The comparison of ZFNs, TALENs, and SpCas9 by GUIDE-seq in HPV-targeted gene therapy
Zinc-finger nucleases (ZFNs), transcription activator-like endonucleases (TALENs), and CRISPR-associated Cas9 endonucleases are three major generations of genome editing tools. However, no parallel comparison about the efficiencies and off-target activity of the three nucleases has been reported, wh...
Saved in:
Published in | Molecular therapy. Nucleic acids Vol. 26; pp. 1466 - 1478 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
03.12.2021
American Society of Gene & Cell Therapy Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Zinc-finger nucleases (ZFNs), transcription activator-like endonucleases (TALENs), and CRISPR-associated Cas9 endonucleases are three major generations of genome editing tools. However, no parallel comparison about the efficiencies and off-target activity of the three nucleases has been reported, which is critical for the final clinical decision. We for the first time developed the genome-wide unbiased identification of double-stranded breaks enabled by sequencing (GUIDE-seq) method in ZFNs and TALENs with novel bioinformatics algorithms to evaluate the off-targets. By targeting human papillomavirus 16 (HPV16), we compared the performance of ZFNs, TALENs, and SpCas9 in vivo. Our data showed that ZFNs with similar targets could generate distinct massive off-targets (287–1,856), and the specificity could be reversely correlated with the counts of middle “G” in zinc finger proteins (ZFPs). We also compared the TALENs with different N-terminal domains (wild-type [WT]/αN/βN) and G recognition modules (NN/NH) and found the design (αN or NN) to improve the efficiency of TALEN inevitably increased off-targets. Finally, our results showed that SpCas9 was more efficient and specific than ZFNs and TALENs. Specifically, SpCas9 had fewer off-target counts in URR (SpCas9, n = 0; TALEN, n = 1; ZFN, n = 287), E6 (SpCas9, n = 0; TALEN, n = 7), and E7 (SpCas9, n = 4; TALEN, n = 36). Taken together, we suggest that for HPV gene therapies, SpCas9 is a more efficient and safer genome editing tool. Our off-target data could be used to improve the design of ZFNs and TALENs, and the universal in vivo off-target detection pipeline for three generations of artificial nucleases provided useful tools for genome engineering-based gene therapy.
[Display omitted]
We compared the efficiency and specificity of ZFNs, TALENs, and SpCas9 by GUIDE-seq. SpCas9 outperformed ZFNs and TALENs with higher efficiency and specificity. We provided a universal pipeline to evaluate three generations of programmed nucleases to aid clinical decisions. Our data could help improve the designs of ZFNs and TALENs. |
---|---|
AbstractList | Zinc-finger nucleases (ZFNs), transcription activator-like endonucleases (TALENs), and CRISPR-associated Cas9 endonucleases are three major generations of genome editing tools. However, no parallel comparison about the efficiencies and off-target activity of the three nucleases has been reported, which is critical for the final clinical decision. We for the first time developed the genome-wide unbiased identification of double-stranded breaks enabled by sequencing (GUIDE-seq) method in ZFNs and TALENs with novel bioinformatics algorithms to evaluate the off-targets. By targeting human papillomavirus 16 (HPV16), we compared the performance of ZFNs, TALENs, and SpCas9 in vivo. Our data showed that ZFNs with similar targets could generate distinct massive off-targets (287–1,856), and the specificity could be reversely correlated with the counts of middle “G” in zinc finger proteins (ZFPs). We also compared the TALENs with different N-terminal domains (wild-type [WT]/αN/βN) and G recognition modules (NN/NH) and found the design (αN or NN) to improve the efficiency of TALEN inevitably increased off-targets. Finally, our results showed that SpCas9 was more efficient and specific than ZFNs and TALENs. Specifically, SpCas9 had fewer off-target counts in URR (SpCas9, n = 0; TALEN, n = 1; ZFN, n = 287), E6 (SpCas9, n = 0; TALEN, n = 7), and E7 (SpCas9, n = 4; TALEN, n = 36). Taken together, we suggest that for HPV gene therapies, SpCas9 is a more efficient and safer genome editing tool. Our off-target data could be used to improve the design of ZFNs and TALENs, and the universal in vivo off-target detection pipeline for three generations of artificial nucleases provided useful tools for genome engineering-based gene therapy. Zinc-finger nucleases (ZFNs), transcription activator-like endonucleases (TALENs), and CRISPR-associated Cas9 endonucleases are three major generations of genome editing tools. However, no parallel comparison about the efficiencies and off-target activity of the three nucleases has been reported, which is critical for the final clinical decision. We for the first time developed the genome-wide unbiased identification of double-stranded breaks enabled by sequencing (GUIDE-seq) method in ZFNs and TALENs with novel bioinformatics algorithms to evaluate the off-targets. By targeting human papillomavirus 16 (HPV16), we compared the performance of ZFNs, TALENs, and SpCas9 in vivo. Our data showed that ZFNs with similar targets could generate distinct massive off-targets (287–1,856), and the specificity could be reversely correlated with the counts of middle “G” in zinc finger proteins (ZFPs). We also compared the TALENs with different N-terminal domains (wild-type [WT]/αN/βN) and G recognition modules (NN/NH) and found the design (αN or NN) to improve the efficiency of TALEN inevitably increased off-targets. Finally, our results showed that SpCas9 was more efficient and specific than ZFNs and TALENs. Specifically, SpCas9 had fewer off-target counts in URR (SpCas9, n = 0; TALEN, n = 1; ZFN, n = 287), E6 (SpCas9, n = 0; TALEN, n = 7), and E7 (SpCas9, n = 4; TALEN, n = 36). Taken together, we suggest that for HPV gene therapies, SpCas9 is a more efficient and safer genome editing tool. Our off-target data could be used to improve the design of ZFNs and TALENs, and the universal in vivo off-target detection pipeline for three generations of artificial nucleases provided useful tools for genome engineering-based gene therapy. [Display omitted] We compared the efficiency and specificity of ZFNs, TALENs, and SpCas9 by GUIDE-seq. SpCas9 outperformed ZFNs and TALENs with higher efficiency and specificity. We provided a universal pipeline to evaluate three generations of programmed nucleases to aid clinical decisions. Our data could help improve the designs of ZFNs and TALENs. Zinc-finger nucleases (ZFNs), transcription activator-like endonucleases (TALENs), and CRISPR-associated Cas9 endonucleases are three major