Sequencing Chromosomal Abnormalities Reveals Neurodevelopmental Loci that Confer Risk across Diagnostic Boundaries

Balanced chromosomal abnormalities (BCAs) represent a relatively untapped reservoir of single-gene disruptions in neurodevelopmental disorders (NDDs). We sequenced BCAs in patients with autism or related NDDs, revealing disruption of 33 loci in four general categories: (1) genes previously associate...

Full description

Saved in:
Bibliographic Details
Published inCell Vol. 149; no. 3; pp. 525 - 537
Main Authors Talkowski, Michael E., Rosenfeld, Jill A., Blumenthal, Ian, Pillalamarri, Vamsee, Chiang, Colby, Heilbut, Adrian, Ernst, Carl, Hanscom, Carrie, Rossin, Elizabeth, Lindgren, Amelia M., Pereira, Shahrin, Ruderfer, Douglas, Kirby, Andrew, Ripke, Stephan, Harris, David J., Lee, Ji-Hyun, Ha, Kyungsoo, Kim, Hyung-Goo, Solomon, Benjamin D., Gropman, Andrea L., Lucente, Diane, Sims, Katherine, Ohsumi, Toshiro K., Borowsky, Mark L., Loranger, Stephanie, Quade, Bradley, Lage, Kasper, Miles, Judith, Wu, Bai-Lin, Shen, Yiping, Neale, Benjamin, Shaffer, Lisa G., Daly, Mark J., Morton, Cynthia C., Gusella, James F.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 27.04.2012
Subjects
Online AccessGet full text
ISSN0092-8674
1097-4172
1097-4172
DOI10.1016/j.cell.2012.03.028

Cover

Loading…
Abstract Balanced chromosomal abnormalities (BCAs) represent a relatively untapped reservoir of single-gene disruptions in neurodevelopmental disorders (NDDs). We sequenced BCAs in patients with autism or related NDDs, revealing disruption of 33 loci in four general categories: (1) genes previously associated with abnormal neurodevelopment (e.g., AUTS2, FOXP1, and CDKL5), (2) single-gene contributors to microdeletion syndromes (MBD5, SATB2, EHMT1, and SNURF-SNRPN), (3) novel risk loci (e.g., CHD8, KIRREL3, and ZNF507), and (4) genes associated with later-onset psychiatric disorders (e.g., TCF4, ZNF804A, PDE10A, GRIN2B, and ANK3). We also discovered among neurodevelopmental cases a profoundly increased burden of copy-number variants from these 33 loci and a significant enrichment of polygenic risk alleles from genome-wide association studies of autism and schizophrenia. Our findings suggest a polygenic risk model of autism and reveal that some neurodevelopmental genes are sensitive to perturbation by multiple mutational mechanisms, leading to variable phenotypic outcomes that manifest at different life stages. [Display omitted] ▸ Mechanisms of epigenetic and transcriptional regulation implicated in autism ▸ Balanced chromosomal abnormality breakpoints harbor individual strong-effect genes ▸ Dosage-sensitive loci confer risk to autism from a spectrum of mutational mechanisms ▸ Different alterations in a gene are associated with diverse clinical outcomes Sequencing of balanced chromosomal abnormalities, combined with convergent genomic studies of gene expression, copy-number variation, and genome-wide association, identifies 22 new loci that contribute to autism and related neurodevelopmental disorders. These data support a polygenic risk model for autism and provide new insight into how different types of mutations of the same genes can lead to variable disease phenotypes that manifest at different stages of life.
AbstractList Balanced chromosomal abnormalities (BCAs) represent a relatively untapped reservoir of single-gene disruptions in neurodevelopmental disorders (NDDs). We sequenced BCAs in patients with autism or related NDDs, revealing disruption of 33 loci in four general categories: (1) genes previously associated with abnormal neurodevelopment (e.g., AUTS2, FOXP1, and CDKL5), (2) single-gene contributors to microdeletion syndromes (MBD5, SATB2, EHMT1, and SNURF-SNRPN), (3) novel risk loci (e.g., CHD8, KIRREL3, and ZNF507), and (4) genes associated with later-onset psychiatric disorders (e.g., TCF4, ZNF804A, PDE10A, GRIN2B, and ANK3). We also discovered among neurodevelopmental cases a profoundly increased burden of copy-number variants from these 33 loci and a significant enrichment of polygenic risk alleles from genome-wide association studies of autism and schizophrenia. Our findings suggest a polygenic risk model of autism and reveal that some neurodevelopmental genes are sensitive to perturbation by multiple mutational mechanisms, leading to variable phenotypic outcomes that manifest at different life stages.Balanced chromosomal abnormalities (BCAs) represent a relatively untapped reservoir of single-gene disruptions in neurodevelopmental disorders (NDDs). We sequenced BCAs in patients with autism or related NDDs, revealing disruption of 33 loci in four general categories: (1) genes previously associated with abnormal neurodevelopment (e.g., AUTS2, FOXP1, and CDKL5), (2) single-gene contributors to microdeletion syndromes (MBD5, SATB2, EHMT1, and SNURF-SNRPN), (3) novel risk loci (e.g., CHD8, KIRREL3, and ZNF507), and (4) genes associated with later-onset psychiatric disorders (e.g., TCF4, ZNF804A, PDE10A, GRIN2B, and ANK3). We also discovered among neurodevelopmental cases a profoundly increased burden of copy-number variants from these 33 loci and a significant enrichment of polygenic risk alleles from genome-wide association studies of autism and schizophrenia. Our findings suggest a polygenic risk model of autism and reveal that some neurodevelopmental genes are sensitive to perturbation by multiple mutational mechanisms, leading to variable phenotypic outcomes that manifest at different life stages.
Balanced chromosomal abnormalities (BCAs) represent a relatively untapped reservoir of single-gene disruptions in neurodevelopmental disorders (NDDs). We sequenced BCAs in patients with autism or related NDDs, revealing disruption of 33 loci in four general categories: (1) genes previously associated with abnormal neurodevelopment (e.g., AUTS2, FOXP1, and CDKL5), (2) single-gene contributors to microdeletion syndromes (MBD5, SATB2, EHMT1, and SNURF-SNRPN), (3) novel risk loci (e.g., CHD8, KIRREL3, and ZNF507), and (4) genes associated with later-onset psychiatric disorders (e.g., TCF4, ZNF804A, PDE10A, GRIN2B, and ANK3). We also discovered among neurodevelopmental cases a profoundly increased burden of copy-number variants from these 33 loci and a significant enrichment of polygenic risk alleles from genome-wide association studies of autism and schizophrenia. Our findings suggest a polygenic risk model of autism and reveal that some neurodevelopmental genes are sensitive to perturbation by multiple mutational mechanisms, leading to variable phenotypic outcomes that manifest at different life stages. [Display omitted] ▸ Mechanisms of epigenetic and transcriptional regulation implicated in autism ▸ Balanced chromosomal abnormality breakpoints harbor individual strong-effect genes ▸ Dosage-sensitive loci confer risk to autism from a spectrum of mutational mechanisms ▸ Different alterations in a gene are associated with diverse clinical outcomes Sequencing of balanced chromosomal abnormalities, combined with convergent genomic studies of gene expression, copy-number variation, and genome-wide association, identifies 22 new loci that contribute to autism and related neurodevelopmental disorders. These data support a polygenic risk model for autism and provide new insight into how different types of mutations of the same genes can lead to variable disease phenotypes that manifest at different stages of life.
Balanced chromosomal abnormalities (BCAs) represent a relatively untapped reservoir of single-gene disruptions in neurodevelopmental disorders (NDDs). We sequenced BCAs in patients with autism or related NDDs, revealing disruption of 33 loci in four general categories: (1) genes previously associated with abnormal neurodevelopment (e.g., AUTS2, FOXP1, and CDKL5), (2) single-gene contributors to microdeletion syndromes (MBD5, SATB2, EHMT1, and SNURF-SNRPN), (3) novel risk loci (e.g., CHD8, KIRREL3, and ZNF507), and (4) genes associated with later-onset psychiatric disorders (e.g., TCF4, ZNF804A, PDE10A, GRIN2B, and ANK3). We also discovered among neurodevelopmental cases a profoundly increased burden of copy-number variants from these 33 loci and a significant enrichment of polygenic risk alleles from genome-wide association studies of autism and schizophrenia. Our findings suggest a polygenic risk model of autism and reveal that some neurodevelopmental genes are sensitive to perturbation by multiple mutational mechanisms, leading to variable phenotypic outcomes that manifest at different life stages.
Balanced chromosomal abnormalities (BCAs) represent a reservoir of single gene disruptions in neurodevelopmental disorders (NDD). We sequenced BCAs in autism and related NDDs, revealing disruption of 33 loci in four general categories: 1) genes associated with abnormal neurodevelopment (e.g., AUTS2, FOXP1, CDKL5 ), 2) single gene contributors to microdeletion syndromes ( MBD5, SATB2, EHMT1, SNURF-SNRPN ), 3) novel risk loci (e.g., CHD8, KIRREL3 , ZNF507 ), and 4) genes associated with later onset psychiatric disorders (e.g., TCF4, ZNF804A, PDE10A, GRIN2B, ANK3 ). We also discovered profoundly increased burden of copy number variants among 19,556 neurodevelopmental cases compared to 13,991 controls (p = 2.07×10 −47 ) and enrichment of polygenic risk alleles from autism and schizophrenia genome-wide association studies (p = 0.0018 and 0.0009, respectively). Our findings suggest a polygenic risk model of autism incorporating loci of strong effect and indicate that some neurodevelopmental genes are sensitive to perturbation by multiple mutational mechanisms, leading to variable phenotypic outcomes that manifest at different life stages.
Balanced chromosomal abnormalities (BCAs) represent a relatively untapped reservoir of single-gene disruptions in neurodevelopmental disorders (NDDs). We sequenced BCAs in patients with autism or related NDDs, revealing disruption of 33 loci in four general categories: (1) genes previously associated with abnormal neurodevelopment (e.g., AUTS2, FOXP1, and CDKL5), (2) single-gene contributors to microdeletion syndromes (MBD5, SATB2, EHMT1, and SNURF-SNRPN), (3) novel risk loci (e.g., CHD8, KIRREL3, and ZNF507), and (4) genes associated with later-onset psychiatric disorders (e.g., TCF4, ZNF804A, PDE10A, GRIN2B, and ANK3). We also discovered among neurodevelopmental cases a profoundly increased burden of copy-number variants from these 33 loci and a significant enrichment of polygenic risk alleles from genome-wide association studies of autism and schizophrenia. Our findings suggest a polygenic risk model of autism and reveal that some neurodevelopmental genes are sensitive to perturbation by multiple mutational mechanisms, leading to variable phenotypic outcomes that manifest at different life stages.
Author Kim, Hyung-Goo
Lucente, Diane
Chiang, Colby
Solomon, Benjamin D.
Sims, Katherine
Pereira, Shahrin
Blumenthal, Ian
Morton, Cynthia C.
Harris, David J.
Shen, Yiping
Talkowski, Michael E.
Hanscom, Carrie
Lage, Kasper
Ripke, Stephan
Borowsky, Mark L.
Shaffer, Lisa G.
Pillalamarri, Vamsee
Quade, Bradley
Ruderfer, Douglas
Gropman, Andrea L.
Rosenfeld, Jill A.
Ohsumi, Toshiro K.
Gusella, James F.
Lee, Ji-Hyun
Miles, Judith
Wu, Bai-Lin
Daly, Mark J.
Neale, Benjamin
Rossin, Elizabeth
Loranger, Stephanie
Ha, Kyungsoo
Ernst, Carl
Lindgren, Amelia M.
