The Power of Plasticity—Metabolic Regulation of Hepatic Stellate Cells
Hepatic stellate cells (HSCs) are resident non-parenchymal liver pericytes whose plasticity enables them to regulate a remarkable range of physiologic and pathologic responses. To support their functions in health and disease, HSCs engage pathways regulating carbohydrate, mitochondrial, lipid, and r...
Saved in:
Published in | Cell metabolism Vol. 33; no. 2; pp. 242 - 257 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
02.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hepatic stellate cells (HSCs) are resident non-parenchymal liver pericytes whose plasticity enables them to regulate a remarkable range of physiologic and pathologic responses. To support their functions in health and disease, HSCs engage pathways regulating carbohydrate, mitochondrial, lipid, and retinoid homeostasis. In chronic liver injury, HSCs drive hepatic fibrosis and are implicated in inflammation and cancer. To do so, the cells activate, or transdifferentiate, from a quiescent state into proliferative, motile myofibroblasts that secrete extracellular matrix, which demands rapid adaptation to meet a heightened energy need. Adaptations include reprogramming of central carbon metabolism, enhanced mitochondrial number and activity, endoplasmic reticulum stress, and liberation of free fatty acids through autophagy-dependent hydrolysis of retinyl esters that are stored in cytoplasmic droplets. As an archetype for pericytes in other tissues, recognition of the HSC's metabolic drivers and vulnerabilities offer the potential to target these pathways therapeutically to enhance parenchymal growth and modulate repair.
Hepatic stellate cells (HSCs) are resident non-parenchymal liver pericytes whose plasticity enables them to regulate a remarkable range of physiologic and pathologic responses. To support their functions in health and disease, HSCs engage pathways regulating carbohydrate, mitochondrial, lipid, and retinoid homeostasis. In chronic liver injury, HSCs drive hepatic fibrosis and are implicated in inflammation and cancer. To do so, the cells activate, or transdifferentiate, from a quiescent state into proliferative, motile myofibroblasts that secrete extracellular matrix, which demands rapid adaptation to meet a heightened energy need. Adaptations include reprogramming of central carbon metabolism, enhanced mitochondrial number and activity, endoplasmic reticulum stress, and liberation of free fatty acids through autophagy-dependent hydrolysis of retinyl esters that are stored in cytoplasmic droplets. As an archetype for pericytes in other tissues, recognition of the HSC's metabolic drivers and vulnerabilities offer the potential to target these pathways therapeutically to enhance parenchymal growth and modulate repair. |
---|---|
AbstractList | Hepatic stellate cells (HSCs) are resident non-parenchymal liver pericytes whose plasticity enables them to regulate a remarkable range of physiologic and pathologic responses. To support their functions in health and disease, HSCs engage pathways regulating carbohydrate, mitochondrial, lipid, and retinoid homeostasis. In chronic liver injury, HSCs drive hepatic fibrosis and are implicated in inflammation and cancer. To do so, the cells activate, or transdifferentiate, from a quiescent state into proliferative, motile myofibroblasts that secrete extracellular matrix, which demands rapid adaptation to meet a heightened energy need. Adaptations include reprogramming of central carbon metabolism, enhanced mitochondrial number and activity, endoplasmic reticulum stress, and liberation of free fatty acids through autophagy-dependent hydrolysis of retinyl esters that are stored in cytoplasmic droplets. As an archetype for pericytes in other tissues, recognition of the HSCs’ metabolic drivers and vulnerabilities offer the potential to target these pathways therapeutically to enhance parenchymal growth and modulate repair. Hepatic stellate cells (HSCs) are resident non-parenchymal liver pericytes whose plasticity enables them to regulate a remarkable range of physiologic and pathologic responses. To support their functions in health and disease, HSCs engage pathways regulating carbohydrate, mitochondrial, lipid, and retinoid homeostasis. In chronic liver injury, HSCs drive hepatic fibrosis and are implicated in inflammation and cancer. To do so, the cells activate, or transdifferentiate, from a quiescent state into proliferative, motile myofibroblasts that secrete extracellular matrix, which demands rapid adaptation to meet a heightened energy need. Adaptations include reprogramming of central carbon metabolism, enhanced mitochondrial number and activity, endoplasmic reticulum stress, and liberation of free fatty acids through autophagy-dependent hydrolysis of retinyl esters that are stored in cytoplasmic droplets. As an archetype for pericytes in other tissues, recognition of the HSC's metabolic drivers and vulnerabilities offer the potential to target these pathways therapeutically to enhance parenchymal growth and modulate repair. Hepatic stellate cells (HSCs) are resident non-parenchymal liver pericytes whose plasticity enables them to regulate a remarkable range of physiologic and pathologic responses. To support their functions in health and disease, HSCs engage pathways regulating carbohydrate, mitochondrial, lipid, and retinoid homeostasis. In chronic liver injury, HSCs drive hepatic fibrosis and are implicated in inflammation and cancer. To do so, the cells activate, or transdifferentiate, from a quiescent state into proliferative, motile myofibroblasts that secrete extracellular matrix, which demands rapid adaptation to meet a heightened energy need. Adaptations include reprogramming of central carbon metabolism, enhanced mitochondrial number and activity, endoplasmic reticulum stress, and liberation of free fatty acids through autophagy-dependent hydrolysis of retinyl esters that are stored in cytoplasmic droplets. As an archetype for pericytes in other tissues, recognition of the HSC's metabolic drivers and vulnerabilities offer the potential to target these pathways therapeutically to enhance parenchymal growth and modulate repair. Hepatic stellate cells (HSCs) are resident non-parenchymal liver pericytes whose plasticity enables them to regulate a remarkable range of physiologic and pathologic responses. To support their functions in health and disease, HSCs engage pathways regulating carbohydrate, mitochondrial, lipid, and retinoid homeostasis. In chronic liver injury, HSCs drive hepatic fibrosis and are implicated in inflammation and cancer. To do so, the cells activate, or transdifferentiate, from a quiescent state into proliferative, motile myofibroblasts that secrete extracellular matrix, which demands rapid adaptation to meet a heightened energy need. Adaptations include reprogramming of central carbon metabolism, enhanced mitochondrial number and activity, endoplasmic reticulum stress, and liberation of free fatty acids through autophagy-dependent hydrolysis of retinyl esters that are stored in cytoplasmic droplets. As an archetype for pericytes in other tissues, recognition of the HSC's metabolic drivers and vulnerabilities offer the potential to target these pathways therapeutically to enhance parenchymal growth and modulate repair. |
Author | Friedman, Scott L. Wang, Shuang Trivedi, Parth |
AuthorAffiliation | 1 Division of Liver Diseases, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA |
AuthorAffiliation_xml | – name: 1 Division of Liver Diseases, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA |
Author_xml | – sequence: 1 givenname: Parth surname: Trivedi fullname: Trivedi, Parth organization: Division of Liver Diseases, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA – sequence: 2 givenname: Shuang surname: Wang fullname: Wang, Shuang organization: Division of Liver Diseases, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA – sequence: 3 givenname: Scott L. surname: Friedman fullname: Friedman, Scott L. email: scott.friedman@mssm.edu organization: Division of Liver Diseases, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33232666$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UU1P20AQXSEqCLR_gAPykYvDfthrW0KVUFQIElVRm_tqPR4nGznesLtJxY0fwS_kl7BWIKKXnmb05s2bj3dCDnvbIyFnjI4ZZfJyOYYVhjGnfADGlMsDMmKV4GmRcXoY8zynacYEOyYn3i8pFVJU4ogcC8EFl1KOyHS2wOTB_kWX2DZ56LQPBkx4en1--YlB17YzkPzG-abTwdh-IE1xHXNI_gTsIorJJEb_lXxpdefx23s8JbObH7PJNL3_dXs3ub5PIecspHlWyqzNsZYUmOaiEaApr0XJ6lZQ0CXQDChvalFVqIuqaGQl2zYiFdQSxSn5vpNdb-oVNoB9cLpTa2dW2j0pq436t9KbhZrbrSrKvIxHR4GLdwFnHzfog1oZD8MlPdqNVzyTGSuLvBqofEcFZ7132O7HMKoGB9RSDQ6owYEBiw7EpvPPC-5bPl4eCVc7AsYvbQ065cFgD9gYhxBUY83_9N8A3hGbRw |
CitedBy_id | crossref_primary_10_1007_s00018_023_05032_y crossref_primary_10_1016_j_jep_2023_116445 crossref_primary_10_1097_HEP_0000000000000012 crossref_primary_10_1016_j_jep_2023_117656 crossref_primary_10_1016_j_bbadis_2021_166121 crossref_primary_10_3390_antiox12040818 crossref_primary_10_1016_j_hermed_2023_100740 crossref_primary_10_1016_j_toxlet_2022_09_008 crossref_primary_10_1016_j_molmed_2021_10_005 crossref_primary_10_1111_cas_16023 crossref_primary_10_3390_ijms222212413 crossref_primary_10_1016_j_cmet_2023_06_013 crossref_primary_10_3390_ijms241512509 crossref_primary_10_1080_15384101_2024_2345477 crossref_primary_10_1016_j_celrep_2024_113875 crossref_primary_10_3390_biom13020261 crossref_primary_10_1016_j_jhepr_2023_100684 crossref_primary_10_1007_s13273_023_00336_3 crossref_primary_10_1016_j_yexcr_2024_113992 crossref_primary_10_1016_j_bbadis_2024_167102 crossref_primary_10_1097_HEP_0000000000000388 crossref_primary_10_1080_17474124_2021_1949288 crossref_primary_10_1016_j_biopha_2023_114415 crossref_primary_10_1186_s12964_024_01489_x crossref_primary_10_1007_s12015_023_10592_4 crossref_primary_10_1016_j_bbrc_2022_01_094 crossref_primary_10_3389_fonc_2021_763519 crossref_primary_10_1016_j_jhep_2022_02_003 crossref_primary_10_3389_fphar_2022_930785 crossref_primary_10_3889_oamjms_2022_9119 crossref_primary_10_1111_imr_12972 crossref_primary_10_1126_scitranslmed_adi0759 crossref_primary_10_1016_j_mtbio_2023_100711 crossref_primary_10_1016_j_phrs_2023_106704 crossref_primary_10_1101_gad_351069_123 crossref_primary_10_3389_fimmu_2023_1200201 crossref_primary_10_1016_j_immuni_2022_08_002 crossref_primary_10_1016_j_ijbiomac_2023_126263 crossref_primary_10_1186_s13287_022_03049_x crossref_primary_10_1021_acsami_3c03416 crossref_primary_10_1186_s13046_023_02729_7 crossref_primary_10_1042_BCJ20210071 crossref_primary_10_1002_adma_202212206 crossref_primary_10_1016_j_bcp_2024_116044 crossref_primary_10_1016_j_bbcan_2024_189086 crossref_primary_10_3389_fmolb_2023_1258870 crossref_primary_10_1016_j_bcp_2022_115157 crossref_primary_10_3389_fmolb_2022_835508 crossref_primary_10_1016_j_gastrohep_2022_02_005 crossref_primary_10_1016_j_jff_2022_105226 crossref_primary_10_1016_j_phrs_2023_106657 crossref_primary_10_1002_ccs3_12033 crossref_primary_10_1016_j_jphs_2022_01_003 crossref_primary_10_1002_hep_32793 crossref_primary_10_1016_j_snb_2023_133891 crossref_primary_10_3389_fphar_2022_858137 crossref_primary_10_1016_j_metabol_2023_155663 crossref_primary_10_1016_j_cellsig_2023_110935 crossref_primary_10_3389_fimmu_2024_1337105 crossref_primary_10_1186_s10020_024_00867_y crossref_primary_10_3892_ijmm_2023_5243 crossref_primary_10_3389_fphar_2022_814871 crossref_primary_10_1111_jcmm_17884 crossref_primary_10_3390_cells10071764 crossref_primary_10_1016_j_gastre_2022_02_004 crossref_primary_10_1111_joim_13380 crossref_primary_10_1016_j_cmet_2024_05_003 crossref_primary_10_1016_j_prmcm_2022_100085 crossref_primary_10_1016_j_omtn_2023_07_012 crossref_primary_10_3390_ijms23073668 crossref_primary_10_1002_agt2_530 crossref_primary_10_1016_j_ejmech_2022_114323 crossref_primary_10_3389_fmolb_2021_766855 crossref_primary_10_2174_0113816128265631231025071732 crossref_primary_10_1038_s41419_024_06509_9 crossref_primary_10_1016_j_jep_2024_118143 crossref_primary_10_1016_j_microc_2024_110617 crossref_primary_10_3390_antiox12091653 crossref_primary_10_3390_cells10123604 crossref_primary_10_1016_j_ajpath_2024_02_021 crossref_primary_10_1016_j_cbi_2024_111119 crossref_primary_10_2147_IJN_S450284 crossref_primary_10_1002_ptr_8106 crossref_primary_10_1038_s42003_023_04473_2 crossref_primary_10_1097_CM9_0000000000003144 crossref_primary_10_1515_chem_2022_0192 crossref_primary_10_3389_fendo_2023_1207574 crossref_primary_10_3390_antiox12081567 crossref_primary_10_1038_s41419_022_04802_z crossref_primary_10_1038_s41419_024_06773_9 crossref_primary_10_1016_j_freeradbiomed_2024_06_001 crossref_primary_10_1016_j_redox_2022_102286 crossref_primary_10_1038_s41420_023_01602_y crossref_primary_10_1136_gutjnl_2023_329671 crossref_primary_10_1016_j_lfs_2024_122798 crossref_primary_10_1126_scitranslmed_ade2966 crossref_primary_10_3390_ijms23136996 crossref_primary_10_1038_s41419_021_04377_1 crossref_primary_10_1016_j_jep_2024_117720 crossref_primary_10_1186_s12951_023_01876_5 crossref_primary_10_1007_s12033_021_00441_5 crossref_primary_10_1016_j_jhep_2023_07_004 crossref_primary_10_1016_j_intimp_2024_111981 crossref_primary_10_1097_HEP_0000000000000182 crossref_primary_10_1038_s41419_022_05409_0 crossref_primary_10_1038_s41575_023_00807_x crossref_primary_10_12677_acm_2024_1441345 crossref_primary_10_1016_j_psj_2022_102363 crossref_primary_10_1016_j_bioorg_2023_106723 crossref_primary_10_1016_j_cld_2023_01_013 crossref_primary_10_1142_S0192415X23500647 crossref_primary_10_3389_fmolb_2023_1221669 crossref_primary_10_1002_ame2_12327 crossref_primary_10_1186_s12964_023_01204_2 crossref_primary_10_1002_mco2_417 crossref_primary_10_1016_j_jncc_2024_01_002 crossref_primary_10_3390_jcm10040792 crossref_primary_10_1002_hep_32569 crossref_primary_10_1016_j_fct_2024_114517 crossref_primary_10_3748_wjg_v27_i24_3581 crossref_primary_10_1016_j_bcp_2021_114730 crossref_primary_10_1186_s13046_023_02634_z crossref_primary_10_1016_j_cellsig_2022_110304 crossref_primary_10_1016_j_xcrm_2024_101401 crossref_primary_10_1242_jcs_259243 crossref_primary_10_3389_fmolb_2023_1183808 crossref_primary_10_1016_j_celrep_2022_111422 crossref_primary_10_1016_j_apsb_2021_12_007 crossref_primary_10_1038_s41467_023_38406_8 crossref_primary_10_1038_s41401_022_01044_9 crossref_primary_10_12677_ACM_2022_125698 crossref_primary_10_1002_mnfr_202300553 crossref_primary_10_1016_j_mam_2023_101231 crossref_primary_10_1126_sciadv_abn0050 crossref_primary_10_32604_biocell_2023_025365 crossref_primary_10_3390_cells12010091 crossref_primary_10_1038_s41418_023_01130_3 crossref_primary_10_2217_nnm_2022_0083 crossref_primary_10_1002_cbin_11876 crossref_primary_10_3390_nu13103509 crossref_primary_10_1039_D1BM01499D crossref_primary_10_1016_j_canlet_2023_216074 crossref_primary_10_1007_s12265_022_10303_3 crossref_primary_10_3390_ijms232416043 crossref_primary_10_1016_S2468_1253_23_00111_5 crossref_primary_10_1016_j_pharmthera_2024_108639 crossref_primary_10_1002_2211_5463_13749 crossref_primary_10_3389_fphys_2024_1331976 crossref_primary_10_1016_j_jhepr_2024_101036 crossref_primary_10_1016_j_freeradbiomed_2023_04_009 crossref_primary_10_1177_15353702231191109 crossref_primary_10_1016_j_intimp_2021_108051 crossref_primary_10_1016_j_engreg_2022_02_003 crossref_primary_10_1055_a_1955_5297 crossref_primary_10_1136_egastro_2023_100015 crossref_primary_10_1002_pdi3_29 crossref_primary_10_1016_j_bbadis_2024_167084 crossref_primary_10_1016_j_lfs_2024_122498 crossref_primary_10_3390_cancers15010023 crossref_primary_10_3390_life14020272 crossref_primary_10_1016_j_eujim_2023_102278 crossref_primary_10_1080_07853890_2022_2132418 crossref_primary_10_1016_j_bios_2022_114758 crossref_primary_10_1016_j_jcmgh_2023_02_010 crossref_primary_10_1038_s41467_023_41145_5 crossref_primary_10_3892_ijmm_2024_5383 crossref_primary_10_3389_fphys_2021_710420 crossref_primary_10_3390_biomedicines9081014 crossref_primary_10_3389_fcell_2021_762828 crossref_primary_10_3389_fphar_2021_750509 crossref_primary_10_1113_JP281061 crossref_primary_10_3390_biom13101464 crossref_primary_10_51335_organoid_2022_2_e26 crossref_primary_10_1097_HC9_0000000000000411 |
