Activating Connexin43 gap junctions primes adipose tissue for therapeutic intervention
Adipose tissue is a promising target for treating obesity and metabolic diseases. However, pharmacological agents usually fail to effectively engage adipocytes due to their extraordinarily large size and insufficient vascularization, especially in obese subjects. We have previously shown that during...
Saved in:
Published in | Acta pharmaceutica Sinica. B Vol. 12; no. 7; pp. 3063 - 3072 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.07.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Adipose tissue is a promising target for treating obesity and metabolic diseases. However, pharmacological agents usually fail to effectively engage adipocytes due to their extraordinarily large size and insufficient vascularization, especially in obese subjects. We have previously shown that during cold exposure, connexin43 (Cx43) gap junctions are induced and activated to connect neighboring adipocytes to share limited sympathetic neuronal input amongst multiple cells. We reason the same mechanism may be leveraged to improve the efficacy of various pharmacological agents that target adipose tissue. Using an adipose tissue-specific Cx43 overexpression mouse model, we demonstrate effectiveness in connecting adipocytes to augment metabolic efficacy of the β3-adrenergic receptor agonist Mirabegron and FGF21. Additionally, combing those molecules with the Cx43 gap junction channel activator danegaptide shows a similar enhanced efficacy. In light of these findings, we propose a model in which connecting adipocytes via Cx43 gap junction channels primes adipose tissue to pharmacological agents designed to engage it. Thus, Cx43 gap junction activators hold great potential for combination with additional agents targeting adipose tissue.
Hypertrophied adipocytes are refractory to pharmaceutical intervention. Enhancing the Connexin43 gap junction channel facilitates the dissemination of signals from therapeutic agents and thus re-enables efficient targeting of adipose tissue. [Display omitted] |
---|---|
AbstractList | Adipose tissue is a promising target for treating obesity and metabolic diseases. However, pharmacological agents usually fail to effectively engage adipocytes due to their extraordinarily large size and insufficient vascularization, especially in obese subjects. We have previously shown that during cold exposure, connexin43 (Cx43) gap junctions are induced and activated to connect neighboring adipocytes to share limited sympathetic neuronal input amongst multiple cells. We reason the same mechanism may be leveraged to improve the efficacy of various pharmacological agents that target adipose tissue. Using an adipose tissue-specific Cx43 overexpression mouse model, we demonstrate effectiveness in connecting adipocytes to augment metabolic efficacy of the β 3-adrenergic receptor agonist Mirabegron and FGF21. Additionally, combing those molecules with the Cx43 gap junction channel activator danegaptide shows a similar enhanced efficacy. In light of these findings, we propose a model in which connecting adipocytes via Cx43 gap junction channels primes adipose tissue to pharmacological agents designed to engage it. Thus, Cx43 gap junction activators hold great potential for combination with additional agents targeting adipose tissue.Adipose tissue is a promising target for treating obesity and metabolic diseases. However, pharmacological agents usually fail to effectively engage adipocytes due to their extraordinarily large size and insufficient vascularization, especially in obese subjects. We have previously shown that during cold exposure, connexin43 (Cx43) gap junctions are induced and activated to connect neighboring adipocytes to share limited sympathetic neuronal input amongst multiple cells. We reason the same mechanism may be leveraged to improve the efficacy of various pharmacological agents that target adipose tissue. Using an adipose tissue-specific Cx43 overexpression mouse model, we demonstrate effectiveness in connecting adipocytes to augment metabolic efficacy of the β 3-adrenergic receptor agonist Mirabegron and FGF21. Additionally, combing those molecules with the Cx43 gap junction channel activator danegaptide shows a similar enhanced efficacy. In light of these findings, we propose a model in which connecting adipocytes via Cx43 gap junction channels primes adipose tissue to pharmacological agents designed to engage it. Thus, Cx43 gap junction activators hold great potential for combination with additional agents targeting adipose tissue. Adipose tissue is a promising target for treating obesity and metabolic diseases. However, pharmacological agents usually fail to effectively engage adipocytes due to their extraordinarily large size and insufficient vascularization, especially in obese subjects. We have previously shown that during cold exposure, connexin43 (Cx43) gap junctions are induced and activated to connect neighboring adipocytes to share limited sympathetic neuronal input amongst multiple cells. We reason the same mechanism may be leveraged to improve the efficacy of various pharmacological agents that target adipose tissue. Using an adipose tissue-specific Cx43 overexpression mouse model, we demonstrate effectiveness in connecting adipocytes to augment metabolic efficacy of the β3-adrenergic receptor agonist Mirabegron and FGF21. Additionally, combing those molecules with the Cx43 gap junction channel activator danegaptide shows a similar enhanced efficacy. In light of these findings, we propose a model in which connecting adipocytes via Cx43 gap junction channels primes adipose tissue to pharmacological agents designed to