generations of genome editing tools. However, no parallel comparison about the efficiencies and off-target activity of the three nucleases has been reported, which is critical for the final clinical decision. We for the first time developed the genome-wide unbiased identification of double-stranded breaks enabled by sequencing (GUIDE-seq) method in ZFNs and TALENs with novel bioinformatics algorithms to evaluate the off-targets. By targeting human papillomavirus 16 (HPV16), we compared the performance of ZFNs, TALENs, and SpCas9 . Our data showed that ZFNs with similar targets could generate distinct massive off-targets (287-1,856), and the specificity could be reversely correlated with the counts of middle "G" in zinc finger proteins (ZFPs). We also compared the TALENs with different N-terminal domains (wild-type [WT]/αN/βN) and G recognition modules (NN/NH) and found the design (αN or NN) to improve the efficiency of TALEN inevitably increased off-targets. Finally, our results showed that SpCas9 was more efficient and specific than ZFNs and TALENs. Specifically, SpCas9 had fewer off-target counts in URR (SpCas9, n = 0; TALEN, n = 1; ZFN, n = 287), E6 (SpCas9, n = 0; TALEN, n = 7), and E7 (SpCas9, n = 4; TALEN, n = 36). Taken together, we suggest that for HPV gene therapies, SpCas9 is a more efficient and safer genome editing tool. Our off-target data could be used to improve the design of ZFNs and TALENs, and the universal off-target detection pipeline for three generations of artificial nucleases provided useful tools for genome engineering-based gene therapy. Zinc-finger nucleases (ZFNs), transcription activator-like endonucleases (TALENs), and CRISPR-associated Cas9 endonucleases are three major generations of genome editing tools. However, no parallel comparison about the efficiencies and off-target activity of the three nucleases has been reported, which is critical for the final clinical decision. We for the first time developed the genome-wide unbiased identification of double-stranded breaks enabled by sequencing (GUIDE-seq) method in ZFNs and TALENs with novel bioinformatics algorithms to evaluate the off-targets. By targeting human papillomavirus 16 (HPV16), we compared the performance of ZFNs, TALENs, and SpCas9 in vivo . Our data showed that ZFNs with similar targets could generate distinct massive off-targets (287–1,856), and the specificity could be reversely correlated with the counts of middle “G” in zinc finger proteins (ZFPs). We also compared the TALENs with different N-terminal domains (wild-type [WT]/αN/βN) and G recognition modules (NN/NH) and found the design (αN or NN) to improve the efficiency of TALEN inevitably increased off-targets. Finally, our results showed that SpCas9 was more efficient and specific than ZFNs and TALENs. Specifically, SpCas9 had fewer off-target counts in URR (SpCas9, n = 0; TALEN, n = 1; ZFN, n = 287), E6 (SpCas9, n = 0; TALEN, n = 7), and E7 (SpCas9, n = 4; TALEN, n = 36). Taken together, we suggest that for HPV gene therapies, SpCas9 is a more efficient and safer genome editing tool. Our off-target data could be used to improve the design of ZFNs and TALENs, and the universal in vivo off-target detection pipeline for three generations of artificial nucleases provided useful tools for genome engineering-based gene therapy. We compared the efficiency and specificity of ZFNs, TALENs, and SpCas9 by GUIDE-seq. SpCas9 outperformed ZFNs and TALENs with higher efficiency and specificity. We provided a universal pipeline to evaluate three generations of programmed nucleases to aid clinical decisions. Our data could help improve the designs of ZFNs and TALENs. Zinc-finger nucleases (ZFNs), transcription activator-like endonucleases (TALENs), and CRISPR-associated Cas9 endonucleases are three major generations of genome editing tools. However, no parallel comparison about the efficiencies and off-target activity of the three nucleases has been reported, which is critical for the final clinical decision. We for the first time developed the genome-wide unbiased identification of double-stranded breaks enabled by sequencing (GUIDE-seq) method in ZFNs and TALENs with novel bioinformatics algorithms to evaluate the off-targets. By targeting human papillomavirus 16 (HPV16), we compared the performance of ZFNs, TALENs, and SpCas9 in vivo. Our data showed that ZFNs with similar targets could generate distinct massive off-targets (287-1,856), and the specificity could be reversely correlated with the counts of middle "G" in zinc finger proteins (ZFPs). We also compared the TALENs with different N-terminal domains (wild-type [WT]/αN/βN) and G recognition modules (NN/NH) and found the design (αN or NN) to improve the efficiency of TALEN inevitably increased off-targets. Finally, our results showed that SpCas9 was more efficient and specific than ZFNs and TALENs. Specifically, SpCas9 had fewer off-target counts in URR (SpCas9, n = 0; TALEN, n = 1; ZFN, n = 287), E6 (SpCas9, n = 0; TALEN, n = 7), and E7 (SpCas9, n = 4; TALEN, n = 36). Taken together, we suggest that for HPV gene therapies, SpCas9 is a more efficient and safer genome editing tool. Our off-target data could be used to improve the design of ZFNs and TALENs, and the universal in vivo off-target detection pipeline for three generations of artificial nucleases provided useful tools for genome engineering-based gene therapy.Zinc-finger nucleases (ZFNs), transcription activator-like endonucleases (TALENs), and CRISPR-associated Cas9 endonucleases are three major generations of genome editing tools. However, no parallel comparison about the efficiencies and off-target activity of the three nucleases has been reported, which is critical for the final clinical decision. We for the first time developed the genome-wide unbiased identification of double-stranded breaks enabled by sequencing (GUIDE-seq) method in ZFNs and TALENs with novel bioinformatics algorithms to evaluate the off-targets. By targeting human papillomavirus 16 (HPV16), we compared the performance of ZFNs, TALENs, and SpCas9 in vivo. Our data showed that ZFNs with similar targets could generate distinct massive off-targets (287-1,856), and the specificity could be reversely correlated with the counts of middle "G" in zinc finger proteins (ZFPs). We also compared the TALENs with different N-terminal domains (wild-type [WT]/αN/βN) and G recognition modules (NN/NH) and found the design (αN or NN) to improve the efficiency of TALEN inevitably increased off-targets. Finally, our results showed that SpCas9 was more efficient and specific than ZFNs and TALENs. Specifically, SpCas9 had fewer off-target counts in URR (SpCas9, n = 0; TALEN, n = 1; ZFN, n = 287), E6 (SpCas9, n = 0; TALEN, n = 7), and E7 (SpCas9, n = 4; TALEN, n = 36). Taken together, we suggest that for HPV gene therapies, SpCas9 is a more efficient and safer genome editing tool. Our off-target data could be used to improve the design of ZFNs and TALENs, and the universal in vivo off-target detection pipeline for three generations of artificial nucleases provided useful tools for genome engineering-based gene therapy. |
Author | Li, Lifang Das, Bhudev C. Severinov, Konstantin Debata, Priya Ranjan Weng, Haiyan Zhang, Sen Huang, Zheying Chen, Yili Tian, Xun Xie, Hongxian Lang, Bin Huang, Zhaoyue Tian, Rui Liu, Jiashuo Cui, Zifeng Jin, Zhuang Hu, Zheng Ma, Ji Chen, Lijie Zhang, Hongfeng Fan, Weiwen Liu, Hui Xie, Weiling Hitzeroth, Inga Isabel |
Author_xml | – sequence: 1 givenname: Zifeng surname: Cui fullname: Cui, Zifeng organization: Department of Gynecological Oncology, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road, Yuexiu, Guangzhou 510080, Guangdong, China – sequence: 2 givenname: Hui surname: Liu fullname: Liu, Hui organization: Department of Pathology, Xi’an People’s Hospital (Xi’an Fourth Hospital), Shaanxi, China – sequence: 3 givenname: Hongfeng surname: Zhang fullname: Zhang, Hongfeng organization: Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China – sequence: 4 givenname: Zhaoyue surname: Huang fullname: Huang, Zhaoyue organization: Department of Gynecological Oncology, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road, Yuexiu, Guangzhou 510080, Guangdong, China – sequence: 5 givenname: Rui surname: Tian fullname: Tian, Rui organization: Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China – sequence: 6 givenname: Lifang surname: Li fullname: Li, Lifang organization: Department of Gynecological Oncology, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road, Yuexiu, Guangzhou 510080, Guangdong, China – sequence: 7 givenname: Weiwen surname: Fan fullname: Fan, Weiwen organization: Department of Gynecological Oncology, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road, Yuexiu, Guangzhou 510080, Guangdong, China – sequence: 8 givenname: Yili surname: Chen fullname: Chen, Yili organization: Department of Gynecological Oncology, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road, Yuexiu, Guangzhou 510080, Guangdong, China – sequence: 9 givenname: Lijie surname: Chen fullname: Chen, Lijie organization: Graduate School, Bengbu Medical College, Bengbu, Anhui 233000, China – sequence: 10 givenname: Sen surname: Zhang fullname: Zhang, Sen organization: Graduate School, Bengbu Medical College, Bengbu, Anhui 233000, China – sequence: 11 givenname: Bhudev C. surname: Das fullname: Das, Bhudev C. organization: Amity Institute of Molecular Medicine & Stem Cell Research, Amity University Uttar Pradesh, Sector 125, Noida 201313, India – sequence: 12 givenname: Konstantin surname: Severinov fullname: Severinov, Konstantin organization: Skolkovo Institute of Science and Technology 100 Novaya Street, Skolkovo, Moscow Region 143025, Russia – sequence: 13 givenname: Inga Isabel surname: Hitzeroth fullname: Hitzeroth, Inga Isabel organization: Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town 7701, South Africa – sequence: 14 givenname: Priya Ranjan surname: Debata fullname: Debata, Priya Ranjan organization: Department of Zoology, North Orissa University, Takatpur, Baripada, Odisha 757003, India – sequence: 15 givenname: Zhuang surname: Jin fullname: Jin, Zhuang organization: Department of Gynecological Oncology, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road, Yuexiu, Guangzhou 510080, Guangdong, China – sequence: 16 givenname: Jiashuo surname: Liu fullname: Liu, Jiashuo organization: Department of Gynecological Oncology, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road, Yuexiu, Guangzhou 510080, Guangdong, China – sequence: 17 givenname: Zheying surname: Huang fullname: Huang, Zheying organization: Department of Gynecological Oncology, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road, Yuexiu, Guangzhou 510080, Guangdong, China – sequence: 18 givenname: Weiling surname: Xie fullname: Xie, Weiling organization: Department of Gynecological Oncology, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road, Yuexiu, Guangzhou 510080, Guangdong, China – sequence: 19 givenname: Hongxian surname: Xie fullname: Xie, Hongxian organization: Generulor Company Bio-X Lab, Guangzhou 510006, Guangdong, China – sequence: 20 givenname: Bin surname: Lang fullname: Lang, Bin organization: School of Health Sciences and Sports, Macao Polytechnic Institute, Macao 999078, China – sequence: 21 givenname: Ji surname: Ma fullname: Ma, Ji organization: Department of Pathology, The Central Hospital of Sui Zhou, Hubei, China – sequence: 22 givenname: Haiyan surname: Weng fullname: Weng, Haiyan email: Whaiyan1166@163.com organization: Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China – sequence: 23 givenname: Xun surname: Tian fullname: Tian, Xun email: tianxun@zxhospital.com organization: Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei, China – sequence: 24 givenname: Zheng orcidid: 0000-0001-9306-9442 surname: Hu fullname: Hu, Zheng email: huzheng1998@163.com organization: Department of Gynecological Oncology, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road, Yuexiu, Guangzhou 510080, Guangdong, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34938601$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1vEzEQhleoiJbQP8AB-cihG_yx3g8JIVUhbSNFgETKgYvl2OPE0cZObadS_j1e0qKWQ30Zf8z7jDzzvi1OnHdQFO8JHhNM6k-bsd8mN6aYkjFuxxi3r4ozSmpaUs7IyZP9aXEe4wbnVWNCa_qmOGVVx9p8OisWizUg5bc7GWz0DnmDfl99ixdocTmfDlE6jX7uJjJ2aHlA17ezr9Mywh2yDt38-FUmGVaQQKMVOEBpDUHuDu-K10b2Ec4f4qi4vZouJjfl_Pv1bHI5LxWnJJWVZoRXlWFMV0C10pUiDJQktca0MwzLeqlZVTdNgzkxjTGtkYY3lHHeVsuOjYrZkau93IhdsFsZDsJLK_5e-LASMiSrehDUEGJA07Yzy0pp3fJON5zJjucOGkIz68uRtdsvt6AVuBRk_wz6_MXZtVj5e9HWnLNuAHx8AAR_t4eYxNZGBX0vHfh9FLQmjHa0y2FUfHha61-Rx7HkhPaYoIKPMYARyiaZrB9K214QLAYTiPzHbAIxmEDgVmQTZCn9T_pIf1H0-SiCPK17C0FEZcEp0DaASrmd9iX5Hxw6yEo |
CitedBy_id | crossref_primary_10_7717_peerj_15790 crossref_primary_10_1016_j_ctarc_2022_100638 crossref_primary_10_1016_j_ymthe_2024_10_029 crossref_primary_10_3389_fcell_2022_903812 crossref_primary_10_3389_fbioe_2022_942440 crossref_primary_10_58567_ci02020008 crossref_primary_10_1002_mco2_368 crossref_primary_10_3389_fimmu_2022_1037124 crossref_primary_10_1186_s13045_024_01633_7 crossref_primary_10_31083_j_fbl2708241 crossref_primary_10_3389_fgene_2025_1553406 crossref_primary_10_3389_fonc_2024_1388475 crossref_primary_10_1186_s13059_024_03188_9 crossref_primary_10_1186_s40164_023_00457_4 crossref_primary_10_3390_genes13020344 crossref_primary_10_5483_BMBRep_2023_0208 crossref_primary_10_1016_j_bbrc_2024_150664 crossref_primary_10_1080_1750743X_2024_2408048 crossref_primary_10_1186_s12943_023_01738_6 crossref_primary_10_1016_j_nano_2023_102711 crossref_primary_10_3390_biomedicines11082168 crossref_primary_10_3390_cimb44060182 crossref_primary_10_3390_plants12122331 crossref_primary_10_1016_j_mrgentox_2024_503767 crossref_primary_10_1186_s40164_024_00570_y |
Cites_doi | 10.1038/s41467-020-19344-1 10.1093/bioinformatics/bty554 10.1038/nbt1410 10.1093/nar/gkt716 10.1038/nbt.3437 10.1093/nar/gks1144 10.1093/bioinformatics/btr507 10.1007/s00284-018-1547-4 10.1038/ncomms1962 10.1093/nar/gkr597 10.1093/bioinformatics/btu353 10.1172/JCI72992 10.1093/nar/gkq319 10.1016/j.antiviral.2020.104794 10.1093/nar/gku155 10.1158/1078-0432.CCR-14-0250 10.1172/JCI78206 10.1056/NEJMoa1300662 10.1016/j.theriogenology.2019.03.029 10.1073/pnas.1410785111 10.1186/s40064-016-2536-3 10.1038/nature20134 10.1038/nbt.3534 10.1182/blood.V126.23.2046.2046 10.1038/nmeth.1670 10.1073/pnas.1308587110 10.1038/nbt.2673 10.1093/nar/gks608 10.1038/nbt.3117 10.1016/j.semcancer.2018.04.001 10.1016/j.molcel.2015.10.008 10.1093/bioinformatics/btv537 10.1038/nmeth.2845 10.1016/j.ebiom.2020.102897 10.1016/j.jconrel.2020.02.045 10.1093/nar/gkt1326 10.1016/j.dnarep.2007.01.004 10.1038/nbt.1948 10.1093/bioinformatics/btp324 10.1038/nm.2700 10.1093/nar/gkt754 10.1590/1678-4685-gmb-2017-0065 10.1038/mt.2015.197 10.1016/j.stem.2014.06.011 10.1093/bioinformatics/bty560 10.1371/journal.pone.0045383 10.1128/JCM.01212-08 10.7150/ijbs.24581 |
ContentType | Journal Article |
Copyright | 2021 The Authors 2021 The Authors. 2021 The Authors 2021 |
Copyright_xml | – notice: 2021 The Authors – notice: 2021 The Authors. – notice: 2021 The Authors 2021 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.omtn.2021.08.008 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2162-2531 |
EndPage | 1478 |
ExternalDocumentID | oai_doaj_org_article_2f11fed289fb4cdd859d753a95202f12 PMC8655392 34938601 10_1016_j_omtn_2021_08_008 S216225312100202X |
Genre | Journal Article |
GroupedDBID | 0R~ 0SF 53G 5VS 6I. 7X7 8FE 8FH 8FI AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ADBBV AEXQZ AFKRA AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS AZQEC BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI DIK EBS FDB FYUFA GROUPED_DOAJ HCIFZ KQ8 LK8 M2P M41 M48 M7P M~E NCXOZ O9- OK1 PIMPY PQQKQ PROAC RNTTT ROL RPM SSZ 88I 8FJ AAMRU AAYWO AAYXX ABUWG ADRAZ ADVLN ALIPV APXCP CCPQU CITATION DWQXO EJD GNUQQ HMCUK HYE IPNFZ PHGZM PHGZT RIG UKHRP NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-4d31544f33d4e2dcd4c13eca16d029f30a6bd346777051f7ff8faf57235584b93 |
IEDL.DBID | M48 |
ISSN | 2162-2531 |
IngestDate | Wed Aug 27 01:29:57 EDT 2025 Thu Aug 21 18:28:30 EDT 2025 Fri Jul 11 08:21:10 EDT 2025 Thu Jan 02 22:55:44 EST 2025 Tue Jul 01 02:00:40 EDT 2025 Thu Apr 24 23:07:36 EDT 2025 Fri Feb 23 02:39:48 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | CRISPR HPV gene therapy ZFN TALEN GUIDE-seq |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2021 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-4d31544f33d4e2dcd4c13eca16d029f30a6bd346777051f7ff8faf57235584b93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally |
ORCID | 0000-0001-9306-9442 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.omtn.2021.08.008 |
PMID | 34938601 |
PQID | 2613292961 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2f11fed289fb4cdd859d753a95202f12 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8655392 proquest_miscellaneous_2613292961 pubmed_primary_34938601 crossref_citationtrail_10_1016_j_omtn_2021_08_008 crossref_primary_10_1016_j_omtn_2021_08_008 elsevier_sciencedirect_doi_10_1016_j_omtn_2021_08_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-03 |
PublicationDateYYYYMMDD | 2021-12-03 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular therapy. Nucleic acids |
PublicationTitleAlternate | Mol Ther Nucleic Acids |
PublicationYear | 2021 |
Publisher | Elsevier Inc American Society of Gene & Cell Therapy Elsevier |
Publisher_xml | – name: Elsevier Inc – name: American Society of Gene & Cell Therapy – name: Elsevier |
References | Saunier, Monnier-Benoit, Mauny, Dalstein, Briolat, Riethmuller, Kantelip, Schwarz, Mougin, Prétet (bib39) 2008; 46 You, Zhong, Ren, Hassan, Zhang, Zhang (bib48) 2018; 14 Wang, Quake (bib6) 2014; 111 Park, Bae, Kim (bib36) 2015; 31 He, Proudfoot, Whitelaw, Lillico (bib21) 2016; 5 Mussolino, Morbitzer, Lütge, Dannemann, Lahaye, Cathomen (bib37) 2011; 39 Zhan, Rindtorff, Betge, Ebert, Boutros (bib2) 2019; 55 Provasi, Genovese, Lombardo, Magnani, Liu, Reik, Chu, Paschon, Zhang, Kuball (bib3) 2012; 18 Javed, Sadaf, Ahmed, Jamil, Nawaz, Abbas, Ijaz (bib35) 2018; 75 Gabriel, Lombardo, Arens, Miller, Genovese, Kaeppel, Nowrouzi, Bartholomae, Wang, Friedman (bib13) 2011; 29 Smith, Gore, Yan, Abalde-Atristain, Li, He, Wang, Brodsky, Zhang, Cheng, Ye (bib23) 2014; 15 Tsai, Topkar, Joung, Aryee (bib41) 2016; 34 Pattanayak, Lin, Guilinger, Ma, Doudna, Liu (bib18) 2013; 31 Sander, Maeder, Reyon, Voytas, Joung, Dobbs (bib32) 2010; 38 Perez, Wang, Miller, Jouvenot, Kim, Liu, Wang, Lee, Bartsevich, Lee (bib5) 2008; 26 Pattanayak, Ramirez, Joung, Liu (bib14) 2011; 8 Tsai, Zheng, Nguyen, Liebers, Topkar, Thapar, Wyvekens, Khayter, Iafrate, Le (bib27) 2015; 33 Dever, Bak, Reinisch, Camarena, Washington, Nicolas, Pavel-Dinu, Saxena, Wilkens, Mantri (bib8) 2016; 539 Shmakov, Abudayyeh, Makarova, Wolf, Gootenberg, Semenova, Minakhin, Joung, Konermann, Severinov (bib12) 2015; 60 Fine, Cradick, Zhao, Lin, Bao (bib28) 2014; 42 Chen, Zhou, Chen, Gu (bib45) 2018; 34 Gao, Jin, Tan, Zhang, Zou, Zhang, Ding, Das, Severinov, Hitzeroth (bib25) 2020; 321 Sander, Ramirez, Linder, Pattanayak, Shoresh, Ku, Foden, Reyon, Bernstein, Liu, Joung (bib15) 2013; 41 Christian, Demorest, Starker, Osborn, Nyquist, Zhang, Carlson, Bradley, Bogdanove, Voytas (bib38) 2012; 7 Honma, Sakuraba, Koizumi, Takashima, Sakamoto, Hayashi (bib42) 2007; 6 Juillerat, Dubois, Valton, Thomas, Stella, Maréchal, Langevin, Benomari, Bertonati, Silva (bib17) 2014; 42 Ding, Hu, Zhu, Jiang, Yu, Wang, Zhang, Wang, Ji, Li (bib24) 2014; 20 Gasiunas, Young, Karvelis, Kazlauskas, Urbaitis, Jasnauskaite, Grusyte, Paulraj, Wang, Hou (bib11) 2020; 11 Qasim, Amrolia, Samarasinghe, Ghorashian, Zhan, Stafford, Butler, Ahsan, Gilmour, Adams (bib10) 2015; 126 Nyquist, Li, Hwang, Manlove, Vessella, Silverstein, Voytas, Dehm (bib4) 2013; 110 Zhang, Liu, Yang, Cui, Dai, Dong, Yang, Zhang, Liu, Liang, Cang (bib22) 2019; 132 Hu, Ding, Zhu, Yu, Jiang, Wang, Zhang, Wang, Ji, Liu (bib7) 2015; 125 Lamb, Mercer, Barbas (bib29) 2013; 41 Lin, Wong (bib34) 2018; 34 Osborn, Webber, Knipping, Lonetree, Tennis, DeFeo, McElroy, Starker, Lee, Merkel (bib19) 2016; 24 Boyle, O’Roak, Martin, Kumar, Shendure (bib44) 2014; 30 Tebas, Stein, Tang, Frank, Wang, Lee, Spratt, Surosky, Giedlin, Nichol (bib9) 2014; 370 Gupta, Musunuru (bib1) 2014; 124 Niu, Jin, Zhang, He, Gao, Zou, Zhang, Ding, Das, Severinov (bib26) 2020; 58 Chen, Jiang, Wang, He, Tian, Cui, Tian, Gao, Ma, Yang (bib40) 2020; 178 Magoč, Salzberg (bib46) 2011; 27 Cong, Zhou, Kuo, Cunniff, Zhang (bib30) 2012; 3 Li, Durbin (bib47) 2009; 25 Xiao, Wu, Yang, Hu, Wang, Zhang, Kong, Gao, Zhu, Lin, Zhang (bib43) 2013; 41 Doench, Fusi, Sullender, Hegde, Vaimberg, Donovan, Smith, Tothova, Wilen, Orchard (bib33) 2016; 34 Doyle, Booher, Standage, Voytas, Brendel, Vandyk, Bogdanove (bib31) 2012; 40 Guilinger, Pattanayak, Reyon, Tsai, Sander, Joung, Liu (bib16) 2014; 11 Nerys-Junior, Braga-Dias, Pezzuto, Cotta-de-Almeida, Tanuri (bib20) 2018; 41 Pattanayak (10.1016/j.omtn.2021.08.008_bib18) 2013; 31 Magoč (10.1016/j.omtn.2021.08.008_bib46) 2011; 27 Perez (10.1016/j.omtn.2021.08.008_bib5) 2008; 26 Ding (10.1016/j.omtn.2021.08.008_bib24) 2014; 20 Lamb (10.1016/j.omtn.2021.08.008_bib29) 2013; 41 Doench (10.1016/j.omtn.2021.08.008_bib33) 2016; 34 Guilinger (10.1016/j.omtn.2021.08.008_bib16) 2014; 11 Mussolino (10.1016/j.omtn.2021.08.008_bib37) 2011; 39 Sander (10.1016/j.omtn.2021.08.008_bib32) 2010; 38 Osborn (10.1016/j.omtn.2021.08.008_bib19) 2016; 24 Christian (10.1016/j.omtn.2021.08.008_bib38) 2012; 7 Boyle (10.1016/j.omtn.2021.08.008_bib44) 2014; 30 Smith (10.1016/j.omtn.2021.08.008_bib23) 2014; 15 Li (10.1016/j.omtn.2021.08.008_bib47) 2009; 25 Doyle (10.1016/j.omtn.2021.08.008_bib31) 2012; 40 Wang (10.1016/j.omtn.2021.08.008_bib6) 2014; 111 Park (10.1016/j.omtn.2021.08.008_bib36) 2015; 31 Saunier (10.1016/j.omtn.2021.08.008_bib39) 2008; 46 Gasiunas (10.1016/j.omtn.2021.08.008_bib11) 2020; 11 Cong (10.1016/j.omtn.2021.08.008_bib30) 2012; 3 You (10.1016/j.omtn.2021.08.008_bib48) 2018; 14 Tebas (10.1016/j.omtn.2021.08.008_bib9) 2014; 370 Nerys-Junior (10.1016/j.omtn.2021.08.008_bib20) 2018; 41 Javed (10.1016/j.omtn.2021.08.008_bib35) 2018; 75 Dever (10.1016/j.omtn.2021.08.008_bib8) 2016; 539 Pattanayak (10.1016/j.omtn.2021.08.008_bib14) 2011; 8 Hu (10.1016/j.omtn.2021.08.008_bib7) 2015; 125 Xiao (10.1016/j.omtn.2021.08.008_bib43) 2013; 41 Zhang (10.1016/j.omtn.2021.08.008_bib22) 2019; 132 Gupta (10.1016/j.omtn.2021.08.008_bib1) 2014; 124 Tsai (10.1016/j.omtn.2021.08.008_bib41) 2016; 34 Qasim (10.1016/j.omtn.2021.08.008_bib10) 2015; 126 He (10.1016/j.omtn.2021.08.008_bib21) 2016; 5 Gao (10.1016/j.omtn.2021.08.008_bib25) 2020; 321 Zhan (10.1016/j.omtn.2021.08.008_bib2) 2019; 55 Shmakov (10.1016/j.omtn.2021.08.008_bib12) 2015; 60 Chen (10.1016/j.omtn.2021.08.008_bib45) 2018; 34 Honma (10.1016/j.omtn.2021.08.008_bib42) 2007; 6 Gabriel (10.1016/j.omtn.2021.08.008_bib13) 2011; 29 Chen (10.1016/j.omtn.2021.08.008_bib40) 2020; 178 Niu (10.1016/j.omtn.2021.08.008_bib26) 2020; 58 Provasi (10.1016/j.omtn.2021.08.008_bib3) 2012; 18 Sander (10.1016/j.omtn.2021.08.008_bib15) 2013; 41 Nyquist (10.1016/j.omtn.2021.08.008_bib4) 2013; 110 Juillerat (10.1016/j.omtn.2021.08.008_bib17) 2014; 42 Fine (10.1016/j.omtn.2021.08.008_bib28) 2014; 42 Tsai (10.1016/j.omtn.2021.08.008_bib27) 2015; 33 Lin (10.1016/j.omtn.2021.08.008_bib34) 2018; 34 |
References_xml | – volume: 42 start-page: 5390 year: 2014 end-page: 5402 ident: bib17 article-title: Comprehensive analysis of the specificity of transcription activator-like effector nucleases publication-title: Nucleic Acids Res. – volume: 111 start-page: 13157 year: 2014 end-page: 13162 ident: bib6 article-title: RNA-guided endonuclease provides a therapeutic strategy to cure latent herpesviridae infection publication-title: Proc. Natl. Acad. Sci. USA – volume: 34 start-page: 483 year: 2016 ident: bib41 article-title: Open-source publication-title: Nat. Biotechnol. – volume: 5 start-page: 814 year: 2016 ident: bib21 article-title: Comparison of CRISPR/Cas9 and TALENs on editing an integrated EGFP gene in the genome of HEK293FT cells publication-title: Springerplus – volume: 60 start-page: 385 year: 2015 end-page: 397 ident: bib12 article-title: Discovery and functional characterization of diverse class 2 CRISPR-Cas systems publication-title: Mol. Cell – volume: 110 start-page: 17492 year: 2013 end-page: 17497 ident: bib4 article-title: TALEN-engineered AR gene rearrangements reveal endocrine uncoupling of androgen receptor in prostate cancer publication-title: Proc. Natl. Acad. Sci. USA – volume: 7 start-page: e45383 year: 2012 ident: bib38 article-title: Targeting G with TAL effectors: A comparison of activities of TALENs constructed with NN and NK repeat variable di-residues publication-title: PLoS ONE – volume: 30 start-page: 2670 year: 2014 end-page: 2672 ident: bib44 article-title: MIPgen: Optimized modeling and design of molecular inversion probes for targeted resequencing publication-title: Bioinformatics – volume: 11 start-page: 5512 year: 2020 ident: bib11 article-title: A catalogue of biochemically diverse CRISPR-Cas9 orthologs publication-title: Nat. Commun. – volume: 29 start-page: 816 year: 2011 end-page: 823 ident: bib13 article-title: An unbiased genome-wide analysis of zinc-finger nuclease specificity publication-title: Nat. Biotechnol. – volume: 125 start-page: 425 year: 2015 end-page: 436 ident: bib7 article-title: TALEN-mediated targeting of HPV oncogenes ameliorates HPV-related cervical malignancy publication-title: J. Clin. Invest. – volume: 26 start-page: 808 year: 2008 end-page: 816 ident: bib5 article-title: Establishment of HIV-1 resistance in CD4 publication-title: Nat. Biotechnol. – volume: 132 start-page: 1 year: 2019 end-page: 11 ident: bib22 article-title: Comparison of gene editing efficiencies of CRISPR/Cas9 and TALEN for generation of MSTN knock-out cashmere goats publication-title: Theriogenology – volume: 14 start-page: 858 year: 2018 end-page: 862 ident: bib48 article-title: CRISPRMatch: An automatic calculation and visualization tool for high-throughput CRISPR genome-editing data analysis publication-title: Int. J. Biol. Sci. – volume: 34 start-page: i656 year: 2018 end-page: i663 ident: bib34 article-title: Off-target predictions in CRISPR-Cas9 gene editing using deep learning publication-title: Bioinformatics – volume: 31 start-page: 4014 year: 2015 end-page: 4016 ident: bib36 article-title: Cas-Designer: A web-based tool for choice of CRISPR-Cas9 target sites publication-title: Bioinformatics – volume: 321 start-page: 654 year: 2020 end-page: 668 ident: bib25 article-title: Hyperbranched poly(β-amino ester) based polyplex nanopaticles for delivery of CRISPR/Cas9 system and treatment of HPV infection associated cervical cancer publication-title: J. Control. Release – volume: 18 start-page: 807 year: 2012 end-page: 815 ident: bib3 article-title: Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer publication-title: Nat. Med. – volume: 11 start-page: 429 year: 2014 end-page: 435 ident: bib16 article-title: Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity publication-title: Nat. Methods – volume: 41 start-page: 167 year: 2018 end-page: 179 ident: bib20 article-title: Comparison of the editing patterns and editing efficiencies of TALEN and CRISPR-Cas9 when targeting the human CCR5 gene publication-title: Genet. Mol. Biol. – volume: 178 start-page: 104794 year: 2020 ident: bib40 article-title: In vitro and in vivo growth inhibition of human cervical cancer cells via human papillomavirus E6/E7 mRNAs’ cleavage by CRISPR/Cas13a system publication-title: Antiviral Res. – volume: 124 start-page: 4154 year: 2014 end-page: 4161 ident: bib1 article-title: Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9 publication-title: J. Clin. Invest. – volume: 126 start-page: 2046 year: 2015 ident: bib10 article-title: First clinical application of TALEN engineered universal CAR19 T cells in B-ALL publication-title: Blood – volume: 539 start-page: 384 year: 2016 end-page: 389 ident: bib8 article-title: CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells publication-title: Nature – volume: 38 year: 2010 ident: bib32 article-title: ZiFiT (Zinc Finger Targeter): An updated zinc finger engineering tool publication-title: Nucleic Acids Res. – volume: 58 start-page: 102897 year: 2020 ident: bib26 article-title: An effective vaginal gel to deliver CRISPR/Cas9 system encapsulated in poly (β-amino ester) nanoparticles for vaginal gene therapy publication-title: EBioMedicine – volume: 31 start-page: 839 year: 2013 end-page: 843 ident: bib18 article-title: High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity publication-title: Nat. Biotechnol. – volume: 41 start-page: 9779 year: 2013 end-page: 9785 ident: bib29 article-title: Directed evolution of the TALE N-terminal domain for recognition of all 5′ bases publication-title: Nucleic Acids Res. – volume: 27 start-page: 2957 year: 2011 end-page: 2963 ident: bib46 article-title: FLASH: Fast length adjustment of short reads to improve genome assemblies publication-title: Bioinformatics – volume: 34 start-page: 184 year: 2016 end-page: 191 ident: bib33 article-title: Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9 publication-title: Nat. Biotechnol. – volume: 25 start-page: 1754 year: 2009 end-page: 1760 ident: bib47 article-title: Fast and accurate short read alignment with Burrows-Wheeler transform publication-title: Bioinformatics – volume: 6 start-page: 781 year: 2007 end-page: 788 ident: bib42 article-title: Non-homologous end-joining for repairing I-SceI-induced DNA double strand breaks in human cells publication-title: DNA Repair (Amst.) – volume: 370 start-page: 901 year: 2014 end-page: 910 ident: bib9 article-title: Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV publication-title: N. Engl. J. Med. – volume: 24 start-page: 570 year: 2016 end-page: 581 ident: bib19 article-title: Evaluation of TCR gene editing achieved by TALENs, CRISPR/Cas9, and megaTAL nucleases publication-title: Mol. Ther. – volume: 15 start-page: 12 year: 2014 end-page: 13 ident: bib23 article-title: Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs publication-title: Cell Stem Cell – volume: 20 start-page: 6495 year: 2014 end-page: 6503 ident: bib24 article-title: Zinc finger nucleases targeting the human papillomavirus E7 oncogene induce E7 disruption and a transformed phenotype in HPV16/18-positive cervical cancer cells publication-title: Clin. Cancer Res. – volume: 40 start-page: W117 year: 2012 end-page: W122 ident: bib31 article-title: TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction publication-title: Nucleic Acids Res. – volume: 75 start-page: 1675 year: 2018 end-page: 1683 ident: bib35 article-title: CRISPR-Cas system: History and prospects as a genome editing tool in microorganisms publication-title: Curr. Microbiol. – volume: 46 start-page: 3678 year: 2008 end-page: 3685 ident: bib39 article-title: Analysis of human papillomavirus type 16 (HPV16) DNA load and physical state for identification of HPV16-infected women with high-grade lesions or cervical carcinoma publication-title: J. Clin. Microbiol. – volume: 3 start-page: 968 year: 2012 ident: bib30 article-title: Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains publication-title: Nat. Commun. – volume: 8 start-page: 765 year: 2011 end-page: 770 ident: bib14 article-title: Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection publication-title: Nat. Methods – volume: 42 start-page: e42 year: 2014 ident: bib28 article-title: An online bioinformatics tool predicts zinc finger and TALE nuclease off-target cleavage publication-title: Nucleic Acids Res. – volume: 41 start-page: D415 year: 2013 end-page: D422 ident: bib43 article-title: EENdb: A database and knowledge base of ZFNs and TALENs for endonuclease engineering publication-title: Nucleic Acids Res. – volume: 39 start-page: 9283 year: 2011 end-page: 9293 ident: bib37 article-title: A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity publication-title: Nucleic Acids Res. – volume: 33 start-page: 187 year: 2015 end-page: 197 ident: bib27 article-title: GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases publication-title: Nat. Biotechnol. – volume: 55 start-page: 106 year: 2019 end-page: 119 ident: bib2 article-title: CRISPR/Cas9 for cancer research and therapy publication-title: Semin. Cancer Biol. – volume: 41 start-page: e181 year: 2013 ident: bib15 article-title: In silico abstraction of zinc finger nuclease cleavage profiles reveals an expanded landscape of off-target sites publication-title: Nucleic Acids Res. – volume: 34 start-page: i884 year: 2018 end-page: i890 ident: bib45 article-title: fastp: An ultra-fast all-in-one FASTQ preprocessor publication-title: Bioinformatics – volume: 11 start-page: 5512 year: 2020 ident: 10.1016/j.omtn.2021.08.008_bib11 article-title: A catalogue of biochemically diverse CRISPR-Cas9 orthologs publication-title: Nat. Commun. doi: 10.1038/s41467-020-19344-1 – volume: 34 start-page: i656 year: 2018 ident: 10.1016/j.omtn.2021.08.008_bib34 article-title: Off-target predictions in CRISPR-Cas9 gene editing using deep learning publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty554 – volume: 26 start-page: 808 year: 2008 ident: 10.1016/j.omtn.2021.08.008_bib5 article-title: Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases publication-title: Nat. Biotechnol. doi: 10.1038/nbt1410 – volume: 41 start-page: e181 year: 2013 ident: 10.1016/j.omtn.2021.08.008_bib15 article-title: In silico abstraction of zinc finger nuclease cleavage profiles reveals an expanded landscape of off-target sites publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt716 – volume: 34 start-page: 184 year: 2016 ident: 10.1016/j.omtn.2021.08.008_bib33 article-title: Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3437 – volume: 41 start-page: D415 year: 2013 ident: 10.1016/j.omtn.2021.08.008_bib43 article-title: EENdb: A database and knowledge base of ZFNs and TALENs for endonuclease engineering publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1144 – volume: 27 start-page: 2957 year: 2011 ident: 10.1016/j.omtn.2021.08.008_bib46 article-title: FLASH: Fast length adjustment of short reads to improve genome assemblies publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr507 – volume: 75 start-page: 1675 year: 2018 ident: 10.1016/j.omtn.2021.08.008_bib35 article-title: CRISPR-Cas system: History and prospects as a genome editing tool in microorganisms publication-title: Curr. Microbiol. doi: 10.1007/s00284-018-1547-4 – volume: 3 start-page: 968 year: 2012 ident: 10.1016/j.omtn.2021.08.008_bib30 article-title: Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains publication-title: Nat. Commun. doi: 10.1038/ncomms1962 – volume: 39 start-page: 9283 year: 2011 ident: 10.1016/j.omtn.2021.08.008_bib37 article-title: A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr597 – volume: 30 start-page: 2670 year: 2014 ident: 10.1016/j.omtn.2021.08.008_bib44 article-title: MIPgen: Optimized modeling and design of molecular inversion probes for targeted resequencing publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu353 – volume: 124 start-page: 4154 year: 2014 ident: 10.1016/j.omtn.2021.08.008_bib1 article-title: Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9 publication-title: J. Clin. Invest. doi: 10.1172/JCI72992 – volume: 38 year: 2010 ident: 10.1016/j.omtn.2021.08.008_bib32 article-title: ZiFiT (Zinc Finger Targeter): An updated zinc finger engineering tool publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq319 – volume: 178 start-page: 104794 year: 2020 ident: 10.1016/j.omtn.2021.08.008_bib40 article-title: In vitro and in vivo growth inhibition of human cervical cancer cells via human papillomavirus E6/E7 mRNAs’ cleavage by CRISPR/Cas13a system publication-title: Antiviral Res. doi: 10.1016/j.antiviral.2020.104794 – volume: 42 start-page: 5390 year: 2014 ident: 10.1016/j.omtn.2021.08.008_bib17 article-title: Comprehensive analysis of the specificity of transcription activator-like effector nucleases publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku155 – volume: 20 start-page: 6495 year: 2014 ident: 10.1016/j.omtn.2021.08.008_bib24 article-title: Zinc finger nucleases targeting the human papillomavirus E7 oncogene induce E7 disruption and a transformed phenotype in HPV16/18-positive cervical cancer cells publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-14-0250 – volume: 125 start-page: 425 year: 2015 ident: 10.1016/j.omtn.2021.08.008_bib7 article-title: TALEN-mediated targeting of HPV oncogenes ameliorates HPV-related cervical malignancy publication-title: J. Clin. Invest. doi: 10.1172/JCI78206 – volume: 370 start-page: 901 year: 2014 ident: 10.1016/j.omtn.2021.08.008_bib9 article-title: Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1300662 – volume: 132 start-page: 1 year: 2019 ident: 10.1016/j.omtn.2021.08.008_bib22 article-title: Comparison of gene editing efficiencies of CRISPR/Cas9 and TALEN for generation of MSTN knock-out cashmere goats publication-title: Theriogenology doi: 10.1016/j.theriogenology.2019.03.029 – volume: 111 start-page: 13157 year: 2014 ident: 10.1016/j.omtn.2021.08.008_bib6 article-title: RNA-guided endonuclease provides a therapeutic strategy to cure latent herpesviridae infection publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1410785111 – volume: 5 start-page: 814 year: 2016 ident: 10.1016/j.omtn.2021.08.008_bib21 article-title: Comparison of CRISPR/Cas9 and TALENs on editing an integrated EGFP gene in the genome of HEK293FT cells publication-title: Springerplus doi: 10.1186/s40064-016-2536-3 – volume: 539 start-page: 384 year: 2016 ident: 10.1016/j.omtn.2021.08.008_bib8 article-title: CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells publication-title: Nature doi: 10.1038/nature20134 – volume: 34 start-page: 483 year: 2016 ident: 10.1016/j.omtn.2021.08.008_bib41 article-title: Open-source guideseq software for analysis of GUIDE-seq data publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3534 – volume: 126 start-page: 2046 year: 2015 ident: 10.1016/j.omtn.2021.08.008_bib10 article-title: First clinical application of TALEN engineered universal CAR19 T cells in B-ALL publication-title: Blood doi: 10.1182/blood.V126.23.2046.2046 – volume: 8 start-page: 765 year: 2011 ident: 10.1016/j.omtn.2021.08.008_bib14 article-title: Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection publication-title: Nat. Methods doi: 10.1038/nmeth.1670 – volume: 110 start-page: 17492 year: 2013 ident: 10.1016/j.omtn.2021.08.008_bib4 article-title: TALEN-engineered AR gene rearrangements reveal endocrine uncoupling of androgen receptor in prostate cancer publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1308587110 – volume: 31 start-page: 839 year: 2013 ident: 10.1016/j.omtn.2021.08.008_bib18 article-title: High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2673 – volume: 40 start-page: W117 year: 2012 ident: 10.1016/j.omtn.2021.08.008_bib31 article-title: TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks608 – volume: 33 start-page: 187 year: 2015 ident: 10.1016/j.omtn.2021.08.008_bib27 article-title: GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3117 – volume: 55 start-page: 106 year: 2019 ident: 10.1016/j.omtn.2021.08.008_bib2 article-title: CRISPR/Cas9 for cancer research and therapy publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2018.04.001 – volume: 60 start-page: 385 year: 2015 ident: 10.1016/j.omtn.2021.08.008_bib12 article-title: Discovery and functional characterization of diverse class 2 CRISPR-Cas systems publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.10.008 – volume: 31 start-page: 4014 year: 2015 ident: 10.1016/j.omtn.2021.08.008_bib36 article-title: Cas-Designer: A web-based tool for choice of CRISPR-Cas9 target sites publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv537 – volume: 11 start-page: 429 year: 2014 ident: 10.1016/j.omtn.2021.08.008_bib16 article-title: Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity publication-title: Nat. Methods doi: 10.1038/nmeth.2845 – volume: 58 start-page: 102897 year: 2020 ident: 10.1016/j.omtn.2021.08.008_bib26 article-title: An effective vaginal gel to deliver CRISPR/Cas9 system encapsulated in poly (β-amino ester) nanoparticles for vaginal gene therapy publication-title: EBioMedicine doi: 10.1016/j.ebiom.2020.102897 – volume: 321 start-page: 654 year: 2020 ident: 10.1016/j.omtn.2021.08.008_bib25 article-title: Hyperbranched poly(β-amino ester) based polyplex nanopaticles for delivery of CRISPR/Cas9 system and treatment of HPV infection associated cervical cancer publication-title: J. Control. Release doi: 10.1016/j.jconrel.2020.02.045 – volume: 42 start-page: e42 year: 2014 ident: 10.1016/j.omtn.2021.08.008_bib28 article-title: An online bioinformatics tool predicts zinc finger and TALE nuclease off-target cleavage publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1326 – volume: 6 start-page: 781 year: 2007 ident: 10.1016/j.omtn.2021.08.008_bib42 article-title: Non-homologous end-joining for repairing I-SceI-induced DNA double strand breaks in human cells publication-title: DNA Repair (Amst.) doi: 10.1016/j.dnarep.2007.01.004 – volume: 29 start-page: 816 year: 2011 ident: 10.1016/j.omtn.2021.08.008_bib13 article-title: An unbiased genome-wide analysis of zinc-finger nuclease specificity publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1948 – volume: 25 start-page: 1754 year: 2009 ident: 10.1016/j.omtn.2021.08.008_bib47 article-title: Fast and accurate short read alignment with Burrows-Wheeler transform publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp324 – volume: 18 start-page: 807 year: 2012 ident: 10.1016/j.omtn.2021.08.008_bib3 article-title: Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer publication-title: Nat. Med. doi: 10.1038/nm.2700 – volume: 41 start-page: 9779 year: 2013 ident: 10.1016/j.omtn.2021.08.008_bib29 article-title: Directed evolution of the TALE N-terminal domain for recognition of all 5′ bases publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt754 – volume: 41 start-page: 167 year: 2018 ident: 10.1016/j.omtn.2021.08.008_bib20 article-title: Comparison of the editing patterns and editing efficiencies of TALEN and CRISPR-Cas9 when targeting the human CCR5 gene publication-title: Genet. Mol. Biol. doi: 10.1590/1678-4685-gmb-2017-0065 – volume: 24 start-page: 570 year: 2016 ident: 10.1016/j.omtn.2021.08.008_bib19 article-title: Evaluation of TCR gene editing achieved by TALENs, CRISPR/Cas9, and megaTAL nucleases publication-title: Mol. Ther. doi: 10.1038/mt.2015.197 – volume: 15 start-page: 12 year: 2014 ident: 10.1016/j.omtn.2021.08.008_bib23 article-title: Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.06.011 – volume: 34 start-page: i884 year: 2018 ident: 10.1016/j.omtn.2021.08.008_bib45 article-title: fastp: An ultra-fast all-in-one FASTQ preprocessor publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty560 – volume: 7 start-page: e45383 year: 2012 ident: 10.1016/j.omtn.2021.08.008_bib38 article-title: Targeting G with TAL effectors: A comparison of activities of TALENs constructed with NN and NK repeat variable di-residues publication-title: PLoS ONE doi: 10.1371/journal.pone.0045383 – volume: 46 start-page: 3678 year: 2008 ident: 10.1016/j.omtn.2021.08.008_bib39 article-title: Analysis of human papillomavirus type 16 (HPV16) DNA load and physical state for identification of HPV16-infected women with high-grade lesions or cervical carcinoma publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.01212-08 – volume: 14 start-page: 858 year: 2018 ident: 10.1016/j.omtn.2021.08.008_bib48 article-title: CRISPRMatch: An automatic calculation and visualization tool for high-throughput CRISPR genome-editing data analysis publication-title: Int. J. Biol. Sci. doi: 10.7150/ijbs.24581 |
SSID | ssj0000601262 |
Score | 2.417933 |
Snippet | Zinc-finger nucleases (ZFNs), transcription activator-like endonucleases (TALENs), and CRISPR-associated Cas9 endonucleases are three major generations of... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1466 |
SubjectTerms | CRISPR GUIDE-seq HPV gene therapy Original TALEN ZFN |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NTxsxELUqTr1UQFq6lFauVPVCre7a3q9jmiZNq4IqkSDExfKnCGo2QMIh_75jexMlVIILp0ib3WS98-x5k4zfQ-hTmRdG57wkOStTAgw8JYoqSzjjUGAUzsnQPH5yWgzH_NdFfrFh9eV7wqI8cHxwX6nLMmcN1AVOcW1MldcGKLascyjbXfAXppDzNoqpuAbDwhvcRGlWUEIBae2OmdjcNZsuvPgpjfqd3ltyIysF8f6t5PQ_-XzYQ7mRlAa76FXLJnE3jmIPvbDNPup0G6ikp0v8GYf-zvDDeQeNABFYr20H8czhy8Hp_AsedX_3_atsDD676cl5jdUS_xj__N4nc3uLJw0e_jknsWfcGgyQszju21q-RuNBf9QbktZTgWhvXUC4YV5_xzFmuKVGG64zZrXMCpPS2rFUFsowWD3LEqarK52rnHR5Sb0MO1c1e4N2mllj3yKcVVJWtIYEpzm3PIUYQ_XFFTBgRa3lCcpWz1ToVnDc-178FavOsmvh4yB8HIQ3w0yrBB2vr7mJchuPnv3Nh2p9ppfKDgcAQKIFkHgKQAnKV4EWLeuIbAI-avLol39coULAlPT_s8jGzu7nAopSRoF2FlmCDiJK1rfIeM0qAGeCyi38bI1h-51mchVkv_0WYmCzh88x6HfopR9K6MthR2hncXdv3wO7WqgPYSL9A5OeHXM priority: 102 providerName: Directory of Open Access Journals |
Title | The comparison of ZFNs, TALENs, and SpCas9 by GUIDE-seq in HPV-targeted gene therapy |
URI | https://dx.doi.org/10.1016/j.omtn.2021.08.008 https://www.ncbi.nlm.nih.gov/pubmed/34938601 https://www.proquest.com/docview/2613292961 https://pubmed.ncbi.nlm.nih.gov/PMC8655392 https://doaj.org/article/2f11fed289fb4cdd859d753a95202f12 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1db9MwFLWmIaG9oI3xkTEmIyFewCixnTh5QFMZLQWxCYkWTbxYdmxD0ZZsTSet_55rJykUxp4qtambxuf6nptcn4PQc5Fmpky5ICkTMQEGHhNNtSWccSgwMudUaB4_PsnGU_7xND3dQL3dUXcBmxtLO-8nNZ2fvb6-XB5CwL_53atVny-8lilt5Tj93t87kJmED9Tjju63KzMsx8FjlCYZJRTw1-2juXmYLXSX8YLlWWcZ06etoO6_lr3-Zad_N1n-kbVG2-heRzfxoMXHDtqw1X20O6ig1D5f4hc4NICGO-u7aAKQweXKlxDXDn8bnTSv8GTwaehfVWXwl4sj1RRYL_H76Yd3Q9LYSzyr8PjzV9I2lVuDAZMWtxu7lg_QdDScHI1JZ7pASu9tQLhhXqDHMWa4paY0vEyYLVWSmZgWjsUq04bB8ioExLMTzuVOuVRQr9POdcEeos2qruxjhJNcqZwWkAFLzi2PAQRQnnENFFlTa3mEkv6ayrJTJPfGGGeybz37Kf2USD8l0rtlxnmEXq6-c9Hqcdx69Fs_VasjvZZ2eKOef5ddaErqksRZA5Wn07w0Jk8LA0WcKlIYySU0Qmk_0bKjJS3dgKFmt_74sx4VEmLWP4hRla2vGglVK6PAS7MkQo9alKxOsQdchMQaftb-w_on1exH0AX3e4yB7u79d8wnaMufX-jGYftoczG_sk-BUy30QbgXcRDC5Rf_MRmb |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+comparison+of+ZFNs%2C+TALENs%2C+and+SpCas9+by+GUIDE-seq+in+HPV-targeted+gene+therapy&rft.jtitle=Molecular+therapy.+Nucleic+acids&rft.au=Cui%2C+Zifeng&rft.au=Liu%2C+Hui&rft.au=Zhang%2C+Hongfeng&rft.au=Huang%2C+Zhaoyue&rft.date=2021-12-03&rft.issn=2162-2531&rft.eissn=2162-2531&rft.volume=26&rft.spage=1466&rft_id=info:doi/10.1016%2Fj.omtn.2021.08.008&rft_id=info%3Apmid%2F34938601&rft.externalDocID=34938601 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-2531&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-2531&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-2531&client=summon |