: Gastroenterology
  contributor:
    fullname: Jung
– volume: 82
  start-page: 8681
  year: 1985
  end-page: 8685
  ident: bib57
  article-title: Hepatic lipocytes: the principal collagen-producing cells of normal rat liver
  publication-title: Proc. Natl. Acad. Sci. USA
  contributor:
    fullname: Bissell
– volume: 68
  start-page: S38
  year: 2018
  ident: bib71
  article-title: MGL-3196, a selective thyroid hormone receptor-beta agonist significantly decreases hepatic fat in NASH patients at 12 weeks, the primary endpoint in a 36-week serial liver biopsy study
  publication-title: J. Hepatol.
  contributor:
    fullname: Taub
– volume: 7
  start-page: 11006
  year: 2017
  ident: bib184
  article-title: Glycosylation-dependent galectin-1/neuropilin-1 interactions promote liver fibrosis through activation of TGF-beta- and PDGF-like signals in hepatic stellate cells
  publication-title: Sci. Rep.
  contributor:
    fullname: Tsui
– volume: 11
  start-page: 240
  year: 2020
  ident: bib191
  article-title: SUMOylation inhibitors synergize with FXR agonists in combating liver fibrosis
  publication-title: Nat. Commun.
  contributor:
    fullname: Gonzalez
– volume: 64
  start-page: 616
  year: 2016
  end-page: 631
  ident: bib149
  article-title: Exosome-mediated activation of toll-like receptor 3 in stellate cells stimulates interleukin-17 production by gammadelta T cells in liver fibrosis
  publication-title: Hepatology
  contributor:
    fullname: Han
– volume: 12
  start-page: 68
  year: 2012
  ident: bib68
  article-title: Mitochondrial uncouplers inhibit hepatic stellate cell activation
  publication-title: BMC Gastroenterol.
  contributor:
    fullname: van Grunsven
– volume: 142
  start-page: 152
  year: 2012
  end-page: 164.e10
  ident: bib159
  article-title: A high-cholesterol diet exacerbates liver fibrosis in mice via accumulation of free cholesterol in hepatic stellate cells
  publication-title: Gastroenterology
  contributor:
    fullname: Okada
– volume: 27
  start-page: 75
  year: 2012
  end-page: 79
  ident: bib99
  article-title: Retinoic acids and hepatic stellate cells in liver disease
  publication-title: J. Gastroenterol. Hepatol.
  contributor:
    fullname: Jeong
– volume: 56
  start-page: 1972
  year: 2015
  end-page: 1984
  ident: bib46
  article-title: ATGL and CGI-58 are lipid droplet proteins of the hepatic stellate cell line HSC-T6
  publication-title: J. Lipid Res.
  contributor:
    fullname: Thallinger
– volume: 6
  start-page: e24993
  year: 2011
  ident: bib35
  article-title: Distinct populations of hepatic stellate cells in the mouse liver have different capacities for retinoid and lipid storage
  publication-title: PLoS One
  contributor:
    fullname: Blaner
– volume: 126
  start-page: 15
  year: 2018
  end-page: 26
  ident: bib6
  article-title: NADPH oxidase 5 promotes proliferation and fibrosis in human hepatic stellate cells
  publication-title: Free Radic. Biol. Med.
  contributor:
    fullname: Martínez-Irujo
– volume: 112
  start-page: 1383
  year: 2003
  end-page: 1394
  ident: bib12
  article-title: NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis
  publication-title: J. Clin. Invest.
  contributor:
    fullname: Lemasters
– volume: 52
  start-page: 934
  year: 2011
  end-page: 941
  ident: bib128
  article-title: The mPlrp2 and mClps genes are involved in the hydrolysis of retinyl esters in the mouse liver
  publication-title: J. Lipid Res.
  contributor:
    fullname: Zhang
– volume: 61
  start-page: 1740
  year: 2015
  end-page: 1746
  ident: bib39
  article-title: Liver sinusoidal endothelial cells in hepatic fibrosis
  publication-title: Hepatology
  contributor:
    fullname: DeLeve
– volume: 91
  start-page: 2244
  year: 1993
  end-page: 2252
  ident: bib111
  article-title: Cell-specific expression of hepatocyte growth factor in liver. Upregulation in sinusoidal endothelial cells after carbon tetrachloride
  publication-title: J. Clin. Invest.
  contributor:
    fullname: Maher
– volume: 12
  start-page: 769
  year: 2008
  end-page: 790
  ident: bib171
  article-title: Oxidative and nitrosative stress and fibrogenic response
  publication-title: Clin. Liver Dis.
  contributor:
    fullname: Nieto
– volume: 59
  start-page: 655
  year: 2010
  end-page: 665
  ident: bib87
  article-title: Signals from dying hepatocytes trigger growth of liver progenitors
  publication-title: Gut
  contributor:
    fullname: Diehl
– volume: 223
  start-page: 648
  year: 2010
  end-page: 657
  ident: bib98
  article-title: Downregulation of hepatic stellate cell activation by retinol and palmitate mediated by adipose differentiation-related protein (ADRP)
  publication-title: J. Cell. Physiol.
  contributor:
    fullname: Friedman
– volume: 333
  start-page: 160
  year: 2011
  end-page: 171
  ident: bib105
  article-title: Curcumin diminishes the impacts of hyperglycemia on the activation of hepatic stellate cells by suppressing membrane translocation and gene expression of glucose transporter-2
  publication-title: Mol. Cell. Endocrinol.
  contributor:
    fullname: Chen
– volume: 159
  start-page: 273
  year: 2020
  end-page: 288
  ident: bib117
  article-title: CPEB4 increases expression of PFKFB3 to induce glycolysis and activate mouse and human hepatic stellate cells, promoting liver fibrosis
  publication-title: Gastroenterology
  contributor:
    fullname: Fernandez
– volume: 18
  start-page: 10
  year: 2012
  end-page: 18
  ident: bib186
  article-title: p38 mitogen-activated protein kinase and liver X receptor-alpha mediate the leptin effect on sterol regulatory element binding protein-1c expression in hepatic stellate cells
  publication-title: Mol. Med.
  contributor:
    fullname: Zhou
– year: 2020
  ident: 10.1016/j.cmet.2020.10.026_bib67
  article-title: Microcystin-leucine-arginine induces liver fibrosis by activating the Hedgehog pathway in hepatic stellate cells
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2020.09.075
  contributor:
    fullname: Gu
– volume: 222
  start-page: 77
  year: 1996
  ident: 10.1016/j.cmet.2020.10.026_bib15
  article-title: Retinol binding protein and transthyretin are secreted as a complex formed in the endoplasmic reticulum in HepG2 human hepatocarcinoma cells
  publication-title: Exp. Cell Res.
  doi: 10.1006/excr.1996.0010
  contributor:
    fullname: Bellovino
– volume: 17
  start-page: 977
  year: 1993
  ident: 10.1016/j.cmet.2020.10.026_bib102
  article-title: Differential depletion of carotenoids and tocopherol in liver disease
  publication-title: Hepatology
  contributor:
    fullname: Leo
– volume: 33
  start-page: 1000
  year: 2001
  ident: 10.1016/j.cmet.2020.10.026_bib143
  article-title: Retinol mobilization from cultured rat hepatic stellate cells does not require retinol binding protein synthesis and secretion
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/S1357-2725(01)00066-8
  contributor:
    fullname: Sauvant
– volume: 28
  start-page: 369
  year: 2013
  ident: 10.1016/j.cmet.2020.10.026_bib65
  article-title: Advanced glycation end products augment experimental hepatic fibrosis
  publication-title: J. Gastroenterol. Hepatol.
  doi: 10.1111/jgh.12042
  contributor:
    fullname: Goodwin
– volume: 69
  start-page: 385
  year: 2018
  ident: 10.1016/j.cmet.2020.10.026_bib166
  article-title: A simple diet- and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2018.03.011
  contributor:
    fullname: Tsuchida
– volume: 159
  start-page: 273
  year: 2020
  ident: 10.1016/j.cmet.2020.10.026_bib117
  article-title: CPEB4 increases expression of PFKFB3 to induce glycolysis and activate mouse and human hepatic stellate cells, promoting liver fibrosis
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2020.03.008
  contributor:
    fullname: Mejias
– volume: 8
  start-page: 849
  year: 2012
  ident: 10.1016/j.cmet.2020.10.026_bib75
  article-title: Autophagy fuels tissue fibrogenesis
  publication-title: Autophagy
  doi: 10.4161/auto.19947
  contributor:
    fullname: Hernández-Gea
– volume: 300
  start-page: 793
  year: 1994
  ident: 10.1016/j.cmet.2020.10.026_bib164
  article-title: Characterization of liver stellate cell retinyl ester storage
  publication-title: Biochem. J.
  doi: 10.1042/bj3000793
  contributor:
    fullname: Trøen
– volume: 14
  start-page: 397
  year: 2017
  ident: 10.1016/j.cmet.2020.10.026_bib165
  article-title: Mechanisms of hepatic stellate cell activation
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/nrgastro.2017.38
  contributor:
    fullname: Tsuchida
– volume: 66
  start-page: S655
  year: 2017
  ident: 10.1016/j.cmet.2020.10.026_bib64
  article-title: Anti-fibrotic effect of aramchol on fibrosis in TAA animal model
  publication-title: J. Hepatol.