engage it. Thus, Cx43 gap junction activators hold great potential for combination with additional agents targeting adipose tissue. Adipose tissue is a promising target for treating obesity and metabolic diseases. However, pharmacological agents usually fail to effectively engage adipocytes due to their extraordinarily large size and insufficient vascularization, especially in obese subjects. We have previously shown that during cold exposure, connexin43 (Cx43) gap junctions are induced and activated to connect neighboring adipocytes to share limited sympathetic neuronal input amongst multiple cells. We reason the same mechanism may be leveraged to improve the efficacy of various pharmacological agents that target adipose tissue. Using an adipose tissue-specific Cx43 overexpression mouse model, we demonstrate effectiveness in connecting adipocytes to augment metabolic efficacy of the β 3 -adrenergic receptor agonist Mirabegron and FGF21. Additionally, combing those molecules with the Cx43 gap junction channel activator danegaptide shows a similar enhanced efficacy. In light of these findings, we propose a model in which connecting adipocytes via Cx43 gap junction channels primes adipose tissue to pharmacological agents designed to engage it. Thus, Cx43 gap junction activators hold great potential for combination with additional agents targeting adipose tissue. Hypertrophied adipocytes are refractory to pharmaceutical intervention. Enhancing the Connexin43 gap junction channel facilitates the dissemination of signals from therapeutic agents and thus re-enables efficient targeting of adipose tissue. Image 1 Adipose tissue is a promising target for treating obesity and metabolic diseases. However, pharmacological agents usually fail to effectively engage adipocytes due to their extraordinarily large size and insufficient vascularization, especially in obese subjects. We have previously shown that during cold exposure, connexin43 (Cx43) gap junctions are induced and activated to connect neighboring adipocytes to share limited sympathetic neuronal input amongst multiple cells. We reason the same mechanism may be leveraged to improve the efficacy of various pharmacological agents that target adipose tissue. Using an adipose tissue-specific Cx43 overexpression mouse model, we demonstrate effectiveness in connecting adipocytes to augment metabolic efficacy of the -adrenergic receptor agonist Mirabegron and FGF21. Additionally, combing those molecules with the Cx43 gap junction channel activator danegaptide shows a similar enhanced efficacy. In light of these findings, we propose a model in which connecting adipocytes Cx43 gap junction channels primes adipose tissue to pharmacological agents designed to engage it. Thus, Cx43 gap junction activators hold great potential for combination with additional agents targeting adipose tissue. Adipose tissue is a promising target for treating obesity and metabolic diseases. However, pharmacological agents usually fail to effectively engage adipocytes due to their extraordinarily large size and insufficient vascularization, especially in obese subjects. We have previously shown that during cold exposure, connexin43 (Cx43) gap junctions are induced and activated to connect neighboring adipocytes to share limited sympathetic neuronal input amongst multiple cells. We reason the same mechanism may be leveraged to improve the efficacy of various pharmacological agents that target adipose tissue. Using an adipose tissue-specific Cx43 overexpression mouse model, we demonstrate effectiveness in connecting adipocytes to augment metabolic efficacy of the β3-adrenergic receptor agonist Mirabegron and FGF21. Additionally, combing those molecules with the Cx43 gap junction channel activator danegaptide shows a similar enhanced efficacy. In light of these findings, we propose a model in which connecting adipocytes via Cx43 gap junction channels primes adipose tissue to pharmacological agents designed to engage it. Thus, Cx43 gap junction activators hold great potential for combination with additional agents targeting adipose tissue. Hypertrophied adipocytes are refractory to pharmaceutical intervention. Enhancing the Connexin43 gap junction channel facilitates the dissemination of signals from therapeutic agents and thus re-enables efficient targeting of adipose tissue. [Display omitted] |
Author | Chen, Xi Zhu, Yi Wang, Zhao V. Li, Chien Xu, Lin Li, Na Li, Jianping Cao, Jianhong Scherer, Philipp E. Zhao, Shangang Grove, Kevin Zhang, Zhuzhen Williams, Kevin W. Huang, Mingyang An, Yu A. Zhu, Qingzhang Funcke, Jan-Bernd He, Zhenyan |
Author_xml | – sequence: 1 givenname: Yi surname: Zhu fullname: Zhu, Yi email: Yi.Zhu@bcm.edu organization: Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA – sequence: 2 givenname: Na surname: Li fullname: Li, Na organization: Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA – sequence: 3 givenname: Mingyang surname: Huang fullname: Huang, Mingyang organization: Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA – sequence: 4 givenname: Xi orcidid: 0000-0002-8817-0084 surname: Chen fullname: Chen, Xi organization: Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA – sequence: 5 givenname: Yu A. surname: An fullname: An, Yu A. organization: Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA – sequence: 6 givenname: Jianping surname: Li fullname: Li, Jianping organization: Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA – sequence: 7 givenname: Shangang orcidid: 0000-0002-9209-8206 surname: Zhao fullname: Zhao, Shangang organization: Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA – sequence: 8 givenname: Jan-Bernd orcidid: 0000-0002-2596-3167 surname: Funcke