Recent H3N2 Viruses Have Evolved Specificity for Extended, Branched Human-type Receptors, Conferring Potential for Increased Avidity
Human and avian influenza viruses recognize different sialic acid-containing receptors, referred to as human-type (NeuAcα2-6Gal) and avian-type (NeuAcα2-3Gal), respectively. This presents a species barrier for aerosol droplet transmission of avian viruses in humans and ferrets. Recent reports have s...
Saved in:
Published in | Cell host & microbe Vol. 21; no. 1; pp. 23 - 34 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
11.01.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Human and avian influenza viruses recognize different sialic acid-containing receptors, referred to as human-type (NeuAcα2-6Gal) and avian-type (NeuAcα2-3Gal), respectively. This presents a species barrier for aerosol droplet transmission of avian viruses in humans and ferrets. Recent reports have suggested that current human H3N2 viruses no longer have strict specificity toward human-type receptors. Using an influenza receptor glycan microarray with extended airway glycans, we find that H3N2 viruses have in fact maintained human-type specificity, but they have evolved preference for a subset of receptors comprising branched glycans with extended poly-N-acetyl-lactosamine (poly-LacNAc) chains, a specificity shared with the 2009 pandemic H1N1 (Cal/04) hemagglutinin. Lipid-linked versions of extended sialoside receptors can restore susceptibility of sialidase-treated MDCK cells to infection by both recent (A/Victoria/361/11) and historical (A/Hong Kong/8/1968) H3N2 viruses. Remarkably, these human-type receptors with elongated branches have the potential to increase avidity by simultaneously binding to two subunits of a single hemagglutinin trimer.
[Display omitted]
•All H3N2 influenza viruses recognize human-type receptors with extended glycan chains•Recent H3 and pandemic H1 hemagglutinins prefer extended, branched N-glycan receptors•Lipid-linked glycan receptors restore infectivity to receptor-deficient MDCK cells•Molecular dynamics simulation shows bidentate binding of N-glycans to one HA trimer
To clarify H3N2 human influenza virus receptor specificity, Peng et al. developed a glycan array that included extended glycans. Recent H3N2 and 2009 pandemic H1N1 viruses share specificity for human-type receptors with extended glycan chains, conferring potential for increased avidity by simultaneously binding two subunits of a single hemagglutinin trimer. |
---|---|
AbstractList | Human and avian influenza viruses recognize different sialic acid-containing receptors, referred to as human-type (NeuAcα2-6Gal) and avian-type (NeuAcα2-3Gal), respectively. This presents a species barrier for aerosol droplet transmission of avian viruses in humans and ferrets. Recent reports have suggested that current human H3N2 viruses no longer have strict specificity toward human-type receptors. Using an influenza receptor glycan microarray with extended airway glycans, we find that H3N2 viruses have in fact maintained human-type specificity, but they have evolved preference for a subset of receptors comprising branched glycans with extended poly-N-acetyl-lactosamine (poly-LacNAc) chains, a specificity shared with the 2009 pandemic H1N1 (Cal/04) hemagglutinin. Lipid-linked versions of extended sialoside receptors can restore susceptibility of sialidase-treated MDCK cells to infection by both recent (A/Victoria/361/11) and historical (A/Hong Kong/8/1968) H3N2 viruses. Remarkably, these human-type receptors with elongated branches have the potential to increase avidity by simultaneously binding to two subunits of a single hemagglutinin trimer.Human and avian influenza viruses recognize different sialic acid-containing receptors, referred to as human-type (NeuAcα2-6Gal) and avian-type (NeuAcα2-3Gal), respectively. This presents a species barrier for aerosol droplet transmission of avian viruses in humans and ferrets. Recent reports have suggested that current human H3N2 viruses no longer have strict specificity toward human-type receptors. Using an influenza receptor glycan microarray with extended airway glycans, we find that H3N2 viruses have in fact maintained human-type specificity, but they have evolved preference for a subset of receptors comprising branched glycans with extended poly-N-acetyl-lactosamine (poly-LacNAc) chains, a specificity shared with the 2009 pandemic H1N1 (Cal/04) hemagglutinin. Lipid-linked versions of extended sialoside receptors can restore susceptibility of sialidase-treated MDCK cells to infection by both recent (A/Victoria/361/11) and historical (A/Hong Kong/8/1968) H3N2 viruses. Remarkably, these human-type receptors with elongated branches have the potential to increase avidity by simultaneously binding to two subunits of a single hemagglutinin trimer. Human and avian influenza viruses recognize different sialic acid-containing receptors, referred to as human-type (NeuAcα2-6Gal) and avian-type (NeuAcα2-3Gal), respectively. This presents a species barrier for aerosol droplet transmission of avian viruses in humans and ferrets. Recent reports have suggested that current human H3N2 viruses no longer have strict specificity toward human-type receptors. Using an influenza receptor glycan microarray with extended airway glycans, we find that H3N2 viruses have in fact maintained human-type specificity, but they have evolved preference for a subset of receptors comprising branched glycans with extended poly-N-acetyl-lactosamine (poly-LacNAc) chains, a specificity shared with the 2009 pandemic H1N1 (Cal/04) hemagglutinin. Lipid-linked versions of extended sialoside receptors can restore susceptibility of sialidase-treated MDCK cells to infection by both recent (A/Victoria/361/11) and historical (A/Hong Kong/8/1968) H3N2 viruses. Remarkably, these human-type receptors with elongated branches have the potential to increase avidity by simultaneously binding to two subunits of a single hemagglutinin trimer. [Display omitted] •All H3N2 influenza viruses recognize human-type receptors with extended glycan chains•Recent H3 and pandemic H1 hemagglutinins prefer extended, branched N-glycan receptors•Lipid-linked glycan receptors restore infectivity to receptor-deficient MDCK cells•Molecular dynamics simulation shows bidentate binding of N-glycans to one HA trimer To clarify H3N2 human influenza virus receptor specificity, Peng et al. developed a glycan array that included extended glycans. Recent H3N2 and 2009 pandemic H1N1 viruses share specificity for human-type receptors with extended glycan chains, conferring potential for increased avidity by simultaneously binding two subunits of a single hemagglutinin trimer. Human and avian influenza viruses recognize different sialic acid-containing receptors, referred to as human-type (NeuAcα2-6Gal) and avian-type (NeuAcα2-3Gal) respectively. This presents a species barrier for aerosol droplet transmission of avian viruses in humans and ferrets. Recent reports have suggested that current human H3N2 viruses no longer have strict specificity towards human-type receptors. Using an influenza receptor glycan microarray with extended airway glycans we find that H3N2 viruses have in fact maintained human-type specificity, but have evolved preference for a subset of receptors comprising branched glycans with extended poly-N-acetyl-lactosamine (poly-LacNAc) chains, a specificity shared with the 2009 pandemic H1N1 (Cal/04) hemagglutinin. Lipid-linked versions of extended sialoside receptors can restore susceptibility of sialidase-treated MDCK cells to infection by both recent (A/Victoria/361/11) and historical (A/Hong Kong/8/1968) H3N2 viruses. Remarkably, these human-type receptors with elongated branches have the potential to increase avidity by simultaneously binding to two subunits of a single hemagglutinin trimer. Human and avian influenza viruses recognize different sialic acid-containing receptors, referred to as human-type (NeuAcα2-6Gal) and avian-type (NeuAcα2-3Gal), respectively. This presents a species barrier for aerosol droplet transmission of avian viruses in humans and ferrets. Recent reports have suggested that current human H3N2 viruses no longer have strict specificity toward human-type receptors. Using an influenza receptor glycan microarray with extended airway glycans, we find that H3N2 viruses have in fact maintained human-type specificity, but they have evolved preference for a subset of receptors comprising branched glycans with extended poly-N-acetyl-lactosamine (poly-LacNAc) chains, a specificity shared with the 2009 pandemic H1N1 (Cal/04) hemagglutinin. Lipid-linked versions of extended sialoside receptors can restore susceptibility of sialidase-treated MDCK cells to infection by both recent (A/Victoria/361/11) and historical (A/Hong Kong/8/1968) H3N2 viruses. Remarkably, these human-type receptors with elongated branches have the potential to increase avidity by simultaneously binding to two subunits of a single hemagglutinin trimer. |
Author | Thompson, Andrew J. Peng, Wenjie Grant, Oliver C. Lee, Peter S. Wilson, Ian A. Woods, Robert J. Paulson, James C. de Vries, Robert P. Razi, Nahid McBride, Ryan Tsogtbaatar, Buyankhishig |
AuthorAffiliation | 2 Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA 1 Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA 4 Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA 3 Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA |
AuthorAffiliation_xml | – name: 2 Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA – name: 3 Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA – name: 4 Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA – name: 1 Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA |
Author_xml | – sequence: 1 givenname: Wenjie surname: Peng fullname: Peng, Wenjie organization: Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA – sequence: 2 givenname: Robert P. surname: de Vries fullname: de Vries, Robert P. organization: Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA – sequence: 3 givenname: Oliver C. surname: Grant fullname: Grant, Oliver C. organization: Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA – sequence: 4 givenname: Andrew J. surname: Thompson fullname: Thompson, Andrew J. organization: Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA – sequence: 5 givenname: Ryan surname: McBride fullname: McBride, Ryan organization: Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA – sequence: 6 givenname: Buyankhishig surname: Tsogtbaatar fullname: Tsogtbaatar, Buyankhishig organization: Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA – sequence: 7 givenname: Peter S. surname: Lee fullname: Lee, Peter S. organization: Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA – sequence: 8 givenname: Nahid surname: Razi fullname: Razi, Nahid organization: Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA – sequence: 9 givenname: Ian A. surname: Wilson fullname: Wilson, Ian A. organization: Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA – sequence: 10 givenname: Robert J. surname: Woods fullname: Woods, Robert J. organization: Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA – sequence: 11 givenname: James C. surname: Paulson fullname: Paulson, James C. email: jpaulson@scripps.edu organization: Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28017661$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv1DAURiNURB_wB1ggL1k0wdd5SwipjKZMpQoQr63l2DcdjxI72EnE7PnhdTotAhZd2ZK_c658v9PoyFiDUfQSaAIUije7RG5tn7BwTwASSrMn0QnUaRYXtKiP7u4Qp8Cq4-jU-x2leU5LeBYds4pCWRRwEv3-ghLNSDbpR0Z-aDd59GQjZiTr2XYzKvJ1QKlbLfW4J611ZP1rRKNQnZP3Thi5DZHN1AsTj_sByaIbRuv8OVlZ06Jz2tyQzzYwoxbdneHKSIfCB_Bi1ip4n0dPW9F5fHF_nkXfL9ffVpv4-tOHq9XFdSxzBmOcqZrSKlOAmBetpGkhoAFV1iU0tGraStTA0qwUmNYil5JVBWuwyvIMlVC0Ss-idwfvMDU9quXjTnR8cLoXbs-t0PzfF6O3_MbOPGdpmtcsCF7fC5z9OaEfea-9xK4TBu3kOVR5CDIoyxB99fesP0MeVh8C1SEgnfXeYcvDisWo7TJadxwoX1rmO760zJeWOQAPLQeU_Yc-2B-F3h4gDBueNTrupUYjUWmHcuTK6sfwWysWwqE |
CitedBy_id | crossref_primary_10_1371_journal_ppat_1010340 crossref_primary_10_1002_anie_202111035 crossref_primary_10_1038_s41579_020_00449_9 crossref_primary_10_1146_annurev_biophys_060414_034156 crossref_primary_10_1016_j_celrep_2019_05_048 crossref_primary_10_1021_acs_chemrev_8b00032 crossref_primary_10_1016_j_chom_2017_09_008 crossref_primary_10_1371_journal_ppat_1011273 crossref_primary_10_1038_s41579_018_0115_z crossref_primary_10_1016_S1872_2040_19_61209_0 crossref_primary_10_1128_jvi_01959_23 crossref_primary_10_1002_advs_202303832 crossref_primary_10_1093_glycob_cwab009 crossref_primary_10_1074_jbc_REV120_013309 crossref_primary_10_1101_cshperspect_a038778 crossref_primary_10_3390_vaccines8040587 crossref_primary_10_1038_s41541_022_00492_y crossref_primary_10_1128_jvi_00416_22 crossref_primary_10_15252_emmm_201707726 crossref_primary_10_7498_aps_69_20201161 crossref_primary_10_1126_science_adt0180 crossref_primary_10_1007_s13205_021_02642_w crossref_primary_10_1016_j_chom_2019_10_002 crossref_primary_10_1080_19420862_2021_1953220 crossref_primary_10_1371_journal_pone_0199167 crossref_primary_10_1371_journal_ppat_1008816 crossref_primary_10_1002_anie_201807162 crossref_primary_10_1038_s41564_017_0076_4 crossref_primary_10_1073_pnas_1712592114 crossref_primary_10_1038_s41467_021_23428_x crossref_primary_10_1016_j_celrep_2022_110897 crossref_primary_10_1128_JVI_00049_17 crossref_primary_10_1016_j_chom_2019_04_013 crossref_primary_10_1128_JVI_02016_17 crossref_primary_10_3390_ijms18071541 crossref_primary_10_1039_D0CC03268A crossref_primary_10_1073_pnas_1809667116 crossref_primary_10_1038_s41467_024_49117_z crossref_primary_10_1016_j_tim_2019_08_010 crossref_primary_10_1002_chem_202000495 crossref_primary_10_1038_s41557_018_0188_3 crossref_primary_10_1111_febs_15668 crossref_primary_10_1101_cshperspect_a038638 crossref_primary_10_1016_j_chom_2020_08_004 crossref_primary_10_3390_v14102141 crossref_primary_10_1038_s41467_024_47635_4 crossref_primary_10_1021_jacsau_2c00664 crossref_primary_10_1016_j_chom_2020_03_009 crossref_primary_10_7567_1347_4065_ab1b68 crossref_primary_10_1016_j_sbi_2017_05_007 crossref_primary_10_1128_jvi_00248_24 crossref_primary_10_4052_tigg_2109_2J crossref_primary_10_1002_anie_202420676 crossref_primary_10_1111_jeb_13890 crossref_primary_10_1093_bioinformatics_bty694 crossref_primary_10_1016_j_chom_2022_03_031 crossref_primary_10_1038_s41598_020_62074_z crossref_primary_10_1021_acscentsci_0c01175 crossref_primary_10_1016_j_molcel_2019_05_017 crossref_primary_10_1021_acs_jmedchem_9b00303 crossref_primary_10_1016_j_celrep_2017_03_054 crossref_primary_10_1016_j_chom_2024_01_003 crossref_primary_10_1126_sciimmunol_adj9534 crossref_primary_10_3390_molecules26041040 crossref_primary_10_1016_j_coviro_2023_101314 crossref_primary_10_1016_j_chom_2020_08_011 crossref_primary_10_1016_j_virusres_2023_199304 crossref_primary_10_1021_acs_biomac_0c00179 crossref_primary_10_4052_tigg_2109_2E crossref_primary_10_1016_j_jmb_2017_06_015 crossref_primary_10_1002_ange_202420676 crossref_primary_10_1016_j_coviro_2018_08_007 crossref_primary_10_1016_j_antiviral_2023_105719 crossref_primary_10_1093_glycob_cwad060 crossref_primary_10_1021_acscentsci_1c00525 crossref_primary_10_1093_ve_veae030 crossref_primary_10_1002_pro_4974 crossref_primary_10_1038_s41467_024_49487_4 crossref_primary_10_1039_D2CS00788F crossref_primary_10_1080_10408347_2018_1531692 crossref_primary_10_1016_j_carres_2017_10_001 crossref_primary_10_1016_j_chom_2020_04_005 crossref_primary_10_1111_febs_14431 crossref_primary_10_1016_j_sbi_2017_06_001 crossref_primary_10_1098_rstb_2019_0017 crossref_primary_10_1016_j_imj_2022_01_001 crossref_primary_10_1021_jacsau_3c00695 crossref_primary_10_1039_D2CS00983H crossref_primary_10_1016_j_jmb_2018_12_014 crossref_primary_10_1016_j_mcpro_2024_100844 crossref_primary_10_1073_pnas_2304992120 crossref_primary_10_1038_s41598_020_71748_7 crossref_primary_10_1080_21645515_2018_1462639 crossref_primary_10_1371_journal_ppat_1006682 crossref_primary_10_1128_JVI_01413_18 crossref_primary_10_1021_acschembio_0c00359 crossref_primary_10_1371_journal_ppat_1006390 crossref_primary_10_1002_jcp_31147 crossref_primary_10_1021_acsomega_9b01901 crossref_primary_10_1038_s41467_021_25713_1 crossref_primary_10_1021_jacs_7b03208 crossref_primary_10_1039_D2CS00452F crossref_primary_10_1038_s41467_022_31840_0 crossref_primary_10_1134_S0006297919100067 crossref_primary_10_1186_s12859_019_3278_3 crossref_primary_10_1016_j_chembiol_2019_01_002 crossref_primary_10_3390_v14061307 crossref_primary_10_1021_acs_jmedchem_1c00794 crossref_primary_10_4049_jimmunol_1701257 crossref_primary_10_1016_j_chom_2017_05_011 crossref_primary_10_1016_j_coviro_2019_01_004 crossref_primary_10_1038_s41467_023_41908_0 crossref_primary_10_1038_s41467_020_15102_5 crossref_primary_10_1128_JVI_01363_19 crossref_primary_10_1002_mas_21629 crossref_primary_10_1371_journal_ppat_1007233 crossref_primary_10_3390_v11040346 crossref_primary_10_1002_asia_201801486 crossref_primary_10_1038_s41598_022_16605_5 crossref_primary_10_1128_jvi_00906_23 crossref_primary_10_1016_j_tim_2021_03_014 crossref_primary_10_1128_JVI_00046_17 crossref_primary_10_1111_mmi_13997 crossref_primary_10_1038_s41467_024_47344_y crossref_primary_10_1002_ange_202111035 crossref_primary_10_1128_JVI_01039_19 crossref_primary_10_1128_IAI_00392_20 crossref_primary_10_1039_D4CS00642A crossref_primary_10_1134_S1068162021010222 crossref_primary_10_1111_cmi_13170 crossref_primary_10_1128_JVI_02011_18 crossref_primary_10_1128_mbio_02203_23 crossref_primary_10_1038_s41929_019_0281_z crossref_primary_10_1371_journal_ppat_1007860 crossref_primary_10_1038_s41467_019_09608_w crossref_primary_10_1002_ange_201807162 crossref_primary_10_1016_j_chempr_2021_09_015 crossref_primary_10_1371_journal_ppat_1009407 crossref_primary_10_1002_jmv_70101 crossref_primary_10_1038_s41557_019_0219_8 crossref_primary_10_1093_glycob_cwz100 crossref_primary_10_1021_jacsau_4c00307 crossref_primary_10_1038_s41467_018_03663_5 crossref_primary_10_3390_pathogens11111388 crossref_primary_10_1128_JVI_00195_20 crossref_primary_10_1128_JVI_01178_19 crossref_primary_10_1016_j_vaccine_2020_08_037 crossref_primary_10_1038_s41596_024_01051_6 crossref_primary_10_3390_v12091053 |
Cites_doi | 10.1006/viro.2001.1121 10.1128/JCM.43.8.4139-4146.2005 10.1093/glycob/cwj068 10.1016/j.virusres.2013.02.015 10.1371/journal.pone.0066325 10.1074/jbc.M110.115998 10.1128/JCM.00398-08 10.1073/pnas.77.10.5693 10.1371/journal.ppat.1003223 10.1128/JVI.06322-11 10.1128/JVI.01955-13 10.1038/ncomms4614 10.1016/j.coviro.2012.03.003 10.1093/glycob/cww020 10.1073/pnas.81.6.1779 10.1016/j.micinf.2005.08.006 10.1128/JVI.01023-13 10.1038/nbt1375 10.1073/pnas.0407902101 10.1128/JVI.00769-07 10.1016/j.virol.2014.12.024 10.1002/jcc.23517 10.1074/jbc.M114.588541 10.1073/pnas.1218841110 10.1073/pnas.78.9.5406 10.1128/JVI.00058-10 10.1093/glycob/cwp158 10.1073/pnas.0405172102 10.1128/JVI.74.18.8502-8512.2000 10.1073/pnas.1200987109 10.1006/viro.2000.0679 10.1016/j.tim.2014.07.002 10.1146/annurev.biochem.69.1.531 10.1038/nature15379 10.1016/S0304-4165(96)00118-3 10.1002/anie.201200596 10.1016/j.chom.2015.02.006 10.1371/journal.pone.0079252 10.1038/nbt0909-797 10.1006/viro.1995.1405 10.1126/science.1236231 10.1002/embj.201387442 10.1006/viro.1994.1615 10.1038/nrmicro3362 10.1038/nrmicro1530 10.1093/glycob/cws101 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Inc. Copyright © 2017 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier Inc. – notice: Copyright © 2017 Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.chom.2016.11.004 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1934-6069 |
EndPage | 34 |
ExternalDocumentID | PMC5233592 28017661 10_1016_j_chom_2016_11_004 S1931312816304796 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: T32 AI007244 – fundername: NIGMS NIH HHS grantid: P41 GM103390 – fundername: NIAID NIH HHS grantid: R56 AI117675 – fundername: NIAID NIH HHS grantid: R01 AI114730 – fundername: NCI NIH HHS grantid: U01 CA207824 – fundername: NIGMS NIH HHS grantid: U54 GM062116 |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 53G 5GY 62- 6I. 6J9 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE HVGLF IHE IXB JIG K97 M41 NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SES SSZ TR2 UNMZH WQ6 ZA5 AAEDT AAIKJ AAMRU AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AGHFR AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION HZ~ OZT ZBA 0SF CGR CUY CVF ECM EIF NPM 7X8 5PM EFKBS |
ID | FETCH-LOGICAL-c521t-4d90084d1ee56fc036a1b1d7971b08bf8a912347ae39a5cc2862be8454edad083 |
IEDL.DBID | IXB |
ISSN | 1931-3128 1934-6069 |
IngestDate | Thu Aug 21 18:41:32 EDT 2025 Fri Jul 11 07:35:25 EDT 2025 Thu Jan 02 23:12:08 EST 2025 Tue Jul 01 02:44:19 EDT 2025 Thu Apr 24 23:04:10 EDT 2025 Fri Feb 23 02:31:03 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | sialoside microarray chemo-enzymatic synthesis poly-N-acetyl-lactosamine bidentate binding hemagglutinin airway influenza virus receptor specificity extended branched glycans H3N2 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2017 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-4d90084d1ee56fc036a1b1d7971b08bf8a912347ae39a5cc2862be8454edad083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present address: Department of Pharmaceutical Chemistry, University of California San Francisco, Mission Bay, San Francisco CA, USA Present address: Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Science, Utrecht University, Utrecht, The Netherlands Lead contact |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1931312816304796 |
PMID | 28017661 |
PQID | 1853352177 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5233592 proquest_miscellaneous_1853352177 pubmed_primary_28017661 crossref_citationtrail_10_1016_j_chom_2016_11_004 crossref_primary_10_1016_j_chom_2016_11_004 elsevier_sciencedirect_doi_10_1016_j_chom_2016_11_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-11 |
PublicationDateYYYYMMDD | 2017-01-11 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell host & microbe |
PublicationTitleAlternate | Cell Host Microbe |