  doi: 10.1016/S0168-8278(17)31776-2
  contributor:
    fullname: Golan-Gerstl
– volume: 29
  start-page: 960
  year: 1999
  ident: 10.1016/j.cmet.2020.10.026_bib62
  article-title: Transforming growth factor beta1 induces the expression of alpha1(I) procollagen mRNA by a hydrogen peroxide-C/EBPbeta-dependent mechanism in rat hepatic stellate cells
  publication-title: Hepatology
  doi: 10.1002/hep.510290346
  contributor:
    fullname: García-Trevijano
– volume: 64
  start-page: 616
  year: 2016
  ident: 10.1016/j.cmet.2020.10.026_bib149
  article-title: Exosome-mediated activation of toll-like receptor 3 in stellate cells stimulates interleukin-17 production by gammadelta T cells in liver fibrosis
  publication-title: Hepatology
  doi: 10.1002/hep.28644
  contributor:
    fullname: Seo
– volume: 59
  start-page: 416
  year: 2018
  ident: 10.1016/j.cmet.2020.10.026_bib106
  article-title: Perilipin 5 and liver fatty acid binding protein function to restore quiescence in mouse hepatic stellate cells
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M077487
  contributor:
    fullname: Lin
– volume: 57
  start-page: 577
  year: 2012
  ident: 10.1016/j.cmet.2020.10.026_bib120
  article-title: TLR2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation
  publication-title: Hepatology
  doi: 10.1002/hep.26081
  contributor:
    fullname: Miura
– volume: 260
  start-page: 13560
  year: 1985
  ident: 10.1016/j.cmet.2020.10.026_bib20
  article-title: Hepatic retinol metabolism. Distribution of retinoids, enzymes, and binding proteins in isolated rat liver cells
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)38759-8
  contributor:
    fullname: Blomhoff
– volume: 12
  start-page: 769
  year: 2008
  ident: 10.1016/j.cmet.2020.10.026_bib171
  article-title: Oxidative and nitrosative stress and fibrogenic response
  publication-title: Clin. Liver Dis.
  doi: 10.1016/j.cld.2008.07.005
  contributor:
    fullname: Urtasun
– volume: 59
  start-page: 98
  year: 2013
  ident: 10.1016/j.cmet.2020.10.026_bib77
  article-title: Endoplasmic reticulum stress induces fibrogenic activity in hepatic stellate cells through autophagy
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2013.02.016
  contributor:
    fullname: Hernández-Gea
– volume: 101
  start-page: 429
  year: 2017
  ident: 10.1016/j.cmet.2020.10.026_bib94
  article-title: Hepatic stellate cells increase the immunosuppressive function of natural Foxp3+ regulatory T cells via IDO-induced AhR activation
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.2A0516-239R
  contributor:
    fullname: Kumar
– volume: 11
  start-page: 282
  year: 2016
  ident: 10.1016/j.cmet.2020.10.026_bib151
  article-title: Peroxisome proliferator-activated receptor-gamma: master regulator of adipogenesis and obesity
  publication-title: Curr. Stem Cell Res. Ther.
  doi: 10.2174/1574888X10666150528144905
  contributor:
    fullname: Shao
– volume: 451
  start-page: 1069
  year: 2008
  ident: 10.1016/j.cmet.2020.10.026_bib121
  article-title: Autophagy fights disease through cellular self-digestion
  publication-title: Nature
  doi: 10.1038/nature06639
  contributor:
    fullname: Mizushima
– volume: 143
  start-page: 1073
  year: 2012
  ident: 10.1016/j.cmet.2020.10.026_bib162
  article-title: Deactivation of hepatic stellate cells during liver fibrosis resolution in mice
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2012.06.036
  contributor:
    fullname: Troeger
– volume: 36
  start-page: 411
  year: 2018
  ident: 10.1016/j.cmet.2020.10.026_bib25
  article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4096
  contributor:
    fullname: Butler
– volume: 84
  start-page: 131
  year: 2002
  ident: 10.1016/j.cmet.2020.10.026_bib51
  article-title: Mitochondrial reactive oxygen species in cell death signaling
  publication-title: Biochimie
  doi: 10.1016/S0300-9084(02)01369-X
  contributor:
    fullname: Fleury
– volume: 40
  start-page: 576
  year: 2017
  ident: 10.1016/j.cmet.2020.10.026_bib125
  article-title: 1-Methyl-L-tryptophan promotes the apoptosis of hepatic stellate cells arrested by interferon-gamma by increasing the expression of IFN-γRβ, IRF-1 and FAS
  publication-title: Int. J. Mol. Med.
  doi: 10.3892/ijmm.2017.3043
  contributor:
    fullname: Oh
– volume: 34
  start-page: 738
  year: 2001
  ident: 10.1016/j.cmet.2020.10.026_bib129
  article-title: High glucose and hyperinsulinemia stimulate connective tissue growth factor expression: a potential mechanism involved in progression to fibrosis in nonalcoholic steatohepatitis
  publication-title: Hepatology
  doi: 10.1053/jhep.2001.28055
  contributor:
    fullname: Paradis
– volume: 65
  start-page: 1664
  year: 2004
  ident: 10.1016/j.cmet.2020.10.026_bib29
  article-title: Advanced glycosylation end products induce inducible nitric oxide synthase (iNOS) expression via a p38 MAPK-dependent pathway
  publication-title: Kidney Int.
  doi: 10.1111/j.1523-1755.2004.00602.x
  contributor:
    fullname: Chang
– volume: 88
  start-page: 125
  year: 2008
  ident: 10.1016/j.cmet.2020.10.026_bib54
  article-title: Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00013.2007
  contributor:
    fullname: Friedman
– volume: 41
  start-page: 321
  year: 2005
  ident: 10.1016/j.cmet.2020.10.026_bib59
  article-title: Adipose differentiation related protein induces lipid accumulation and lipid droplet formation in hepatic stellate cells. In Vitro Cell
  publication-title: Dev. Biol. Anim.
  doi: 10.1007/s11626-005-0002-6
  contributor:
    fullname: Fukushima
– volume: 7
  start-page: 185
  year: 2020
  ident: 10.1016/j.cmet.2020.10.026_bib95
  article-title: Metabolic reprogramming in tumors: contributions of the tumor microenvironment
  publication-title: Genes Dis.
  doi: 10.1016/j.gendis.2019.10.007
  contributor:
    fullname: Lane
– volume: 274
  start-page: 27161
  year: 1999
  ident: 10.1016/j.cmet.2020.10.026_bib70
  article-title: Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-beta-induced gene expression
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.38.27161
  contributor:
    fullname: Hanafusa
– volume: 127
  start-page: 218
  year: 1997
  ident: 10.1016/j.cmet.2020.10.026_bib114
  article-title: Lecithin:retinol acyltransferase and retinyl ester hydrolase activities are differentially regulated by retinoids and have distinct distributions between hepatocyte and nonparenchymal cell fractions of rat liver
  publication-title: J. Nutr.
  doi: 10.1093/jn/127.2.218
  contributor:
    fullname: Matsuura
– volume: 73
  start-page: 117
  year: 2014
  ident: 10.1016/j.cmet.2020.10.026_bib150
  article-title: Silybin exerts antioxidant effects and induces mitochondrial biogenesis in liver of rat with secondary biliary cirrhosis
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2014.05.002
  contributor:
    fullname: Serviddio
– volume: 38
  start-page: 38
  issue: suppl 1
  year: 2003
  ident: 10.1016/j.cmet.2020.10.026_bib53
  article-title: Liver fibrosis -- from bench to bedside
  publication-title: J. Hepatol.
  doi: 10.1016/S0168-8278(02)00429-4
  contributor:
    fullname: Friedman
– volume: 291
  start-page: 17977
  year: 2016
  ident: 10.1016/j.cmet.2020.10.026_bib66
  article-title: Lysosomal acid lipase hydrolyzes retinyl ester and affects retinoid turnover
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.724054
  contributor:
    fullname: Grumet
– volume: 130
  start-page: 16
  year: 2009
  ident: 10.1016/j.cmet.2020.10.026_bib124
  article-title: NK and NKT cells in liver injury and fibrosis
  publication-title: Clin. Immunol.
  doi: 10.1016/j.clim.2008.08.008
  contributor:
    fullname: Notas
– volume: 113
  start-page: 159
  year: 2003
  ident: 10.1016/j.cmet.2020.10.026_bib179
  article-title: Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00269-1
  contributor:
    fullname: Wang
– volume: 264
  start-page: G947
  year: 1993
  ident: 10.1016/j.cmet.2020.10.026_bib58
  article-title: Retinol release by activated rat hepatic lipocytes: regulation by Kupffer cell-conditioned medium and PDGF
  publication-title: Am. J. Physiol.