fullname: Funcke, Jan-Bernd organization: Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA – sequence: 9 givenname: Jianhong surname: Cao fullname: Cao, Jianhong organization: Division of Hypothalamic Research, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA – sequence: 10 givenname: Zhenyan surname: He fullname: He, Zhenyan organization: Division of Hypothalamic Research, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA – sequence: 11 givenname: Qingzhang surname: Zhu fullname: Zhu, Qingzhang organization: Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA – sequence: 12 givenname: Zhuzhen orcidid: 0000-0001-6787-3920 surname: Zhang fullname: Zhang, Zhuzhen organization: Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA – sequence: 13 givenname: Zhao V. surname: Wang fullname: Wang, Zhao V. organization: Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA – sequence: 14 givenname: Lin orcidid: 0000-0001-5815-4457 surname: Xu fullname: Xu, Lin organization: Quantitative Biomedical Research Center, Department of Population and Data Sciences, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA – sequence: 15 givenname: Kevin W. surname: Williams fullname: Williams, Kevin W. organization: Division of Hypothalamic Research, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA – sequence: 16 givenname: Chien surname: Li fullname: Li, Chien organization: Novo Nordisk Research Center, Seattle, WA 98109, USA – sequence: 17 givenname: Kevin surname: Grove fullname: Grove, Kevin organization: Novo Nordisk Research Center, Seattle, WA 98109, USA – sequence: 18 givenname: Philipp E. orcidid: 0000-0003-0680-3392 surname: Scherer fullname: Scherer, Philipp E. email: Philipp.Scherer@UTSouthwestern.edu organization: Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35865093$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uktr3DAQFiWlSdP8gR6Kj73sVg9LtqAUwtJHINBL26sYy-ONFq_kSvKS_vvK3XRpeogYkNB8j5FmXpIzHzwS8prRNaNMvdutYUrdmlPO13QJ-oxccM7YSrS1ODudhTwnVyntaFmqgBv5gpwL2SpJtbggP65tdgfIzm-rTfAe752vRbWFqdrNvuSCT9UU3R5TBb2bQsIqu5RmrIYQq3yHESacs7OV8xnjAf3CeUWeDzAmvHrYL8n3Tx-_bb6sbr9-vtlc366s5CyvJNeypco2yDmAoK3mwAYhoe5qLWrUSnUKaW9R91wIxnvOmkFAgxSF6BtxSW6Oun2AnVnqhPjLBHDmz0WIWwOxFDei0UPDmLId1ozXwHpNFSBtbWfroe6lLVofjlrT3O2xePocYXwk-jjj3Z3ZhoPRXAul6iLw9kEghp8zpmz2LlkcR_AY5mS40qJpyjtkgb751-tk8rcxBcCPABtDShGHE4RRswyA2ZllAMwyAIYuQQup_Y9kXYalH6VeNz5NfX-kYunWwWE0yTr0FnsX0ebyne4p-m-tecyS |
CitedBy_id | crossref_primary_10_3390_biology11071023 crossref_primary_10_1126_scitranslmed_ade8460 crossref_primary_10_2337_db23_0571 crossref_primary_10_3390_cells11152310 |
Cites_doi | 10.2337/diaspect.27.2.82 10.1038/ijo.2013.200 10.1210/jc.2006-1740 10.1074/jbc.M109.053942 10.1210/me.2012-1210 10.1016/j.pharmthera.2015.06.005 10.1016/j.cmet.2014.07.012 10.1016/j.cmet.2016.02.001 10.1016/j.cmet.2013.03.019 10.1093/ajcn/55.1.252s 10.1016/j.cmet.2013.04.005 10.1038/s41467-019-14069-2 10.1038/nm.3819 10.1016/j.micinf.2014.08.006 10.1038/oby.2011.125 10.1016/j.cmet.2014.12.009 10.1101/gad.177857.111 10.1038/s41467-021-25025-4 10.1210/en.2015-1722 10.1016/S1098-3597(99)90002-9 10.1371/journal.pone.0054221 10.1038/s41598-017-03607-x 10.1172/JCI88883 10.1002/med.21390 10.1016/j.cmet.2016.04.023 10.1016/j.tem.2014.03.001 10.1093/nar/gkr1013 10.1111/acel.12010 10.1172/JCI23606 10.1016/j.cmet.2011.10.012 10.1371/journal.pone.0040164 10.2337/db18-0462 10.1016/j.cmet.2016.08.005 10.1073/pnas.1006962107 10.1038/nm.3891 10.1093/ajcn/76.4.780 10.1016/j.cmet.2013.08.005 10.1038/nrd.2016.75 10.1016/j.cmet.2017.03.005 10.1016/j.cell.2012.05.016 10.2337/db17-0323 10.1016/j.cmet.2013.06.016 10.2337/diabetes.47.10.1555 10.1016/j.cmet.2017.09.005 |
ContentType | Journal Article |
Copyright | 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences |
Copyright_xml | – notice: 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences – notice: 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. – notice: 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.apsb.2022.02.020 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 2211-3843 |
EndPage | 3072 |
ExternalDocumentID | oai_doaj_org_article_9f7116cbe4124a1d906ae08cbc4f4d5c PMC9293664 35865093 10_1016_j_apsb_2022_02_020 S2211383522000764 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: K01 DK125447 – fundername: NIA NIH HHS grantid: K99 AG068239 – fundername: NIDDK NIH HHS grantid: P01 DK119130 |
GroupedDBID | --- --K -05 -0E -SE -S~ 0R~ 0SF 1~5 4.4 457 4G. 53G 5VR 5VS 6I. 7-5 92M 9D9 9DE AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABKZE ABMAC ACGFS ADBBV ADEZE ADRAZ AEXQZ AFUIB AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV CAJEE CAJUS CCEZO CIEJG DIK EBS EJD FDB GROUPED_DOAJ GX1 HH5 HYE HZ~ IPNFZ IXB JUIAU KQ8 M41 M48 NCXOZ O-L O9- OK1 Q-- Q-4 R-E RIG ROL RPM RT5 SES SSZ T8U U1F U1G U5E U5O XH2 ~NG AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-5295806c7e22aa30892a1f35a4b4934e966b6e0dce9d23312d217f3a7e0e33d73 |
IEDL.DBID | DOA |
ISSN | 2211-3835 |
IngestDate | Wed Aug 27 01:29:53 EDT 2025 Thu Aug 21 18:19:46 EDT 2025 Fri Jul 11 04:16:41 EDT 2025 Thu Apr 03 07:04:46 EDT 2025 Thu Apr 24 23:11:25 EDT 2025 Tue Jul 01 01:53:08 EDT 2025 Thu Jul 20 20:10:42 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Type 2 diabetes Obesity GJA1 Adipose tissue Connexin43 Gap junction β3-adrenergic receptor agonist FGF21 β3-Adrenergic receptor agonist |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-5295806c7e22aa30892a1f35a4b4934e966b6e0dce9d23312d217f3a7e0e33d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0680-3392 0000-0001-5815-4457 0000-0001-6787-3920 0000-0002-8817-0084 0000-0002-2596-3167 0000-0002-9209-8206 |
OpenAccessLink | https://doaj.org/article/9f7116cbe4124a1d906ae08cbc4f4d5c |