Cites_doi | 10.1016/j.bbrc.2020.09.075 10.1006/excr.1996.0010 10.1016/S1357-2725(01)00066-8 10.1111/jgh.12042 10.1016/j.jhep.2018.03.011 10.1053/j.gastro.2020.03.008 10.4161/auto.19947 10.1042/bj3000793 10.1038/nrgastro.2017.38 10.1016/S0168-8278(17)31776-2 10.1002/hep.510290346 10.1002/hep.28644 10.1194/jlr.M077487 10.1002/hep.26081 10.1016/S0021-9258(17)38759-8 10.1016/j.cld.2008.07.005 10.1016/j.jhep.2013.02.016 10.1189/jlb.2A0516-239R 10.2174/1574888X10666150528144905 10.1038/nature06639 10.1053/j.gastro.2012.06.036 10.1038/nbt.4096 10.1016/S0300-9084(02)01369-X 10.3892/ijmm.2017.3043 10.1053/jhep.2001.28055 10.1111/j.1523-1755.2004.00602.x 10.1152/physrev.00013.2007 10.1007/s11626-005-0002-6 10.1016/j.gendis.2019.10.007 10.1074/jbc.274.38.27161 10.1093/jn/127.2.218 10.1016/j.freeradbiomed.2014.05.002 10.1016/S0168-8278(02)00429-4 10.1074/jbc.M116.724054 10.1016/j.clim.2008.08.008 10.1016/S0092-8674(03)00269-1 10.1016/S0006-2952(96)00865-9 10.1016/S0140-6736(19)33041-7 10.1053/j.gastro.2017.12.022 10.1007/s00109-015-1313-z 10.1194/jlr.M062372 10.1371/journal.pone.0024993 10.1136/gutjnl-2019-320205 10.1172/JCI66025 10.1038/labinvest.2009.115 10.1016/j.cell.2019.05.031 10.1074/jbc.M100199200 10.1093/hmg/ddu121 10.1016/j.bbalip.2015.02.017 10.1053/jhep.2001.27828 10.4049/jimmunol.1303073 10.1136/gut.2009.204354 10.1038/ncomms3823 10.1126/scitranslmed.aat0344 10.1074/jbc.M410078200 10.1053/j.gastro.2016.01.038 10.1016/j.jcmgh.2019.12.006 10.1016/j.cmet.2019.11.013 10.1016/j.immuni.2006.11.011 10.1038/s41586-019-1631-3 10.1172/JCI116451 10.1016/j.freeradbiomed.2018.07.013 10.1016/S0003-9861(02)00058-9 10.1186/s13069-015-0031-z 10.1016/j.tibs.2015.12.001 10.1074/jbc.274.48.33881 10.1016/S0021-9258(18)34945-7 10.1016/j.bbalip.2016.10.013 10.1053/jhep.2001.28788 10.1002/hep.510250218 10.1016/j.mce.2010.03.005 10.1016/j.molcel.2019.07.028 10.1074/jbc.M210432200 10.1038/srep28432 10.1053/j.gastro.2011.12.044 10.1007/978-981-10-8684-7_4 10.1016/j.cmet.2020.03.010 10.1042/CBI20100321 10.1016/j.coph.2019.09.006 10.1002/hep.22721 10.1096/fj.201802675R 10.1016/S0021-9258(18)81686-6 10.1074/jbc.M112.431973 10.1016/j.febslet.2007.05.050 10.1053/j.gastro.2011.09.049 10.1053/j.gastro.2020.01.027 10.1074/jbc.M409381200 10.1002/hep.1840150211 10.1096/fasebj.5.3.2001786 10.1016/j.tox.2011.01.009 10.1016/0014-5793(90)81336-M 10.1038/46794 10.1016/j.biochi.2004.09.018 10.1002/hep.21867 10.1038/s41467-019-14138-6 10.1002/jlb.53.2.126 10.1016/j.jhep.2020.03.011 10.1111/his.12038 10.1002/neu.20242 10.1186/1471-230X-12-68 10.1002/hep.22285 10.1172/JCI18212 10.1038/nature21363 10.1038/nm1663 10.1371/journal.pone.0034945 10.3109/10715760903555836 10.2119/molmed.2011.00243 10.1111/liv.13476 10.1053/j.gastro.2019.11.311 10.1016/j.bbrc.2008.07.024 10.1517/14728220903307509 10.1002/hep.22560 10.1038/s41598-017-11212-1 10.1089/jir.2008.0036 10.1002/hep.30965 10.1074/jbc.M313204200 10.1007/s00535-007-2152-7 10.1016/S0022-2275(20)34272-3 10.1371/journal.pone.0045285 10.1038/nbt1396 10.1007/s00262-015-1790-5 10.1186/1476-5926-6-1 10.1002/jcp.22063 10.1073/pnas.90.1.30 10.1016/j.celrep.2019.10.024 10.1371/journal.pone.0074051 10.1073/pnas.1201840109 10.1016/j.ajpath.2020.08.002 10.1002/hep.26318 10.1038/labinvest.2009.93 10.1038/s41419-019-1327-5 10.1038/s41575-020-0304-x 10.3390/nu10010029 10.1016/S0168-8278(98)80296-1 10.1002/hep.22697 10.1053/j.gastro.2012.07.115 10.1002/hep.27376 10.1097/TP.0b013e31818bfd13 10.1371/journal.pone.0121939 10.1002/hep.1840030414 10.1016/j.mce.2010.12.028 10.1007/s12072-016-9758-x 10.1016/j.bbalip.2011.05.001 10.1074/jbc.M117.778472 10.1016/j.jhep.2020.04.037 10.1016/j.cell.2017.12.025 10.1002/hep.30655 10.1111/j.1440-1746.2006.04573.x 10.1016/j.cmet.2016.09.016 10.1055/s-2005-858989 10.1194/jlr.M010082 10.1016/j.jprot.2012.05.040 10.1038/srep39342 10.1002/hep.20719 10.1016/j.cell.2005.05.011 10.1016/j.redox.2016.12.021 10.1021/bi981679a 10.1111/jcmm.13501 10.1038/nm.3282 10.1016/j.addr.2017.05.007 10.1038/nature06734 10.1016/S0021-9258(18)61298-0 10.1002/hep.24484 10.1152/ajpgi.00263.2007 10.1097/01.alc.0000189279.92602.f0 10.1074/jbc.M114.550624 10.1002/hep.26604 10.1016/S0168-8278(18)30292-7 10.1016/j.cmet.2019.08.001 10.3390/cells8050503 10.1096/fj.06-7717com 10.1073/pnas.82.24.8681 10.1016/S0168-8278(99)80010-5 10.1016/j.bbadis.2015.10.009 10.1111/j.1440-1746.2011.07007.x 10.1126/science.1160809 10.1016/j.bbalip.2019.02.004 10.1016/j.yexcr.2016.01.012 10.1016/j.jhep.2020.02.005 10.1136/gut.2010.209551 10.1038/s41598-018-27686-6 10.1038/emm.2004.1 10.1002/(SICI)1097-4652(199910)181:1<24::AID-JCP3>3.0.CO;2-0 10.1053/j.gastro.2015.09.039 10.1016/j.redox.2015.09.009 10.1002/hep.24119 10.1152/ajpcell.00507.2009 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1016/j.cmet.2020.10.026 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1932-7420 |
EndPage | 257 |
ExternalDocumentID | 10_1016_j_cmet_2020_10_026 33232666 S1550413120305957 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01 DK128289 – fundername: NCATS NIH HHS grantid: UH3 TR002077 – fundername: NIDDK NIH HHS grantid: R56 DK056621 – fundername: NIDDK NIH HHS grantid: R01 DK056621 |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 53G 5GY 62- 6J9 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AITUG AKRWK ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FEDTE FIRID HVGLF IHE IXB J1W JIG M3Z M41 O-L O9- OK1 P2P RCE RIG ROL RPZ SES SSZ TR2 UNMZH ZA5 0SF AAEDT AAMRU ADVLN AKAPO CGR CUY CVF ECM EIF NPM 6I. AAIKJ AAYXX AGHFR CITATION EJD HZ~ NCXOZ OZT 7X8 5PM |
ID | FETCH-LOGICAL-c521t-54864f5eb60c1a23d3ca02b381bf30ca8c04c02db399ea797d696ff02d9cb6e3 |
IEDL.DBID | ABVKL |
ISSN | 1550-4131 |
IngestDate | Tue Sep 17 21:04:00 EDT 2024 Wed Dec 04 02:05:07 EST 2024 Thu Sep 26 16:07:20 EDT 2024 Sat Sep 28 08:27:24 EDT 2024 Mon Apr 15 04:49:40 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Copyright © 2020 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-54864f5eb60c1a23d3ca02b381bf30ca8c04c02db399ea797d696ff02d9cb6e3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
OpenAccessLink | https://www.cell.com/article/S1550413120305957/pdf |
PMID | 33232666 |
PQID | 2464187592 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7858232 proquest_miscellaneous_2464187592 crossref_primary_10_1016_j_cmet_2020_10_026 pubmed_primary_33232666 elsevier_sciencedirect_doi_10_1016_j_cmet_2020_10_026 |
PublicationCentury | 2000 |
PublicationDate | 2021-02-02 |
PublicationDateYYYYMMDD | 2021-02-02 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell metabolism |
PublicationTitleAlternate | Cell Metab |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Butler, Hoffman, Smibert, Papalexi, Satija (bib25) 2018; 36 Heine, Schilling, Grünwald, Krüger, Gevensleben, Held, Garbi, Kurts, Brossart, Knolle (bib72) 2016; 65 Siegmund, Qian, de Minicis, Harvey-White, Kunos, Vinod, Hungund, Schwabe (bib154) 2007; 21 Straub, Gyoengyoesi, Koenig, Hashani, Pawella, Herpel, Mueller, Macher-Goeppinger, Heid, Schirmacher (bib155) 2013; 62 Shao, Wang, Wei, Deng, Fu, Peng, Jiang, Ye, Xie, Lin (bib151) 2016; 11 Myung, Yoon, Gwak, Kim, Lee, Kim, Shin, Jang, Lee, Lee (bib122) 2007; 581 Du, Hyun, Premont, Choi, Michelotti, Swiderska-Syn, Dalton, Thelen, Rizi, Jung (bib44) 2018; 154 Paradis, Perlemuter, Bonvoust, Dargere, Parfait, Vidaud, Conti, Huet, Ba, Buffet (bib129) 2001; 34 Friedman, Wei, Blaner (bib58) 1993; 264 Mizushima, Levine, Cuervo, Klionsky (bib121) 2008; 451 DeLeve (bib38) 2013; 123 Urtasun, Conde de la Rosa, Nieto (bib171) 2008; 12 Friedman, Roll, Boyles, Arenson, Bissell (bib56) 1989; 264 Tomita, Teratani, Suzuki, Shimizu, Sato, Narimatsu, Okada, Kurihara, Irie, Yokoyama (bib161) 2014; 59 Kisseleva, Cong, Paik, Scholten, Jiang, Benner, Iwaisako, Moore-Morris, Scott, Tsukamoto (bib90) 2012; 109 Zhou, Cui, He, Guo, Pan, Zhang, Huang, Ge, Wang, Gonzalez (bib191) 2020; 11 Asahina, Zhou, Pu, Tsukamoto (bib9) 2011; 53 Gu, Yan, Wang, Meng, Xiang, Qiu, Han (bib67) 2020 Wang, Lee, Tiep, Yu, Ham, Kang, Evans (bib179) 2003; 113 Kang, Chen (bib88) 2009; 89 Hong, Li, Wang, Li (bib79) 2018; 8 Liu, Desai (bib108) 2015; 6 Blomhoff, Rasmussen, Nilsson, Norum, Berg, Blaner, Kato, Mertz, Goodman, Eriksson (bib20) 1985; 260 Taschler, Schreiber, Chitraju, Grabner, Romauch, Wolinski, Haemmerle, Breinbauer, Zechner, Lass (bib158) 2015; 1851 Serviddio, Bellanti, Stanca, Lunetti, Blonda, Tamborra, Siculella, Vendemiale, Capobianco, Giudetti (bib150) 2014; 73 Bhatt, Qin, Bennett, Qian, Fung, Hamilton, Lu (bib16) 2014; 192 Schneiderhan, Schmid-Kotsas, Zhao, Grünert, Nüssler, Weidenbach, Menke, Schmid, Adler, Bachem (bib144) 2001; 34 Blomhoff, Blomhoff (bib19) 2006; 66 Notas, Kisseleva, Brenner (bib124) 2009; 130 Tsuchida, Friedman (bib165) 2017; 14 Guo, Loke, Zheng, Hong, Yea, Fukata, Tarocchi, Abar, Huang, Sninsky (bib69) 2009; 49 Sato, Murase, Kato, Kobune, Sato, Kawano, Takimoto, Takada, Miyanishi, Matsunaga (bib142) 2008; 26 Iwamoto, Kanno, Hyogo, Yamagishi, Takeuchi, Tazuma, Chayama (bib82) 2008; 43 Tsukamoto, She, Hazra, Cheng, Miyahara (bib169) 2006; 21 Kluwe, Wongsiriroj, Troeger, Gwak, Dapito, Pradere, Jiang, Siddiqi, Piantedosi, O'Byrne (bib91) 2011; 60 Ramachandran, Matchett, Dobie, Wilson-Kanamori, Henderson (bib134) 2020; 17 Ikeda, Kawada, Sato, Inoue, Kaneda (bib81) 1997; 6 Watanabe, Hashmi, Gomes, Town, Badou, Flavell, Mehal (bib180) 2007; 46 Eichmann, Grumet, Taschler, Hartler, Heier, Woblistin, Pajed, Kollroser, Rechberger, Thallinger (bib46) 2015; 56 Vander Heiden, Cantley, Thompson (bib172) 2009; 324 Seki, De Minicis, Osterreicher, Kluwe, Osawa, Brenner, Schwabe (bib147) 2007; 13 Koo, Lee, Kim, Kim (bib92) 2016; 150 Ranganathan, Nelson, Rodriguez, Kim, Tower, Rutter, Brinckerhoff, Huang, Epstein, Jeffrey (bib135) 2001; 276 Ross (bib138) 1982; 257 Chen, Tang, Davis, Hsu, Kennedy, Song, Turk, Brunt, Newberry, Davidson (bib30) 2013; 57 Lee, Wollam, Olefsky (bib100) 2018; 172 Ottonello, Petrucco, Maraini (bib127) 1987; 262 Mejias, Gallego, Naranjo-Suarez, Ramirez, Pell, Manzano, Suñer, Bartrons, Mendez, Fernandez (bib117) 2020; 159 Roh, Seki (bib137) 2018; 1061 Bates, Vijayakumar, Ghoshal, Marchand, Yi, Kornyeyev, Zagorska, Hollenback, Walker, Liu (bib13) 2020; 73 Jain, Rivera, Monclus, Synenki, Zirk, Eisenbart, Feghali-Bostwick, Mutlu, Budinger, Chandel (bib83) 2013; 288 Saeed, Bartuzi, Heegsma, Dekker, Kloosterhuis, de Bruin, Jonker, van de Sluis, Faber (bib139) 2020 Du, Chitneni, Suzuki, Wang, Henao, Hyun, Premont, Naggie, Moylan, Bashir (bib43) 2020; 10 Liu, Wang, Xing, Peng, Huang, Fan (bib110) 2018; 17 Chandrashekaran, Das, Seth, Dattaroy, Alhasson, Michelotti, Nagarkatti, Nagarkatti, Diehl, Chatterjee (bib28) 2016; 1862 El Taghdouini, Najimi, Sancho-Bru, Sokal, van Grunsven (bib47) 2015; 8 Kumar, Wang, Thomson, Gandhi (bib94) 2017; 101 Bracey, Gershkovich, Chun, Vilaysane, Meijndert, Wright, Fedak, Beck, Muruve, Duff (bib22) 2014; 289 Leo, Rosman, Lieber (bib102) 1993; 17 Wan, Xia, Du, Liu, Xie, Zhang, Guan, Wu, Wang, Shi (bib173) 2019; 33 Troeger, Mederacke, Gwak, Dapito, Mu, Hsu, Pradere, Friedman, Schwabe (bib162) 2012; 143 García-Trevijano, Iraburu, Fontana, Domínguez-Rosales, Auster, Covarrubias-Pinedo, Rojkind (bib62) 1999; 29 Gao, Brigstock (bib61) 2004; 279 Higashi, Friedman, Hoshida (bib78) 2017; 121 Wang, Friedman (bib175) 2020; 73 Seo, Eun, Kim, Yi, Lee, Park, Jang, Jo, Kim, Han (bib149) 2016; 64 Schwabe, Tabas, Pajvani (bib146) 2020; 158 Wang, Huang, Guan, Xiao, Deng, Chen, Chen, Li, Huang, Shi (bib178) 2013; 8 De Minicis, Seki, Oesterreicher, Schnabl, Schwabe, Brenner (bib37) 2008; 48 Zhou, Jia, Qin, Lu, Zhu, Li, Han, Sun (bib192) 2010; 323 Zheng, Jiang, Qu, Yuan, Hu, He, Chen, Li, Tu, Lin (bib190) 2020; 190 Wang, Tankersley, Tang, Potter, Mezey (bib174) 2002; 401 Weng, Li, van Bennekum, Potter, Harrison, Blaner, Breslow, Fisher (bib182) 1999; 38 Breitkopf, Godoy, Ciuclan, Singer, Dooley (bib23) 2006; 44 Zhang, Zhao, Yao, Wang, Shao, Chen, Zhang, Zheng (bib189) 2017; 11 Evert, Dombrowski, Schirmacher, Pfeifer (bib48) 1998; 28 Mederacke, Hsu, Troeger, Huebener, Mu, Dapito, Pradere, Schwabe (bib115) 2013; 4 Maher, Saito, Neuschwander-Tetri (bib112) 1997; 53 Nakano, Kamiya, Sumiyoshi, Tsuruya, Kagawa, Inagaki (bib123) 2020; 71 Younossi, Ratziu, Loomba, Rinella, Anstee, Goodman, Bedossa, Geier, Beckebaum, Newsome (bib188) 2019; 394 Jung, Witek, Syn, Choi, Omenetti, Premont, Guy, Diehl (bib87) 2010; 59 Pirazzi, Valenti, Motta, Pingitore, Hedfalk, Mancina, Burza, Indiveri, Ferro, Montalcini (bib130) 2014; 23 Dobie, Wilson-Kanamori, Henderson, Smith, Matchett, Portman, Wallenborg, Picelli, Zagorska, Pendem (bib41) 2019; 29 Blaner, van Bennekum, Brouwer, Hendriks (bib18) 1990; 274 Liu, Xu, Rosenthal, Zhang, McCubbin, Meshgin, Shang, Koyama, Ma, Sharma (bib109) 2020; 158 Blomhoff, Wake (bib21) 1991; 5 Lee, Jeong (bib99) 2012; 27 Hanafusa, Ninomiya-Tsuji, Masuyama, Nishita, Fujisawa, Shibuya, Matsumoto, Nishida (bib70) 1999; 274 Feder, Todaro, Laskin (bib49) 1993; 53 Amann, Hellerbrand (bib5) 2009; 13 Lin, Zheng, Attie, Keller, Bernlohr, Blaner, Newberry, Davidson, Chen (bib106) 2018; 59 Stuart, Butler, Hoffman, Hafemeister, Papalexi, Mauck, Hao, Stoeckius, Smibert, Satija (bib156) 2019; 177 Bataller, Schwabe, Choi, Yang, Paik, Lindquist, Qian, Schoonhoven, Hagedorn, Lemasters (bib12) 2003; 112 Winau, Hegasy, Weiskirchen, Weber, Cassan, Sieling, Modlin, Liblau, Gressner, Kaufmann (bib183) 2007; 26 Bansal (bib10) 2016; 10 Mannaerts, Thoen, Eysackers, Cubero, Batista Leite, Coldham, Colle, Trautwein, van Grunsven (bib113) 2019; 10 Weiskirchen, Tacke (bib181) 2014; 3 Hernández-Gea, Hilscher, Rozenfeld, Lim, Nieto, Werner, Devi, Friedman (bib77) 2013; 59 Fehrenbach, Weiskirchen, Kasper, Gressner (bib50) 2001; 34 Sancho, Mainez, Crosas-Molist, Roncero, Fernández-Rodriguez, Pinedo, Huber, Eferl, Mikulits, Fabregat (bib141) 2012; 7 Hernández-Gea, Friedman (bib75) 2012; 8 Arab, Cabrera, Sehrawat, Jalan-Sakrikar, Verma, Simonetto, Cao, Yaqoob, Leon, Freire (bib7) 2020; 73 Oh, Shim, Lee, Choi, Baik, Eom (bib125) 2017; 40 Chen, Choi, Michelotti, Chan, Swiderska-Syn, Karaca, Xie, Moylan, Garibaldi, Premont (bib31) 2012; 143 Li, Ragheb, Lawler, Sturgis, Rajwa, Melendez, Robinson (bib103) 2003; 278 Shmarakov, Jiang, Liu, Fernandez, Blaner (bib153) 2019; 1864 Tsukada, Westwick, Ikejima, Sato, Rippe (bib167) 2005; 280 Lemoinne, Friedman (bib101) 2019; 49 Wang, Cai, Yang, Sonubi, Zheng, Ramakrishnan, Shi, Valenti, Pajvani, Sandhu (bib176) 2020; 31 Chang, Chen, Chang, Hou, Chan, Lee (bib29) 2004; 65 Bellovino, Lanyau, Garaguso, Amicone, Cavallari, Tripodi, Gaetani (bib14) 1999; 181 Trøen, Nilsson, Norum, Blomhoff (bib164) 1994; 300 Giorgio, Migliaccio, Orsini, Paolucci, Moroni, Contursi, Pelliccia, Luzi, Minucci, Marcaccio (bib63) 2005; 122 Miura, Yang, van Rooijen, Brenner, Ohnishi, Seki (bib120) 2012; 57 Adachi, Togashi, Suzuki, Kasai, Ito, Sugahara, Kawata (bib2) 2005; 41 Krenkel, Hundertmark, Ritz, Weiskirchen, Tacke (bib93) 2019; 8 Lin, Zheng, Chen (bib107) 2009; 89 Henderson, Arnold, Katamura, Giacomini, Rodriguez, McCarty, Pellicoro, Raschperger, Betsholtz, Ruminski (bib74) 2013; 19 Friedman (bib53) 2003; 38 Christofk, Vander Heiden, Harris, Ramanathan, Gerszten, Wei, Fleming, Schreiber, Cantley (bib34) 2008; 452 Ratziu, Harrison, Francque, Bedossa, Lehert, Serfaty, Romero-Gomez, Boursier, Abdelmalek, Caldwell (bib136) 2016; 150 Mello, Nakatsuka, Fears, Davis, Tsukamoto, Bosron, Sanghani (bib118) 2008; 374 Dong, Su, Esmaili, Iseli, Ramezani-Moghadam, Hu, Xu, George, Wang (bib42) 2015; 93 Golan-Gerstl, Oren, Brazovski, Hayardeny, Reif (bib64) 2017; 66 Mehrpour, Esclatine, Beau, Codogno (bib116) 2010; 298 Barcena-Varela, Paish, Alvarez, Uriarte, Latasa, Santamaria, Recalde, Garate, Claveria, Colyn (bib11) 2020 Sun, Fan, Chen, Tian, Li, Xu, Wu, Shao, Bian, Fang (bib157) 2016; 6 Tsuchida, Lee, Fujiwara, Ybanez, Allen, Martins, Fiel, Goossens, Chou, Hoshida (bib166) 2018; 69 Matsuura, Gad, Harrison, Ross (bib114) 1997; 127 Yoneda, Sakai-Sawada, Niitsu, Tamura (bib187) 2016; 341 Andueza, Garde, García-Garzón, Ansorena, López-Zabalza, Iraburu, Zalba, Martínez-Irujo (bib6) 2018; 126 Teratani, Tomita, Suzuki, Oshikawa, Yokoyama, Shimamura, Tominaga, Hiroi, Irie, Okada (bib159) 2012; 142 Ramachandran, Dobie, Wilson-Kanamori, Dora, Henderson, Luu, Portman, Matchett, Brice, Marwick (bib133) 2019; 575 Kim, Hasegawa, Goossens, Tsuchida, Athwal, Sun, Robinson, Bhattacharya, Chou, Zhang (bib89) 2016; 6 Grumet, Eichmann, Taschler, Zierler, Leopold, Moustafa, Radovic, Romauch, Yan, Du (bib66) 2016; 291 Jin, Gao, Wang, Yang, Wang, Liu, Yang, Yan, Chen, Zhao (bib86) 2017; 37 D'Ambrosio, Walewski, Clugston, Berk, Rippe, Blaner (bib35) 2011; 6 Hernández–Gea, Ghiassi-Nejad, Rozenfeld, Gordon, Fiel, Yue, Czaja, Friedman (bib76) 2012; 142 M Teratani (10.1016/j.cmet.2020.10.026_bib159) 2012; 142 Kumar (10.1016/j.cmet.2020.10.026_bib94) 2017; 101 Serviddio (10.1016/j.cmet.2020.10.026_bib150) 2014; 73 Ramachandran (10.1016/j.cmet.2020.10.026_bib134) 2020; 17 Desroches-Castan (10.1016/j.cmet.2020.10.026_bib40) 2019; 70 Qin (10.1016/j.cmet.2020.10.026_bib132) 2012; 75 Watanabe (10.1016/j.cmet.2020.10.026_bib180) 2007; 46 Arab (10.1016/j.cmet.2020.10.026_bib7) 2020; 73 Choi (10.1016/j.cmet.2020.10.026_bib33) 2019; 30 Wang (10.1016/j.cmet.2020.10.026_bib174) 2002; 401 Allenby (10.1016/j.cmet.2020.10.026_bib4) 1993; 90 Vander Heiden (10.1016/j.cmet.2020.10.026_bib172) 2009; 324 Gao (10.1016/j.cmet.2020.10.026_bib61) 2004; 279 Evert (10.1016/j.cmet.2020.10.026_bib48) 1998; 28 Lee (10.1016/j.cmet.2020.10.026_bib98) 2010; 223 Dobie (10.1016/j.cmet.2020.10.026_bib41) 2019; 29 Friedman (10.1016/j.cmet.2020.10.026_bib55) 1992; 15 Friedman (10.1016/j.cmet.2020.10.026_bib57) 1985; 82 Hernández-Gea (10.1016/j.cmet.2020.10.026_bib75) 2012; 8 Cheng (10.1016/j.cmet.2020.10.026_bib32) 2008; 294 Henderson (10.1016/j.cmet.2020.10.026_bib74) 2013; 19 Tsukamoto (10.1016/j.cmet.2020.10.026_bib168) 2005; 29 Iwamoto (10.1016/j.cmet.2020.10.026_bib82) 2008; 43 Bhatt (10.1016/j.cmet.2020.10.026_bib16) 2014; 192 Jung (10.1016/j.cmet.2020.10.026_bib87) 2010; 59 Blomhoff (10.1016/j.cmet.2020.10.026_bib21) 1991; 5 Wang (10.1016/j.cmet.2020.10.026_bib176) 2020; 31 Blaner (10.1016/j.cmet.2020.10.026_bib17) 1985; 26 Breitkopf (10.1016/j.cmet.2020.10.026_bib23) 2006; 44 El Taghdouini (10.1016/j.cmet.2020.10.026_bib47) 2015; 8 Nakano (10.1016/j.cmet.2020.10.026_bib123) 2020; 71 Zhang (10.1016/j.cmet.2020.10.026_bib189) 2017; 11 Giorgio (10.1016/j.cmet.2020.10.026_bib63) 2005; 122 Heine (10.1016/j.cmet.2020.10.026_bib72) 2016; 65 Wang (10.1016/j.cmet.2020.10.026_bib179) 2003; 113 Mejias (10.1016/j.cmet.2020.10.026_bib117) 2020; 159 Chen (10.1016/j.cmet.2020.10.026_bib30) 2013; 57 Christofk (10.1016/j.cmet.2020.10.026_bib34) 2008; 452 Tomita (10.1016/j.cmet.2020.10.026_bib161) 2014; 59 DeLeve (10.1016/j.cmet.2020.10.026_bib39) 2015; 61 Fehrenbach (10.1016/j.cmet.2020.10.026_bib50) 2001; 34 Seki (10.1016/j.cmet.2020.10.026_bib147) 2007; 13 Wang (10.1016/j.cmet.2020.10.026_bib178) 2013; 8 Stuart (10.1016/j.cmet.2020.10.026_bib156) 2019; 177 Asahina (10.1016/j.cmet.2020.10.026_bib9) 2011; 53 Hernández-Gea (10.1016/j.cmet.2020.10.026_bib77) 2013; 59 Kisseleva (10.1016/j.cmet.2020.10.026_bib90) 2012; 109 Lane (10.1016/j.cmet.2020.10.026_bib95) 2020; 7 Krenkel (10.1016/j.cmet.2020.10.026_bib93) 2019; 8 Liberti (10.1016/j.cmet.2020.10.026_bib104) 2016; 41 Onichtchouk (10.1016/j.cmet.2020.10.026_bib126) 1999; 401 Mannaerts (10.1016/j.cmet.2020.10.026_bib113) 2019; 10 Schwabe (10.1016/j.cmet.2020.10.026_bib146) 2020; 158 Sato (10.1016/j.cmet.2020.10.026_bib142) 2008; 26 Weng (10.1016/j.cmet.2020.10.026_bib182) 1999; 38 Lin (10.1016/j.cmet.2020.10.026_bib106) 2018; 59 Grumet (10.1016/j.cmet.2020.10.026_bib66) 2016; 291 Casini (10.1016/j.cmet.2020.10.026_bib27) 1997; 25 Guo (10.1016/j.cmet.2020.10.026_bib69) 2009; 49 Seo (10.1016/j.cmet.2020.10.026_bib149) 2016; 64 Zheng (10.1016/j.cmet.2020.10.026_bib190) 2020; 190 Cai (10.1016/j.cmet.2020.10.026_bib26) 2020; 31 Langer (10.1016/j.cmet.2020.10.026_bib96) 2008; 47 Kang (10.1016/j.cmet.2020.10.026_bib88) 2009; 89 Blomhoff (10.1016/j.cmet.2020.10.026_bib20) 1985; 260 Jain (10.1016/j.cmet.2020.10.026_bib83) 2013; 288 Golan-Gerstl (10.1016/j.cmet.2020.10.026_bib64) 2017; 66 Fukushima (10.1016/j.cmet.2020.10.026_bib59) 2005; 41 Minato (10.1016/j.cmet.2020.10.026_bib119) 1983; 3 Jia (10.1016/j.cmet.2020.10.026_bib84) 2015; 10 Ottonello (10.1016/j.cmet.2020.10.026_bib127) 1987; 262 Jiang (10.1016/j.cmet.2020.10.026_bib85) 2008; 86 Bracey (10.1016/j.cmet.2020.10.026_bib22) 2014; 289 Mehrpour (10.1016/j.cmet.2020.10.026_bib116) 2010; 298 Proell (10.1016/j.cmet.2020.10.026_bib131) 2007; 6 Asahina (10.1016/j.cmet.2020.10.026_bib8) 2009; 49 Hanafusa (10.1016/j.cmet.2020.10.026_bib70) 1999; 274 Amann (10.1016/j.cmet.2020.10.026_bib5) 2009; 13 De Minicis (10.1016/j.cmet.2020.10.026_bib37) 2008; 48 Abraham (10.1016/j.cmet.2020.10.026_bib1) 2009; 29 Saeed (10.1016/j.cmet.2020.10.026_bib139) 2020 Sancho (10.1016/j.cmet.2020.10.026_bib141) 2012; 7 Liu (10.1016/j.cmet.2020.10.026_bib108) 2015; 6 Ratziu (10.1016/j.cmet.2020.10.026_bib136) 2016; 150 Gu (10.1016/j.cmet.2020.10.026_bib67) 2020 Lemoinne (10.1016/j.cmet.2020.10.026_bib101) 2019; 49 Pang (10.1016/j.cmet.2020.10.026_bib128) 2011; 52 Bates (10.1016/j.cmet.2020.10.026_bib13) 2020; 73 Notas (10.1016/j.cmet.2020.10.026_bib124) 2009; 130 García-Trevijano (10.1016/j.cmet.2020.10.026_bib62) 1999; 29 Koo (10.1016/j.cmet.2020.10.026_bib92) 2016; 150 Guimarães (10.1016/j.cmet.2020.10.026_bib68) 2012; 12 Kluwe (10.1016/j.cmet.2020.10.026_bib91) 2011; 60 Ikeda (10.1016/j.cmet.2020.10.026_bib81) 1997; 6 Ranganathan (10.1016/j.cmet.2020.10.026_bib135) 2001; 276 Foo (10.1016/j.cmet.2020.10.026_bib52) 2011; 282 Maher (10.1016/j.cmet.2020.10.026_bib111) 1993; 91 Wang (10.1016/j.cmet.2020.10.026_bib177) 2016; 24 Miura (10.1016/j.cmet.2020.10.026_bib120) 2012; 57 Pirazzi (10.1016/j.cmet.2020.10.026_bib130) 2014; 23 Chandrashekaran (10.1016/j.cmet.2020.10.026_bib28) 2016; 1862 Troeger (10.1016/j.cmet.2020.10.026_bib162) 2012; 143 Kim (10.1016/j.cmet.2020.10.026_bib89) 2016; 6 Saeed (10.1016/j.cmet.2020.10.026_bib140) 2017; 10 Weiskirchen (10.1016/j.cmet.2020.10.026_bib181) 2014; 3 Mederacke (10.1016/j.cmet.2020.10.026_bib115) 2013; 4 Tsuchida (10.1016/j.cmet.2020.10.026_bib166) 2018; 69 Maher (10.1016/j.cmet.2020.10.026_bib112) 1997; 53 Zhou (10.1016/j.cmet.2020.10.026_bib191) 2020; 11 Shao (10.1016/j.cmet.2020.10.026_bib151) 2016; 11 Eichmann (10.1016/j.cmet.2020.10.026_bib46) 2015; 56 Hellerbrand (10.1016/j.cmet.2020.10.026_bib73) 1999; 30 Friedman (10.1016/j.cmet.2020.10.026_bib56) 1989; 264 Urtasun (10.1016/j.cmet.2020.10.026_bib171) 2008; 12 Blaner (10.1016/j.cmet.2020.10.026_bib18) 1990; 274 Du (10.1016/j.cmet.2020.10.026_bib43) 2020; 10 Gajendiran (10.1016/j.cmet.2020.10.026_bib60) 2018; 22 Younossi (10.1016/j.cmet.2020.10.026_bib188) 2019; 394 D'Ambrosio (10.1016/j.cmet.2020.10.026_bib35) 2011; 6 Adachi (10.1016/j.cmet.2020.10.026_bib2) 2005; 41 Myung (10.1016/j.cmet.2020.10.026_bib122) 2007; 581 Wang (10.1016/j.cmet.2020.10.026_bib175) 2020; 73 Friedman (10.1016/j.cmet.2020.10.026_bib54) 2008; 88 Mello (10.1016/j.cmet.2020.10.026_bib118) 2008; 374 Tsuchida (10.1016/j.cmet.2020.10.026_bib165) 2017; 14 Higashi (10.1016/j.cmet.2020.10.026_bib78) 2017; 121 Tsukada (10.1016/j.cmet.2020.10.026_bib167) 2005; 280 Lin (10.1016/j.cmet.2020.10.026_bib105) 2011; 333 Lee (10.1016/j.cmet.2020.10.026_bib97) 2004; 36 Oh (10.1016/j.cmet.2020.10.026_bib125) 2017; 40 Shmarakov (10.1016/j.cmet.2020.10.026_bib153) 2019; 1864 Matsuura (10.1016/j.cmet.2020.10.026_bib114) 1997; 127 Taschler (10.1016/j.cmet.2020.10.026_bib158) 2015; 1851 Straub (10.1016/j.cmet.2020.10.026_bib155) 2013; 62 Bellovino (10.1016/j.cmet.2020.10.026_bib14) 1999; 181 Bataller (10.1016/j.cmet.2020.10.026_bib12) 2003; 112 Lin (10.1016/j.cmet.2020.10.026_bib107) 2009; 89 Bansal (10.1016/j.cmet.2020.10.026_bib10) 2016; 10 Blomhoff (10.1016/j.cmet.2020.10.026_bib19) 2006; 66 Jin (10.1016/j.cmet.2020.10.026_bib86) 2017; 37 Sun (10.1016/j.cmet.2020.10.026_bib157) 2016; 6 Friedman (10.1016/j.cmet.2020.10.026_bib58) 1993; 264 Fleury (10.1016/j.cmet.2020.10.026_bib51) 2002; 84 Zhu (10.1016/j.cmet.2020.10.026_bib193) 2018; 10 Paradis (10.1016/j.cmet.2020.10.026_bib129) 2001; 34 Schneiderhan (10.1016/j.cmet.2020.10.026_bib144) 2001; 34 Lee (10.1016/j.cmet.2020.10.026_bib99) 2012; 27 Lee (10.1016/j.cmet.2020.10.026_bib100) 2018; 172 Brunati (10.1016/j.cmet.2020.10.026_bib24) 2010; 44 Feder (10.1016/j.cmet.2020.10.026_bib49) 1993; 53 Chen (10.1016/j.cmet.2020.10.026_bib31) 2012; 143 Mizushima (10.1016/j.cmet.2020.10.026_bib121) 2008; 451 Siegmund (10.1016/j.cmet.2020.10.026_bib154) 2007; 21 Barcena-Varela (10.1016/j.cmet.2020.10.026_bib11) 2020 De Bleser (10.1016/j.cmet.2020.10.026_bib36) 1999; 274 Troeger (10.1016/j.cmet.2020.10.026_bib163) 2011; 54 Liu (10.1016/j.cmet.2020.10.026_bib110) 2018; 17 Yan (10.1016/j.cmet.2020.10.026_bib186) 2012; 18 Xiong (10.1016/j.cmet.2020.10.026_bib185) 2019; 75 Wan (10.1016/j.cmet.2020.10.026_bib173) 2019; 33 Friedman (10.1016/j.cmet.2020.10.026_bib53) 2003; 38 Harrison (10.1016/j.cmet.2020.10.026_bib71) 2018; 68 Li (10.1016/j.cmet.2020.10.026_bib103) 2003; 278 Sauvant (10.1016/j.cmet.2020.10.026_bib143) 2001; 33 Testerink (10.1016/j.cmet.2020.10.026_bib160) 2012; 7 Andueza (10.1016/j.cmet.2020.10.026_bib6) 2018; 126 Hong (10.1016/j.cmet.2020.10.026_bib79) 2018; 8 She (10.1016/j.cmet.2020.10.026_bib152) 2005; 280 Wu (10.1016/j.cmet.2020.10.026_bib184) 2017; 7 Liu (10.1016/j.cmet.2020.10.026_bib109) 2020; 158 Hernández–Gea (10.1016/j.cmet.2020.10.026_bib76) 2012; 142 Tuohetahuntila (10.1016/j.cmet.2020.10.026_bib170) 2017; 292 Eberlé (10.1016/j.cmet.2020.10.026_bib45) 2004; 86 Hotamisligil (10.1016/j.cmet.2020.10.026_bib80) 2017; 542 Bellovino (10.1016/j.cmet.2020.10.026_bib15) 1996; 222 Zhou (10.1016/j.cmet.2020.10.026_bib192) 2010; 323 Butler (10.1016/j.cmet.2020.10.026_bib25) 2018; 36 Leo (10.1016/j.cmet.2020.10.026_bib102) 1993; 17 Ramachandran (10.1016/j.cmet.2020.10.026_bib133) 2019; 575 Ajat (10.1016/j.cmet.2020.10.026_bib3) 2017; 1862 Senoo (10.1016/j.cmet.2020.10.026_bib148) 2010; 34 Trøen (10.1016/j.cmet.2020.10.026_bib164) 1994; 300 Goodwin (10.1016/j.cmet.2020.10.026_bib65) 2013; 28 DeLeve (10.1016/j.cmet.2020.10.026_bib38) 2013; 123 Ross (10.1016/j.cmet.2020.10.026_bib138) 1982; 257 Schreiber (10.1016/j.cmet.2020.10.026_bib145) 2012; 1821 Yoneda (10.1016/j.cmet.2020.10.026_bib187) 2016; 341 Tsukamoto (10.1016/j.cmet.2020.10.026_bib169) 2006; 21 Roh (10.1016/j.cmet.2020.10.026_bib137) 2018; 1061 Winau (10.1016/j.cmet.2020.10.026_bib183) 2007; 26 Du (10.1016/j.cmet.2020.10.026_bib44) 2018; 154 Chang (10.1016/j.cmet.2020.10.026_bib29) 2004; 65 Dong (10.1016/j.cmet.2020.10.026_bib42) 2015; 93 |
References_xml | – volume: 60 start-page: 1260 year: 2011 end-page: 1268 ident: bib91 article-title: Absence of hepatic stellate cell retinoid lipid droplets does not enhance hepatic fibrosis but decreases hepatic carcinogenesis publication-title: Gut contributor: fullname: O'Byrne – volume: 262 start-page: 3975 year: 1987 end-page: 3981 ident: bib127 article-title: Vitamin A uptake from retinol-binding protein in a cell-free system from pigment epithelial cells of bovine retina. Retinol transfer from plasma retinol-binding protein to cytoplasmic retinol-binding protein with retinyl-ester formation as the intermediate step publication-title: J. Biol. Chem. contributor: fullname: Maraini – volume: 34 start-page: 1247 year: 2010 end-page: 1272 ident: bib148 article-title: Hepatic stellate cell (vitamin A-storing cell) and its relative--past, present and future publication-title: Cell Biol. Int. contributor: fullname: Mezaki – volume: 71 start-page: 1437 year: 2020 end-page: 1452 ident: bib123 article-title: A deactivation factor of fibrogenic hepatic stellate cells induces regression of liver fibrosis in mice publication-title: Hepatology contributor: fullname: Inagaki – volume: 158 start-page: 1913 year: 2020 end-page: 1928 ident: bib146 article-title: Mechanisms of fibrosis development in nonalcoholic steatohepatitis publication-title: Gastroenterology contributor: fullname: Pajvani – volume: 177 start-page: 1888 year: 2019 end-page: 1902.e21 ident: bib156 article-title: Comprehensive integration of single-cell data publication-title: Cell contributor: fullname: Satija – volume: 13 start-page: 1411 year: 2009 end-page: 1427 ident: bib5 article-title: GLUT1 as a therapeutic target in hepatocellular carcinoma publication-title: Expert Opin. Ther. Targets contributor: fullname: Hellerbrand – volume: 48 start-page: 2016 year: 2008 end-page: 2026 ident: bib37 article-title: Reduced nicotinamide adenine dinucleotide phosphate oxidase mediates fibrotic and inflammatory effects of leptin on hepatic stellate cells publication-title: Hepatology contributor: fullname: Brenner – volume: 4 start-page: 2823 year: 2013 ident: bib115 article-title: Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology publication-title: Nat. Commun. contributor: fullname: Schwabe – volume: 44 start-page: 57 year: 2006 end-page: 66 ident: bib23 article-title: TGF-beta/Smad signaling in the injured liver publication-title: Z. Gastroenterol. contributor: fullname: Dooley – volume: 66 start-page: S655 year: 2017 end-page: S656 ident: bib64 article-title: Anti-fibrotic effect of aramchol on fibrosis in TAA animal model publication-title: J. Hepatol. contributor: fullname: Reif – volume: 291 start-page: 17977 year: 2016 end-page: 17987 ident: bib66 article-title: Lysosomal acid lipase hydrolyzes retinyl ester and affects retinoid turnover publication-title: J. Biol. Chem. contributor: fullname: Du – volume: 7 start-page: e34945 year: 2012 ident: bib160 article-title: Replacement of retinyl esters by polyunsaturated triacylglycerol species in lipid droplets of hepatic stellate cells during activation publication-title: PLoS One contributor: fullname: Vaandrager – volume: 172 start-page: 22 year: 2018 end-page: 40 ident: bib100 article-title: An integrated view of immunometabolism publication-title: Cell contributor: fullname: Olefsky – volume: 101 start-page: 429 year: 2017 end-page: 438 ident: bib94 article-title: Hepatic stellate cells increase the immunosuppressive function of natural Foxp3+ regulatory T cells via IDO-induced AhR activation publication-title: J. Leukoc. Biol. contributor: fullname: Gandhi – volume: 65 start-page: 273 year: 2016 end-page: 282 ident: bib72 article-title: The induction of human myeloid derived suppressor cells through hepatic stellate cells is dose-dependently inhibited by the tyrosine kinase inhibitors nilotinib, dasatinib and sorafenib, but not sunitinib publication-title: Cancer Immunol. Immun. contributor: fullname: Knolle – volume: 292 start-page: 12436 year: 2017 end-page: 12448 ident: bib170 article-title: Lysosome-mediated degradation of a distinct pool of lipid droplets during hepatic stellate cell activation publication-title: J. Biol. Chem. contributor: fullname: Vaandrager – volume: 88 start-page: 125 year: 2008 end-page: 172 ident: bib54 article-title: Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver publication-title: Physiol. Rev. contributor: fullname: Friedman – volume: 31 start-page: 969 year: 2020 end-page: 986 ident: bib176 article-title: Cholesterol stabilizes TAZ in hepatocytes to promote experimental non-alcoholic steatohepatitis publication-title: Cell Metab. contributor: fullname: Sandhu – volume: 41 start-page: 211 year: 2016 end-page: 218 ident: bib104 article-title: The Warburg effect: how does it benefit cancer cells? publication-title: Trends Biochem. Sci. contributor: fullname: Locasale – volume: 6 start-page: 1 year: 2007 ident: bib131 article-title: TGF-beta dependent regulation of oxygen radicals during transdifferentiation of activated hepatic stellate cells to myofibroblastoid cells publication-title: Comp. Hepatol. contributor: fullname: Mikulits – volume: 181 start-page: 24 year: 1999 end-page: 32 ident: bib14 article-title: MMH cells: an in vitro model for the study of retinol-binding protein secretion regulated by retinol publication-title: J. Cell. Physiol. contributor: fullname: Gaetani – volume: 401 start-page: 480 year: 1999 end-page: 485 ident: bib126 article-title: Silencing of TGF-beta signalling by the pseudoreceptor BAMBI publication-title: Nature contributor: fullname: Niehrs – volume: 90 start-page: 30 year: 1993 end-page: 34 ident: bib4 article-title: Retinoic acid receptors and retinoid X receptors: interactions with endogenous retinoic acids publication-title: Proc. Natl. Acad. Sci. USA contributor: fullname: Chambon – volume: 17 start-page: 457 year: 2020 end-page: 472 ident: bib134 article-title: Single-cell technologies in hepatology: new insights into liver biology and disease pathogenesis publication-title: Nat. Rev. Gastroenterol. Hepatol. contributor: fullname: Henderson – volume: 59 start-page: 154 year: 2014 end-page: 169 ident: bib161 article-title: Free cholesterol accumulation in hepatic stellate cells: mechanism of liver fibrosis aggravation in nonalcoholic steatohepatitis in mice publication-title: Hepatology contributor: fullname: Yokoyama – volume: 113 start-page: 159 year: 2003 end-page: 170 ident: bib179 article-title: Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity publication-title: Cell contributor: fullname: Evans – volume: 8 start-page: 849 year: 2012 end-page: 850 ident: bib75 article-title: Autophagy fuels tissue fibrogenesis publication-title: Autophagy contributor: fullname: Friedman – volume: 43 start-page: 298 year: 2008 end-page: 304 ident: bib82 article-title: Advanced glycation end products enhance the proliferation and activation of hepatic stellate cells publication-title: J. Gastroenterol. contributor: fullname: Chayama – volume: 49 start-page: 998 year: 2009 end-page: 1011 ident: bib8 article-title: Mesenchymal origin of hepatic stellate cells, submesothelial cells, and perivascular mesenchymal cells during mouse liver development publication-title: Hepatology contributor: fullname: Tsukamoto – volume: 192 start-page: 5098 year: 2014 end-page: 5108 ident: bib16 article-title: All-trans retinoic acid induces arginase-1 and inducible nitric oxide synthase-producing dendritic cells with T cell inhibitory function publication-title: J. Immunol. contributor: fullname: Lu – volume: 289 start-page: 19571 year: 2014 end-page: 19584 ident: bib22 article-title: Mitochondrial NLRP3 protein induces reactive oxygen species to promote Smad protein signaling and fibrosis independent from the inflammasome publication-title: J. Biol. Chem. contributor: fullname: Duff – volume: 401 start-page: 262 year: 2002 end-page: 270 ident: bib174 article-title: Regulation of the murine alpha(2)(I) collagen promoter by retinoic acid and retinoid X receptors publication-title: Arch. Biochem. Biophys. contributor: fullname: Mezey – volume: 451 start-page: 1069 year: 2008 end-page: 1075 ident: bib121 article-title: Autophagy fights disease through cellular self-digestion publication-title: Nature contributor: fullname: Klionsky – volume: 13 start-page: 1324 year: 2007 end-page: 1332 ident: bib147 article-title: TLR4 enhances TGF-beta signaling and hepatic fibrosis publication-title: Nat. Med. contributor: fullname: Schwabe – volume: 49 start-page: 960 year: 2009 end-page: 968 ident: bib69 article-title: Functional linkage of cirrhosis-predictive single nucleotide polymorphisms of toll-like receptor 4 to hepatic stellate cell responses publication-title: Hepatology contributor: fullname: Sninsky – volume: 8 start-page: e74051 year: 2013 ident: bib178 article-title: Hypoxia-inducible factor-1alpha and MAPK co-regulate activation of hepatic stellate cells upon hypoxia stimulation publication-title: PLoS One contributor: fullname: Shi – volume: 40 start-page: 576 year: 2017 end-page: 582 ident: bib125 article-title: 1-Methyl-L-tryptophan promotes the apoptosis of hepatic stellate cells arrested by interferon-gamma by increasing the expression of IFN-γRβ, IRF-1 and FAS publication-title: Int. J. Mol. Med. contributor: fullname: Eom – volume: 5 start-page: 271 year: 1991 end-page: 277 ident: bib21 article-title: Perisinusoidal stellate cells of the liver: important roles in retinol metabolism and fibrosis publication-title: FASEB J. contributor: fullname: Wake – volume: 69 start-page: 385 year: 2018 end-page: 395 ident: bib166 article-title: A simple diet- and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer publication-title: J. Hepatol. contributor: fullname: Hoshida – volume: 75 start-page: 4114 year: 2012 end-page: 4123 ident: bib132 article-title: Alteration of protein glycosylation in human hepatic stellate cells activated with transforming growth factor-beta1 publication-title: J. Proteomics contributor: fullname: Li – volume: 14 start-page: 397 year: 2017 end-page: 411 ident: bib165 article-title: Mechanisms of hepatic stellate cell activation publication-title: Nat. Rev. Gastroenterol. Hepatol. contributor: fullname: Friedman – volume: 86 start-page: 1492 year: 2008 end-page: 1502 ident: bib85 article-title: Hepatic stellate cells preferentially expand allogeneic CD4+ CD25+ FoxP3+ regulatory T cells in an IL-2-dependent manner publication-title: Transplantation contributor: fullname: Lu – volume: 86 start-page: 839 year: 2004 end-page: 848 ident: bib45 article-title: SREBP transcription factors: master regulators of lipid homeostasis publication-title: Biochimie contributor: fullname: Foufelle – volume: 122 start-page: 221 year: 2005 end-page: 233 ident: bib63 article-title: Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis publication-title: Cell contributor: fullname: Marcaccio – volume: 93 start-page: 1327 year: 2015 end-page: 1339 ident: bib42 article-title: Adiponectin attenuates liver fibrosis by inducing nitric oxide production of hepatic stellate cells publication-title: J. Mol. Med. (Berl.) contributor: fullname: Wang – volume: 280 start-page: 10055 year: 2005 end-page: 10064 ident: bib167 article-title: SMAD and p38 MAPK signaling pathways independently regulate alpha1(I) collagen gene expression in unstimulated and transforming growth factor-beta-stimulated hepatic stellate cells publication-title: J. Biol. Chem. contributor: fullname: Rippe – volume: 28 start-page: 369 year: 2013 end-page: 376 ident: bib65 article-title: Advanced glycation end products augment experimental hepatic fibrosis publication-title: J. Gastroenterol. Hepatol. contributor: fullname: Angus – volume: 324 start-page: 1029 year: 2009 end-page: 1033 ident: bib172 article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation publication-title: Science contributor: fullname: Thompson – volume: 26 start-page: 1241 year: 1985 end-page: 1251 ident: bib17 article-title: Retinoids, retinoid-binding proteins, and retinyl palmitate hydrolase distributions in different types of rat liver cells publication-title: J. Lipid Res. contributor: fullname: Goodman – volume: 10 start-page: e0121939 year: 2015 ident: bib84 article-title: Pyrroloquinoline-quinone suppresses liver fibrogenesis in mice publication-title: PLoS One contributor: fullname: Gu – volume: 34 start-page: 738 year: 2001 end-page: 744 ident: bib129 article-title: High glucose and hyperinsulinemia stimulate connective tissue growth factor expression: a potential mechanism involved in progression to fibrosis in nonalcoholic steatohepatitis publication-title: Hepatology contributor: fullname: Buffet – volume: 33 start-page: 8530 year: 2019 end-page: 8542 ident: bib173 article-title: Exosomes from activated