  contributor:
    fullname: Friedman
– volume: 53
  start-page: 637
  year: 1997
  ident: 10.1016/j.cmet.2020.10.026_bib112
  article-title: Glutathione regulation in rat hepatic stellate cells. Comparative studies in primary culture and in liver injury in vivo
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/S0006-2952(96)00865-9
  contributor:
    fullname: Maher
– volume: 394
  start-page: 2184
  year: 2019
  ident: 10.1016/j.cmet.2020.10.026_bib188
  article-title: Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(19)33041-7
  contributor:
    fullname: Younossi
– volume: 154
  start-page: 1465
  year: 2018
  ident: 10.1016/j.cmet.2020.10.026_bib44
  article-title: Hedgehog-YAP signaling pathway regulates glutaminolysis to control activation of hepatic stellate cells
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2017.12.022
  contributor:
    fullname: Du
– volume: 93
  start-page: 1327
  year: 2015
  ident: 10.1016/j.cmet.2020.10.026_bib42
  article-title: Adiponectin attenuates liver fibrosis by inducing nitric oxide production of hepatic stellate cells
  publication-title: J. Mol. Med. (Berl.)
  doi: 10.1007/s00109-015-1313-z
  contributor:
    fullname: Dong
– volume: 56
  start-page: 1972
  year: 2015
  ident: 10.1016/j.cmet.2020.10.026_bib46
  article-title: ATGL and CGI-58 are lipid droplet proteins of the hepatic stellate cell line HSC-T6
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M062372
  contributor:
    fullname: Eichmann
– volume: 6
  start-page: e24993
  year: 2011
  ident: 10.1016/j.cmet.2020.10.026_bib35
  article-title: Distinct populations of hepatic stellate cells in the mouse liver have different capacities for retinoid and lipid storage
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0024993
  contributor:
    fullname: D'Ambrosio
– year: 2020
  ident: 10.1016/j.cmet.2020.10.026_bib11
  article-title: Epigenetic mechanisms and metabolic reprogramming in fibrogenesis: dual targeting of G9a and DNMT1 for the inhibition of liver fibrosis
  publication-title: Gut
  doi: 10.1136/gutjnl-2019-320205
  contributor:
    fullname: Barcena-Varela
– volume: 123
  start-page: 1861
  year: 2013
  ident: 10.1016/j.cmet.2020.10.026_bib38
  article-title: Liver sinusoidal endothelial cells and liver regeneration
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI66025
  contributor:
    fullname: DeLeve
– volume: 89
  start-page: 1397
  year: 2009
  ident: 10.1016/j.cmet.2020.10.026_bib107
  article-title: Curcumin attenuates the effects of insulin on stimulating hepatic stellate cell activation by interrupting insulin signaling and attenuating oxidative stress
  publication-title: Lab. Investig.
  doi: 10.1038/labinvest.2009.115
  contributor:
    fullname: Lin
– volume: 177
  start-page: 1888
  year: 2019
  ident: 10.1016/j.cmet.2020.10.026_bib156
  article-title: Comprehensive integration of single-cell data
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.031
  contributor:
    fullname: Stuart
– volume: 276
  start-page: 14264
  year: 2001
  ident: 10.1016/j.cmet.2020.10.026_bib135
  article-title: Manganese superoxide dismutase signals matrix metalloproteinase expression via H2O2-dependent ERK1/2 activation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M100199200
  contributor:
    fullname: Ranganathan
– volume: 23
  start-page: 4077
  year: 2014
  ident: 10.1016/j.cmet.2020.10.026_bib130
  article-title: PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddu121
  contributor:
    fullname: Pirazzi
– volume: 1851
  start-page: 937
  year: 2015
  ident: 10.1016/j.cmet.2020.10.026_bib158
  article-title: Adipose triglyceride lipase is involved in the mobilization of triglyceride and retinoid stores of hepatic stellate cells
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbalip.2015.02.017
  contributor:
    fullname: Taschler
– volume: 34
  start-page: 729
  year: 2001
  ident: 10.1016/j.cmet.2020.10.026_bib144
  article-title: Oxidized low-density lipoproteins bind to the scavenger receptor, CD36, of hepatic stellate cells and stimulate extracellular matrix synthesis
  publication-title: Hepatology
  doi: 10.1053/jhep.2001.27828
  contributor:
    fullname: Schneiderhan
– volume: 192
  start-page: 5098
  year: 2014
  ident: 10.1016/j.cmet.2020.10.026_bib16
  article-title: All-trans retinoic acid induces arginase-1 and inducible nitric oxide synthase-producing dendritic cells with T cell inhibitory function
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1303073
  contributor:
    fullname: Bhatt
– volume: 59
  start-page: 655
  year: 2010
  ident: 10.1016/j.cmet.2020.10.026_bib87
  article-title: Signals from dying hepatocytes trigger growth of liver progenitors
  publication-title: Gut
  doi: 10.1136/gut.2009.204354
  contributor:
    fullname: Jung
– volume: 4
  start-page: 2823
  year: 2013
  ident: 10.1016/j.cmet.2020.10.026_bib115
  article-title: Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3823
  contributor:
    fullname: Mederacke
– volume: 10
  start-page: eaat0344
  year: 2018
  ident: 10.1016/j.cmet.2020.10.026_bib193
  article-title: Hepatocyte Notch activation induces liver fibrosis in nonalcoholic steatohepatitis
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aat0344
  contributor:
    fullname: Zhu
– volume: 280
  start-page: 4959
  year: 2005
  ident: 10.1016/j.cmet.2020.10.026_bib152
  article-title: Adipogenic transcriptional regulation of hepatic stellate cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M410078200
  contributor:
    fullname: She
– volume: 150
  start-page: 1147
  year: 2016
  ident: 10.1016/j.cmet.2020.10.026_bib136
  article-title: Elafibranor, an agonist of the peroxisome proliferator-activated receptor-alpha and -delta, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2016.01.038
  contributor:
    fullname: Ratziu
– volume: 10
  start-page: 1
  year: 2020
  ident: 10.1016/j.cmet.2020.10.026_bib43
  article-title: Increased glutaminolysis marks active scarring in nonalcoholic steatohepatitis progression
  publication-title: Cell. Mol. Gastroenterol. Hepatol.
  doi: 10.1016/j.jcmgh.2019.12.006
  contributor:
    fullname: Du
– volume: 31
  start-page: 406
  year: 2020
  ident: 10.1016/j.cmet.2020.10.026_bib26
  article-title: Macrophage MerTK promotes liver fibrosis in nonalcoholic steatohepatitis
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2019.11.013
  contributor:
    fullname: Cai
– volume: 26
  start-page: 117
  year: 2007
  ident: 10.1016/j.cmet.2020.10.026_bib183
  article-title: Ito cells are liver-resident antigen-presenting cells for activating T cell responses
  publication-title: Immunity
  doi: 10.1016/j.immuni.2006.11.011
  contributor:
    fullname: Winau
– volume: 575
  start-page: 512
  year: 2019
  ident: 10.1016/j.cmet.2020.10.026_bib133
  article-title: Resolving the fibrotic niche of human liver cirrhosis at single-cell level
  publication-title: Nature
  doi: 10.1038/s41586-019-1631-3
  contributor:
    fullname: Ramachandran
– volume: 91
  start-page: 2244
  year: 1993
  ident: 10.1016/j.cmet.2020.10.026_bib111
  article-title: Cell-specific expression of hepatocyte growth factor in liver. Upregulation in sinusoidal endothelial cells after carbon tetrachloride
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI116451
  contributor:
    fullname: Maher
– volume: 126
  start-page: 15
  year: 2018
  ident: 10.1016/j.cmet.2020.10.026_bib6
  article-title: NADPH oxidase 5 promotes proliferation and fibrosis in human hepatic stellate cells
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2018.07.013
  contributor:
    fullname: Andueza
– volume: 401
  start-page: 262
  year: 2002
  ident: 10.1016/j.cmet.2020.10.026_bib174
  article-title: Regulation of the murine alpha(2)(I) collagen promoter by retinoic acid and retinoid X receptors
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/S0003-9861(02)00058-9
  contributor:
    fullname: Wang
– volume: 8
  start-page: 14
  year: 2015
  ident: 10.1016/j.cmet.2020.10.026_bib47
  article-title: In vitro reversion of activated primary human hepatic stellate cells
  publication-title: Fibrogenesis Tissue Repair
  doi: 10.1186/s13069-015-0031-z
  contributor:
    fullname: El Taghdouini
– volume: 41
  start-page: 211
  year: 2016
  ident: 10.1016/j.cmet.2020.10.026_bib104
  article-title: The Warburg effect: how does it benefit cancer cells?
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2015.12.001
  contributor:
    fullname: Liberti
– volume: 274
  start-page: 33881
  year: 1999
  ident: 10.1016/j.cmet.2020.10.026_bib36
  article-title: Glutathione levels discriminate between oxidative stress and transforming growth factor-beta signaling in activated rat hepatic stellate cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.48.33881
  contributor:
    fullname: De Bleser
– volume: 257
  start-page: 2453
  year: 1982
  ident: 10.1016/j.cmet.2020.10.026_bib138
  article-title: Retinol esterification by rat liver microsomes. Evidence for a fatty acyl coenzyme A: retinol acyltransferase
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)34945-7
  contributor:
    fullname: Ross
– volume: 1862
  start-page: 176
  year: 2017
  ident: 10.1016/j.cmet.2020.10.026_bib3
  article-title: Hepatic stellate cells retain the capacity to synthesize retinyl esters and to store neutral lipids in small lipid droplets in the absence of LRAT
  publication-title: Biochim. Biophys. Acta Mol. Cell Biol. Lipids
  doi: 10.1016/j.bbalip.2016.10.013
  contributor:
    fullname: Ajat
– volume: 34
  start-page: 943
  year: 2001
  ident: 10.1016/j.cmet.2020.10.026_bib50
  article-title: Up-regulated expression of the receptor for advanced glycation end products in cultured rat hepatic stellate cells during transdifferentiation to myofibroblasts
  publication-title: Hepatology
  doi: 10.1053/jhep.2001.28788
  contributor:
    fullname: Fehrenbach
– volume: 25
  start-page: 361
  year: 1997
  ident: 10.1016/j.cmet.2020.10.026_bib27
  article-title: Neutrophil-derived superoxide anion induces lipid peroxidation and stimulates collagen synthesis in human hepatic stellate cells: role of nitric oxide
  publication-title: Hepatology
  doi: 10.1002/hep.510250218
  contributor:
    fullname: Casini
– volume: 323
  start-page: 193
  year: 2010
  ident: 10.1016/j.cmet.2020.10.026_bib192
  article-title: Leptin inhibits PPARgamma gene expression in hepatic stellate cells in the mouse model of liver damage
  publication-title: Mol. Cell. Endocrinol.
  doi: 10.1016/j.mce.2010.03.005
  contributor:
    fullname: Zhou
– volume: 75
  start-page: 644
  year: 2019
  ident: 10.1016/j.cmet.2020.10.026_bib185
  article-title: Landscape of intercellular crosstalk in healthy and NASH liver revealed by single-cell secretome gene analysis
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.07.028
  contributor:
    fullname: Xiong
– volume: 278
  start-page: 8516
  year: 2003
  ident: 10.1016/j.cmet.2020.10.026_bib103
  article-title: Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M210432200
  contributor:
    fullname: Li
– volume: 6
  start-page: 28432
  year: 2016
  ident: 10.1016/j.cmet.2020.10.026_bib157
  article-title: Transcriptional repression of SIRT1 by protein inhibitor of activated STAT 4 (PIAS4) in hepatic stellate cells contributes to liver fibrosis
  publication-title: Sci. Rep.
  doi: 10.1038/srep28432
  contributor:
    fullname: Sun
– volume: 142
  start-page: 938
  year: 2012
  ident: 10.1016/j.cmet.2020.10.026_bib76
  article-title: Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2011.12.044
  contributor:
    fullname: Hernández–Gea
– volume: 1061
  start-page: 45
  year: 2018
  ident: 10.1016/j.cmet.2020.10.026_bib137
  article-title: Chemokines and chemokine receptors in the development of NAFLD
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-981-10-8684-7_4
  contributor:
    fullname: Roh
– volume: 31
  start-page: 969
  year: 2020
  ident: 10.1016/j.cmet.2020.10.026_bib176
  article-title: Cholesterol stabilizes TAZ in hepatocytes to promote experimental non-alcoholic steatohepatitis
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2020.03.010
  contributor:
    fullname: Wang
– volume: 34
  start-page: 1247
  year: 2010
  ident: 10.1016/j.cmet.2020.10.026_bib148
  article-title: Hepatic stellate cell (vitamin A-storing cell) and its relative--past, present and future
  publication-title: Cell Biol. Int.
  doi: 10.1042/CBI20100321
  contributor:
    fullname: Senoo
– volume: 49
  start-page: 60
  year: 2019
  ident: 10.1016/j.cmet.2020.10.026_bib101
  article-title: New and emerging anti-fibrotic therapeutics entering or already in clinical trials in chronic liver diseases
  publication-title: Curr. Opin. Pharmacol.
  doi: 10.1016/j.coph.2019.09.006
  contributor:
    fullname: Lemoinne
– volume: 49
  start-page: 998
  year: 2009
  ident: 10.1016/j.cmet.2020.10.026_bib8
  article-title: Mesenchymal origin of hepatic stellate cells, submesothelial cells, and perivascular mesenchymal cells during mouse liver development
  publication-title: Hepatology
  doi: 10.1002/hep.22721
  contributor:
    fullname: Asahina
– volume: 33
  start-page: 8530
  year: 2019
  ident: 10.1016/j.cmet.2020.10.026_bib173
  article-title: Exosomes from activated hepatic stellate cells contain GLUT1 and PKM2: a role for exosomes in metabolic switch of liver nonparenchymal cells
  publication-title: FASEB J.
  doi: 10.1096/fj.201802675R
  contributor:
    fullname: Wan
– volume: 264
  start-page: 10756
  year: 1989
  ident: 10.1016/j.cmet.2020.10.026_bib56
  article-title: Maintenance of differentiated phenotype of cultured rat hepatic lipocytes by basement membrane matrix
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)81686-6
  contributor:
    fullname: Friedman
– volume: 17
  start-page: 2549
  year: 2018
  ident: 10.1016/j.cmet.2020.10.026_bib110
  article-title: Role of DDAH/ADMA pathway in TGF-beta1-mediated activation of hepatic stellate cells
  publication-title: Mol. Med. Rep.
  contributor:
    fullname: Liu
– volume: 288
  start-page: 770
  year: 2013
  ident: 10.1016/j.cmet.2020.10.026_bib83
  article-title: Mitochondrial reactive oxygen species regulate transforming growth factor-beta signaling
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.431973
  contributor:
    fullname: Jain
– volume: 581
  start-page: 2954
  year: 2007
  ident: 10.1016/j.cmet.2020.10.026_bib122
  article-title: Wnt signaling enhances the activation and survival of human hepatic stellate cells
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2007.05.050
  contributor:
    fullname: Myung
– volume: 142
  start-page: 152
  year: 2012
  ident: 10.1016/j.cmet.2020.10.026_bib159
  article-title: A high-cholesterol diet exacerbates liver fibrosis in mice via accumulation of free cholesterol in hepatic stellate cells
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2011.09.049
  contributor:
    fullname: Teratani
– volume: 158
  start-page: 1728
  year: 2020
  ident: 10.1016/j.cmet.2020.10.026_bib109
  article-title: Identification of lineage-specific transcription factors that prevent activation of hepatic stellate cells and promote fibrosis resolution
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2020.01.027
  contributor:
    fullname: Liu
– volume: 280
  start-page: 10055
  year: 2005
  ident: 10.1016/j.cmet.2020.10.026_bib167
  article-title: SMAD and p38 MAPK signaling pathways independently regulate alpha1(I) collagen gene expression in unstimulated and transforming growth factor-beta-stimulated hepatic stellate cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M409381200
  contributor:
    fullname: Tsukada
– volume: 15
  start-page: 234
  year: 1992
  ident: 10.1016/j.cmet.2020.10.026_bib55
  article-title: Isolated hepatic lipocytes and Kupffer cells from normal human liver: morphological and functional characteristics in primary culture
  publication-title: Hepatology
  doi: 10.1002/hep.1840150211
  contributor:
    fullname: Friedman
– volume: 5
  start-page: 271
  year: 1991
  ident: 10.1016/j.cmet.2020.10.026_bib21
  article-title: Perisinusoidal stellate cells of the liver: important roles in retinol metabolism and fibrosis
  publication-title: FASEB J.
  doi: 10.1096/fasebj.5.3.2001786
  contributor:
    fullname: Blomhoff
– volume: 282
  start-page: 39
  year: 2011
  ident: 10.1016/j.cmet.2020.10.026_bib52
  article-title: Alpha-lipoic acid inhibits liver fibrosis through the attenuation of ROS-triggered signaling in hepatic stellate cells activated by PDGF and TGF-beta
  publication-title: Toxicology
  doi: 10.1016/j.tox.2011.01.009
  contributor:
    fullname: Foo
– volume: 274
  start-page: 89
  year: 1990
  ident: 10.1016/j.cmet.2020.10.026_bib18
  article-title: Distribution of lecithin-retinol acyltransferase activity in different types of rat liver cells and subcellular fractions
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(90)81336-M
  contributor:
    fullname: Blaner
– volume: 401
  start-page: 480
  year: 1999
  ident: 10.1016/j.cmet.2020.10.026_bib126
  article-title: Silencing of TGF-beta signalling by the pseudoreceptor BAMBI
  publication-title: Nature
  doi: 10.1038/46794
  contributor:
    fullname: Onichtchouk
– volume: 86
  start-page: 839
  year: 2004
  ident: 10.1016/j.cmet.2020.10.026_bib45
  article-title: SREBP transcription factors: master regulators of lipid homeostasis
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2004.09.018
  contributor:
    fullname: Eberlé
– volume: 46
  start-page: 1509
  year: 2007
  ident: 10.1016/j.cmet.2020.10.026_bib180
  article-title: Apoptotic hepatocyte DNA inhibits hepatic stellate cell chemotaxis via toll-like receptor 9
  publication-title: Hepatology
  doi: 10.1002/hep.21867
  contributor:
    fullname: Watanabe
– volume: 11
  start-page: 240
  year: 2020
  ident: 10.1016/j.cmet.2020.10.026_bib191
  article-title: SUMOylation inhibitors synergize with FXR agonists in combating liver fibrosis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-14138-6
  contributor:
    fullname: Zhou
– volume: 53
  start-page: 126
  year: 1993
  ident: 10.1016/j.cmet.2020.10.026_bib49
  article-title: Characterization of interleukin-1 and interleukin-6 production by hepatic endothelial cells and macrophages
  publication-title: J. Leukoc. Biol.
  doi: 10.1002/jlb.53.2.126
  contributor:
    fullname: Feder
– volume: 73
  start-page: 210
  year: 2020
  ident: 10.1016/j.cmet.2020.10.026_bib175
  article-title: Hepatic fibrosis: a convergent response to liver injury that is reversible
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2020.03.011
  contributor:
    fullname: Wang
– volume: 62
  start-page: 617
  year: 2013
  ident: 10.1016/j.cmet.2020.10.026_bib155
  article-title: Adipophilin/perilipin-2 as a lipid droplet-specific marker for metabolically active cells and diseases associated with metabolic dysregulation
  publication-title: Histopathology
  doi: 10.1111/his.12038
  contributor:
    fullname: Straub
– volume: 66
  start-page: 606
  year: 2006
  ident: 10.1016/j.cmet.2020.10.026_bib19
  article-title: Overview of retinoid metabolism and function
  publication-title: J. Neurobiol.
  doi: 10.1002/neu.20242
  contributor:
    fullname: Blomhoff
– volume: 12
  start-page: 68
  year: 2012
  ident: 10.1016/j.cmet.2020.10.026_bib68
  article-title: Mitochondrial uncouplers inhibit hepatic stellate cell activation
  publication-title: BMC Gastroenterol.
  doi: 10.1186/1471-230X-12-68
  contributor:
    fullname: Guimarães
– volume: 47
  start-page: 1983
  year: 2008
  ident: 10.1016/j.cmet.2020.10.026_bib96
  article-title: Nitric oxide promotes caspase-independent hepatic stellate cell apoptosis through the generation of reactive oxygen species
  publication-title: Hepatology
  doi: 10.1002/hep.22285
  contributor:
    fullname: Langer
– volume: 112
  start-page: 1383
  year: 2003
  ident: 10.1016/j.cmet.2020.10.026_bib12
  article-title: NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI18212
  contributor:
    fullname: Bataller
– volume: 542
  start-page: 177
  year: 2017
  ident: 10.1016/j.cmet.2020.10.026_bib80
  article-title: Inflammation, metaflammation and immunometabolic disorders
  publication-title: Nature
  doi: 10.1038/nature21363
  contributor:
    fullname: Hotamisligil
– volume: 6
  start-page: 127
  year: 1997
  ident: 10.1016/j.cmet.2020.10.026_bib81
  article-title: In vitro evidence of retinol transfer from stellate cells to hepatocytes
  publication-title: Cells Hepatic Sinusoid
  contributor:
    fullname: Ikeda
– volume: 13
  start-page: 1324
  year: 2007
  ident: 10.1016/j.cmet.2020.10.026_bib147
  article-title: TLR4 enhances TGF-beta signaling and hepatic fibrosis
  publication-title: Nat. Med.
  doi: 10.1038/nm1663
  contributor:
    fullname: Seki
– volume: 7
  start-page: e34945
  year: 2012
  ident: 10.1016/j.cmet.2020.10.026_bib160
  article-title: Replacement of retinyl esters by polyunsaturated triacylglycerol species in lipid droplets of hepatic stellate cells during activation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0034945
  contributor:
    fullname: Testerink
– volume: 44
  start-page: 363
  year: 2010
  ident: 10.1016/j.cmet.2020.10.026_bib24
  article-title: Thiol redox systems and protein kinases in hepatic stellate cell regulatory processes
  publication-title: Free Radic. Res.
  doi: 10.3109/10715760903555836
  contributor:
    fullname: Brunati
– volume: 18
  start-page: 10
  year: 2012
  ident: 10.1016/j.cmet.2020.10.026_bib186
  article-title: p38 mitogen-activated protein kinase and liver X receptor-alpha mediate the leptin effect on sterol regulatory element binding protein-1c expression in hepatic stellate cells
  publication-title: Mol. Med.
  doi: 10.2119/molmed.2011.00243
  contributor:
    fullname: Yan
– volume: 37
  start-page: 1651
  year: 2017
  ident: 10.1016/j.cmet.2020.10.026_bib86
  article-title: Role and regulation of autophagy and apoptosis by nitric oxide in hepatic stellate cells during acute liver failure
  publication-title: Liver Int. : Off. J. Int. Assoc. Study Liver
  doi: 10.1111/liv.13476
  contributor:
    fullname: Jin
– volume: 158
  start-page: 1913
  year: 2020
  ident: 10.1016/j.cmet.2020.10.026_bib146
  article-title: Mechanisms of fibrosis development in nonalcoholic steatohepatitis
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2019.11.311
  contributor:
    fullname: Schwabe
– volume: 374
  start-page: 460
  year: 2008
  ident: 10.1016/j.cmet.2020.10.026_bib118
  article-title: Expression of carboxylesterase and lipase genes in rat liver cell-types
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2008.07.024
  contributor:
    fullname: Mello
– volume: 13
  start-page: 1411
  year: 2009
  ident: 10.1016/j.cmet.2020.10.026_bib5
  article-title: GLUT1 as a therapeutic target in hepatocellular carcinoma
  publication-title: Expert Opin. Ther. Targets
  doi: 10.1517/14728220903307509
  contributor:
    fullname: Amann
– volume: 48
  start-page: 2016
  year: 2008
  ident: 10.1016/j.cmet.2020.10.026_bib37
  article-title: Reduced nicotinamide adenine dinucleotide phosphate oxidase mediates fibrotic and inflammatory effects of leptin on hepatic stellate cells
  publication-title: Hepatology
  doi: 10.1002/hep.22560
  contributor:
    fullname: De Minicis
– volume: 7
  start-page: 11006
  year: 2017
  ident: 10.1016/j.cmet.2020.10.026_bib184
  article-title: Glycosylation-dependent galectin-1/neuropilin-1 interactions promote liver fibrosis through activation of TGF-beta- and PDGF-like signals in hepatic stellate cells
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-11212-1
  contributor:
    fullname: Wu
– volume: 29
  start-page: 1
  year: 2009
  ident: 10.1016/j.cmet.2020.10.026_bib1
  article-title: Evidence for activation of the TGF-beta1 promoter by C/EBPbeta and its modulation by Smads
  publication-title: J. Interferon Cytokine Res.
  doi: 10.1089/jir.2008.0036
  contributor:
    fullname: Abraham
– volume: 71
  start-page: 1437
  year: 2020
  ident: 10.1016/j.cmet.2020.10.026_bib123
  article-title: A deactivation factor of fibrogenic hepatic stellate cells induces regression of liver fibrosis in mice
  publication-title: Hepatology
  doi: 10.1002/hep.30965
  contributor:
    fullname: Nakano
– volume: 279
  start-page: 8848
  year: 2004
  ident: 10.1016/j.cmet.2020.10.026_bib61
  article-title: Connective tissue growth factor (CCN2) induces adhesion of rat activated hepatic stellate cells by binding of its C-terminal domain to integrin alpha(v)beta(3) and heparan sulfate proteoglycan
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M313204200
  contributor:
    fullname: Gao
– volume: 43
  start-page: 298
  year: 2008
  ident: 10.1016/j.cmet.2020.10.026_bib82
  article-title: Advanced glycation end products enhance the proliferation and activation of hepatic stellate cells
  publication-title: J. Gastroenterol.
  doi: 10.1007/s00535-007-2152-7
  contributor:
    fullname: Iwamoto
– volume: 26
  start-page: 1241
  year: 1985
  ident: 10.1016/j.cmet.2020.10.026_bib17
  article-title: Retinoids, retinoid-binding proteins, and retinyl palmitate hydrolase distributions in different types of rat liver cells
  publication-title: J. Lipid Res.
  doi: 10.1016/S0022-2275(20)34272-3
  contributor:
    fullname: Blaner
– volume: 7
  start-page: e45285
  year: 2012
  ident: 10.1016/j.cmet.2020.10.026_bib141
  article-title: NADPH oxidase NOX4 mediates stellate cell activation and hepatocyte cell death during liver fibrosis development
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0045285
  contributor:
    fullname: Sancho
– volume: 26
  start-page: 431
  year: 2008
  ident: 10.1016/j.cmet.2020.10.026_bib142
  article-title: Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1396
  contributor:
    fullname: Sato
– volume: 65
  start-page: 273
  year: 2016
  ident: 10.1016/j.cmet.2020.10.026_bib72
  article-title: The induction of human myeloid derived suppressor cells through hepatic stellate cells is dose-dependently inhibited by the tyrosine kinase inhibitors nilotinib, dasatinib and sorafenib, but not sunitinib
  publication-title: Cancer Immunol. Immun.
  doi: 10.1007/s00262-015-1790-5
  contributor:
    fullname: Heine
– volume: 6
  start-page: 1
  year: 2007
  ident: 10.1016/j.cmet.2020.10.026_bib131
  article-title: TGF-beta dependent regulation of oxygen radicals during transdifferentiation of activated hepatic stellate cells to myofibroblastoid cells
  publication-title: Comp. Hepatol.
  doi: 10.1186/1476-5926-6-1
  contributor:
    fullname: Proell
– volume: 223
  start-page: 648
  year: 2010
  ident: 10.1016/j.cmet.2020.10.026_bib98
  article-title: Downregulation of hepatic stellate cell activation by retinol and palmitate mediated by adipose differentiation-related protein (ADRP)
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.22063
  contributor:
    fullname: Lee
– volume: 90
  start-page: 30
  year: 1993
  ident: 10.1016/j.cmet.2020.10.026_bib4
  article-title: Retinoic acid receptors and retinoid X receptors: interactions with endogenous retinoic acids
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.90.1.30
  contributor:
    fullname: Allenby
– volume: 29
  start-page: 1832
  year: 2019
  ident: 10.1016/j.cmet.2020.10.026_bib41
  article-title: Single-cell transcriptomics uncovers zonation of function in the mesenchyme during liver fibrosis
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.10.024
  contributor:
    fullname: Dobie
– volume: 8
  start-page: e74051
  year: 2013
  ident: 10.1016/j.cmet.2020.10.026_bib178
  article-title: Hypoxia-inducible factor-1alpha and MAPK co-regulate activation of hepatic stellate cells upon hypoxia stimulation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0074051
  contributor:
    fullname: Wang
– volume: 109
  start-page: 9448
  year: 2012
  ident: 10.1016/j.cmet.2020.10.026_bib90
  article-title: Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1201840109
  contributor:
    fullname: Kisseleva
– volume: 190
  start-page: 2267
  year: 2020
  ident: 10.1016/j.cmet.2020.10.026_bib190
  article-title: Pyruvate kinase M2 tetramerization protects against hepatic stellate cell activation and liver fibrosis
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2020.08.002
  contributor:
    fullname: Zheng
– volume: 57
  start-page: 2202
  year: 2013
  ident: 10.1016/j.cmet.2020.10.026_bib30
  article-title: Liver fatty acid binding protein (L-Fabp) modulates murine stellate cell activation and diet-induced nonalcoholic fatty liver disease
  publication-title: Hepatology
  doi: 10.1002/hep.26318
  contributor:
    fullname: Chen
– volume: 89
  start-page: 1275
  year: 2009
  ident: 10.1016/j.cmet.2020.10.026_bib88
  article-title: Curcumin eliminates oxidized LDL roles in activating hepatic stellate cells by suppressing gene expression of lectin-like oxidized LDL receptor-1
  publication-title: Lab. Investig.
  doi: 10.1038/labinvest.2009.93
  contributor:
    fullname: Kang
– volume: 10
  start-page: 98
  year: 2019
  ident: 10.1016/j.cmet.2020.10.026_bib113
  article-title: Unfolded protein response is an early, non-critical event during hepatic stellate cell activation
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-019-1327-5
  contributor:
    fullname: Mannaerts
– volume: 17
  start-page: 457
  year: 2020
  ident: 10.1016/j.cmet.2020.10.026_bib134
  article-title: Single-cell technologies in hepatology: new insights into liver biology and disease pathogenesis
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/s41575-020-0304-x
  contributor:
    fullname: Ramachandran
– volume: 10
  start-page: 29
  year: 2017
  ident: 10.1016/j.cmet.2020.10.026_bib140
  article-title: Disturbed vitamin A metabolism in non-alcoholic fatty liver disease (NAFLD)
  publication-title: Nutrients
  doi: 10.3390/nu10010029
  contributor:
    fullname: Saeed
– volume: 28
  start-page: 709
  year: 1998
  ident: 10.1016/j.cmet.2020.10.026_bib48
  article-title: Nonparenchymal cells in chronically hyperinsulinemic liver acini of diabetic rats, with special regard to hepatic stellate cells
  publication-title: J. Hepatol.
  doi: 10.1016/S0168-8278(98)80296-1
  contributor:
    fullname: Evert
– volume: 49
  start-page: 960
  year: 2009
  ident: 10.1016/j.cmet.2020.10.026_bib69
  article-title: Functional linkage of cirrhosis-predictive single nucleotide polymorphisms of toll-like receptor 4 to hepatic stellate cell responses
  publication-title: Hepatology
  doi: 10.1002/hep.22697
  contributor:
    fullname: Guo
– volume: 143
  start-page: 1319
  year: 2012
  ident: 10.1016/j.cmet.2020.10.026_bib31
  article-title: Hedgehog controls hepatic stellate cell fate by regulating metabolism
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2012.07.115
  contributor:
    fullname: Chen
– volume: 61
  start-page: 1740
  year: 2015
  ident: 10.1016/j.cmet.2020.10.026_bib39
  article-title: Liver sinusoidal endothelial cells in hepatic fibrosis
  publication-title: Hepatology
  doi: 10.1002/hep.27376
  contributor:
    fullname: DeLeve
– volume: 86
  start-page: 1492
  year: 2008
  ident: 10.1016/j.cmet.2020.10.026_bib85
  article-title: Hepatic stellate cells preferentially expand allogeneic CD4+ CD25+ FoxP3+ regulatory T cells in an IL-2-dependent manner
  publication-title: Transplantation
  doi: 10.1097/TP.0b013e31818bfd13
  contributor:
    fullname: Jiang
– volume: 10
  start-page: e0121939
  year: 2015
  ident: 10.1016/j.cmet.2020.10.026_bib84
  article-title: Pyrroloquinoline-quinone suppresses liver fibrogenesis in mice
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0121939
  contributor:
    fullname: Jia
– volume: 3
  start-page: 559
  year: 1983
  ident: 10.1016/j.cmet.2020.10.026_bib119
  article-title: The role of fat-storing cells in Disse space fibrogenesis in alcoholic liver disease
  publication-title: Hepatology
  doi: 10.1002/hep.1840030414
  contributor:
    fullname: Minato
– volume: 333
  start-page: 160
  year: 2011
  ident: 10.1016/j.cmet.2020.10.026_bib105
  article-title: Curcumin diminishes the impacts of hyperglycemia on the activation of hepatic stellate cells by suppressing membrane translocation and gene expression of glucose transporter-2
  publication-title: Mol. Cell. Endocrinol.
  doi: 10.1016/j.mce.2010.12.028
  contributor:
    fullname: Lin
– volume: 10
  start-page: 902
  year: 2016
  ident: 10.1016/j.cmet.2020.10.026_bib10
  article-title: Hepatic stellate cells: fibrogenic, regenerative or both? Heterogeneity and context are key
  publication-title: Hepatol. Int.
  doi: 10.1007/s12072-016-9758-x
  contributor:
    fullname: Bansal
– volume: 1821
  start-page: 113
  year: 2012
  ident: 10.1016/j.cmet.2020.10.026_bib145
  article-title: Retinyl ester hydrolases and their roles in vitamin A homeostasis
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbalip.2011.05.001
  contributor:
    fullname: Schreiber
– volume: 292
  start-page: 12436
  year: 2017
  ident: 10.1016/j.cmet.2020.10.026_bib170
  article-title: Lysosome-mediated degradation of a distinct pool of lipid droplets during hepatic stellate cell activation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M117.778472
  contributor:
    fullname: Tuohetahuntila
– volume: 73
  start-page: 896
  year: 2020
  ident: 10.1016/j.cmet.2020.10.026_bib13
  article-title: Acetyl-CoA carboxylase inhibition disrupts metabolic reprogramming during hepatic stellate cell activation
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2020.04.037
  contributor:
    fullname: Bates
– volume: 172
  start-page: 22
  year: 2018
  ident: 10.1016/j.cmet.2020.10.026_bib100
  article-title: An integrated view of immunometabolism
  publication-title: Cell
  doi: 10.1016/j.cell.2017.12.025
  contributor:
    fullname: Lee
– volume: 70
  start-page: 1392
  year: 2019
  ident: 10.1016/j.cmet.2020.10.026_bib40
  article-title: Bone morphogenetic protein 9 is a paracrine factor controlling liver sinusoidal endothelial cell fenestration and protecting against hepatic fibrosis
  publication-title: Hepatology
  doi: 10.1002/hep.30655
  contributor:
    fullname: Desroches-Castan
– year: 2020
  ident: 10.1016/j.cmet.2020.10.026_bib139
  article-title: Impaired hepatic vitamin A metabolism in NAFLD mice leading to vitamin A accumulation in hepatocytes
  publication-title: Cell. Mol. Gastroenterol. Hepatol.