Kirby, Andrew
Heilbut, Adrian
AuthorAffiliation 13 Department of Molecular Biology, Massachusetts General Hospital, Boston, MA
8 Cancer Research Center, Georgia Health Sciences University, Augusta, GA
3 Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
9 Department of OB/GYN, IMMAG, Georgia Health Sciences University, Augusta, GA
4 Signature Genomic Laboratories, PerkinElmer, Inc., Spokane, WA
17 Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
22 Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
5 Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA
6 Departments of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women’s Hospital, Boston, MA
11 Department of Neurology, Children’s National Medical Center, Washington, DC, USA
2 Department of Neurology, Harvard Medical School, Boston, MA
15 Department of Pathology, Massachusetts General Hospital, Boston,
AuthorAffiliation_xml – name: 14 Autism Consortium of Boston, Boston, MA
– name: 2 Department of Neurology, Harvard Medical School, Boston, MA
– name: 3 Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
– name: 15 Department of Pathology, Massachusetts General Hospital, Boston, MA
– name: 4 Signature Genomic Laboratories, PerkinElmer, Inc., Spokane, WA
– name: 21 Children’s Hospital and Institutes of Biomedical Science, Fudan University, Shanghai, China
– name: 6 Departments of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women’s Hospital, Boston, MA
– name: 7 Division of Clinical Genetics, Children’s Hospital of Boston, Boston, MA
– name: 5 Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA
– name: 13 Department of Molecular Biology, Massachusetts General Hospital, Boston, MA
– name: 9 Department of OB/GYN, IMMAG, Georgia Health Sciences University, Augusta, GA
– name: 17 Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
– name: 23 Department of Genetics, Harvard Medical School, Boston, MA
– name: 8 Cancer Research Center, Georgia Health Sciences University, Augusta, GA
– name: 1 Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
– name: 11 Department of Neurology, Children’s National Medical Center, Washington, DC, USA
– name: 10 Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA
– name: 16 Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, MA, USA
– name: 12 Department of Neurology, George Washington University of Health Sciences, Washington, DC, USA
– name: 20 Department of Laboratory Medicine, Children’s Hospital Boston, Boston, MA
– name: 18 Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
– name: 19 Departments of Pediatrics, Medical Genetics & Pathology, The Thompson Center for Autism & Neurodevelopmental Disorders, University of Missouri Hospitals and Clinics, Columbia, MO
– name: 22 Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
Author_xml – sequence: 1
  givenname: Michael E.
  surname: Talkowski
  fullname: Talkowski, Michael E.
  organization: Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
– sequence: 2
  givenname: Jill A.
  surname: Rosenfeld
  fullname: Rosenfeld, Jill A.
  organization: Signature Genomic Laboratories, PerkinElmer, Inc., Spokane, WA 99207, USA
– sequence: 3
  givenname: Ian
  surname: Blumenthal
  fullname: Blumenthal, Ian
  organization: Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
– sequence: 4
  givenname: Vamsee
  surname: Pillalamarri
  fullname: Pillalamarri, Vamsee
  organization: Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
– sequence: 5
  givenname: Colby
  surname: Chiang
  fullname: Chiang, Colby
  organization: Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
– sequence: 6
  givenname: Adrian
  surname: Heilbut
  fullname: Heilbut, Adrian
  organization: Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
– sequence: 7
  givenname: Carl
  surname: Ernst
  fullname: Ernst, Carl
  organization: Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
– sequence: 8
  givenname: Carrie
  surname: Hanscom
  fullname: Hanscom, Carrie
  organization: Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
– sequence: 9
  givenname: Elizabeth
  surname: Rossin
  fullname: Rossin, Elizabeth
  organization: Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
– sequence: 10
  givenname: Amelia M.
  surname: Lindgren
  fullname: Lindgren, Amelia M.
  organization: Departments of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, MA 02115, USA
– sequence: 11
  givenname: Shahrin
  surname: Pereira
  fullname: Pereira, Shahrin
  organization: Departments of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, MA 02115, USA
– sequence: 12
  givenname: Douglas
  surname: Ruderfer
  fullname: Ruderfer, Douglas
  organization: Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
– sequence: 13
  givenname: Andrew
  surname: Kirby
  fullname: Kirby, Andrew
  organization: Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
– sequence: 14
  givenname: Stephan
  surname: Ripke
  fullname: Ripke, Stephan
  organization: Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
– sequence: 15
  givenname: David J.
  surname: Harris
  fullname: Harris, David J.
  organization: Division of Clinical Genetics, Children's Hospital Boston, Boston, MA 02115, USA
– sequence: 16
  givenname: Ji-Hyun
  surname: Lee
  fullname: Lee, Ji-Hyun
  organization: Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
– sequence: 17
  givenname: Kyungsoo
  surname: Ha
  fullname: Ha, Kyungsoo
  organization: Cancer Research Center, Georgia Health Sciences University, Augusta, GA 30912, USA
– sequence: 18
  givenname: Hyung-Goo
  surname: Kim
  fullname: Kim, Hyung-Goo
  organization: Department of Obstetrics and Gynecology, Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, GA 30912, USA
– sequence: 19
  givenname: Benjamin D.
  surname: Solomon
  fullname: Solomon, Benjamin D.
  organization: Medical Genetics Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
– sequence: 20
  givenname: Andrea L.
  surname: Gropman
  fullname: Gropman, Andrea L.
  organization: Department of Neurology, Children's National Medical Center, Washington, DC 20010, USA
– sequence: 21
  givenname: Diane
  surname: Lucente
  fullname: Lucente, Diane
  organization: Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
– sequence: 22
  givenname: Katherine
  surname: Sims
  fullname: Sims, Katherine
  organization: Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
– sequence: 23
  givenname: Toshiro K.
  surname: Ohsumi
  fullname: Ohsumi, Toshiro K.
  organization: Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
– sequence: 24
  givenname: Mark L.
  surname: Borowsky
  fullname: Borowsky, Mark L.
  organization: Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
– sequence: 25
  givenname: Stephanie
  surname: Loranger
  fullname: Loranger, Stephanie
  organization: Autism Consortium of Boston, Boston, MA 02115, USA
– sequence: 26
  givenname: Bradley
  surname: Quade
  fullname: Quade, Bradley
  organization: Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
– sequence: 27
  givenname: Kasper
  surname: Lage
  fullname: Lage, Kasper
  organization: Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
– sequence: 28
  givenname: Judith
  surname: Miles
  fullname: Miles, Judith
  organization: Departments of Pediatrics, Medical Genetics and Pathology, The Thompson Center for Autism and Neurodevelopmental Disorders, University of Missouri Hospitals and Clinics, Columbia, MO 65201, USA
– sequence: 29
  givenname: Bai-Lin
  surname: Wu
  fullname: Wu, Bai-Lin
  organization: Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
– sequence: 30
  givenname: Yiping
  surname: Shen
  fullname: Shen, Yiping
  organization: Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
– sequence: 31
  givenname: Benjamin
  surname: Neale
  fullname: Neale, Benjamin
  organization: Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
– sequence: 32
  givenname: Lisa G.
  surname: Shaffer
  fullname: Shaffer, Lisa G.
  organization: Signature Genomic Laboratories, PerkinElmer, Inc., Spokane, WA 99207, USA
– sequence: 33
  givenname: Mark J.
  surname: Daly
  fullname: Daly, Mark J.
  organization: Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
– sequence: 34
  givenname: Cynthia C.
  surname: Morton
  fullname: Morton, Cynthia C.
  organization: Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
– sequence: 35
  givenname: James F.
  surname: Gusella
  fullname: Gusella, James F.
  email: gusella@helix.mgh.harvard.edu
  organization: Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22521361$$D View this record in MEDLINE/PubMed
BookMark eNqNkk-P0zAQxS20iO0ufAEOyEcuCWMnjhMJIS3lr1SBtMDZcu1J65LYxU4r8e1x6C4CDgsn2_J7P7-Z8QU588EjIY8ZlAxY82xXGhyGkgPjJVQl8PYeWTDoZFEzyc_IAqDjRdvI-pxcpLQDgFYI8YCccy44qxq2IPETfjugN85v6HIbwxhSGPVAr9Y-xLxxk8NEr_GIekj0Ax5isPkwhP2IfsrCVTCOTls90WXwPUZ67dJXqk0MKdFXTm98SJMz9GU4eKtjpj0k9_sMw0c36yX58ub15-W7YvXx7fvl1aowOdxUCN5UwlYGc1jZmKYRvWwFyL6zppN9o20nWNetBRjRMhCyRm6trG3T1dhpW12SFyfu_rAe0ZqcN-pB7aMbdfyugnbqzxvvtmoTjqqqahAgMuDpDSCG3KQ0qdGlueXaYzgkxXNDgTMh2T-lLA8HeAW1-A8pg7qrWzlLn_xewa_ot-PLgvYk-NnuiL0ybtKTC3NBbsisGdeonZofUPNPUVCpHCZb-V_WW_qdpucnE-a5HR1GlYzLvweti2gmZYO7y_4DYxzYiQ
CitedBy_id crossref_primary_10_1016_j_neubiorev_2016_07_029
crossref_primary_10_1016_j_devcel_2019_04_033
crossref_primary_10_1016_j_neuint_2021_105055
crossref_primary_10_1038_s41586_020_2287_8
crossref_primary_10_1186_s12864_024_11077_5
crossref_primary_10_1002_wdev_375
crossref_primary_10_1016_j_ajhg_2013_09_013
crossref_primary_10_1111_gbb_12184
crossref_primary_10_1016_j_mcp_2016_10_007
crossref_primary_10_1038_mp_2017_37
crossref_primary_10_3389_fnsyn_2018_00035
crossref_primary_10_1371_journal_pone_0226605
crossref_primary_10_1016_j_ajhg_2013_02_006
crossref_primary_10_1038_s41380_018_0029_1
crossref_primary_10_1038_s41398_022_02189_1
crossref_primary_10_3389_fncel_2021_692232
crossref_primary_10_1016_j_isci_2020_101820
crossref_primary_10_1371_journal_pgen_1003221
crossref_primary_10_1371_journal_pone_0090852
crossref_primary_10_1038_s41386_020_0763_3
crossref_primary_10_3390_jcm10020366
crossref_primary_10_1038_s41398_020_0686_0
crossref_primary_10_1111_cge_13554
crossref_primary_10_1016_j_neuron_2015_09_016
crossref_primary_10_1016_j_tig_2017_06_002
crossref_primary_10_1007_s00439_024_02693_y
crossref_primary_10_1002_advs_202403177
crossref_primary_10_3390_cells12010051
crossref_primary_10_1002_mgg3_354
crossref_primary_10_3389_fgene_2023_1286185
crossref_primary_10_1002_ctm2_1160
crossref_primary_10_1038_ng_3720
crossref_primary_10_1093_g3journal_jkac002
crossref_primary_10_1371_journal_pone_0073169
crossref_primary_10_1038_mp_2016_89
crossref_primary_10_1126_science_1227764
crossref_primary_10_1159_000443665
crossref_primary_10_1016_j_neuint_2014_01_002
crossref_primary_10_1038_s41421_023_00525_3
crossref_primary_10_1002_aur_1296
crossref_primary_10_1186_s12859_022_04571_8