PMID | 35865093 |
PQID | 2693772335 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9f7116cbe4124a1d906ae08cbc4f4d5c pubmedcentral_primary_oai_pubmedcentral_nih_gov_9293664 proquest_miscellaneous_2693772335 pubmed_primary_35865093 crossref_primary_10_1016_j_apsb_2022_02_020 crossref_citationtrail_10_1016_j_apsb_2022_02_020 elsevier_sciencedirect_doi_10_1016_j_apsb_2022_02_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Acta pharmaceutica Sinica. B |
PublicationTitleAlternate | Acta Pharm Sin B |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Weyer, Tataranni, Snitker, Danforth, Ravussin (bib17) 1998; 47 Keipert, Lutter, Schroeder, Brandt, Stahlman, Schwarzmayr (bib43) 2020; 11 Frayn, Karpe (bib13) 2014; 38 Petrovic, Walden, Shabalina, Timmons, Cannon, Nedergaard (bib7) 2010; 285 Hanssen, Hoeks, Brans, van der Lans, Schaart, van den Driessche (bib11) 2015; 21 Cawthorne, Sennitt, Arch, Smith (bib16) 1992; 55 Larsen, Toubro, van Baak, Gottesdiener, Larson, Saris (bib18) 2002; 76 Sun, Tordjman, Clement, Scherer (bib36) 2013; 18 Lewis, Samms, Cooper, Luckett, Perkins, Adams (bib33) 2017; 7 Gimeno, Moller (bib3) 2014; 25 Baskin, Linderman, Brychta, McGehee, Anflick-Chames, Cero (bib14) 2018; 67 BonDurant, Ameka, Naber, Markan, Idiga, Acevedo (bib42) 2017; 25 Kharitonenkov, Shiyanova, Koester, Ford, Micanovic, Galbreath (bib20) 2005; 115 Wu, Bostrom, Sparks, Ye, Choi, Giang (bib8) 2012; 150 Veniant, Hale, Helmering, Chen, Stanislaus, Busby (bib34) 2012; 7 Holland, Adams, Brozinick, Bui, Miyauchi, Kusminski (bib38) 2013; 17 Rogers, Landa, Park, Smith (bib10) 2012; 11 Samms, Cheng, Kharitonenkov, Gimeno, Adams (bib44) 2016; 157 Khaodhiar, McCowen, Blackburn (bib1) 1999; 2 Kusminski, Bickel, Scherer (bib6) 2016; 15 Gaich, Chien, Fu, Glass, Deeg, Holland (bib22) 2013; 18 Zhu, Li, Huang, Bartels, Dogne, Zhao (bib28) 2021; 12 Moller (bib4) 2012; 15 Lin, Tian, Lam, Lin, Hoo, Konishi (bib39) 2013; 17 Crewe, An, Scherer (bib5) 2017; 127 Cypess, Weiner, Roberts-Toler, Franquet Elia, Kessler, Kahn (bib15) 2015; 21 Redman, de Jonge, Fang, Gamlin, Recker, Greenway (bib19) 2007; 92 Fisher, Kleiner, Douris, Fox, Mepani, Verdeguer (bib21) 2012; 26 Shinoda, Luijten, Hasegawa, Hong, Sonne, Kim (bib9) 2015; 21 Wang, Spandidos, Wang, Seed (bib27) 2012; 40 Zhu, Pereira, O'Neill, Riehle, Ilkun, Wende (bib25) 2013; 27 Zhu, Gao, Tao, Shao, Zhao, Huang (bib24) 2016; 24 Shao, Ishibashi, Kusminski, Wang, Hepler, Vishvanath (bib30) 2016; 23 Zhu, Zhao, Deng, Gordillo, Ghaben, Shao (bib26) 2017; 66 So, Leung (bib32) 2016; 36 Lan, Morgan, Rahmouni, Sonoda, Fu, Burgess (bib41) 2017; 26 Chau, Gao, Yang, Wu, Gromada (bib37) 2010; 107 Yoneshiro, Aita, Matsushita, Okamatsu-Ogura, Kameya, Kawai (bib12) 2011; 19 White (bib2) 2014; 27 Burke, Nagajyothi, Thi, Hanani, Scherer, Tanowitz (bib31) 2014; 16 Talukdar, Zhou, Li, Rossulek, Dong, Somayaji (bib23) 2016; 23 Schulz, Gorge, Gorbe, Ferdinandy, Lampe, Leybaert (bib35) 2015; 153 Owen, Ding, Morgan, Coate, Bookout, Rahmouni (bib40) 2014; 20 Zhu, Pires, Whitehead, Olsen, Wayment, Zhang (bib29) 2013; 8 Khaodhiar (10.1016/j.apsb.2022.02.020_bib1) 1999; 2 Petrovic (10.1016/j.apsb.2022.02.020_bib7) 2010; 285 Cypess (10.1016/j.apsb.2022.02.020_bib15) 2015; 21 Yoneshiro (10.1016/j.apsb.2022.02.020_bib12) 2011; 19 Wang (10.1016/j.apsb.2022.02.020_bib27) 2012; 40 Zhu (10.1016/j.apsb.2022.02.020_bib24) 2016; 24 Keipert (10.1016/j.apsb.2022.02.020_bib43) 2020; 11 Lewis (10.1016/j.apsb.2022.02.020_bib33) 2017; 7 Wu (10.1016/j.apsb.2022.02.020_bib8) 2012; 150 Shinoda (10.1016/j.apsb.2022.02.020_bib9) 2015; 21 Cawthorne (10.1016/j.apsb.2022.02.020_bib16) 1992; 55 Gimeno (10.1016/j.apsb.2022.02.020_bib3) 2014; 25 Zhu (10.1016/j.apsb.2022.02.020_bib29) 2013; 8 Kharitonenkov (10.1016/j.apsb.2022.02.020_bib20) 2005; 115 Veniant (10.1016/j.apsb.2022.02.020_bib34) 2012; 7 Frayn (10.1016/j.apsb.2022.02.020_bib13) 2014; 38 Owen (10.1016/j.apsb.2022.02.020_bib40) 2014; 20 Rogers (10.1016/j.apsb.2022.02.020_bib10) 2012; 11 Schulz (10.1016/j.apsb.2022.02.020_bib35) 2015; 153 Chau (10.1016/j.apsb.2022.02.020_bib37) 2010; 107 Moller (10.1016/j.apsb.2022.02.020_bib4) 2012; 15 Hanssen (10.1016/j.apsb.2022.02.020_bib11) 2015; 21 Zhu (10.1016/j.apsb.2022.02.020_bib28) 2021; 12 So (10.1016/j.apsb.2022.02.020_bib32) 2016; 36 Zhu (10.1016/j.apsb.2022.02.020_bib25) 2013; 27 Larsen (10.1016/j.apsb.2022.02.020_bib18) 2002; 76 Lan (10.1016/j.apsb.2022.02.020_bib41) 2017; 26 Kusminski (10.1016/j.apsb.2022.02.020_bib6) 2016; 15 Holland (10.1016/j.apsb.2022.02.020_bib38) 2013; 17 Sun (10.1016/j.apsb.2022.02.020_bib36) 2013; 18 Gaich (10.1016/j.apsb.2022.02.020_bib22) 2013; 18 Fisher (10.1016/j.apsb.2022.02.020_bib21) 2012; 26 Lin (10.1016/j.apsb.2022.02.020_bib39) 2013; 17 Weyer (10.1016/j.apsb.2022.02.020_bib17) 1998; 47 Crewe (10.1016/j.apsb.2022.02.020_bib5) 2017; 127 Shao (10.1016/j.apsb.2022.02.020_bib30) 2016; 23 BonDurant (10.1016/j.apsb.2022.02.020_bib42) 2017; 25 Baskin (10.1016/j.apsb.2022.02.020_bib14) 2018; 67 Redman (10.1016/j.apsb.2022.02.020_bib19) 2007; 92 White (10.1016/j.apsb.2022.02.020_bib2) 2014; 27 Talukdar (10.1016/j.apsb.2022.02.020_bib23) 2016; 23 Zhu (10.1016/j.apsb.2022.02.020_bib26) 2017; 66 Samms (10.1016/j.apsb.2022.02.020_bib44) 2016; 157 Burke (10.1016/j.apsb.2022.02.020_bib31) 2014; 16 |