  contributor:
    fullname: Saeed
– volume: 21
  start-page: S102
  issue: suppl 3
  year: 2006
  ident: 10.1016/j.cmet.2020.10.026_bib169
  article-title: Anti-adipogenic regulation underlies hepatic stellate cell transdifferentiation
  publication-title: J. Gastroenterol. Hepatol.
  doi: 10.1111/j.1440-1746.2006.04573.x
  contributor:
    fullname: Tsukamoto
– volume: 24
  start-page: 848
  year: 2016
  ident: 10.1016/j.cmet.2020.10.026_bib177
  article-title: Hepatocyte TAZ/WWTR1 promotes inflammation and fibrosis in nonalcoholic steatohepatitis
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.09.016
  contributor:
    fullname: Wang
– volume: 44
  start-page: 57
  year: 2006
  ident: 10.1016/j.cmet.2020.10.026_bib23
  article-title: TGF-beta/Smad signaling in the injured liver
  publication-title: Z. Gastroenterol.
  doi: 10.1055/s-2005-858989
  contributor:
    fullname: Breitkopf
– volume: 52
  start-page: 934
  year: 2011
  ident: 10.1016/j.cmet.2020.10.026_bib128
  article-title: The mPlrp2 and mClps genes are involved in the hydrolysis of retinyl esters in the mouse liver
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M010082
  contributor:
    fullname: Pang
– volume: 3
  start-page: 344
  year: 2014
  ident: 10.1016/j.cmet.2020.10.026_bib181
  article-title: Cellular and molecular functions of hepatic stellate cells in inflammatory responses and liver immunology
  publication-title: Hepatobiliary Surg. Nutr.
  contributor:
    fullname: Weiskirchen
– volume: 75
  start-page: 4114
  year: 2012
  ident: 10.1016/j.cmet.2020.10.026_bib132
  article-title: Alteration of protein glycosylation in human hepatic stellate cells activated with transforming growth factor-beta1
  publication-title: J. Proteomics
  doi: 10.1016/j.jprot.2012.05.040
  contributor:
    fullname: Qin
– volume: 6
  start-page: 39342
  year: 2016
  ident: 10.1016/j.cmet.2020.10.026_bib89
  article-title: The XBP1 arm of the unfolded protein response induces fibrogenic activity in hepatic stellate cells through autophagy
  publication-title: Sci. Rep.
  doi: 10.1038/srep39342
  contributor:
    fullname: Kim
– volume: 41
  start-page: 1272
  year: 2005
  ident: 10.1016/j.cmet.2020.10.026_bib2
  article-title: NAD(P)H oxidase plays a crucial role in PDGF-induced proliferation of hepatic stellate cells
  publication-title: Hepatology
  doi: 10.1002/hep.20719
  contributor:
    fullname: Adachi
– volume: 122
  start-page: 221
  year: 2005
  ident: 10.1016/j.cmet.2020.10.026_bib63
  article-title: Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis
  publication-title: Cell
  doi: 10.1016/j.cell.2005.05.011
  contributor:
    fullname: Giorgio
– volume: 11
  start-page: 322
  year: 2017
  ident: 10.1016/j.cmet.2020.10.026_bib189
  article-title: Autophagy regulates turnover of lipid droplets via ROS-dependent Rab25 activation in hepatic stellate cell
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2016.12.021
  contributor:
    fullname: Zhang
– volume: 38
  start-page: 4143
  year: 1999
  ident: 10.1016/j.cmet.2020.10.026_bib182
  article-title: Intestinal absorption of dietary cholesteryl ester is decreased but retinyl ester absorption is normal in carboxyl ester lipase knockout mice
  publication-title: Biochemistry
  doi: 10.1021/bi981679a
  contributor:
    fullname: Weng
– volume: 22
  start-page: 2210
  year: 2018
  ident: 10.1016/j.cmet.2020.10.026_bib60
  article-title: Elevated mitochondrial activity distinguishes fibrogenic hepatic stellate cells and sensitizes for selective inhibition by mitotropic doxorubicin
  publication-title: J. Cell. Mol. Med.
  doi: 10.1111/jcmm.13501
  contributor:
    fullname: Gajendiran
– volume: 19
  start-page: 1617
  year: 2013
  ident: 10.1016/j.cmet.2020.10.026_bib74
  article-title: Targeting of alphav integrin identifies a core molecular pathway that regulates fibrosis in several organs
  publication-title: Nat. Med.
  doi: 10.1038/nm.3282
  contributor:
    fullname: Henderson
– volume: 121
  start-page: 27
  year: 2017
  ident: 10.1016/j.cmet.2020.10.026_bib78
  article-title: Hepatic stellate cells as key target in liver fibrosis
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2017.05.007
  contributor:
    fullname: Higashi
– volume: 452
  start-page: 230
  year: 2008
  ident: 10.1016/j.cmet.2020.10.026_bib34
  article-title: The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth
  publication-title: Nature
  doi: 10.1038/nature06734
  contributor:
    fullname: Christofk
– volume: 262
  start-page: 3975
  year: 1987
  ident: 10.1016/j.cmet.2020.10.026_bib127
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)61298-0
  contributor:
    fullname: Ottonello
– volume: 54
  start-page: 1091
  year: 2011
  ident: 10.1016/j.cmet.2020.10.026_bib163
  article-title: Neuropilin and liver fibrosis: hitting three birds with one stone?
  publication-title: Hepatology
  doi: 10.1002/hep.24484
  contributor:
    fullname: Troeger
– volume: 294
  start-page: G39
  year: 2008
  ident: 10.1016/j.cmet.2020.10.026_bib32
  article-title: Wnt antagonism inhibits hepatic stellate cell activation and liver fibrosis
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
  doi: 10.1152/ajpgi.00263.2007
  contributor:
    fullname: Cheng
– volume: 29
  start-page: 132S
  issue: Supplement
  year: 2005
  ident: 10.1016/j.cmet.2020.10.026_bib168
  article-title: Adipogenic phenotype of hepatic stellate cells
  publication-title: Alcohol. Clin. Exp. Res.
  doi: 10.1097/01.alc.0000189279.92602.f0
  contributor:
    fullname: Tsukamoto
– volume: 289
  start-page: 19571
  year: 2014
  ident: 10.1016/j.cmet.2020.10.026_bib22
  article-title: Mitochondrial NLRP3 protein induces reactive oxygen species to promote Smad protein signaling and fibrosis independent from the inflammasome
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.550624
  contributor:
    fullname: Bracey
– volume: 59
  start-page: 154
  year: 2014
  ident: 10.1016/j.cmet.2020.10.026_bib161
  article-title: Free cholesterol accumulation in hepatic stellate cells: mechanism of liver fibrosis aggravation in nonalcoholic steatohepatitis in mice
  publication-title: Hepatology
  doi: 10.1002/hep.26604
  contributor:
    fullname: Tomita
– volume: 68
  start-page: S38
  year: 2018
  ident: 10.1016/j.cmet.2020.10.026_bib71
  article-title: MGL-3196, a selective thyroid hormone receptor-beta agonist significantly decreases hepatic fat in NASH patients at 12 weeks, the primary endpoint in a 36-week serial liver biopsy study
  publication-title: J. Hepatol.
  doi: 10.1016/S0168-8278(18)30292-7
  contributor:
    fullname: Harrison
– volume: 30
  start-page: 877
  year: 2019
  ident: 10.1016/j.cmet.2020.10.026_bib33
  article-title: Glutamate signaling in hepatic stellate cells drives alcoholic steatosis
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2019.08.001
  contributor:
    fullname: Choi
– volume: 8
  start-page: 503
  year: 2019
  ident: 10.1016/j.cmet.2020.10.026_bib93
  article-title: Single cell RNA sequencing identifies subsets of hepatic stellate cells and myofibroblasts in liver fibrosis
  publication-title: Cells
  doi: 10.3390/cells8050503
  contributor:
    fullname: Krenkel
– volume: 21
  start-page: 2798
  year: 2007
  ident: 10.1016/j.cmet.2020.10.026_bib154
  article-title: The endocannabinoid 2-arachidonoyl glycerol induces death of hepatic stellate cells via mitochondrial reactive oxygen species
  publication-title: FASEB J.
  doi: 10.1096/fj.06-7717com
  contributor:
    fullname: Siegmund
– volume: 82
  start-page: 8681
  year: 1985
  ident: 10.1016/j.cmet.2020.10.026_bib57
  article-title: Hepatic lipocytes: the principal collagen-producing cells of normal rat liver
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.82.24.8681
  contributor:
    fullname: Friedman
– volume: 30
  start-page: 77
  year: 1999
  ident: 10.1016/j.cmet.2020.10.026_bib73
  article-title: The role of TGFbeta1 in initiating hepatic stellate cell activation in vivo
  publication-title: J. Hepatol.