crossref_primary_10_1111_nan_12617
crossref_primary_10_1016_j_celrep_2017_03_052
crossref_primary_10_1186_s13229_020_00369_8
crossref_primary_10_1242_dmm_042747
crossref_primary_10_1038_ejhg_2012_157
crossref_primary_10_1002_ajmg_a_35922
crossref_primary_10_3390_ph16010001
crossref_primary_10_3934_biophy_2017_1_63
crossref_primary_10_1136_jmedgenet_2014_102535
crossref_primary_10_1016_j_cca_2018_06_048
crossref_primary_10_1111_cge_13506
crossref_primary_10_1126_science_aaa8954
crossref_primary_10_1101_gad_305037_117
crossref_primary_10_1002_ajmg_c_31592
crossref_primary_10_1038_nrg3934
crossref_primary_10_1371_journal_pgen_1007515
crossref_primary_10_1016_j_ajhg_2014_03_020
crossref_primary_10_1016_j_neubiorev_2020_09_023
crossref_primary_10_1093_hmg_ddy310
crossref_primary_10_1016_j_bbrc_2020_08_051
crossref_primary_10_1016_j_biopsych_2021_11_021
crossref_primary_10_1016_j_celrep_2018_04_050
crossref_primary_10_1371_journal_pone_0145979
crossref_primary_10_1016_j_cell_2014_06_017
crossref_primary_10_1007_s11064_019_02723_6
crossref_primary_10_1007_s13353_022_00742_8
crossref_primary_10_1016_j_ajhg_2021_02_012
crossref_primary_10_1038_srep46105
crossref_primary_10_1254_fpj_21121
crossref_primary_10_1016_j_brainresbull_2016_10_006
crossref_primary_10_1038_s41588_018_0107_y
crossref_primary_10_1371_journal_pone_0090894
crossref_primary_10_1136_jmedgenet_2014_102757
crossref_primary_10_1093_hmg_ddy222
crossref_primary_10_1093_hmg_ddv199
crossref_primary_10_1016_j_neuron_2012_09_013
crossref_primary_10_3389_fnins_2015_00477
crossref_primary_10_1042_BSR20150064
crossref_primary_10_1097_YPG_0000000000000231
crossref_primary_10_1016_j_mam_2019_07_004
crossref_primary_10_1093_schbul_sbx164
crossref_primary_10_1016_j_dnarep_2022_103430
crossref_primary_10_1016_j_ajhg_2015_05_012
crossref_primary_10_1016_j_celrep_2014_11_022
crossref_primary_10_1016_j_pnpbp_2013_12_010
crossref_primary_10_1523_JNEUROSCI_1151_17_2017
crossref_primary_10_18632_oncotarget_13043
crossref_primary_10_1016_j_heliyon_2024_e32053
crossref_primary_10_1080_13554794_2021_1905851
crossref_primary_10_1093_hmg_ddw393
crossref_primary_10_1007_s11427_015_4941_1
crossref_primary_10_1016_j_cophys_2017_12_013
crossref_primary_10_1038_s41588_022_01104_0
crossref_primary_10_1073_pnas_1405266111
crossref_primary_10_1136_jmedgenet_2017_104579
crossref_primary_10_1038_tp_2013_75
crossref_primary_10_1371_journal_pgen_1006516
crossref_primary_10_1074_jbc_M116_770545
crossref_primary_10_3390_jpm11111119
crossref_primary_10_1038_s41593_018_0261_7
crossref_primary_10_1038_ejhg_2014_173
crossref_primary_10_1038_nrg3585
crossref_primary_10_15256_joc_2013_3_19
crossref_primary_10_1186_s13059_017_1158_6
crossref_primary_10_1038_ncomms6748
crossref_primary_10_1186_s13229_020_00354_1
crossref_primary_10_1016_j_ejmg_2016_02_010
crossref_primary_10_1021_acs_analchem_1c01373
crossref_primary_10_1038_s41398_020_01086_9
crossref_primary_10_1093_nar_gkad1256
crossref_primary_10_1016_j_celrep_2014_11_045
crossref_primary_10_1016_j_ajhg_2014_09_013
crossref_primary_10_1159_000512716
crossref_primary_10_1016_j_neubiorev_2018_08_001
crossref_primary_10_1007_s00439_013_1263_x
crossref_primary_10_1093_gbe_evu030
crossref_primary_10_1371_journal_pone_0066569
crossref_primary_10_3389_fncel_2019_00034
crossref_primary_10_1007_s12035_017_0531_5
crossref_primary_10_1152_jn_00067_2017
crossref_primary_10_1038_s41588_019_0497_5
crossref_primary_10_1093_hmg_ddw006
crossref_primary_10_1007_s12264_017_0191_5
crossref_primary_10_1016_j_neuron_2014_05_039
crossref_primary_10_1210_er_2015_1045_2016_1
crossref_primary_10_1038_nature14186
crossref_primary_10_1016_j_gene_2017_10_058
crossref_primary_10_1038_ejhg_2013_220
crossref_primary_10_1016_j_ejmg_2022_104458
crossref_primary_10_3390_ijms241713580
crossref_primary_10_1038_tp_2015_62
crossref_primary_10_1038_tp_2014_78
crossref_primary_10_1111_cge_12844
crossref_primary_10_1172_JCI61398
crossref_primary_10_1093_hmg_ddu054
crossref_primary_10_1176_appi_ajp_20220235
crossref_primary_10_1051_jbio_2017005
crossref_primary_10_1017_S0016672313000153
crossref_primary_10_1016_j_celrep_2025_115384
crossref_primary_10_1016_j_neuron_2023_01_009
crossref_primary_10_1093_bfgp_elv014
crossref_primary_10_1186_s13073_015_0253_0
crossref_primary_10_1016_j_cell_2013_11_048
crossref_primary_10_1038_tp_2015_56
crossref_primary_10_1038_s41380_021_01199_7
crossref_primary_10_1038_s41380_024_02491_y
crossref_primary_10_2139_ssrn_4169248
crossref_primary_10_1016_j_ajhg_2014_09_005
crossref_primary_10_1002_ajmg_a_38630
crossref_primary_10_1007_s00439_013_1317_0
crossref_primary_10_1146_annurev_genom_083115_022647
crossref_primary_10_1038_ncomms4650
crossref_primary_10_1016_j_cell_2018_02_011
crossref_primary_10_1093_hmg_ddt150
crossref_primary_10_1371_journal_pone_0094968
crossref_primary_10_1038_nrg3413
crossref_primary_10_1007_s40142_017_0110_0
crossref_primary_10_1038_s41576_024_00808_9
crossref_primary_10_1210_er_2015_1045
crossref_primary_10_2217_epi_14_31
crossref_primary_10_1038_s41467_018_08148_z
crossref_primary_10_1210_clinem_dgz011
crossref_primary_10_3390_ijms22094768
crossref_primary_10_3390_ani10010033
crossref_primary_10_1002_ajmg_a_36741
crossref_primary_10_1038_ejhg_2013_280
crossref_primary_10_3389_fgene_2024_1352480
crossref_primary_10_1038_ejhg_2013_67
crossref_primary_10_1093_cercor_bhy058
crossref_primary_10_1038_mp_2016_109
crossref_primary_10_1093_hmg_ddu358
crossref_primary_10_1007_s00439_012_1216_9
crossref_primary_10_1016_j_cub_2016_09_035
crossref_primary_10_1002_jcb_25281
crossref_primary_10_1186_s13229_015_0015_2
crossref_primary_10_1016_j_biopsych_2019_09_029
crossref_primary_10_1038_nn_3277
crossref_primary_10_3389_fncel_2015_00283
crossref_primary_10_3917_ep_080_0103
crossref_primary_10_1016_j_isci_2020_101183
crossref_primary_10_3390_genes12081232
crossref_primary_10_1038_s41598_022_23614_x
crossref_primary_10_3389_fncel_2016_00263
crossref_primary_10_1093_hmg_ddt056
crossref_primary_10_1016_j_pscychresns_2014_02_009
crossref_primary_10_1016_j_stem_2013_05_002
crossref_primary_10_1016_j_schres_2012_12_022
crossref_primary_10_1038_mp_2017_166
crossref_primary_10_1007_s40473_014_0027_9
crossref_primary_10_1186_s13229_020_00409_3
crossref_primary_10_1038_ncomms5954
crossref_primary_10_1186_s13229_015_0048_6
crossref_primary_10_1002_ajmg_b_32174
crossref_primary_10_1002_jgm_3322
crossref_primary_10_1016_j_heliyon_2024_e34862
crossref_primary_10_1038_s41598_018_19844_7
crossref_primary_10_1038_npjgenmed_2016_27
crossref_primary_10_1016_j_jphs_2016_10_002
crossref_primary_10_1038_s41598_024_69912_4
crossref_primary_10_1002_ajmg_a_36769
crossref_primary_10_1002_ajmg_a_61824
crossref_primary_10_1080_13813455_2020_1716810
crossref_primary_10_1038_srep35756
crossref_primary_10_1002_sctm_16_0158
crossref_primary_10_1007_s12041_013_0262_y
crossref_primary_10_1038_s41380_018_0131_4
crossref_primary_10_1016_j_celrep_2021_108932
crossref_primary_10_1093_hmg_ddt043
crossref_primary_10_1007_s00787_017_1020_0
crossref_primary_10_1080_19585969_2022_12130883
crossref_primary_10_1186_s13041_017_0343_6
crossref_primary_10_1007_s13311_015_0363_9
crossref_primary_10_1016_j_tins_2013_11_005
crossref_primary_10_1542_peds_2014_1444
crossref_primary_10_3389_fncel_2017_00359
crossref_primary_10_3390_genes12081133
crossref_primary_10_1007_s00439_015_1584_z
crossref_primary_10_3389_fncel_2017_00136
crossref_primary_10_1016_j_celrep_2021_108688
crossref_primary_10_1016_j_conb_2019_04_010
crossref_primary_10_3389_fnsyn_2014_00004
crossref_primary_10_1002_ajmg_a_38327
crossref_primary_10_1038_mp_2014_116
crossref_primary_10_1056_NEJMoa1208594
crossref_primary_10_1111_gbb_12516
crossref_primary_10_1371_journal_pone_0170282
crossref_primary_10_1093_hmg_dds490
crossref_primary_10_1002_ajmg_a_36393
crossref_primary_10_3390_genes12121958
crossref_primary_10_1371_journal_pone_0073814
crossref_primary_10_1038_nrneurol_2014_187
crossref_primary_10_1007_s00018_013_1553_4
crossref_primary_10_1038_tp_2016_87
crossref_primary_10_1523_JNEUROSCI_1840_17_2017
crossref_primary_10_3389_fpsyt_2021_580433
crossref_primary_10_1371_journal_pone_0219747
crossref_primary_10_1101_mcs_a005884
crossref_primary_10_1126_sciadv_aba0682
crossref_primary_10_1371_journal_pone_0171595
crossref_primary_10_1371_journal_pone_0077060
crossref_primary_10_1016_j_ejmg_2016_04_003
crossref_primary_10_1038_nature19357
crossref_primary_10_1007_s00439_012_1193_z
crossref_primary_10_1038_s41431_017_0068_0
crossref_primary_10_1136_jmedgenet_2016_104509
crossref_primary_10_3389_fncel_2015_00291
crossref_primary_10_1016_S0140_6736_19_30193_X
crossref_primary_10_1038_tp_2016_120
crossref_primary_10_1093_nar_gkac1134
crossref_primary_10_1016_j_ajhg_2012_12_011
crossref_primary_10_3390_ijms24043597
crossref_primary_10_1038_ejhg_2015_66
crossref_primary_10_1016_j_tig_2014_12_004
crossref_primary_10_3389_fgene_2022_803088
crossref_primary_10_1002_ajmg_a_36292
crossref_primary_10_1038_ng_3039
crossref_primary_10_1073_pnas_1216988110
crossref_primary_10_1371_journal_pone_0127671
crossref_primary_10_1002_ajmg_a_36174
crossref_primary_10_1016_j_bbi_2023_06_001
crossref_primary_10_3390_ijms18091872
crossref_primary_10_3389_fgene_2019_00761
crossref_primary_10_1038_mp_2013_42
crossref_primary_10_1016_j_omtn_2024_102136
crossref_primary_10_1038_tp_2016_211
crossref_primary_10_1038_mp_2013_127
crossref_primary_10_1007_s12015_022_10459_0
crossref_primary_10_3389_fped_2019_00225
crossref_primary_10_1186_s12887_018_1307_4
crossref_primary_10_12688_f1000research_18949_1
crossref_primary_10_3389_fnins_2021_674563
crossref_primary_10_1371_journal_pone_0124597
crossref_primary_10_1038_s41398_019_0369_x
crossref_primary_10_1186_s13229_017_0124_1
crossref_primary_10_1016_j_brainres_2018_02_041
crossref_primary_10_1016_j_bbrc_2021_05_063
crossref_primary_10_1101_gr_233775_117
crossref_primary_10_1016_j_gde_2019_06_009
crossref_primary_10_1038_nrg3373
crossref_primary_10_1038_nrg3493
crossref_primary_10_1002_ajmg_a_62732
crossref_primary_10_1038_nn_4400
crossref_primary_10_1016_j_cell_2022_06_036
crossref_primary_10_1186_s13041_020_00699_x
crossref_primary_10_1038_nn_4524
crossref_primary_10_1002_pd_4942
crossref_primary_10_1038_s41531_024_00722_1
crossref_primary_10_1016_j_brainresbull_2016_04_015
crossref_primary_10_1093_hmg_ddt669
crossref_primary_10_1523_ENEURO_0088_17_2017
crossref_primary_10_1002_ajmg_a_37566
crossref_primary_10_1016_j_neuron_2016_06_003
crossref_primary_10_1016_j_gene_2016_09_027
crossref_primary_10_1007_s12031_014_0359_7
crossref_primary_10_1016_j_ymgme_2014_04_001
crossref_primary_10_1007_s00018_013_1430_1
crossref_primary_10_1186_s11689_016_9176_3
crossref_primary_10_1016_j_ajhg_2023_09_004
crossref_primary_10_3390_jdb10040054
crossref_primary_10_2217_npy_13_16
crossref_primary_10_1242_jcs_232892
crossref_primary_10_1038_s41467_020_17065_z
crossref_primary_10_1186_s13039_016_0278_0
crossref_primary_10_1002_cphg_43
crossref_primary_10_1038_mp_2014_141
crossref_primary_10_1159_000475666
crossref_primary_10_1007_s00401_017_1736_4
crossref_primary_10_1186_2040_2392_4_8
crossref_primary_10_1038_s41598_017_19109_9
crossref_primary_10_1002_ajmg_a_37579
crossref_primary_10_1016_j_neuron_2014_10_032
crossref_primary_10_1186_s13229_017_0137_9
crossref_primary_10_1055_s_0041_1725964
crossref_primary_10_1016_j_jgg_2015_06_009
crossref_primary_10_1007_s40495_018_0140_7
crossref_primary_10_1093_brain_awac244
crossref_primary_10_1002_cphg_51
crossref_primary_10_1002_mgg3_2246
crossref_primary_10_1016_j_ajhg_2012_10_016
crossref_primary_10_1097_HRP_0000000000000002
crossref_primary_10_1111_joa_12889
crossref_primary_10_1002_humu_22384
crossref_primary_10_1016_j_celrep_2019_12_002
crossref_primary_10_1371_journal_pgen_1004284
crossref_primary_10_12998_wjcc_v9_i23_6858
crossref_primary_10_1186_2040_2392_5_49
crossref_primary_10_1038_mp_2014_42
crossref_primary_10_3390_cells11111761
crossref_primary_10_3389_fpsyg_2015_00794
crossref_primary_10_1016_j_ajhg_2014_05_004
crossref_primary_10_1016_j_coph_2014_11_008
crossref_primary_10_1007_s40124_014_0039_7
crossref_primary_10_1016_j_tig_2013_08_001
crossref_primary_10_1111_jnc_13403
crossref_primary_10_3390_ijms22063261
crossref_primary_10_1038_tp_2016_3
crossref_primary_10_3389_fnsyn_2022_1090865
crossref_primary_10_1186_s13039_014_0100_9
crossref_primary_10_1186_2040_2392_5_22
crossref_primary_10_1111_cge_13121
crossref_primary_10_1172_JCI66031
crossref_primary_10_1016_j_jgg_2021_03_002
crossref_primary_10_1038_tp_2013_100
crossref_primary_10_1038_tp_2014_138
crossref_primary_10_1177_2398212820928647
crossref_primary_10_1038_mp_2014_61
crossref_primary_10_1371_journal_pone_0123106
crossref_primary_10_1016_j_yebeh_2012_09_006
crossref_primary_10_1002_aur_1690
crossref_primary_10_1038_tp_2015_169
crossref_primary_10_1038_s41380_022_01702_8
crossref_primary_10_1016_j_euroneuro_2013_02_005
crossref_primary_10_1016_j_molmed_2014_01_010
crossref_primary_10_3390_ijms151119406
crossref_primary_10_1016_j_neubiorev_2019_12_015
crossref_primary_10_1002_ajmg_c_31989
crossref_primary_10_1038_srep28998
crossref_primary_10_1007_s13258_016_0470_y
crossref_primary_10_1016_j_schres_2013_10_038
crossref_primary_10_1371_journal_pone_0143275
crossref_primary_10_1038_ng_2899
crossref_primary_10_1177_03000605221138492
crossref_primary_10_1136_jmedgenet_2018_105778
crossref_primary_10_3390_life14020244
crossref_primary_10_1186_s12888_019_2144_1
crossref_primary_10_1371_journal_pone_0052640
crossref_primary_10_1016_j_ajhg_2017_01_008
crossref_primary_10_1016_j_blre_2018_04_008
crossref_primary_10_1093_hmg_ddaa036
crossref_primary_10_1186_s13046_021_02094_3
crossref_primary_10_1002_humu_23146
crossref_primary_10_3109_01460862_2012_734210
crossref_primary_10_1016_j_bcp_2014_08_002
crossref_primary_10_1016_j_ajhg_2018_04_005
crossref_primary_10_1002_ajmg_a_36079
crossref_primary_10_1523_JNEUROSCI_0528_13_2013
crossref_primary_10_1155_2017_7860506
crossref_primary_10_1038_s41576_018_0007_0
crossref_primary_10_1111_jnc_15501
crossref_primary_10_1016_j_biopsych_2016_08_038
crossref_primary_10_1159_000539975
crossref_primary_10_1136_jmedgenet_2015_103601
crossref_primary_10_1523_JNEUROSCI_1930_17_2018
crossref_primary_10_1002_0471142905_hg0722s80
crossref_primary_10_1016_j_ejmg_2018_02_002
crossref_primary_10_1016_j_heliyon_2020_e03990
crossref_primary_10_3390_genes12020229
crossref_primary_10_1002_ajmg_a_37050
crossref_primary_10_1002_ajmg_a_37292
crossref_primary_10_1002_ajmg_a_38021
crossref_primary_10_1016_j_tig_2017_07_002
crossref_primary_10_1155_2018_8231547
crossref_primary_10_3389_fnmol_2017_00081
crossref_primary_10_1002_ajmg_a_38022
crossref_primary_10_1038_nrn_2016_124
crossref_primary_10_3390_jpm6010005
crossref_primary_10_1038_s41598_019_45263_3
crossref_primary_10_1016_j_ymthe_2024_12_043
crossref_primary_10_1016_j_ajhg_2024_10_006
crossref_primary_10_3390_epigenomes1030015
crossref_primary_10_1111_febs_15219
crossref_primary_10_1146_annurev_pathol_012414_040405
crossref_primary_10_1007_s40142_014_0047_5
crossref_primary_10_1111_epi_12803
crossref_primary_10_1186_s13023_016_0545_5
crossref_primary_10_1159_000453266
crossref_primary_10_1242_bio_014696
Cites_doi 10.1038/jhg.2009.47
10.1002/humu.20515
10.1016/j.neulet.2011.03.069
10.1093/hmg/ddq189
10.1002/ajmg.a.33497
10.1093/humrep/del024
10.1016/j.cell.2011.07.048
10.1006/geno.1997.5118
10.1136/bmj.295.6600.681
10.1016/j.ejmg.2009.06.003
10.1038/nature07517
10.1006/geno.2002.6810
10.1038/mp.2010.36
10.1111/j.1460-9568.2008.06061.x
10.1038/nbt1295
10.1038/msb.2010.36
10.1101/gr.078212.108
10.1002/ana.21993
10.1038/ng.201
10.1038/ng.909
10.1369/jhc.6A7101.2006
10.1186/gb-2007-8-11-r253
10.1371/journal.pone.0006568
10.1182/blood-2007-12-129247
10.1111/j.1601-183X.2010.00657.x
10.1016/S0898-6568(04)00027-0
10.1038/npp.2010.102
10.1038/ejhg.2009.152
10.1086/426462
10.1038/mp.2011.154
10.1038/ng.2202
10.1016/j.ajhg.2007.12.009
10.1192/bjp.bp.110.084384
10.1016/j.ajhg.2007.09.017
10.1016/j.cell.2011.07.049
10.1007/s00439-006-0284-0
10.1128/IAI.00898-10
10.1038/nature07999
10.1016/j.neuroscience.2007.10.013
10.1016/j.humimm.2010.02.004
10.1371/journal.pone.0011982
10.1111/j.1528-1167.2005.65804.x
10.1016/j.molcel.2005.01.010
10.1001/archgenpsychiatry.2010.81
10.1097/GIM.0b013e3181f0c5f3
10.1111/j.1399-0004.2008.01094.x
10.1093/hmg/ddq471
10.1038/nature08185
10.1016/j.cell.2010.11.055
10.1038/mp.2009.43
10.1038/ejhg.2010.102
10.1016/j.neuroimage.2010.10.012
10.1136/jmg.2004.028464
10.1086/515582
10.1038/nrm1019
10.1056/NEJMoa075974
10.1016/j.ejpn.2010.04.005
10.1038/sj.mp.4001280
10.1101/gr.097857.109
10.1016/j.ajhg.2011.03.013
10.1155/2010/231708
10.1038/mp.2011.21
10.1016/j.molcel.2006.08.008
10.1128/MCB.00846-07
10.1007/s10803-009-0746-z
10.1073/pnas.0810772105
10.1038/ng.209
10.1073/pnas.1007698107
10.1093/nar/gkp101
10.1016/j.neuropharm.2010.05.004
10.1371/journal.pgen.1001273
10.1038/ajg.2010.474
10.1101/gr.208902
10.1093/bioinformatics/btp324
10.1038/ng.677
10.1038/ng.717
10.1016/j.cell.2006.10.031
10.1086/505693
10.1016/j.neuroscience.2005.03.030
10.1186/1465-9921-10-81
10.1101/gr.194201
10.1016/j.cell.2006.05.012
10.1002/humu.22037
10.1038/ng.940
10.1016/j.schres.2010.05.022
10.2174/138161211795049624
10.1038/mp.2008.25
10.1016/j.ejmg.2010.06.009
10.1136/ard.2010.131243
10.1136/jmg.2009.069906
10.1128/MCB.00322-08
10.1006/geno.1999.5758
10.1375/twin.13.2.168
10.1038/nri2296
10.1038/ncb1831
10.1006/geno.1993.1168
10.1002/ajmg.b.31123
10.1038/nature07239
10.1159/000133942
10.1016/j.neurobiolaging.2010.08.003
10.1093/schbul/sbq080
10.1371/journal.pbio.0060184
10.1093/schbul/sbq035
10.1038/sj.jid.5700953
10.1002/dvdy.22483
10.1007/BF02211841
10.1111/j.1600-0625.2007.00589.x
10.1177/0883073810379638
10.1016/j.ajhg.2011.09.011
10.1074/mcp.M700085-MCP200
10.1111/j.1399-0004.2009.01194.x
10.1016/j.ajhg.2008.01.011
10.1038/ng.835
10.1136/jmg.2007.050823
10.1038/nature08490
10.1097/GIM.0b013e3181bd38a9
10.1016/j.ejmg.2010.12.006
10.1016/j.conb.2010.09.008
10.1056/NEJMoa061592
10.1038/gene.2008.85
10.1038/mp.2009.109
ContentType Journal Article
Copyright 2012 Elsevier Inc.
Copyright © 2012 Elsevier Inc. All rights reserved.
2012 Elsevier Inc. All rights reserved. 2012
Copyright_xml – notice: 2012 Elsevier Inc.
– notice: Copyright © 2012 Elsevier Inc. All rights reserved.
– notice: 2012 Elsevier Inc. All rights reserved. 2012
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
8FD
FR3
P64
RC3
7S9
L.6
5PM
DOI 10.1016/j.cell.2012.03.028
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

Genetics Abstracts

MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4172
EndPage 537
ExternalDocumentID PMC3340505
22521361
10_1016_j_cell_2012_03_028
S0092867412004114
Genre Research Support, N.I.H., Intramural
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: R21 HD065286
– fundername: Intramural NIH HHS
– fundername: NIGMS NIH HHS
  grantid: P01 GM061354
– fundername: NICHD NIH HHS
  grantid: HD065286
– fundername: NIGMS NIH HHS
  grantid: GM061354
– fundername: NIGMS NIH HHS
  grantid: T32 GM007753
– fundername: NIMH NIH HHS
  grantid: MH087123
– fundername: NIMH NIH HHS
  grantid: R00 MH095867
– fundername: NIMH NIH HHS
  grantid: F32 MH087123
GroupedDBID ---
--K
-DZ
-ET
-~X
0R~
0WA
1RT
1~5
29B
2FS
2WC
3EH
4.4
457
4G.
53G
5GY
5RE
5VS
62-
6I.
6J9
7-5
85S
9M8
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKRW
AAKUH
AAQFI
AAUCE
AAVLU
AAXJY
AAXUO
AAYJJ
ABCQX
ABJNI
ABMAC
ABMWF
ABOCM
ABTAH
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFDAS
AFTJW
AGHFR
AGHSJ
AGKMS
AHHHB
AIDAL
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FIRID
HH5
HZ~
IH2
IHE
IXB
J1W
JIG
K-O
KOO
KQ8
L7B
LX5
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
RNS
ROL
RPZ
SCP
SDG
SDP
SES
SSZ
TAE
TN5
TR2
TWZ
UKR
UPT
VQA
WH7
WQ6
YYQ
YZZ
ZA5
ZCA
ZY4
.-4
.55
.GJ
.HR
1CY
1VV
2KS
3O-
6TJ
AAHBH
AALRI
AAMRU
AAQXK
AAYWO
AAYXX
ABDGV
ABDPE
ABEFU
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AETEA
AEUPX
AFPUW
AGCQF
AGQPQ
AI.
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FEDTE
FGOYB
G-2
HVGLF
H~9
MVM
OHT
OMK
OZT
PUQ
R2-
UBW
UHB
VH1
X7M
YYP
ZGI
ZHY
ZKB
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7TK
8FD
FR3
P64
RC3
7S9
L.6
5PM
ID FETCH-LOGICAL-c521t-52635d3ce22576c665f78507f9dc97f6ad95199b50c5810574e2dd74d694e9ad3
IEDL.DBID IXB
ISSN 0092-8674
1097-4172
IngestDate Thu Aug 21 13:45:42 EDT 2025
Fri Jul 11 07:47:40 EDT 2025
Thu Aug 07 14:52:54 EDT 2025
Tue Aug 05 09:34:06 EDT 2025
Mon Jul 21 05:48:40 EDT 2025
Tue Jul 01 03:52:03 EDT 2025
Thu Apr 24 22:57:01 EDT 2025
Fri Feb 23 02:28:04 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2012 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-52635d3ce22576c665f78507f9dc97f6ad95199b50c5810574e2dd74d694e9ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0092867412004114
PMID 22521361
PQID 1010494875
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3340505
proquest_miscellaneous_2000021571
proquest_miscellaneous_1028023045
proquest_miscellaneous_1010494875
pubmed_primary_22521361
crossref_citationtrail_10_1016_j_cell_2012_03_028
crossref_primary_10_1016_j_cell_2012_03_028
elsevier_sciencedirect_doi_10_1016_j_cell_2012_03_028
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-04-27
PublicationDateYYYYMMDD 2012-04-27
PublicationDate_xml – month: 04
  year: 2012
  text: 2012-04-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell
PublicationTitleAlternate Cell
PublicationYear 2012
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Klein, Resch, Jankovic, Oliveira, Yamane, Nakahashi, Di Virgilio, Bothmer, Nussenzweig, Robbiani (bib15) 2011; 147
Kirov, Pocklington, Holmans, Ivanov, Ikeda, Ruderfer, Moran, Chambert, Toncheva, Georgieva (bib13) 2012; 17
Marshall, Noor, Vincent, Lionel, Feuk, Skaug, Shago, Moessner, Pinto, Ren (bib17) 2008; 82
Amiel, Rio, de Pontual, Redon, Malan, Boddaert, Plouin, Carter, Lyonnet, Munnich, Colleaux (bib1) 2007; 80
Rodríguez-Paredes, Ceballos-Chávez, Esteller, García-Domínguez, Reyes (bib27) 2009; 37
Williams, Craddock, Russo, Hamshere, Moskvina, Dwyer, Smith, Green, Grozeva, Holmans (bib45) 2011; 20
Kehler, Nielsen (bib12) 2011; 17
Rosenfeld, Leppig, Ballif, Thiese, Erdie-Lalena, Bawle, Sastry, Spence, Bandholz, Surti (bib29) 2009; 11
Chiarle, Zhang, Frock, Lewis, Molinie, Ho, Myers, Choi, Compagno, Malkin (bib6) 2011; 147
Murray, Lewis (bib20) 1987; 295
Blake, Forrest, Chapman, Tinsley, O'Donovan, Owen (bib4) 2010; 36
Nishiyama, Oshikawa, Tsukada, Nakagawa, Iemura, Natsume, Fan, Kikuchi, Skoultchi, Nakayama (bib21) 2009; 11
Cooper, Coe, Girirajan, Rosenfeld, Vu, Baker, Williams, Stalker, Hamid, Hannig (bib7) 2011; 43
Ravel, Berthaut, Bresson, Siffroi (bib25) 2006; 21
Rosenfeld, Ballif, Lucas, Spence, Powell, Aylsworth, Torchia, Shaffer (bib31) 2009; 4
Stephens, Greenman, Fu, Yang, Bignell, Mudie, Pleasance, Lau, Beare, Stebbings (bib34) 2011; 144
Thompson, Tremblay, Lin, Bochar (bib39) 2008; 28
Bakkaloglu, O'Roak, Louvi, Gupta, Abelson, Morgan, Chawarska, Klin, Ercan-Sencicek, Stillman (bib2) 2008; 82
Serizawa, Miyamichi, Takeuchi, Yamagishi, Suzuki, Sakano (bib33) 2006; 127
Talkowski, Ernst, Heilbut, Chiang, Hanscom, Lindgren, Kirby, Liu, Muddukrishna, Ohsumi (bib36) 2011; 88
Walters, Corvin, Owen, Williams, Dragovic, Quinn, Judge, Smith, Norton, Giegling (bib40) 2010; 67
Wang, Zhang, Ma, Bucan, Glessner, Abrahams, Salyakina, Imielinski, Bradfield, Sleiman (bib41) 2009; 459
Franke, McGovern, Barrett, Wang, Radford-Smith, Ahmad, Lees, Balschun, Lee, Roberts (bib10) 2010; 42
Sultana, Yu, Yu, Munson, Chen, Hua, Estes, Cortes, de la Barra, Yu (bib35) 2002; 80
Owen, O'Donovan, Thapar, Craddock (bib24) 2011; 198
Tamura, Morikawa, Hisaoka, Ueno, Kitamura, Senba (bib38) 2005; 133
Morikawa, Komori, Hisaoka, Ueno, Kitamura, Senba (bib19) 2007; 150
Talkowski, Mullegama, Rosenfeld, van Bon, Shen, Repnikova, Gastier-Foster, Thrush, Kathiresan, Ruderfer (bib37) 2011; 89
Rosenfeld, Ballif, Torchia, Sahoo, Ravnan, Schultz, Lamb, Bejjani, Shaffer (bib30) 2010; 12
Rossin, Lage, Raychaudhuri, Xavier, Tatar, Benita, Cotsapas, Daly (bib32) 2011; 7
Endele, Rosenberger, Geider, Popp, Tamer, Stefanova, Milh, Kortüm, Fritsch, Pientka (bib8) 2010; 42
Meerabux, Ohba, Iwayama, Maekawa, Detera-Wadleigh, DeLisi, Yoshikawa (bib18) 2009; 54
Ripke, Sanders, Kendler, Levinson, Sklar, Holmans, Lin, Duan, Ophoff, Andreassen (bib26) 2011; 43
Weiss, Shen, Korn, Arking, Miller, Fossdal, Saemundsen, Stefansson, Ferreira, Green (bib43) 2008; 358
Weinberger (bib42) 1986
Batsukh, Pieper, Koszucka, von Velsen, Hoyer-Fender, Elbracht, Bergman, Hoefsloot, Pauli (bib3) 2010; 19
O'Donovan, Craddock, Norton, Williams, Peirce, Moskvina, Nikolov, Hamshere, Carroll, Georgieva (bib22) 2008; 40
Rosenfeld, Ballif, Lucas, Spence, Powell, Aylsworth, Torchia, Shaffer (bib28) 2009; 4
Chiang, Jacobsen, Ernst, Hanscom, Heilbut, Blumenthal, Mills, Kirby, Lindgren, Rudiger (bib5) 2012; 44
Lakics, Karran, Boess (bib16) 2010; 59
Higgins, Alkuraya, Bosco, Brown, Bruns, Donovan, Eisenman, Fan, Farra, Ferguson (bib11) 2008; 82
Zahir, Firth, Baross, Delaney, Eydoux, Gibson, Langlois, Martin, Willatt, Marra, Friedman (bib124) 2007; 20
Weiss, Arking, Daly, Chakravarti (bib44) 2009; 461
Ferreira, O'Donovan, Meng, Jones, Ruderfer, Jones, Fan, Kirov, Perlis, Green (bib9) 2008; 40
Kleefstra, Brunner, Amiel, Oudakker, Nillesen, Magee, Geneviève, Cormier-Daire, van Esch, Fryns (bib14) 2006; 79
O'Roak, Deriziotis, Lee, Vives, Schwartz, Girirajan, Karakoc, Mackenzie, Ng, Baker (bib23) 2011; 43
Rosenfeld (10.1016/j.cell.2012.03.028_bib29) 2009; 11
10.1016/j.cell.2012.03.028_bib99
10.1016/j.cell.2012.03.028_bib97
10.1016/j.cell.2012.03.028_bib98
10.1016/j.cell.2012.03.028_bib95
Owen (10.1016/j.cell.2012.03.028_bib24) 2011; 198
10.1016/j.cell.2012.03.028_bib96
Weiss (10.1016/j.cell.2012.03.028_bib43) 2008; 358
10.1016/j.cell.2012.03.028_bib93
10.1016/j.cell.2012.03.028_bib94
10.1016/j.cell.2012.03.028_bib91
10.1016/j.cell.2012.03.028_bib92
10.1016/j.cell.2012.03.028_bib90
O'Donovan (10.1016/j.cell.2012.03.028_bib22) 2008; 40
Batsukh (10.1016/j.cell.2012.03.028_bib3) 2010; 19
O'Roak (10.1016/j.cell.2012.03.028_bib23) 2011; 43
Cooper (10.1016/j.cell.2012.03.028_bib7) 2011; 43
Serizawa (10.1016/j.cell.2012.03.028_bib33) 2006; 127
10.1016/j.cell.2012.03.028_bib88
10.1016/j.cell.2012.03.028_bib89
10.1016/j.cell.2012.03.028_bib86
Weinberger (10.1016/j.cell.2012.03.028_bib42) 1986
10.1016/j.cell.2012.03.028_bib87
10.1016/j.cell.2012.03.028_bib84
10.1016/j.cell.2012.03.028_bib85
10.1016/j.cell.2012.03.028_bib82
10.1016/j.cell.2012.03.028_bib83
10.1016/j.cell.2012.03.028_bib80
10.1016/j.cell.2012.03.028_bib81
Chiarle (10.1016/j.cell.2012.03.028_bib6) 2011; 147
Ferreira (10.1016/j.cell.2012.03.028_bib9) 2008; 40
Endele (10.1016/j.cell.2012.03.028_bib8) 2010; 42
10.1016/j.cell.2012.03.028_bib79
Kleefstra (10.1016/j.cell.2012.03.028_bib14) 2006; 79
10.1016/j.cell.2012.03.028_bib77
10.1016/j.cell.2012.03.028_bib121
10.1016/j.cell.2012.03.028_bib78
10.1016/j.cell.2012.03.028_bib122
10.1016/j.cell.2012.03.028_bib75
10.1016/j.cell.2012.03.028_bib76
10.1016/j.cell.2012.03.028_bib120
10.1016/j.cell.2012.03.028_bib73
10.1016/j.cell.2012.03.028_bib125
10.1016/j.cell.2012.03.028_bib74
10.1016/j.cell.2012.03.028_bib71
10.1016/j.cell.2012.03.028_bib123
10.1016/j.cell.2012.03.028_bib72
Amiel (10.1016/j.cell.2012.03.028_bib1) 2007; 80
10.1016/j.cell.2012.03.028_bib70
Kehler (10.1016/j.cell.2012.03.028_bib12) 2011; 17
Meerabux (10.1016/j.cell.2012.03.028_bib18) 2009; 54
Blake (10.1016/j.cell.2012.03.028_bib4) 2010; 36
Walters (10.1016/j.cell.2012.03.028_bib40) 2010; 67
Morikawa (10.1016/j.cell.2012.03.028_bib19) 2007; 150
Tamura (10.1016/j.cell.2012.03.028_bib38) 2005; 133
10.1016/j.cell.2012.03.028_bib68
10.1016/j.cell.2012.03.028_bib69
10.1016/j.cell.2012.03.028_bib66
10.1016/j.cell.2012.03.028_bib110
10.1016/j.cell.2012.03.028_bib67
10.1016/j.cell.2012.03.028_bib111
10.1016/j.cell.2012.03.028_bib64
Thompson (10.1016/j.cell.2012.03.028_bib39) 2008; 28
10.1016/j.cell.2012.03.028_bib65
10.1016/j.cell.2012.03.028_bib62
10.1016/j.cell.2012.03.028_bib114
10.1016/j.cell.2012.03.028_bib63
10.1016/j.cell.2012.03.028_bib115
10.1016/j.cell.2012.03.028_bib60
10.1016/j.cell.2012.03.028_bib112
10.1016/j.cell.2012.03.028_bib61
10.1016/j.cell.2012.03.028_bib113
10.1016/j.cell.2012.03.028_bib118
10.1016/j.cell.2012.03.028_bib119
Lakics (10.1016/j.cell.2012.03.028_bib16) 2010; 59
10.1016/j.cell.2012.03.028_bib116
10.1016/j.cell.2012.03.028_bib117
Higgins (10.1016/j.cell.2012.03.028_bib11) 2008; 82
Chiang (10.1016/j.cell.2012.03.028_bib5) 2012; 44
Rossin (10.1016/j.cell.2012.03.028_bib32) 2011; 7
Kirov (10.1016/j.cell.2012.03.028_bib13) 2012; 17
10.1016/j.cell.2012.03.028_bib59
Sultana (10.1016/j.cell.2012.03.028_bib35) 2002; 80
10.1016/j.cell.2012.03.028_bib57
10.1016/j.cell.2012.03.028_bib58
10.1016/j.cell.2012.03.028_bib55
10.1016/j.cell.2012.03.028_bib56
10.1016/j.cell.2012.03.028_bib100
10.1016/j.cell.2012.03.028_bib53
Rosenfeld (10.1016/j.cell.2012.03.028_bib28) 2009; 4
10.1016/j.cell.2012.03.028_bib54
10.1016/j.cell.2012.03.028_bib51
10.1016/j.cell.2012.03.028_bib103
10.1016/j.cell.2012.03.028_bib52
10.1016/j.cell.2012.03.028_bib104
10.1016/j.cell.2012.03.028_bib101
10.1016/j.cell.2012.03.028_bib50
10.1016/j.cell.2012.03.028_bib102
Murray (10.1016/j.cell.2012.03.028_bib20) 1987; 295
Rosenfeld (10.1016/j.cell.2012.03.028_bib31) 2009; 4
10.1016/j.cell.2012.03.028_bib107
10.1016/j.cell.2012.03.028_bib108
Talkowski (10.1016/j.cell.2012.03.028_bib37) 2011; 89
10.1016/j.cell.2012.03.028_bib105
10.1016/j.cell.2012.03.028_bib106
10.1016/j.cell.2012.03.028_bib109
Stephens (10.1016/j.cell.2012.03.028_bib34) 2011; 144
10.1016/j.cell.2012.03.028_bib48
Klein (10.1016/j.cell.2012.03.028_bib15) 2011; 147
10.1016/j.cell.2012.03.028_bib49
10.1016/j.cell.2012.03.028_bib46
10.1016/j.cell.2012.03.028_bib47
Wang (10.1016/j.cell.2012.03.028_bib41) 2009; 459
Weiss (10.1016/j.cell.2012.03.028_bib44) 2009; 461
Bakkaloglu (10.1016/j.cell.2012.03.028_bib2) 2008; 82
Zahir (10.1016/j.cell.2012.03.028_bib124) 2007; 20
Franke (10.1016/j.cell.2012.03.028_bib10) 2010; 42
Marshall (10.1016/j.cell.2012.03.028_bib17) 2008; 82
Ravel (10.1016/j.cell.2012.03.028_bib25) 2006; 21
Rosenfeld (10.1016/j.cell.2012.03.028_bib30) 2010; 12
Talkowski (10.1016/j.cell.2012.03.028_bib36) 2011; 88
Williams (10.1016/j.cell.2012.03.028_bib45) 2011; 20
Rodríguez-Paredes (10.1016/j.cell.2012.03.028_bib27) 2009; 37
Nishiyama (10.1016/j.cell.2012.03.028_bib21) 2009; 11
Ripke (10.1016/j.cell.2012.03.028_bib26) 2011; 43
20493887 - Neuropharmacology. 2010 Nov;59(6):367-74
21037240 - Hum Mol Genet. 2011 Jan 15;20(2):387-91
18184952 - N Engl J Med. 2008 Feb 14;358(7):667-75
3117295 - Br Med J (Clin Res Ed). 1987 Sep 19;295(6600):681-2
18319076 - Am J Hum Genet. 2008 Mar;82(3):712-22
18711365 - Nat Genet. 2008 Sep;40(9):1056-8
22083728 - Mol Psychiatry. 2012 Feb;17(2):142-53
21249183 - PLoS Genet. 2011;7(1):e1001273
21473983 - Am J Hum Genet. 2011 Apr 8;88(4):469-81
21962510 - Cell. 2011 Sep 30;147(1):95-106
21215367 - Cell. 2011 Jan 7;144(1):27-40
20890276 - Nat Genet. 2010 Nov;42(11):1021-6
21357874 - Br J Psychiatry. 2011 Mar;198(3):173-5
21981781 - Am J Hum Genet. 2011 Oct 7;89(4):551-63
22388000 - Nat Genet. 2012 Apr;44(4):390-7, S1
19938247 - Genet Med. 2009 Nov;11(11):797-805
12160723 - Genomics. 2002 Aug;80(2):129-34
17436254 - Am J Hum Genet. 2007 May;80(5):988-93
18179895 - Am J Hum Genet. 2008 Jan;82(1):165-73
19668335 - PLoS One. 2009;4(8):e6568
18022324 - Neuroscience. 2007 Dec 19;150(4):880-6
21355834 - Curr Pharm Des. 2011;17(2):137-50
19461657 - J Hum Genet. 2009 Jul;54(7):386-91
21962511 - Cell. 2011 Sep 30;147(1):107-19
20808228 - Genet Med. 2010 Nov;12(11):694-702
19812673 - Nature. 2009 Oct 8;461(7265):802-8
18378692 - Mol Cell Biol. 2008 Jun;28(12):3894-904
19255092 - Nucleic Acids Res. 2009 May;37(8):2449-60
19151705 - Nat Cell Biol. 2009 Feb;11(2):172-82
20603450 - Arch Gen Psychiatry. 2010 Jul;67(7):692-700
17129788 - Cell. 2006 Dec 1;127(5):1057-69
21102463 - Nat Genet. 2010 Dec;42(12):1118-25
18677311 - Nat Genet. 2008 Sep;40(9):1053-5
20421335 - Schizophr Bull. 2010 May;36(3):443-7
20453063 - Hum Mol Genet. 2010 Jul 15;19(14):2858-66
16826528 - Am J Hum Genet. 2006 Aug;79(2):370-7
19404256 - Nature. 2009 May 28;459(7246):528-33
21841781 - Nat Genet. 2011 Sep;43(9):838-46
18252227 - Am J Hum Genet. 2008 Feb;82(2):477-88
15908127 - Neuroscience. 2005;133(3):615-24
16484311 - Hum Reprod. 2006 Jun;21(6):1484-9
21572417 - Nat Genet. 2011 Jun;43(6):585-9
References_xml – volume: 42
  start-page: 1021
  year: 2010
  end-page: 1026
  ident: bib8
  article-title: Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes
  publication-title: Nat. Genet.
