Recent H3N2 Viruses Have Evolved Specificity for Extended, Branched Human-type Receptors, Conferring Potential for Increased Avidity

Human and avian influenza viruses recognize different sialic acid-containing receptors, referred to as human-type (NeuAcα2-6Gal) and avian-type (NeuAcα2-3Gal), respectively. This presents a species barrier for aerosol droplet transmission of avian viruses in humans and ferrets. Recent reports have s...

Full description

Saved in:
Bibliographic Details
Published inCell host & microbe Vol. 21; no. 1; pp. 23 - 34
Main Authors Peng, Wenjie, de Vries, Robert P., Grant, Oliver C., Thompson, Andrew J., McBride, Ryan, Tsogtbaatar, Buyankhishig, Lee, Peter S., Razi, Nahid, Wilson, Ian A., Woods, Robert J., Paulson, James C.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 11.01.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Human and avian influenza viruses recognize different sialic acid-containing receptors, referred to as human-type (NeuAcα2-6Gal) and avian-type (NeuAcα2-3Gal), respectively. This presents a species barrier for aerosol droplet transmission of avian viruses in humans and ferrets. Recent reports have suggested that current human H3N2 viruses no longer have strict specificity toward human-type receptors. Using an influenza receptor glycan microarray with extended airway glycans, we find that H3N2 viruses have in fact maintained human-type specificity, but they have evolved preference for a subset of receptors comprising branched glycans with extended poly-N-acetyl-lactosamine (poly-LacNAc) chains, a specificity shared with the 2009 pandemic H1N1 (Cal/04) hemagglutinin. Lipid-linked versions of extended sialoside receptors can restore susceptibility of sialidase-treated MDCK cells to infection by both recent (A/Victoria/361/11) and historical (A/Hong Kong/8/1968) H3N2 viruses. Remarkably, these human-type receptors with elongated branches have the potential to increase avidity by simultaneously binding to two subunits of a single hemagglutinin trimer. [Display omitted] •All H3N2 influenza viruses recognize human-type receptors with extended glycan chains•Recent H3 and pandemic H1 hemagglutinins prefer extended, branched N-glycan receptors•Lipid-linked glycan receptors restore infectivity to receptor-deficient MDCK cells•Molecular dynamics simulation shows bidentate binding of N-glycans to one HA trimer To clarify H3N2 human influenza virus receptor specificity, Peng et al. developed a glycan array that included extended glycans. Recent H3N2 and 2009 pandemic H1N1 viruses share specificity for human-type receptors with extended glycan chains, conferring potential for increased avidity by simultaneously binding two subunits of a single hemagglutinin trimer.
AbstractList Human and avian influenza viruses recognize different sialic acid-containing receptors, referred to as human-type (NeuAcα2-6Gal) and avian-type (NeuAcα2-3Gal), respectively. This presents a species barrier for aerosol droplet transmission of avian viruses in humans and ferrets. Recent reports have suggested that current human H3N2 viruses no longer have strict specificity toward human-type receptors. Using an influenza receptor glycan microarray with extended airway glycans, we find that H3N2 viruses have in fact maintained human-type specificity, but they have evolved preference for a subset of receptors comprising branched glycans with extended poly-N-acetyl-lactosamine (poly-LacNAc) chains, a specificity shared with the 2009 pandemic H1N1 (Cal/04) hemagglutinin. Lipid-linked versions of extended sialoside receptors can restore susceptibility of sialidase-treated MDCK cells to infection by both recent (A/Victoria/361/11) and historical (A/Hong Kong/8/1968) H3N2 viruses. Remarkably, these human-type receptors with elongated branches have the potential to increase avidity by simultaneously binding to two subunits of a single hemagglutinin trimer.Human and avian influenza viruses recognize different sialic acid-containing receptors, referred to as human-type (NeuAcα2-6Gal) and avian-type (NeuAcα2-3Gal), respectively. This presents a species barrier for aerosol droplet transmission of avian viruses in humans and ferrets. Recent reports have suggested that current human H3N2 viruses no longer have strict specificity toward human-type receptors. Using an influenza receptor glycan microarray with extended airway glycans, we find that H3N2 viruses have in fact maintained human-type specificity, but they have evolved preference for a subset of receptors comprising branched glycans with extended poly-N-acetyl-lactosamine (poly-LacNAc) chains, a specificity shared with the 2009 pandemic H1N1 (Cal/04) hemagglutinin. Lipid-linked versions of extended sialoside receptors can restore susceptibility of sialidase-treated MDCK cells to infection by both recent (A/Victoria/361/11) and historical (A/Hong Kong/8/1968) H3N2 viruses. Remarkably, these human-type receptors with elongated branches have the potential to increase avidity by simultaneously binding to two subunits of a single hemagglutinin trimer.
Human and avian influenza viruses recognize different sialic acid-containing receptors, referred to as human-type (NeuAcα2-6Gal) and avian-type (NeuAcα2-3Gal), respectively. This presents a species barrier for aerosol droplet transmission of avian viruses in humans and ferrets. Recent reports have suggested that current human H3N2 viruses no longer have strict specificity toward human-type receptors. Using an influenza receptor glycan microarray with extended airway glycans, we find that H3N2 viruses have in fact maintained human-type specificity, but they have evolved preference for a subset of receptors comprising branched glycans with extended poly-N-acetyl-lactosamine (poly-LacNAc) chains, a specificity shared with the 2009 pandemic H1N1 (Cal/04) hemagglutinin. Lipid-linked versions of extended sialoside receptors can restore susceptibility of sialidase-treated MDCK cells to infection by both recent (A/Victoria/361/11) and historical (A/Hong Kong/8/1968) H3N2 viruses. Remarkably, these human-type receptors with elongated branches have the potential to increase avidity by simultaneously binding to two subunits of a single hemagglutinin trimer. [Display omitted] •All H3N2 influenza viruses recognize human-type receptors with extended glycan chains•Recent H3 and pandemic H1 hemagglutinins prefer extended, branched N-glycan receptors•Lipid-linked glycan receptors restore infectivity to receptor-deficient MDCK cells•Molecular dynamics simulation shows bidentate binding of N-glycans to one HA trimer To clarify H3N2 human influenza virus receptor specificity, Peng et al. developed a glycan array that included extended glycans. Recent H3N2 and 2009 pandemic H1N1 viruses share specificity for human-type receptors with extended glycan chains, conferring potential for increased avidity by simultaneously binding two subunits of a single hemagglutinin trimer.
Human and avian influenza viruses recognize different sialic acid-containing receptors, referred to as human-type (NeuAcα2-6Gal) and avian-type (NeuAcα2-3Gal) respectively. This presents a species barrier for aerosol droplet transmission of avian viruses in humans and ferrets. Recent reports have suggested that current human H3N2 viruses no longer have strict specificity towards human-type receptors. Using an influenza receptor glycan microarray with extended airway glycans we find that H3N2 viruses have in fact maintained human-type specificity, but have evolved preference for a subset of receptors comprising branched glycans with extended poly-N-acetyl-lactosamine (poly-LacNAc) chains, a specificity shared with the 2009 pandemic H1N1 (Cal/04) hemagglutinin. Lipid-linked versions of extended sialoside receptors can restore susceptibility of sialidase-treated MDCK cells to infection by both recent (A/Victoria/361/11) and historical (A/Hong Kong/8/1968) H3N2 viruses. Remarkably, these human-type receptors with elongated branches have the potential to increase avidity by simultaneously binding to two subunits of a single hemagglutinin trimer.
Human and avian influenza viruses recognize different sialic acid-containing receptors, referred to as human-type (NeuAcα2-6Gal) and avian-type (NeuAcα2-3Gal), respectively. This presents a species barrier for aerosol droplet transmission of avian viruses in humans and ferrets. Recent reports have suggested that current human H3N2 viruses no longer have strict specificity toward human-type receptors. Using an influenza receptor glycan microarray with extended airway glycans, we find that H3N2 viruses have in fact maintained human-type specificity, but they have evolved preference for a subset of receptors comprising branched glycans with extended poly-N-acetyl-lactosamine (poly-LacNAc) chains, a specificity shared with the 2009 pandemic H1N1 (Cal/04) hemagglutinin. Lipid-linked versions of extended sialoside receptors can restore susceptibility of sialidase-treated MDCK cells to infection by both recent (A/Victoria/361/11) and historical (A/Hong Kong/8/1968) H3N2 viruses. Remarkably, these human-type receptors with elongated branches have the potential to increase avidity by simultaneously binding to two subunits of a single hemagglutinin trimer.
Author Thompson, Andrew J.
Peng, Wenjie
Grant, Oliver C.
Lee, Peter S.
Wilson, Ian A.
Woods, Robert J.
Paulson, James C.
de Vries, Robert P.
