The comparison of ZFNs, TALENs, and SpCas9 by GUIDE-seq in HPV-targeted gene therapy

Zinc-finger nucleases (ZFNs), transcription activator-like endonucleases (TALENs), and CRISPR-associated Cas9 endonucleases are three major generations of genome editing tools. However, no parallel comparison about the efficiencies and off-target activity of the three nucleases has been reported, wh...

Full description

Saved in:
Bibliographic Details
Published inMolecular therapy. Nucleic acids Vol. 26; pp. 1466 - 1478
Main Authors Cui, Zifeng, Liu, Hui, Zhang, Hongfeng, Huang, Zhaoyue, Tian, Rui, Li, Lifang, Fan, Weiwen, Chen, Yili, Chen, Lijie, Zhang, Sen, Das, Bhudev C., Severinov, Konstantin, Hitzeroth, Inga Isabel, Debata, Priya Ranjan, Jin, Zhuang, Liu, Jiashuo, Huang, Zheying, Xie, Weiling, Xie, Hongxian, Lang, Bin, Ma, Ji, Weng, Haiyan, Tian, Xun, Hu, Zheng
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 03.12.2021
American Society of Gene & Cell Therapy
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Zinc-finger nucleases (ZFNs), transcription activator-like endonucleases (TALENs), and CRISPR-associated Cas9 endonucleases are three major generations of genome editing tools. However, no parallel comparison about the efficiencies and off-target activity of the three nucleases has been reported, which is critical for the final clinical decision. We for the first time developed the genome-wide unbiased identification of double-stranded breaks enabled by sequencing (GUIDE-seq) method in ZFNs and TALENs with novel bioinformatics algorithms to evaluate the off-targets. By targeting human papillomavirus 16 (HPV16), we compared the performance of ZFNs, TALENs, and SpCas9 in vivo. Our data showed that ZFNs with similar targets could generate distinct massive off-targets (287–1,856), and the specificity could be reversely correlated with the counts of middle “G” in zinc finger proteins (ZFPs). We also compared the TALENs with different N-terminal domains (wild-type [WT]/αN/βN) and G recognition modules (NN/NH) and found the design (αN or NN) to improve the efficiency of TALEN inevitably increased off-targets. Finally, our results showed that SpCas9 was more efficient and specific than ZFNs and TALENs. Specifically, SpCas9 had fewer off-target counts in URR (SpCas9, n = 0; TALEN, n = 1; ZFN, n = 287), E6 (SpCas9, n = 0; TALEN, n = 7), and E7 (SpCas9, n = 4; TALEN, n = 36). Taken together, we suggest that for HPV gene therapies, SpCas9 is a more efficient and safer genome editing tool. Our off-target data could be used to improve the design of ZFNs and TALENs, and the universal in vivo off-target detection pipeline for three generations of artificial nucleases provided useful tools for genome engineering-based gene therapy. [Display omitted] We compared the efficiency and specificity of ZFNs, TALENs, and SpCas9 by GUIDE-seq. SpCas9 outperformed ZFNs and TALENs with higher efficiency and specificity. We provided a universal pipeline to evaluate three generations of programmed nucleases to aid clinical decisions. Our data could help improve the designs of ZFNs and TALENs.
AbstractList Zinc-finger nucleases (ZFNs), transcription activator-like endonucleases (TALENs), and CRISPR-associated Cas9 endonucleases are three major generations of genome editing tools. However, no parallel comparison about the efficiencies and off-target activity of the three nucleases has been reported, which is critical for the final clinical decision. We for the first time developed the genome-wide unbiased identification of double-stranded breaks enabled by sequencing (GUIDE-seq) method in ZFNs and TALENs with novel bioinformatics algorithms to evaluate the off-targets. By targeting human papillomavirus 16 (HPV16), we compared the performance of ZFNs, TALENs, and SpCas9 in vivo. Our data showed that ZFNs with similar targets could generate distinct massive off-targets (287–1,856), and the specificity could be reversely correlated with the counts of middle “G” in zinc finger proteins (ZFPs). We also compared the TALENs with different N-terminal domains (wild-type [WT]/αN/βN) and G recognition modules (NN/NH) and found the design (αN or NN) to improve the efficiency of TALEN inevitably increased off-targets. Finally, our results showed that SpCas9 was more efficient and specific than ZFNs and TALENs. Specifically, SpCas9 had fewer off-target counts in URR (SpCas9, n = 0; TALEN, n = 1; ZFN, n = 287), E6 (SpCas9, n = 0; TALEN, n = 7), and E7 (SpCas9, n = 4; TALEN, n = 36). Taken together, we suggest that for HPV gene therapies, SpCas9 is a more efficient and safer genome editing tool. Our off-target data could be used to improve the design of ZFNs and TALENs, and the universal in vivo off-target detection pipeline for three generations of artificial nucleases provided useful tools for genome engineering-based gene therapy.
Zinc-finger nucleases (ZFNs), transcription activator-like endonucleases (TALENs), and CRISPR-associated Cas9 endonucleases are three major generations of genome editing tools. However, no parallel comparison about the efficiencies and off-target activity of the three nucleases has been reported, which is critical for the final clinical decision. We for the first time developed the genome-wide unbiased identification of double-stranded breaks enabled by sequencing (GUIDE-seq) method in ZFNs and TALENs with novel bioinformatics algorithms to evaluate the off-targets. By targeting human papillomavirus 16 (HPV16), we compared the performance of ZFNs, TALENs, and SpCas9 in vivo. Our data showed that ZFNs with similar targets could generate distinct massive off-targets (287–1,856), and the specificity could be reversely correlated with the counts of middle “G” in zinc finger proteins (ZFPs). We also compared the TALENs with different N-terminal domains (wild-type [WT]/αN/βN) and G recognition modules (NN/NH) and found the design (αN or NN) to improve the efficiency of TALEN inevitably increased off-targets. Finally, our results showed that SpCas9 was more efficient and specific than ZFNs and TALENs. Specifically, SpCas9 had fewer off-target counts in URR (SpCas9, n = 0; TALEN, n = 1; ZFN, n = 287), E6 (SpCas9, n = 0; TALEN, n = 7), and E7 (SpCas9, n = 4; TALEN, n = 36). Taken together, we suggest that for HPV gene therapies, SpCas9 is a more efficient and safer genome editing tool. Our off-target data could be used to improve the design of ZFNs and TALENs, and the universal in vivo off-target detection pipeline for three generations of artificial nucleases provided useful tools for genome engineering-based gene therapy. [Display omitted] We compared the efficiency and specificity of ZFNs, TALENs, and SpCas9 by GUIDE-seq. SpCas9 outperformed ZFNs and TALENs with higher efficiency and specificity. We provided a universal pipeline to evaluate three generations of programmed nucleases to aid clinical decisions. Our data could help improve the designs of ZFNs and TALENs.
Zinc-finger nucleases (ZFNs), transcription activator-like endonucleases (TALENs), and CRISPR-associated Cas9 endonucleases are three major generations of genome editing tools. However, no parallel comparison about the efficiencies and off-target activity of the three nucleases has been reported, which is critical for the final clinical decision. We for the first time developed the genome-wide unbiased identification of double-stranded breaks enabled by sequencing (GUIDE-seq) method in ZFNs and TALENs with novel bioinformatics algorithms to evaluate the off-targets. By targeting human papillomavirus 16 (HPV16), we compared the performance of ZFNs, TALENs, and SpCas9 . Our data showed that ZFNs with similar targets could generate distinct massive off-targets (287-1,856), and the specificity could be reversely correlated with the counts of middle "G" in zinc finger proteins (ZFPs). We also compared the TALENs with different N-terminal domains (wild-type [WT]/αN/βN) and G recognition modules (NN/NH) and found the design (αN or NN) to improve the efficiency of TALEN inevitably increased off-targets. Finally, our results showed that SpCas9 was more efficient and specific than ZFNs and TALENs. Specifically, SpCas9 had fewer off-target counts in URR (SpCas9, n = 0; TALEN, n = 1; ZFN, n = 287), E6 (SpCas9, n = 0; TALEN, n = 7), and E7 (SpCas9, n = 4; TALEN, n = 36). Taken together, we suggest that for HPV gene therapies, SpCas9 is a more efficient and safer genome editing tool. Our off-target data could be used to improve the design of ZFNs and TALENs, and the universal off-target detection pipeline for three generations of artificial nucleases provided useful tools for genome engineering-based gene therapy.
Zinc-finger nucleases (ZFNs), transcription activator-like endonucleases (TALENs), and CRISPR-associated Cas9 endonucleases are three major generations of genome editing tools. However, no parallel comparison about the efficiencies and off-target activity of the three nucleases has been reported, which is critical for the final clinical decision. We for the first time developed the genome-wide unbiased identification of double-stranded breaks enabled by sequencing (GUIDE-seq) method in ZFNs and TALENs with novel bioinformatics algorithms to evaluate the off-targets. By targeting human papillomavirus 16 (HPV16), we compared the performance of ZFNs, TALENs, and SpCas9 in vivo . Our data showed that ZFNs with similar targets could generate distinct massive off-targets (287–1,856), and the specificity could be reversely correlated with the counts of middle “G” in zinc finger proteins (ZFPs). We also compared the TALENs with different N-terminal domains (wild-type [WT]/αN/βN) and G recognition modules (NN/NH) and found the design (αN or NN) to improve the efficiency of TALEN inevitably increased off-targets. Finally, our results showed that SpCas9 was more efficient and specific than ZFNs and TALENs. Specifically, SpCas9 had fewer off-target counts in URR (SpCas9, n = 0; TALEN, n = 1; ZFN, n = 287), E6 (SpCas9, n = 0; TALEN, n = 7), and E7 (SpCas9, n = 4; TALEN, n = 36). Taken together, we suggest that for HPV gene therapies, SpCas9 is a more efficient and safer genome editing tool. Our off-target data could be used to improve the design of ZFNs and TALENs, and the universal in vivo off-target detection pipeline for three generations of artificial nucleases provided useful tools for genome engineering-based gene therapy. We compared the efficiency and specificity of ZFNs, TALENs, and SpCas9 by GUIDE-seq. SpCas9 outperformed ZFNs and TALENs with higher efficiency and specificity. We provided a universal pipeline to evaluate three generations of programmed nucleases to aid clinical decisions. Our data could help improve the designs of ZFNs and TALENs.
Zinc-finger nucleases (ZFNs), transcription activator-like endonucleases (TALENs), and CRISPR-associated Cas9 endonucleases are three major generations of genome editing tools. However, no parallel comparison about the efficiencies and off-target activity of the three nucleases has been reported, which is critical for the final clinical decision. We for the first time developed the genome-wide unbiased identification of double-stranded breaks enabled by sequencing (GUIDE-seq) method in ZFNs and TALENs with novel bioinformatics algorithms to evaluate the off-targets. By targeting human papillomavirus 16 (HPV16), we compared the performance of ZFNs, TALENs, and SpCas9 in vivo. Our data showed that ZFNs with similar targets could generate distinct massive off-targets (287-1,856), and the specificity could be reversely correlated with the counts of middle "G" in zinc finger proteins (ZFPs). We also compared the TALENs with different N-terminal domains (wild-type [WT]/αN/βN) and G recognition modules (NN/NH) and found the design (αN or NN) to improve the efficiency of TALEN inevitably increased off-targets. Finally, our results showed that SpCas9 was more efficient and specific than ZFNs and TALENs. Specifically, SpCas9 had fewer off-target counts in URR (SpCas9, n = 0; TALEN, n = 1; ZFN, n = 287), E6 (SpCas9, n = 0; TALEN, n = 7), and E7 (SpCas9, n = 4; TALEN, n = 36). Taken together, we suggest that for HPV gene therapies, SpCas9 is a more efficient and safer genome editing tool. Our off-target data could be used to improve the design of ZFNs and TALENs, and the universal in vivo off-target detection pipeline for three generations of artificial nucleases provided useful tools for genome engineering-based gene therapy.Zinc-finger nucleases (ZFNs), transcription activator-like endonucleases (TALENs), and CRISPR-associated Cas9 endonucleases are three major generations of genome editing tools. However, no parallel comparison about the efficiencies and off-target activity of the three nucleases has been reported, which is critical for the final clinical decision. We for the first time developed the genome-wide unbiased identification of double-stranded breaks enabled by sequencing (GUIDE-seq) method in ZFNs and TALENs with novel bioinformatics algorithms to evaluate the off-targets. By targeting human papillomavirus 16 (HPV16), we compared the performance of ZFNs, TALENs, and SpCas9 in vivo. Our data showed that ZFNs with similar targets could generate distinct massive off-targets (287-1,856), and the specificity could be reversely correlated with the counts of middle "G" in zinc finger proteins (ZFPs). We also compared the TALENs with different N-terminal domains (wild-type [WT]/αN/βN) and G recognition modules (NN/NH) and found the design (αN or NN) to improve the efficiency of TALEN inevitably increased off-targets. Finally, our results showed that SpCas9 was more efficient and specific than ZFNs and TALENs. Specifically, SpCas9 had fewer off-target counts in URR (SpCas9, n = 0; TALEN, n = 1; ZFN, n = 287), E6 (SpCas9, n = 0; TALEN, n = 7), and E7 (SpCas9, n = 4; TALEN, n = 36). Taken together, we suggest that for HPV gene therapies, SpCas9 is a more efficient and safer genome editing tool. Our off-target data could be used to improve the design of ZFNs and TALENs, and the universal in vivo off-target detection pipeline for three generations of artificial nucleases provided useful tools for genome engineering-based gene therapy.
Author Li, Lifang
Das, Bhudev C.
Severinov, Konstantin
Debata, Priya Ranjan
Weng, Haiyan
Zhang, Sen
Huang, Zheying
Chen, Yili
Tian, Xun
Xie, Hongxian
Lang, Bin
Huang, Zhaoyue
Tian, Rui
Liu, Jiashuo
Cui, Zifeng
Jin, Zhuang
Hu, Zheng
Ma, Ji
Chen, Lijie
Zhang, Hongfeng
Fan, Weiwen
Liu, Hui
Xie, Weiling
Hitzeroth, Inga Isabel
Author_xml – sequence: 1
  givenname: Zifeng
  surname: Cui
  fullname: Cui, Zifeng
  organization: Department of Gynecological Oncology, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road, Yuexiu, Guangzhou 510080, Guangdong, China
– sequence: 2
  givenname: Hui
  surname: Liu
  fullname: Liu, Hui
  organization: Department of Pathology, Xi’an People’s Hospital (Xi’an Fourth Hospital), Shaanxi, China
– sequence: 3
  givenname: Hongfeng
  surname: Zhang
  fullname: Zhang, Hongfeng
  organization: Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
– sequence: 4
  givenname: Zhaoyue
  surname: Huang
  fullname: Huang, Zhaoyue
  organization: Department of Gynecological Oncology, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road, Yuexiu, Guangzhou 510080, Guangdong, China
– sequence: 5
  givenname: Rui
  surname: Tian
  fullname: Tian, Rui
  organization: Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
– sequence: 6
  givenname: Lifang
  surname: Li
  fullname: Li, Lifang
  organization: Department of Gynecological Oncology, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road, Yuexiu, Guangzhou 510080, Guangdong, China
– sequence: 7
  givenname: Weiwen
  surname: Fan
  fullname: Fan, Weiwen
  organization: Department of Gynecological Oncology, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road, Yuexiu, Guangzhou 510080, Guangdong, China
– sequence: 8
  givenname: Yili
  surname: Chen
  fullname: Chen, Yili
  organization: Department of Gynecological Oncology, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road, Yuexiu, Guangzhou 510080, Guangdong, China
– sequence: 9
  givenname: Lijie
  surname: Chen
  fullname: Chen, Lijie
  organization: Graduate School, Bengbu Medical College, Bengbu, Anhui 233000, China
– sequence: 10
  givenname: Sen
  surname: Zhang
  fullname: Zhang, Sen
  organization: Graduate School, Bengbu Medical College, Bengbu, Anhui 233000, China
– sequence: 11
  givenname: Bhudev C.
  surname: Das
  fullname: Das, Bhudev C.
  organization: Amity Institute of Molecular Medicine & Stem Cell Research, Amity University Uttar Pradesh, Sector 125, Noida 201313, India
– sequence: 12
  givenname: Konstantin
  surname: Severinov
  fullname: Severinov, Konstantin
  organization: Skolkovo Institute of Science and Technology 100 Novaya Street, Skolkovo, Moscow Region 143025, Russia
– sequence: 13
  givenname: Inga Isabel
  surname: Hitzeroth
  fullname: Hitzeroth, Inga Isabel
  organization: Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town 7701, South Africa
– sequence: 14
  givenname: Priya Ranjan
  surname: Debata
  fullname: Debata, Priya Ranjan
  organization: Department of Zoology, North Orissa University, Takatpur, Baripada, Odisha 757003, India
– sequence: 15
  givenname: Zhuang
  surname: Jin
  fullname: Jin, Zhuang
  organization: Department of Gynecological Oncology, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road, Yuexiu, Guangzhou 510080, Guangdong, China
– sequence: 16
  givenname: Jiashuo
  surname: Liu
  fullname: Liu, Jiashuo
  organization: Department of Gynecological Oncology, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road, Yuexiu, Guangzhou 510080, Guangdong, China
– sequence: 17
  givenname: Zheying
  surname: Huang
  fullname: Huang, Zheying
  organization: Department of Gynecological Oncology, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road, Yuexiu, Guangzhou 510080, Guangdong, China
– sequence: 18
  givenname: Weiling
  surname: Xie
  fullname: Xie, Weiling
  organization: Department of Gynecological Oncology, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road, Yuexiu, Guangzhou 510080, Guangdong, China
– sequence: 19
  givenname: Hongxian
  surname: Xie
  fullname: Xie, Hongxian
  organization: Generulor Company Bio-X Lab, Guangzhou 510006, Guangdong, China
– sequence: 20
  givenname: Bin
  surname: Lang
  fullname: Lang, Bin
  organization: School of Health Sciences and Sports, Macao Polytechnic Institute, Macao 999078, China
– sequence: 21
  givenname: Ji
  surname: Ma
  fullname: Ma, Ji
  organization: Department of Pathology, The Central Hospital of Sui Zhou, Hubei, China
– sequence: 22
  givenname: Haiyan
  surname: Weng
  fullname: Weng, Haiyan
  email: Whaiyan1166@163.com
  organization: Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230036, China
– sequence: 23
  givenname: Xun
  surname: Tian
  fullname: Tian, Xun
  email: tianxun@zxhospital.com
  organization: Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei, China
– sequence: 24
  givenname: Zheng
  orcidid: 0000-0001-9306-9442
  surname: Hu
  fullname: Hu, Zheng
  email: huzheng1998@163.com
  organization: Department of Gynecological Oncology, The First Affiliated Hospital, Sun Yat-sen University, Zhongshan 2nd Road, Yuexiu, Guangzhou 510080, Guangdong, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34938601$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1vEzEQhleoiJbQP8AB-cihG_yx3g8JIVUhbSNFgETKgYvl2OPE0cZObadS_j1e0qKWQ30Zf8z7jDzzvi1OnHdQFO8JHhNM6k-bsd8mN6aYkjFuxxi3r4ozSmpaUs7IyZP9aXEe4wbnVWNCa_qmOGVVx9p8OisWizUg5bc7GWz0DnmDfl99ixdocTmfDlE6jX7uJjJ2aHlA17ezr9Mywh2yDt38-FUmGVaQQKMVOEBpDUHuDu-K10b2Ec4f4qi4vZouJjfl_Pv1bHI5LxWnJJWVZoRXlWFMV0C10pUiDJQktca0MwzLeqlZVTdNgzkxjTGtkYY3lHHeVsuOjYrZkau93IhdsFsZDsJLK_5e-LASMiSrehDUEGJA07Yzy0pp3fJON5zJjucOGkIz68uRtdsvt6AVuBRk_wz6_MXZtVj5e9HWnLNuAHx8AAR_t4eYxNZGBX0vHfh9FLQmjHa0y2FUfHha61-Rx7HkhPaYoIKPMYARyiaZrB9K214QLAYTiPzHbAIxmEDgVmQTZCn9T_pIf1H0-SiCPK17C0FEZcEp0DaASrmd9iX5Hxw6yEo
CitedBy_id crossref_primary_10_7717_peerj_15790
crossref_primary_10_1016_j_ctarc_2022_100638
crossref_primary_10_1016_j_ymthe_2024_10_029
crossref_primary_10_3389_fcell_2022_903812
crossref_primary_10_3389_fbioe_2022_942440
crossref_primary_10_58567_ci02020008
crossref_primary_10_1002_mco2_368
crossref_primary_10_3389_fimmu_2022_1037124
crossref_primary_10_1186_s13045_024_01633_7
crossref_primary_10_31083_j_fbl2708241
crossref_primary_10_3389_fgene_2025_1553406
crossref_primary_10_3389_fonc_2024_1388475
crossref_primary_10_1186_s13059_024_03188_9
crossref_primary_10_1186_s40164_023_00457_4
crossref_primary_10_3390_genes13020344
crossref_primary_10_5483_BMBRep_2023_0208
crossref_primary_10_1016_j_bbrc_2024_150664
crossref_primary_10_1080_1750743X_2024_2408048
crossref_primary_10_1186_s12943_023_01738_6
crossref_primary_10_1016_j_nano_2023_102711
crossref_primary_10_3390_biomedicines11082168
crossref_primary_10_3390_cimb44060182
crossref_primary_10_3390_plants12122331
crossref_primary_10_1016_j_mrgentox_2024_503767
crossref_primary_10_1186_s40164_024_00570_y
Cites_doi 10.1038/s41467-020-19344-1
10.1093/bioinformatics/bty554
10.1038/nbt1410
10.1093/nar/gkt716
10.1038/nbt.3437
10.1093/nar/gks1144
10.1093/bioinformatics/btr507
10.1007/s00284-018-1547-4
10.1038/ncomms1962
10.1093/nar/gkr597
10.1093/bioinformatics/btu353
10.1172/JCI72992
10.1093/nar/gkq319
10.1016/j.antiviral.2020.104794
10.1093/nar/gku155
10.1158/1078-0432.CCR-14-0250
10.1172/JCI78206
10.1056/NEJMoa1300662
10.1016/j.theriogenology.2019.03.029
10.1073/pnas.1410785111
10.1186/s40064-016-2536-3
10.1038/nature20134
10.1038/nbt.3534
10.1182/blood.V126.23.2046.2046
10.1038/nmeth.1670
10.1073/pnas.1308587110
10.1038/nbt.2673
10.1093/nar/gks608
10.1038/nbt.3117
10.1016/j.semcancer.2018.04.001
10.1016/j.molcel.2015.10.008
10.1093/bioinformatics/btv537
10.1038/nmeth.2845
10.1016/j.ebiom.2020.102897
10.1016/j.jconrel.2020.02.045
10.1093/nar/gkt1326
10.1016/j.dnarep.2007.01.004
10.1038/nbt.1948
10.1093/bioinformatics/btp324
10.1038/nm.2700
10.1093/nar/gkt754
10.1590/1678-4685-gmb-2017-0065
10.1038/mt.2015.197
10.1016/j.stem.2014.06.011
10.1093/bioinformatics/bty560
10.1371/journal.pone.0045383
10.1128/JCM.01212-08
10.7150/ijbs.24581
ContentType Journal Article
Copyright 2021 The Authors
2021 The Authors.
2021 The Authors 2021
Copyright_xml – notice: 2021 The Authors
– notice: 2021 The Authors.
– notice: 2021 The Authors 2021
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.omtn.2021.08.008
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2162-2531
EndPage 1478
ExternalDocumentID oai_doaj_org_article_2f11fed289fb4cdd859d753a95202f12
PMC8655392
34938601
10_1016_j_omtn_2021_08_008
S216225312100202X
Genre Journal Article
GroupedDBID 0R~
0SF
53G
5VS
6I.
7X7
8FE
8FH
8FI
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
AEXQZ
AFKRA
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
AZQEC
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
DIK
EBS
FDB
FYUFA
GROUPED_DOAJ
HCIFZ
KQ8
LK8
M2P
M41
M48
M7P
M~E
NCXOZ
O9-
OK1
PIMPY
PQQKQ
PROAC
RNTTT
ROL
RPM
SSZ
88I
8FJ
AAMRU
AAYWO
AAYXX
ABUWG
ADRAZ
ADVLN
ALIPV
APXCP
CCPQU
CITATION
DWQXO
EJD
GNUQQ
HMCUK
HYE
IPNFZ
PHGZM
PHGZT
RIG
UKHRP
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-4d31544f33d4e2dcd4c13eca16d029f30a6bd346777051f7ff8faf57235584b93
IEDL.DBID M48
ISSN 2162-2531
IngestDate Wed Aug 27 01:29:57 EDT 2025
Thu Aug 21 18:28:30 EDT 2025
Fri Jul 11 08:21:10 EDT 2025
Thu Jan 02 22:55:44 EST 2025
Tue Jul 01 02:00:40 EDT 2025
Thu Apr 24 23:07:36 EDT 2025
Fri Feb 23 02:39:48 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords CRISPR
HPV gene therapy
ZFN
TALEN
GUIDE-seq
Language English
License This is an open access article under the CC BY-NC-ND license.
2021 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-4d31544f33d4e2dcd4c13eca16d029f30a6bd346777051f7ff8faf57235584b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally
ORCID 0000-0001-9306-9442
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.omtn.2021.08.008
PMID 34938601
PQID 2613292961
PQPubID 23479
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_2f11fed289fb4cdd859d753a95202f12
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8655392
proquest_miscellaneous_2613292961
pubmed_primary_34938601
crossref_citationtrail_10_1016_j_omtn_2021_08_008
crossref_primary_10_1016_j_omtn_2021_08_008
elsevier_sciencedirect_doi_10_1016_j_omtn_2021_08_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-03
PublicationDateYYYYMMDD 2021-12-03
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-03
  day: 03
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular therapy. Nucleic acids
PublicationTitleAlternate Mol Ther Nucleic Acids
PublicationYear 2021
Publisher Elsevier Inc
American Society of Gene & Cell Therapy
Elsevier
Publisher_xml – name: Elsevier Inc
– name: American Society of Gene & Cell Therapy
– name: Elsevier
References Saunier, Monnier-Benoit, Mauny, Dalstein, Briolat, Riethmuller, Kantelip, Schwarz, Mougin, Prétet (bib39) 2008; 46
You, Zhong, Ren, Hassan, Zhang, Zhang (bib48) 2018; 14
Wang, Quake (bib6) 2014; 111
Park, Bae, Kim (bib36) 2015; 31
He, Proudfoot, Whitelaw, Lillico (bib21) 2016; 5
Mussolino, Morbitzer, Lütge, Dannemann, Lahaye, Cathomen (bib37) 2011; 39
Zhan, Rindtorff, Betge, Ebert, Boutros (bib2) 2019; 55
Provasi, Genovese, Lombardo, Magnani, Liu, Reik, Chu, Paschon, Zhang, Kuball (bib3) 2012; 18
Javed, Sadaf, Ahmed, Jamil, Nawaz, Abbas, Ijaz (bib35) 2018; 75
Gabriel, Lombardo, Arens, Miller, Genovese, Kaeppel, Nowrouzi, Bartholomae, Wang, Friedman (bib13) 2011; 29
Smith, Gore, Yan, Abalde-Atristain, Li, He, Wang, Brodsky, Zhang, Cheng, Ye (bib23) 2014; 15
Tsai, Topkar, Joung, Aryee (bib41) 2016; 34
Pattanayak, Lin, Guilinger, Ma, Doudna, Liu (bib18) 2013; 31
Sander, Maeder, Reyon, Voytas, Joung, Dobbs (bib32) 2010; 38
Perez, Wang, Miller, Jouvenot, Kim, Liu, Wang, Lee, Bartsevich, Lee (bib5) 2008; 26
Pattanayak, Ramirez, Joung, Liu (bib14) 2011; 8
Tsai, Zheng, Nguyen, Liebers, Topkar, Thapar, Wyvekens, Khayter, Iafrate, Le (bib27) 2015; 33
Dever, Bak, Reinisch, Camarena, Washington, Nicolas, Pavel-Dinu, Saxena, Wilkens, Mantri (bib8) 2016; 539
Shmakov, Abudayyeh, Makarova, Wolf, Gootenberg, Semenova, Minakhin, Joung, Konermann, Severinov (bib12) 2015; 60
Fine, Cradick, Zhao, Lin, Bao (bib28) 2014; 42
Chen, Zhou, Chen, Gu (bib45) 2018; 34
Gao, Jin, Tan, Zhang, Zou, Zhang, Ding, Das, Severinov, Hitzeroth (bib25) 2020; 321
Sander, Ramirez, Linder, Pattanayak, Shoresh, Ku, Foden, Reyon, Bernstein, Liu, Joung (bib15) 2013; 41
Christian, Demorest, Starker, Osborn, Nyquist, Zhang, Carlson, Bradley, Bogdanove, Voytas (bib38) 2012; 7
Honma, Sakuraba, Koizumi, Takashima, Sakamoto, Hayashi (bib42) 2007; 6
Juillerat, Dubois, Valton, Thomas, Stella, Maréchal, Langevin, Benomari, Bertonati, Silva (bib17) 2014; 42
Ding, Hu, Zhu, Jiang, Yu, Wang, Zhang, Wang, Ji, Li (bib24) 2014; 20
Gasiunas, Young, Karvelis, Kazlauskas, Urbaitis, Jasnauskaite, Grusyte, Paulraj, Wang, Hou (bib11) 2020; 11
Qasim, Amrolia, Samarasinghe, Ghorashian, Zhan, Stafford, Butler, Ahsan, Gilmour, Adams (bib10) 2015; 126
Nyquist, Li, Hwang, Manlove, Vessella, Silverstein, Voytas, Dehm (bib4) 2013; 110
Zhang, Liu, Yang, Cui, Dai, Dong, Yang, Zhang, Liu, Liang, Cang (bib22) 2019; 132
Hu, Ding, Zhu, Yu, Jiang, Wang, Zhang, Wang, Ji, Liu (bib7) 2015; 125
Lamb, Mercer, Barbas (bib29) 2013; 41
Lin, Wong (bib34) 2018; 34
Osborn, Webber, Knipping, Lonetree, Tennis, DeFeo, McElroy, Starker, Lee, Merkel (bib19) 2016; 24
Boyle, O’Roak, Martin, Kumar, Shendure (bib44) 2014; 30
Tebas, Stein, Tang, Frank, Wang, Lee, Spratt, Surosky, Giedlin, Nichol (bib9) 2014; 370
Gupta, Musunuru (bib1) 2014; 124
Niu, Jin, Zhang, He, Gao, Zou, Zhang, Ding, Das, Severinov (bib26) 2020; 58
Chen, Jiang, Wang, He, Tian, Cui, Tian, Gao, Ma, Yang (bib40) 2020; 178
Magoč, Salzberg (bib46) 2011; 27
Cong, Zhou, Kuo, Cunniff, Zhang (bib30) 2012; 3
Li, Durbin (bib47) 2009; 25
Xiao, Wu, Yang, Hu, Wang, Zhang, Kong, Gao, Zhu, Lin, Zhang (bib43) 2013; 41
Doench, Fusi, Sullender, Hegde, Vaimberg, Donovan, Smith, Tothova, Wilen, Orchard (bib33) 2016; 34
Doyle, Booher, Standage, Voytas, Brendel, Vandyk, Bogdanove (bib31) 2012; 40
Guilinger, Pattanayak, Reyon, Tsai, Sander, Joung, Liu (bib16) 2014; 11
Nerys-Junior, Braga-Dias, Pezzuto, Cotta-de-Almeida, Tanuri (bib20) 2018; 41
Pattanayak (10.1016/j.omtn.2021.08.008_bib18) 2013; 31
Magoč (10.1016/j.omtn.2021.08.008_bib46) 2011; 27
Perez (10.1016/j.omtn.2021.08.008_bib5) 2008; 26
Ding (10.1016/j.omtn.2021.08.008_bib24) 2014; 20
Lamb (10.1016/j.omtn.2021.08.008_bib29) 2013; 41
Doench (10.1016/j.omtn.2021.08.008_bib33) 2016; 34
Guilinger (10.1016/j.omtn.2021.08.008_bib16) 2014; 11
Mussolino (10.1016/j.omtn.2021.08.008_bib37) 2011; 39
Sander (10.1016/j.omtn.2021.08.008_bib32) 2010; 38
Osborn (10.1016/j.omtn.2021.08.008_bib19) 2016; 24
Christian (10.1016/j.omtn.2021.08.008_bib38) 2012; 7
Boyle (10.1016/j.omtn.2021.08.008_bib44) 2014; 30
Smith (10.1016/j.omtn.2021.08.008_bib23) 2014; 15
Li (10.1016/j.omtn.2021.08.008_bib47) 2009; 25
Doyle (10.1016/j.omtn.2021.08.008_bib31) 2012; 40
Wang (10.1016/j.omtn.2021.08.008_bib6) 2014; 111
Park (10.1016/j.omtn.2021.08.008_bib36) 2015; 31
Saunier (10.1016/j.omtn.2021.08.008_bib39) 2008; 46
Gasiunas (10.1016/j.omtn.2021.08.008_bib11) 2020; 11
Cong (10.1016/j.omtn.2021.08.008_bib30) 2012; 3
You (10.1016/j.omtn.2021.08.008_bib48) 2018; 14
Tebas (10.1016/j.omtn.2021.08.008_bib9) 2014; 370
Nerys-Junior (10.1016/j.omtn.2021.08.008_bib20) 2018; 41
Javed (10.1016/j.omtn.2021.08.008_bib35) 2018; 75
Dever (10.1016/j.omtn.2021.08.008_bib8) 2016; 539
Pattanayak (10.1016/j.omtn.2021.08.008_bib14) 2011; 8
Hu (10.1016/j.omtn.2021.08.008_bib7) 2015; 125
Xiao (10.1016/j.omtn.2021.08.008_bib43) 2013; 41
Zhang (10.1016/j.omtn.2021.08.008_bib22) 2019; 132
Gupta (10.1016/j.omtn.2021.08.008_bib1) 2014; 124
Tsai (10.1016/j.omtn.2021.08.008_bib41) 2016; 34
Qasim (10.1016/j.omtn.2021.08.008_bib10) 2015; 126
He (10.1016/j.omtn.2021.08.008_bib21) 2016; 5
Gao (10.1016/j.omtn.2021.08.008_bib25) 2020; 321
Zhan (10.1016/j.omtn.2021.08.008_bib2) 2019; 55
Shmakov (10.1016/j.omtn.2021.08.008_bib12) 2015; 60
Chen (10.1016/j.omtn.2021.08.008_bib45) 2018; 34
Honma (10.1016/j.omtn.2021.08.008_bib42) 2007; 6
Gabriel (10.1016/j.omtn.2021.08.008_bib13) 2011; 29
Chen (10.1016/j.omtn.2021.08.008_bib40) 2020; 178
Niu (10.1016/j.omtn.2021.08.008_bib26) 2020; 58
Provasi (10.1016/j.omtn.2021.08.008_bib3) 2012; 18
Sander (10.1016/j.omtn.2021.08.008_bib15) 2013; 41
Nyquist (10.1016/j.omtn.2021.08.008_bib4) 2013; 110
Juillerat (10.1016/j.omtn.2021.08.008_bib17) 2014; 42
Fine (10.1016/j.omtn.2021.08.008_bib28) 2014; 42
Tsai (10.1016/j.omtn.2021.08.008_bib27) 2015; 33
Lin (10.1016/j.omtn.2021.08.008_bib34) 2018; 34
References_xml – volume: 42
  start-page: 5390
  year: 2014
  end-page: 5402
  ident: bib17
  article-title: Comprehensive analysis of the specificity of transcription activator-like effector nucleases
  publication-title: Nucleic Acids Res.
– volume: 111
  start-page: 13157
  year: 2014
  end-page: 13162
  ident: bib6
  article-title: RNA-guided endonuclease provides a therapeutic strategy to cure latent herpesviridae infection
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 34
  start-page: 483
  year: 2016
  ident: bib41
  article-title: Open-source
  publication-title: Nat. Biotechnol.
– volume: 5
  start-page: 814
  year: 2016
  ident: bib21
  article-title: Comparison of CRISPR/Cas9 and TALENs on editing an integrated EGFP gene in the genome of HEK293FT cells
  publication-title: Springerplus
– volume: 60
  start-page: 385
  year: 2015
  end-page: 397
  ident: bib12
  article-title: Discovery and functional characterization of diverse class 2 CRISPR-Cas systems
  publication-title: Mol. Cell
– volume: 110
  start-page: 17492
  year: 2013
  end-page: 17497
  ident: bib4
  article-title: TALEN-engineered AR gene rearrangements reveal endocrine uncoupling of androgen receptor in prostate cancer
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 7
  start-page: e45383
  year: 2012
  ident: bib38
  article-title: Targeting G with TAL effectors: A comparison of activities of TALENs constructed with NN and NK repeat variable di-residues
  publication-title: PLoS ONE
– volume: 30
  start-page: 2670
  year: 2014
  end-page: 2672
  ident: bib44
  article-title: MIPgen: Optimized modeling and design of molecular inversion probes for targeted resequencing
  publication-title: Bioinformatics
– volume: 11
  start-page: 5512
  year: 2020
  ident: bib11
  article-title: A catalogue of biochemically diverse CRISPR-Cas9 orthologs
  publication-title: Nat. Commun.
– volume: 29
  start-page: 816
  year: 2011
  end-page: 823
  ident: bib13
  article-title: An unbiased genome-wide analysis of zinc-finger nuclease specificity
  publication-title: Nat. Biotechnol.
– volume: 125
  start-page: 425
  year: 2015
  end-page: 436
  ident: bib7
  article-title: TALEN-mediated targeting of HPV oncogenes ameliorates HPV-related cervical malignancy
  publication-title: J. Clin. Invest.
– volume: 26
  start-page: 808
  year: 2008
  end-page: 816
  ident: bib5
  article-title: Establishment of HIV-1 resistance in CD4
  publication-title: Nat. Biotechnol.
– volume: 132
  start-page: 1
  year: 2019
  end-page: 11
  ident: bib22
  article-title: Comparison of gene editing efficiencies of CRISPR/Cas9 and TALEN for generation of MSTN knock-out cashmere goats
  publication-title: Theriogenology
– volume: 14
  start-page: 858
  year: 2018
  end-page: 862
  ident: bib48
  article-title: CRISPRMatch: An automatic calculation and visualization tool for high-throughput CRISPR genome-editing data analysis
  publication-title: Int. J. Biol. Sci.
– volume: 34
  start-page: i656
  year: 2018
  end-page: i663
  ident: bib34
  article-title: Off-target predictions in CRISPR-Cas9 gene editing using deep learning
  publication-title: Bioinformatics
– volume: 31
  start-page: 4014
  year: 2015
  end-page: 4016
  ident: bib36
  article-title: Cas-Designer: A web-based tool for choice of CRISPR-Cas9 target sites
  publication-title: Bioinformatics
– volume: 321
  start-page: 654
  year: 2020
  end-page: 668
  ident: bib25
  article-title: Hyperbranched poly(β-amino ester) based polyplex nanopaticles for delivery of CRISPR/Cas9 system and treatment of HPV infection associated cervical cancer
  publication-title: J. Control. Release
– volume: 18
  start-page: 807
  year: 2012
  end-page: 815
  ident: bib3
  article-title: Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer
  publication-title: Nat. Med.
– volume: 11
  start-page: 429
  year: 2014
  end-page: 435
  ident: bib16
  article-title: Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity
  publication-title: Nat. Methods
– volume: 41
  start-page: 167
  year: 2018
  end-page: 179
  ident: bib20
  article-title: Comparison of the editing patterns and editing efficiencies of TALEN and CRISPR-Cas9 when targeting the human CCR5 gene
  publication-title: Genet. Mol. Biol.
– volume: 178
  start-page: 104794
  year: 2020
  ident: bib40
  article-title: In vitro and in vivo growth inhibition of human cervical cancer cells via human papillomavirus E6/E7 mRNAs’ cleavage by CRISPR/Cas13a system
  publication-title: Antiviral Res.
– volume: 124
  start-page: 4154
  year: 2014
  end-page: 4161
  ident: bib1
  article-title: Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9
  publication-title: J. Clin. Invest.
– volume: 126
  start-page: 2046
  year: 2015
  ident: bib10
  article-title: First clinical application of TALEN engineered universal CAR19 T cells in B-ALL
  publication-title: Blood
– volume: 539
  start-page: 384
  year: 2016
  end-page: 389
  ident: bib8
  article-title: CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells
  publication-title: Nature
– volume: 38
  year: 2010
  ident: bib32
  article-title: ZiFiT (Zinc Finger Targeter): An updated zinc finger engineering tool
  publication-title: Nucleic Acids Res.
– volume: 58
  start-page: 102897
  year: 2020
  ident: bib26
  article-title: An effective vaginal gel to deliver CRISPR/Cas9 system encapsulated in poly (β-amino ester) nanoparticles for vaginal gene therapy
  publication-title: EBioMedicine
– volume: 31
  start-page: 839
  year: 2013
  end-page: 843
  ident: bib18
  article-title: High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity
  publication-title: Nat. Biotechnol.
– volume: 41
  start-page: 9779
  year: 2013
  end-page: 9785
  ident: bib29
  article-title: Directed evolution of the TALE N-terminal domain for recognition of all 5′ bases
  publication-title: Nucleic Acids Res.
– volume: 27
  start-page: 2957
  year: 2011
  end-page: 2963
  ident: bib46
  article-title: FLASH: Fast length adjustment of short reads to improve genome assemblies
  publication-title: Bioinformatics
– volume: 34
  start-page: 184
  year: 2016
  end-page: 191
  ident: bib33
  article-title: Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9
  publication-title: Nat. Biotechnol.
– volume: 25
  start-page: 1754
  year: 2009
  end-page: 1760
  ident: bib47
  article-title: Fast and accurate short read alignment with Burrows-Wheeler transform
  publication-title: Bioinformatics
– volume: 6
  start-page: 781
  year: 2007
  end-page: 788
  ident: bib42
  article-title: Non-homologous end-joining for repairing I-SceI-induced DNA double strand breaks in human cells
  publication-title: DNA Repair (Amst.)
– volume: 370
  start-page: 901
  year: 2014
  end-page: 910
  ident: bib9
  article-title: Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV
  publication-title: N. Engl. J. Med.
– volume: 24
  start-page: 570
  year: 2016
  end-page: 581
  ident: bib19
  article-title: Evaluation of TCR gene editing achieved by TALENs, CRISPR/Cas9, and megaTAL nucleases
  publication-title: Mol. Ther.
– volume: 15
  start-page: 12
  year: 2014
  end-page: 13
  ident: bib23
  article-title: Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs
  publication-title: Cell Stem Cell
– volume: 20
  start-page: 6495
  year: 2014
  end-page: 6503
  ident: bib24
  article-title: Zinc finger nucleases targeting the human papillomavirus E7 oncogene induce E7 disruption and a transformed phenotype in HPV16/18-positive cervical cancer cells
  publication-title: Clin. Cancer Res.
– volume: 40
  start-page: W117
  year: 2012
  end-page: W122
  ident: bib31
  article-title: TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction
  publication-title: Nucleic Acids Res.
– volume: 75
  start-page: 1675
  year: 2018
  end-page: 1683
  ident: bib35
  article-title: CRISPR-Cas system: History and prospects as a genome editing tool in microorganisms
  publication-title: Curr. Microbiol.
– volume: 46
  start-page: 3678
  year: 2008
  end-page: 3685
  ident: bib39
  article-title: Analysis of human papillomavirus type 16 (HPV16) DNA load and physical state for identification of HPV16-infected women with high-grade lesions or cervical carcinoma
  publication-title: J. Clin. Microbiol.
– volume: 3
  start-page: 968
  year: 2012
  ident: bib30
  article-title: Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains
  publication-title: Nat. Commun.
– volume: 8
  start-page: 765
  year: 2011
  end-page: 770
  ident: bib14
  article-title: Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection
  publication-title: Nat. Methods
– volume: 42
  start-page: e42
  year: 2014
  ident: bib28
  article-title: An online bioinformatics tool predicts zinc finger and TALE nuclease off-target cleavage
  publication-title: Nucleic Acids Res.
– volume: 41
  start-page: D415
  year: 2013
  end-page: D422
  ident: bib43
  article-title: EENdb: A database and knowledge base of ZFNs and TALENs for endonuclease engineering
  publication-title: Nucleic Acids Res.
– volume: 39
  start-page: 9283
  year: 2011
  end-page: 9293
  ident: bib37
  article-title: A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity
  publication-title: Nucleic Acids Res.
– volume: 33
  start-page: 187
  year: 2015
  end-page: 197
  ident: bib27
  article-title: GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases
  publication-title: Nat. Biotechnol.
– volume: 55
  start-page: 106
  year: 2019
  end-page: 119
  ident: bib2
  article-title: CRISPR/Cas9 for cancer research and therapy
  publication-title: Semin. Cancer Biol.
– volume: 41
  start-page: e181
  year: 2013
  ident: bib15
  article-title: In silico abstraction of zinc finger nuclease cleavage profiles reveals an expanded landscape of off-target sites
  publication-title: Nucleic Acids Res.
– volume: 34
  start-page: i884
  year: 2018
  end-page: i890
  ident: bib45
  article-title: fastp: An ultra-fast all-in-one FASTQ preprocessor
  publication-title: Bioinformatics
– volume: 11
  start-page: 5512
  year: 2020
  ident: 10.1016/j.omtn.2021.08.008_bib11
  article-title: A catalogue of biochemically diverse CRISPR-Cas9 orthologs
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19344-1
– volume: 34
  start-page: i656
  year: 2018
  ident: 10.1016/j.omtn.2021.08.008_bib34
  article-title: Off-target predictions in CRISPR-Cas9 gene editing using deep learning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty554
– volume: 26
  start-page: 808
  year: 2008
  ident: 10.1016/j.omtn.2021.08.008_bib5
  article-title: Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1410
– volume: 41
  start-page: e181
  year: 2013
  ident: 10.1016/j.omtn.2021.08.008_bib15
  article-title: In silico abstraction of zinc finger nuclease cleavage profiles reveals an expanded landscape of off-target sites
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt716
– volume: 34
  start-page: 184
  year: 2016
  ident: 10.1016/j.omtn.2021.08.008_bib33
  article-title: Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3437
– volume: 41
  start-page: D415
  year: 2013
  ident: 10.1016/j.omtn.2021.08.008_bib43
  article-title: EENdb: A database and knowledge base of ZFNs and TALENs for endonuclease engineering
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1144
– volume: 27
  start-page: 2957
  year: 2011
  ident: 10.1016/j.omtn.2021.08.008_bib46
  article-title: FLASH: Fast length adjustment of short reads to improve genome assemblies
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr507
– volume: 75
  start-page: 1675
  year: 2018
  ident: 10.1016/j.omtn.2021.08.008_bib35
  article-title: CRISPR-Cas system: History and prospects as a genome editing tool in microorganisms
  publication-title: Curr. Microbiol.
  doi: 10.1007/s00284-018-1547-4
– volume: 3
  start-page: 968
  year: 2012
  ident: 10.1016/j.omtn.2021.08.008_bib30
  article-title: Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1962
– volume: 39
  start-page: 9283
  year: 2011
  ident: 10.1016/j.omtn.2021.08.008_bib37
  article-title: A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr597
– volume: 30
  start-page: 2670
  year: 2014
  ident: 10.1016/j.omtn.2021.08.008_bib44
  article-title: MIPgen: Optimized modeling and design of molecular inversion probes for targeted resequencing
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu353
– volume: 124
  start-page: 4154
  year: 2014
  ident: 10.1016/j.omtn.2021.08.008_bib1
  article-title: Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI72992
– volume: 38
  year: 2010
  ident: 10.1016/j.omtn.2021.08.008_bib32
  article-title: ZiFiT (Zinc Finger Targeter): An updated zinc finger engineering tool
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq319
– volume: 178
  start-page: 104794
  year: 2020
  ident: 10.1016/j.omtn.2021.08.008_bib40
  article-title: In vitro and in vivo growth inhibition of human cervical cancer cells via human papillomavirus E6/E7 mRNAs’ cleavage by CRISPR/Cas13a system
  publication-title: Antiviral Res.
  doi: 10.1016/j.antiviral.2020.104794
– volume: 42
  start-page: 5390
  year: 2014
  ident: 10.1016/j.omtn.2021.08.008_bib17
  article-title: Comprehensive analysis of the specificity of transcription activator-like effector nucleases
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku155
– volume: 20
  start-page: 6495
  year: 2014
  ident: 10.1016/j.omtn.2021.08.008_bib24
  article-title: Zinc finger nucleases targeting the human papillomavirus E7 oncogene induce E7 disruption and a transformed phenotype in HPV16/18-positive cervical cancer cells
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-14-0250
– volume: 125
  start-page: 425
  year: 2015
  ident: 10.1016/j.omtn.2021.08.008_bib7
  article-title: TALEN-mediated targeting of HPV oncogenes ameliorates HPV-related cervical malignancy
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI78206
– volume: 370
  start-page: 901
  year: 2014
  ident: 10.1016/j.omtn.2021.08.008_bib9
  article-title: Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1300662
– volume: 132
  start-page: 1
  year: 2019
  ident: 10.1016/j.omtn.2021.08.008_bib22
  article-title: Comparison of gene editing efficiencies of CRISPR/Cas9 and TALEN for generation of MSTN knock-out cashmere goats
  publication-title: Theriogenology
  doi: 10.1016/j.theriogenology.2019.03.029
– volume: 111
  start-page: 13157
  year: 2014
  ident: 10.1016/j.omtn.2021.08.008_bib6
  article-title: RNA-guided endonuclease provides a therapeutic strategy to cure latent herpesviridae infection
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1410785111
– volume: 5
  start-page: 814
  year: 2016
  ident: 10.1016/j.omtn.2021.08.008_bib21
  article-title: Comparison of CRISPR/Cas9 and TALENs on editing an integrated EGFP gene in the genome of HEK293FT cells
  publication-title: Springerplus
  doi: 10.1186/s40064-016-2536-3
– volume: 539
  start-page: 384
  year: 2016
  ident: 10.1016/j.omtn.2021.08.008_bib8
  article-title: CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells
  publication-title: Nature
  doi: 10.1038/nature20134
– volume: 34
  start-page: 483
  year: 2016
  ident: 10.1016/j.omtn.2021.08.008_bib41
  article-title: Open-source guideseq software for analysis of GUIDE-seq data
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3534
– volume: 126
  start-page: 2046
  year: 2015
  ident: 10.1016/j.omtn.2021.08.008_bib10
  article-title: First clinical application of TALEN engineered universal CAR19 T cells in B-ALL
  publication-title: Blood
  doi: 10.1182/blood.V126.23.2046.2046
– volume: 8
  start-page: 765
  year: 2011
  ident: 10.1016/j.omtn.2021.08.008_bib14
  article-title: Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1670
– volume: 110
  start-page: 17492
  year: 2013
  ident: 10.1016/j.omtn.2021.08.008_bib4
  article-title: TALEN-engineered AR gene rearrangements reveal endocrine uncoupling of androgen receptor in prostate cancer
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1308587110
– volume: 31
  start-page: 839
  year: 2013
  ident: 10.1016/j.omtn.2021.08.008_bib18
  article-title: High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2673
– volume: 40
  start-page: W117
  year: 2012
  ident: 10.1016/j.omtn.2021.08.008_bib31
  article-title: TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks608
– volume: 33
  start-page: 187
  year: 2015
  ident: 10.1016/j.omtn.2021.08.008_bib27
  article-title: GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3117
– volume: 55
  start-page: 106
  year: 2019
  ident: 10.1016/j.omtn.2021.08.008_bib2
  article-title: CRISPR/Cas9 for cancer research and therapy
  publication-title: Semin. Cancer Biol.
  doi: 10.1016/j.semcancer.2018.04.001
– volume: 60
  start-page: 385
  year: 2015
  ident: 10.1016/j.omtn.2021.08.008_bib12
  article-title: Discovery and functional characterization of diverse class 2 CRISPR-Cas systems
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.10.008
– volume: 31
  start-page: 4014
  year: 2015
  ident: 10.1016/j.omtn.2021.08.008_bib36
  article-title: Cas-Designer: A web-based tool for choice of CRISPR-Cas9 target sites
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv537
– volume: 11
  start-page: 429
  year: 2014
  ident: 10.1016/j.omtn.2021.08.008_bib16
  article-title: Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2845
– volume: 58
  start-page: 102897
  year: 2020
  ident: 10.1016/j.omtn.2021.08.008_bib26
  article-title: An effective vaginal gel to deliver CRISPR/Cas9 system encapsulated in poly (β-amino ester) nanoparticles for vaginal gene therapy
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2020.102897
– volume: 321
  start-page: 654
  year: 2020
  ident: 10.1016/j.omtn.2021.08.008_bib25
  article-title: Hyperbranched poly(β-amino ester) based polyplex nanopaticles for delivery of CRISPR/Cas9 system and treatment of HPV infection associated cervical cancer
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2020.02.045
– volume: 42
  start-page: e42
  year: 2014
  ident: 10.1016/j.omtn.2021.08.008_bib28
  article-title: An online bioinformatics tool predicts zinc finger and TALE nuclease off-target cleavage
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1326
– volume: 6
  start-page: 781
  year: 2007
  ident: 10.1016/j.omtn.2021.08.008_bib42
  article-title: Non-homologous end-joining for repairing I-SceI-induced DNA double strand breaks in human cells
  publication-title: DNA Repair (Amst.)
  doi: 10.1016/j.dnarep.2007.01.004
– volume: 29
  start-page: 816
  year: 2011
  ident: 10.1016/j.omtn.2021.08.008_bib13
  article-title: An unbiased genome-wide analysis of zinc-finger nuclease specificity
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1948
– volume: 25
  start-page: 1754
  year: 2009
  ident: 10.1016/j.omtn.2021.08.008_bib47
  article-title: Fast and accurate short read alignment with Burrows-Wheeler transform
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp324
– volume: 18
  start-page: 807
  year: 2012
  ident: 10.1016/j.omtn.2021.08.008_bib3
  article-title: Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer
  publication-title: Nat. Med.
  doi: 10.1038/nm.2700
– volume: 41
  start-page: 9779
  year: 2013
  ident: 10.1016/j.omtn.2021.08.008_bib29
  article-title: Directed evolution of the TALE N-terminal domain for recognition of all 5′ bases
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt754
– volume: 41
  start-page: 167
  year: 2018
  ident: 10.1016/j.omtn.2021.08.008_bib20
  article-title: Comparison of the editing patterns and editing efficiencies of TALEN and CRISPR-Cas9 when targeting the human CCR5 gene
  publication-title: Genet. Mol. Biol.
  doi: 10.1590/1678-4685-gmb-2017-0065
– volume: 24
  start-page: 570
  year: 2016
  ident: 10.1016/j.omtn.2021.08.008_bib19
  article-title: Evaluation of TCR gene editing achieved by TALENs, CRISPR/Cas9, and megaTAL nucleases
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2015.197
– volume: 15
  start-page: 12
  year: 2014
  ident: 10.1016/j.omtn.2021.08.008_bib23
  article-title: Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.06.011
– volume: 34
  start-page: i884
  year: 2018
  ident: 10.1016/j.omtn.2021.08.008_bib45
  article-title: fastp: An ultra-fast all-in-one FASTQ preprocessor
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty560
– volume: 7
  start-page: e45383
  year: 2012
  ident: 10.1016/j.omtn.2021.08.008_bib38
  article-title: Targeting G with TAL effectors: A comparison of activities of TALENs constructed with NN and NK repeat variable di-residues
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0045383
– volume: 46
  start-page: 3678
  year: 2008
  ident: 10.1016/j.omtn.2021.08.008_bib39
  article-title: Analysis of human papillomavirus type 16 (HPV16) DNA load and physical state for identification of HPV16-infected women with high-grade lesions or cervical carcinoma
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.01212-08
– volume: 14
  start-page: 858
  year: 2018
  ident: 10.1016/j.omtn.2021.08.008_bib48
  article-title: CRISPRMatch: An automatic calculation and visualization tool for high-throughput CRISPR genome-editing data analysis
  publication-title: Int. J. Biol. Sci.
  doi: 10.7150/ijbs.24581
SSID ssj0000601262
Score 2.417933
Snippet Zinc-finger nucleases (ZFNs), transcription activator-like endonucleases (TALENs), and CRISPR-associated Cas9 endonucleases are three major generations of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1466
SubjectTerms CRISPR
GUIDE-seq
HPV gene therapy
Original
TALEN
ZFN
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NTxsxELUqTr1UQFq6lFauVPVCre7a3q9jmiZNq4IqkSDExfKnCGo2QMIh_75jexMlVIILp0ib3WS98-x5k4zfQ-hTmRdG57wkOStTAgw8JYoqSzjjUGAUzsnQPH5yWgzH_NdFfrFh9eV7wqI8cHxwX6nLMmcN1AVOcW1MldcGKLascyjbXfAXppDzNoqpuAbDwhvcRGlWUEIBae2OmdjcNZsuvPgpjfqd3ltyIysF8f6t5PQ_-XzYQ7mRlAa76FXLJnE3jmIPvbDNPup0G6ikp0v8GYf-zvDDeQeNABFYr20H8czhy8Hp_AsedX_3_atsDD676cl5jdUS_xj__N4nc3uLJw0e_jknsWfcGgyQszju21q-RuNBf9QbktZTgWhvXUC4YV5_xzFmuKVGG64zZrXMCpPS2rFUFsowWD3LEqarK52rnHR5Sb0MO1c1e4N2mllj3yKcVVJWtIYEpzm3PIUYQ_XFFTBgRa3lCcpWz1ToVnDc-178FavOsmvh4yB8HIQ3w0yrBB2vr7mJchuPnv3Nh2p9ppfKDgcAQKIFkHgKQAnKV4EWLeuIbAI-avLol39coULAlPT_s8jGzu7nAopSRoF2FlmCDiJK1rfIeM0qAGeCyi38bI1h-51mchVkv_0WYmCzh88x6HfopR9K6MthR2hncXdv3wO7WqgPYSL9A5OeHXM
  priority: 102
  providerName: Directory of Open Access Journals
Title The comparison of ZFNs, TALENs, and SpCas9 by GUIDE-seq in HPV-targeted gene therapy
URI https://dx.doi.org/10.1016/j.omtn.2021.08.008
https://www.ncbi.nlm.nih.gov/pubmed/34938601
https://www.proquest.com/docview/2613292961
https://pubmed.ncbi.nlm.nih.gov/PMC8655392
https://doaj.org/article/2f11fed289fb4cdd859d753a95202f12
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1db9MwFLWmIaG9oI3xkTEmIyFewCixnTh5QFMZLQWxCYkWTbxYdmxD0ZZsTSet_55rJykUxp4qtambxuf6nptcn4PQc5Fmpky5ICkTMQEGHhNNtSWccSgwMudUaB4_PsnGU_7xND3dQL3dUXcBmxtLO-8nNZ2fvb6-XB5CwL_53atVny-8lilt5Tj93t87kJmED9Tjju63KzMsx8FjlCYZJRTw1-2juXmYLXSX8YLlWWcZ06etoO6_lr3-Zad_N1n-kbVG2-heRzfxoMXHDtqw1X20O6ig1D5f4hc4NICGO-u7aAKQweXKlxDXDn8bnTSv8GTwaehfVWXwl4sj1RRYL_H76Yd3Q9LYSzyr8PjzV9I2lVuDAZMWtxu7lg_QdDScHI1JZ7pASu9tQLhhXqDHMWa4paY0vEyYLVWSmZgWjsUq04bB8ioExLMTzuVOuVRQr9POdcEeos2qruxjhJNcqZwWkAFLzi2PAQRQnnENFFlTa3mEkv6ayrJTJPfGGGeybz37Kf2USD8l0rtlxnmEXq6-c9Hqcdx69Fs_VasjvZZ2eKOef5ddaErqksRZA5Wn07w0Jk8LA0WcKlIYySU0Qmk_0bKjJS3dgKFmt_74sx4VEmLWP4hRla2vGglVK6PAS7MkQo9alKxOsQdchMQaftb-w_on1exH0AX3e4yB7u79d8wnaMufX-jGYftoczG_sk-BUy30QbgXcRDC5Rf_MRmb
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+comparison+of+ZFNs%2C+TALENs%2C+and+SpCas9+by+GUIDE-seq+in+HPV-targeted+gene+therapy&rft.jtitle=Molecular+therapy.+Nucleic+acids&rft.au=Cui%2C+Zifeng&rft.au=Liu%2C+Hui&rft.au=Zhang%2C+Hongfeng&rft.au=Huang%2C+Zhaoyue&rft.date=2021-12-03&rft.issn=2162-2531&rft.eissn=2162-2531&rft.volume=26&rft.spage=1466&rft_id=info:doi/10.1016%2Fj.omtn.2021.08.008&rft_id=info%3Apmid%2F34938601&rft.externalDocID=34938601
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-2531&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-2531&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-2531&client=summon