– volume: 144
  start-page: 27
  year: 2011
  end-page: 40
  ident: bib34
  article-title: Massive genomic rearrangement acquired in a single catastrophic event during cancer development
  publication-title: Cell
– volume: 43
  start-page: 838
  year: 2011
  end-page: 846
  ident: bib7
  article-title: A copy number variation morbidity map of developmental delay
  publication-title: Nat. Genet.
– volume: 459
  start-page: 528
  year: 2009
  end-page: 533
  ident: bib41
  article-title: Common genetic variants on 5p14.1 associate with autism spectrum disorders
  publication-title: Nature
– volume: 82
  start-page: 477
  year: 2008
  end-page: 488
  ident: bib17
  article-title: Structural variation of chromosomes in autism spectrum disorder
  publication-title: Am. J. Hum. Genet.
– volume: 28
  start-page: 3894
  year: 2008
  end-page: 3904
  ident: bib39
  article-title: CHD8 is an ATP-dependent chromatin remodeling factor that regulates beta-catenin target genes
  publication-title: Mol. Cell. Biol.
– volume: 11
  start-page: 797
  year: 2009
  end-page: 805
  ident: bib29
  article-title: Genotype-phenotype analysis of TCF4 mutations causing Pitt-Hopkins syndrome shows increased seizure activity with missense mutations
  publication-title: Genet. Med.
– volume: 20
  start-page: 387
  year: 2011
  end-page: 391
  ident: bib45
  article-title: Most genome-wide significant susceptibility loci for schizophrenia and bipolar disorder reported to date cross-traditional diagnostic boundaries
  publication-title: Hum. Mol. Genet.
– volume: 80
  start-page: 988
  year: 2007
  end-page: 993
  ident: bib1
  article-title: Mutations in TCF4, encoding a class I basic helix-loop-helix transcription factor, are responsible for Pitt-Hopkins syndrome, a severe epileptic encephalopathy associated with autonomic dysfunction
  publication-title: Am. J. Hum. Genet.
– volume: 67
  start-page: 692
  year: 2010
  end-page: 700
  ident: bib40
  article-title: Psychosis susceptibility gene ZNF804A and cognitive performance in schizophrenia
  publication-title: Arch. Gen. Psychiatry
– volume: 17
  start-page: 142
  year: 2012
  end-page: 153
  ident: bib13
  article-title: De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia
  publication-title: Mol. Psychiatry
– volume: 19
  start-page: 2858
  year: 2010
  end-page: 2866
  ident: bib3
  article-title: CHD8 interacts with CHD7, a protein which is mutated in CHARGE syndrome
  publication-title: Hum. Mol. Genet.
– volume: 4
  start-page: e6568
  year: 2009
  ident: bib28
  article-title: Small deletions of SATB2 cause some of the clinical features of the 2q33.1 microdeletion syndrome
  publication-title: PLoS ONE
– volume: 37
  start-page: 2449
  year: 2009
  end-page: 2460
  ident: bib27
  article-title: The chromatin remodeling factor CHD8 interacts with elongating RNA polymerase II and controls expression of the cyclin E2 gene
  publication-title: Nucleic Acids Res.
– volume: 42
  start-page: 1118
  year: 2010
  end-page: 1125
  ident: bib10
  article-title: Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci
  publication-title: Nat. Genet.
– volume: 82
  start-page: 712
  year: 2008
  end-page: 722
  ident: bib11
  article-title: Characterization of apparently balanced chromosomal rearrangements from the developmental genome anatomy project
  publication-title: Am. J. Hum. Genet.
– volume: 79
  start-page: 370
  year: 2006
  end-page: 377
  ident: bib14
  article-title: Loss-of-function mutations in euchromatin histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion syndrome
  publication-title: Am. J. Hum. Genet.
– volume: 89
  start-page: 551
  year: 2011
  end-page: 563
  ident: bib37
  article-title: Assessment of 2q23.1 microdeletion syndrome implicates MBD5 as a single causal locus of intellectual disability, epilepsy, and autism spectrum disorder
  publication-title: Am. J. Hum. Genet.
– volume: 44
  start-page: 390
  year: 2012
  end-page: 397
  ident: bib5
  article-title: Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration
  publication-title: Nat. Genet.
– volume: 198
  start-page: 173
  year: 2011
  end-page: 175
  ident: bib24
  article-title: Neurodevelopmental hypothesis of schizophrenia
  publication-title: Br. J. Psychiatry
– volume: 461
  start-page: 802
  year: 2009
  end-page: 808
  ident: bib44
  article-title: A genome-wide linkage and association scan reveals novel loci for autism
  publication-title: Nature
– volume: 80
  start-page: 129
  year: 2002
  end-page: 134
  ident: bib35
  article-title: Identification of a novel gene on chromosome 7q11.2 interrupted by a translocation breakpoint in a pair of autistic twins
  publication-title: Genomics
– volume: 36
  start-page: 443
  year: 2010
  end-page: 447
  ident: bib4
  article-title: TCF4, schizophrenia, and Pitt-Hopkins Syndrome
  publication-title: Schizophr. Bull.
– volume: 147
  start-page: 107
  year: 2011
  end-page: 119
  ident: bib6
  article-title: Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells
  publication-title: Cell
– volume: 147
  start-page: 95
  year: 2011
  end-page: 106
  ident: bib15
  article-title: Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes
  publication-title: Cell
– volume: 43
  start-page: 585
  year: 2011
  end-page: 589
  ident: bib23
  article-title: Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations
  publication-title: Nat. Genet.
– volume: 20
  start-page: 556
  year: 2007
  end-page: 561
  ident: bib124
  article-title: Novel deletions of 14q11.2 associated with developmental delay, cognitive impairment and similar minor anomalies in three children
  publication-title: J. Med. Genet.
– volume: 358
  start-page: 667
  year: 2008
  end-page: 675
  ident: bib43
  article-title: Association between microdeletion and microduplication at 16p11.2 and autism
  publication-title: N. Engl. J. Med.
– volume: 17
  start-page: 137
  year: 2011
  end-page: 150
  ident: bib12
  article-title: PDE10A inhibitors: novel therapeutic drugs for schizophrenia
  publication-title: Curr. Pharm. Des.
– volume: 59
  start-page: 367
  year: 2010
  end-page: 374
  ident: bib16
  article-title: Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues
  publication-title: Neuropharmacology
– volume: 40
  start-page: 1053
  year: 2008
  end-page: 1055
  ident: bib22
  article-title: Identification of loci associated with schizophrenia by genome-wide association and follow-up
  publication-title: Nat. Genet.
– volume: 43
  start-page: 969
  year: 2011
  end-page: 976
  ident: bib26
  article-title: Genome-wide association study identifies five new schizophrenia loci
  publication-title: Nat. Genet.
– volume: 40
  start-page: 1056
  year: 2008
  end-page: 1058
  ident: bib9
  article-title: Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder
  publication-title: Nat. Genet.
– volume: 150
  start-page: 880
  year: 2007
  end-page: 886
  ident: bib19
  article-title: Expression of mKirre in the developing sensory pathways: its close apposition to nephrin-expressing cells
  publication-title: Neuroscience
– volume: 11
  start-page: 172
  year: 2009
  end-page: 182
  ident: bib21
  article-title: CHD8 suppresses p53-mediated apoptosis through histone H1 recruitment during early embryogenesis
  publication-title: Nat. Cell Biol.
– volume: 295
  start-page: 681
  year: 1987
  end-page: 682
  ident: bib20
  article-title: Is schizophrenia a neurodevelopmental disorder?
  publication-title: Br. Med. J. (Clin. Res. Ed.)
– volume: 7
  start-page: e1001273
  year: 2011
  ident: bib32
  article-title: Proteins encoded in genomic regions associated with immune-mediated disease physically interact and suggest underlying biology
  publication-title: PLoS Genet.
– volume: 21
  start-page: 1484
  year: 2006
  end-page: 1489
  ident: bib25
  article-title: Prevalence of chromosomal abnormalities in phenotypically normal and fertile adult males: large-scale survey of over 10,000 sperm donor karyotypes
  publication-title: Hum. Reprod.
– volume: 4
  start-page: e6568
  year: 2009
  ident: bib31
  article-title: Small deletions of SATB2 cause some of the clinical features of the 2q33.1 microdeletion syndrome
  publication-title: PLoS ONE
– volume: 127
  start-page: 1057
  year: 2006
  end-page: 1069
  ident: bib33
  article-title: A neuronal identity code for the odorant receptor-specific and activity-dependent axon sorting
  publication-title: Cell
– volume: 82
  start-page: 165
  year: 2008
  end-page: 173
  ident: bib2
  article-title: Molecular cytogenetic analysis and resequencing of contactin associated protein-like 2 in autism spectrum disorders
  publication-title: Am. J. Hum. Genet.
– volume: 12
  start-page: 694
  year: 2010
  end-page: 702
  ident: bib30
  article-title: Copy number variations associated with autism spectrum disorders contribute to a spectrum of neurodevelopmental disorders
  publication-title: Genet. Med.
– volume: 88
  start-page: 469
  year: 2011
  end-page: 481
  ident: bib36
  article-title: Next-generation sequencing strategies enable routine detection of balanced chromosome rearrangements for clinical diagnostics and genetic research
  publication-title: Am. J. Hum. Genet.
– start-page: 387
  year: 1986
  end-page: 405
  ident: bib42
  article-title: The pathogenesis of schizophrenia: a neurodevelopmental theory
  publication-title: The Neurology of Schizophrenia
– volume: 54
  start-page: 386
  year: 2009
  end-page: 391
  ident: bib18
  article-title: Analysis of a t(18;21)(p11.1;p11.1) translocation in a family with schizophrenia
  publication-title: J. Hum. Genet.
– volume: 133
  start-page: 615
  year: 2005
  end-page: 624
  ident: bib38
  article-title: Expression of mKirre, a mammalian homolog of Drosophila kirre, in the developing and adult mouse brain
  publication-title: Neuroscience
– volume: 54
  start-page: 386
  year: 2009
  ident: 10.1016/j.cell.2012.03.028_bib18
  article-title: Analysis of a t(18;21)(p11.1;p11.1) translocation in a family with schizophrenia
  publication-title: J. Hum. Genet.
  doi: 10.1038/jhg.2009.47
– ident: 10.1016/j.cell.2012.03.028_bib89
  doi: 10.1002/humu.20515
– ident: 10.1016/j.cell.2012.03.028_bib121
  doi: 10.1016/j.neulet.2011.03.069
– volume: 19
  start-page: 2858
  year: 2010
  ident: 10.1016/j.cell.2012.03.028_bib3
  article-title: CHD8 interacts with CHD7, a protein which is mutated in CHARGE syndrome
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddq189
– ident: 10.1016/j.cell.2012.03.028_bib72
  doi: 10.1002/ajmg.a.33497
– volume: 21
  start-page: 1484
  year: 2006
  ident: 10.1016/j.cell.2012.03.028_bib25
  article-title: Prevalence of chromosomal abnormalities in phenotypically normal and fertile adult males: large-scale survey of over 10,000 sperm donor karyotypes
  publication-title: Hum. Reprod.
  doi: 10.1093/humrep/del024
– volume: 147
  start-page: 95
  year: 2011
  ident: 10.1016/j.cell.2012.03.028_bib15
  article-title: Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes
  publication-title: Cell
  doi: 10.1016/j.cell.2011.07.048
– ident: 10.1016/j.cell.2012.03.028_bib122
  doi: 10.1006/geno.1997.5118
– volume: 295
  start-page: 681
  year: 1987
  ident: 10.1016/j.cell.2012.03.028_bib20
  article-title: Is schizophrenia a neurodevelopmental disorder?
  publication-title: Br. Med. J. (Clin. Res. Ed.)
  doi: 10.1136/bmj.295.6600.681
– ident: 10.1016/j.cell.2012.03.028_bib115
  doi: 10.1016/j.ejmg.2009.06.003
– ident: 10.1016/j.cell.2012.03.028_bib51
  doi: 10.1038/nature07517
– volume: 80
  start-page: 129
  year: 2002
  ident: 10.1016/j.cell.2012.03.028_bib35
  article-title: Identification of a novel gene on chromosome 7q11.2 interrupted by a translocation breakpoint in a pair of autistic twins
  publication-title: Genomics
  doi: 10.1006/geno.2002.6810
– ident: 10.1016/j.cell.2012.03.028_bib119
  doi: 10.1038/mp.2010.36
– ident: 10.1016/j.cell.2012.03.028_bib68
  doi: 10.1111/j.1460-9568.2008.06061.x
– ident: 10.1016/j.cell.2012.03.028_bib83
  doi: 10.1038/nbt1295
– ident: 10.1016/j.cell.2012.03.028_bib85
  doi: 10.1038/msb.2010.36
– ident: 10.1016/j.cell.2012.03.028_bib91
  doi: 10.1101/gr.078212.108
– ident: 10.1016/j.cell.2012.03.028_bib112
  doi: 10.1002/ana.21993
– volume: 40
  start-page: 1053
  year: 2008
  ident: 10.1016/j.cell.2012.03.028_bib22
  article-title: Identification of loci associated with schizophrenia by genome-wide association and follow-up
  publication-title: Nat. Genet.
  doi: 10.1038/ng.201
– volume: 43
  start-page: 838
  year: 2011
  ident: 10.1016/j.cell.2012.03.028_bib7
  article-title: A copy number variation morbidity map of developmental delay
  publication-title: Nat. Genet.
  doi: 10.1038/ng.909
– ident: 10.1016/j.cell.2012.03.028_bib82
  doi: 10.1369/jhc.6A7101.2006
– ident: 10.1016/j.cell.2012.03.028_bib52
  doi: 10.1186/gb-2007-8-11-r253
– volume: 4
  start-page: e6568
  year: 2009
  ident: 10.1016/j.cell.2012.03.028_bib31
  article-title: Small deletions of SATB2 cause some of the clinical features of the 2q33.1 microdeletion syndrome
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0006568
– ident: 10.1016/j.cell.2012.03.028_bib67
  doi: 10.1182/blood-2007-12-129247
– ident: 10.1016/j.cell.2012.03.028_bib49
  doi: 10.1111/j.1601-183X.2010.00657.x
– ident: 10.1016/j.cell.2012.03.028_bib92
  doi: 10.1016/S0898-6568(04)00027-0
– ident: 10.1016/j.cell.2012.03.028_bib88
  doi: 10.1038/npp.2010.102
– ident: 10.1016/j.cell.2012.03.028_bib116
  doi: 10.1038/ejhg.2009.152
– ident: 10.1016/j.cell.2012.03.028_bib117
  doi: 10.1086/426462
– volume: 17
  start-page: 142
  year: 2012
  ident: 10.1016/j.cell.2012.03.028_bib13
  article-title: De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2011.154
– volume: 44
  start-page: 390
  year: 2012
  ident: 10.1016/j.cell.2012.03.028_bib5
  article-title: Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2202
– volume: 82
  start-page: 477
  year: 2008
  ident: 10.1016/j.cell.2012.03.028_bib17
  article-title: Structural variation of chromosomes in autism spectrum disorder
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2007.12.009
– volume: 198
  start-page: 173
  year: 2011
  ident: 10.1016/j.cell.2012.03.028_bib24
  article-title: Neurodevelopmental hypothesis of schizophrenia
  publication-title: Br. J. Psychiatry
  doi: 10.1192/bjp.bp.110.084384
– volume: 82
  start-page: 165
  year: 2008
  ident: 10.1016/j.cell.2012.03.028_bib2
  article-title: Molecular cytogenetic analysis and resequencing of contactin associated protein-like 2 in autism spectrum disorders
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2007.09.017
– volume: 147
  start-page: 107
  year: 2011
  ident: 10.1016/j.cell.2012.03.028_bib6
  article-title: Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells
  publication-title: Cell
  doi: 10.1016/j.cell.2011.07.049
– ident: 10.1016/j.cell.2012.03.028_bib78
  doi: 10.1007/s00439-006-0284-0
– ident: 10.1016/j.cell.2012.03.028_bib120
  doi: 10.1128/IAI.00898-10
– volume: 459
  start-page: 528
  year: 2009
  ident: 10.1016/j.cell.2012.03.028_bib41
  article-title: Common genetic variants on 5p14.1 associate with autism spectrum disorders
  publication-title: Nature
  doi: 10.1038/nature07999
– volume: 150
  start-page: 880
  year: 2007
  ident: 10.1016/j.cell.2012.03.028_bib19
  article-title: Expression of mKirre in the developing sensory pathways: its close apposition to nephrin-expressing cells
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2007.10.013
– ident: 10.1016/j.cell.2012.03.028_bib125
  doi: 10.1016/j.humimm.2010.02.004
– ident: 10.1016/j.cell.2012.03.028_bib86
  doi: 10.1371/journal.pone.0011982
– ident: 10.1016/j.cell.2012.03.028_bib46
  doi: 10.1111/j.1528-1167.2005.65804.x
– start-page: 387
  year: 1986
  ident: 10.1016/j.cell.2012.03.028_bib42
  article-title: The pathogenesis of schizophrenia: a neurodevelopmental theory
– ident: 10.1016/j.cell.2012.03.028_bib66
  doi: 10.1016/j.molcel.2005.01.010
– volume: 67
  start-page: 692
  year: 2010
  ident: 10.1016/j.cell.2012.03.028_bib40
  article-title: Psychosis susceptibility gene ZNF804A and cognitive performance in schizophrenia
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archgenpsychiatry.2010.81
– volume: 4
  start-page: e6568
  year: 2009
  ident: 10.1016/j.cell.2012.03.028_bib28
  article-title: Small deletions of SATB2 cause some of the clinical features of the 2q33.1 microdeletion syndrome
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0006568
– volume: 12
  start-page: 694
  year: 2010
  ident: 10.1016/j.cell.2012.03.028_bib30
  article-title: Copy number variations associated with autism spectrum disorders contribute to a spectrum of neurodevelopmental disorders
  publication-title: Genet. Med.
  doi: 10.1097/GIM.0b013e3181f0c5f3
– ident: 10.1016/j.cell.2012.03.028_bib48
  doi: 10.1111/j.1399-0004.2008.01094.x
– volume: 20
  start-page: 387
  year: 2011
  ident: 10.1016/j.cell.2012.03.028_bib45
  article-title: Most genome-wide significant susceptibility loci for schizophrenia and bipolar disorder reported to date cross-traditional diagnostic boundaries
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddq471
– ident: 10.1016/j.cell.2012.03.028_bib103
  doi: 10.1038/nature08185
– volume: 144
  start-page: 27
  year: 2011
  ident: 10.1016/j.cell.2012.03.028_bib34
  article-title: Massive genomic rearrangement acquired in a single catastrophic event during cancer development
  publication-title: Cell
  doi: 10.1016/j.cell.2010.11.055
– ident: 10.1016/j.cell.2012.03.028_bib109
  doi: 10.1038/mp.2009.43
– ident: 10.1016/j.cell.2012.03.028_bib62
  doi: 10.1038/ejhg.2010.102
– ident: 10.1016/j.cell.2012.03.028_bib64
  doi: 10.1016/j.neuroimage.2010.10.012
– ident: 10.1016/j.cell.2012.03.028_bib81
  doi: 10.1136/jmg.2004.028464
– volume: 80
  start-page: 988
  year: 2007
  ident: 10.1016/j.cell.2012.03.028_bib1
  article-title: Mutations in TCF4, encoding a class I basic helix-loop-helix transcription factor, are responsible for Pitt-Hopkins syndrome, a severe epileptic encephalopathy associated with autonomic dysfunction
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/515582
– ident: 10.1016/j.cell.2012.03.028_bib114
  doi: 10.1038/nrm1019
– volume: 358
  start-page: 667
  year: 2008
  ident: 10.1016/j.cell.2012.03.028_bib43
  article-title: Association between microdeletion and microduplication at 16p11.2 and autism
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa075974
– ident: 10.1016/j.cell.2012.03.028_bib55
  doi: 10.1016/j.ejpn.2010.04.005
– ident: 10.1016/j.cell.2012.03.028_bib79
  doi: 10.1038/sj.mp.4001280
– ident: 10.1016/j.cell.2012.03.028_bib101
  doi: 10.1101/gr.097857.109
– volume: 88
  start-page: 469
  year: 2011
  ident: 10.1016/j.cell.2012.03.028_bib36
  article-title: Next-generation sequencing strategies enable routine detection of balanced chromosome rearrangements for clinical diagnostics and genetic research
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2011.03.013
– ident: 10.1016/j.cell.2012.03.028_bib56
  doi: 10.1155/2010/231708
– ident: 10.1016/j.cell.2012.03.028_bib71
  doi: 10.1038/mp.2011.21
– ident: 10.1016/j.cell.2012.03.028_bib75
  doi: 10.1016/j.molcel.2006.08.008
– ident: 10.1016/j.cell.2012.03.028_bib123
  doi: 10.1128/MCB.00846-07
– ident: 10.1016/j.cell.2012.03.028_bib94
  doi: 10.1007/s10803-009-0746-z
– ident: 10.1016/j.cell.2012.03.028_bib84
  doi: 10.1073/pnas.0810772105
– volume: 40
  start-page: 1056
  year: 2008
  ident: 10.1016/j.cell.2012.03.028_bib9
  article-title: Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder
  publication-title: Nat. Genet.
  doi: 10.1038/ng.209
– ident: 10.1016/j.cell.2012.03.028_bib70
  doi: 10.1073/pnas.1007698107
– volume: 37
  start-page: 2449
  year: 2009
  ident: 10.1016/j.cell.2012.03.028_bib27
  article-title: The chromatin remodeling factor CHD8 interacts with elongating RNA polymerase II and controls expression of the cyclin E2 gene
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp101
– volume: 59
  start-page: 367
  year: 2010
  ident: 10.1016/j.cell.2012.03.028_bib16
  article-title: Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2010.05.004
– volume: 7
  start-page: e1001273
  year: 2011
  ident: 10.1016/j.cell.2012.03.028_bib32
  article-title: Proteins encoded in genomic regions associated with immune-mediated disease physically interact and suggest underlying biology
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1001273
– ident: 10.1016/j.cell.2012.03.028_bib102
  doi: 10.1038/ajg.2010.474
– ident: 10.1016/j.cell.2012.03.028_bib50
  doi: 10.1101/gr.208902
– ident: 10.1016/j.cell.2012.03.028_bib90
  doi: 10.1093/bioinformatics/btp324
– volume: 42
  start-page: 1021
  year: 2010
  ident: 10.1016/j.cell.2012.03.028_bib8
  article-title: Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes
  publication-title: Nat. Genet.
  doi: 10.1038/ng.677
– volume: 42
  start-page: 1118
  year: 2010
  ident: 10.1016/j.cell.2012.03.028_bib10
  article-title: Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci
  publication-title: Nat. Genet.
  doi: 10.1038/ng.717
– volume: 127
  start-page: 1057
  year: 2006
  ident: 10.1016/j.cell.2012.03.028_bib33
  article-title: A neuronal identity code for the odorant receptor-specific and activity-dependent axon sorting
  publication-title: Cell
  doi: 10.1016/j.cell.2006.10.031
– volume: 79
  start-page: 370
  year: 2006
  ident: 10.1016/j.cell.2012.03.028_bib14
  article-title: Loss-of-function mutations in euchromatin histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion syndrome
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/505693
– volume: 133
  start-page: 615
  year: 2005
  ident: 10.1016/j.cell.2012.03.028_bib38
  article-title: Expression of mKirre, a mammalian homolog of Drosophila kirre, in the developing and adult mouse brain
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2005.03.030
– ident: 10.1016/j.cell.2012.03.028_bib65
  doi: 10.1186/1465-9921-10-81
– ident: 10.1016/j.cell.2012.03.028_bib98
  doi: 10.1101/gr.194201
– ident: 10.1016/j.cell.2012.03.028_bib60
  doi: 10.1016/j.cell.2006.05.012
– ident: 10.1016/j.cell.2012.03.028_bib87
  doi: 10.1002/humu.22037
– volume: 43
  start-page: 969
  year: 2011
  ident: 10.1016/j.cell.2012.03.028_bib26
  article-title: Genome-wide association study identifies five new schizophrenia loci
  publication-title: Nat. Genet.
  doi: 10.1038/ng.940
– ident: 10.1016/j.cell.2012.03.028_bib57
  doi: 10.1016/j.schres.2010.05.022
– volume: 17
  start-page: 137
  year: 2011
  ident: 10.1016/j.cell.2012.03.028_bib12
  article-title: PDE10A inhibitors: novel therapeutic drugs for schizophrenia
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/138161211795049624
– ident: 10.1016/j.cell.2012.03.028_bib110
  doi: 10.1038/mp.2008.25
– ident: 10.1016/j.cell.2012.03.028_bib107
  doi: 10.1016/j.ejmg.2010.06.009
– ident: 10.1016/j.cell.2012.03.028_bib59
  doi: 10.1136/ard.2010.131243
– ident: 10.1016/j.cell.2012.03.028_bib54
  doi: 10.1136/jmg.2009.069906
– volume: 28
  start-page: 3894
  year: 2008
  ident: 10.1016/j.cell.2012.03.028_bib39
  article-title: CHD8 is an ATP-dependent chromatin remodeling factor that regulates beta-catenin target genes
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00322-08
– ident: 10.1016/j.cell.2012.03.028_bib106
  doi: 10.1006/geno.1999.5758
– ident: 10.1016/j.cell.2012.03.028_bib118
  doi: 10.1375/twin.13.2.168
– ident: 10.1016/j.cell.2012.03.028_bib113
  doi: 10.1038/nri2296
– volume: 11
  start-page: 172
  year: 2009
  ident: 10.1016/j.cell.2012.03.028_bib21
  article-title: CHD8 suppresses p53-mediated apoptosis through histone H1 recruitment during early embryogenesis
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1831
– ident: 10.1016/j.cell.2012.03.028_bib47
  doi: 10.1006/geno.1993.1168
– ident: 10.1016/j.cell.2012.03.028_bib69
  doi: 10.1002/ajmg.b.31123
– ident: 10.1016/j.cell.2012.03.028_bib74
  doi: 10.1038/nature07239
– ident: 10.1016/j.cell.2012.03.028_bib104
  doi: 10.1159/000133942
– ident: 10.1016/j.cell.2012.03.028_bib63
  doi: 10.1016/j.neurobiolaging.2010.08.003
– ident: 10.1016/j.cell.2012.03.028_bib61
  doi: 10.1093/schbul/sbq080
– ident: 10.1016/j.cell.2012.03.028_bib99
  doi: 10.1038/ncb1831
– ident: 10.1016/j.cell.2012.03.028_bib100
  doi: 10.1371/journal.pbio.0060184
– volume: 36
  start-page: 443
  year: 2010
  ident: 10.1016/j.cell.2012.03.028_bib4
  article-title: TCF4, schizophrenia, and Pitt-Hopkins Syndrome
  publication-title: Schizophr. Bull.
  doi: 10.1093/schbul/sbq035
– ident: 10.1016/j.cell.2012.03.028_bib76
  doi: 10.1038/sj.jid.5700953
– ident: 10.1016/j.cell.2012.03.028_bib108
  doi: 10.1002/dvdy.22483
– ident: 10.1016/j.cell.2012.03.028_bib93
  doi: 10.1007/BF02211841
– ident: 10.1016/j.cell.2012.03.028_bib95
  doi: 10.1111/j.1600-0625.2007.00589.x
– ident: 10.1016/j.cell.2012.03.028_bib111
  doi: 10.1177/0883073810379638
– volume: 89
  start-page: 551
  year: 2011
  ident: 10.1016/j.cell.2012.03.028_bib37
  article-title: Assessment of 2q23.1 microdeletion syndrome implicates MBD5 as a single causal locus of intellectual disability, epilepsy, and autism spectrum disorder
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2011.09.011
– ident: 10.1016/j.cell.2012.03.028_bib58
  doi: 10.1074/mcp.M700085-MCP200
– ident: 10.1016/j.cell.2012.03.028_bib97
  doi: 10.1111/j.1399-0004.2009.01194.x
– volume: 82
  start-page: 712
  year: 2008
  ident: 10.1016/j.cell.2012.03.028_bib11
  article-title: Characterization of apparently balanced chromosomal rearrangements from the developmental genome anatomy project
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2008.01.011
– volume: 43
  start-page: 585
  year: 2011
  ident: 10.1016/j.cell.2012.03.028_bib23
  article-title: Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations
  publication-title: Nat. Genet.
  doi: 10.1038/ng.835
– volume: 20
  start-page: 556
  year: 2007
  ident: 10.1016/j.cell.2012.03.028_bib124
  article-title: Novel deletions of 14q11.2 associated with developmental delay, cognitive impairment and similar minor anomalies in three children
  publication-title: J. Med. Genet.
  doi: 10.1136/jmg.2007.050823
– volume: 461
  start-page: 802
  year: 2009
  ident: 10.1016/j.cell.2012.03.028_bib44
  article-title: A genome-wide linkage and association scan reveals novel loci for autism
  publication-title: Nature
  doi: 10.1038/nature08490
– volume: 11
  start-page: 797
  year: 2009
  ident: 10.1016/j.cell.2012.03.028_bib29
  article-title: Genotype-phenotype analysis of TCF4 mutations causing Pitt-Hopkins syndrome shows increased seizure activity with missense mutations
  publication-title: Genet. Med.
  doi: 10.1097/GIM.0b013e3181bd38a9
– ident: 10.1016/j.cell.2012.03.028_bib73
  doi: 10.1016/j.ejmg.2010.12.006
– ident: 10.1016/j.cell.2012.03.028_bib53
  doi: 10.1016/j.conb.2010.09.008
– ident: 10.1016/j.cell.2012.03.028_bib77
  doi: 10.1056/NEJMoa061592
– ident: 10.1016/j.cell.2012.03.028_bib96
  doi: 10.1038/gene.2008.85
– ident: 10.1016/j.cell.2012.03.028_bib80
– ident: 10.1016/j.cell.2012.03.028_bib105
  doi: 10.1038/mp.2009.109
– reference: 20808228 - Genet Med. 2010 Nov;12(11):694-702
– reference: 18319076 - Am J Hum Genet. 2008 Mar;82(3):712-22
– reference: 18378692 - Mol Cell Biol. 2008 Jun;28(12):3894-904
– reference: 20493887 - Neuropharmacology. 2010 Nov;59(6):367-74
– reference: 21357874 - Br J Psychiatry. 2011 Mar;198(3):173-5
– reference: 18179895 - Am J Hum Genet. 2008 Jan;82(1):165-73
– reference: 18184952 - N Engl J Med. 2008 Feb 14;358(7):667-75
– reference: 15908127 - Neuroscience. 2005;133(3):615-24
– reference: 18022324 - Neuroscience. 2007 Dec 19;150(4):880-6
– reference: 20890276 - Nat Genet. 2010 Nov;42(11):1021-6
– reference: 19938247 - Genet Med. 2009 Nov;11(11):797-805
– reference: 16484311 - Hum Reprod. 2006 Jun;21(6):1484-9
– reference: 18711365 - Nat Genet. 2008 Sep;40(9):1056-8
– reference: 21981781 - Am J Hum Genet. 2011 Oct 7;89(4):551-63
– reference: 19668335 - PLoS One. 2009;4(8):e6568
– reference: 16826528 - Am J Hum Genet. 2006 Aug;79(2):370-7
– reference: 21841781 - Nat Genet. 2011 Sep;43(9):838-46
– reference: 21962510 - Cell. 2011 Sep 30;147(1):95-106
– reference: 20603450 - Arch Gen Psychiatry. 2010 Jul;67(7):692-700
– reference: 17436254 - Am J Hum Genet. 2007 May;80(5):988-93
– reference: 19404256 - Nature. 2009 May 28;459(7246):528-33
– reference: 12160723 - Genomics. 2002 Aug;80(2):129-34
– reference: 19812673 - Nature. 2009 Oct 8;461(7265):802-8
– reference: 17129788 - Cell. 2006 Dec 1;127(5):1057-69
– reference: 19255092 - Nucleic Acids Res. 2009 May;37(8):2449-60
– reference: 21962511 - Cell. 2011 Sep 30;147(1):107-19
– reference: 21473983 - Am J Hum Genet. 2011 Apr 8;88(4):469-81
– reference: 19461657 - J Hum Genet. 2009 Jul;54(7):386-91
– reference: 18252227 - Am J Hum Genet. 2008 Feb;82(2):477-88
– reference: 21215367 - Cell. 2011 Jan 7;144(1):27-40
– reference: 22083728 - Mol Psychiatry. 2012 Feb;17(2):142-53
– reference: 21355834 - Curr Pharm Des. 2011;17(2):137-50
– reference: 20453063 - Hum Mol Genet. 2010 Jul 15;19(14):2858-66
– reference: 19151705 - Nat Cell Biol. 2009 Feb;11(2):172-82
– reference: 21037240 - Hum Mol Genet. 2011 Jan 15;20(2):387-91
– reference: 21249183 - PLoS Genet. 2011;7(1):e1001273
– reference: 20421335 - Schizophr Bull. 2010 May;36(3):443-7
– reference: 21102463 - Nat Genet. 2010 Dec;42(12):1118-25
– reference: 3117295 - Br Med J (Clin Res Ed). 1987 Sep 19;295(6600):681-2
– reference: 18677311 - Nat Genet. 2008 Sep;40(9):1053-5
– reference: 22388000 - Nat Genet. 2012 Apr;44(4):390-7, S1
– reference: 21572417 - Nat Genet. 2011 Jun;43(6):585-9
SSID ssj0008555
Score 2.565869
Snippet Balanced chromosomal abnormalities (BCAs) represent a relatively untapped reservoir of single-gene disruptions in neurodevelopmental disorders (NDDs). We...
Balanced chromosomal abnormalities (BCAs) represent a reservoir of single gene disruptions in neurodevelopmental disorders (NDD). We sequenced BCAs in autism...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 525
SubjectTerms alleles
Autism
Autistic Disorder - diagnosis
Autistic Disorder - genetics
Boundaries
Child
Child Development Disorders, Pervasive - diagnosis
Child Development Disorders, Pervasive - genetics
Chromosome Aberrations
Chromosome Breakage
Chromosome Deletion
Developmental stages
DNA Copy Number Variations
Foxp1 protein
Genetic Predisposition to Disease
Genome-Wide Association Study
Humans
loci
Mental disorders
Nervous System - growth & development
neurodevelopment
Neurodevelopmental disorders
patients
risk
Schizophrenia
Schizophrenia - genetics
Sequence Analysis, DNA
Signal Transduction
Title Sequencing Chromosomal Abnormalities Reveals Neurodevelopmental Loci that Confer Risk across Diagnostic Boundaries
URI https://dx.doi.org/10.1016/j.cell.2012.03.028
https://www.ncbi.nlm.nih.gov/pubmed/22521361
https://www.proquest.com/docview/1010494875
https://www.proquest.com/docview/1028023045
https://www.proquest.com/docview/2000021571
https://pubmed.ncbi.nlm.nih.gov/PMC3340505
Volume 149
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTxsxELUQElIvVUsLhAJypd7Qit31-utI0iJUtT1QkHKzvLZXpA0bRAIS_54Zezdt2pJDj4nHyq7H9jzHM-8R8kHUGq9jRCYsHFGqQulMB6uyRunAuAt5Y_FG9-s3cX5VfR7z8QYZ9bUwmFbZ7f1pT4-7dffNSTeaJ7eTCdb46lIJiIjo6CKKWbNKxSK-8XC5GyvOk4qBhpUP1l3hTMrxwj_HMb2rjESnqMj-7-D0N_j8M4fyt6B09oq87NAkPU0P_JpshHabbCV9ycc35O57SpSG8ESRBfdmNp_doH3dIlSdRjZVehEeAC3OaeTp8L-SiMDwC7iOLq7tgqbKQHoxmf-kNj49_Ziy9OCn6TCKM-Gp-y25Ovt0OTrPOpGFzKGWARxEAXJ45kKJRw8nBG-kApDYaO-0bIT1gMG0rnnuuEJR4CqU3svKC10FbT3bIZvtrA17hDrUVwne1oqJShVON7mXZfCsqHPtazkgRT-6xnUM5CiEMTV9qtkPgx4x6BGTMwMeGZDjZZ_bxL-x1pr3TjMrs8hAgFjb733vYQPLC5ttG2b3c-wQGXQkX2dTIo0egOPnbbAiCuGVLAZkN82c5fvAyJcFE9AiV-bU0gApwFdb2sl1pAJnrEIpwv3_fO935AV-wtuxUh6QzcXdfTgEkLWojzDE8aO4lp4ApI4oDg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIgQXBOW1UKiRuFVRkzh-HWlLtYVtD31Ie7Mc21EX2mzV3SLx75mxky0LdA9c12Nt4rE9n-OZ7yPko6g1XseITFg4olSF0pkOVmWN0oFxF_LG4o3u0bEYnldfxny8Rvb6WhhMq-z2_rSnx926-2WnG82d68kEa3x1qQRERHR0gWLWDwANCJzah-PdxXasOE8yBhqWPph3lTMpyQu_jmN-VxmZTlGS_d_R6W_0-WcS5W9R6eApedLBSfopPfEzshbaDfIwCUz-fE5uTlOmNMQnijS4V9PZ9Art6xax6mWkU6Un4QfAxRmNRB3-LosIDEfgOzq_sHOaSgPpyWT2ndr49HQ_penBX9PdqM6Ex-4X5Pzg89neMOtUFjKHYgZwEgXM4ZkLJZ49nBC8kQpQYqO907IR1gMI07rmueMKVYGrUHovKy90FbT17CVZb6dteE2oQ4GV4G2tmKhU4XSTe1kGz4o6176WA1L0o2tcR0GOShiXps81-2bQIwY9YnJmwCMDsr3oc50IOFZa895pZmkaGYgQK_t96D1sYH1hs23D9HaGHSKFjuSrbErk0QN0fL8NlkQhvpLFgLxKM2fxPjDyZcEEtMilObUwQA7w5ZZ2chG5wBmrUIvwzX--9xZ5NDw7GpnR4fHXt-QxtuBVWSk3yfr85ja8A8Q1r9_HFfULnlcqTw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sequencing+chromosomal+abnormalities+reveals+neurodevelopmental+loci+that+confer+risk+across+diagnostic+boundaries&rft.jtitle=Cell&rft.au=Talkowski%2C+Michael+E&rft.au=Rosenfeld%2C+Jill+A&rft.au=Blumenthal%2C+Ian&rft.au=Pillalamarri%2C+Vamsee&rft.date=2012-04-27&rft.issn=1097-4172&rft.eissn=1097-4172&rft.volume=149&rft.issue=3&rft.spage=525&rft_id=info:doi/10.1016%2Fj.cell.2012.03.028&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0092-8674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0092-8674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0092-8674&client=summon