PublicationYear | 2017 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Alvarez-Manilla, Troupe, Fleming, Martinez-Uribe, Pierce (bib1) 2010; 20 Jia, Barclay, Roberts, Yen, Chan, Lam, Air, Peiris, Dell, Nicholls, Haslam (bib18) 2014; 289 Skehel, Stevens, Daniels, Douglas, Knossow, Wilson, Wiley (bib39) 1984; 81 Lee, Ohshima, Stanfield, Yu, Iba, Okuno, Kurosawa, Wilson (bib21) 2014; 5 Asaoka, Tanaka, Sakai, Fujii, Ohuchi, Ohuchi (bib2) 2006; 8 de Vries, de Vries, Wienholts, Floris, Jacobs, van den Heuvel, Rottier, de Haan (bib10) 2012; 109 Markwell, Paulson (bib24) 1980; 77 de Vries, de Vries, Martínez-Romero, McBride, van Kuppeveld, Rottier, García-Sastre, Paulson, de Haan (bib11) 2013; 87 Nivedha, Makeneni, Foley, Tessier, Woods (bib29) 2014; 35 Paulson, de Vries (bib33) 2013; 178 Yoon, Webby, Webster (bib48) 2014; 385 de Graaf, Fouchier (bib9) 2014; 33 Lakdawala, Jayaraman, Halpin, Lamirande, Shih, Stockwell, Lin, Simenauer, Hanson, Vogel (bib19) 2015; 526 Connor, Kawaoka, Webster, Paulson (bib8) 1994; 205 Skehel, Wiley (bib38) 2000; 69 Blixt, Head, Mondala, Scanlan, Huflejt, Alvarez, Bryan, Fazio, Calarese, Stevens (bib4) 2004; 101 Childs, Palma, Wharton, Matrosovich, Liu, Chai, Campanero-Rhodes, Zhang, Eickmann, Kiso (bib6) 2009; 27 Nycholat, McBride, Ekiert, Xu, Rangarajan, Peng, Razi, Gilbert, Wakarchuk, Wilson, Paulson (bib31) 2012; 51 Chandrasekaran, Srinivasan, Raman, Viswanathan, Raguram, Tumpey, Sasisekharan, Sasisekharan (bib5) 2008; 26 Zhang, de Vries, Tzarum, Zhu, Yu, McBride, Paulson, Wilson (bib49) 2015; 17 Bateman, Karamanska, Busch, Dell, Olsen, Haslam (bib3) 2010; 285 Oh, Barr, Mosse, Laurie (bib32) 2008; 46 Hardy, Young, Webster, Naeve, Owens (bib14) 1995; 211 Lee, Tang, Kong, Loh, Chiang, Lam, Koay (bib20) 2013; 8 Li, Bostick, Sullivan, Myers, Griesemer, Stgeorge, Plotkin, Hensley (bib22) 2013; 87 Lin, Xiong, Wharton, Martin, Coombs, Vachieri, Christodoulou, Walker, Liu, Skehel (bib23) 2012; 109 Markwell, Svennerholm, Paulson (bib25) 1981; 78 Raman, Tharakaraman, Shriver, Jayaraman, Sasisekharan, Sasisekharan (bib35) 2014; 22 Stevens, Chen, Carney, Garten, Foust, Le, Pokorny, Manojkumar, Silverman, Devis (bib41) 2010; 84 Nobusawa, Ishihara, Morishita, Sato, Nakajima (bib30) 2000; 278 Gulati, Smith, Cummings, Couch, Griesemer, St George, Webster, Air (bib13) 2013; 8 Shi, Wu, Zhang, Qi, Gao (bib37) 2014; 12 Walther, Karamanska, Chan, Chan, Jia, Air, Hopton, Wong, Dell, Malik Peiris (bib44) 2013; 9 Chu, Whittaker (bib7) 2004; 101 Hatakeyama, Sakai-Tagawa, Kiso, Goto, Kawakami, Mitamura, Sugaya, Suzuki, Kawaoka (bib15) 2005; 43 McBride, Paulson, de Vries (bib27) 2016 Xu, McBride, Nycholat, Paulson, Wilson (bib46) 2012; 86 Stevens, Blixt, Paulson, Wilson (bib40) 2006; 4 Wang, Chinoy, Ambre, Peng, McBride, de Vries, Glushka, Paulson, Boon (bib45) 2013; 341 Imai, Kawaoka (bib17) 2012; 2 Seko, Koketsu, Nishizono, Enoki, Ibrahim, Juneja, Kim, Yamamoto (bib36) 1997; 1335 Grant, Tessier, Meche, Mahal, Foley, Woods (bib12) 2016; 26 Ihara, Ikeda, Taniguchi (bib16) 2006; 16 Vigerust, Ulett, Boyd, Madsen, Hawgood, McCullers (bib43) 2007; 81 Peng, Pranskevich, Nycholat, Gilbert, Wakarchuk, Paulson, Razi (bib34) 2012; 22 Medeiros, Escriou, Naffakh, Manuguerra, van der Werf (bib28) 2001; 289 Matrosovich, Tuzikov, Bovin, Gambaryan, Klimov, Castrucci, Donatelli, Kawaoka (bib26) 2000; 74 Yang, Carney, Chang, Guo, Villanueva, Stevens (bib47) 2015; 477 Chandrasekaran (10.1016/j.chom.2016.11.004_bib5) 2008; 26 Wang (10.1016/j.chom.2016.11.004_bib45) 2013; 341 de Vries (10.1016/j.chom.2016.11.004_bib10) 2012; 109 Lee (10.1016/j.chom.2016.11.004_bib21) 2014; 5 Lin (10.1016/j.chom.2016.11.004_bib23) 2012; 109 Hatakeyama (10.1016/j.chom.2016.11.004_bib15) 2005; 43 Asaoka (10.1016/j.chom.2016.11.004_bib2) 2006; 8 Grant (10.1016/j.chom.2016.11.004_bib12) 2016; 26 Skehel (10.1016/j.chom.2016.11.004_bib38) 2000; 69 Nobusawa (10.1016/j.chom.2016.11.004_bib30) 2000; 278 Yang (10.1016/j.chom.2016.11.004_bib47) 2015; 477 de Vries (10.1016/j.chom.2016.11.004_bib11) 2013; 87 de Graaf (10.1016/j.chom.2016.11.004_bib9) 2014; 33 Li (10.1016/j.chom.2016.11.004_bib22) 2013; 87 Nycholat (10.1016/j.chom.2016.11.004_bib31) 2012; 51 Paulson (10.1016/j.chom.2016.11.004_bib33) 2013; 178 Skehel (10.1016/j.chom.2016.11.004_bib39) 1984; 81 Stevens (10.1016/j.chom.2016.11.004_bib40) 2006; 4 Nivedha (10.1016/j.chom.2016.11.004_bib29) 2014; 35 Xu (10.1016/j.chom.2016.11.004_bib46) 2012; 86 Bateman (10.1016/j.chom.2016.11.004_bib3) 2010; 285 Connor (10.1016/j.chom.2016.11.004_bib8) 1994; 205 Alvarez-Manilla (10.1016/j.chom.2016.11.004_bib1) 2010; 20 Yoon (10.1016/j.chom.2016.11.004_bib48) 2014; 385 Walther (10.1016/j.chom.2016.11.004_bib44) 2013; 9 Markwell (10.1016/j.chom.2016.11.004_bib25) 1981; 78 Blixt (10.1016/j.chom.2016.11.004_bib4) 2004; 101 Hardy (10.1016/j.chom.2016.11.004_bib14) 1995; 211 Vigerust (10.1016/j.chom.2016.11.004_bib43) 2007; 81 Ihara (10.1016/j.chom.2016.11.004_bib16) 2006; 16 Childs (10.1016/j.chom.2016.11.004_bib6) 2009; 27 Peng (10.1016/j.chom.2016.11.004_bib34) 2012; 22 McBride (10.1016/j.chom.2016.11.004_bib27) 2016 Shi (10.1016/j.chom.2016.11.004_bib37) 2014; 12 Zhang (10.1016/j.chom.2016.11.004_bib49) 2015; 17 Chu (10.1016/j.chom.2016.11.004_bib7) 2004; 101 Markwell (10.1016/j.chom.2016.11.004_bib24) 1980; 77 Raman (10.1016/j.chom.2016.11.004_bib35) 2014; 22 Lakdawala (10.1016/j.chom.2016.11.004_bib19) 2015; 526 Imai (10.1016/j.chom.2016.11.004_bib17) 2012; 2 Seko (10.1016/j.chom.2016.11.004_bib36) 1997; 1335 Stevens (10.1016/j.chom.2016.11.004_bib41) 2010; 84 Jia (10.1016/j.chom.2016.11.004_bib18) 2014; 289 Lee (10.1016/j.chom.2016.11.004_bib20) 2013; 8 Matrosovich (10.1016/j.chom.2016.11.004_bib26) 2000; 74 Gulati (10.1016/j.chom.2016.11.004_bib13) 2013; 8 Medeiros (10.1016/j.chom.2016.11.004_bib28) 2001; 289 Oh (10.1016/j.chom.2016.11.004_bib32) 2008; 46 24109242 - J Virol. 2013 Dec;87(24):13868-77 25617824 - Virology. 2015 Mar;477:18-31 23619279 - Virus Res. 2013 Dec 5;178(1):99-113 19846580 - Glycobiology. 2010 Feb;20(2):166-74 16300986 - Microbes Infect. 2006 Feb;8(2):511-9 17553891 - J Virol. 2007 Aug;81(16):8593-600 23805213 - PLoS One. 2013 Jun 21;8(6):e66325 19741625 - Nat Biotechnol. 2009 Sep;27(9):797-9 18176555 - Nat Biotechnol. 2008 Jan;26(1):107-13 24990620 - Curr Top Microbiol Immunol. 2014;385:359-75 22445963 - Curr Opin Virol. 2012 Apr;2(2):160-7 15601777 - Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):18153-8 22072785 - J Virol. 2012 Jan;86(2):982-90 22529385 - Proc Natl Acad Sci U S A. 2012 May 8;109(19):7457-62 23824816 - J Virol. 2013 Sep;87(17):9904-10 26416728 - Nature. 2015 Oct 1;526(7571):122-5 23516363 - PLoS Pathog. 2013 Mar;9(3):e1003223 24668228 - EMBO J. 2014 Apr 16;33(8):823-41 20519409 - J Virol. 2010 Aug;84(16):8287-99 7645225 - Virology. 1995 Aug 1;211(1):302-6 25766296 - Cell Host Microbe. 2015 Mar 11;17(3):377-84 18480230 - J Clin Microbiol. 2008 Jul;46(7):2189-94 25108746 - Trends Microbiol. 2014 Nov;22(11):632-41 10966468 - Annu Rev Biochem. 2000;69:531-69 24223916 - PLoS One. 2013 Nov 01;8(11):e79252 20724471 - J Biol Chem. 2010 Oct 29;285(44):34016-26 7975212 - Virology. 1994 Nov 15;205(1):17-23 11118381 - Virology. 2000 Dec 20;278(2):587-96 27284789 - J Vis Exp. 2016 May 29;(111):null 24375430 - J Comput Chem. 2014 Mar 15;35(7):526-39 16081961 - J Clin Microbiol. 2005 Aug;43(8):4139-46 10954551 - J Virol. 2000 Sep;74(18):8502-12 25383601 - Nat Rev Microbiol. 2014 Dec;12(12):822-31 6272300 - Proc Natl Acad Sci U S A. 1981 Sep;78(9):5406-10 23236176 - Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21474-9 16344263 - Glycobiology. 2006 Apr;16(4):333-42 15563589 - Proc Natl Acad Sci U S A. 2004 Dec 7;101(49):17033-8 25135641 - J Biol Chem. 2014 Oct 10;289(41):28489-504 11601919 - Virology. 2001 Oct 10;289(1):74-85 26911287 - Glycobiology. 2016 Jul;26(7):772-83 6255459 - Proc Natl Acad Sci U S A. 1980 Oct;77(10):5693-7 17013397 - Nat Rev Microbiol. 2006 Nov;4(11):857-64 9133639 - Biochim Biophys Acta. 1997 Apr 17;1335(1-2):23-32 24717798 - Nat Commun. 2014 Apr 10;5:3614 6584912 - Proc Natl Acad Sci U S A. 1984 Mar;81(6):1779-83 22505324 - Angew Chem Int Ed Engl. 2012 May 14;51(20):4860-3 22786570 - Glycobiology. 2012 Nov;22(11):1453-64 |
References_xml | – volume: 86 start-page: 982 year: 2012 end-page: 990 ident: bib46 article-title: Structural characterization of the hemagglutinin receptor specificity from the 2009 H1N1 influenza pandemic publication-title: J. Virol. – volume: 12 start-page: 822 year: 2014 end-page: 831 ident: bib37 article-title: Enabling the ‘host jump’: structural determinants of receptor-binding specificity in influenza A viruses publication-title: Nat. Rev. Microbiol. – volume: 8 start-page: 511 year: 2006 end-page: 519 ident: bib2 article-title: Low growth ability of recent influenza clinical isolates in MDCK cells is due to their low receptor binding affinities publication-title: Microbes Infect. – volume: 101 start-page: 18153 year: 2004 end-page: 18158 ident: bib7 article-title: Influenza virus entry and infection require host cell N-linked glycoprotein publication-title: Proc. Natl. Acad. Sci. USA – volume: 109 start-page: 21474 year: 2012 end-page: 21479 ident: bib23 article-title: Evolution of the receptor binding properties of the influenza A(H3N2) hemagglutinin publication-title: Proc. Natl. Acad. Sci. USA – volume: 87 start-page: 9904 year: 2013 end-page: 9910 ident: bib22 article-title: Single hemagglutinin mutations that alter both antigenicity and receptor binding avidity influence influenza virus antigenic clustering publication-title: J. Virol. – volume: 1335 start-page: 23 year: 1997 end-page: 32 ident: bib36 article-title: Occurence of a sialylglycopeptide and free sialylglycans in hen’s egg yolk publication-title: Biochim. Biophys. Acta – volume: 205 start-page: 17 year: 1994 end-page: 23 ident: bib8 article-title: Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates publication-title: Virology – volume: 211 start-page: 302 year: 1995 end-page: 306 ident: bib14 article-title: Egg fluids and cells of the chorioallantoic membrane of embryonated chicken eggs can select different variants of influenza A (H3N2) viruses publication-title: Virology – volume: 289 start-page: 74 year: 2001 end-page: 85 ident: bib28 article-title: Hemagglutinin residues of recent human A(H3N2) influenza viruses that contribute to the inability to agglutinate chicken erythrocytes publication-title: Virology – volume: 289 start-page: 28489 year: 2014 end-page: 28504 ident: bib18 article-title: Glycomic characterization of respiratory tract tissues of ferrets: implications for its use in influenza virus infection studies publication-title: J. Biol. Chem. – volume: 4 start-page: 857 year: 2006 end-page: 864 ident: bib40 article-title: Glycan microarray technologies: tools to survey host specificity of influenza viruses publication-title: Nat. Rev. Microbiol. – volume: 81 start-page: 8593 year: 2007 end-page: 8600 ident: bib43 article-title: N-linked glycosylation attenuates H3N2 influenza viruses publication-title: J. Virol. – volume: 87 start-page: 13868 year: 2013 end-page: 13877 ident: bib11 article-title: Evolution of the hemagglutinin protein of the new pandemic H1N1 influenza virus: maintaining optimal receptor binding by compensatory substitutions publication-title: J. Virol. – volume: 22 start-page: 632 year: 2014 end-page: 641 ident: bib35 article-title: Glycan receptor specificity as a useful tool for characterization and surveillance of influenza A virus publication-title: Trends Microbiol. – volume: 22 start-page: 1453 year: 2012 end-page: 1464 ident: bib34 article-title: Helicobacter pylori β1,3-N-acetylglucosaminyltransferase for versatile synthesis of type 1 and type 2 poly-LacNAcs on N-linked, O-linked and I-antigen glycans publication-title: Glycobiology – volume: 69 start-page: 531 year: 2000 end-page: 569 ident: bib38 article-title: Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin publication-title: Annu. Rev. Biochem. – volume: 20 start-page: 166 year: 2010 end-page: 174 ident: bib1 article-title: Comparison of the substrate specificities and catalytic properties of the sister N-acetylglucosaminyltransferases, GnT-V and GnT-Vb (IX) publication-title: Glycobiology – volume: 27 start-page: 797 year: 2009 end-page: 799 ident: bib6 article-title: Receptor-binding specificity of pandemic influenza A (H1N1) 2009 virus determined by carbohydrate microarray publication-title: Nat. Biotechnol. – volume: 385 start-page: 359 year: 2014 end-page: 375 ident: bib48 article-title: Evolution and ecology of influenza A viruses publication-title: Curr. Top. Microbiol. Immunol. – volume: 477 start-page: 18 year: 2015 end-page: 31 ident: bib47 article-title: Structure and receptor binding preferences of recombinant human A(H3N2) virus hemagglutinins publication-title: Virology – volume: 8 start-page: e79252 year: 2013 ident: bib20 article-title: Comparison of mutation patterns in full-genome A/H3N2 influenza sequences obtained directly from clinical samples and the same samples after a single MDCK passage publication-title: PLoS ONE – volume: 8 start-page: e66325 year: 2013 ident: bib13 article-title: Human H3N2 influenza viruses isolated from 1968 to 2012 show varying preference for receptor substructures with no apparent consequences for disease or spread publication-title: PLoS ONE – volume: 26 start-page: 107 year: 2008 end-page: 113 ident: bib5 article-title: Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin publication-title: Nat. Biotechnol. – volume: 526 start-page: 122 year: 2015 end-page: 125 ident: bib19 article-title: The soft palate is an important site of adaptation for transmissible influenza viruses publication-title: Nature – volume: 81 start-page: 1779 year: 1984 end-page: 1783 ident: bib39 article-title: A carbohydrate side chain on hemagglutinins of Hong Kong influenza viruses inhibits recognition by a monoclonal antibody publication-title: Proc. Natl. Acad. Sci. USA – volume: 84 start-page: 8287 year: 2010 end-page: 8299 ident: bib41 article-title: Receptor specificity of influenza A H3N2 viruses isolated in mammalian cells and embryonated chicken eggs publication-title: J. Virol. – volume: 5 start-page: 3614 year: 2014 ident: bib21 article-title: Receptor mimicry by antibody F045-092 facilitates universal binding to the H3 subtype of influenza virus publication-title: Nat. Commun. – volume: 35 start-page: 526 year: 2014 end-page: 539 ident: bib29 article-title: Importance of ligand conformational energies in carbohydrate docking: Sorting the wheat from the chaff publication-title: J. Comput. Chem. – volume: 9 start-page: e1003223 year: 2013 ident: bib44 article-title: Glycomic analysis of human respiratory tract tissues and correlation with influenza virus infection publication-title: PLoS Pathog. – volume: 46 start-page: 2189 year: 2008 end-page: 2194 ident: bib32 article-title: MDCK-SIAT1 cells show improved isolation rates for recent human influenza viruses compared to conventional MDCK cells publication-title: J. Clin. Microbiol. – volume: 2 start-page: 160 year: 2012 end-page: 167 ident: bib17 article-title: The role of receptor binding specificity in interspecies transmission of influenza viruses publication-title: Curr. Opin. Virol. – volume: 33 start-page: 823 year: 2014 end-page: 841 ident: bib9 article-title: Role of receptor binding specificity in influenza A virus transmission and pathogenesis publication-title: EMBO J. – volume: 74 start-page: 8502 year: 2000 end-page: 8512 ident: bib26 article-title: Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals publication-title: J. Virol. – volume: 17 start-page: 377 year: 2015 end-page: 384 ident: bib49 article-title: A human-infecting H10N8 influenza virus retains a strong preference for avian-type receptors publication-title: Cell Host Microbe – volume: 285 start-page: 34016 year: 2010 end-page: 34026 ident: bib3 article-title: Glycan analysis and influenza A virus infection of primary swine respiratory epithelial cells: the importance of NeuAcα2-6 glycans publication-title: J. Biol. Chem. – volume: 101 start-page: 17033 year: 2004 end-page: 17038 ident: bib4 article-title: Printed covalent glycan array for ligand profiling of diverse glycan binding proteins publication-title: Proc. Natl. Acad. Sci. USA – volume: 109 start-page: 7457 year: 2012 end-page: 7462 ident: bib10 article-title: Influenza A virus entry into cells lacking sialylated N-glycans publication-title: Proc. Natl. Acad. Sci. USA – volume: 26 start-page: 772 year: 2016 end-page: 783 ident: bib12 article-title: Combining 3D structure with glycan array data provides insight into the origin of glycan specificity publication-title: Glycobiology – year: 2016 ident: bib27 article-title: A miniaturized glycan microarray assay for assessing avidity and specificity of influenza A virus hemagglutinins publication-title: J. Vis. Exp. – volume: 16 start-page: 333 year: 2006 end-page: 342 ident: bib16 article-title: Reaction mechanism and substrate specificity for nucleotide sugar of mammalian α1,6-fucosyltransferase--a large-scale preparation and characterization of recombinant human FUT8 publication-title: Glycobiology – volume: 77 start-page: 5693 year: 1980 end-page: 5697 ident: bib24 article-title: Sendai virus utilizes specific sialyloligosaccharides as host cell receptor determinants publication-title: Proc. Natl. Acad. Sci. USA – volume: 278 start-page: 587 year: 2000 end-page: 596 ident: bib30 article-title: Change in receptor-binding specificity of recent human influenza A viruses (H3N2): a single amino acid change in hemagglutinin altered its recognition of sialyloligosaccharides publication-title: Virology – volume: 341 start-page: 379 year: 2013 end-page: 383 ident: bib45 article-title: A general strategy for the chemoenzymatic synthesis of asymmetrically branched N-glycans publication-title: Science – volume: 78 start-page: 5406 year: 1981 end-page: 5410 ident: bib25 article-title: Specific gangliosides function as host cell receptors for Sendai virus publication-title: Proc. Natl. Acad. Sci. USA – volume: 43 start-page: 4139 year: 2005 end-page: 4146 ident: bib15 article-title: Enhanced expression of an α2,6-linked sialic acid on MDCK cells improves isolation of human influenza viruses and evaluation of their sensitivity to a neuraminidase inhibitor publication-title: J. Clin. Microbiol. – volume: 178 start-page: 99 year: 2013 end-page: 113 ident: bib33 article-title: H5N1 receptor specificity as a factor in pandemic risk publication-title: Virus Res. – volume: 51 start-page: 4860 year: 2012 end-page: 4863 ident: bib31 article-title: Recognition of sialylated poly-N-acetyllactosamine chains on N- and O-linked glycans by human and avian influenza A virus hemagglutinins publication-title: Angew. Chem. Int. Ed. Engl. – volume: 289 start-page: 74 year: 2001 ident: 10.1016/j.chom.2016.11.004_bib28 article-title: Hemagglutinin residues of recent human A(H3N2) influenza viruses that contribute to the inability to agglutinate chicken erythrocytes publication-title: Virology doi: 10.1006/viro.2001.1121 – volume: 43 start-page: 4139 year: 2005 ident: 10.1016/j.chom.2016.11.004_bib15 article-title: Enhanced expression of an α2,6-linked sialic acid on MDCK cells improves isolation of human influenza viruses and evaluation of their sensitivity to a neuraminidase inhibitor publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.43.8.4139-4146.2005 – volume: 16 start-page: 333 year: 2006 ident: 10.1016/j.chom.2016.11.004_bib16 article-title: Reaction mechanism and substrate specificity for nucleotide sugar of mammalian α1,6-fucosyltransferase--a large-scale preparation and characterization of recombinant human FUT8 publication-title: Glycobiology doi: 10.1093/glycob/cwj068 – volume: 178 start-page: 99 year: 2013 ident: 10.1016/j.chom.2016.11.004_bib33 article-title: H5N1 receptor specificity as a factor in pandemic risk publication-title: Virus Res. doi: 10.1016/j.virusres.2013.02.015 – volume: 8 start-page: e66325 year: 2013 ident: 10.1016/j.chom.2016.11.004_bib13 article-title: Human H3N2 influenza viruses isolated from 1968 to 2012 show varying preference for receptor substructures with no apparent consequences for disease or spread publication-title: PLoS ONE doi: 10.1371/journal.pone.0066325 – volume: 285 start-page: 34016 year: 2010 ident: 10.1016/j.chom.2016.11.004_bib3 article-title: Glycan analysis and influenza A virus infection of primary swine respiratory epithelial cells: the importance of NeuAcα2-6 glycans publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.115998 – volume: 46 start-page: 2189 year: 2008 ident: 10.1016/j.chom.2016.11.004_bib32 article-title: MDCK-SIAT1 cells show improved isolation rates for recent human influenza viruses compared to conventional MDCK cells publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.00398-08 – volume: 77 start-page: 5693 year: 1980 ident: 10.1016/j.chom.2016.11.004_bib24 article-title: Sendai virus utilizes specific sialyloligosaccharides as host cell receptor determinants publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.77.10.5693 – volume: 9 start-page: e1003223 year: 2013 ident: 10.1016/j.chom.2016.11.004_bib44 article-title: Glycomic analysis of human respiratory tract tissues and correlation with influenza virus infection publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1003223 – volume: 86 start-page: 982 year: 2012 ident: 10.1016/j.chom.2016.11.004_bib46 article-title: Structural characterization of the hemagglutinin receptor specificity from the 2009 H1N1 influenza pandemic publication-title: J. Virol. doi: 10.1128/JVI.06322-11 – volume: 87 start-page: 13868 year: 2013 ident: 10.1016/j.chom.2016.11.004_bib11 article-title: Evolution of the hemagglutinin protein of the new pandemic H1N1 influenza virus: maintaining optimal receptor binding by compensatory substitutions publication-title: J. Virol. doi: 10.1128/JVI.01955-13 – volume: 5 start-page: 3614 year: 2014 ident: 10.1016/j.chom.2016.11.004_bib21 article-title: Receptor mimicry by antibody F045-092 facilitates universal binding to the H3 subtype of influenza virus publication-title: Nat. Commun. doi: 10.1038/ncomms4614 – volume: 2 start-page: 160 year: 2012 ident: 10.1016/j.chom.2016.11.004_bib17 article-title: The role of receptor binding specificity in interspecies transmission of influenza viruses publication-title: Curr. Opin. Virol. doi: 10.1016/j.coviro.2012.03.003 – volume: 26 start-page: 772 year: 2016 ident: 10.1016/j.chom.2016.11.004_bib12 article-title: Combining 3D structure with glycan array data provides insight into the origin of glycan specificity publication-title: Glycobiology doi: 10.1093/glycob/cww020 – volume: 81 start-page: 1779 year: 1984 ident: 10.1016/j.chom.2016.11.004_bib39 article-title: A carbohydrate side chain on hemagglutinins of Hong Kong influenza viruses inhibits recognition by a monoclonal antibody publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.81.6.1779 – volume: 8 start-page: 511 year: 2006 ident: 10.1016/j.chom.2016.11.004_bib2 article-title: Low growth ability of recent influenza clinical isolates in MDCK cells is due to their low receptor binding affinities publication-title: Microbes Infect. doi: 10.1016/j.micinf.2005.08.006 – volume: 87 start-page: 9904 year: 2013 ident: 10.1016/j.chom.2016.11.004_bib22 article-title: Single hemagglutinin mutations that alter both antigenicity and receptor binding avidity influence influenza virus antigenic clustering publication-title: J. Virol. doi: 10.1128/JVI.01023-13 – volume: 26 start-page: 107 year: 2008 ident: 10.1016/j.chom.2016.11.004_bib5 article-title: Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin publication-title: Nat. Biotechnol. doi: 10.1038/nbt1375 – volume: 101 start-page: 17033 year: 2004 ident: 10.1016/j.chom.2016.11.004_bib4 article-title: Printed covalent glycan array for ligand profiling of diverse glycan binding proteins publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0407902101 – volume: 81 start-page: 8593 year: 2007 ident: 10.1016/j.chom.2016.11.004_bib43 article-title: N-linked glycosylation attenuates H3N2 influenza viruses publication-title: J. Virol. doi: 10.1128/JVI.00769-07 – volume: 477 start-page: 18 year: 2015 ident: 10.1016/j.chom.2016.11.004_bib47 article-title: Structure and receptor binding preferences of recombinant human A(H3N2) virus hemagglutinins publication-title: Virology doi: 10.1016/j.virol.2014.12.024 – volume: 35 start-page: 526 year: 2014 ident: 10.1016/j.chom.2016.11.004_bib29 article-title: Importance of ligand conformational energies in carbohydrate docking: Sorting the wheat from the chaff publication-title: J. Comput. Chem. doi: 10.1002/jcc.23517 – volume: 289 start-page: 28489 year: 2014 ident: 10.1016/j.chom.2016.11.004_bib18 article-title: Glycomic characterization of respiratory tract tissues of ferrets: implications for its use in influenza virus infection studies publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.588541 – volume: 109 start-page: 21474 year: 2012 ident: 10.1016/j.chom.2016.11.004_bib23 article-title: Evolution of the receptor binding properties of the influenza A(H3N2) hemagglutinin publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1218841110 – volume: 78 start-page: 5406 year: 1981 ident: 10.1016/j.chom.2016.11.004_bib25 article-title: Specific gangliosides function as host cell receptors for Sendai virus publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.78.9.5406 – volume: 84 start-page: 8287 year: 2010 ident: 10.1016/j.chom.2016.11.004_bib41 article-title: Receptor specificity of influenza A H3N2 viruses isolated in mammalian cells and embryonated chicken eggs publication-title: J. Virol. doi: 10.1128/JVI.00058-10 – volume: 20 start-page: 166 year: 2010 ident: 10.1016/j.chom.2016.11.004_bib1 article-title: Comparison of the substrate specificities and catalytic properties of the sister N-acetylglucosaminyltransferases, GnT-V and GnT-Vb (IX) publication-title: Glycobiology doi: 10.1093/glycob/cwp158 – volume: 101 start-page: 18153 year: 2004 ident: 10.1016/j.chom.2016.11.004_bib7 article-title: Influenza virus entry and infection require host cell N-linked glycoprotein publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0405172102 – issue: 111 year: 2016 ident: 10.1016/j.chom.2016.11.004_bib27 article-title: A miniaturized glycan microarray assay for assessing avidity and specificity of influenza A virus hemagglutinins publication-title: J. Vis. Exp. – volume: 74 start-page: 8502 year: 2000 ident: 10.1016/j.chom.2016.11.004_bib26 article-title: Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals publication-title: J. Virol. doi: 10.1128/JVI.74.18.8502-8512.2000 – volume: 109 start-page: 7457 year: 2012 ident: 10.1016/j.chom.2016.11.004_bib10 article-title: Influenza A virus entry into cells lacking sialylated N-glycans publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1200987109 – volume: 278 start-page: 587 year: 2000 ident: 10.1016/j.chom.2016.11.004_bib30 article-title: Change in receptor-binding specificity of recent human influenza A viruses (H3N2): a single amino acid change in hemagglutinin altered its recognition of sialyloligosaccharides publication-title: Virology doi: 10.1006/viro.2000.0679 – volume: 22 start-page: 632 year: 2014 ident: 10.1016/j.chom.2016.11.004_bib35 article-title: Glycan receptor specificity as a useful tool for characterization and surveillance of influenza A virus publication-title: Trends Microbiol. doi: 10.1016/j.tim.2014.07.002 – volume: 69 start-page: 531 year: 2000 ident: 10.1016/j.chom.2016.11.004_bib38 article-title: Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.69.1.531 – volume: 526 start-page: 122 year: 2015 ident: 10.1016/j.chom.2016.11.004_bib19 article-title: The soft palate is an important site of adaptation for transmissible influenza viruses publication-title: Nature doi: 10.1038/nature15379 – volume: 1335 start-page: 23 year: 1997 ident: 10.1016/j.chom.2016.11.004_bib36 article-title: Occurence of a sialylglycopeptide and free sialylglycans in hen’s egg yolk publication-title: Biochim. Biophys. Acta doi: 10.1016/S0304-4165(96)00118-3 – volume: 51 start-page: 4860 year: 2012 ident: 10.1016/j.chom.2016.11.004_bib31 article-title: Recognition of sialylated poly-N-acetyllactosamine chains on N- and O-linked glycans by human and avian influenza A virus hemagglutinins publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201200596 – volume: 17 start-page: 377 year: 2015 ident: 10.1016/j.chom.2016.11.004_bib49 article-title: A human-infecting H10N8 influenza virus retains a strong preference for avian-type receptors publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.02.006 – volume: 8 start-page: e79252 year: 2013 ident: 10.1016/j.chom.2016.11.004_bib20 article-title: Comparison of mutation patterns in full-genome A/H3N2 influenza sequences obtained directly from clinical samples and the same samples after a single MDCK passage publication-title: PLoS ONE doi: 10.1371/journal.pone.0079252 – volume: 27 start-page: 797 year: 2009 ident: 10.1016/j.chom.2016.11.004_bib6 article-title: Receptor-binding specificity of pandemic influenza A (H1N1) 2009 virus determined by carbohydrate microarray publication-title: Nat. Biotechnol. doi: 10.1038/nbt0909-797 – volume: 211 start-page: 302 year: 1995 ident: 10.1016/j.chom.2016.11.004_bib14 article-title: Egg fluids and cells of the chorioallantoic membrane of embryonated chicken eggs can select different variants of influenza A (H3N2) viruses publication-title: Virology doi: 10.1006/viro.1995.1405 – volume: 341 start-page: 379 year: 2013 ident: 10.1016/j.chom.2016.11.004_bib45 article-title: A general strategy for the chemoenzymatic synthesis of asymmetrically branched N-glycans publication-title: Science doi: 10.1126/science.1236231 – volume: 385 start-page: 359 year: 2014 ident: 10.1016/j.chom.2016.11.004_bib48 article-title: Evolution and ecology of influenza A viruses publication-title: Curr. Top. Microbiol. Immunol. – volume: 33 start-page: 823 year: 2014 ident: 10.1016/j.chom.2016.11.004_bib9 article-title: Role of receptor binding specificity in influenza A virus transmission and pathogenesis publication-title: EMBO J. doi: 10.1002/embj.201387442 – volume: 205 start-page: 17 year: 1994 ident: 10.1016/j.chom.2016.11.004_bib8 article-title: Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates publication-title: Virology doi: 10.1006/viro.1994.1615 – volume: 12 start-page: 822 year: 2014 ident: 10.1016/j.chom.2016.11.004_bib37 article-title: Enabling the ‘host jump’: structural determinants of receptor-binding specificity in influenza A viruses publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro3362 – volume: 4 start-page: 857 year: 2006 ident: 10.1016/j.chom.2016.11.004_bib40 article-title: Glycan microarray technologies: tools to survey host specificity of influenza viruses publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro1530 – volume: 22 start-page: 1453 year: 2012 ident: 10.1016/j.chom.2016.11.004_bib34 article-title: Helicobacter pylori β1,3-N-acetylglucosaminyltransferase for versatile synthesis of type 1 and type 2 poly-LacNAcs on N-linked, O-linked and I-antigen glycans publication-title: Glycobiology doi: 10.1093/glycob/cws101 – reference: 25108746 - Trends Microbiol. 2014 Nov;22(11):632-41 – reference: 23236176 - Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21474-9 – reference: 22529385 - Proc Natl Acad Sci U S A. 2012 May 8;109(19):7457-62 – reference: 22786570 - Glycobiology. 2012 Nov;22(11):1453-64 – reference: 25135641 - J Biol Chem. 2014 Oct 10;289(41):28489-504 – reference: 26911287 - Glycobiology. 2016 Jul;26(7):772-83 – reference: 15601777 - Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):18153-8 – reference: 20519409 - J Virol. 2010 Aug;84(16):8287-99 – reference: 16081961 - J Clin Microbiol. 2005 Aug;43(8):4139-46 – reference: 16344263 - Glycobiology. 2006 Apr;16(4):333-42 – reference: 6272300 - Proc Natl Acad Sci U S A. 1981 Sep;78(9):5406-10 – reference: 24990620 - Curr Top Microbiol Immunol. 2014;385:359-75 – reference: 18176555 - Nat Biotechnol. 2008 Jan;26(1):107-13 – reference: 22505324 - Angew Chem Int Ed Engl. 2012 May 14;51(20):4860-3 – reference: 24223916 - PLoS One. 2013 Nov 01;8(11):e79252 – reference: 11118381 - Virology. 2000 Dec 20;278(2):587-96 – reference: 23805213 - PLoS One. 2013 Jun 21;8(6):e66325 – reference: 25383601 - Nat Rev Microbiol. 2014 Dec;12(12):822-31 – reference: 18480230 - J Clin Microbiol. 2008 Jul;46(7):2189-94 – reference: 24109242 - J Virol. 2013 Dec;87(24):13868-77 – reference: 25766296 - Cell Host Microbe. 2015 Mar 11;17(3):377-84 – reference: 23619279 - Virus Res. 2013 Dec 5;178(1):99-113 – reference: 27284789 - J Vis Exp. 2016 May 29;(111):null – reference: 22072785 - J Virol. 2012 Jan;86(2):982-90 – reference: 24668228 - EMBO J. 2014 Apr 16;33(8):823-41 – reference: 23516363 - PLoS Pathog. 2013 Mar;9(3):e1003223 – reference: 7975212 - Virology. 1994 Nov 15;205(1):17-23 – reference: 6584912 - Proc Natl Acad Sci U S A. 1984 Mar;81(6):1779-83 – reference: 24717798 - Nat Commun. 2014 Apr 10;5:3614 – reference: 10954551 - J Virol. 2000 Sep;74(18):8502-12 – reference: 11601919 - Virology. 2001 Oct 10;289(1):74-85 – reference: 19846580 - Glycobiology. 2010 Feb;20(2):166-74 – reference: 10966468 - Annu Rev Biochem. 2000;69:531-69 – reference: 23824816 - J Virol. 2013 Sep;87(17):9904-10 – reference: 17553891 - J Virol. 2007 Aug;81(16):8593-600 – reference: 17013397 - Nat Rev Microbiol. 2006 Nov;4(11):857-64 – reference: 26416728 - Nature. 2015 Oct 1;526(7571):122-5 – reference: 22445963 - Curr Opin Virol. 2012 Apr;2(2):160-7 – reference: 7645225 - Virology. 1995 Aug 1;211(1):302-6 – reference: 24375430 - J Comput Chem. 2014 Mar 15;35(7):526-39 – reference: 19741625 - Nat Biotechnol. 2009 Sep;27(9):797-9 – reference: 6255459 - Proc Natl Acad Sci U S A. 1980 Oct;77(10):5693-7 – reference: 20724471 - J Biol Chem. 2010 Oct 29;285(44):34016-26 – reference: 15563589 - Proc Natl Acad Sci U S A. 2004 Dec 7;101(49):17033-8 – reference: 9133639 - Biochim Biophys Acta. 1997 Apr 17;1335(1-2):23-32 – reference: 25617824 - Virology. 2015 Mar;477:18-31 – reference: 16300986 - Microbes Infect. 2006 Feb;8(2):511-9 |
SSID | ssj0055071 |
Score | 2.557206 |
Snippet | Human and avian influenza viruses recognize different sialic acid-containing receptors, referred to as human-type (NeuAcα2-6Gal) and avian-type (NeuAcα2-3Gal),... Human and avian influenza viruses recognize different sialic acid-containing receptors, referred to as human-type (NeuAcα2-6Gal) and avian-type (NeuAcα2-3Gal)... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 23 |
SubjectTerms | airway Animals bidentate binding Cell Line chemo-enzymatic synthesis Dogs extended branched glycans Galactans - metabolism H3N2 HEK293 Cells hemagglutinin Hemagglutinin Glycoproteins, Influenza Virus - metabolism Humans Influenza A Virus, H1N1 Subtype - genetics Influenza A Virus, H1N1 Subtype - metabolism Influenza A Virus, H3N2 Subtype - genetics Influenza A Virus, H3N2 Subtype - metabolism Influenza A Virus, H3N8 Subtype - metabolism Influenza A Virus, H5N1 Subtype - metabolism influenza virus Madin Darby Canine Kidney Cells Molecular Dynamics Simulation N-Acetylneuraminic Acid - metabolism poly-N-acetyl-lactosamine Polysaccharides - metabolism receptor specificity Receptors, Virus - metabolism sialoside microarray Species Specificity Virus Attachment |
Title | Recent H3N2 Viruses Have Evolved Specificity for Extended, Branched Human-type Receptors, Conferring Potential for Increased Avidity |
URI | https://dx.doi.org/10.1016/j.chom.2016.11.004 https://www.ncbi.nlm.nih.gov/pubmed/28017661 https://www.proquest.com/docview/1853352177 https://pubmed.ncbi.nlm.nih.gov/PMC5233592 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBalUOjL2Lp2y7YWDfrWarEc2bIf25KSrbQM1o68Cf24UI_hhOYH9H1_-O5sOTTb6MPyGEtC-OS7T9Ld9zF2HJx1BQAIdH25UJNECVdaLxKH-FVPCozJVDt8fZOP7tSXcTbeYhddLQylVUbf3_r0xlvHf_rxbfZnVdX_htBDDugiKKero5JotweqaIr4xuedNya6LtneLEtBrWPhTJvjRXoklN6VfyImzyjW9o_g9Df4_DOH8klQunzJXkQ0yc_aCb9iW1DvsZ1WX_LxNfuFoBA78tHgJuXfq4flHOZ8ZFfAh-iVVhB4Iz9PJBKLR47wlQ_jmfgpPyfFjXts0hzzCzqq5TTcjOR5TnlbKUiHgvzrdEEpRzgPGgEdDuW5Y8ezVRVw3H12dzm8vRiJKLsgPKkbCBVKYtkPEiDLJx5DnJVOBl1q6ZLCTQpbYrhT2gLaMfM-xU2Rg0JlCoINCOkO2HY9reEt43kAbxPEbPhQeW2tx1_ufZGDVllZ9pjs3rfxkZOcpDF-mi757IchGxmyEW5WDNqox07WfWYtI8ezrbPOjGZjXRkMGc_2-9jZ3OAHR7cotobpcm4I4CBqlVr32Jt2DaznkWK814h4ekxvrI51AyLz3nxSV_cNqXeW4qhl-u4_5_ue7aYEOBIppPzAthcPSzhEuLRwR7hR-Hx11HwVvwHDtRYs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgQXxJvlaSRu1GycOnZybKutUmhXSLRob5Zje9UglF11H1Lv_HBmEmfFAuqBHOOxZXnsmc_2eD6A976yVR5C4Gj6FJfTRPKqsI4nFeJXPc3RJ9Pb4bOxKi_kp0k22YGj_i0MhVVG29_Z9NZaxz_DOJrDeV0PvyL0EPt0EaTo6qhQt-A2ogFN_A0nk8PeHFO-LtFdLQtO4vHlTBfkRYQkFN-lPlIqz8jW9g_v9Df6_DOI8jevdPwA7kc4yQ66Hj-EndA8gjsdweT1Y_iJqBArsnJ_nLJv9dVqERastOvARmiW1sGzln-eskgsrxniVzaKh-J77JAoNy5RpD3n53RWy6i5OfHz7LHuqSCdCrIvsyXFHGE_qAW0OBTojhUP1rXHdp_AxfHo_KjkkXeBO6I34NIXlGbfixAyNXXo46yohNeFFlWSV9PcFujvpLYBFZk5l-KuqAq5zGTw1iOmewq7zawJz4EpH5xNELRhoXTaWoefci5XQcusKAYg-vE2LiYlJ26MH6aPPvtuSEeGdIS7FYM6GsCHTZ15l5LjRumsV6PZmlgGfcaN9d71Oje44ugaxTZhtloYQjgIW4XWA3jWzYFNP1J0-BohzwD01uzYCFA27-2Spr5ss3pnKbZapC_-s79v4W55fnZqTk_Gn1_CvZTQRyK4EK9gd3m1Cq8ROy2rN-3a-AUsNhhS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+H3N2+Viruses+Have+Evolved+Specificity+for+Extended%2C+Branched+Human-type+Receptors%2C+Conferring+Potential+for+Increased+Avidity&rft.jtitle=Cell+host+%26+microbe&rft.au=Peng%2C+Wenjie&rft.au=de+Vries%2C+Robert+P.&rft.au=Grant%2C+Oliver+C.&rft.au=Thompson%2C+Andrew+J.&rft.date=2017-01-11&rft.pub=Elsevier+Inc&rft.issn=1931-3128&rft.eissn=1934-6069&rft.volume=21&rft.issue=1&rft.spage=23&rft.epage=34&rft_id=info:doi/10.1016%2Fj.chom.2016.11.004&rft.externalDocID=S1931312816304796 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3128&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3128&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3128&client=summon |