  doi: 10.1016/S0168-8278(99)80010-5
  contributor:
    fullname: Hellerbrand
– volume: 1862
  start-page: 32
  year: 2016
  ident: 10.1016/j.cmet.2020.10.026_bib28
  article-title: Purinergic receptor x7 mediates leptin induced GLUT4 function in stellate cells in nonalcoholic steatohepatitis
  publication-title: BBA Mol. Basis Dis.
  doi: 10.1016/j.bbadis.2015.10.009
  contributor:
    fullname: Chandrashekaran
– volume: 27
  start-page: 75
  issue: suppl 2
  year: 2012
  ident: 10.1016/j.cmet.2020.10.026_bib99
  article-title: Retinoic acids and hepatic stellate cells in liver disease
  publication-title: J. Gastroenterol. Hepatol.
  doi: 10.1111/j.1440-1746.2011.07007.x
  contributor:
    fullname: Lee
– volume: 324
  start-page: 1029
  year: 2009
  ident: 10.1016/j.cmet.2020.10.026_bib172
  article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation
  publication-title: Science
  doi: 10.1126/science.1160809
  contributor:
    fullname: Vander Heiden
– volume: 1864
  start-page: 629
  year: 2019
  ident: 10.1016/j.cmet.2020.10.026_bib153
  article-title: Hepatic stellate cell activation: a source for bioactive lipids
  publication-title: Biochim. Biophys. Acta Mol. Cell Biol. Lipids
  doi: 10.1016/j.bbalip.2019.02.004
  contributor:
    fullname: Shmarakov
– volume: 341
  start-page: 8
  year: 2016
  ident: 10.1016/j.cmet.2020.10.026_bib187
  article-title: Vitamin A and insulin are required for the maintenance of hepatic stellate cell quiescence
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2016.01.012
  contributor:
    fullname: Yoneda
– volume: 73
  start-page: 149
  year: 2020
  ident: 10.1016/j.cmet.2020.10.026_bib7
  article-title: Hepatic stellate cell activation promotes alcohol-induced steatohepatitis through Igfbp3 and SerpinA12
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2020.02.005
  contributor:
    fullname: Arab
– volume: 60
  start-page: 1260
  year: 2011
  ident: 10.1016/j.cmet.2020.10.026_bib91
  article-title: Absence of hepatic stellate cell retinoid lipid droplets does not enhance hepatic fibrosis but decreases hepatic carcinogenesis
  publication-title: Gut
  doi: 10.1136/gut.2010.209551
  contributor:
    fullname: Kluwe
– volume: 8
  start-page: 9232
  year: 2018
  ident: 10.1016/j.cmet.2020.10.026_bib79
  article-title: In vitro inhibition of hepatic stellate cell activation by the autophagy-related lipid droplet protein ATG2A
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-27686-6
  contributor:
    fullname: Hong
– volume: 36
  start-page: 1
  year: 2004
  ident: 10.1016/j.cmet.2020.10.026_bib97
  article-title: Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions
  publication-title: Exp. Mol. Med.
  doi: 10.1038/emm.2004.1
  contributor:
    fullname: Lee
– volume: 181
  start-page: 24
  year: 1999
  ident: 10.1016/j.cmet.2020.10.026_bib14
  article-title: MMH cells: an in vitro model for the study of retinol-binding protein secretion regulated by retinol
  publication-title: J. Cell. Physiol.
  doi: 10.1002/(SICI)1097-4652(199910)181:1<24::AID-JCP3>3.0.CO;2-0
  contributor:
    fullname: Bellovino
– volume: 150
  start-page: 181
  year: 2016
  ident: 10.1016/j.cmet.2020.10.026_bib92
  article-title: Endoplasmic reticulum stress in hepatic stellate cells promotes liver fibrosis via PERK-mediated degradation of HNRNPA1 and up-regulation of SMAD2
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2015.09.039
  contributor:
    fullname: Koo
– volume: 6
  start-page: 565
  year: 2015
  ident: 10.1016/j.cmet.2020.10.026_bib108
  article-title: Reciprocal regulation of TGF-beta and reactive oxygen species: a perverse cycle for fibrosis
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2015.09.009
  contributor:
    fullname: Liu
– volume: 53
  start-page: 983
  year: 2011
  ident: 10.1016/j.cmet.2020.10.026_bib9
  article-title: Septum transversum-derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver
  publication-title: Hepatology
  doi: 10.1002/hep.24119
  contributor:
    fullname: Asahina
– volume: 298
  start-page: C776
  year: 2010
  ident: 10.1016/j.cmet.2020.10.026_bib116
  article-title: Autophagy in health and disease. 1. Regulation and significance of autophagy: an overview
  publication-title: Am. J. Physiol. Cell Physiol.
  doi: 10.1152/ajpcell.00507.2009
  contributor:
    fullname: Mehrpour
SSID ssj0036393
Score 2.7085297
SecondaryResourceType review_article
Snippet Hepatic stellate cells (HSCs) are resident non-parenchymal liver pericytes whose plasticity enables them to regulate a remarkable range of physiologic and...
SourceID pubmedcentral
proquest
crossref
pubmed
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 242
SubjectTerms Animals
Cell Plasticity
Hepatic Stellate Cells - metabolism
Humans
Title The Power of Plasticity—Metabolic Regulation of Hepatic Stellate Cells
URI https://dx.doi.org/10.1016/j.cmet.2020.10.026
https://www.ncbi.nlm.nih.gov/pubmed/33232666
https://search.proquest.com/docview/2464187592
https://pubmed.ncbi.nlm.nih.gov/PMC7858232
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTttAEB6FICQuCFqgKSUyEjdkYu9619ljiEBpSxAqP8rN2j-LVK2DIBy49SF4Qp6kM7EdEah64BRpMiutZsYz39rfzgDsS2517IQKI2fTMOFehdqlJnRCc4k1wgpNL_SHZ3JwlXwbiVED-vVdGKJVVrm_zOmzbF1JOpU1O7fjceeCwDWm4JhRzCqRLsEy9TLH0F7uHV1_P60TMsciPOPZo35IC6q7MyXNy_72RKlkJDic9Vj4d316iz9f0yhf1KWTdVirAGXQK_e8AQ1ffICVcsTk40cYYBwE5zQKLZjkwTliZaJRTx-f_zwN_RQj4NfYBj_KgfToIlIaeGJZ2-CCLpggFA36-Hu_CZcnx5f9QVhNTwgtDSkI8Sgik1x4IyMba8YdeiViBiu0yXlkdddGiY2YMwhRvE5V6qSSeY4SZY30fAuaxaTwnyAQsZROeFTReYKAQ-WWGYmZMncqSZlpwUFtsuy27JGR1eSxnxkZOCMDkwwN3AJRWzVb8HSGSfy_6_ZqF2T4CNB3DV34ycN9xhKZxHjuUqwF26VL5vvgHCEjHtFakC44a65A7bUX_ynGN7M222lXdHHx53fudwdWGfFfiOHNvkBzevfgdxHATE27CtA2LH0dHf0F6XDw8Q
link.rule.ids 230,314,780,784,885,3506,27569,27924,27925,45663,45874
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEC5iRPQivl2NOoI3GXemn9tHsxgmmg3BrLC3pl-DG-JsMJtDbv4If6G_xKp5BFfFg6eBmmpoqnqqvp7-ugrgleLBlVGavIhB54Ink7uofR6l4wpzRJCOfujPDlX1SbxfyMUWTIe7MESr7GN_F9PbaN1Lxr01x2fL5fiYwDWG4JLRmjVSX4PrQk40FdDfX-wO4ZhjCm5Z9qidk3p_c6YjeYUviQiVjARv2goLf89Of6LP30mUv2SlvTtwu4eT2dtuxndhKzX34EbXYPLyPlS4CrIjaoSWrersCJEykajXlz--fZ-lNfr_dBmyj107enQQKVWJONYhO6brJQhEsyk-zx_AfO_dfFrlfe-EPFCLghw3IkrUMnlVhNIxHtEnBfOYn33Ni-AmoRChYNEjQElOGx2VUXWNEhO8SvwhbDerJj2GTJZKRZlQxdUC4YapA_MK42QdjdDMj-D1YDJ71lXIsAN17MSSgS0ZmGRo4BHIwap2w88WQ_g_x70cXGDxA6BTDdek1cW5ZUKJEnddho3gUeeSq3lwjoARN2gj0BvOulKg4tqbb5rl57bItp7ICQ5-8p_zfQE3q_nswB7sH354CrcYMWGI6812YHv99SI9Qyiz9s_bpfoT9fHxuA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Power+of+Plasticity%E2%80%94Metabolic+Regulation+of+Hepatic+Stellate+Cells&rft.jtitle=Cell+metabolism&rft.au=Trivedi%2C+Parth&rft.au=Wang%2C+Shuang&rft.au=Friedman%2C+Scott+L.&rft.date=2021-02-02&rft.pub=Elsevier+Inc&rft.issn=1550-4131&rft.eissn=1932-7420&rft.volume=33&rft.issue=2&rft.spage=242&rft.epage=257&rft_id=info:doi/10.1016%2Fj.cmet.2020.10.026&rft.externalDocID=S1550413120305957
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon