Activating Connexin43 gap junctions primes adipose tissue for therapeutic intervention

Adipose tissue is a promising target for treating obesity and metabolic diseases. However, pharmacological agents usually fail to effectively engage adipocytes due to their extraordinarily large size and insufficient vascularization, especially in obese subjects. We have previously shown that during...

Full description

Saved in:
Bibliographic Details
Published inActa pharmaceutica Sinica. B Vol. 12; no. 7; pp. 3063 - 3072
Main Authors Zhu, Yi, Li, Na, Huang, Mingyang, Chen, Xi, An, Yu A., Li, Jianping, Zhao, Shangang, Funcke, Jan-Bernd, Cao, Jianhong, He, Zhenyan, Zhu, Qingzhang, Zhang, Zhuzhen, Wang, Zhao V., Xu, Lin, Williams, Kevin W., Li, Chien, Grove, Kevin, Scherer, Philipp E.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.07.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Adipose tissue is a promising target for treating obesity and metabolic diseases. However, pharmacological agents usually fail to effectively engage adipocytes due to their extraordinarily large size and insufficient vascularization, especially in obese subjects. We have previously shown that during cold exposure, connexin43 (Cx43) gap junctions are induced and activated to connect neighboring adipocytes to share limited sympathetic neuronal input amongst multiple cells. We reason the same mechanism may be leveraged to improve the efficacy of various pharmacological agents that target adipose tissue. Using an adipose tissue-specific Cx43 overexpression mouse model, we demonstrate effectiveness in connecting adipocytes to augment metabolic efficacy of the β3-adrenergic receptor agonist Mirabegron and FGF21. Additionally, combing those molecules with the Cx43 gap junction channel activator danegaptide shows a similar enhanced efficacy. In light of these findings, we propose a model in which connecting adipocytes via Cx43 gap junction channels primes adipose tissue to pharmacological agents designed to engage it. Thus, Cx43 gap junction activators hold great potential for combination with additional agents targeting adipose tissue. Hypertrophied adipocytes are refractory to pharmaceutical intervention. Enhancing the Connexin43 gap junction channel facilitates the dissemination of signals from therapeutic agents and thus re-enables efficient targeting of adipose tissue. [Display omitted]
AbstractList Adipose tissue is a promising target for treating obesity and metabolic diseases. However, pharmacological agents usually fail to effectively engage adipocytes due to their extraordinarily large size and insufficient vascularization, especially in obese subjects. We have previously shown that during cold exposure, connexin43 (Cx43) gap junctions are induced and activated to connect neighboring adipocytes to share limited sympathetic neuronal input amongst multiple cells. We reason the same mechanism may be leveraged to improve the efficacy of various pharmacological agents that target adipose tissue. Using an adipose tissue-specific Cx43 overexpression mouse model, we demonstrate effectiveness in connecting adipocytes to augment metabolic efficacy of the β 3-adrenergic receptor agonist Mirabegron and FGF21. Additionally, combing those molecules with the Cx43 gap junction channel activator danegaptide shows a similar enhanced efficacy. In light of these findings, we propose a model in which connecting adipocytes via Cx43 gap junction channels primes adipose tissue to pharmacological agents designed to engage it. Thus, Cx43 gap junction activators hold great potential for combination with additional agents targeting adipose tissue.Adipose tissue is a promising target for treating obesity and metabolic diseases. However, pharmacological agents usually fail to effectively engage adipocytes due to their extraordinarily large size and insufficient vascularization, especially in obese subjects. We have previously shown that during cold exposure, connexin43 (Cx43) gap junctions are induced and activated to connect neighboring adipocytes to share limited sympathetic neuronal input amongst multiple cells. We reason the same mechanism may be leveraged to improve the efficacy of various pharmacological agents that target adipose tissue. Using an adipose tissue-specific Cx43 overexpression mouse model, we demonstrate effectiveness in connecting adipocytes to augment metabolic efficacy of the β 3-adrenergic receptor agonist Mirabegron and FGF21. Additionally, combing those molecules with the Cx43 gap junction channel activator danegaptide shows a similar enhanced efficacy. In light of these findings, we propose a model in which connecting adipocytes via Cx43 gap junction channels primes adipose tissue to pharmacological agents designed to engage it. Thus, Cx43 gap junction activators hold great potential for combination with additional agents targeting adipose tissue.
Adipose tissue is a promising target for treating obesity and metabolic diseases. However, pharmacological agents usually fail to effectively engage adipocytes due to their extraordinarily large size and insufficient vascularization, especially in obese subjects. We have previously shown that during cold exposure, connexin43 (Cx43) gap junctions are induced and activated to connect neighboring adipocytes to share limited sympathetic neuronal input amongst multiple cells. We reason the same mechanism may be leveraged to improve the efficacy of various pharmacological agents that target adipose tissue. Using an adipose tissue-specific Cx43 overexpression mouse model, we demonstrate effectiveness in connecting adipocytes to augment metabolic efficacy of the β3-adrenergic receptor agonist Mirabegron and FGF21. Additionally, combing those molecules with the Cx43 gap junction channel activator danegaptide shows a similar enhanced efficacy. In light of these findings, we propose a model in which connecting adipocytes via Cx43 gap junction channels primes adipose tissue to pharmacological agents designed to engage it. Thus, Cx43 gap junction activators hold great potential for combination with additional agents targeting adipose tissue.
Adipose tissue is a promising target for treating obesity and metabolic diseases. However, pharmacological agents usually fail to effectively engage adipocytes due to their extraordinarily large size and insufficient vascularization, especially in obese subjects. We have previously shown that during cold exposure, connexin43 (Cx43) gap junctions are induced and activated to connect neighboring adipocytes to share limited sympathetic neuronal input amongst multiple cells. We reason the same mechanism may be leveraged to improve the efficacy of various pharmacological agents that target adipose tissue. Using an adipose tissue-specific Cx43 overexpression mouse model, we demonstrate effectiveness in connecting adipocytes to augment metabolic efficacy of the β 3 -adrenergic receptor agonist Mirabegron and FGF21. Additionally, combing those molecules with the Cx43 gap junction channel activator danegaptide shows a similar enhanced efficacy. In light of these findings, we propose a model in which connecting adipocytes via Cx43 gap junction channels primes adipose tissue to pharmacological agents designed to engage it. Thus, Cx43 gap junction activators hold great potential for combination with additional agents targeting adipose tissue. Hypertrophied adipocytes are refractory to pharmaceutical intervention. Enhancing the Connexin43 gap junction channel facilitates the dissemination of signals from therapeutic agents and thus re-enables efficient targeting of adipose tissue. Image 1
Adipose tissue is a promising target for treating obesity and metabolic diseases. However, pharmacological agents usually fail to effectively engage adipocytes due to their extraordinarily large size and insufficient vascularization, especially in obese subjects. We have previously shown that during cold exposure, connexin43 (Cx43) gap junctions are induced and activated to connect neighboring adipocytes to share limited sympathetic neuronal input amongst multiple cells. We reason the same mechanism may be leveraged to improve the efficacy of various pharmacological agents that target adipose tissue. Using an adipose tissue-specific Cx43 overexpression mouse model, we demonstrate effectiveness in connecting adipocytes to augment metabolic efficacy of the -adrenergic receptor agonist Mirabegron and FGF21. Additionally, combing those molecules with the Cx43 gap junction channel activator danegaptide shows a similar enhanced efficacy. In light of these findings, we propose a model in which connecting adipocytes Cx43 gap junction channels primes adipose tissue to pharmacological agents designed to engage it. Thus, Cx43 gap junction activators hold great potential for combination with additional agents targeting adipose tissue.
Adipose tissue is a promising target for treating obesity and metabolic diseases. However, pharmacological agents usually fail to effectively engage adipocytes due to their extraordinarily large size and insufficient vascularization, especially in obese subjects. We have previously shown that during cold exposure, connexin43 (Cx43) gap junctions are induced and activated to connect neighboring adipocytes to share limited sympathetic neuronal input amongst multiple cells. We reason the same mechanism may be leveraged to improve the efficacy of various pharmacological agents that target adipose tissue. Using an adipose tissue-specific Cx43 overexpression mouse model, we demonstrate effectiveness in connecting adipocytes to augment metabolic efficacy of the β3-adrenergic receptor agonist Mirabegron and FGF21. Additionally, combing those molecules with the Cx43 gap junction channel activator danegaptide shows a similar enhanced efficacy. In light of these findings, we propose a model in which connecting adipocytes via Cx43 gap junction channels primes adipose tissue to pharmacological agents designed to engage it. Thus, Cx43 gap junction activators hold great potential for combination with additional agents targeting adipose tissue. Hypertrophied adipocytes are refractory to pharmaceutical intervention. Enhancing the Connexin43 gap junction channel facilitates the dissemination of signals from therapeutic agents and thus re-enables efficient targeting of adipose tissue. [Display omitted]
Author Chen, Xi
Zhu, Yi
Wang, Zhao V.
Li, Chien
Xu, Lin
Li, Na
Li, Jianping
Cao, Jianhong
Scherer, Philipp E.
Zhao, Shangang
Grove, Kevin
Zhang, Zhuzhen
Williams, Kevin W.
Huang, Mingyang
An, Yu A.
Zhu, Qingzhang
Funcke, Jan-Bernd
He, Zhenyan
Author_xml – sequence: 1
  givenname: Yi
  surname: Zhu
  fullname: Zhu, Yi
  email: Yi.Zhu@bcm.edu
  organization: Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
– sequence: 2
  givenname: Na
  surname: Li
  fullname: Li, Na
  organization: Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
– sequence: 3
  givenname: Mingyang
  surname: Huang
  fullname: Huang, Mingyang
  organization: Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
– sequence: 4
  givenname: Xi
  orcidid: 0000-0002-8817-0084
  surname: Chen
  fullname: Chen, Xi
  organization: Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
– sequence: 5
  givenname: Yu A.
  surname: An
  fullname: An, Yu A.
  organization: Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
– sequence: 6
  givenname: Jianping
  surname: Li
  fullname: Li, Jianping
  organization: Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
– sequence: 7
  givenname: Shangang
  orcidid: 0000-0002-9209-8206
  surname: Zhao
  fullname: Zhao, Shangang
  organization: Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
– sequence: 8
  givenname: Jan-Bernd
  orcidid: 0000-0002-2596-3167
  surname: Funcke
  fullname: Funcke, Jan-Bernd
  organization: Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
– sequence: 9
  givenname: Jianhong
  surname: Cao
  fullname: Cao, Jianhong
  organization: Division of Hypothalamic Research, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
– sequence: 10
  givenname: Zhenyan
  surname: He
  fullname: He, Zhenyan
  organization: Division of Hypothalamic Research, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
– sequence: 11
  givenname: Qingzhang
  surname: Zhu
  fullname: Zhu, Qingzhang
  organization: Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
– sequence: 12
  givenname: Zhuzhen
  orcidid: 0000-0001-6787-3920
  surname: Zhang
  fullname: Zhang, Zhuzhen
  organization: Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
– sequence: 13
  givenname: Zhao V.
  surname: Wang
  fullname: Wang, Zhao V.
  organization: Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
– sequence: 14
  givenname: Lin
  orcidid: 0000-0001-5815-4457
  surname: Xu
  fullname: Xu, Lin
  organization: Quantitative Biomedical Research Center, Department of Population and Data Sciences, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
– sequence: 15
  givenname: Kevin W.
  surname: Williams
  fullname: Williams, Kevin W.
  organization: Division of Hypothalamic Research, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
– sequence: 16
  givenname: Chien
  surname: Li
  fullname: Li, Chien
  organization: Novo Nordisk Research Center, Seattle, WA 98109, USA
– sequence: 17
  givenname: Kevin
  surname: Grove
  fullname: Grove, Kevin
  organization: Novo Nordisk Research Center, Seattle, WA 98109, USA
– sequence: 18
  givenname: Philipp E.
  orcidid: 0000-0003-0680-3392
  surname: Scherer
  fullname: Scherer, Philipp E.
  email: Philipp.Scherer@UTSouthwestern.edu
  organization: Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35865093$$D View this record in MEDLINE/PubMed
BookMark eNp9Uktr3DAQFiWlSdP8gR6Kj73sVg9LtqAUwtJHINBL26sYy-ONFq_kSvKS_vvK3XRpeogYkNB8j5FmXpIzHzwS8prRNaNMvdutYUrdmlPO13QJ-oxccM7YSrS1ODudhTwnVyntaFmqgBv5gpwL2SpJtbggP65tdgfIzm-rTfAe752vRbWFqdrNvuSCT9UU3R5TBb2bQsIqu5RmrIYQq3yHESacs7OV8xnjAf3CeUWeDzAmvHrYL8n3Tx-_bb6sbr9-vtlc366s5CyvJNeypco2yDmAoK3mwAYhoe5qLWrUSnUKaW9R91wIxnvOmkFAgxSF6BtxSW6Oun2AnVnqhPjLBHDmz0WIWwOxFDei0UPDmLId1ozXwHpNFSBtbWfroe6lLVofjlrT3O2xePocYXwk-jjj3Z3ZhoPRXAul6iLw9kEghp8zpmz2LlkcR_AY5mS40qJpyjtkgb751-tk8rcxBcCPABtDShGHE4RRswyA2ZllAMwyAIYuQQup_Y9kXYalH6VeNz5NfX-kYunWwWE0yTr0FnsX0ebyne4p-m-tecyS
CitedBy_id crossref_primary_10_3390_biology11071023
crossref_primary_10_1126_scitranslmed_ade8460
crossref_primary_10_2337_db23_0571
crossref_primary_10_3390_cells11152310
Cites_doi 10.2337/diaspect.27.2.82
10.1038/ijo.2013.200
10.1210/jc.2006-1740
10.1074/jbc.M109.053942
10.1210/me.2012-1210
10.1016/j.pharmthera.2015.06.005
10.1016/j.cmet.2014.07.012
10.1016/j.cmet.2016.02.001
10.1016/j.cmet.2013.03.019
10.1093/ajcn/55.1.252s
10.1016/j.cmet.2013.04.005
10.1038/s41467-019-14069-2
10.1038/nm.3819
10.1016/j.micinf.2014.08.006
10.1038/oby.2011.125
10.1016/j.cmet.2014.12.009
10.1101/gad.177857.111
10.1038/s41467-021-25025-4
10.1210/en.2015-1722
10.1016/S1098-3597(99)90002-9
10.1371/journal.pone.0054221
10.1038/s41598-017-03607-x
10.1172/JCI88883
10.1002/med.21390
10.1016/j.cmet.2016.04.023
10.1016/j.tem.2014.03.001
10.1093/nar/gkr1013
10.1111/acel.12010
10.1172/JCI23606
10.1016/j.cmet.2011.10.012
10.1371/journal.pone.0040164
10.2337/db18-0462
10.1016/j.cmet.2016.08.005
10.1073/pnas.1006962107
10.1038/nm.3891
10.1093/ajcn/76.4.780
10.1016/j.cmet.2013.08.005
10.1038/nrd.2016.75
10.1016/j.cmet.2017.03.005
10.1016/j.cell.2012.05.016
10.2337/db17-0323
10.1016/j.cmet.2013.06.016
10.2337/diabetes.47.10.1555
10.1016/j.cmet.2017.09.005
ContentType Journal Article
Copyright 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences
2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V.
2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences
Copyright_xml – notice: 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences
– notice: 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V.
– notice: 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.apsb.2022.02.020
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 2211-3843
EndPage 3072
ExternalDocumentID oai_doaj_org_article_9f7116cbe4124a1d906ae08cbc4f4d5c
PMC9293664
35865093
10_1016_j_apsb_2022_02_020
S2211383522000764
Genre Journal Article
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: K01 DK125447
– fundername: NIA NIH HHS
  grantid: K99 AG068239
– fundername: NIDDK NIH HHS
  grantid: P01 DK119130
GroupedDBID ---
--K
-05
-0E
-SE
-S~
0R~
0SF
1~5
4.4
457
4G.
53G
5VR
5VS
6I.
7-5
92M
9D9
9DE
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABKZE
ABMAC
ACGFS
ADBBV
ADEZE
ADRAZ
AEXQZ
AFUIB
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BCNDV
CAJEE
CAJUS
CCEZO
CIEJG
DIK
EBS
EJD
FDB
GROUPED_DOAJ
GX1
HH5
HYE
HZ~
IPNFZ
IXB
JUIAU
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
Q--
Q-4
R-E
RIG
ROL
RPM
RT5
SES
SSZ
T8U
U1F
U1G
U5E
U5O
XH2
~NG
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-5295806c7e22aa30892a1f35a4b4934e966b6e0dce9d23312d217f3a7e0e33d73
IEDL.DBID DOA
ISSN 2211-3835
IngestDate Wed Aug 27 01:29:53 EDT 2025
Thu Aug 21 18:19:46 EDT 2025
Fri Jul 11 04:16:41 EDT 2025
Thu Apr 03 07:04:46 EDT 2025
Thu Apr 24 23:11:25 EDT 2025
Tue Jul 01 01:53:08 EDT 2025
Thu Jul 20 20:10:42 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Type 2 diabetes
Obesity
GJA1
Adipose tissue
Connexin43
Gap junction
β3-adrenergic receptor agonist
FGF21
β3-Adrenergic receptor agonist
Language English
License This is an open access article under the CC BY-NC-ND license.
2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-5295806c7e22aa30892a1f35a4b4934e966b6e0dce9d23312d217f3a7e0e33d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0680-3392
0000-0001-5815-4457
0000-0001-6787-3920
0000-0002-8817-0084
0000-0002-2596-3167
0000-0002-9209-8206
OpenAccessLink https://doaj.org/article/9f7116cbe4124a1d906ae08cbc4f4d5c
PMID 35865093
PQID 2693772335
PQPubID 23479
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_9f7116cbe4124a1d906ae08cbc4f4d5c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9293664
proquest_miscellaneous_2693772335
pubmed_primary_35865093
crossref_primary_10_1016_j_apsb_2022_02_020
crossref_citationtrail_10_1016_j_apsb_2022_02_020
elsevier_sciencedirect_doi_10_1016_j_apsb_2022_02_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Acta pharmaceutica Sinica. B
PublicationTitleAlternate Acta Pharm Sin B
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Weyer, Tataranni, Snitker, Danforth, Ravussin (bib17) 1998; 47
Keipert, Lutter, Schroeder, Brandt, Stahlman, Schwarzmayr (bib43) 2020; 11
Frayn, Karpe (bib13) 2014; 38
Petrovic, Walden, Shabalina, Timmons, Cannon, Nedergaard (bib7) 2010; 285
Hanssen, Hoeks, Brans, van der Lans, Schaart, van den Driessche (bib11) 2015; 21
Cawthorne, Sennitt, Arch, Smith (bib16) 1992; 55
Larsen, Toubro, van Baak, Gottesdiener, Larson, Saris (bib18) 2002; 76
Sun, Tordjman, Clement, Scherer (bib36) 2013; 18
Lewis, Samms, Cooper, Luckett, Perkins, Adams (bib33) 2017; 7
Gimeno, Moller (bib3) 2014; 25
Baskin, Linderman, Brychta, McGehee, Anflick-Chames, Cero (bib14) 2018; 67
BonDurant, Ameka, Naber, Markan, Idiga, Acevedo (bib42) 2017; 25
Kharitonenkov, Shiyanova, Koester, Ford, Micanovic, Galbreath (bib20) 2005; 115
Wu, Bostrom, Sparks, Ye, Choi, Giang (bib8) 2012; 150
Veniant, Hale, Helmering, Chen, Stanislaus, Busby (bib34) 2012; 7
Holland, Adams, Brozinick, Bui, Miyauchi, Kusminski (bib38) 2013; 17
Rogers, Landa, Park, Smith (bib10) 2012; 11
Samms, Cheng, Kharitonenkov, Gimeno, Adams (bib44) 2016; 157
Khaodhiar, McCowen, Blackburn (bib1) 1999; 2
Kusminski, Bickel, Scherer (bib6) 2016; 15
Gaich, Chien, Fu, Glass, Deeg, Holland (bib22) 2013; 18
Zhu, Li, Huang, Bartels, Dogne, Zhao (bib28) 2021; 12
Moller (bib4) 2012; 15
Lin, Tian, Lam, Lin, Hoo, Konishi (bib39) 2013; 17
Crewe, An, Scherer (bib5) 2017; 127
Cypess, Weiner, Roberts-Toler, Franquet Elia, Kessler, Kahn (bib15) 2015; 21
Redman, de Jonge, Fang, Gamlin, Recker, Greenway (bib19) 2007; 92
Fisher, Kleiner, Douris, Fox, Mepani, Verdeguer (bib21) 2012; 26
Shinoda, Luijten, Hasegawa, Hong, Sonne, Kim (bib9) 2015; 21
Wang, Spandidos, Wang, Seed (bib27) 2012; 40
Zhu, Pereira, O'Neill, Riehle, Ilkun, Wende (bib25) 2013; 27
Zhu, Gao, Tao, Shao, Zhao, Huang (bib24) 2016; 24
Shao, Ishibashi, Kusminski, Wang, Hepler, Vishvanath (bib30) 2016; 23
Zhu, Zhao, Deng, Gordillo, Ghaben, Shao (bib26) 2017; 66
So, Leung (bib32) 2016; 36
Lan, Morgan, Rahmouni, Sonoda, Fu, Burgess (bib41) 2017; 26
Chau, Gao, Yang, Wu, Gromada (bib37) 2010; 107
Yoneshiro, Aita, Matsushita, Okamatsu-Ogura, Kameya, Kawai (bib12) 2011; 19
White (bib2) 2014; 27
Burke, Nagajyothi, Thi, Hanani, Scherer, Tanowitz (bib31) 2014; 16
Talukdar, Zhou, Li, Rossulek, Dong, Somayaji (bib23) 2016; 23
Schulz, Gorge, Gorbe, Ferdinandy, Lampe, Leybaert (bib35) 2015; 153
Owen, Ding, Morgan, Coate, Bookout, Rahmouni (bib40) 2014; 20
Zhu, Pires, Whitehead, Olsen, Wayment, Zhang (bib29) 2013; 8
Khaodhiar (10.1016/j.apsb.2022.02.020_bib1) 1999; 2
Petrovic (10.1016/j.apsb.2022.02.020_bib7) 2010; 285
Cypess (10.1016/j.apsb.2022.02.020_bib15) 2015; 21
Yoneshiro (10.1016/j.apsb.2022.02.020_bib12) 2011; 19
Wang (10.1016/j.apsb.2022.02.020_bib27) 2012; 40
Zhu (10.1016/j.apsb.2022.02.020_bib24) 2016; 24
Keipert (10.1016/j.apsb.2022.02.020_bib43) 2020; 11
Lewis (10.1016/j.apsb.2022.02.020_bib33) 2017; 7
Wu (10.1016/j.apsb.2022.02.020_bib8) 2012; 150
Shinoda (10.1016/j.apsb.2022.02.020_bib9) 2015; 21
Cawthorne (10.1016/j.apsb.2022.02.020_bib16) 1992; 55
Gimeno (10.1016/j.apsb.2022.02.020_bib3) 2014; 25
Zhu (10.1016/j.apsb.2022.02.020_bib29) 2013; 8
Kharitonenkov (10.1016/j.apsb.2022.02.020_bib20) 2005; 115
Veniant (10.1016/j.apsb.2022.02.020_bib34) 2012; 7
Frayn (10.1016/j.apsb.2022.02.020_bib13) 2014; 38
Owen (10.1016/j.apsb.2022.02.020_bib40) 2014; 20
Rogers (10.1016/j.apsb.2022.02.020_bib10) 2012; 11
Schulz (10.1016/j.apsb.2022.02.020_bib35) 2015; 153
Chau (10.1016/j.apsb.2022.02.020_bib37) 2010; 107
Moller (10.1016/j.apsb.2022.02.020_bib4) 2012; 15
Hanssen (10.1016/j.apsb.2022.02.020_bib11) 2015; 21
Zhu (10.1016/j.apsb.2022.02.020_bib28) 2021; 12
So (10.1016/j.apsb.2022.02.020_bib32) 2016; 36
Zhu (10.1016/j.apsb.2022.02.020_bib25) 2013; 27
Larsen (10.1016/j.apsb.2022.02.020_bib18) 2002; 76
Lan (10.1016/j.apsb.2022.02.020_bib41) 2017; 26
Kusminski (10.1016/j.apsb.2022.02.020_bib6) 2016; 15
Holland (10.1016/j.apsb.2022.02.020_bib38) 2013; 17
Sun (10.1016/j.apsb.2022.02.020_bib36) 2013; 18
Gaich (10.1016/j.apsb.2022.02.020_bib22) 2013; 18
Fisher (10.1016/j.apsb.2022.02.020_bib21) 2012; 26
Lin (10.1016/j.apsb.2022.02.020_bib39) 2013; 17
Weyer (10.1016/j.apsb.2022.02.020_bib17) 1998; 47
Crewe (10.1016/j.apsb.2022.02.020_bib5) 2017; 127
Shao (10.1016/j.apsb.2022.02.020_bib30) 2016; 23
BonDurant (10.1016/j.apsb.2022.02.020_bib42) 2017; 25
Baskin (10.1016/j.apsb.2022.02.020_bib14) 2018; 67
Redman (10.1016/j.apsb.2022.02.020_bib19) 2007; 92
White (10.1016/j.apsb.2022.02.020_bib2) 2014; 27
Talukdar (10.1016/j.apsb.2022.02.020_bib23) 2016; 23
Zhu (10.1016/j.apsb.2022.02.020_bib26) 2017; 66
Samms (10.1016/j.apsb.2022.02.020_bib44) 2016; 157
Burke (10.1016/j.apsb.2022.02.020_bib31) 2014; 16
References_xml – volume: 66
  start-page: 2789
  year: 2017
  end-page: 2799
  ident: bib26
  article-title: Hepatic GALE regulates whole-body glucose homeostasis by modulating
  publication-title: Diabetes
– volume: 38
  start-page: 1019
  year: 2014
  end-page: 1026
  ident: bib13
  article-title: Regulation of human subcutaneous adipose tissue blood flow
  publication-title: Int J Obes
– volume: 20
  start-page: 670
  year: 2014
  end-page: 677
  ident: bib40
  article-title: FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss
  publication-title: Cell Metabol
– volume: 150
  start-page: 366
  year: 2012
  end-page: 376
  ident: bib8
  article-title: Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human
  publication-title: Cell
– volume: 107
  start-page: 12553
  year: 2010
  end-page: 12558
  ident: bib37
  article-title: Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK–SIRT1–PGC-1
  publication-title: Proc Natl Acad Sci U S A
– volume: 21
  start-page: 389
  year: 2015
  end-page: 394
  ident: bib9
  article-title: Genetic and functional characterization of clonally derived adult human brown adipocytes
  publication-title: Nat Med
– volume: 26
  start-page: 271
  year: 2012
  end-page: 281
  ident: bib21
  article-title: FGF21 regulates PGC-1
  publication-title: Genes Dev
– volume: 12
  start-page: 4829
  year: 2021
  ident: bib28
  article-title: Adipose tissue hyaluronan production improves systemic glucose homeostasis and primes adipocytes for CL 316,243-stimulated lipolysis
  publication-title: Nat Commun
– volume: 7
  start-page: 4238
  year: 2017
  ident: bib33
  article-title: Reduced adiposity attenuates FGF21 mediated metabolic improvements in the Siberian hamster
  publication-title: Sci Rep
– volume: 27
  start-page: 172
  year: 2013
  end-page: 184
  ident: bib25
  article-title: Cardiac PI3K–Akt impairs insulin-stimulated glucose uptake independent of mTORC1 and GLUT4 translocation
  publication-title: Mol Endocrinol
– volume: 127
  start-page: 74
  year: 2017
  end-page: 82
  ident: bib5
  article-title: The ominous triad of adipose tissue dysfunction: inflammation, fibrosis, and impaired angiogenesis
  publication-title: J Clin Invest
– volume: 285
  start-page: 7153
  year: 2010
  end-page: 7164
  ident: bib7
  article-title: Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes
  publication-title: J Biol Chem
– volume: 47
  start-page: 1555
  year: 1998
  end-page: 1561
  ident: bib17
  article-title: Increase in insulin action and fat oxidation after treatment with CL 316,243, a highly selective
  publication-title: Diabetes
– volume: 40
  start-page: D1144
  year: 2012
  end-page: D1149
  ident: bib27
  article-title: PrimerBank: a PCR primer database for quantitative gene expression analysis, 2012 update
  publication-title: Nucleic Acids Res
– volume: 8
  start-page: e54221
  year: 2013
  ident: bib29
  article-title: Mechanistic target of rapamycin (
  publication-title: PLoS One
– volume: 2
  start-page: 17
  year: 1999
  end-page: 31
  ident: bib1
  article-title: Obesity and its comorbid conditions
  publication-title: Clin Cornerstone
– volume: 157
  start-page: 1467
  year: 2016
  end-page: 1480
  ident: bib44
  article-title: Overexpression of
  publication-title: Endocrinology
– volume: 7
  start-page: e40164
  year: 2012
  ident: bib34
  article-title: FGF21 promotes metabolic homeostasis
  publication-title: PLoS One
– volume: 15
  start-page: 639
  year: 2016
  end-page: 660
  ident: bib6
  article-title: Targeting adipose tissue in the treatment of obesity-associated diabetes
  publication-title: Nat Rev Drug Discov
– volume: 17
  start-page: 790
  year: 2013
  end-page: 797
  ident: bib38
  article-title: An FGF21–adiponectin–ceramide axis controls energy expenditure and insulin action in mice
  publication-title: Cell Metabol
– volume: 21
  start-page: 863
  year: 2015
  end-page: 865
  ident: bib11
  article-title: Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus
  publication-title: Nat Med
– volume: 26
  year: 2017
  ident: bib41
  article-title: FGF19, FGF21, and an FGFR1/
  publication-title: Cell Metabol
– volume: 11
  start-page: 1074
  year: 2012
  end-page: 1083
  ident: bib10
  article-title: Aging leads to a programmed loss of brown adipocytes in murine subcutaneous white adipose tissue
  publication-title: Aging Cell
– volume: 27
  start-page: 82
  year: 2014
  end-page: 86
  ident: bib2
  article-title: A brief history of the development of diabetes medications
  publication-title: Diabetes Spectr
– volume: 25
  start-page: 303
  year: 2014
  end-page: 311
  ident: bib3
  article-title: FGF21-based pharmacotherapy—potential utility for metabolic disorders
  publication-title: Trends Endocrinol Metabol
– volume: 115
  start-page: 1627
  year: 2005
  end-page: 1635
  ident: bib20
  article-title: FGF-21 as a novel metabolic regulator
  publication-title: J Clin Invest
– volume: 76
  start-page: 780
  year: 2002
  end-page: 788
  ident: bib18
  article-title: Effect of a 28-d treatment with L-796568, a novel
  publication-title: Am J Clin Nutr
– volume: 23
  start-page: 427
  year: 2016
  end-page: 440
  ident: bib23
  article-title: A long-acting FGF21 molecule, PF-05231023, decreases body weight and improves lipid profile in non-human primates and type 2 diabetic subjects
  publication-title: Cell Metabol
– volume: 17
  start-page: 779
  year: 2013
  end-page: 789
  ident: bib39
  article-title: Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice
  publication-title: Cell Metabol
– volume: 24
  start-page: 420
  year: 2016
  end-page: 433
  ident: bib24
  article-title: Connexin 43 mediates white adipose tissue beiging by facilitating the propagation of sympathetic neuronal signals
  publication-title: Cell Metabol
– volume: 18
  start-page: 333
  year: 2013
  end-page: 340
  ident: bib22
  article-title: The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes
  publication-title: Cell Metabol
– volume: 36
  start-page: 672
  year: 2016
  end-page: 704
  ident: bib32
  article-title: Fibroblast growth factor 21 as an emerging therapeutic target for type 2 diabetes mellitus
  publication-title: Med Res Rev
– volume: 23
  start-page: 1167
  year: 2016
  end-page: 1184
  ident: bib30
  article-title: Zfp423 maintains white adipocyte identity through suppression of the beige cell thermogenic gene program
  publication-title: Cell Metabol
– volume: 153
  start-page: 90
  year: 2015
  end-page: 106
  ident: bib35
  article-title: Connexin 43 is an emerging therapeutic target in ischemia/reperfusion injury, cardioprotection and neuroprotection
  publication-title: Pharmacol Ther
– volume: 67
  start-page: 2113
  year: 2018
  end-page: 2125
  ident: bib14
  article-title: Regulation of human adipose tissue activation, gallbladder size, and bile acid metabolism by a
  publication-title: Diabetes
– volume: 25
  start-page: 935
  year: 2017
  end-page: 944.e4
  ident: bib42
  article-title: FGF21 regulates metabolism through adipose-dependent and -independent mechanisms
  publication-title: Cell Metabol
– volume: 92
  start-page: 527
  year: 2007
  end-page: 531
  ident: bib19
  article-title: Lack of an effect of a novel
  publication-title: J Clin Endocrinol Metab
– volume: 11
  start-page: 624
  year: 2020
  ident: bib43
  article-title: Endogenous FGF21-signaling controls paradoxical obesity resistance of UCP1-deficient mice
  publication-title: Nat Commun
– volume: 16
  start-page: 893
  year: 2014
  end-page: 901
  ident: bib31
  article-title: Adipocytes in both brown and white adipose tissue of adult mice are functionally connected
  publication-title: Microb Infect
– volume: 15
  start-page: 19
  year: 2012
  end-page: 24
  ident: bib4
  article-title: Metabolic disease drug discovery—"hitting the target" is easier said than done
  publication-title: Cell Metabol
– volume: 18
  start-page: 470
  year: 2013
  end-page: 477
  ident: bib36
  article-title: Fibrosis and adipose tissue dysfunction
  publication-title: Cell Metabol
– volume: 19
  start-page: 1755
  year: 2011
  end-page: 1760
  ident: bib12
  article-title: Age-related decrease in cold-activated brown adipose tissue and accumulation of body fat in healthy humans
  publication-title: Obesity
– volume: 55
  year: 1992
  ident: bib16
  article-title: BRL 35135, a potent and selective atypical
  publication-title: Am J Clin Nutr
– volume: 21
  start-page: 33
  year: 2015
  end-page: 38
  ident: bib15
  article-title: Activation of human brown adipose tissue by a
  publication-title: Cell Metabol
– volume: 27
  start-page: 82
  year: 2014
  ident: 10.1016/j.apsb.2022.02.020_bib2
  article-title: A brief history of the development of diabetes medications
  publication-title: Diabetes Spectr
  doi: 10.2337/diaspect.27.2.82
– volume: 38
  start-page: 1019
  year: 2014
  ident: 10.1016/j.apsb.2022.02.020_bib13
  article-title: Regulation of human subcutaneous adipose tissue blood flow
  publication-title: Int J Obes
  doi: 10.1038/ijo.2013.200
– volume: 92
  start-page: 527
  year: 2007
  ident: 10.1016/j.apsb.2022.02.020_bib19
  article-title: Lack of an effect of a novel β3-adrenoceptor agonist, TAK-677, on energy metabolism in obese individuals: a double-blind, placebo-controlled randomized study
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2006-1740
– volume: 285
  start-page: 7153
  year: 2010
  ident: 10.1016/j.apsb.2022.02.020_bib7
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.053942
– volume: 27
  start-page: 172
  year: 2013
  ident: 10.1016/j.apsb.2022.02.020_bib25
  article-title: Cardiac PI3K–Akt impairs insulin-stimulated glucose uptake independent of mTORC1 and GLUT4 translocation
  publication-title: Mol Endocrinol
  doi: 10.1210/me.2012-1210
– volume: 153
  start-page: 90
  year: 2015
  ident: 10.1016/j.apsb.2022.02.020_bib35
  article-title: Connexin 43 is an emerging therapeutic target in ischemia/reperfusion injury, cardioprotection and neuroprotection
  publication-title: Pharmacol Ther
  doi: 10.1016/j.pharmthera.2015.06.005
– volume: 20
  start-page: 670
  year: 2014
  ident: 10.1016/j.apsb.2022.02.020_bib40
  article-title: FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss
  publication-title: Cell Metabol
  doi: 10.1016/j.cmet.2014.07.012
– volume: 23
  start-page: 427
  year: 2016
  ident: 10.1016/j.apsb.2022.02.020_bib23
  article-title: A long-acting FGF21 molecule, PF-05231023, decreases body weight and improves lipid profile in non-human primates and type 2 diabetic subjects
  publication-title: Cell Metabol
  doi: 10.1016/j.cmet.2016.02.001
– volume: 17
  start-page: 790
  year: 2013
  ident: 10.1016/j.apsb.2022.02.020_bib38
  article-title: An FGF21–adiponectin–ceramide axis controls energy expenditure and insulin action in mice
  publication-title: Cell Metabol
  doi: 10.1016/j.cmet.2013.03.019
– volume: 55
  year: 1992
  ident: 10.1016/j.apsb.2022.02.020_bib16
  article-title: BRL 35135, a potent and selective atypical β-adrenoceptor agonist
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/55.1.252s
– volume: 17
  start-page: 779
  year: 2013
  ident: 10.1016/j.apsb.2022.02.020_bib39
  article-title: Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice
  publication-title: Cell Metabol
  doi: 10.1016/j.cmet.2013.04.005
– volume: 11
  start-page: 624
  year: 2020
  ident: 10.1016/j.apsb.2022.02.020_bib43
  article-title: Endogenous FGF21-signaling controls paradoxical obesity resistance of UCP1-deficient mice
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-14069-2
– volume: 21
  start-page: 389
  year: 2015
  ident: 10.1016/j.apsb.2022.02.020_bib9
  article-title: Genetic and functional characterization of clonally derived adult human brown adipocytes
  publication-title: Nat Med
  doi: 10.1038/nm.3819
– volume: 16
  start-page: 893
  year: 2014
  ident: 10.1016/j.apsb.2022.02.020_bib31
  article-title: Adipocytes in both brown and white adipose tissue of adult mice are functionally connected via gap junctions: implications for Chagas disease
  publication-title: Microb Infect
  doi: 10.1016/j.micinf.2014.08.006
– volume: 19
  start-page: 1755
  year: 2011
  ident: 10.1016/j.apsb.2022.02.020_bib12
  article-title: Age-related decrease in cold-activated brown adipose tissue and accumulation of body fat in healthy humans
  publication-title: Obesity
  doi: 10.1038/oby.2011.125
– volume: 21
  start-page: 33
  year: 2015
  ident: 10.1016/j.apsb.2022.02.020_bib15
  article-title: Activation of human brown adipose tissue by a β3-adrenergic receptor agonist
  publication-title: Cell Metabol
  doi: 10.1016/j.cmet.2014.12.009
– volume: 26
  start-page: 271
  year: 2012
  ident: 10.1016/j.apsb.2022.02.020_bib21
  article-title: FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis
  publication-title: Genes Dev
  doi: 10.1101/gad.177857.111
– volume: 12
  start-page: 4829
  year: 2021
  ident: 10.1016/j.apsb.2022.02.020_bib28
  article-title: Adipose tissue hyaluronan production improves systemic glucose homeostasis and primes adipocytes for CL 316,243-stimulated lipolysis
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-25025-4
– volume: 157
  start-page: 1467
  year: 2016
  ident: 10.1016/j.apsb.2022.02.020_bib44
  article-title: Overexpression of β-Klotho in adipose tissue sensitizes male mice to endogenous FGF21 and provides protection from diet-induced obesity
  publication-title: Endocrinology
  doi: 10.1210/en.2015-1722
– volume: 2
  start-page: 17
  year: 1999
  ident: 10.1016/j.apsb.2022.02.020_bib1
  article-title: Obesity and its comorbid conditions
  publication-title: Clin Cornerstone
  doi: 10.1016/S1098-3597(99)90002-9
– volume: 8
  start-page: e54221
  year: 2013
  ident: 10.1016/j.apsb.2022.02.020_bib29
  article-title: Mechanistic target of rapamycin (Mtor) is essential for murine embryonic heart development and growth
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0054221
– volume: 7
  start-page: 4238
  year: 2017
  ident: 10.1016/j.apsb.2022.02.020_bib33
  article-title: Reduced adiposity attenuates FGF21 mediated metabolic improvements in the Siberian hamster
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-03607-x
– volume: 127
  start-page: 74
  year: 2017
  ident: 10.1016/j.apsb.2022.02.020_bib5
  article-title: The ominous triad of adipose tissue dysfunction: inflammation, fibrosis, and impaired angiogenesis
  publication-title: J Clin Invest
  doi: 10.1172/JCI88883
– volume: 36
  start-page: 672
  year: 2016
  ident: 10.1016/j.apsb.2022.02.020_bib32
  article-title: Fibroblast growth factor 21 as an emerging therapeutic target for type 2 diabetes mellitus
  publication-title: Med Res Rev
  doi: 10.1002/med.21390
– volume: 23
  start-page: 1167
  year: 2016
  ident: 10.1016/j.apsb.2022.02.020_bib30
  article-title: Zfp423 maintains white adipocyte identity through suppression of the beige cell thermogenic gene program
  publication-title: Cell Metabol
  doi: 10.1016/j.cmet.2016.04.023
– volume: 25
  start-page: 303
  year: 2014
  ident: 10.1016/j.apsb.2022.02.020_bib3
  article-title: FGF21-based pharmacotherapy—potential utility for metabolic disorders
  publication-title: Trends Endocrinol Metabol
  doi: 10.1016/j.tem.2014.03.001
– volume: 40
  start-page: D1144
  year: 2012
  ident: 10.1016/j.apsb.2022.02.020_bib27
  article-title: PrimerBank: a PCR primer database for quantitative gene expression analysis, 2012 update
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr1013
– volume: 11
  start-page: 1074
  year: 2012
  ident: 10.1016/j.apsb.2022.02.020_bib10
  article-title: Aging leads to a programmed loss of brown adipocytes in murine subcutaneous white adipose tissue
  publication-title: Aging Cell
  doi: 10.1111/acel.12010
– volume: 115
  start-page: 1627
  year: 2005
  ident: 10.1016/j.apsb.2022.02.020_bib20
  article-title: FGF-21 as a novel metabolic regulator
  publication-title: J Clin Invest
  doi: 10.1172/JCI23606
– volume: 15
  start-page: 19
  year: 2012
  ident: 10.1016/j.apsb.2022.02.020_bib4
  article-title: Metabolic disease drug discovery—"hitting the target" is easier said than done
  publication-title: Cell Metabol
  doi: 10.1016/j.cmet.2011.10.012
– volume: 7
  start-page: e40164
  year: 2012
  ident: 10.1016/j.apsb.2022.02.020_bib34
  article-title: FGF21 promotes metabolic homeostasis via white adipose and leptin in mice
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0040164
– volume: 67
  start-page: 2113
  year: 2018
  ident: 10.1016/j.apsb.2022.02.020_bib14
  article-title: Regulation of human adipose tissue activation, gallbladder size, and bile acid metabolism by a β3-adrenergic receptor agonist
  publication-title: Diabetes
  doi: 10.2337/db18-0462
– volume: 24
  start-page: 420
  year: 2016
  ident: 10.1016/j.apsb.2022.02.020_bib24
  article-title: Connexin 43 mediates white adipose tissue beiging by facilitating the propagation of sympathetic neuronal signals
  publication-title: Cell Metabol
  doi: 10.1016/j.cmet.2016.08.005
– volume: 107
  start-page: 12553
  year: 2010
  ident: 10.1016/j.apsb.2022.02.020_bib37
  article-title: Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK–SIRT1–PGC-1α pathway
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1006962107
– volume: 21
  start-page: 863
  year: 2015
  ident: 10.1016/j.apsb.2022.02.020_bib11
  article-title: Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus
  publication-title: Nat Med
  doi: 10.1038/nm.3891
– volume: 76
  start-page: 780
  year: 2002
  ident: 10.1016/j.apsb.2022.02.020_bib18
  article-title: Effect of a 28-d treatment with L-796568, a novel β3-adrenergic receptor agonist, on energy expenditure and body composition in obese men
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/76.4.780
– volume: 18
  start-page: 333
  year: 2013
  ident: 10.1016/j.apsb.2022.02.020_bib22
  article-title: The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes
  publication-title: Cell Metabol
  doi: 10.1016/j.cmet.2013.08.005
– volume: 15
  start-page: 639
  year: 2016
  ident: 10.1016/j.apsb.2022.02.020_bib6
  article-title: Targeting adipose tissue in the treatment of obesity-associated diabetes
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd.2016.75
– volume: 25
  start-page: 935
  year: 2017
  ident: 10.1016/j.apsb.2022.02.020_bib42
  article-title: FGF21 regulates metabolism through adipose-dependent and -independent mechanisms
  publication-title: Cell Metabol
  doi: 10.1016/j.cmet.2017.03.005
– volume: 150
  start-page: 366
  year: 2012
  ident: 10.1016/j.apsb.2022.02.020_bib8
  article-title: Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human
  publication-title: Cell
  doi: 10.1016/j.cell.2012.05.016
– volume: 66
  start-page: 2789
  year: 2017
  ident: 10.1016/j.apsb.2022.02.020_bib26
  article-title: Hepatic GALE regulates whole-body glucose homeostasis by modulating Tff3 expression
  publication-title: Diabetes
  doi: 10.2337/db17-0323
– volume: 18
  start-page: 470
  year: 2013
  ident: 10.1016/j.apsb.2022.02.020_bib36
  article-title: Fibrosis and adipose tissue dysfunction
  publication-title: Cell Metabol
  doi: 10.1016/j.cmet.2013.06.016
– volume: 47
  start-page: 1555
  year: 1998
  ident: 10.1016/j.apsb.2022.02.020_bib17
  article-title: Increase in insulin action and fat oxidation after treatment with CL 316,243, a highly selective β3-adrenoceptor agonist in humans
  publication-title: Diabetes
  doi: 10.2337/diabetes.47.10.1555
– volume: 26
  year: 2017
  ident: 10.1016/j.apsb.2022.02.020_bib41
  article-title: FGF19, FGF21, and an FGFR1/β-Klotho-activating antibody act on the nervous system to regulate body weight and glycemia
  publication-title: Cell Metabol
  doi: 10.1016/j.cmet.2017.09.005
SSID ssj0000602275
Score 2.2665226
Snippet Adipose tissue is a promising target for treating obesity and metabolic diseases. However, pharmacological agents usually fail to effectively engage adipocytes...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3063
SubjectTerms Adipose tissue
Connexin43
FGF21
Gap junction
GJA1
Obesity
Original
Type 2 diabetes
β3-Adrenergic receptor agonist
SummonAdditionalLinks – databaseName: ScienceDirect
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhp15K33VfqFByaczKkizbxyQ0hEJLoEnZm9DLW4fgNfEGmn_fGdnerFvIoeCLbcl6zEgzY818Q8gnBVxiwORKleA-BXnrU1DqfWpAGFTO5srGCO9v39XZpfy6zJd75GSKhUG3ynHvH_b0uFuPTxbjbC66pln84GC7iKhAxPMkxAQVsoxBfMvj7X8WphAkDz0ZsXyKFcbYmcHNy3S9BTOR8wjdiWm_d-RThPGfial_1dC_vSl3xNPpE_J41Cvp0dD1p2QvtM_IwfkATH13SC_u46z6Q3pAz-8hq--ek59Hbkhz1q5odH353bRS0JXp6BUIvsibtMNMAD01vunWfaCbSDIKSi_dCeKizY4T5Qtyefrl4uQsHTMupA4TG6R46lcy5YrAuTGClRU3WS1yI62shAxgG1kVGAy18lyIjHuwaGphisCCEL4QL8l-u27Da0JrMKwctyWIRiN9XlpXVXlRCGWzUkFrCcmmedZuhCPHrBjXevI7u9JIG4200QwvlpDP2zrdAMbxYOljJN-2JAJpxwfrm5UeOUlXdZFlytmAWbhN5iumTGCls07W0G2XkHwivp7xJXyqebDxjxOnaFiweApj2rC-7TVXoBEWMHt5Ql4NnLPtoshLRDQUCSlmPDUbw_xN2_yKoOCg5gql5Jv_7O9b8gjvBkfkd2R_c3Mb3oO6tbEf4nr6A44NKCw
  priority: 102
  providerName: Elsevier
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhvfRS-q77QoWSS-NiS7ZkH0pJS0MopOSQLbkJvbx1CF53vYHsv--MbO-u25BTwSdbliXNjOcbNPqGkPcCtERDyBULzlwM_tbFAOpdrMEZlNbkwoQT3qc_xMks-36RX-yRsdzRsIDdraEd1pOaLa8-3vxefwaD_7TN1dJtZyDWYyzwbzII4e-BZ5JoqKcD3O__zEiYh1mNjCF7H6CP4RzN7d1MfFWg9J-4rH8h6d-ZlTuu6vgheTBgTHrUK8Ujsuebx-TgrCepXh_S8-2Zq-6QHtCzLX31-gn5eWT7kmfNnIY0mJu6yTid65ZeghMMekpbrArQUe3qdtF5ugriowCA6c6BLlrvJFQ-JbPjb-dfT-Kh-kJsschBjDuARSKs9IxpzZOiZDqteK4zk5U88xAnGeETmGrpGOcpcxDdVFxLn3jOneTPyH6zaPwLQisIsiwzBbhJnbm8MLYscym5MGkh4GsRScd1VnagJscKGVdqzEG7VCgbhbJRCV5JRD5s3ml7Yo47W39B8W1aIql2uLFYztVgo6qsZJoKazxW5NapKxOhfVJYY7MKhm0jko_CVwM-6XEHdFXf-fF3o6YoMF7ckdGNX1x3iglAhxJWL4_I815zNkPkeYHshjwicqJTkzlMnzT1r0AQDpCXC5G9_B-TfkXu41T6DOXXZH-1vPZvAIetzNtgXH8ACj4woQ
  priority: 102
  providerName: Scholars Portal
Title Activating Connexin43 gap junctions primes adipose tissue for therapeutic intervention
URI https://dx.doi.org/10.1016/j.apsb.2022.02.020
https://www.ncbi.nlm.nih.gov/pubmed/35865093
https://www.proquest.com/docview/2693772335
https://pubmed.ncbi.nlm.nih.gov/PMC9293664
https://doaj.org/article/9f7116cbe4124a1d906ae08cbc4f4d5c
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp15K33VfqFByaUxtSZblY1Ia0paUFJKyN6GXU4fgNfUGmn_fGcm78baQXgpGB7_k0Yw03-DRN4S8lWAlBkKuXHLmc_C3PgdQ73MDzqBxtpI27vA-_iqPzsTnRbWYlfrCnLBED5wG7n3T1mUpnQ1YJtmUvimkCYVy1olW-Mrh6gs-bxZMpTUYqfEwf5Ex5OkDnDHtmEnJXWYYLQSHjEXCTiz2PfNKkbx_yzn9DT7_zKGcOaXD--TehCbpfpLiAbkT-odk9yTRUV_v0dOb3VXjHt2lJzdE1dePyPd9l4qb9ec0Jrz86nrB6bkZ6AW4u2iRdED-_5Ea3w3LMdBVVBQFqEtnW7doN0udfEzODj-efjjKpzoLucNyBjn-61OFdHVgzBheqIaZsuWVEVY0XASIiKwMBYjaeMZ5yTzEMS03dSgC577mT8hOv-zDM0JbCKccswocogHtKOuapqprLm2pJPSWkXI9ztpNJORYC-NSr7PNLjTqRqNudIFHkZF3m2eGRMFx690HqL7NnUifHU-AUenJqPS_jCoj1Vr5ekIiCWHAq7pbO3-zthQN0xT_vZg-LK9GzSTgwBpGr8rI02Q5m0_klUIeQ56ResumtmTYvtJ3PyIVOIBbLqV4_j-EfkHuoigpF_kl2Vn9vAqvAHGt7Os4uaD9tDiA9ss3Be2xUL8B6gArdw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwELbS9NBeqr5L-nKlKpcGrbHBwDGJGm3aJIrUTbU3yzZmS1SxKGyk5N93xsBmaaUcKnECDLZn8HyDZ74h5LMELdHgcoVS8CIEe1uEAOqLUIMxyK1JpPEZ3qdncnoRf5sn8y1yOOTCYFhlv_Z3a7pfrfszk342J01VTX5w8F2EBxB-Pyl-QB4CGkixfsPx_GD9o4VJZMnDUEZsEGKLPnmmi_PSTWvAT-Tcc3di3e8NA-V5_Ed26l8c-nc45YZ9OnpKnvTAku53fX9Gtlz9nOyed8zUt3t0dpdo1e7RXXp-x1l9-4L83LddnbN6QX3sy01Vx4IudEMvwfJ55aQNlgJoqS6qZtk6uvIyo4B66UYWF602oihfkoujr7PDadiXXAgtVjYIcdsvY9KmjnOtBctyrqNSJDo2cS5iB86RkY7BUPOCCxHxAlyaUujUMSdEkYpXZLte1u4NoSV4VpabDGyjjoskMzbPkzQV0kSZhLcFJBrmWdmejxzLYvxWQ-DZpULZKJSNYniwgHxZt2k6No577z5A8a3vRCZtf2J5tVC9Kqm8TKNIWuOwDLeOipxJ7VhmjY1L6LYNSDIIX40UEx5V3fvyT4OmKPhicRtG12553SouARKmMHtJQF53mrPuokgypDQUAUlHOjUaw_hKXf3yrOCAc4WU8c5_9vcjeTSdnZ6ok-Oz72_JY7zSRSW_I9urq2v3HrDXynzw39YfZ6orSw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Activating+Connexin43+gap+junctions+primes+adipose+tissue+for+therapeutic+intervention&rft.jtitle=Acta+pharmaceutica+Sinica.+B&rft.au=Yi+Zhu&rft.au=Na+Li&rft.au=Mingyang+Huang&rft.au=Xi+Chen&rft.date=2022-07-01&rft.pub=Elsevier&rft.issn=2211-3835&rft.volume=12&rft.issue=7&rft.spage=3063&rft.epage=3072&rft_id=info:doi/10.1016%2Fj.apsb.2022.02.020&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9f7116cbe4124a1d906ae08cbc4f4d5c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3835&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3835&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3835&client=summon