Razi, Nahid
McBride, Ryan
Tsogtbaatar, Buyankhishig
AuthorAffiliation 2 Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
1 Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
4 Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
3 Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
AuthorAffiliation_xml – name: 2 Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
– name: 3 Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
– name: 4 Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
– name: 1 Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
Author_xml – sequence: 1
  givenname: Wenjie
  surname: Peng
  fullname: Peng, Wenjie
  organization: Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
– sequence: 2
  givenname: Robert P.
  surname: de Vries
  fullname: de Vries, Robert P.
  organization: Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
– sequence: 3
  givenname: Oliver C.
  surname: Grant
  fullname: Grant, Oliver C.
  organization: Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
– sequence: 4
  givenname: Andrew J.
  surname: Thompson
  fullname: Thompson, Andrew J.
  organization: Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
– sequence: 5
  givenname: Ryan
  surname: McBride
  fullname: McBride, Ryan
  organization: Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
– sequence: 6
  givenname: Buyankhishig
  surname: Tsogtbaatar
  fullname: Tsogtbaatar, Buyankhishig
  organization: Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
– sequence: 7
  givenname: Peter S.
  surname: Lee
  fullname: Lee, Peter S.
  organization: Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
– sequence: 8
  givenname: Nahid
  surname: Razi
  fullname: Razi, Nahid
  organization: Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
– sequence: 9
  givenname: Ian A.
  surname: Wilson
  fullname: Wilson, Ian A.
  organization: Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
– sequence: 10
  givenname: Robert J.
  surname: Woods
  fullname: Woods, Robert J.
  organization: Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
– sequence: 11
  givenname: James C.
  surname: Paulson
  fullname: Paulson, James C.
  email: jpaulson@scripps.edu
  organization: Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28017661$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAURiNURB_wB1ggL1k0wdd5SwipjKZMpQoQr63l2DcdjxI72EnE7PnhdTotAhZd2ZK_c658v9PoyFiDUfQSaAIUije7RG5tn7BwTwASSrMn0QnUaRYXtKiP7u4Qp8Cq4-jU-x2leU5LeBYds4pCWRRwEv3-ghLNSDbpR0Z-aDd59GQjZiTr2XYzKvJ1QKlbLfW4J611ZP1rRKNQnZP3Thi5DZHN1AsTj_sByaIbRuv8OVlZ06Jz2tyQzzYwoxbdneHKSIfCB_Bi1ip4n0dPW9F5fHF_nkXfL9ffVpv4-tOHq9XFdSxzBmOcqZrSKlOAmBetpGkhoAFV1iU0tGraStTA0qwUmNYil5JVBWuwyvIMlVC0Ss-idwfvMDU9quXjTnR8cLoXbs-t0PzfF6O3_MbOPGdpmtcsCF7fC5z9OaEfea-9xK4TBu3kOVR5CDIoyxB99fesP0MeVh8C1SEgnfXeYcvDisWo7TJadxwoX1rmO760zJeWOQAPLQeU_Yc-2B-F3h4gDBueNTrupUYjUWmHcuTK6sfwWysWwqE
CitedBy_id crossref_primary_10_1371_journal_ppat_1010340
crossref_primary_10_1002_anie_202111035
crossref_primary_10_1038_s41579_020_00449_9
crossref_primary_10_1146_annurev_biophys_060414_034156
crossref_primary_10_1016_j_celrep_2019_05_048
crossref_primary_10_1021_acs_chemrev_8b00032
crossref_primary_10_1016_j_chom_2017_09_008
crossref_primary_10_1371_journal_ppat_1011273
crossref_primary_10_1038_s41579_018_0115_z
crossref_primary_10_1016_S1872_2040_19_61209_0
crossref_primary_10_1128_jvi_01959_23
crossref_primary_10_1002_advs_202303832
crossref_primary_10_1093_glycob_cwab009
crossref_primary_10_1074_jbc_REV120_013309
crossref_primary_10_1101_cshperspect_a038778
crossref_primary_10_3390_vaccines8040587
crossref_primary_10_1038_s41541_022_00492_y
crossref_primary_10_1128_jvi_00416_22
crossref_primary_10_15252_emmm_201707726
crossref_primary_10_7498_aps_69_20201161
crossref_primary_10_1126_science_adt0180
crossref_primary_10_1007_s13205_021_02642_w
crossref_primary_10_1016_j_chom_2019_10_002
crossref_primary_10_1080_19420862_2021_1953220
crossref_primary_10_1371_journal_pone_0199167
crossref_primary_10_1371_journal_ppat_1008816
crossref_primary_10_1002_anie_201807162
crossref_primary_10_1038_s41564_017_0076_4
crossref_primary_10_1073_pnas_1712592114
crossref_primary_10_1038_s41467_021_23428_x
crossref_primary_10_1016_j_celrep_2022_110897
crossref_primary_10_1128_JVI_00049_17
crossref_primary_10_1016_j_chom_2019_04_013
crossref_primary_10_1128_JVI_02016_17
crossref_primary_10_3390_ijms18071541
crossref_primary_10_1039_D0CC03268A
crossref_primary_10_1073_pnas_1809667116
crossref_primary_10_1038_s41467_024_49117_z
crossref_primary_10_1016_j_tim_2019_08_010
crossref_primary_10_1002_chem_202000495
crossref_primary_10_1038_s41557_018_0188_3
crossref_primary_10_1111_febs_15668
crossref_primary_10_1101_cshperspect_a038638
crossref_primary_10_1016_j_chom_2020_08_004
crossref_primary_10_3390_v14102141
crossref_primary_10_1038_s41467_024_47635_4
crossref_primary_10_1021_jacsau_2c00664
crossref_primary_10_1016_j_chom_2020_03_009
crossref_primary_10_7567_1347_4065_ab1b68
crossref_primary_10_1016_j_sbi_2017_05_007
crossref_primary_10_1128_jvi_00248_24
crossref_primary_10_4052_tigg_2109_2J
crossref_primary_10_1002_anie_202420676
crossref_primary_10_1111_jeb_13890
crossref_primary_10_1093_bioinformatics_bty694
crossref_primary_10_1016_j_chom_2022_03_031
crossref_primary_10_1038_s41598_020_62074_z
crossref_primary_10_1021_acscentsci_0c01175
crossref_primary_10_1016_j_molcel_2019_05_017
crossref_primary_10_1021_acs_jmedchem_9b00303
crossref_primary_10_1016_j_celrep_2017_03_054
crossref_primary_10_1016_j_chom_2024_01_003
crossref_primary_10_1126_sciimmunol_adj9534
crossref_primary_10_3390_molecules26041040
crossref_primary_10_1016_j_coviro_2023_101314
crossref_primary_10_1016_j_chom_2020_08_011
crossref_primary_10_1016_j_virusres_2023_199304
crossref_primary_10_1021_acs_biomac_0c00179
crossref_primary_10_4052_tigg_2109_2E
crossref_primary_10_1016_j_jmb_2017_06_015
crossref_primary_10_1002_ange_202420676
crossref_primary_10_1016_j_coviro_2018_08_007
crossref_primary_10_1016_j_antiviral_2023_105719
crossref_primary_10_1093_glycob_cwad060
crossref_primary_10_1021_acscentsci_1c00525
crossref_primary_10_1093_ve_veae030
crossref_primary_10_1002_pro_4974
crossref_primary_10_1038_s41467_024_49487_4
crossref_primary_10_1039_D2CS00788F
crossref_primary_10_1080_10408347_2018_1531692
crossref_primary_10_1016_j_carres_2017_10_001
crossref_primary_10_1016_j_chom_2020_04_005
crossref_primary_10_1111_febs_14431
crossref_primary_10_1016_j_sbi_2017_06_001
crossref_primary_10_1098_rstb_2019_0017
crossref_primary_10_1016_j_imj_2022_01_001
crossref_primary_10_1021_jacsau_3c00695
crossref_primary_10_1039_D2CS00983H
crossref_primary_10_1016_j_jmb_2018_12_014
crossref_primary_10_1016_j_mcpro_2024_100844
crossref_primary_10_1073_pnas_2304992120
crossref_primary_10_1038_s41598_020_71748_7
crossref_primary_10_1080_21645515_2018_1462639
crossref_primary_10_1371_journal_ppat_1006682
crossref_primary_10_1128_JVI_01413_18
crossref_primary_10_1021_acschembio_0c00359
crossref_primary_10_1371_journal_ppat_1006390
crossref_primary_10_1002_jcp_31147
crossref_primary_10_1021_acsomega_9b01901
crossref_primary_10_1038_s41467_021_25713_1
crossref_primary_10_1021_jacs_7b03208
crossref_primary_10_1039_D2CS00452F
crossref_primary_10_1038_s41467_022_31840_0
crossref_primary_10_1134_S0006297919100067
crossref_primary_10_1186_s12859_019_3278_3
crossref_primary_10_1016_j_chembiol_2019_01_002
crossref_primary_10_3390_v14061307
crossref_primary_10_1021_acs_jmedchem_1c00794
crossref_primary_10_4049_jimmunol_1701257
crossref_primary_10_1016_j_chom_2017_05_011
crossref_primary_10_1016_j_coviro_2019_01_004
crossref_primary_10_1038_s41467_023_41908_0
crossref_primary_10_1038_s41467_020_15102_5
crossref_primary_10_1128_JVI_01363_19
crossref_primary_10_1002_mas_21629
crossref_primary_10_1371_journal_ppat_1007233
crossref_primary_10_3390_v11040346
crossref_primary_10_1002_asia_201801486
crossref_primary_10_1038_s41598_022_16605_5
crossref_primary_10_1128_jvi_00906_23
crossref_primary_10_1016_j_tim_2021_03_014
crossref_primary_10_1128_JVI_00046_17
crossref_primary_10_1111_mmi_13997
crossref_primary_10_1038_s41467_024_47344_y
crossref_primary_10_1002_ange_202111035
crossref_primary_10_1128_JVI_01039_19
crossref_primary_10_1128_IAI_00392_20
crossref_primary_10_1039_D4CS00642A
crossref_primary_10_1134_S1068162021010222
crossref_primary_10_1111_cmi_13170
crossref_primary_10_1128_JVI_02011_18
crossref_primary_10_1128_mbio_02203_23
crossref_primary_10_1038_s41929_019_0281_z
crossref_primary_10_1371_journal_ppat_1007860
crossref_primary_10_1038_s41467_019_09608_w
crossref_primary_10_1002_ange_201807162
crossref_primary_10_1016_j_chempr_2021_09_015
crossref_primary_10_1371_journal_ppat_1009407
crossref_primary_10_1002_jmv_70101
crossref_primary_10_1038_s41557_019_0219_8
crossref_primary_10_1093_glycob_cwz100
crossref_primary_10_1021_jacsau_4c00307
crossref_primary_10_1038_s41467_018_03663_5
crossref_primary_10_3390_pathogens11111388
crossref_primary_10_1128_JVI_00195_20
crossref_primary_10_1128_JVI_01178_19
crossref_primary_10_1016_j_vaccine_2020_08_037
crossref_primary_10_1038_s41596_024_01051_6
crossref_primary_10_3390_v12091053
Cites_doi 10.1006/viro.2001.1121
10.1128/JCM.43.8.4139-4146.2005
10.1093/glycob/cwj068
10.1016/j.virusres.2013.02.015
10.1371/journal.pone.0066325
10.1074/jbc.M110.115998
10.1128/JCM.00398-08
10.1073/pnas.77.10.5693
10.1371/journal.ppat.1003223
10.1128/JVI.06322-11
10.1128/JVI.01955-13
10.1038/ncomms4614
10.1016/j.coviro.2012.03.003
10.1093/glycob/cww020
10.1073/pnas.81.6.1779
10.1016/j.micinf.2005.08.006
10.1128/JVI.01023-13
10.1038/nbt1375
10.1073/pnas.0407902101
10.1128/JVI.00769-07
10.1016/j.virol.2014.12.024
10.1002/jcc.23517
10.1074/jbc.M114.588541
10.1073/pnas.1218841110
10.1073/pnas.78.9.5406
10.1128/JVI.00058-10
10.1093/glycob/cwp158
10.1073/pnas.0405172102
10.1128/JVI.74.18.8502-8512.2000
10.1073/pnas.1200987109
10.1006/viro.2000.0679
10.1016/j.tim.2014.07.002
10.1146/annurev.biochem.69.1.531
10.1038/nature15379
10.1016/S0304-4165(96)00118-3
10.1002/anie.201200596
10.1016/j.chom.2015.02.006
10.1371/journal.pone.0079252
10.1038/nbt0909-797
10.1006/viro.1995.1405
10.1126/science.1236231
10.1002/embj.201387442
10.1006/viro.1994.1615
10.1038/nrmicro3362
10.1038/nrmicro1530
10.1093/glycob/cws101
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Copyright © 2017 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2017 Elsevier Inc.
– notice: Copyright © 2017 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.chom.2016.11.004
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1934-6069
EndPage 34
ExternalDocumentID PMC5233592
28017661
10_1016_j_chom_2016_11_004
S1931312816304796
Genre Journal Article
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: T32 AI007244
– fundername: NIGMS NIH HHS
  grantid: P41 GM103390
– fundername: NIAID NIH HHS
  grantid: R56 AI117675
– fundername: NIAID NIH HHS
  grantid: R01 AI114730
– fundername: NCI NIH HHS
  grantid: U01 CA207824
– fundername: NIGMS NIH HHS
  grantid: U54 GM062116
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6I.
6J9
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
HVGLF
IHE
IXB
JIG
K97
M41
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SES
SSZ
TR2
UNMZH
WQ6
ZA5
AAEDT
AAIKJ
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
OZT
ZBA
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
EFKBS
ID FETCH-LOGICAL-c521t-4d90084d1ee56fc036a1b1d7971b08bf8a912347ae39a5cc2862be8454edad083
IEDL.DBID IXB
ISSN 1931-3128
1934-6069
IngestDate Thu Aug 21 18:41:32 EDT 2025
Fri Jul 11 07:35:25 EDT 2025
Thu Jan 02 23:12:08 EST 2025
Tue Jul 01 02:44:19 EDT 2025
Thu Apr 24 23:04:10 EDT 2025
Fri Feb 23 02:31:03 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords sialoside microarray
chemo-enzymatic synthesis
poly-N-acetyl-lactosamine
bidentate binding
hemagglutinin
airway
influenza virus
receptor specificity
extended branched glycans
H3N2
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2017 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-4d90084d1ee56fc036a1b1d7971b08bf8a912347ae39a5cc2862be8454edad083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present address: Department of Pharmaceutical Chemistry, University of California San Francisco, Mission Bay, San Francisco CA, USA
Present address: Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Science, Utrecht University, Utrecht, The Netherlands
Lead contact
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1931312816304796
PMID 28017661
PQID 1853352177
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5233592
proquest_miscellaneous_1853352177
pubmed_primary_28017661
crossref_citationtrail_10_1016_j_chom_2016_11_004
crossref_primary_10_1016_j_chom_2016_11_004
elsevier_sciencedirect_doi_10_1016_j_chom_2016_11_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-11
PublicationDateYYYYMMDD 2017-01-11
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-11
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell host & microbe
PublicationTitleAlternate Cell Host Microbe
PublicationYear 2017
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Alvarez-Manilla, Troupe, Fleming, Martinez-Uribe, Pierce (bib1) 2010; 20
Jia, Barclay, Roberts, Yen, Chan, Lam, Air, Peiris, Dell, Nicholls, Haslam (bib18) 2014; 289
Skehel, Stevens, Daniels, Douglas, Knossow, Wilson, Wiley (bib39) 1984; 81
Lee, Ohshima, Stanfield, Yu, Iba, Okuno, Kurosawa, Wilson (bib21) 2014; 5
Asaoka, Tanaka, Sakai, Fujii, Ohuchi, Ohuchi (bib2) 2006; 8
de Vries, de Vries, Wienholts, Floris, Jacobs, van den Heuvel, Rottier, de Haan (bib10) 2012; 109
Markwell, Paulson (bib24) 1980; 77
de Vries, de Vries, Martínez-Romero, McBride, van Kuppeveld, Rottier, García-Sastre, Paulson, de Haan (bib11) 2013; 87
Nivedha, Makeneni, Foley, Tessier, Woods (bib29) 2014; 35
Paulson, de Vries (bib33) 2013; 178
Yoon, Webby, Webster (bib48) 2014; 385
de Graaf, Fouchier (bib9) 2014; 33
Lakdawala, Jayaraman, Halpin, Lamirande, Shih, Stockwell, Lin, Simenauer, Hanson, Vogel (bib19) 2015; 526
Connor, Kawaoka, Webster, Paulson (bib8) 1994; 205
Skehel, Wiley (bib38) 2000; 69
Blixt, Head, Mondala, Scanlan, Huflejt, Alvarez, Bryan, Fazio, Calarese, Stevens (bib4) 2004; 101
Childs, Palma, Wharton, Matrosovich, Liu, Chai, Campanero-Rhodes, Zhang, Eickmann, Kiso (bib6) 2009; 27
Nycholat, McBride, Ekiert, Xu, Rangarajan, Peng, Razi, Gilbert, Wakarchuk, Wilson, Paulson (bib31) 2012; 51
Chandrasekaran, Srinivasan, Raman, Viswanathan, Raguram, Tumpey, Sasisekharan, Sasisekharan (bib5) 2008; 26
Zhang, de Vries, Tzarum, Zhu, Yu, McBride, Paulson, Wilson (bib49) 2015; 17
Bateman, Karamanska, Busch, Dell, Olsen, Haslam (bib3) 2010; 285
Oh, Barr, Mosse, Laurie (bib32) 2008; 46
Hardy, Young, Webster, Naeve, Owens (bib14) 1995; 211
Lee, Tang, Kong, Loh, Chiang, Lam, Koay (bib20) 2013; 8
Li, Bostick, Sullivan, Myers, Griesemer, Stgeorge, Plotkin, Hensley (bib22) 2013; 87
Lin, Xiong, Wharton, Martin, Coombs, Vachieri, Christodoulou, Walker, Liu, Skehel (bib23) 2012; 109
Markwell, Svennerholm, Paulson (bib25) 1981; 78
Raman, Tharakaraman, Shriver, Jayaraman, Sasisekharan, Sasisekharan (bib35) 2014; 22
Stevens, Chen, Carney, Garten, Foust, Le, Pokorny, Manojkumar, Silverman, Devis (bib41) 2010; 84
Nobusawa, Ishihara, Morishita, Sato, Nakajima (bib30) 2000; 278
Gulati, Smith, Cummings, Couch, Griesemer, St George, Webster, Air (bib13) 2013; 8
Shi, Wu, Zhang, Qi, Gao (bib37) 2014; 12
Walther, Karamanska, Chan, Chan, Jia, Air, Hopton, Wong, Dell, Malik Peiris (bib44) 2013; 9
Chu, Whittaker (bib7) 2004; 101
Hatakeyama, Sakai-Tagawa, Kiso, Goto, Kawakami, Mitamura, Sugaya, Suzuki, Kawaoka (bib15) 2005; 43
McBride, Paulson, de Vries (bib27) 2016
Xu, McBride, Nycholat, Paulson, Wilson (bib46) 2012; 86
Stevens, Blixt, Paulson, Wilson (bib40) 2006; 4
Wang, Chinoy, Ambre, Peng, McBride, de Vries, Glushka, Paulson, Boon (bib45) 2013; 341
Imai, Kawaoka (bib17) 2012; 2
Seko, Koketsu, Nishizono, Enoki, Ibrahim, Juneja, Kim, Yamamoto (bib36) 1997; 1335
Grant, Tessier, Meche, Mahal, Foley, Woods (bib12) 2016; 26
Ihara, Ikeda, Taniguchi (bib16) 2006; 16
Vigerust, Ulett, Boyd, Madsen, Hawgood, McCullers (bib43) 2007; 81
Peng, Pranskevich, Nycholat, Gilbert, Wakarchuk, Paulson, Razi (bib34) 2012; 22
Medeiros, Escriou, Naffakh, Manuguerra, van der Werf (bib28) 2001; 289
Matrosovich, Tuzikov, Bovin, Gambaryan, Klimov, Castrucci, Donatelli, Kawaoka (bib26) 2000; 74
Yang, Carney, Chang, Guo, Villanueva, Stevens (bib47) 2015; 477
Chandrasekaran (10.1016/j.chom.2016.11.004_bib5) 2008; 26
Wang (10.1016/j.chom.2016.11.004_bib45) 2013; 341
de Vries (10.1016/j.chom.2016.11.004_bib10) 2012; 109
Lee (10.1016/j.chom.2016.11.004_bib21) 2014; 5
Lin (10.1016/j.chom.2016.11.004_bib23) 2012; 109
Hatakeyama (10.1016/j.chom.2016.11.004_bib15) 2005; 43
Asaoka (10.1016/j.chom.2016.11.004_bib2) 2006; 8
Grant (10.1016/j.chom.2016.11.004_bib12) 2016; 26
Skehel (10.1016/j.chom.2016.11.004_bib38) 2000; 69
Nobusawa (10.1016/j.chom.2016.11.004_bib30) 2000; 278
Yang (10.1016/j.chom.2016.11.004_bib47) 2015; 477
de Vries (10.1016/j.chom.2016.11.004_bib11) 2013; 87
de Graaf (10.1016/j.chom.2016.11.004_bib9) 2014; 33
Li (10.1016/j.chom.2016.11.004_bib22) 2013; 87
Nycholat (10.1016/j.chom.2016.11.004_bib31) 2012; 51
Paulson (10.1016/j.chom.2016.11.004_bib33) 2013; 178
Skehel (10.1016/j.chom.2016.11.004_bib39) 1984; 81
Stevens (10.1016/j.chom.2016.11.004_bib40) 2006; 4
Nivedha (10.1016/j.chom.2016.11.004_bib29) 2014; 35
Xu (10.1016/j.chom.2016.11.004_bib46) 2012; 86
Bateman (10.1016/j.chom.2016.11.004_bib3) 2010; 285
Connor (10.1016/j.chom.2016.11.004_bib8) 1994; 205
Alvarez-Manilla (10.1016/j.chom.2016.11.004_bib1) 2010; 20
Yoon (10.1016/j.chom.2016.11.004_bib48) 2014; 385
Walther (10.1016/j.chom.2016.11.004_bib44) 2013; 9
Markwell (10.1016/j.chom.2016.11.004_bib25) 1981; 78
Blixt (10.1016/j.chom.2016.11.004_bib4) 2004; 101
Hardy (10.1016/j.chom.2016.11.004_bib14) 1995; 211
Vigerust (10.1016/j.chom.2016.11.004_bib43) 2007; 81
Ihara (10.1016/j.chom.2016.11.004_bib16) 2006; 16
Childs (10.1016/j.chom.2016.11.004_bib6) 2009; 27
Peng (10.1016/j.chom.2016.11.004_bib34) 2012; 22
McBride (10.1016/j.chom.2016.11.004_bib27) 2016
Shi (10.1016/j.chom.2016.11.004_bib37) 2014; 12
Zhang (10.1016/j.chom.2016.11.004_bib49) 2015; 17
Chu (10.1016/j.chom.2016.11.004_bib7) 2004; 101
Markwell (10.1016/j.chom.2016.11.004_bib24) 1980; 77
Raman (10.1016/j.chom.2016.11.004_bib35) 2014; 22
Lakdawala (10.1016/j.chom.2016.11.004_bib19) 2015; 526
Imai (10.1016/j.chom.2016.11.004_bib17) 2012; 2
Seko (10.1016/j.chom.2016.11.004_bib36) 1997; 1335
Stevens (10.1016/j.chom.2016.11.004_bib41) 2010; 84
Jia (10.1016/j.chom.2016.11.004_bib18) 2014; 289
Lee (10.1016/j.chom.2016.11.004_bib20) 2013; 8
Matrosovich (10.1016/j.chom.2016.11.004_bib26) 2000; 74
Gulati (10.1016/j.chom.2016.11.004_bib13) 2013; 8
Medeiros (10.1016/j.chom.2016.11.004_bib28) 2001; 289
Oh (10.1016/j.chom.2016.11.004_bib32) 2008; 46
24109242 - J Virol. 2013 Dec;87(24):13868-77
25617824 - Virology. 2015 Mar;477:18-31
23619279 - Virus Res. 2013 Dec 5;178(1):99-113
19846580 - Glycobiology. 2010 Feb;20(2):166-74
16300986 - Microbes Infect. 2006 Feb;8(2):511-9
17553891 - J Virol. 2007 Aug;81(16):8593-600
23805213 - PLoS One. 2013 Jun 21;8(6):e66325
19741625 - Nat Biotechnol. 2009 Sep;27(9):797-9
18176555 - Nat Biotechnol. 2008 Jan;26(1):107-13
24990620 - Curr Top Microbiol Immunol. 2014;385:359-75
22445963 - Curr Opin Virol. 2012 Apr;2(2):160-7
15601777 - Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):18153-8
22072785 - J Virol. 2012 Jan;86(2):982-90
22529385 - Proc Natl Acad Sci U S A. 2012 May 8;109(19):7457-62
23824816 - J Virol. 2013 Sep;87(17):9904-10
26416728 - Nature. 2015 Oct 1;526(7571):122-5
23516363 - PLoS Pathog. 2013 Mar;9(3):e1003223
24668228 - EMBO J. 2014 Apr 16;33(8):823-41
20519409 - J Virol. 2010 Aug;84(16):8287-99
7645225 - Virology. 1995 Aug 1;211(1):302-6
25766296 - Cell Host Microbe. 2015 Mar 11;17(3):377-84
18480230 - J Clin Microbiol. 2008 Jul;46(7):2189-94
25108746 - Trends Microbiol. 2014 Nov;22(11):632-41
10966468 - Annu Rev Biochem. 2000;69:531-69
24223916 - PLoS One. 2013 Nov 01;8(11):e79252
20724471 - J Biol Chem. 2010 Oct 29;285(44):34016-26
7975212 - Virology. 1994 Nov 15;205(1):17-23
11118381 - Virology. 2000 Dec 20;278(2):587-96
27284789 - J Vis Exp. 2016 May 29;(111):null
24375430 - J Comput Chem. 2014 Mar 15;35(7):526-39
16081961 - J Clin Microbiol. 2005 Aug;43(8):4139-46
10954551 - J Virol. 2000 Sep;74(18):8502-12
25383601 - Nat Rev Microbiol. 2014 Dec;12(12):822-31
6272300 - Proc Natl Acad Sci U S A. 1981 Sep;78(9):5406-10
23236176 - Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21474-9
16344263 - Glycobiology. 2006 Apr;16(4):333-42
15563589 - Proc Natl Acad Sci U S A. 2004 Dec 7;101(49):17033-8
25135641 - J Biol Chem. 2014 Oct 10;289(41):28489-504
11601919 - Virology. 2001 Oct 10;289(1):74-85
26911287 - Glycobiology. 2016 Jul;26(7):772-83
6255459 - Proc Natl Acad Sci U S A. 1980 Oct;77(10):5693-7
17013397 - Nat Rev Microbiol. 2006 Nov;4(11):857-64
9133639 - Biochim Biophys Acta. 1997 Apr 17;1335(1-2):23-32
24717798 - Nat Commun. 2014 Apr 10;5:3614
6584912 - Proc Natl Acad Sci U S A. 1984 Mar;81(6):1779-83
22505324 - Angew Chem Int Ed Engl. 2012 May 14;51(20):4860-3
22786570 - Glycobiology. 2012 Nov;22(11):1453-64
References_xml – volume: 86
  start-page: 982
  year: 2012
  end-page: 990
  ident: bib46
  article-title: Structural characterization of the hemagglutinin receptor specificity from the 2009 H1N1 influenza pandemic
  publication-title: J. Virol.
– volume: 12
  start-page: 822
  year: 2014
  end-page: 831
  ident: bib37
  article-title: Enabling the ‘host jump’: structural determinants of receptor-binding specificity in influenza A viruses
  publication-title: Nat. Rev. Microbiol.
– volume: 8
  start-page: 511
  year: 2006
  end-page: 519
  ident: bib2
  article-title: Low growth ability of recent influenza clinical isolates in MDCK cells is due to their low receptor binding affinities
  publication-title: Microbes Infect.
– volume: 101
  start-page: 18153
  year: 2004
  end-page: 18158
  ident: bib7
  article-title: Influenza virus entry and infection require host cell N-linked glycoprotein
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 109
  start-page: 21474
  year: 2012
  end-page: 21479
  ident: bib23
  article-title: Evolution of the receptor binding properties of the influenza A(H3N2) hemagglutinin
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 87
  start-page: 9904
  year: 2013
  end-page: 9910
  ident: bib22
  article-title: Single hemagglutinin mutations that alter both antigenicity and receptor binding avidity influence influenza virus antigenic clustering
  publication-title: J. Virol.
– volume: 1335
  start-page: 23
  year: 1997
  end-page: 32
  ident: bib36
  article-title: Occurence of a sialylglycopeptide and free sialylglycans in hen’s egg yolk
  publication-title: Biochim. Biophys. Acta
– volume: 205
  start-page: 17
  year: 1994
  end-page: 23
  ident: bib8
  article-title: Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates
  publication-title: Virology
– volume: 211
  start-page: 302
  year: 1995
  end-page: 306
  ident: bib14
  article-title: Egg fluids and cells of the chorioallantoic membrane of embryonated chicken eggs can select different variants of influenza A (H3N2) viruses
  publication-title: Virology
– volume: 289
  start-page: 74
  year: 2001
  end-page: 85
  ident: bib28
  article-title: Hemagglutinin residues of recent human A(H3N2) influenza viruses that contribute to the inability to agglutinate chicken erythrocytes
  publication-title: Virology
– volume: 289
  start-page: 28489
  year: 2014
  end-page: 28504
  ident: bib18
  article-title: Glycomic characterization of respiratory tract tissues of ferrets: implications for its use in influenza virus infection studies
  publication-title: J. Biol. Chem.
– volume: 4
  start-page: 857
  year: 2006
  end-page: 864
  ident: bib40
  article-title: Glycan microarray technologies: tools to survey host specificity of influenza viruses
  publication-title: Nat. Rev. Microbiol.
– volume: 81
  start-page: 8593
  year: 2007
  end-page: 8600
  ident: bib43
  article-title: N-linked glycosylation attenuates H3N2 influenza viruses
  publication-title: J. Virol.
– volume: 87
  start-page: 13868
  year: 2013
  end-page: 13877
  ident: bib11
  article-title: Evolution of the hemagglutinin protein of the new pandemic H1N1 influenza virus: maintaining optimal receptor binding by compensatory substitutions
  publication-title: J. Virol.
– volume: 22
  start-page: 632
  year: 2014
  end-page: 641
  ident: bib35
  article-title: Glycan receptor specificity as a useful tool for characterization and surveillance of influenza A virus
  publication-title: Trends Microbiol.
– volume: 22
  start-page: 1453
  year: 2012
  end-page: 1464
  ident: bib34
  article-title: Helicobacter pylori β1,3-N-acetylglucosaminyltransferase for versatile synthesis of type 1 and type 2 poly-LacNAcs on N-linked, O-linked and I-antigen glycans
  publication-title: Glycobiology
– volume: 69
  start-page: 531
  year: 2000
  end-page: 569
  ident: bib38
  article-title: Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin
  publication-title: Annu. Rev. Biochem.
– volume: 20
  start-page: 166
  year: 2010
  end-page: 174
  ident: bib1
  article-title: Comparison of the substrate specificities and catalytic properties of the sister N-acetylglucosaminyltransferases, GnT-V and GnT-Vb (IX)
  publication-title: Glycobiology
– volume: 27
  start-page: 797
  year: 2009
  end-page: 799
  ident: bib6
  article-title: Receptor-binding specificity of pandemic influenza A (H1N1) 2009 virus determined by carbohydrate microarray
  publication-title: Nat. Biotechnol.
– volume: 385
  start-page: 359
  year: 2014
  end-page: 375
  ident: bib48
  article-title: Evolution and ecology of influenza A viruses
  publication-title: Curr. Top. Microbiol. Immunol.
– volume: 477
  start-page: 18
  year: 2015
  end-page: 31
  ident: bib47
  article-title: Structure and receptor binding preferences of recombinant human A(H3N2) virus hemagglutinins
  publication-title: Virology
– volume: 8
  start-page: e79252
  year: 2013
  ident: bib20
  article-title: Comparison of mutation patterns in full-genome A/H3N2 influenza sequences obtained directly from clinical samples and the same samples after a single MDCK passage
  publication-title: PLoS ONE
– volume: 8
  start-page: e66325
  year: 2013
  ident: bib13
  article-title: Human H3N2 influenza viruses isolated from 1968 to 2012 show varying preference for receptor substructures with no apparent consequences for disease or spread
  publication-title: PLoS ONE
– volume: 26
  start-page: 107
  year: 2008
  end-page: 113
  ident: bib5
  article-title: Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin
  publication-title: Nat. Biotechnol.
– volume: 526
  start-page: 122
  year: 2015
  end-page: 125
  ident: bib19
  article-title: The soft palate is an important site of adaptation for transmissible influenza viruses
  publication-title: Nature
– volume: 81
  start-page: 1779
  year: 1984
  end-page: 1783
  ident: bib39
  article-title: A carbohydrate side chain on hemagglutinins of Hong Kong influenza viruses inhibits recognition by a monoclonal antibody
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 84
  start-page: 8287
  year: 2010
  end-page: 8299
  ident: bib41
  article-title: Receptor specificity of influenza A H3N2 viruses isolated in mammalian cells and embryonated chicken eggs
  publication-title: J. Virol.
– volume: 5
  start-page: 3614
  year: 2014
  ident: bib21
  article-title: Receptor mimicry by antibody F045-092 facilitates universal binding to the H3 subtype of influenza virus
  publication-title: Nat. Commun.
– volume: 35
  start-page: 526
  year: 2014
  end-page: 539
  ident: bib29
  article-title: Importance of ligand conformational energies in carbohydrate docking: Sorting the wheat from the chaff
  publication-title: J. Comput. Chem.
– volume: 9
  start-page: e1003223
  year: 2013
  ident: bib44
  article-title: Glycomic analysis of human respiratory tract tissues and correlation with influenza virus infection
  publication-title: PLoS Pathog.
– volume: 46
  start-page: 2189
  year: 2008
  end-page: 2194
  ident: bib32
  article-title: MDCK-SIAT1 cells show improved isolation rates for recent human influenza viruses compared to conventional MDCK cells
  publication-title: J. Clin. Microbiol.
– volume: 2
  start-page: 160
  year: 2012
  end-page: 167
  ident: bib17
  article-title: The role of receptor binding specificity in interspecies transmission of influenza viruses
  publication-title: Curr. Opin. Virol.
– volume: 33
  start-page: 823
  year: 2014
  end-page: 841
  ident: bib9
  article-title: Role of receptor binding specificity in influenza A virus transmission and pathogenesis
  publication-title: EMBO J.
– volume: 74
  start-page: 8502
  year: 2000
  end-page: 8512
  ident: bib26
  article-title: Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals
  publication-title: J. Virol.
– volume: 17
  start-page: 377
  year: 2015
  end-page: 384
  ident: bib49
  article-title: A human-infecting H10N8 influenza virus retains a strong preference for avian-type receptors
  publication-title: Cell Host Microbe
– volume: 285
  start-page: 34016
  year: 2010
  end-page: 34026
  ident: bib3
  article-title: Glycan analysis and influenza A virus infection of primary swine respiratory epithelial cells: the importance of NeuAcα2-6 glycans
  publication-title: J. Biol. Chem.
– volume: 101
  start-page: 17033
  year: 2004
  end-page: 17038
  ident: bib4
  article-title: Printed covalent glycan array for ligand profiling of diverse glycan binding proteins
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 109
  start-page: 7457
  year: 2012
  end-page: 7462
  ident: bib10
  article-title: Influenza A virus entry into cells lacking sialylated N-glycans
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 26
  start-page: 772
  year: 2016
  end-page: 783
  ident: bib12
  article-title: Combining 3D structure with glycan array data provides insight into the origin of glycan specificity
  publication-title: Glycobiology
– year: 2016
  ident: bib27
  article-title: A miniaturized glycan microarray assay for assessing avidity and specificity of influenza A virus hemagglutinins
  publication-title: J. Vis. Exp.
– volume: 16
  start-page: 333
  year: 2006
  end-page: 342
  ident: bib16
  article-title: Reaction mechanism and substrate specificity for nucleotide sugar of mammalian α1,6-fucosyltransferase--a large-scale preparation and characterization of recombinant human FUT8
  publication-title: Glycobiology
– volume: 77
  start-page: 5693
  year: 1980
  end-page: 5697
  ident: bib24
  article-title: Sendai virus utilizes specific sialyloligosaccharides as host cell receptor determinants
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 278
  start-page: 587
  year: 2000
  end-page: 596
  ident: bib30
  article-title: Change in receptor-binding specificity of recent human influenza A viruses (H3N2): a single amino acid change in hemagglutinin altered its recognition of sialyloligosaccharides
  publication-title: Virology
– volume: 341
  start-page: 379
  year: 2013
  end-page: 383
  ident: bib45
  article-title: A general strategy for the chemoenzymatic synthesis of asymmetrically branched N-glycans
  publication-title: Science
– volume: 78
  start-page: 5406
  year: 1981
  end-page: 5410
  ident: bib25
  article-title: Specific gangliosides function as host cell receptors for Sendai virus
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 43
  start-page: 4139
  year: 2005
  end-page: 4146
  ident: bib15
  article-title: Enhanced expression of an α2,6-linked sialic acid on MDCK cells improves isolation of human influenza viruses and evaluation of their sensitivity to a neuraminidase inhibitor
  publication-title: J. Clin. Microbiol.
– volume: 178
  start-page: 99
  year: 2013
  end-page: 113
  ident: bib33
  article-title: H5N1 receptor specificity as a factor in pandemic risk
  publication-title: Virus Res.
– volume: 51
  start-page: 4860
  year: 2012
  end-page: 4863
  ident: bib31
  article-title: Recognition of sialylated poly-N-acetyllactosamine chains on N- and O-linked glycans by human and avian influenza A virus hemagglutinins
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 289
  start-page: 74
  year: 2001
  ident: 10.1016/j.chom.2016.11.004_bib28
  article-title: Hemagglutinin residues of recent human A(H3N2) influenza viruses that contribute to the inability to agglutinate chicken erythrocytes
  publication-title: Virology
  doi: 10.1006/viro.2001.1121
– volume: 43
  start-page: 4139
  year: 2005
  ident: 10.1016/j.chom.2016.11.004_bib15
  article-title: Enhanced expression of an α2,6-linked sialic acid on MDCK cells improves isolation of human influenza viruses and evaluation of their sensitivity to a neuraminidase inhibitor
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.43.8.4139-4146.2005
– volume: 16
  start-page: 333
  year: 2006
  ident: 10.1016/j.chom.2016.11.004_bib16
  article-title: Reaction mechanism and substrate specificity for nucleotide sugar of mammalian α1,6-fucosyltransferase--a large-scale preparation and characterization of recombinant human FUT8
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwj068
– volume: 178
  start-page: 99
  year: 2013
  ident: 10.1016/j.chom.2016.11.004_bib33
  article-title: H5N1 receptor specificity as a factor in pandemic risk
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2013.02.015
– volume: 8
  start-page: e66325
  year: 2013
  ident: 10.1016/j.chom.2016.11.004_bib13
  article-title: Human H3N2 influenza viruses isolated from 1968 to 2012 show varying preference for receptor substructures with no apparent consequences for disease or spread
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0066325
– volume: 285
  start-page: 34016
  year: 2010
  ident: 10.1016/j.chom.2016.11.004_bib3
  article-title: Glycan analysis and influenza A virus infection of primary swine respiratory epithelial cells: the importance of NeuAcα2-6 glycans
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.115998
– volume: 46
  start-page: 2189
  year: 2008
  ident: 10.1016/j.chom.2016.11.004_bib32
  article-title: MDCK-SIAT1 cells show improved isolation rates for recent human influenza viruses compared to conventional MDCK cells
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.00398-08
– volume: 77
  start-page: 5693
  year: 1980
  ident: 10.1016/j.chom.2016.11.004_bib24
  article-title: Sendai virus utilizes specific sialyloligosaccharides as host cell receptor determinants
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.77.10.5693
– volume: 9
  start-page: e1003223
  year: 2013
  ident: 10.1016/j.chom.2016.11.004_bib44
  article-title: Glycomic analysis of human respiratory tract tissues and correlation with influenza virus infection
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1003223
– volume: 86
  start-page: 982
  year: 2012
  ident: 10.1016/j.chom.2016.11.004_bib46
  article-title: Structural characterization of the hemagglutinin receptor specificity from the 2009 H1N1 influenza pandemic
  publication-title: J. Virol.
  doi: 10.1128/JVI.06322-11
– volume: 87
  start-page: 13868
  year: 2013
  ident: 10.1016/j.chom.2016.11.004_bib11
  article-title: Evolution of the hemagglutinin protein of the new pandemic H1N1 influenza virus: maintaining optimal receptor binding by compensatory substitutions
  publication-title: J. Virol.
  doi: 10.1128/JVI.01955-13
– volume: 5
  start-page: 3614
  year: 2014
  ident: 10.1016/j.chom.2016.11.004_bib21
  article-title: Receptor mimicry by antibody F045-092 facilitates universal binding to the H3 subtype of influenza virus
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4614
– volume: 2
  start-page: 160
  year: 2012
  ident: 10.1016/j.chom.2016.11.004_bib17
  article-title: The role of receptor binding specificity in interspecies transmission of influenza viruses
  publication-title: Curr. Opin. Virol.
  doi: 10.1016/j.coviro.2012.03.003
– volume: 26
  start-page: 772
  year: 2016
  ident: 10.1016/j.chom.2016.11.004_bib12
  article-title: Combining 3D structure with glycan array data provides insight into the origin of glycan specificity
  publication-title: Glycobiology
  doi: 10.1093/glycob/cww020
– volume: 81
  start-page: 1779
  year: 1984
  ident: 10.1016/j.chom.2016.11.004_bib39
  article-title: A carbohydrate side chain on hemagglutinins of Hong Kong influenza viruses inhibits recognition by a monoclonal antibody
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.81.6.1779
– volume: 8
  start-page: 511
  year: 2006
  ident: 10.1016/j.chom.2016.11.004_bib2
  article-title: Low growth ability of recent influenza clinical isolates in MDCK cells is due to their low receptor binding affinities
  publication-title: Microbes Infect.
  doi: 10.1016/j.micinf.2005.08.006
– volume: 87
  start-page: 9904
  year: 2013
  ident: 10.1016/j.chom.2016.11.004_bib22
  article-title: Single hemagglutinin mutations that alter both antigenicity and receptor binding avidity influence influenza virus antigenic clustering
  publication-title: J. Virol.
  doi: 10.1128/JVI.01023-13
– volume: 26
  start-page: 107
  year: 2008
  ident: 10.1016/j.chom.2016.11.004_bib5
  article-title: Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1375
– volume: 101
  start-page: 17033
  year: 2004
  ident: 10.1016/j.chom.2016.11.004_bib4
  article-title: Printed covalent glycan array for ligand profiling of diverse glycan binding proteins
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0407902101
– volume: 81
  start-page: 8593
  year: 2007
  ident: 10.1016/j.chom.2016.11.004_bib43
  article-title: N-linked glycosylation attenuates H3N2 influenza viruses
  publication-title: J. Virol.
  doi: 10.1128/JVI.00769-07
– volume: 477
  start-page: 18
  year: 2015
  ident: 10.1016/j.chom.2016.11.004_bib47
  article-title: Structure and receptor binding preferences of recombinant human A(H3N2) virus hemagglutinins
  publication-title: Virology
  doi: 10.1016/j.virol.2014.12.024
– volume: 35
  start-page: 526
  year: 2014
  ident: 10.1016/j.chom.2016.11.004_bib29
  article-title: Importance of ligand conformational energies in carbohydrate docking: Sorting the wheat from the chaff
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.23517
– volume: 289
  start-page: 28489
  year: 2014
  ident: 10.1016/j.chom.2016.11.004_bib18
  article-title: Glycomic characterization of respiratory tract tissues of ferrets: implications for its use in influenza virus infection studies
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.588541
– volume: 109
  start-page: 21474
  year: 2012
  ident: 10.1016/j.chom.2016.11.004_bib23
  article-title: Evolution of the receptor binding properties of the influenza A(H3N2) hemagglutinin
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1218841110
– volume: 78
  start-page: 5406
  year: 1981
  ident: 10.1016/j.chom.2016.11.004_bib25
  article-title: Specific gangliosides function as host cell receptors for Sendai virus
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.78.9.5406
– volume: 84
  start-page: 8287
  year: 2010
  ident: 10.1016/j.chom.2016.11.004_bib41
  article-title: Receptor specificity of influenza A H3N2 viruses isolated in mammalian cells and embryonated chicken eggs
  publication-title: J. Virol.
  doi: 10.1128/JVI.00058-10
– volume: 20
  start-page: 166
  year: 2010
  ident: 10.1016/j.chom.2016.11.004_bib1
  article-title: Comparison of the substrate specificities and catalytic properties of the sister N-acetylglucosaminyltransferases, GnT-V and GnT-Vb (IX)
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwp158
– volume: 101
  start-page: 18153
  year: 2004
  ident: 10.1016/j.chom.2016.11.004_bib7
  article-title: Influenza virus entry and infection require host cell N-linked glycoprotein
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0405172102
– issue: 111
  year: 2016
  ident: 10.1016/j.chom.2016.11.004_bib27
  article-title: A miniaturized glycan microarray assay for assessing avidity and specificity of influenza A virus hemagglutinins
  publication-title: J. Vis. Exp.
– volume: 74
  start-page: 8502
  year: 2000
  ident: 10.1016/j.chom.2016.11.004_bib26
  article-title: Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals
  publication-title: J. Virol.
  doi: 10.1128/JVI.74.18.8502-8512.2000
– volume: 109
  start-page: 7457
  year: 2012
  ident: 10.1016/j.chom.2016.11.004_bib10
  article-title: Influenza A virus entry into cells lacking sialylated N-glycans
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1200987109
– volume: 278
  start-page: 587
  year: 2000
  ident: 10.1016/j.chom.2016.11.004_bib30
  article-title: Change in receptor-binding specificity of recent human influenza A viruses (H3N2): a single amino acid change in hemagglutinin altered its recognition of sialyloligosaccharides
  publication-title: Virology
  doi: 10.1006/viro.2000.0679
– volume: 22
  start-page: 632
  year: 2014
  ident: 10.1016/j.chom.2016.11.004_bib35
  article-title: Glycan receptor specificity as a useful tool for characterization and surveillance of influenza A virus
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2014.07.002
– volume: 69
  start-page: 531
  year: 2000
  ident: 10.1016/j.chom.2016.11.004_bib38
  article-title: Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.69.1.531
– volume: 526
  start-page: 122
  year: 2015
  ident: 10.1016/j.chom.2016.11.004_bib19
  article-title: The soft palate is an important site of adaptation for transmissible influenza viruses
  publication-title: Nature
  doi: 10.1038/nature15379
– volume: 1335
  start-page: 23
  year: 1997
  ident: 10.1016/j.chom.2016.11.004_bib36
  article-title: Occurence of a sialylglycopeptide and free sialylglycans in hen’s egg yolk
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0304-4165(96)00118-3
– volume: 51
  start-page: 4860
  year: 2012
  ident: 10.1016/j.chom.2016.11.004_bib31
  article-title: Recognition of sialylated poly-N-acetyllactosamine chains on N- and O-linked glycans by human and avian influenza A virus hemagglutinins
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201200596
– volume: 17
  start-page: 377
  year: 2015
  ident: 10.1016/j.chom.2016.11.004_bib49
  article-title: A human-infecting H10N8 influenza virus retains a strong preference for avian-type receptors
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2015.02.006
– volume: 8
  start-page: e79252
  year: 2013
  ident: 10.1016/j.chom.2016.11.004_bib20
  article-title: Comparison of mutation patterns in full-genome A/H3N2 influenza sequences obtained directly from clinical samples and the same samples after a single MDCK passage
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0079252
– volume: 27
  start-page: 797
  year: 2009
  ident: 10.1016/j.chom.2016.11.004_bib6
  article-title: Receptor-binding specificity of pandemic influenza A (H1N1) 2009 virus determined by carbohydrate microarray
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt0909-797
– volume: 211
  start-page: 302
  year: 1995
  ident: 10.1016/j.chom.2016.11.004_bib14
  article-title: Egg fluids and cells of the chorioallantoic membrane of embryonated chicken eggs can select different variants of influenza A (H3N2) viruses
  publication-title: Virology
  doi: 10.1006/viro.1995.1405
– volume: 341
  start-page: 379
  year: 2013
  ident: 10.1016/j.chom.2016.11.004_bib45
  article-title: A general strategy for the chemoenzymatic synthesis of asymmetrically branched N-glycans
  publication-title: Science
  doi: 10.1126/science.1236231
– volume: 385
  start-page: 359
  year: 2014
  ident: 10.1016/j.chom.2016.11.004_bib48
  article-title: Evolution and ecology of influenza A viruses
  publication-title: Curr. Top. Microbiol. Immunol.
– volume: 33
  start-page: 823
  year: 2014
  ident: 10.1016/j.chom.2016.11.004_bib9
  article-title: Role of receptor binding specificity in influenza A virus transmission and pathogenesis
  publication-title: EMBO J.
  doi: 10.1002/embj.201387442
– volume: 205
  start-page: 17
  year: 1994
  ident: 10.1016/j.chom.2016.11.004_bib8
  article-title: Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates
  publication-title: Virology
  doi: 10.1006/viro.1994.1615
– volume: 12
  start-page: 822
  year: 2014
  ident: 10.1016/j.chom.2016.11.004_bib37
  article-title: Enabling the ‘host jump’: structural determinants of receptor-binding specificity in influenza A viruses
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro3362
– volume: 4
  start-page: 857
  year: 2006
  ident: 10.1016/j.chom.2016.11.004_bib40
  article-title: Glycan microarray technologies: tools to survey host specificity of influenza viruses
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro1530
– volume: 22
  start-page: 1453
  year: 2012
  ident: 10.1016/j.chom.2016.11.004_bib34
  article-title: Helicobacter pylori β1,3-N-acetylglucosaminyltransferase for versatile synthesis of type 1 and type 2 poly-LacNAcs on N-linked, O-linked and I-antigen glycans
  publication-title: Glycobiology
  doi: 10.1093/glycob/cws101
– reference: 25108746 - Trends Microbiol. 2014 Nov;22(11):632-41
– reference: 23236176 - Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21474-9
– reference: 22529385 - Proc Natl Acad Sci U S A. 2012 May 8;109(19):7457-62
– reference: 22786570 - Glycobiology. 2012 Nov;22(11):1453-64
– reference: 25135641 - J Biol Chem. 2014 Oct 10;289(41):28489-504
– reference: 26911287 - Glycobiology. 2016 Jul;26(7):772-83
– reference: 15601777 - Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):18153-8
– reference: 20519409 - J Virol. 2010 Aug;84(16):8287-99
– reference: 16081961 - J Clin Microbiol. 2005 Aug;43(8):4139-46
– reference: 16344263 - Glycobiology. 2006 Apr;16(4):333-42
– reference: 6272300 - Proc Natl Acad Sci U S A. 1981 Sep;78(9):5406-10
– reference: 24990620 - Curr Top Microbiol Immunol. 2014;385:359-75
– reference: 18176555 - Nat Biotechnol. 2008 Jan;26(1):107-13
– reference: 22505324 - Angew Chem Int Ed Engl. 2012 May 14;51(20):4860-3
– reference: 24223916 - PLoS One. 2013 Nov 01;8(11):e79252
– reference: 11118381 - Virology. 2000 Dec 20;278(2):587-96
– reference: 23805213 - PLoS One. 2013 Jun 21;8(6):e66325
– reference: 25383601 - Nat Rev Microbiol. 2014 Dec;12(12):822-31
– reference: 18480230 - J Clin Microbiol. 2008 Jul;46(7):2189-94
– reference: 24109242 - J Virol. 2013 Dec;87(24):13868-77
– reference: 25766296 - Cell Host Microbe. 2015 Mar 11;17(3):377-84
– reference: 23619279 - Virus Res. 2013 Dec 5;178(1):99-113
– reference: 27284789 - J Vis Exp. 2016 May 29;(111):null
– reference: 22072785 - J Virol. 2012 Jan;86(2):982-90
– reference: 24668228 - EMBO J. 2014 Apr 16;33(8):823-41
– reference: 23516363 - PLoS Pathog. 2013 Mar;9(3):e1003223
– reference: 7975212 - Virology. 1994 Nov 15;205(1):17-23
– reference: 6584912 - Proc Natl Acad Sci U S A. 1984 Mar;81(6):1779-83
– reference: 24717798 - Nat Commun. 2014 Apr 10;5:3614
– reference: 10954551 - J Virol. 2000 Sep;74(18):8502-12
– reference: 11601919 - Virology. 2001 Oct 10;289(1):74-85
– reference: 19846580 - Glycobiology. 2010 Feb;20(2):166-74
– reference: 10966468 - Annu Rev Biochem. 2000;69:531-69
– reference: 23824816 - J Virol. 2013 Sep;87(17):9904-10
– reference: 17553891 - J Virol. 2007 Aug;81(16):8593-600
– reference: 17013397 - Nat Rev Microbiol. 2006 Nov;4(11):857-64
– reference: 26416728 - Nature. 2015 Oct 1;526(7571):122-5
– reference: 22445963 - Curr Opin Virol. 2012 Apr;2(2):160-7
– reference: 7645225 - Virology. 1995 Aug 1;211(1):302-6
– reference: 24375430 - J Comput Chem. 2014 Mar 15;35(7):526-39
– reference: 19741625 - Nat Biotechnol. 2009 Sep;27(9):797-9
– reference: 6255459 - Proc Natl Acad Sci U S A. 1980 Oct;77(10):5693-7
– reference: 20724471 - J Biol Chem. 2010 Oct 29;285(44):34016-26
– reference: 15563589 - Proc Natl Acad Sci U S A. 2004 Dec 7;101(49):17033-8
– reference: 9133639 - Biochim Biophys Acta. 1997 Apr 17;1335(1-2):23-32
– reference: 25617824 - Virology. 2015 Mar;477:18-31
– reference: 16300986 - Microbes Infect. 2006 Feb;8(2):511-9
SSID ssj0055071
Score 2.557206
Snippet Human and avian influenza viruses recognize different sialic acid-containing receptors, referred to as human-type (NeuAcα2-6Gal) and avian-type (NeuAcα2-3Gal),...
Human and avian influenza viruses recognize different sialic acid-containing receptors, referred to as human-type (NeuAcα2-6Gal) and avian-type (NeuAcα2-3Gal)...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 23
SubjectTerms airway
Animals
bidentate binding
Cell Line
chemo-enzymatic synthesis
Dogs
extended branched glycans
Galactans - metabolism
H3N2
HEK293 Cells
hemagglutinin
Hemagglutinin Glycoproteins, Influenza Virus - metabolism
Humans
Influenza A Virus, H1N1 Subtype - genetics
Influenza A Virus, H1N1 Subtype - metabolism
Influenza A Virus, H3N2 Subtype - genetics
Influenza A Virus, H3N2 Subtype - metabolism
Influenza A Virus, H3N8 Subtype - metabolism
Influenza A Virus, H5N1 Subtype - metabolism
influenza virus
Madin Darby Canine Kidney Cells
Molecular Dynamics Simulation
N-Acetylneuraminic Acid - metabolism
poly-N-acetyl-lactosamine
Polysaccharides - metabolism
receptor specificity
Receptors, Virus - metabolism
sialoside microarray
Species Specificity
Virus Attachment
Title Recent H3N2 Viruses Have Evolved Specificity for Extended, Branched Human-type Receptors, Conferring Potential for Increased Avidity
URI https://dx.doi.org/10.1016/j.chom.2016.11.004
https://www.ncbi.nlm.nih.gov/pubmed/28017661
https://www.proquest.com/docview/1853352177
https://pubmed.ncbi.nlm.nih.gov/PMC5233592
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBalUOjL2Lp2y7YWDfrWarEc2bIf25KSrbQM1o68Cf24UI_hhOYH9H1_-O5sOTTb6MPyGEtC-OS7T9Ld9zF2HJx1BQAIdH25UJNECVdaLxKH-FVPCozJVDt8fZOP7tSXcTbeYhddLQylVUbf3_r0xlvHf_rxbfZnVdX_htBDDugiKKero5JotweqaIr4xuedNya6LtneLEtBrWPhTJvjRXoklN6VfyImzyjW9o_g9Df4_DOH8klQunzJXkQ0yc_aCb9iW1DvsZ1WX_LxNfuFoBA78tHgJuXfq4flHOZ8ZFfAh-iVVhB4Iz9PJBKLR47wlQ_jmfgpPyfFjXts0hzzCzqq5TTcjOR5TnlbKUiHgvzrdEEpRzgPGgEdDuW5Y8ezVRVw3H12dzm8vRiJKLsgPKkbCBVKYtkPEiDLJx5DnJVOBl1q6ZLCTQpbYrhT2gLaMfM-xU2Rg0JlCoINCOkO2HY9reEt43kAbxPEbPhQeW2tx1_ufZGDVllZ9pjs3rfxkZOcpDF-mi757IchGxmyEW5WDNqox07WfWYtI8ezrbPOjGZjXRkMGc_2-9jZ3OAHR7cotobpcm4I4CBqlVr32Jt2DaznkWK814h4ekxvrI51AyLz3nxSV_cNqXeW4qhl-u4_5_ue7aYEOBIppPzAthcPSzhEuLRwR7hR-Hx11HwVvwHDtRYs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgQXxJvlaSRu1GycOnZybKutUmhXSLRob5Zje9UglF11H1Lv_HBmEmfFAuqBHOOxZXnsmc_2eD6A976yVR5C4Gj6FJfTRPKqsI4nFeJXPc3RJ9Pb4bOxKi_kp0k22YGj_i0MhVVG29_Z9NZaxz_DOJrDeV0PvyL0EPt0EaTo6qhQt-A2ogFN_A0nk8PeHFO-LtFdLQtO4vHlTBfkRYQkFN-lPlIqz8jW9g_v9Df6_DOI8jevdPwA7kc4yQ66Hj-EndA8gjsdweT1Y_iJqBArsnJ_nLJv9dVqERastOvARmiW1sGzln-eskgsrxniVzaKh-J77JAoNy5RpD3n53RWy6i5OfHz7LHuqSCdCrIvsyXFHGE_qAW0OBTojhUP1rXHdp_AxfHo_KjkkXeBO6I34NIXlGbfixAyNXXo46yohNeFFlWSV9PcFujvpLYBFZk5l-KuqAq5zGTw1iOmewq7zawJz4EpH5xNELRhoXTaWoefci5XQcusKAYg-vE2LiYlJ26MH6aPPvtuSEeGdIS7FYM6GsCHTZ15l5LjRumsV6PZmlgGfcaN9d71Oje44ugaxTZhtloYQjgIW4XWA3jWzYFNP1J0-BohzwD01uzYCFA27-2Spr5ss3pnKbZapC_-s79v4W55fnZqTk_Gn1_CvZTQRyK4EK9gd3m1Cq8ROy2rN-3a-AUsNhhS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+H3N2+Viruses+Have+Evolved+Specificity+for+Extended%2C+Branched+Human-type+Receptors%2C+Conferring+Potential+for+Increased+Avidity&rft.jtitle=Cell+host+%26+microbe&rft.au=Peng%2C+Wenjie&rft.au=de+Vries%2C+Robert+P.&rft.au=Grant%2C+Oliver+C.&rft.au=Thompson%2C+Andrew+J.&rft.date=2017-01-11&rft.pub=Elsevier+Inc&rft.issn=1931-3128&rft.eissn=1934-6069&rft.volume=21&rft.issue=1&rft.spage=23&rft.epage=34&rft_id=info:doi/10.1016%2Fj.chom.2016.11.004&rft.externalDocID=S1931312816304796
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3128&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3128&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3128&client=summon