References_xml | – volume: 66 start-page: 2789 year: 2017 end-page: 2799 ident: bib26 article-title: Hepatic GALE regulates whole-body glucose homeostasis by modulating publication-title: Diabetes – volume: 38 start-page: 1019 year: 2014 end-page: 1026 ident: bib13 article-title: Regulation of human subcutaneous adipose tissue blood flow publication-title: Int J Obes – volume: 20 start-page: 670 year: 2014 end-page: 677 ident: bib40 article-title: FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss publication-title: Cell Metabol – volume: 150 start-page: 366 year: 2012 end-page: 376 ident: bib8 article-title: Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human publication-title: Cell – volume: 107 start-page: 12553 year: 2010 end-page: 12558 ident: bib37 article-title: Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK–SIRT1–PGC-1 publication-title: Proc Natl Acad Sci U S A – volume: 21 start-page: 389 year: 2015 end-page: 394 ident: bib9 article-title: Genetic and functional characterization of clonally derived adult human brown adipocytes publication-title: Nat Med – volume: 26 start-page: 271 year: 2012 end-page: 281 ident: bib21 article-title: FGF21 regulates PGC-1 publication-title: Genes Dev – volume: 12 start-page: 4829 year: 2021 ident: bib28 article-title: Adipose tissue hyaluronan production improves systemic glucose homeostasis and primes adipocytes for CL 316,243-stimulated lipolysis publication-title: Nat Commun – volume: 7 start-page: 4238 year: 2017 ident: bib33 article-title: Reduced adiposity attenuates FGF21 mediated metabolic improvements in the Siberian hamster publication-title: Sci Rep – volume: 27 start-page: 172 year: 2013 end-page: 184 ident: bib25 article-title: Cardiac PI3K–Akt impairs insulin-stimulated glucose uptake independent of mTORC1 and GLUT4 translocation publication-title: Mol Endocrinol – volume: 127 start-page: 74 year: 2017 end-page: 82 ident: bib5 article-title: The ominous triad of adipose tissue dysfunction: inflammation, fibrosis, and impaired angiogenesis publication-title: J Clin Invest – volume: 285 start-page: 7153 year: 2010 end-page: 7164 ident: bib7 article-title: Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes publication-title: J Biol Chem – volume: 47 start-page: 1555 year: 1998 end-page: 1561 ident: bib17 article-title: Increase in insulin action and fat oxidation after treatment with CL 316,243, a highly selective publication-title: Diabetes – volume: 40 start-page: D1144 year: 2012 end-page: D1149 ident: bib27 article-title: PrimerBank: a PCR primer database for quantitative gene expression analysis, 2012 update publication-title: Nucleic Acids Res – volume: 8 start-page: e54221 year: 2013 ident: bib29 article-title: Mechanistic target of rapamycin ( publication-title: PLoS One – volume: 2 start-page: 17 year: 1999 end-page: 31 ident: bib1 article-title: Obesity and its comorbid conditions publication-title: Clin Cornerstone – volume: 157 start-page: 1467 year: 2016 end-page: 1480 ident: bib44 article-title: Overexpression of publication-title: Endocrinology – volume: 7 start-page: e40164 year: 2012 ident: bib34 article-title: FGF21 promotes metabolic homeostasis publication-title: PLoS One – volume: 15 start-page: 639 year: 2016 end-page: 660 ident: bib6 article-title: Targeting adipose tissue in the treatment of obesity-associated diabetes publication-title: Nat Rev Drug Discov – volume: 17 start-page: 790 year: 2013 end-page: 797 ident: bib38 article-title: An FGF21–adiponectin–ceramide axis controls energy expenditure and insulin action in mice publication-title: Cell Metabol – volume: 21 start-page: 863 year: 2015 end-page: 865 ident: bib11 article-title: Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus publication-title: Nat Med – volume: 26 year: 2017 ident: bib41 article-title: FGF19, FGF21, and an FGFR1/ publication-title: Cell Metabol – volume: 11 start-page: 1074 year: 2012 end-page: 1083 ident: bib10 article-title: Aging leads to a programmed loss of brown adipocytes in murine subcutaneous white adipose tissue publication-title: Aging Cell – volume: 27 start-page: 82 year: 2014 end-page: 86 ident: bib2 article-title: A brief history of the development of diabetes medications publication-title: Diabetes Spectr – volume: 25 start-page: 303 year: 2014 end-page: 311 ident: bib3 article-title: FGF21-based pharmacotherapy—potential utility for metabolic disorders publication-title: Trends Endocrinol Metabol – volume: 115 start-page: 1627 year: 2005 end-page: 1635 ident: bib20 article-title: FGF-21 as a novel metabolic regulator publication-title: J Clin Invest – volume: 76 start-page: 780 year: 2002 end-page: 788 ident: bib18 article-title: Effect of a 28-d treatment with L-796568, a novel publication-title: Am J Clin Nutr – volume: 23 start-page: 427 year: 2016 end-page: 440 ident: bib23 article-title: A long-acting FGF21 molecule, PF-05231023, decreases body weight and improves lipid profile in non-human primates and type 2 diabetic subjects publication-title: Cell Metabol – volume: 17 start-page: 779 year: 2013 end-page: 789 ident: bib39 article-title: Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice publication-title: Cell Metabol – volume: 24 start-page: 420 year: 2016 end-page: 433 ident: bib24 article-title: Connexin 43 mediates white adipose tissue beiging by facilitating the propagation of sympathetic neuronal signals publication-title: Cell Metabol – volume: 18 start-page: 333 year: 2013 end-page: 340 ident: bib22 article-title: The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes publication-title: Cell Metabol – volume: 36 start-page: 672 year: 2016 end-page: 704 ident: bib32 article-title: Fibroblast growth factor 21 as an emerging therapeutic target for type 2 diabetes mellitus publication-title: Med Res Rev – volume: 23 start-page: 1167 year: 2016 end-page: 1184 ident: bib30 article-title: Zfp423 maintains white adipocyte identity through suppression of the beige cell thermogenic gene program publication-title: Cell Metabol – volume: 153 start-page: 90 year: 2015 end-page: 106 ident: bib35 article-title: Connexin 43 is an emerging therapeutic target in ischemia/reperfusion injury, cardioprotection and neuroprotection publication-title: Pharmacol Ther – volume: 67 start-page: 2113 year: 2018 end-page: 2125 ident: bib14 article-title: Regulation of human adipose tissue activation, gallbladder size, and bile acid metabolism by a publication-title: Diabetes – volume: 25 start-page: 935 year: 2017 end-page: 944.e4 ident: bib42 article-title: FGF21 regulates metabolism through adipose-dependent and -independent mechanisms publication-title: Cell Metabol – volume: 92 start-page: 527 year: 2007 end-page: 531 ident: bib19 article-title: Lack of an effect of a novel publication-title: J Clin Endocrinol Metab – volume: 11 start-page: 624 year: 2020 ident: bib43 article-title: Endogenous FGF21-signaling controls paradoxical obesity resistance of UCP1-deficient mice publication-title: Nat Commun – volume: 16 start-page: 893 year: 2014 end-page: 901 ident: bib31 article-title: Adipocytes in both brown and white adipose tissue of adult mice are functionally connected publication-title: Microb Infect – volume: 15 start-page: 19 year: 2012 end-page: 24 ident: bib4 article-title: Metabolic disease drug discovery—"hitting the target" is easier said than done publication-title: Cell Metabol – volume: 18 start-page: 470 year: 2013 end-page: 477 ident: bib36 article-title: Fibrosis and adipose tissue dysfunction publication-title: Cell Metabol – volume: 19 start-page: 1755 year: 2011 end-page: 1760 ident: bib12 article-title: Age-related decrease in cold-activated brown adipose tissue and accumulation of body fat in healthy humans publication-title: Obesity – volume: 55 year: 1992 ident: bib16 article-title: BRL 35135, a potent and selective atypical publication-title: Am J Clin Nutr – volume: 21 start-page: 33 year: 2015 end-page: 38 ident: bib15 article-title: Activation of human brown adipose tissue by a publication-title: Cell Metabol – volume: 27 start-page: 82 year: 2014 ident: 10.1016/j.apsb.2022.02.020_bib2 article-title: A brief history of the development of diabetes medications publication-title: Diabetes Spectr doi: 10.2337/diaspect.27.2.82 – volume: 38 start-page: 1019 year: 2014 ident: 10.1016/j.apsb.2022.02.020_bib13 article-title: Regulation of human subcutaneous adipose tissue blood flow publication-title: Int J Obes doi: 10.1038/ijo.2013.200 – volume: 92 start-page: 527 year: 2007 ident: 10.1016/j.apsb.2022.02.020_bib19 article-title: Lack of an effect of a novel β3-adrenoceptor agonist, TAK-677, on energy metabolism in obese individuals: a double-blind, placebo-controlled randomized study publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2006-1740 – volume: 285 start-page: 7153 year: 2010 ident: 10.1016/j.apsb.2022.02.020_bib7 publication-title: J Biol Chem doi: 10.1074/jbc.M109.053942 – volume: 27 start-page: 172 year: 2013 ident: 10.1016/j.apsb.2022.02.020_bib25 article-title: Cardiac PI3K–Akt impairs insulin-stimulated glucose uptake independent of mTORC1 and GLUT4 translocation publication-title: Mol Endocrinol doi: 10.1210/me.2012-1210 – volume: 153 start-page: 90 year: 2015 ident: 10.1016/j.apsb.2022.02.020_bib35 article-title: Connexin 43 is an emerging therapeutic target in ischemia/reperfusion injury, cardioprotection and neuroprotection publication-title: Pharmacol Ther doi: 10.1016/j.pharmthera.2015.06.005 – volume: 20 start-page: 670 year: 2014 ident: 10.1016/j.apsb.2022.02.020_bib40 article-title: FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss publication-title: Cell Metabol doi: 10.1016/j.cmet.2014.07.012 – volume: 23 start-page: 427 year: 2016 ident: 10.1016/j.apsb.2022.02.020_bib23 article-title: A long-acting FGF21 molecule, PF-05231023, decreases body weight and improves lipid profile in non-human primates and type 2 diabetic subjects publication-title: Cell Metabol doi: 10.1016/j.cmet.2016.02.001 – volume: 17 start-page: 790 year: 2013 ident: 10.1016/j.apsb.2022.02.020_bib38 article-title: An FGF21–adiponectin–ceramide axis controls energy expenditure and insulin action in mice publication-title: Cell Metabol doi: 10.1016/j.cmet.2013.03.019 – volume: 55 year: 1992 ident: 10.1016/j.apsb.2022.02.020_bib16 article-title: BRL 35135, a potent and selective atypical β-adrenoceptor agonist publication-title: Am J Clin Nutr doi: 10.1093/ajcn/55.1.252s – volume: 17 start-page: 779 year: 2013 ident: 10.1016/j.apsb.2022.02.020_bib39 article-title: Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice publication-title: Cell Metabol doi: 10.1016/j.cmet.2013.04.005 – volume: 11 start-page: 624 year: 2020 ident: 10.1016/j.apsb.2022.02.020_bib43 article-title: Endogenous FGF21-signaling controls paradoxical obesity resistance of UCP1-deficient mice publication-title: Nat Commun doi: 10.1038/s41467-019-14069-2 – volume: 21 start-page: 389 year: 2015 ident: 10.1016/j.apsb.2022.02.020_bib9 article-title: Genetic and functional characterization of clonally derived adult human brown adipocytes publication-title: Nat Med doi: 10.1038/nm.3819 – volume: 16 start-page: 893 year: 2014 ident: 10.1016/j.apsb.2022.02.020_bib31 article-title: Adipocytes in both brown and white adipose tissue of adult mice are functionally connected via gap junctions: implications for Chagas disease publication-title: Microb Infect doi: 10.1016/j.micinf.2014.08.006 – volume: 19 start-page: 1755 year: 2011 ident: 10.1016/j.apsb.2022.02.020_bib12 article-title: Age-related decrease in cold-activated brown adipose tissue and accumulation of body fat in healthy humans publication-title: Obesity doi: 10.1038/oby.2011.125 – volume: 21 start-page: 33 year: 2015 ident: 10.1016/j.apsb.2022.02.020_bib15 article-title: Activation of human brown adipose tissue by a β3-adrenergic receptor agonist publication-title: Cell Metabol doi: 10.1016/j.cmet.2014.12.009 – volume: 26 start-page: 271 year: 2012 ident: 10.1016/j.apsb.2022.02.020_bib21 article-title: FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis publication-title: Genes Dev doi: 10.1101/gad.177857.111 – volume: 12 start-page: 4829 year: 2021 ident: 10.1016/j.apsb.2022.02.020_bib28 article-title: Adipose tissue hyaluronan production improves systemic glucose homeostasis and primes adipocytes for CL 316,243-stimulated lipolysis publication-title: Nat Commun doi: 10.1038/s41467-021-25025-4 – volume: 157 start-page: 1467 year: 2016 ident: 10.1016/j.apsb.2022.02.020_bib44 article-title: Overexpression of β-Klotho in adipose tissue sensitizes male mice to endogenous FGF21 and provides protection from diet-induced obesity publication-title: Endocrinology doi: 10.1210/en.2015-1722 – volume: 2 start-page: 17 year: 1999 ident: 10.1016/j.apsb.2022.02.020_bib1 article-title: Obesity and its comorbid conditions publication-title: Clin Cornerstone doi: 10.1016/S1098-3597(99)90002-9 – volume: 8 start-page: e54221 year: 2013 ident: 10.1016/j.apsb.2022.02.020_bib29 article-title: Mechanistic target of rapamycin (Mtor) is essential for murine embryonic heart development and growth publication-title: PLoS One doi: 10.1371/journal.pone.0054221 – volume: 7 start-page: 4238 year: 2017 ident: 10.1016/j.apsb.2022.02.020_bib33 article-title: Reduced adiposity attenuates FGF21 mediated metabolic improvements in the Siberian hamster publication-title: Sci Rep doi: 10.1038/s41598-017-03607-x – volume: 127 start-page: 74 year: 2017 ident: 10.1016/j.apsb.2022.02.020_bib5 article-title: The ominous triad of adipose tissue dysfunction: inflammation, fibrosis, and impaired angiogenesis publication-title: J Clin Invest doi: 10.1172/JCI88883 – volume: 36 start-page: 672 year: 2016 ident: 10.1016/j.apsb.2022.02.020_bib32 article-title: Fibroblast growth factor 21 as an emerging therapeutic target for type 2 diabetes mellitus publication-title: Med Res Rev doi: 10.1002/med.21390 – volume: 23 start-page: 1167 year: 2016 ident: 10.1016/j.apsb.2022.02.020_bib30 article-title: Zfp423 maintains white adipocyte identity through suppression of the beige cell thermogenic gene program publication-title: Cell Metabol doi: 10.1016/j.cmet.2016.04.023 – volume: 25 start-page: 303 year: 2014 ident: 10.1016/j.apsb.2022.02.020_bib3 article-title: FGF21-based pharmacotherapy—potential utility for metabolic disorders publication-title: Trends Endocrinol Metabol doi: 10.1016/j.tem.2014.03.001 – volume: 40 start-page: D1144 year: 2012 ident: 10.1016/j.apsb.2022.02.020_bib27 article-title: PrimerBank: a PCR primer database for quantitative gene expression analysis, 2012 update publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr1013 – volume: 11 start-page: 1074 year: 2012 ident: 10.1016/j.apsb.2022.02.020_bib10 article-title: Aging leads to a programmed loss of brown adipocytes in murine subcutaneous white adipose tissue publication-title: Aging Cell doi: 10.1111/acel.12010 – volume: 115 start-page: 1627 year: 2005 ident: 10.1016/j.apsb.2022.02.020_bib20 article-title: FGF-21 as a novel metabolic regulator publication-title: J Clin Invest doi: 10.1172/JCI23606 – volume: 15 start-page: 19 year: 2012 ident: 10.1016/j.apsb.2022.02.020_bib4 article-title: Metabolic disease drug discovery—"hitting the target" is easier said than done publication-title: Cell Metabol doi: 10.1016/j.cmet.2011.10.012 – volume: 7 start-page: e40164 year: 2012 ident: 10.1016/j.apsb.2022.02.020_bib34 article-title: FGF21 promotes metabolic homeostasis via white adipose and leptin in mice publication-title: PLoS One doi: 10.1371/journal.pone.0040164 – volume: 67 start-page: 2113 year: 2018 ident: 10.1016/j.apsb.2022.02.020_bib14 article-title: Regulation of human adipose tissue activation, gallbladder size, and bile acid metabolism by a β3-adrenergic receptor agonist publication-title: Diabetes doi: 10.2337/db18-0462 – volume: 24 start-page: 420 year: 2016 ident: 10.1016/j.apsb.2022.02.020_bib24 article-title: Connexin 43 mediates white adipose tissue beiging by facilitating the propagation of sympathetic neuronal signals publication-title: Cell Metabol doi: 10.1016/j.cmet.2016.08.005 – volume: 107 start-page: 12553 year: 2010 ident: 10.1016/j.apsb.2022.02.020_bib37 article-title: Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK–SIRT1–PGC-1α pathway publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1006962107 – volume: 21 start-page: 863 year: 2015 ident: 10.1016/j.apsb.2022.02.020_bib11 article-title: Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus publication-title: Nat Med doi: 10.1038/nm.3891 – volume: 76 start-page: 780 year: 2002 ident: 10.1016/j.apsb.2022.02.020_bib18 article-title: Effect of a 28-d treatment with L-796568, a novel β3-adrenergic receptor agonist, on energy expenditure and body composition in obese men publication-title: Am J Clin Nutr doi: 10.1093/ajcn/76.4.780 – volume: 18 start-page: 333 year: 2013 ident: 10.1016/j.apsb.2022.02.020_bib22 article-title: The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes publication-title: Cell Metabol doi: 10.1016/j.cmet.2013.08.005 – volume: 15 start-page: 639 year: 2016 ident: 10.1016/j.apsb.2022.02.020_bib6 article-title: Targeting adipose tissue in the treatment of obesity-associated diabetes publication-title: Nat Rev Drug Discov doi: 10.1038/nrd.2016.75 – volume: 25 start-page: 935 year: 2017 ident: 10.1016/j.apsb.2022.02.020_bib42 article-title: FGF21 regulates metabolism through adipose-dependent and -independent mechanisms publication-title: Cell Metabol doi: 10.1016/j.cmet.2017.03.005 – volume: 150 start-page: 366 year: 2012 ident: 10.1016/j.apsb.2022.02.020_bib8 article-title: Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human publication-title: Cell doi: 10.1016/j.cell.2012.05.016 – volume: 66 start-page: 2789 year: 2017 ident: 10.1016/j.apsb.2022.02.020_bib26 article-title: Hepatic GALE regulates whole-body glucose homeostasis by modulating Tff3 expression publication-title: Diabetes doi: 10.2337/db17-0323 – volume: 18 start-page: 470 year: 2013 ident: 10.1016/j.apsb.2022.02.020_bib36 article-title: Fibrosis and adipose tissue dysfunction publication-title: Cell Metabol doi: 10.1016/j.cmet.2013.06.016 – volume: 47 start-page: 1555 year: 1998 ident: 10.1016/j.apsb.2022.02.020_bib17 article-title: Increase in insulin action and fat oxidation after treatment with CL 316,243, a highly selective β3-adrenoceptor agonist in humans publication-title: Diabetes doi: 10.2337/diabetes.47.10.1555 – volume: 26 year: 2017 ident: 10.1016/j.apsb.2022.02.020_bib41 article-title: FGF19, FGF21, and an FGFR1/β-Klotho-activating antibody act on the nervous system to regulate body weight and glycemia publication-title: Cell Metabol doi: 10.1016/j.cmet.2017.09.005 |
SSID | ssj0000602275 |
Score | 2.2665226 |
Snippet | Adipose tissue is a promising target for treating obesity and metabolic diseases. However, pharmacological agents usually fail to effectively engage adipocytes... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3063 |
SubjectTerms | Adipose tissue Connexin43 FGF21 Gap junction GJA1 Obesity Original Type 2 diabetes β3-Adrenergic receptor agonist |
SummonAdditionalLinks | – databaseName: ScienceDirect dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhp15K33VfqFByaczKkizbxyQ0hEJLoEnZm9DLW4fgNfEGmn_fGdnerFvIoeCLbcl6zEgzY818Q8gnBVxiwORKleA-BXnrU1DqfWpAGFTO5srGCO9v39XZpfy6zJd75GSKhUG3ynHvH_b0uFuPTxbjbC66pln84GC7iKhAxPMkxAQVsoxBfMvj7X8WphAkDz0ZsXyKFcbYmcHNy3S9BTOR8wjdiWm_d-RThPGfial_1dC_vSl3xNPpE_J41Cvp0dD1p2QvtM_IwfkATH13SC_u46z6Q3pAz-8hq--ek59Hbkhz1q5odH353bRS0JXp6BUIvsibtMNMAD01vunWfaCbSDIKSi_dCeKizY4T5Qtyefrl4uQsHTMupA4TG6R46lcy5YrAuTGClRU3WS1yI62shAxgG1kVGAy18lyIjHuwaGphisCCEL4QL8l-u27Da0JrMKwctyWIRiN9XlpXVXlRCGWzUkFrCcmmedZuhCPHrBjXevI7u9JIG4200QwvlpDP2zrdAMbxYOljJN-2JAJpxwfrm5UeOUlXdZFlytmAWbhN5iumTGCls07W0G2XkHwivp7xJXyqebDxjxOnaFiweApj2rC-7TVXoBEWMHt5Ql4NnLPtoshLRDQUCSlmPDUbw_xN2_yKoOCg5gql5Jv_7O9b8gjvBkfkd2R_c3Mb3oO6tbEf4nr6A44NKCw priority: 102 providerName: Elsevier – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhvfRS-q77QoWSS-NiS7ZkH0pJS0MopOSQLbkJvbx1CF53vYHsv--MbO-u25BTwSdbliXNjOcbNPqGkPcCtERDyBULzlwM_tbFAOpdrMEZlNbkwoQT3qc_xMks-36RX-yRsdzRsIDdraEd1pOaLa8-3vxefwaD_7TN1dJtZyDWYyzwbzII4e-BZ5JoqKcD3O__zEiYh1mNjCF7H6CP4RzN7d1MfFWg9J-4rH8h6d-ZlTuu6vgheTBgTHrUK8Ujsuebx-TgrCepXh_S8-2Zq-6QHtCzLX31-gn5eWT7kmfNnIY0mJu6yTid65ZeghMMekpbrArQUe3qdtF5ugriowCA6c6BLlrvJFQ-JbPjb-dfT-Kh-kJsschBjDuARSKs9IxpzZOiZDqteK4zk5U88xAnGeETmGrpGOcpcxDdVFxLn3jOneTPyH6zaPwLQisIsiwzBbhJnbm8MLYscym5MGkh4GsRScd1VnagJscKGVdqzEG7VCgbhbJRCV5JRD5s3ml7Yo47W39B8W1aIql2uLFYztVgo6qsZJoKazxW5NapKxOhfVJYY7MKhm0jko_CVwM-6XEHdFXf-fF3o6YoMF7ckdGNX1x3iglAhxJWL4_I815zNkPkeYHshjwicqJTkzlMnzT1r0AQDpCXC5G9_B-TfkXu41T6DOXXZH-1vPZvAIetzNtgXH8ACj4woQ priority: 102 providerName: Scholars Portal |
Title | Activating Connexin43 gap junctions primes adipose tissue for therapeutic intervention |
URI | https://dx.doi.org/10.1016/j.apsb.2022.02.020 https://www.ncbi.nlm.nih.gov/pubmed/35865093 https://www.proquest.com/docview/2693772335 https://pubmed.ncbi.nlm.nih.gov/PMC9293664 https://doaj.org/article/9f7116cbe4124a1d906ae08cbc4f4d5c |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp15K33VfqFByaUxtSZblY1Ia0paUFJKyN6GXU4fgNfUGmn_fGcm78baQXgpGB7_k0Yw03-DRN4S8lWAlBkKuXHLmc_C3PgdQ73MDzqBxtpI27vA-_iqPzsTnRbWYlfrCnLBED5wG7n3T1mUpnQ1YJtmUvimkCYVy1olW-Mrh6gs-bxZMpTUYqfEwf5Ex5OkDnDHtmEnJXWYYLQSHjEXCTiz2PfNKkbx_yzn9DT7_zKGcOaXD--TehCbpfpLiAbkT-odk9yTRUV_v0dOb3VXjHt2lJzdE1dePyPd9l4qb9ec0Jrz86nrB6bkZ6AW4u2iRdED-_5Ea3w3LMdBVVBQFqEtnW7doN0udfEzODj-efjjKpzoLucNyBjn-61OFdHVgzBheqIaZsuWVEVY0XASIiKwMBYjaeMZ5yTzEMS03dSgC577mT8hOv-zDM0JbCKccswocogHtKOuapqprLm2pJPSWkXI9ztpNJORYC-NSr7PNLjTqRqNudIFHkZF3m2eGRMFx690HqL7NnUifHU-AUenJqPS_jCoj1Vr5ekIiCWHAq7pbO3-zthQN0xT_vZg-LK9GzSTgwBpGr8rI02Q5m0_klUIeQ56ResumtmTYvtJ3PyIVOIBbLqV4_j-EfkHuoigpF_kl2Vn9vAqvAHGt7Os4uaD9tDiA9ss3Be2xUL8B6gArdw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5wwELbS9NBeqr5L-nKlKpcGrbHBwDGJGm3aJIrUTbU3yzZmS1SxKGyk5N93xsBmaaUcKnECDLZn8HyDZ74h5LMELdHgcoVS8CIEe1uEAOqLUIMxyK1JpPEZ3qdncnoRf5sn8y1yOOTCYFhlv_Z3a7pfrfszk342J01VTX5w8F2EBxB-Pyl-QB4CGkixfsPx_GD9o4VJZMnDUEZsEGKLPnmmi_PSTWvAT-Tcc3di3e8NA-V5_Ed26l8c-nc45YZ9OnpKnvTAku53fX9Gtlz9nOyed8zUt3t0dpdo1e7RXXp-x1l9-4L83LddnbN6QX3sy01Vx4IudEMvwfJ55aQNlgJoqS6qZtk6uvIyo4B66UYWF602oihfkoujr7PDadiXXAgtVjYIcdsvY9KmjnOtBctyrqNSJDo2cS5iB86RkY7BUPOCCxHxAlyaUujUMSdEkYpXZLte1u4NoSV4VpabDGyjjoskMzbPkzQV0kSZhLcFJBrmWdmejxzLYvxWQ-DZpULZKJSNYniwgHxZt2k6No577z5A8a3vRCZtf2J5tVC9Kqm8TKNIWuOwDLeOipxJ7VhmjY1L6LYNSDIIX40UEx5V3fvyT4OmKPhicRtG12553SouARKmMHtJQF53mrPuokgypDQUAUlHOjUaw_hKXf3yrOCAc4WU8c5_9vcjeTSdnZ6ok-Oz72_JY7zSRSW_I9urq2v3HrDXynzw39YfZ6orSw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Activating+Connexin43+gap+junctions+primes+adipose+tissue+for+therapeutic+intervention&rft.jtitle=Acta+pharmaceutica+Sinica.+B&rft.au=Yi+Zhu&rft.au=Na+Li&rft.au=Mingyang+Huang&rft.au=Xi+Chen&rft.date=2022-07-01&rft.pub=Elsevier&rft.issn=2211-3835&rft.volume=12&rft.issue=7&rft.spage=3063&rft.epage=3072&rft_id=info:doi/10.1016%2Fj.apsb.2022.02.020&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9f7116cbe4124a1d906ae08cbc4f4d5c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3835&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3835&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3835&client=summon |