hepatic stellate cells contain GLUT1 and PKM2: a role for exosomes in metabolic switch of liver nonparenchymal cells publication-title: FASEB J. contributor: fullname: Shi – volume: 73 start-page: 896 year: 2020 end-page: 905 ident: bib13 article-title: Acetyl-CoA carboxylase inhibition disrupts metabolic reprogramming during hepatic stellate cell activation publication-title: J. Hepatol. contributor: fullname: Liu – volume: 109 start-page: 9448 year: 2012 end-page: 9453 ident: bib90 article-title: Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis publication-title: Proc. Natl. Acad. Sci. USA contributor: fullname: Tsukamoto – volume: 53 start-page: 637 year: 1997 end-page: 641 ident: bib112 article-title: Glutathione regulation in rat hepatic stellate cells. Comparative studies in primary culture and in liver injury in vivo publication-title: Biochem. Pharmacol. contributor: fullname: Neuschwander-Tetri – volume: 6 start-page: 28432 year: 2016 ident: bib157 article-title: Transcriptional repression of SIRT1 by protein inhibitor of activated STAT 4 (PIAS4) in hepatic stellate cells contributes to liver fibrosis publication-title: Sci. Rep. contributor: fullname: Fang – volume: 75 start-page: 644 year: 2019 end-page: 660.e5 ident: bib185 article-title: Landscape of intercellular crosstalk in healthy and NASH liver revealed by single-cell secretome gene analysis publication-title: Mol. Cell contributor: fullname: Guo – volume: 24 start-page: 848 year: 2016 end-page: 862 ident: bib177 article-title: Hepatocyte TAZ/WWTR1 promotes inflammation and fibrosis in nonalcoholic steatohepatitis publication-title: Cell Metab. contributor: fullname: Schwabe – volume: 374 start-page: 460 year: 2008 end-page: 464 ident: bib118 article-title: Expression of carboxylesterase and lipase genes in rat liver cell-types publication-title: Biochem. Biophys. Res. Commun. contributor: fullname: Sanghani – volume: 222 start-page: 77 year: 1996 end-page: 83 ident: bib15 article-title: Retinol binding protein and transthyretin are secreted as a complex formed in the endoplasmic reticulum in HepG2 human hepatocarcinoma cells publication-title: Exp. Cell Res. contributor: fullname: Gaetani – volume: 84 start-page: 131 year: 2002 end-page: 141 ident: bib51 article-title: Mitochondrial reactive oxygen species in cell death signaling publication-title: Biochimie contributor: fullname: Vayssière – volume: 7 start-page: e45285 year: 2012 ident: bib141 article-title: NADPH oxidase NOX4 mediates stellate cell activation and hepatocyte cell death during liver fibrosis development publication-title: PLoS One contributor: fullname: Fabregat – volume: 19 start-page: 1617 year: 2013 end-page: 1624 ident: bib74 article-title: Targeting of alphav integrin identifies a core molecular pathway that regulates fibrosis in several organs publication-title: Nat. Med. contributor: fullname: Ruminski – volume: 142 start-page: 938 year: 2012 end-page: 946 ident: bib76 article-title: Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues publication-title: Gastroenterology contributor: fullname: Friedman – volume: 59 start-page: 98 year: 2013 end-page: 104 ident: bib77 article-title: Endoplasmic reticulum stress induces fibrogenic activity in hepatic stellate cells through autophagy publication-title: J. Hepatol. contributor: fullname: Friedman – volume: 70 start-page: 1392 year: 2019 end-page: 1408 ident: bib40 article-title: Bone morphogenetic protein 9 is a paracrine factor controlling liver sinusoidal endothelial cell fenestration and protecting against hepatic fibrosis publication-title: Hepatology contributor: fullname: Bailly – volume: 36 start-page: 1 year: 2004 end-page: 12 ident: bib97 article-title: Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions publication-title: Exp. Mol. Med. contributor: fullname: Kim – volume: 288 start-page: 770 year: 2013 end-page: 777 ident: bib83 article-title: Mitochondrial reactive oxygen species regulate transforming growth factor-beta signaling publication-title: J. Biol. Chem. contributor: fullname: Chandel – volume: 11 start-page: 322 year: 2017 end-page: 334 ident: bib189 article-title: Autophagy regulates turnover of lipid droplets via ROS-dependent Rab25 activation in hepatic stellate cell publication-title: Redox Biol. contributor: fullname: Zheng – volume: 29 start-page: 1832 year: 2019 end-page: 1847.e8 ident: bib41 article-title: Single-cell transcriptomics uncovers zonation of function in the mesenchyme during liver fibrosis publication-title: Cell Rep. contributor: fullname: Pendem – volume: 46 start-page: 1509 year: 2007 end-page: 1518 ident: bib180 article-title: Apoptotic hepatocyte DNA inhibits hepatic stellate cell chemotaxis via toll-like receptor 9 publication-title: Hepatology contributor: fullname: Mehal – volume: 57 start-page: 2202 year: 2013 end-page: 2212 ident: bib30 article-title: Liver fatty acid binding protein (L-Fabp) modulates murine stellate cell activation and diet-induced nonalcoholic fatty liver disease publication-title: Hepatology contributor: fullname: Davidson – volume: 44 start-page: 363 year: 2010 end-page: 378 ident: bib24 article-title: Thiol redox systems and protein kinases in hepatic stellate cell regulatory processes publication-title: Free Radic. Res. contributor: fullname: Rigobello – volume: 130 start-page: 16 year: 2009 end-page: 26 ident: bib124 article-title: NK and NKT cells in liver injury and fibrosis publication-title: Clin. Immunol. contributor: fullname: Brenner – volume: 21 start-page: S102 year: 2006 end-page: S105 ident: bib169 article-title: Anti-adipogenic regulation underlies hepatic stellate cell transdifferentiation publication-title: J. Gastroenterol. Hepatol. contributor: fullname: Miyahara – volume: 274 start-page: 33881 year: 1999 end-page: 33887 ident: bib36 article-title: Glutathione levels discriminate between oxidative stress and transforming growth factor-beta signaling in activated rat hepatic stellate cells publication-title: J. Biol. Chem. contributor: fullname: Geerts – volume: 57 start-page: 577 year: 2012 end-page: 589 ident: bib120 article-title: TLR2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation publication-title: Hepatology contributor: fullname: Seki – volume: 10 start-page: 1 year: 2020 end-page: 21 ident: bib43 article-title: Increased glutaminolysis marks active scarring in nonalcoholic steatohepatitis progression publication-title: Cell. Mol. Gastroenterol. Hepatol. contributor: fullname: Bashir – volume: 276 start-page: 14264 year: 2001 end-page: 14270 ident: bib135 article-title: Manganese superoxide dismutase signals matrix metalloproteinase expression via H2O2-dependent ERK1/2 activation publication-title: J. Biol. Chem. contributor: fullname: Jeffrey – volume: 17 start-page: 2549 year: 2018 end-page: 2556 ident: bib110 article-title: Role of DDAH/ADMA pathway in TGF-beta1-mediated activation of hepatic stellate cells publication-title: Mol. Med. Rep. contributor: fullname: Fan – volume: 6 start-page: 39342 year: 2016 ident: bib89 article-title: The XBP1 arm of the unfolded protein response induces fibrogenic activity in hepatic stellate cells through autophagy publication-title: Sci. Rep. contributor: fullname: Zhang – volume: 65 start-page: 1664 year: 2004 end-page: 1675 ident: bib29 article-title: Advanced glycosylation end products induce inducible nitric oxide synthase (iNOS) expression via a p38 MAPK-dependent pathway publication-title: Kidney Int. contributor: fullname: Lee – volume: 274 start-page: 27161 year: 1999 end-page: 27167 ident: bib70 article-title: Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-beta-induced gene expression publication-title: J. Biol. Chem. contributor: fullname: Nishida – volume: 6 start-page: 565 year: 2015 end-page: 577 ident: bib108 article-title: Reciprocal regulation of TGF-beta and reactive oxygen species: a perverse cycle for fibrosis publication-title: Redox Biol. contributor: fullname: Desai – volume: 66 start-page: 606 year: 2006 end-page: 630 ident: bib19 article-title: Overview of retinoid metabolism and function publication-title: J. Neurobiol. contributor: fullname: Blomhoff – volume: 341 start-page: 8 year: 2016 end-page: 17 ident: bib187 article-title: Vitamin A and insulin are required for the maintenance of hepatic stellate cell quiescence publication-title: Exp. Cell Res. contributor: fullname: Tamura – volume: 34 start-page: 729 year: 2001 end-page: 737 ident: bib144 article-title: Oxidized low-density lipoproteins bind to the scavenger receptor, CD36, of hepatic stellate cells and stimulate extracellular matrix synthesis publication-title: Hepatology contributor: fullname: Bachem – volume: 22 start-page: 2210 year: 2018 end-page: 2219 ident: bib60 article-title: Elevated mitochondrial activity distinguishes fibrogenic hepatic stellate cells and sensitizes for selective inhibition by mitotropic doxorubicin publication-title: J. Cell. Mol. Med. contributor: fullname: Ganapathy-Kanniappan – volume: 121 start-page: 27 year: 2017 end-page: 42 ident: bib78 article-title: Hepatic stellate cells as key target in liver fibrosis publication-title: Adv. Drug Deliv. Rev. contributor: fullname: Hoshida – volume: 11 start-page: 282 year: 2016 end-page: 289 ident: bib151 article-title: Peroxisome proliferator-activated receptor-gamma: master regulator of adipogenesis and obesity publication-title: Curr. Stem Cell Res. Ther. contributor: fullname: Lin – volume: 300 start-page: 793 year: 1994 end-page: 798 ident: bib164 article-title: Characterization of liver stellate cell retinyl ester storage publication-title: Biochem. J. contributor: fullname: Blomhoff – volume: 158 start-page: 1728 year: 2020 end-page: 1744.e14 ident: bib109 article-title: Identification of lineage-specific transcription factors that prevent activation of hepatic stellate cells and promote fibrosis resolution publication-title: Gastroenterology contributor: fullname: Sharma – volume: 29 start-page: 960 year: 1999 end-page: 970 ident: bib62 article-title: Transforming growth factor beta1 induces the expression of alpha1(I) procollagen mRNA by a hydrogen peroxide-C/EBPbeta-dependent mechanism in rat hepatic stellate cells publication-title: Hepatology contributor: fullname: Rojkind – year: 2020 ident: bib139 article-title: Impaired hepatic vitamin A metabolism in NAFLD mice leading to vitamin A accumulation in hepatocytes publication-title: Cell. Mol. Gastroenterol. Hepatol. contributor: fullname: Faber – volume: 30 start-page: 77 year: 1999 end-page: 87 ident: bib73 article-title: The role of TGFbeta1 in initiating hepatic stellate cell activation in vivo publication-title: J. Hepatol. contributor: fullname: Brenner – volume: 31 start-page: 406 year: 2020 end-page: 421.e7 ident: bib26 article-title: Macrophage MerTK promotes liver fibrosis in nonalcoholic steatohepatitis publication-title: Cell Metab contributor: fullname: Chung – volume: 30 start-page: 877 year: 2019 end-page: 889.e7 ident: bib33 article-title: Glutamate signaling in hepatic stellate cells drives alcoholic steatosis publication-title: Cell Metab. contributor: fullname: Kim – volume: 190 start-page: 2267 year: 2020 end-page: 2281 ident: bib190 article-title: Pyruvate kinase M2 tetramerization protects against hepatic stellate cell activation and liver fibrosis publication-title: Am. J. Pathol. contributor: fullname: Lin – volume: 6 start-page: 127 year: 1997 end-page: 130 ident: bib81 article-title: In vitro evidence of retinol transfer from stellate cells to hepatocytes publication-title: Cells Hepatic Sinusoid contributor: fullname: Kaneda – volume: 298 start-page: C776 year: 2010 end-page: C785 ident: bib116 article-title: Autophagy in health and disease. 1. Regulation and significance of autophagy: an overview publication-title: Am. J. Physiol. Cell Physiol. contributor: fullname: Codogno – volume: 581 start-page: 2954 year: 2007 end-page: 2958 ident: bib122 article-title: Wnt signaling enhances the activation and survival of human hepatic stellate cells publication-title: FEBS Lett. contributor: fullname: Lee – volume: 49 start-page: 60 year: 2019 end-page: 70 ident: bib101 article-title: New and emerging anti-fibrotic therapeutics entering or already in clinical trials in chronic liver diseases publication-title: Curr. Opin. Pharmacol. contributor: fullname: Friedman – volume: 25 start-page: 361 year: 1997 end-page: 367 ident: bib27 article-title: Neutrophil-derived superoxide anion induces lipid peroxidation and stimulates collagen synthesis in human hepatic stellate cells: role of nitric oxide publication-title: Hepatology contributor: fullname: Surrenti – year: 2020 ident: bib11 article-title: Epigenetic mechanisms and metabolic reprogramming in fibrogenesis: dual targeting of G9a and DNMT1 for the inhibition of liver fibrosis publication-title: Gut contributor: fullname: Colyn – volume: 26 start-page: 431 year: 2008 end-page: 442 ident: bib142 article-title: Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone publication-title: Nat. Biotechnol. contributor: fullname: Matsunaga – volume: 33 start-page: 1000 year: 2001 end-page: 1012 ident: bib143 article-title: Retinol mobilization from cultured rat hepatic stellate cells does not require retinol binding protein synthesis and secretion publication-title: Int. J. Biochem. Cell Biol. contributor: fullname: Rock – volume: 1061 start-page: 45 year: 2018 end-page: 53 ident: bib137 article-title: Chemokines and chemokine receptors in the development of NAFLD publication-title: Adv. Exp. Med. Biol. contributor: fullname: Seki – volume: 54 start-page: 1091 year: 2011 end-page: 1093 ident: bib163 article-title: Neuropilin and liver fibrosis: hitting three birds with one stone? publication-title: Hepatology contributor: fullname: Schwabe – volume: 264 start-page: 10756 year: 1989 end-page: 10762 ident: bib56 article-title: Maintenance of differentiated phenotype of cultured rat hepatic lipocytes by basement membrane matrix publication-title: J. Biol. Chem. contributor: fullname: Bissell – volume: 123 start-page: 1861 year: 2013 end-page: 1866 ident: bib38 article-title: Liver sinusoidal endothelial cells and liver regeneration publication-title: J. Clin. Invest. contributor: fullname: DeLeve – volume: 8 start-page: 9232 year: 2018 ident: bib79 article-title: In vitro inhibition of hepatic stellate cell activation by the autophagy-related lipid droplet protein ATG2A publication-title: Sci. Rep. contributor: fullname: Li – volume: 10 start-page: 902 year: 2016 end-page: 908 ident: bib10 article-title: Hepatic stellate cells: fibrogenic, regenerative or both? Heterogeneity and context are key publication-title: Hepatol. Int. contributor: fullname: Bansal – volume: 1862 start-page: 32 year: 2016 end-page: 45 ident: bib28 article-title: Purinergic receptor x7 mediates leptin induced GLUT4 function in stellate cells in nonalcoholic steatohepatitis publication-title: BBA Mol. Basis Dis. contributor: fullname: Chatterjee – volume: 264 start-page: G947 year: 1993 end-page: G952 ident: bib58 article-title: Retinol release by activated rat hepatic lipocytes: regulation by Kupffer cell-conditioned medium and PDGF publication-title: Am. J. Physiol. contributor: fullname: Blaner – volume: 1851 start-page: 937 year: 2015 end-page: 945 ident: bib158 article-title: Adipose triglyceride lipase is involved in the mobilization of triglyceride and retinoid stores of hepatic stellate cells publication-title: Biochim. Biophys. Acta contributor: fullname: Lass – volume: 41 start-page: 1272 year: 2005 end-page: 1281 ident: bib2 article-title: NAD(P)H oxidase plays a crucial role in PDGF-induced proliferation of hepatic stellate cells publication-title: Hepatology contributor: fullname: Kawata – volume: 8 start-page: 503 year: 2019 ident: bib93 article-title: Single cell RNA sequencing identifies subsets of hepatic stellate cells and myofibroblasts in liver fibrosis publication-title: Cells contributor: fullname: Tacke – volume: 47 start-page: 1983 year: 2008 end-page: 1993 ident: bib96 article-title: Nitric oxide promotes caspase-independent hepatic stellate cell apoptosis through the generation of reactive oxygen species publication-title: Hepatology contributor: fullname: Shah – volume: 36 start-page: 411 year: 2018 end-page: 420 ident: bib25 article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species publication-title: Nat. Biotechnol. contributor: fullname: Satija – volume: 280 start-page: 4959 year: 2005 end-page: 4967 ident: bib152 article-title: Adipogenic transcriptional regulation of hepatic stellate cells publication-title: J. Biol. Chem. contributor: fullname: Tsukamoto – volume: 28 start-page: 709 year: 1998 end-page: 716 ident: bib48 article-title: Nonparenchymal cells in chronically hyperinsulinemic liver acini of diabetic rats, with special regard to hepatic stellate cells publication-title: J. Hepatol. contributor: fullname: Pfeifer – volume: 150 start-page: 1147 year: 2016 end-page: 1159.e5 ident: bib136 article-title: Elafibranor, an agonist of the peroxisome proliferator-activated receptor-alpha and -delta, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening publication-title: Gastroenterology contributor: fullname: Caldwell – volume: 73 start-page: 149 year: 2020 end-page: 160 ident: bib7 article-title: Hepatic stellate cell activation promotes alcohol-induced steatohepatitis through Igfbp3 and SerpinA12 publication-title: J. Hepatol. contributor: fullname: Freire – volume: 1821 start-page: 113 year: 2012 end-page: 123 ident: bib145 article-title: Retinyl ester hydrolases and their roles in vitamin A homeostasis publication-title: Biochim. Biophys. Acta contributor: fullname: Lass – volume: 73 start-page: 117 year: 2014 end-page: 126 ident: bib150 article-title: Silybin exerts antioxidant effects and induces mitochondrial biogenesis in liver of rat with secondary biliary cirrhosis publication-title: Free Radic. Biol. Med. contributor: fullname: Giudetti – volume: 278 start-page: 8516 year: 2003 end-page: 8525 ident: bib103 article-title: Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production publication-title: J. Biol. Chem. contributor: fullname: Robinson – volume: 53 start-page: 983 year: 2011 end-page: 995 ident: bib9 article-title: Septum transversum-derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver publication-title: Hepatology contributor: fullname: Tsukamoto – volume: 29 start-page: 132S year: 2005 end-page: 133S ident: bib168 article-title: Adipogenic phenotype of hepatic stellate cells publication-title: Alcohol. Clin. Exp. Res. contributor: fullname: Tsukamoto – volume: 7 start-page: 185 year: 2020 end-page: 198 ident: bib95 article-title: Metabolic reprogramming in tumors: contributions of the tumor microenvironment publication-title: Genes Dis. contributor: fullname: Fan – volume: 89 start-page: 1397 year: 2009 end-page: 1409 ident: bib107 article-title: Curcumin attenuates the effects of insulin on stimulating hepatic stellate cell activation by interrupting insulin signaling and attenuating oxidative stress publication-title: Lab. Investig. contributor: fullname: Chen – volume: 17 start-page: 977 year: 1993 end-page: 986 ident: bib102 article-title: Differential depletion of carotenoids and tocopherol in liver disease publication-title: Hepatology contributor: fullname: Lieber – volume: 89 start-page: 1275 year: 2009 end-page: 1290 ident: bib88 article-title: Curcumin eliminates oxidized LDL roles in activating hepatic stellate cells by suppressing gene expression of lectin-like oxidized LDL receptor-1 publication-title: Lab. Investig. contributor: fullname: Chen – volume: 150 start-page: 181 year: 2016 end-page: 193.e8 ident: bib92 article-title: Endoplasmic reticulum stress in hepatic stellate cells promotes liver fibrosis via PERK-mediated degradation of HNRNPA1 and up-regulation of SMAD2 publication-title: Gastroenterology contributor: fullname: Kim – volume: 41 start-page: 321 year: 2005 end-page: 324 ident: bib59 article-title: Adipose differentiation related protein induces lipid accumulation and lipid droplet formation in hepatic stellate cells. In Vitro Cell publication-title: Dev. Biol. Anim. contributor: fullname: Inoguchi – volume: 10 start-page: 29 year: 2017 ident: bib140 article-title: Disturbed vitamin A metabolism in non-alcoholic fatty liver disease (NAFLD) publication-title: Nutrients contributor: fullname: Faber – volume: 279 start-page: 8848 year: 2004 end-page: 8855 ident: bib61 article-title: Connective tissue growth factor (CCN2) induces adhesion of rat activated hepatic stellate cells by binding of its C-terminal domain to integrin alpha(v)beta(3) and heparan sulfate proteoglycan publication-title: J. Biol. Chem. contributor: fullname: Brigstock – volume: 294 start-page: G39 year: 2008 end-page: G49 ident: bib32 article-title: Wnt antagonism inhibits hepatic stellate cell activation and liver fibrosis publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. contributor: fullname: Tsukamoto – volume: 3 start-page: 559 year: 1983 end-page: 566 ident: bib119 article-title: The role of fat-storing cells in Disse space fibrogenesis in alcoholic liver disease publication-title: Hepatology contributor: fullname: Takeuchi – volume: 257 start-page: 2453 year: 1982 end-page: 2459 ident: bib138 article-title: Retinol esterification by rat liver microsomes. Evidence for a fatty acyl coenzyme A: retinol acyltransferase publication-title: J. Biol. Chem. contributor: fullname: Ross – volume: 15 start-page: 234 year: 1992 end-page: 243 ident: bib55 article-title: Isolated hepatic lipocytes and Kupffer cells from normal human liver: morphological and functional characteristics in primary culture publication-title: Hepatology contributor: fullname: Yamasaki – volume: 37 start-page: 1651 year: 2017 end-page: 1659 ident: bib86 article-title: Role and regulation of autophagy and apoptosis by nitric oxide in hepatic stellate cells during acute liver failure publication-title: Liver Int. : Off. J. Int. Assoc. Study Liver contributor: fullname: Zhao – volume: 21 start-page: 2798 year: 2007 end-page: 2806 ident: bib154 article-title: The endocannabinoid 2-arachidonoyl glycerol induces death of hepatic stellate cells via mitochondrial reactive oxygen species publication-title: FASEB J. contributor: fullname: Schwabe – volume: 127 start-page: 218 year: 1997 end-page: 224 ident: bib114 article-title: Lecithin:retinol acyltransferase and retinyl ester hydrolase activities are differentially regulated by retinoids and have distinct distributions between hepatocyte and nonparenchymal cell fractions of rat liver publication-title: J. Nutr. contributor: fullname: Ross – volume: 260 start-page: 13560 year: 1985 end-page: 13565 ident: bib20 article-title: Hepatic retinol metabolism. Distribution of retinoids, enzymes, and binding proteins in isolated rat liver cells publication-title: J. Biol. Chem. contributor: fullname: Eriksson – volume: 394 start-page: 2184 year: 2019 end-page: 2196 ident: bib188 article-title: Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial publication-title: Lancet contributor: fullname: Newsome – volume: 323 start-page: 193 year: 2010 end-page: 200 ident: bib192 article-title: Leptin inhibits PPARgamma gene expression in hepatic stellate cells in the mouse model of liver damage publication-title: Mol. Cell. Endocrinol. contributor: fullname: Sun – volume: 1862 start-page: 176 year: 2017 end-page: 187 ident: bib3 article-title: Hepatic stellate cells retain the capacity to synthesize retinyl esters and to store neutral lipids in small lipid droplets in the absence of LRAT publication-title: Biochim. Biophys. Acta Mol. Cell Biol. Lipids contributor: fullname: Helms – volume: 143 start-page: 1319 year: 2012 end-page: 1329.e11 ident: bib31 article-title: Hedgehog controls hepatic stellate cell fate by regulating metabolism publication-title: Gastroenterology contributor: fullname: Premont – volume: 542 start-page: 177 year: 2017 end-page: 185 ident: bib80 article-title: Inflammation, metaflammation and immunometabolic disorders publication-title: Nature contributor: fullname: Hotamisligil – volume: 1864 start-page: 629 year: 2019 end-page: 642 ident: bib153 article-title: Hepatic stellate cell activation: a source for bioactive lipids publication-title: Biochim. Biophys. Acta Mol. Cell Biol. Lipids contributor: fullname: Blaner – volume: 59 start-page: 416 year: 2018 end-page: 428 ident: bib106 article-title: Perilipin 5 and liver fatty acid binding protein function to restore quiescence in mouse hepatic stellate cells publication-title: J. Lipid Res. contributor: fullname: Chen – volume: 575 start-page: 512 year: 2019 end-page: 518 ident: bib133 article-title: Resolving the fibrotic niche of human liver cirrhosis at single-cell level publication-title: Nature contributor: fullname: Marwick – year: 2020 ident: bib67 article-title: Microcystin-leucine-arginine induces liver fibrosis by activating the Hedgehog pathway in hepatic stellate cells publication-title: Biochem Biophys Res Commun contributor: fullname: Han – volume: 274 start-page: 89 year: 1990 end-page: 92 ident: bib18 article-title: Distribution of lecithin-retinol acyltransferase activity in different types of rat liver cells and subcellular fractions publication-title: FEBS Lett. contributor: fullname: Hendriks – volume: 53 start-page: 126 year: 1993 end-page: 132 ident: bib49 article-title: Characterization of interleukin-1 and interleukin-6 production by hepatic endothelial cells and macrophages publication-title: J. Leukoc. Biol. contributor: fullname: Laskin – volume: 452 start-page: 230 year: 2008 end-page: 233 ident: bib34 article-title: The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth publication-title: Nature contributor: fullname: Cantley – volume: 26 start-page: 117 year: 2007 end-page: 129 ident: bib183 article-title: Ito cells are liver-resident antigen-presenting cells for activating T cell responses publication-title: Immunity contributor: fullname: Kaufmann – volume: 34 start-page: 943 year: 2001 end-page: 952 ident: bib50 article-title: Up-regulated expression of the receptor for advanced glycation end products in cultured rat hepatic stellate cells during transdifferentiation to myofibroblasts publication-title: Hepatology contributor: fullname: Gressner – volume: 38 start-page: 38 year: 2003 end-page: 53 ident: bib53 article-title: Liver fibrosis -- from bench to bedside publication-title: J. Hepatol. contributor: fullname: Friedman – volume: 23 start-page: 4077 year: 2014 end-page: 4085 ident: bib130 article-title: PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells publication-title: Hum. Mol. Genet. contributor: fullname: Montalcini – volume: 38 start-page: 4143 year: 1999 end-page: 4149 ident: bib182 article-title: Intestinal absorption of dietary cholesteryl ester is decreased but retinyl ester absorption is normal in carboxyl ester lipase knockout mice publication-title: Biochemistry contributor: fullname: Fisher – volume: 282 start-page: 39 year: 2011 end-page: 46 ident: bib52 article-title: Alpha-lipoic acid inhibits liver fibrosis through the attenuation of ROS-triggered signaling in hepatic stellate cells activated by PDGF and TGF-beta publication-title: Toxicology contributor: fullname: Wang – volume: 143 start-page: 1073 year: 2012 end-page: 1083.e22 ident: bib162 article-title: Deactivation of hepatic stellate cells during liver fibrosis resolution in mice publication-title: Gastroenterology contributor: fullname: Schwabe – volume: 29 start-page: 1 year: 2009 end-page: 7 ident: bib1 article-title: Evidence for activation of the TGF-beta1 promoter by C/EBPbeta and its modulation by Smads publication-title: J. Interferon Cytokine Res. contributor: fullname: Amini – volume: 10 start-page: 98 year: 2019 ident: bib113 article-title: Unfolded protein response is an early, non-critical event during hepatic stellate cell activation publication-title: Cell Death Dis. contributor: fullname: van Grunsven – volume: 62 start-page: 617 year: 2013 end-page: 631 ident: bib155 article-title: Adipophilin/perilipin-2 as a lipid droplet-specific marker for metabolically active cells and diseases associated with metabolic dysregulation publication-title: Histopathology contributor: fullname: Schirmacher – volume: 10 start-page: eaat0344 year: 2018 ident: bib193 article-title: Hepatocyte Notch activation induces liver fibrosis in nonalcoholic steatohepatitis publication-title: Sci. Transl. Med. contributor: fullname: Diehl – volume: 8 start-page: 14 year: 2015 ident: bib47 article-title: In vitro reversion of activated primary human hepatic stellate cells publication-title: Fibrogenesis Tissue Repair contributor: fullname: van Grunsven – volume: 3 start-page: 344 year: 2014 end-page: 363 ident: bib181 article-title: Cellular and molecular functions of hepatic stellate cells in inflammatory responses and liver immunology publication-title: Hepatobiliary Surg. Nutr. contributor: fullname: Tacke – volume: 73 start-page: 210 year: 2020 end-page: 211 ident: bib175 article-title: Hepatic fibrosis: a convergent response to liver injury that is reversible publication-title: J. Hepatol. contributor: fullname: Friedman – volume: 154 start-page: 1465 year: 2018 end-page: 1479.e13 ident: bib44 article-title: Hedgehog-YAP signaling pathway regulates glutaminolysis to control activation of hepatic stellate cells publication-title: Gastroenterology contributor: fullname: Jung – volume: 82 start-page: 8681 year: 1985 end-page: 8685 ident: bib57 article-title: Hepatic lipocytes: the principal collagen-producing cells of normal rat liver publication-title: Proc. Natl. Acad. Sci. USA contributor: fullname: Bissell – volume: 68 start-page: S38 year: 2018 ident: bib71 article-title: MGL-3196, a selective thyroid hormone receptor-beta agonist significantly decreases hepatic fat in NASH patients at 12 weeks, the primary endpoint in a 36-week serial liver biopsy study publication-title: J. Hepatol. contributor: fullname: Taub – volume: 7 start-page: 11006 year: 2017 ident: bib184 article-title: Glycosylation-dependent galectin-1/neuropilin-1 interactions promote liver fibrosis through activation of TGF-beta- and PDGF-like signals in hepatic stellate cells publication-title: Sci. Rep. contributor: fullname: Tsui – volume: 11 start-page: 240 year: 2020 ident: bib191 article-title: SUMOylation inhibitors synergize with FXR agonists in combating liver fibrosis publication-title: Nat. Commun. contributor: fullname: Gonzalez – volume: 64 start-page: 616 year: 2016 end-page: 631 ident: bib149 article-title: Exosome-mediated activation of toll-like receptor 3 in stellate cells stimulates interleukin-17 production by gammadelta T cells in liver fibrosis publication-title: Hepatology contributor: fullname: Han – volume: 12 start-page: 68 year: 2012 ident: bib68 article-title: Mitochondrial uncouplers inhibit hepatic stellate cell activation publication-title: BMC Gastroenterol. contributor: fullname: van Grunsven – volume: 142 start-page: 152 year: 2012 end-page: 164.e10 ident: bib159 article-title: A high-cholesterol diet exacerbates liver fibrosis in mice via accumulation of free cholesterol in hepatic stellate cells publication-title: Gastroenterology contributor: fullname: Okada – volume: 27 start-page: 75 year: 2012 end-page: 79 ident: bib99 article-title: Retinoic acids and hepatic stellate cells in liver disease publication-title: J. Gastroenterol. Hepatol. contributor: fullname: Jeong – volume: 56 start-page: 1972 year: 2015 end-page: 1984 ident: bib46 article-title: ATGL and CGI-58 are lipid droplet proteins of the hepatic stellate cell line HSC-T6 publication-title: J. Lipid Res. contributor: fullname: Thallinger – volume: 6 start-page: e24993 year: 2011 ident: bib35 article-title: Distinct populations of hepatic stellate cells in the mouse liver have different capacities for retinoid and lipid storage publication-title: PLoS One contributor: fullname: Blaner – volume: 126 start-page: 15 year: 2018 end-page: 26 ident: bib6 article-title: NADPH oxidase 5 promotes proliferation and fibrosis in human hepatic stellate cells publication-title: Free Radic. Biol. Med. contributor: fullname: Martínez-Irujo – volume: 112 start-page: 1383 year: 2003 end-page: 1394 ident: bib12 article-title: NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis publication-title: J. Clin. Invest. contributor: fullname: Lemasters – volume: 52 start-page: 934 year: 2011 end-page: 941 ident: bib128 article-title: The mPlrp2 and mClps genes are involved in the hydrolysis of retinyl esters in the mouse liver publication-title: J. Lipid Res. contributor: fullname: Zhang – volume: 61 start-page: 1740 year: 2015 end-page: 1746 ident: bib39 article-title: Liver sinusoidal endothelial cells in hepatic fibrosis publication-title: Hepatology contributor: fullname: DeLeve – volume: 91 start-page: 2244 year: 1993 end-page: 2252 ident: bib111 article-title: Cell-specific expression of hepatocyte growth factor in liver. Upregulation in sinusoidal endothelial cells after carbon tetrachloride publication-title: J. Clin. Invest. contributor: fullname: Maher – volume: 12 start-page: 769 year: 2008 end-page: 790 ident: bib171 article-title: Oxidative and nitrosative stress and fibrogenic response publication-title: Clin. Liver Dis. contributor: fullname: Nieto – volume: 59 start-page: 655 year: 2010 end-page: 665 ident: bib87 article-title: Signals from dying hepatocytes trigger growth of liver progenitors publication-title: Gut contributor: fullname: Diehl – volume: 223 start-page: 648 year: 2010 end-page: 657 ident: bib98 article-title: Downregulation of hepatic stellate cell activation by retinol and palmitate mediated by adipose differentiation-related protein (ADRP) publication-title: J. Cell. Physiol. contributor: fullname: Friedman – volume: 333 start-page: 160 year: 2011 end-page: 171 ident: bib105 article-title: Curcumin diminishes the impacts of hyperglycemia on the activation of hepatic stellate cells by suppressing membrane translocation and gene expression of glucose transporter-2 publication-title: Mol. Cell. Endocrinol. contributor: fullname: Chen – volume: 159 start-page: 273 year: 2020 end-page: 288 ident: bib117 article-title: CPEB4 increases expression of PFKFB3 to induce glycolysis and activate mouse and human hepatic stellate cells, promoting liver fibrosis publication-title: Gastroenterology contributor: fullname: Fernandez – volume: 18 start-page: 10 year: 2012 end-page: 18 ident: bib186 article-title: p38 mitogen-activated protein kinase and liver X receptor-alpha mediate the leptin effect on sterol regulatory element binding protein-1c expression in hepatic stellate cells publication-title: Mol. Med. contributor: fullname: Zhou – year: 2020 ident: 10.1016/j.cmet.2020.10.026_bib67 article-title: Microcystin-leucine-arginine induces liver fibrosis by activating the Hedgehog pathway in hepatic stellate cells publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2020.09.075 contributor: fullname: Gu – volume: 222 start-page: 77 year: 1996 ident: 10.1016/j.cmet.2020.10.026_bib15 article-title: Retinol binding protein and transthyretin are secreted as a complex formed in the endoplasmic reticulum in HepG2 human hepatocarcinoma cells publication-title: Exp. Cell Res. doi: 10.1006/excr.1996.0010 contributor: fullname: Bellovino – volume: 17 start-page: 977 year: 1993 ident: 10.1016/j.cmet.2020.10.026_bib102 article-title: Differential depletion of carotenoids and tocopherol in liver disease publication-title: Hepatology contributor: fullname: Leo – volume: 33 start-page: 1000 year: 2001 ident: 10.1016/j.cmet.2020.10.026_bib143 article-title: Retinol mobilization from cultured rat hepatic stellate cells does not require retinol binding protein synthesis and secretion publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/S1357-2725(01)00066-8 contributor: fullname: Sauvant – volume: 28 start-page: 369 year: 2013 ident: 10.1016/j.cmet.2020.10.026_bib65 article-title: Advanced glycation end products augment experimental hepatic fibrosis publication-title: J. Gastroenterol. Hepatol. doi: 10.1111/jgh.12042 contributor: fullname: Goodwin – volume: 69 start-page: 385 year: 2018 ident: 10.1016/j.cmet.2020.10.026_bib166 article-title: A simple diet- and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer publication-title: J. Hepatol. doi: 10.1016/j.jhep.2018.03.011 contributor: fullname: Tsuchida – volume: 159 start-page: 273 year: 2020 ident: 10.1016/j.cmet.2020.10.026_bib117 article-title: CPEB4 increases expression of PFKFB3 to induce glycolysis and activate mouse and human hepatic stellate cells, promoting liver fibrosis publication-title: Gastroenterology doi: 10.1053/j.gastro.2020.03.008 contributor: fullname: Mejias – volume: 8 start-page: 849 year: 2012 ident: 10.1016/j.cmet.2020.10.026_bib75 article-title: Autophagy fuels tissue fibrogenesis publication-title: Autophagy doi: 10.4161/auto.19947 contributor: fullname: Hernández-Gea – volume: 300 start-page: 793 year: 1994 ident: 10.1016/j.cmet.2020.10.026_bib164 article-title: Characterization of liver stellate cell retinyl ester storage publication-title: Biochem. J. doi: 10.1042/bj3000793 contributor: fullname: Trøen – volume: 14 start-page: 397 year: 2017 ident: 10.1016/j.cmet.2020.10.026_bib165 article-title: Mechanisms of hepatic stellate cell activation publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/nrgastro.2017.38 contributor: fullname: Tsuchida – volume: 66 start-page: S655 year: 2017 ident: 10.1016/j.cmet.2020.10.026_bib64 article-title: Anti-fibrotic effect of aramchol on fibrosis in TAA animal model publication-title: J. Hepatol. doi: 10.1016/S0168-8278(17)31776-2 contributor: fullname: Golan-Gerstl – volume: 29 start-page: 960 year: 1999 ident: 10.1016/j.cmet.2020.10.026_bib62 article-title: Transforming growth factor beta1 induces the expression of alpha1(I) procollagen mRNA by a hydrogen peroxide-C/EBPbeta-dependent mechanism in rat hepatic stellate cells publication-title: Hepatology doi: 10.1002/hep.510290346 contributor: fullname: García-Trevijano – volume: 64 start-page: 616 year: 2016 ident: 10.1016/j.cmet.2020.10.026_bib149 article-title: Exosome-mediated activation of toll-like receptor 3 in stellate cells stimulates interleukin-17 production by gammadelta T cells in liver fibrosis publication-title: Hepatology doi: 10.1002/hep.28644 contributor: fullname: Seo – volume: 59 start-page: 416 year: 2018 ident: 10.1016/j.cmet.2020.10.026_bib106 article-title: Perilipin 5 and liver fatty acid binding protein function to restore quiescence in mouse hepatic stellate cells publication-title: J. Lipid Res. doi: 10.1194/jlr.M077487 contributor: fullname: Lin – volume: 57 start-page: 577 year: 2012 ident: 10.1016/j.cmet.2020.10.026_bib120 article-title: TLR2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation publication-title: Hepatology doi: 10.1002/hep.26081 contributor: fullname: Miura – volume: 260 start-page: 13560 year: 1985 ident: 10.1016/j.cmet.2020.10.026_bib20 article-title: Hepatic retinol metabolism. Distribution of retinoids, enzymes, and binding proteins in isolated rat liver cells publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)38759-8 contributor: fullname: Blomhoff – volume: 12 start-page: 769 year: 2008 ident: 10.1016/j.cmet.2020.10.026_bib171 article-title: Oxidative and nitrosative stress and fibrogenic response publication-title: Clin. Liver Dis. doi: 10.1016/j.cld.2008.07.005 contributor: fullname: Urtasun – volume: 59 start-page: 98 year: 2013 ident: 10.1016/j.cmet.2020.10.026_bib77 article-title: Endoplasmic reticulum stress induces fibrogenic activity in hepatic stellate cells through autophagy publication-title: J. Hepatol. doi: 10.1016/j.jhep.2013.02.016 contributor: fullname: Hernández-Gea – volume: 101 start-page: 429 year: 2017 ident: 10.1016/j.cmet.2020.10.026_bib94 article-title: Hepatic stellate cells increase the immunosuppressive function of natural Foxp3+ regulatory T cells via IDO-induced AhR activation publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.2A0516-239R contributor: fullname: Kumar – volume: 11 start-page: 282 year: 2016 ident: 10.1016/j.cmet.2020.10.026_bib151 article-title: Peroxisome proliferator-activated receptor-gamma: master regulator of adipogenesis and obesity publication-title: Curr. Stem Cell Res. Ther. doi: 10.2174/1574888X10666150528144905 contributor: fullname: Shao – volume: 451 start-page: 1069 year: 2008 ident: 10.1016/j.cmet.2020.10.026_bib121 article-title: Autophagy fights disease through cellular self-digestion publication-title: Nature doi: 10.1038/nature06639 contributor: fullname: Mizushima – volume: 143 start-page: 1073 year: 2012 ident: 10.1016/j.cmet.2020.10.026_bib162 article-title: Deactivation of hepatic stellate cells during liver fibrosis resolution in mice publication-title: Gastroenterology doi: 10.1053/j.gastro.2012.06.036 contributor: fullname: Troeger – volume: 36 start-page: 411 year: 2018 ident: 10.1016/j.cmet.2020.10.026_bib25 article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4096 contributor: fullname: Butler – volume: 84 start-page: 131 year: 2002 ident: 10.1016/j.cmet.2020.10.026_bib51 article-title: Mitochondrial reactive oxygen species in cell death signaling publication-title: Biochimie doi: 10.1016/S0300-9084(02)01369-X contributor: fullname: Fleury – volume: 40 start-page: 576 year: 2017 ident: 10.1016/j.cmet.2020.10.026_bib125 article-title: 1-Methyl-L-tryptophan promotes the apoptosis of hepatic stellate cells arrested by interferon-gamma by increasing the expression of IFN-γRβ, IRF-1 and FAS publication-title: Int. J. Mol. Med. doi: 10.3892/ijmm.2017.3043 contributor: fullname: Oh – volume: 34 start-page: 738 year: 2001 ident: 10.1016/j.cmet.2020.10.026_bib129 article-title: High glucose and hyperinsulinemia stimulate connective tissue growth factor expression: a potential mechanism involved in progression to fibrosis in nonalcoholic steatohepatitis publication-title: Hepatology doi: 10.1053/jhep.2001.28055 contributor: fullname: Paradis – volume: 65 start-page: 1664 year: 2004 ident: 10.1016/j.cmet.2020.10.026_bib29 article-title: Advanced glycosylation end products induce inducible nitric oxide synthase (iNOS) expression via a p38 MAPK-dependent pathway publication-title: Kidney Int. doi: 10.1111/j.1523-1755.2004.00602.x contributor: fullname: Chang – volume: 88 start-page: 125 year: 2008 ident: 10.1016/j.cmet.2020.10.026_bib54 article-title: Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver publication-title: Physiol. Rev. doi: 10.1152/physrev.00013.2007 contributor: fullname: Friedman – volume: 41 start-page: 321 year: 2005 ident: 10.1016/j.cmet.2020.10.026_bib59 article-title: Adipose differentiation related protein induces lipid accumulation and lipid droplet formation in hepatic stellate cells. In Vitro Cell publication-title: Dev. Biol. Anim. doi: 10.1007/s11626-005-0002-6 contributor: fullname: Fukushima – volume: 7 start-page: 185 year: 2020 ident: 10.1016/j.cmet.2020.10.026_bib95 article-title: Metabolic reprogramming in tumors: contributions of the tumor microenvironment publication-title: Genes Dis. doi: 10.1016/j.gendis.2019.10.007 contributor: fullname: Lane – volume: 274 start-page: 27161 year: 1999 ident: 10.1016/j.cmet.2020.10.026_bib70 article-title: Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-beta-induced gene expression publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.38.27161 contributor: fullname: Hanafusa – volume: 127 start-page: 218 year: 1997 ident: 10.1016/j.cmet.2020.10.026_bib114 article-title: Lecithin:retinol acyltransferase and retinyl ester hydrolase activities are differentially regulated by retinoids and have distinct distributions between hepatocyte and nonparenchymal cell fractions of rat liver publication-title: J. Nutr. doi: 10.1093/jn/127.2.218 contributor: fullname: Matsuura – volume: 73 start-page: 117 year: 2014 ident: 10.1016/j.cmet.2020.10.026_bib150 article-title: Silybin exerts antioxidant effects and induces mitochondrial biogenesis in liver of rat with secondary biliary cirrhosis publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2014.05.002 contributor: fullname: Serviddio – volume: 38 start-page: 38 issue: suppl 1 year: 2003 ident: 10.1016/j.cmet.2020.10.026_bib53 article-title: Liver fibrosis -- from bench to bedside publication-title: J. Hepatol. doi: 10.1016/S0168-8278(02)00429-4 contributor: fullname: Friedman – volume: 291 start-page: 17977 year: 2016 ident: 10.1016/j.cmet.2020.10.026_bib66 article-title: Lysosomal acid lipase hydrolyzes retinyl ester and affects retinoid turnover publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.724054 contributor: fullname: Grumet – volume: 130 start-page: 16 year: 2009 ident: 10.1016/j.cmet.2020.10.026_bib124 article-title: NK and NKT cells in liver injury and fibrosis publication-title: Clin. Immunol. doi: 10.1016/j.clim.2008.08.008 contributor: fullname: Notas – volume: 113 start-page: 159 year: 2003 ident: 10.1016/j.cmet.2020.10.026_bib179 article-title: Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity publication-title: Cell doi: 10.1016/S0092-8674(03)00269-1 contributor: fullname: Wang – volume: 264 start-page: G947 year: 1993 ident: 10.1016/j.cmet.2020.10.026_bib58 article-title: Retinol release by activated rat hepatic lipocytes: regulation by Kupffer cell-conditioned medium and PDGF publication-title: Am. J. Physiol. contributor: fullname: Friedman – volume: 53 start-page: 637 year: 1997 ident: 10.1016/j.cmet.2020.10.026_bib112 article-title: Glutathione regulation in rat hepatic stellate cells. Comparative studies in primary culture and in liver injury in vivo publication-title: Biochem. Pharmacol. doi: 10.1016/S0006-2952(96)00865-9 contributor: fullname: Maher – volume: 394 start-page: 2184 year: 2019 ident: 10.1016/j.cmet.2020.10.026_bib188 article-title: Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial publication-title: Lancet doi: 10.1016/S0140-6736(19)33041-7 contributor: fullname: Younossi – volume: 154 start-page: 1465 year: 2018 ident: 10.1016/j.cmet.2020.10.026_bib44 article-title: Hedgehog-YAP signaling pathway regulates glutaminolysis to control activation of hepatic stellate cells publication-title: Gastroenterology doi: 10.1053/j.gastro.2017.12.022 contributor: fullname: Du – volume: 93 start-page: 1327 year: 2015 ident: 10.1016/j.cmet.2020.10.026_bib42 article-title: Adiponectin attenuates liver fibrosis by inducing nitric oxide production of hepatic stellate cells publication-title: J. Mol. Med. (Berl.) doi: 10.1007/s00109-015-1313-z contributor: fullname: Dong – volume: 56 start-page: 1972 year: 2015 ident: 10.1016/j.cmet.2020.10.026_bib46 article-title: ATGL and CGI-58 are lipid droplet proteins of the hepatic stellate cell line HSC-T6 publication-title: J. Lipid Res. doi: 10.1194/jlr.M062372 contributor: fullname: Eichmann – volume: 6 start-page: e24993 year: 2011 ident: 10.1016/j.cmet.2020.10.026_bib35 article-title: Distinct populations of hepatic stellate cells in the mouse liver have different capacities for retinoid and lipid storage publication-title: PLoS One doi: 10.1371/journal.pone.0024993 contributor: fullname: D'Ambrosio – year: 2020 ident: 10.1016/j.cmet.2020.10.026_bib11 article-title: Epigenetic mechanisms and metabolic reprogramming in fibrogenesis: dual targeting of G9a and DNMT1 for the inhibition of liver fibrosis publication-title: Gut doi: 10.1136/gutjnl-2019-320205 contributor: fullname: Barcena-Varela – volume: 123 start-page: 1861 year: 2013 ident: 10.1016/j.cmet.2020.10.026_bib38 article-title: Liver sinusoidal endothelial cells and liver regeneration publication-title: J. Clin. Invest. doi: 10.1172/JCI66025 contributor: fullname: DeLeve – volume: 89 start-page: 1397 year: 2009 ident: 10.1016/j.cmet.2020.10.026_bib107 article-title: Curcumin attenuates the effects of insulin on stimulating hepatic stellate cell activation by interrupting insulin signaling and attenuating oxidative stress publication-title: Lab. Investig. doi: 10.1038/labinvest.2009.115 contributor: fullname: Lin – volume: 177 start-page: 1888 year: 2019 ident: 10.1016/j.cmet.2020.10.026_bib156 article-title: Comprehensive integration of single-cell data publication-title: Cell doi: 10.1016/j.cell.2019.05.031 contributor: fullname: Stuart – volume: 276 start-page: 14264 year: 2001 ident: 10.1016/j.cmet.2020.10.026_bib135 article-title: Manganese superoxide dismutase signals matrix metalloproteinase expression via H2O2-dependent ERK1/2 activation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M100199200 contributor: fullname: Ranganathan – volume: 23 start-page: 4077 year: 2014 ident: 10.1016/j.cmet.2020.10.026_bib130 article-title: PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddu121 contributor: fullname: Pirazzi – volume: 1851 start-page: 937 year: 2015 ident: 10.1016/j.cmet.2020.10.026_bib158 article-title: Adipose triglyceride lipase is involved in the mobilization of triglyceride and retinoid stores of hepatic stellate cells publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbalip.2015.02.017 contributor: fullname: Taschler – volume: 34 start-page: 729 year: 2001 ident: 10.1016/j.cmet.2020.10.026_bib144 article-title: Oxidized low-density lipoproteins bind to the scavenger receptor, CD36, of hepatic stellate cells and stimulate extracellular matrix synthesis publication-title: Hepatology doi: 10.1053/jhep.2001.27828 contributor: fullname: Schneiderhan – volume: 192 start-page: 5098 year: 2014 ident: 10.1016/j.cmet.2020.10.026_bib16 article-title: All-trans retinoic acid induces arginase-1 and inducible nitric oxide synthase-producing dendritic cells with T cell inhibitory function publication-title: J. Immunol. doi: 10.4049/jimmunol.1303073 contributor: fullname: Bhatt – volume: 59 start-page: 655 year: 2010 ident: 10.1016/j.cmet.2020.10.026_bib87 article-title: Signals from dying hepatocytes trigger growth of liver progenitors publication-title: Gut doi: 10.1136/gut.2009.204354 contributor: fullname: Jung – volume: 4 start-page: 2823 year: 2013 ident: 10.1016/j.cmet.2020.10.026_bib115 article-title: Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology publication-title: Nat. Commun. doi: 10.1038/ncomms3823 contributor: fullname: Mederacke – volume: 10 start-page: eaat0344 year: 2018 ident: 10.1016/j.cmet.2020.10.026_bib193 article-title: Hepatocyte Notch activation induces liver fibrosis in nonalcoholic steatohepatitis publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aat0344 contributor: fullname: Zhu – volume: 280 start-page: 4959 year: 2005 ident: 10.1016/j.cmet.2020.10.026_bib152 article-title: Adipogenic transcriptional regulation of hepatic stellate cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M410078200 contributor: fullname: She – volume: 150 start-page: 1147 year: 2016 ident: 10.1016/j.cmet.2020.10.026_bib136 article-title: Elafibranor, an agonist of the peroxisome proliferator-activated receptor-alpha and -delta, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening publication-title: Gastroenterology doi: 10.1053/j.gastro.2016.01.038 contributor: fullname: Ratziu – volume: 10 start-page: 1 year: 2020 ident: 10.1016/j.cmet.2020.10.026_bib43 article-title: Increased glutaminolysis marks active scarring in nonalcoholic steatohepatitis progression publication-title: Cell. Mol. Gastroenterol. Hepatol. doi: 10.1016/j.jcmgh.2019.12.006 contributor: fullname: Du – volume: 31 start-page: 406 year: 2020 ident: 10.1016/j.cmet.2020.10.026_bib26 article-title: Macrophage MerTK promotes liver fibrosis in nonalcoholic steatohepatitis publication-title: Cell Metab doi: 10.1016/j.cmet.2019.11.013 contributor: fullname: Cai – volume: 26 start-page: 117 year: 2007 ident: 10.1016/j.cmet.2020.10.026_bib183 article-title: Ito cells are liver-resident antigen-presenting cells for activating T cell responses publication-title: Immunity doi: 10.1016/j.immuni.2006.11.011 contributor: fullname: Winau – volume: 575 start-page: 512 year: 2019 ident: 10.1016/j.cmet.2020.10.026_bib133 article-title: Resolving the fibrotic niche of human liver cirrhosis at single-cell level publication-title: Nature doi: 10.1038/s41586-019-1631-3 contributor: fullname: Ramachandran – volume: 91 start-page: 2244 year: 1993 ident: 10.1016/j.cmet.2020.10.026_bib111 article-title: Cell-specific expression of hepatocyte growth factor in liver. Upregulation in sinusoidal endothelial cells after carbon tetrachloride publication-title: J. Clin. Invest. doi: 10.1172/JCI116451 contributor: fullname: Maher – volume: 126 start-page: 15 year: 2018 ident: 10.1016/j.cmet.2020.10.026_bib6 article-title: NADPH oxidase 5 promotes proliferation and fibrosis in human hepatic stellate cells publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2018.07.013 contributor: fullname: Andueza – volume: 401 start-page: 262 year: 2002 ident: 10.1016/j.cmet.2020.10.026_bib174 article-title: Regulation of the murine alpha(2)(I) collagen promoter by retinoic acid and retinoid X receptors publication-title: Arch. Biochem. Biophys. doi: 10.1016/S0003-9861(02)00058-9 contributor: fullname: Wang – volume: 8 start-page: 14 year: 2015 ident: 10.1016/j.cmet.2020.10.026_bib47 article-title: In vitro reversion of activated primary human hepatic stellate cells publication-title: Fibrogenesis Tissue Repair doi: 10.1186/s13069-015-0031-z contributor: fullname: El Taghdouini – volume: 41 start-page: 211 year: 2016 ident: 10.1016/j.cmet.2020.10.026_bib104 article-title: The Warburg effect: how does it benefit cancer cells? publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2015.12.001 contributor: fullname: Liberti – volume: 274 start-page: 33881 year: 1999 ident: 10.1016/j.cmet.2020.10.026_bib36 article-title: Glutathione levels discriminate between oxidative stress and transforming growth factor-beta signaling in activated rat hepatic stellate cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.48.33881 contributor: fullname: De Bleser – volume: 257 start-page: 2453 year: 1982 ident: 10.1016/j.cmet.2020.10.026_bib138 article-title: Retinol esterification by rat liver microsomes. Evidence for a fatty acyl coenzyme A: retinol acyltransferase publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)34945-7 contributor: fullname: Ross – volume: 1862 start-page: 176 year: 2017 ident: 10.1016/j.cmet.2020.10.026_bib3 article-title: Hepatic stellate cells retain the capacity to synthesize retinyl esters and to store neutral lipids in small lipid droplets in the absence of LRAT publication-title: Biochim. Biophys. Acta Mol. Cell Biol. Lipids doi: 10.1016/j.bbalip.2016.10.013 contributor: fullname: Ajat – volume: 34 start-page: 943 year: 2001 ident: 10.1016/j.cmet.2020.10.026_bib50 article-title: Up-regulated expression of the receptor for advanced glycation end products in cultured rat hepatic stellate cells during transdifferentiation to myofibroblasts publication-title: Hepatology doi: 10.1053/jhep.2001.28788 contributor: fullname: Fehrenbach – volume: 25 start-page: 361 year: 1997 ident: 10.1016/j.cmet.2020.10.026_bib27 article-title: Neutrophil-derived superoxide anion induces lipid peroxidation and stimulates collagen synthesis in human hepatic stellate cells: role of nitric oxide publication-title: Hepatology doi: 10.1002/hep.510250218 contributor: fullname: Casini – volume: 323 start-page: 193 year: 2010 ident: 10.1016/j.cmet.2020.10.026_bib192 article-title: Leptin inhibits PPARgamma gene expression in hepatic stellate cells in the mouse model of liver damage publication-title: Mol. Cell. Endocrinol. doi: 10.1016/j.mce.2010.03.005 contributor: fullname: Zhou – volume: 75 start-page: 644 year: 2019 ident: 10.1016/j.cmet.2020.10.026_bib185 article-title: Landscape of intercellular crosstalk in healthy and NASH liver revealed by single-cell secretome gene analysis publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.07.028 contributor: fullname: Xiong – volume: 278 start-page: 8516 year: 2003 ident: 10.1016/j.cmet.2020.10.026_bib103 article-title: Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production publication-title: J. Biol. Chem. doi: 10.1074/jbc.M210432200 contributor: fullname: Li – volume: 6 start-page: 28432 year: 2016 ident: 10.1016/j.cmet.2020.10.026_bib157 article-title: Transcriptional repression of SIRT1 by protein inhibitor of activated STAT 4 (PIAS4) in hepatic stellate cells contributes to liver fibrosis publication-title: Sci. Rep. doi: 10.1038/srep28432 contributor: fullname: Sun – volume: 142 start-page: 938 year: 2012 ident: 10.1016/j.cmet.2020.10.026_bib76 article-title: Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues publication-title: Gastroenterology doi: 10.1053/j.gastro.2011.12.044 contributor: fullname: Hernández–Gea – volume: 1061 start-page: 45 year: 2018 ident: 10.1016/j.cmet.2020.10.026_bib137 article-title: Chemokines and chemokine receptors in the development of NAFLD publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-981-10-8684-7_4 contributor: fullname: Roh – volume: 31 start-page: 969 year: 2020 ident: 10.1016/j.cmet.2020.10.026_bib176 article-title: Cholesterol stabilizes TAZ in hepatocytes to promote experimental non-alcoholic steatohepatitis publication-title: Cell Metab. doi: 10.1016/j.cmet.2020.03.010 contributor: fullname: Wang – volume: 34 start-page: 1247 year: 2010 ident: 10.1016/j.cmet.2020.10.026_bib148 article-title: Hepatic stellate cell (vitamin A-storing cell) and its relative--past, present and future publication-title: Cell Biol. Int. doi: 10.1042/CBI20100321 contributor: fullname: Senoo – volume: 49 start-page: 60 year: 2019 ident: 10.1016/j.cmet.2020.10.026_bib101 article-title: New and emerging anti-fibrotic therapeutics entering or already in clinical trials in chronic liver diseases publication-title: Curr. Opin. Pharmacol. doi: 10.1016/j.coph.2019.09.006 contributor: fullname: Lemoinne – volume: 49 start-page: 998 year: 2009 ident: 10.1016/j.cmet.2020.10.026_bib8 article-title: Mesenchymal origin of hepatic stellate cells, submesothelial cells, and perivascular mesenchymal cells during mouse liver development publication-title: Hepatology doi: 10.1002/hep.22721 contributor: fullname: Asahina – volume: 33 start-page: 8530 year: 2019 ident: 10.1016/j.cmet.2020.10.026_bib173 article-title: Exosomes from activated hepatic stellate cells contain GLUT1 and PKM2: a role for exosomes in metabolic switch of liver nonparenchymal cells publication-title: FASEB J. doi: 10.1096/fj.201802675R contributor: fullname: Wan – volume: 264 start-page: 10756 year: 1989 ident: 10.1016/j.cmet.2020.10.026_bib56 article-title: Maintenance of differentiated phenotype of cultured rat hepatic lipocytes by basement membrane matrix publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)81686-6 contributor: fullname: Friedman – volume: 17 start-page: 2549 year: 2018 ident: 10.1016/j.cmet.2020.10.026_bib110 article-title: Role of DDAH/ADMA pathway in TGF-beta1-mediated activation of hepatic stellate cells publication-title: Mol. Med. Rep. contributor: fullname: Liu – volume: 288 start-page: 770 year: 2013 ident: 10.1016/j.cmet.2020.10.026_bib83 article-title: Mitochondrial reactive oxygen species regulate transforming growth factor-beta signaling publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.431973 contributor: fullname: Jain – volume: 581 start-page: 2954 year: 2007 ident: 10.1016/j.cmet.2020.10.026_bib122 article-title: Wnt signaling enhances the activation and survival of human hepatic stellate cells publication-title: FEBS Lett. doi: 10.1016/j.febslet.2007.05.050 contributor: fullname: Myung – volume: 142 start-page: 152 year: 2012 ident: 10.1016/j.cmet.2020.10.026_bib159 article-title: A high-cholesterol diet exacerbates liver fibrosis in mice via accumulation of free cholesterol in hepatic stellate cells publication-title: Gastroenterology doi: 10.1053/j.gastro.2011.09.049 contributor: fullname: Teratani – volume: 158 start-page: 1728 year: 2020 ident: 10.1016/j.cmet.2020.10.026_bib109 article-title: Identification of lineage-specific transcription factors that prevent activation of hepatic stellate cells and promote fibrosis resolution publication-title: Gastroenterology doi: 10.1053/j.gastro.2020.01.027 contributor: fullname: Liu – volume: 280 start-page: 10055 year: 2005 ident: 10.1016/j.cmet.2020.10.026_bib167 article-title: SMAD and p38 MAPK signaling pathways independently regulate alpha1(I) collagen gene expression in unstimulated and transforming growth factor-beta-stimulated hepatic stellate cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M409381200 contributor: fullname: Tsukada – volume: 15 start-page: 234 year: 1992 ident: 10.1016/j.cmet.2020.10.026_bib55 article-title: Isolated hepatic lipocytes and Kupffer cells from normal human liver: morphological and functional characteristics in primary culture publication-title: Hepatology doi: 10.1002/hep.1840150211 contributor: fullname: Friedman – volume: 5 start-page: 271 year: 1991 ident: 10.1016/j.cmet.2020.10.026_bib21 article-title: Perisinusoidal stellate cells of the liver: important roles in retinol metabolism and fibrosis publication-title: FASEB J. doi: 10.1096/fasebj.5.3.2001786 contributor: fullname: Blomhoff – volume: 282 start-page: 39 year: 2011 ident: 10.1016/j.cmet.2020.10.026_bib52 article-title: Alpha-lipoic acid inhibits liver fibrosis through the attenuation of ROS-triggered signaling in hepatic stellate cells activated by PDGF and TGF-beta publication-title: Toxicology doi: 10.1016/j.tox.2011.01.009 contributor: fullname: Foo – volume: 274 start-page: 89 year: 1990 ident: 10.1016/j.cmet.2020.10.026_bib18 article-title: Distribution of lecithin-retinol acyltransferase activity in different types of rat liver cells and subcellular fractions publication-title: FEBS Lett. doi: 10.1016/0014-5793(90)81336-M contributor: fullname: Blaner – volume: 401 start-page: 480 year: 1999 ident: 10.1016/j.cmet.2020.10.026_bib126 article-title: Silencing of TGF-beta signalling by the pseudoreceptor BAMBI publication-title: Nature doi: 10.1038/46794 contributor: fullname: Onichtchouk – volume: 86 start-page: 839 year: 2004 ident: 10.1016/j.cmet.2020.10.026_bib45 article-title: SREBP transcription factors: master regulators of lipid homeostasis publication-title: Biochimie doi: 10.1016/j.biochi.2004.09.018 contributor: fullname: Eberlé – volume: 46 start-page: 1509 year: 2007 ident: 10.1016/j.cmet.2020.10.026_bib180 article-title: Apoptotic hepatocyte DNA inhibits hepatic stellate cell chemotaxis via toll-like receptor 9 publication-title: Hepatology doi: 10.1002/hep.21867 contributor: fullname: Watanabe – volume: 11 start-page: 240 year: 2020 ident: 10.1016/j.cmet.2020.10.026_bib191 article-title: SUMOylation inhibitors synergize with FXR agonists in combating liver fibrosis publication-title: Nat. Commun. doi: 10.1038/s41467-019-14138-6 contributor: fullname: Zhou – volume: 53 start-page: 126 year: 1993 ident: 10.1016/j.cmet.2020.10.026_bib49 article-title: Characterization of interleukin-1 and interleukin-6 production by hepatic endothelial cells and macrophages publication-title: J. Leukoc. Biol. doi: 10.1002/jlb.53.2.126 contributor: fullname: Feder – volume: 73 start-page: 210 year: 2020 ident: 10.1016/j.cmet.2020.10.026_bib175 article-title: Hepatic fibrosis: a convergent response to liver injury that is reversible publication-title: J. Hepatol. doi: 10.1016/j.jhep.2020.03.011 contributor: fullname: Wang – volume: 62 start-page: 617 year: 2013 ident: 10.1016/j.cmet.2020.10.026_bib155 article-title: Adipophilin/perilipin-2 as a lipid droplet-specific marker for metabolically active cells and diseases associated with metabolic dysregulation publication-title: Histopathology doi: 10.1111/his.12038 contributor: fullname: Straub – volume: 66 start-page: 606 year: 2006 ident: 10.1016/j.cmet.2020.10.026_bib19 article-title: Overview of retinoid metabolism and function publication-title: J. Neurobiol. doi: 10.1002/neu.20242 contributor: fullname: Blomhoff – volume: 12 start-page: 68 year: 2012 ident: 10.1016/j.cmet.2020.10.026_bib68 article-title: Mitochondrial uncouplers inhibit hepatic stellate cell activation publication-title: BMC Gastroenterol. doi: 10.1186/1471-230X-12-68 contributor: fullname: Guimarães – volume: 47 start-page: 1983 year: 2008 ident: 10.1016/j.cmet.2020.10.026_bib96 article-title: Nitric oxide promotes caspase-independent hepatic stellate cell apoptosis through the generation of reactive oxygen species publication-title: Hepatology doi: 10.1002/hep.22285 contributor: fullname: Langer – volume: 112 start-page: 1383 year: 2003 ident: 10.1016/j.cmet.2020.10.026_bib12 article-title: NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis publication-title: J. Clin. Invest. doi: 10.1172/JCI18212 contributor: fullname: Bataller – volume: 542 start-page: 177 year: 2017 ident: 10.1016/j.cmet.2020.10.026_bib80 article-title: Inflammation, metaflammation and immunometabolic disorders publication-title: Nature doi: 10.1038/nature21363 contributor: fullname: Hotamisligil – volume: 6 start-page: 127 year: 1997 ident: 10.1016/j.cmet.2020.10.026_bib81 article-title: In vitro evidence of retinol transfer from stellate cells to hepatocytes publication-title: Cells Hepatic Sinusoid contributor: fullname: Ikeda – volume: 13 start-page: 1324 year: 2007 ident: 10.1016/j.cmet.2020.10.026_bib147 article-title: TLR4 enhances TGF-beta signaling and hepatic fibrosis publication-title: Nat. Med. doi: 10.1038/nm1663 contributor: fullname: Seki – volume: 7 start-page: e34945 year: 2012 ident: 10.1016/j.cmet.2020.10.026_bib160 article-title: Replacement of retinyl esters by polyunsaturated triacylglycerol species in lipid droplets of hepatic stellate cells during activation publication-title: PLoS One doi: 10.1371/journal.pone.0034945 contributor: fullname: Testerink – volume: 44 start-page: 363 year: 2010 ident: 10.1016/j.cmet.2020.10.026_bib24 article-title: Thiol redox systems and protein kinases in hepatic stellate cell regulatory processes publication-title: Free Radic. Res. doi: 10.3109/10715760903555836 contributor: fullname: Brunati – volume: 18 start-page: 10 year: 2012 ident: 10.1016/j.cmet.2020.10.026_bib186 article-title: p38 mitogen-activated protein kinase and liver X receptor-alpha mediate the leptin effect on sterol regulatory element binding protein-1c expression in hepatic stellate cells publication-title: Mol. Med. doi: 10.2119/molmed.2011.00243 contributor: fullname: Yan – volume: 37 start-page: 1651 year: 2017 ident: 10.1016/j.cmet.2020.10.026_bib86 article-title: Role and regulation of autophagy and apoptosis by nitric oxide in hepatic stellate cells during acute liver failure publication-title: Liver Int. : Off. J. Int. Assoc. Study Liver doi: 10.1111/liv.13476 contributor: fullname: Jin – volume: 158 start-page: 1913 year: 2020 ident: 10.1016/j.cmet.2020.10.026_bib146 article-title: Mechanisms of fibrosis development in nonalcoholic steatohepatitis publication-title: Gastroenterology doi: 10.1053/j.gastro.2019.11.311 contributor: fullname: Schwabe – volume: 374 start-page: 460 year: 2008 ident: 10.1016/j.cmet.2020.10.026_bib118 article-title: Expression of carboxylesterase and lipase genes in rat liver cell-types publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2008.07.024 contributor: fullname: Mello – volume: 13 start-page: 1411 year: 2009 ident: 10.1016/j.cmet.2020.10.026_bib5 article-title: GLUT1 as a therapeutic target in hepatocellular carcinoma publication-title: Expert Opin. Ther. Targets doi: 10.1517/14728220903307509 contributor: fullname: Amann – volume: 48 start-page: 2016 year: 2008 ident: 10.1016/j.cmet.2020.10.026_bib37 article-title: Reduced nicotinamide adenine dinucleotide phosphate oxidase mediates fibrotic and inflammatory effects of leptin on hepatic stellate cells publication-title: Hepatology doi: 10.1002/hep.22560 contributor: fullname: De Minicis – volume: 7 start-page: 11006 year: 2017 ident: 10.1016/j.cmet.2020.10.026_bib184 article-title: Glycosylation-dependent galectin-1/neuropilin-1 interactions promote liver fibrosis through activation of TGF-beta- and PDGF-like signals in hepatic stellate cells publication-title: Sci. Rep. doi: 10.1038/s41598-017-11212-1 contributor: fullname: Wu – volume: 29 start-page: 1 year: 2009 ident: 10.1016/j.cmet.2020.10.026_bib1 article-title: Evidence for activation of the TGF-beta1 promoter by C/EBPbeta and its modulation by Smads publication-title: J. Interferon Cytokine Res. doi: 10.1089/jir.2008.0036 contributor: fullname: Abraham – volume: 71 start-page: 1437 year: 2020 ident: 10.1016/j.cmet.2020.10.026_bib123 article-title: A deactivation factor of fibrogenic hepatic stellate cells induces regression of liver fibrosis in mice publication-title: Hepatology doi: 10.1002/hep.30965 contributor: fullname: Nakano – volume: 279 start-page: 8848 year: 2004 ident: 10.1016/j.cmet.2020.10.026_bib61 article-title: Connective tissue growth factor (CCN2) induces adhesion of rat activated hepatic stellate cells by binding of its C-terminal domain to integrin alpha(v)beta(3) and heparan sulfate proteoglycan publication-title: J. Biol. Chem. doi: 10.1074/jbc.M313204200 contributor: fullname: Gao – volume: 43 start-page: 298 year: 2008 ident: 10.1016/j.cmet.2020.10.026_bib82 article-title: Advanced glycation end products enhance the proliferation and activation of hepatic stellate cells publication-title: J. Gastroenterol. doi: 10.1007/s00535-007-2152-7 contributor: fullname: Iwamoto – volume: 26 start-page: 1241 year: 1985 ident: 10.1016/j.cmet.2020.10.026_bib17 article-title: Retinoids, retinoid-binding proteins, and retinyl palmitate hydrolase distributions in different types of rat liver cells publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)34272-3 contributor: fullname: Blaner – volume: 7 start-page: e45285 year: 2012 ident: 10.1016/j.cmet.2020.10.026_bib141 article-title: NADPH oxidase NOX4 mediates stellate cell activation and hepatocyte cell death during liver fibrosis development publication-title: PLoS One doi: 10.1371/journal.pone.0045285 contributor: fullname: Sancho – volume: 26 start-page: 431 year: 2008 ident: 10.1016/j.cmet.2020.10.026_bib142 article-title: Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone publication-title: Nat. Biotechnol. doi: 10.1038/nbt1396 contributor: fullname: Sato – volume: 65 start-page: 273 year: 2016 ident: 10.1016/j.cmet.2020.10.026_bib72 article-title: The induction of human myeloid derived suppressor cells through hepatic stellate cells is dose-dependently inhibited by the tyrosine kinase inhibitors nilotinib, dasatinib and sorafenib, but not sunitinib publication-title: Cancer Immunol. Immun. doi: 10.1007/s00262-015-1790-5 contributor: fullname: Heine – volume: 6 start-page: 1 year: 2007 ident: 10.1016/j.cmet.2020.10.026_bib131 article-title: TGF-beta dependent regulation of oxygen radicals during transdifferentiation of activated hepatic stellate cells to myofibroblastoid cells publication-title: Comp. Hepatol. doi: 10.1186/1476-5926-6-1 contributor: fullname: Proell – volume: 223 start-page: 648 year: 2010 ident: 10.1016/j.cmet.2020.10.026_bib98 article-title: Downregulation of hepatic stellate cell activation by retinol and palmitate mediated by adipose differentiation-related protein (ADRP) publication-title: J. Cell. Physiol. doi: 10.1002/jcp.22063 contributor: fullname: Lee – volume: 90 start-page: 30 year: 1993 ident: 10.1016/j.cmet.2020.10.026_bib4 article-title: Retinoic acid receptors and retinoid X receptors: interactions with endogenous retinoic acids publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.90.1.30 contributor: fullname: Allenby – volume: 29 start-page: 1832 year: 2019 ident: 10.1016/j.cmet.2020.10.026_bib41 article-title: Single-cell transcriptomics uncovers zonation of function in the mesenchyme during liver fibrosis publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.10.024 contributor: fullname: Dobie – volume: 8 start-page: e74051 year: 2013 ident: 10.1016/j.cmet.2020.10.026_bib178 article-title: Hypoxia-inducible factor-1alpha and MAPK co-regulate activation of hepatic stellate cells upon hypoxia stimulation publication-title: PLoS One doi: 10.1371/journal.pone.0074051 contributor: fullname: Wang – volume: 109 start-page: 9448 year: 2012 ident: 10.1016/j.cmet.2020.10.026_bib90 article-title: Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1201840109 contributor: fullname: Kisseleva – volume: 190 start-page: 2267 year: 2020 ident: 10.1016/j.cmet.2020.10.026_bib190 article-title: Pyruvate kinase M2 tetramerization protects against hepatic stellate cell activation and liver fibrosis publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2020.08.002 contributor: fullname: Zheng – volume: 57 start-page: 2202 year: 2013 ident: 10.1016/j.cmet.2020.10.026_bib30 article-title: Liver fatty acid binding protein (L-Fabp) modulates murine stellate cell activation and diet-induced nonalcoholic fatty liver disease publication-title: Hepatology doi: 10.1002/hep.26318 contributor: fullname: Chen – volume: 89 start-page: 1275 year: 2009 ident: 10.1016/j.cmet.2020.10.026_bib88 article-title: Curcumin eliminates oxidized LDL roles in activating hepatic stellate cells by suppressing gene expression of lectin-like oxidized LDL receptor-1 publication-title: Lab. Investig. doi: 10.1038/labinvest.2009.93 contributor: fullname: Kang – volume: 10 start-page: 98 year: 2019 ident: 10.1016/j.cmet.2020.10.026_bib113 article-title: Unfolded protein response is an early, non-critical event during hepatic stellate cell activation publication-title: Cell Death Dis. doi: 10.1038/s41419-019-1327-5 contributor: fullname: Mannaerts – volume: 17 start-page: 457 year: 2020 ident: 10.1016/j.cmet.2020.10.026_bib134 article-title: Single-cell technologies in hepatology: new insights into liver biology and disease pathogenesis publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/s41575-020-0304-x contributor: fullname: Ramachandran – volume: 10 start-page: 29 year: 2017 ident: 10.1016/j.cmet.2020.10.026_bib140 article-title: Disturbed vitamin A metabolism in non-alcoholic fatty liver disease (NAFLD) publication-title: Nutrients doi: 10.3390/nu10010029 contributor: fullname: Saeed – volume: 28 start-page: 709 year: 1998 ident: 10.1016/j.cmet.2020.10.026_bib48 article-title: Nonparenchymal cells in chronically hyperinsulinemic liver acini of diabetic rats, with special regard to hepatic stellate cells publication-title: J. Hepatol. doi: 10.1016/S0168-8278(98)80296-1 contributor: fullname: Evert – volume: 49 start-page: 960 year: 2009 ident: 10.1016/j.cmet.2020.10.026_bib69 article-title: Functional linkage of cirrhosis-predictive single nucleotide polymorphisms of toll-like receptor 4 to hepatic stellate cell responses publication-title: Hepatology doi: 10.1002/hep.22697 contributor: fullname: Guo – volume: 143 start-page: 1319 year: 2012 ident: 10.1016/j.cmet.2020.10.026_bib31 article-title: Hedgehog controls hepatic stellate cell fate by regulating metabolism publication-title: Gastroenterology doi: 10.1053/j.gastro.2012.07.115 contributor: fullname: Chen – volume: 61 start-page: 1740 year: 2015 ident: 10.1016/j.cmet.2020.10.026_bib39 article-title: Liver sinusoidal endothelial cells in hepatic fibrosis publication-title: Hepatology doi: 10.1002/hep.27376 contributor: fullname: DeLeve – volume: 86 start-page: 1492 year: 2008 ident: 10.1016/j.cmet.2020.10.026_bib85 article-title: Hepatic stellate cells preferentially expand allogeneic CD4+ CD25+ FoxP3+ regulatory T cells in an IL-2-dependent manner publication-title: Transplantation doi: 10.1097/TP.0b013e31818bfd13 contributor: fullname: Jiang – volume: 10 start-page: e0121939 year: 2015 ident: 10.1016/j.cmet.2020.10.026_bib84 article-title: Pyrroloquinoline-quinone suppresses liver fibrogenesis in mice publication-title: PLoS One doi: 10.1371/journal.pone.0121939 contributor: fullname: Jia – volume: 3 start-page: 559 year: 1983 ident: 10.1016/j.cmet.2020.10.026_bib119 article-title: The role of fat-storing cells in Disse space fibrogenesis in alcoholic liver disease publication-title: Hepatology doi: 10.1002/hep.1840030414 contributor: fullname: Minato – volume: 333 start-page: 160 year: 2011 ident: 10.1016/j.cmet.2020.10.026_bib105 article-title: Curcumin diminishes the impacts of hyperglycemia on the activation of hepatic stellate cells by suppressing membrane translocation and gene expression of glucose transporter-2 publication-title: Mol. Cell. Endocrinol. doi: 10.1016/j.mce.2010.12.028 contributor: fullname: Lin – volume: 10 start-page: 902 year: 2016 ident: 10.1016/j.cmet.2020.10.026_bib10 article-title: Hepatic stellate cells: fibrogenic, regenerative or both? Heterogeneity and context are key publication-title: Hepatol. Int. doi: 10.1007/s12072-016-9758-x contributor: fullname: Bansal – volume: 1821 start-page: 113 year: 2012 ident: 10.1016/j.cmet.2020.10.026_bib145 article-title: Retinyl ester hydrolases and their roles in vitamin A homeostasis publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbalip.2011.05.001 contributor: fullname: Schreiber – volume: 292 start-page: 12436 year: 2017 ident: 10.1016/j.cmet.2020.10.026_bib170 article-title: Lysosome-mediated degradation of a distinct pool of lipid droplets during hepatic stellate cell activation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M117.778472 contributor: fullname: Tuohetahuntila – volume: 73 start-page: 896 year: 2020 ident: 10.1016/j.cmet.2020.10.026_bib13 article-title: Acetyl-CoA carboxylase inhibition disrupts metabolic reprogramming during hepatic stellate cell activation publication-title: J. Hepatol. doi: 10.1016/j.jhep.2020.04.037 contributor: fullname: Bates – volume: 172 start-page: 22 year: 2018 ident: 10.1016/j.cmet.2020.10.026_bib100 article-title: An integrated view of immunometabolism publication-title: Cell doi: 10.1016/j.cell.2017.12.025 contributor: fullname: Lee – volume: 70 start-page: 1392 year: 2019 ident: 10.1016/j.cmet.2020.10.026_bib40 article-title: Bone morphogenetic protein 9 is a paracrine factor controlling liver sinusoidal endothelial cell fenestration and protecting against hepatic fibrosis publication-title: Hepatology doi: 10.1002/hep.30655 contributor: fullname: Desroches-Castan – year: 2020 ident: 10.1016/j.cmet.2020.10.026_bib139 article-title: Impaired hepatic vitamin A metabolism in NAFLD mice leading to vitamin A accumulation in hepatocytes publication-title: Cell. Mol. Gastroenterol. Hepatol. contributor: fullname: Saeed – volume: 21 start-page: S102 issue: suppl 3 year: 2006 ident: 10.1016/j.cmet.2020.10.026_bib169 article-title: Anti-adipogenic regulation underlies hepatic stellate cell transdifferentiation publication-title: J. Gastroenterol. Hepatol. doi: 10.1111/j.1440-1746.2006.04573.x contributor: fullname: Tsukamoto – volume: 24 start-page: 848 year: 2016 ident: 10.1016/j.cmet.2020.10.026_bib177 article-title: Hepatocyte TAZ/WWTR1 promotes inflammation and fibrosis in nonalcoholic steatohepatitis publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.09.016 contributor: fullname: Wang – volume: 44 start-page: 57 year: 2006 ident: 10.1016/j.cmet.2020.10.026_bib23 article-title: TGF-beta/Smad signaling in the injured liver publication-title: Z. Gastroenterol. doi: 10.1055/s-2005-858989 contributor: fullname: Breitkopf – volume: 52 start-page: 934 year: 2011 ident: 10.1016/j.cmet.2020.10.026_bib128 article-title: The mPlrp2 and mClps genes are involved in the hydrolysis of retinyl esters in the mouse liver publication-title: J. Lipid Res. doi: 10.1194/jlr.M010082 contributor: fullname: Pang – volume: 3 start-page: 344 year: 2014 ident: 10.1016/j.cmet.2020.10.026_bib181 article-title: Cellular and molecular functions of hepatic stellate cells in inflammatory responses and liver immunology publication-title: Hepatobiliary Surg. Nutr. contributor: fullname: Weiskirchen – volume: 75 start-page: 4114 year: 2012 ident: 10.1016/j.cmet.2020.10.026_bib132 article-title: Alteration of protein glycosylation in human hepatic stellate cells activated with transforming growth factor-beta1 publication-title: J. Proteomics doi: 10.1016/j.jprot.2012.05.040 contributor: fullname: Qin – volume: 6 start-page: 39342 year: 2016 ident: 10.1016/j.cmet.2020.10.026_bib89 article-title: The XBP1 arm of the unfolded protein response induces fibrogenic activity in hepatic stellate cells through autophagy publication-title: Sci. Rep. doi: 10.1038/srep39342 contributor: fullname: Kim – volume: 41 start-page: 1272 year: 2005 ident: 10.1016/j.cmet.2020.10.026_bib2 article-title: NAD(P)H oxidase plays a crucial role in PDGF-induced proliferation of hepatic stellate cells publication-title: Hepatology doi: 10.1002/hep.20719 contributor: fullname: Adachi – volume: 122 start-page: 221 year: 2005 ident: 10.1016/j.cmet.2020.10.026_bib63 article-title: Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis publication-title: Cell doi: 10.1016/j.cell.2005.05.011 contributor: fullname: Giorgio – volume: 11 start-page: 322 year: 2017 ident: 10.1016/j.cmet.2020.10.026_bib189 article-title: Autophagy regulates turnover of lipid droplets via ROS-dependent Rab25 activation in hepatic stellate cell publication-title: Redox Biol. doi: 10.1016/j.redox.2016.12.021 contributor: fullname: Zhang – volume: 38 start-page: 4143 year: 1999 ident: 10.1016/j.cmet.2020.10.026_bib182 article-title: Intestinal absorption of dietary cholesteryl ester is decreased but retinyl ester absorption is normal in carboxyl ester lipase knockout mice publication-title: Biochemistry doi: 10.1021/bi981679a contributor: fullname: Weng – volume: 22 start-page: 2210 year: 2018 ident: 10.1016/j.cmet.2020.10.026_bib60 article-title: Elevated mitochondrial activity distinguishes fibrogenic hepatic stellate cells and sensitizes for selective inhibition by mitotropic doxorubicin publication-title: J. Cell. Mol. Med. doi: 10.1111/jcmm.13501 contributor: fullname: Gajendiran – volume: 19 start-page: 1617 year: 2013 ident: 10.1016/j.cmet.2020.10.026_bib74 article-title: Targeting of alphav integrin identifies a core molecular pathway that regulates fibrosis in several organs publication-title: Nat. Med. doi: 10.1038/nm.3282 contributor: fullname: Henderson – volume: 121 start-page: 27 year: 2017 ident: 10.1016/j.cmet.2020.10.026_bib78 article-title: Hepatic stellate cells as key target in liver fibrosis publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2017.05.007 contributor: fullname: Higashi – volume: 452 start-page: 230 year: 2008 ident: 10.1016/j.cmet.2020.10.026_bib34 article-title: The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth publication-title: Nature doi: 10.1038/nature06734 contributor: fullname: Christofk – volume: 262 start-page: 3975 year: 1987 ident: 10.1016/j.cmet.2020.10.026_bib127 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)61298-0 contributor: fullname: Ottonello – volume: 54 start-page: 1091 year: 2011 ident: 10.1016/j.cmet.2020.10.026_bib163 article-title: Neuropilin and liver fibrosis: hitting three birds with one stone? publication-title: Hepatology doi: 10.1002/hep.24484 contributor: fullname: Troeger – volume: 294 start-page: G39 year: 2008 ident: 10.1016/j.cmet.2020.10.026_bib32 article-title: Wnt antagonism inhibits hepatic stellate cell activation and liver fibrosis publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. doi: 10.1152/ajpgi.00263.2007 contributor: fullname: Cheng – volume: 29 start-page: 132S issue: Supplement year: 2005 ident: 10.1016/j.cmet.2020.10.026_bib168 article-title: Adipogenic phenotype of hepatic stellate cells publication-title: Alcohol. Clin. Exp. Res. doi: 10.1097/01.alc.0000189279.92602.f0 contributor: fullname: Tsukamoto – volume: 289 start-page: 19571 year: 2014 ident: 10.1016/j.cmet.2020.10.026_bib22 article-title: Mitochondrial NLRP3 protein induces reactive oxygen species to promote Smad protein signaling and fibrosis independent from the inflammasome publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.550624 contributor: fullname: Bracey – volume: 59 start-page: 154 year: 2014 ident: 10.1016/j.cmet.2020.10.026_bib161 article-title: Free cholesterol accumulation in hepatic stellate cells: mechanism of liver fibrosis aggravation in nonalcoholic steatohepatitis in mice publication-title: Hepatology doi: 10.1002/hep.26604 contributor: fullname: Tomita – volume: 68 start-page: S38 year: 2018 ident: 10.1016/j.cmet.2020.10.026_bib71 article-title: MGL-3196, a selective thyroid hormone receptor-beta agonist significantly decreases hepatic fat in NASH patients at 12 weeks, the primary endpoint in a 36-week serial liver biopsy study publication-title: J. Hepatol. doi: 10.1016/S0168-8278(18)30292-7 contributor: fullname: Harrison – volume: 30 start-page: 877 year: 2019 ident: 10.1016/j.cmet.2020.10.026_bib33 article-title: Glutamate signaling in hepatic stellate cells drives alcoholic steatosis publication-title: Cell Metab. doi: 10.1016/j.cmet.2019.08.001 contributor: fullname: Choi – volume: 8 start-page: 503 year: 2019 ident: 10.1016/j.cmet.2020.10.026_bib93 article-title: Single cell RNA sequencing identifies subsets of hepatic stellate cells and myofibroblasts in liver fibrosis publication-title: Cells doi: 10.3390/cells8050503 contributor: fullname: Krenkel – volume: 21 start-page: 2798 year: 2007 ident: 10.1016/j.cmet.2020.10.026_bib154 article-title: The endocannabinoid 2-arachidonoyl glycerol induces death of hepatic stellate cells via mitochondrial reactive oxygen species publication-title: FASEB J. doi: 10.1096/fj.06-7717com contributor: fullname: Siegmund – volume: 82 start-page: 8681 year: 1985 ident: 10.1016/j.cmet.2020.10.026_bib57 article-title: Hepatic lipocytes: the principal collagen-producing cells of normal rat liver publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.82.24.8681 contributor: fullname: Friedman – volume: 30 start-page: 77 year: 1999 ident: 10.1016/j.cmet.2020.10.026_bib73 article-title: The role of TGFbeta1 in initiating hepatic stellate cell activation in vivo publication-title: J. Hepatol. doi: 10.1016/S0168-8278(99)80010-5 contributor: fullname: Hellerbrand – volume: 1862 start-page: 32 year: 2016 ident: 10.1016/j.cmet.2020.10.026_bib28 article-title: Purinergic receptor x7 mediates leptin induced GLUT4 function in stellate cells in nonalcoholic steatohepatitis publication-title: BBA Mol. Basis Dis. doi: 10.1016/j.bbadis.2015.10.009 contributor: fullname: Chandrashekaran – volume: 27 start-page: 75 issue: suppl 2 year: 2012 ident: 10.1016/j.cmet.2020.10.026_bib99 article-title: Retinoic acids and hepatic stellate cells in liver disease publication-title: J. Gastroenterol. Hepatol. doi: 10.1111/j.1440-1746.2011.07007.x contributor: fullname: Lee – volume: 324 start-page: 1029 year: 2009 ident: 10.1016/j.cmet.2020.10.026_bib172 article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation publication-title: Science doi: 10.1126/science.1160809 contributor: fullname: Vander Heiden – volume: 1864 start-page: 629 year: 2019 ident: 10.1016/j.cmet.2020.10.026_bib153 article-title: Hepatic stellate cell activation: a source for bioactive lipids publication-title: Biochim. Biophys. Acta Mol. Cell Biol. Lipids doi: 10.1016/j.bbalip.2019.02.004 contributor: fullname: Shmarakov – volume: 341 start-page: 8 year: 2016 ident: 10.1016/j.cmet.2020.10.026_bib187 article-title: Vitamin A and insulin are required for the maintenance of hepatic stellate cell quiescence publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2016.01.012 contributor: fullname: Yoneda – volume: 73 start-page: 149 year: 2020 ident: 10.1016/j.cmet.2020.10.026_bib7 article-title: Hepatic stellate cell activation promotes alcohol-induced steatohepatitis through Igfbp3 and SerpinA12 publication-title: J. Hepatol. doi: 10.1016/j.jhep.2020.02.005 contributor: fullname: Arab – volume: 60 start-page: 1260 year: 2011 ident: 10.1016/j.cmet.2020.10.026_bib91 article-title: Absence of hepatic stellate cell retinoid lipid droplets does not enhance hepatic fibrosis but decreases hepatic carcinogenesis publication-title: Gut doi: 10.1136/gut.2010.209551 contributor: fullname: Kluwe – volume: 8 start-page: 9232 year: 2018 ident: 10.1016/j.cmet.2020.10.026_bib79 article-title: In vitro inhibition of hepatic stellate cell activation by the autophagy-related lipid droplet protein ATG2A publication-title: Sci. Rep. doi: 10.1038/s41598-018-27686-6 contributor: fullname: Hong – volume: 36 start-page: 1 year: 2004 ident: 10.1016/j.cmet.2020.10.026_bib97 article-title: Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions publication-title: Exp. Mol. Med. doi: 10.1038/emm.2004.1 contributor: fullname: Lee – volume: 181 start-page: 24 year: 1999 ident: 10.1016/j.cmet.2020.10.026_bib14 article-title: MMH cells: an in vitro model for the study of retinol-binding protein secretion regulated by retinol publication-title: J. Cell. Physiol. doi: 10.1002/(SICI)1097-4652(199910)181:1<24::AID-JCP3>3.0.CO;2-0 contributor: fullname: Bellovino – volume: 150 start-page: 181 year: 2016 ident: 10.1016/j.cmet.2020.10.026_bib92 article-title: Endoplasmic reticulum stress in hepatic stellate cells promotes liver fibrosis via PERK-mediated degradation of HNRNPA1 and up-regulation of SMAD2 publication-title: Gastroenterology doi: 10.1053/j.gastro.2015.09.039 contributor: fullname: Koo – volume: 6 start-page: 565 year: 2015 ident: 10.1016/j.cmet.2020.10.026_bib108 article-title: Reciprocal regulation of TGF-beta and reactive oxygen species: a perverse cycle for fibrosis publication-title: Redox Biol. doi: 10.1016/j.redox.2015.09.009 contributor: fullname: Liu – volume: 53 start-page: 983 year: 2011 ident: 10.1016/j.cmet.2020.10.026_bib9 article-title: Septum transversum-derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver publication-title: Hepatology doi: 10.1002/hep.24119 contributor: fullname: Asahina – volume: 298 start-page: C776 year: 2010 ident: 10.1016/j.cmet.2020.10.026_bib116 article-title: Autophagy in health and disease. 1. Regulation and significance of autophagy: an overview publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00507.2009 contributor: fullname: Mehrpour |
SSID | ssj0036393 |
Score | 2.7085297 |
SecondaryResourceType | review_article |
Snippet | Hepatic stellate cells (HSCs) are resident non-parenchymal liver pericytes whose plasticity enables them to regulate a remarkable range of physiologic and... |
SourceID | pubmedcentral proquest crossref pubmed elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 242 |
SubjectTerms | Animals Cell Plasticity Hepatic Stellate Cells - metabolism Humans |
Title | The Power of Plasticity—Metabolic Regulation of Hepatic Stellate Cells |
URI | https://dx.doi.org/10.1016/j.cmet.2020.10.026 https://www.ncbi.nlm.nih.gov/pubmed/33232666 https://search.proquest.com/docview/2464187592 https://pubmed.ncbi.nlm.nih.gov/PMC7858232 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTttAEB6FICQuCFqgKSUyEjdkYu9619ljiEBpSxAqP8rN2j-LVK2DIBy49SF4Qp6kM7EdEah64BRpMiutZsYz39rfzgDsS2517IQKI2fTMOFehdqlJnRCc4k1wgpNL_SHZ3JwlXwbiVED-vVdGKJVVrm_zOmzbF1JOpU1O7fjceeCwDWm4JhRzCqRLsEy9TLH0F7uHV1_P60TMsciPOPZo35IC6q7MyXNy_72RKlkJDic9Vj4d316iz9f0yhf1KWTdVirAGXQK_e8AQ1ffICVcsTk40cYYBwE5zQKLZjkwTliZaJRTx-f_zwN_RQj4NfYBj_KgfToIlIaeGJZ2-CCLpggFA36-Hu_CZcnx5f9QVhNTwgtDSkI8Sgik1x4IyMba8YdeiViBiu0yXlkdddGiY2YMwhRvE5V6qSSeY4SZY30fAuaxaTwnyAQsZROeFTReYKAQ-WWGYmZMncqSZlpwUFtsuy27JGR1eSxnxkZOCMDkwwN3AJRWzVb8HSGSfy_6_ZqF2T4CNB3DV34ycN9xhKZxHjuUqwF26VL5vvgHCEjHtFakC44a65A7bUX_ynGN7M222lXdHHx53fudwdWGfFfiOHNvkBzevfgdxHATE27CtA2LH0dHf0F6XDw8Q |
link.rule.ids | 230,314,780,784,885,3506,27569,27924,27925,45663,45874 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEC5iRPQivl2NOoI3GXemn9tHsxgmmg3BrLC3pl-DG-JsMJtDbv4If6G_xKp5BFfFg6eBmmpoqnqqvp7-ugrgleLBlVGavIhB54Ink7uofR6l4wpzRJCOfujPDlX1SbxfyMUWTIe7MESr7GN_F9PbaN1Lxr01x2fL5fiYwDWG4JLRmjVSX4PrQk40FdDfX-wO4ZhjCm5Z9qidk3p_c6YjeYUviQiVjARv2goLf89Of6LP30mUv2SlvTtwu4eT2dtuxndhKzX34EbXYPLyPlS4CrIjaoSWrersCJEykajXlz--fZ-lNfr_dBmyj107enQQKVWJONYhO6brJQhEsyk-zx_AfO_dfFrlfe-EPFCLghw3IkrUMnlVhNIxHtEnBfOYn33Ni-AmoRChYNEjQElOGx2VUXWNEhO8SvwhbDerJj2GTJZKRZlQxdUC4YapA_MK42QdjdDMj-D1YDJ71lXIsAN17MSSgS0ZmGRo4BHIwap2w88WQ_g_x70cXGDxA6BTDdek1cW5ZUKJEnddho3gUeeSq3lwjoARN2gj0BvOulKg4tqbb5rl57bItp7ICQ5-8p_zfQE3q_nswB7sH354CrcYMWGI6812YHv99SI9Qyiz9s_bpfoT9fHxuA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Power+of+Plasticity%E2%80%94Metabolic+Regulation+of+Hepatic+Stellate+Cells&rft.jtitle=Cell+metabolism&rft.au=Trivedi%2C+Parth&rft.au=Wang%2C+Shuang&rft.au=Friedman%2C+Scott+L.&rft.date=2021-02-02&rft.pub=Elsevier+Inc&rft.issn=1550-4131&rft.eissn=1932-7420&rft.volume=33&rft.issue=2&rft.spage=242&rft.epage=257&rft_id=info:doi/10.1016%2Fj.cmet.2020.10.026&rft.externalDocID=S1550413120305957 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon |