Seawater-Mediated Solar-to-Sodium Conversion by Bismuth Vanadate Photoanode- Photovoltaic Tandem Cell: Solar Rechargeable Seawater Battery
Conversion of sunlight to chemical energy based on photoelectrochemical (PEC) processes has been considered as a promising strategy for solar energy harvesting. Here, we propose a novel platform that converts solar energy into sodium (Na) as a solid-state solar fuel via the PEC oxidation of natural...
Saved in:
Published in | iScience Vol. 19; pp. 232 - 243 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
27.09.2019
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Conversion of sunlight to chemical energy based on photoelectrochemical (PEC) processes has been considered as a promising strategy for solar energy harvesting. Here, we propose a novel platform that converts solar energy into sodium (Na) as a solid-state solar fuel via the PEC oxidation of natural seawater, for which a Na ion-selective ceramic membrane is employed together with photoelectrode (PE)-photovoltaic (PV) tandem cell. Using an elaborately modified bismuth vanadate-based PE in tandem with crystalline silicon PV, we demonstrate unassisted solar-to-Na conversion (equivalent to solar charge of seawater battery) with an unprecedentedly high efficiency of 8% (expected operating point under 1 sun) and measured operation efficiency of 5.7% (0.2 sun) and long-term stability, suggesting a new benchmark for low-cost, efficient, and scalable solid solar fuel production. The sodium turns easily into electricity on demand making the device a nature-friendly, monolithic solar rechargeable seawater battery.
[Display omitted]
•Solar rechargeable battery using natural seawater as a medium was realized•Solar charge was achieved by metal oxide-based photoelectrodes, especially BiVO4•BiVO4-c-Si tandem cell achieved unbiased charge with a high efficiency up to 8%
Electrochemical Energy Conversion; Energy Storage; Materials Characterization |
---|---|
AbstractList | Conversion of sunlight to chemical energy based on photoelectrochemical (PEC) processes has been considered as a promising strategy for solar energy harvesting. Here, we propose a novel platform that converts solar energy into sodium (Na) as a solid-state solar fuel via the PEC oxidation of natural seawater, for which a Na ion-selective ceramic membrane is employed together with photoelectrode (PE)-photovoltaic (PV) tandem cell. Using an elaborately modified bismuth vanadate-based PE in tandem with crystalline silicon PV, we demonstrate unassisted solar-to-Na conversion (equivalent to solar charge of seawater battery) with an unprecedentedly high efficiency of 8% (expected operating point under 1 sun) and measured operation efficiency of 5.7% (0.2 sun) and long-term stability, suggesting a new benchmark for low-cost, efficient, and scalable solid solar fuel production. The sodium turns easily into electricity on demand making the device a nature-friendly, monolithic solar rechargeable seawater battery.Conversion of sunlight to chemical energy based on photoelectrochemical (PEC) processes has been considered as a promising strategy for solar energy harvesting. Here, we propose a novel platform that converts solar energy into sodium (Na) as a solid-state solar fuel via the PEC oxidation of natural seawater, for which a Na ion-selective ceramic membrane is employed together with photoelectrode (PE)-photovoltaic (PV) tandem cell. Using an elaborately modified bismuth vanadate-based PE in tandem with crystalline silicon PV, we demonstrate unassisted solar-to-Na conversion (equivalent to solar charge of seawater battery) with an unprecedentedly high efficiency of 8% (expected operating point under 1 sun) and measured operation efficiency of 5.7% (0.2 sun) and long-term stability, suggesting a new benchmark for low-cost, efficient, and scalable solid solar fuel production. The sodium turns easily into electricity on demand making the device a nature-friendly, monolithic solar rechargeable seawater battery. Conversion of sunlight to chemical energy based on photoelectrochemical (PEC) processes has been considered as a promising strategy for solar energy harvesting. Here, we propose a novel platform that converts solar energy into sodium (Na) as a solid-state solar fuel via the PEC oxidation of natural seawater, for which a Na ion-selective ceramic membrane is employed together with photoelectrode (PE)-photovoltaic (PV) tandem cell. Using an elaborately modified bismuth vanadate-based PE in tandem with crystalline silicon PV, we demonstrate unassisted solar-to-Na conversion (equivalent to solar charge of seawater battery) with an unprecedentedly high efficiency of 8% (expected operating point under 1 sun) and measured operation efficiency of 5.7% (0.2 sun) and long-term stability, suggesting a new benchmark for low-cost, efficient, and scalable solid solar fuel production. The sodium turns easily into electricity on demand making the device a nature-friendly, monolithic solar rechargeable seawater battery. • Solar rechargeable battery using natural seawater as a medium was realized • Solar charge was achieved by metal oxide-based photoelectrodes, especially BiVO 4 • BiVO 4 -c-Si tandem cell achieved unbiased charge with a high efficiency up to 8% Electrochemical Energy Conversion; Energy Storage; Materials Characterization Conversion of sunlight to chemical energy based on photoelectrochemical (PEC) processes has been considered as a promising strategy for solar energy harvesting. Here, we propose a novel platform that converts solar energy into sodium (Na) as a solid-state solar fuel via the PEC oxidation of natural seawater, for which a Na ion-selective ceramic membrane is employed together with photoelectrode (PE)-photovoltaic (PV) tandem cell. Using an elaborately modified bismuth vanadate-based PE in tandem with crystalline silicon PV, we demonstrate unassisted solar-to-Na conversion (equivalent to solar charge of seawater battery) with an unprecedentedly high efficiency of 8% (expected operating point under 1 sun) and measured operation efficiency of 5.7% (0.2 sun) and long-term stability, suggesting a new benchmark for low-cost, efficient, and scalable solid solar fuel production. The sodium turns easily into electricity on demand making the device a nature-friendly, monolithic solar rechargeable seawater battery. : Electrochemical Energy Conversion; Energy Storage; Materials Characterization Subject Areas: Electrochemical Energy Conversion, Energy Storage, Materials Characterization Conversion of sunlight to chemical energy based on photoelectrochemical (PEC) processes has been considered as a promising strategy for solar energy harvesting. Here, we propose a novel platform that converts solar energy into sodium (Na) as a solid-state solar fuel via the PEC oxidation of natural seawater, for which a Na ion-selective ceramic membrane is employed together with photoelectrode (PE)-photovoltaic (PV) tandem cell. Using an elaborately modified bismuth vanadate-based PE in tandem with crystalline silicon PV, we demonstrate unassisted solar-to-Na conversion (equivalent to solar charge of seawater battery) with an unprecedentedly high efficiency of 8% (expected operating point under 1 sun) and measured operation efficiency of 5.7% (0.2 sun) and long-term stability, suggesting a new benchmark for low-cost, efficient, and scalable solid solar fuel production. The sodium turns easily into electricity on demand making the device a nature-friendly, monolithic solar rechargeable seawater battery. [Display omitted] •Solar rechargeable battery using natural seawater as a medium was realized•Solar charge was achieved by metal oxide-based photoelectrodes, especially BiVO4•BiVO4-c-Si tandem cell achieved unbiased charge with a high efficiency up to 8% Electrochemical Energy Conversion; Energy Storage; Materials Characterization Conversion of sunlight to chemical energy based on photoelectrochemical (PEC) processes has been considered as a promising strategy for solar energy harvesting. Here, we propose a novel platform that converts solar energy into sodium (Na) as a solid-state solar fuel via the PEC oxidation of natural seawater, for which a Na ion-selective ceramic membrane is employed together with photoelectrode (PE)-photovoltaic (PV) tandem cell. Using an elaborately modified bismuth vanadate-based PE in tandem with crystalline silicon PV, we demonstrate unassisted solar-to-Na conversion (equivalent to solar charge of seawater battery) with an unprecedentedly high efficiency of 8% (expected operating point under 1 sun) and measured operation efficiency of 5.7% (0.2 sun) and long-term stability, suggesting a new benchmark for low-cost, efficient, and scalable solid solar fuel production. The sodium turns easily into electricity on demand making the device a nature-friendly, monolithic solar rechargeable seawater battery. |
Author | Hwang, Inchan Kim, Jeong Hun Kim, Jin Hyun Lee, Jae Sung Hwang, Soo Min Jo, Yim Hyun Seo, Kwanyong Han, Jinhyup Kim, Youngsik |
AuthorAffiliation | 1 Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science & Technology (UNIST), Ulsan 44919, Republic of Korea 2 Advanced Center for Energy, Korea Institute of Energy Research (KIER), Ulsan 44919, Republic of Korea 3 Energy Materials and Devices Lab, 4TOONE Corporation, 50 UNIST-gil, Ulsan 44919, Republic of Korea |
AuthorAffiliation_xml | – name: 1 Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science & Technology (UNIST), Ulsan 44919, Republic of Korea – name: 2 Advanced Center for Energy, Korea Institute of Energy Research (KIER), Ulsan 44919, Republic of Korea – name: 3 Energy Materials and Devices Lab, 4TOONE Corporation, 50 UNIST-gil, Ulsan 44919, Republic of Korea |
Author_xml | – sequence: 1 givenname: Jin Hyun surname: Kim fullname: Kim, Jin Hyun email: kihi6783@unist.ac.kr organization: Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science & Technology (UNIST), Ulsan 44919, Republic of Korea – sequence: 2 givenname: Soo Min surname: Hwang fullname: Hwang, Soo Min organization: Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science & Technology (UNIST), Ulsan 44919, Republic of Korea – sequence: 3 givenname: Inchan surname: Hwang fullname: Hwang, Inchan organization: Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science & Technology (UNIST), Ulsan 44919, Republic of Korea – sequence: 4 givenname: Jinhyup surname: Han fullname: Han, Jinhyup organization: Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science & Technology (UNIST), Ulsan 44919, Republic of Korea – sequence: 5 givenname: Jeong Hun surname: Kim fullname: Kim, Jeong Hun organization: Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science & Technology (UNIST), Ulsan 44919, Republic of Korea – sequence: 6 givenname: Yim Hyun surname: Jo fullname: Jo, Yim Hyun organization: Advanced Center for Energy, Korea Institute of Energy Research (KIER), Ulsan 44919, Republic of Korea – sequence: 7 givenname: Kwanyong surname: Seo fullname: Seo, Kwanyong organization: Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science & Technology (UNIST), Ulsan 44919, Republic of Korea – sequence: 8 givenname: Youngsik surname: Kim fullname: Kim, Youngsik email: ykim@unist.ac.kr organization: Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science & Technology (UNIST), Ulsan 44919, Republic of Korea – sequence: 9 givenname: Jae Sung orcidid: 0000-0001-6432-9073 surname: Lee fullname: Lee, Jae Sung email: jlee1234@unist.ac.kr organization: Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science & Technology (UNIST), Ulsan 44919, Republic of Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31382186$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uttu1DAQjVARLaU_wAPKIy9ZfIsTI4REV1wqFYHYwqs1sSddr7J2cbyL9hf4aryki1oeao00I885Z6SZ87Q48sFjUTynZEYJla9WMzcaN2OEqhlpZoSJR8UJq1tVESLY0Z36uDgbxxUhhOUQSj4pjjnlLaOtPCl-LxB-QcJYfUbrcmHLRRggVilUi2DdZl3Og99iHF3wZbcrz9243qRl-QM82Iwvvy5DCuCDxWqqt2FI4Ex5Bd5ipuMwvJ5Ey29olhCvEboBy8Pk8hxSTrtnxeMehhHPbvNp8f3D-6v5p-ryy8eL-bvLytSMpkoYZfuaU2oanqMFBswIIrkB2pAOrULTWa6Iklh3NVcCRd_2opYUsG0YPy0uJl0bYKVvoltD3OkATv_9CPFaQ0zODKglEg496bkwIj_a2Y5QtKam0ChOm6z1dtK62XTr3ECfIgz3RO93vFvq67DVUqqWtTILvLwViOHnBsek1_mueWXgMWxGzZhslRCcqAx9cXfWvyGHY2ZAOwFMDOMYsdfGJUj5cHm0GzQlem8dvdJ76-i9dTRpdDZFprL_qAf1B0lvJhLma20dRp0R6E02UkST8jrdQ_Q_rUnfKw |
CitedBy_id | crossref_primary_10_1007_s41061_022_00380_y crossref_primary_10_1051_e3sconf_202451601003 crossref_primary_10_1039_C9TA10857B crossref_primary_10_1098_rsos_221563 crossref_primary_10_1002_slct_202303733 crossref_primary_10_1016_j_nanoen_2020_104907 crossref_primary_10_1016_j_xcrp_2021_100676 crossref_primary_10_1002_adfm_202312729 crossref_primary_10_1039_D1EE00271F crossref_primary_10_1007_s12209_023_00374_x crossref_primary_10_1016_j_ijhydene_2022_09_146 crossref_primary_10_1002_adfm_202003653 crossref_primary_10_1002_smll_202107913 crossref_primary_10_1039_D0TA01554G crossref_primary_10_1016_j_chempr_2024_12_006 crossref_primary_10_1038_s41467_024_47389_z crossref_primary_10_1039_D1TA10066A crossref_primary_10_1016_j_apcatb_2021_120883 crossref_primary_10_1109_ACCESS_2021_3098846 crossref_primary_10_1016_j_est_2023_109659 |
Cites_doi | 10.1038/s41929-018-0077-6 10.1002/cssc.201301030 10.1021/acs.accounts.6b00615 10.1038/s41570-016-0003 10.1039/C8CS00699G 10.1021/nn506651m 10.1038/ncomms9103 10.1039/c1ee01812d 10.1002/adfm.201600711 10.1021/acsenergylett.6b00359 10.1038/am.2014.106 10.1039/C4EE04041D 10.1002/adma.201700312 10.1073/pnas.1423034112 10.1016/j.electacta.2016.01.054 10.1002/cssc.201701266 10.1021/cr100290v 10.1038/ncomms6111 10.1002/aenm.201600632 10.1039/C6TA03583C 10.1016/j.nanoen.2016.02.029 10.1039/C6RA18123F 10.1126/science.aad1920 10.1039/C5TA06950E 10.1038/ncomms9769 10.1126/science.1246913 10.1002/anie.201404697 10.1038/nphoton.2016.232 10.1021/acsami.6b10082 10.1126/science.1200165 10.1039/C4SC00469H 10.1039/C5EE03655K 10.1039/C6EE03266D 10.1038/srep33400 10.2516/ogst/2014061 10.1016/j.nantod.2017.08.007 10.1038/ncomms13380 10.1002/adma.201806938 10.1038/ncomms11474 10.1002/anie.201606986 10.1038/s41560-017-0057-0 10.1016/j.coelec.2017.03.006 10.1038/nmat4778 10.1021/cr100246c 10.1038/natrevmats.2015.10 10.1002/aenm.201602105 10.1016/j.chempr.2018.08.023 |
ContentType | Journal Article |
Copyright | 2019 The Author(s) Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. 2019 The Author(s) 2019 |
Copyright_xml | – notice: 2019 The Author(s) – notice: Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2019 The Author(s) 2019 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.isci.2019.07.024 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2589-0042 |
EndPage | 243 |
ExternalDocumentID | oai_doaj_org_article_6e03af0f34c44441bdb01edc51a79317 PMC6698286 31382186 10_1016_j_isci_2019_07_024 S2589004219302494 |
Genre | Journal Article |
GroupedDBID | 0SF 53G 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS EJD FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ 0R~ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-4c9df5311c73c738a2a2c4063ca170bed9ecbd39096e5b5394e4f8f4561ae8723 |
IEDL.DBID | DOA |
ISSN | 2589-0042 |
IngestDate | Wed Aug 27 01:28:21 EDT 2025 Thu Aug 21 18:19:54 EDT 2025 Fri Jul 11 00:28:12 EDT 2025 Thu Jan 02 22:59:02 EST 2025 Tue Jul 01 01:03:26 EDT 2025 Thu Apr 24 23:05:59 EDT 2025 Tue May 16 22:28:48 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Materials Characterization Electrochemical Energy Conversion Energy Storage |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-4c9df5311c73c738a2a2c4063ca170bed9ecbd39096e5b5394e4f8f4561ae8723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact These authors contributed equally |
ORCID | 0000-0001-6432-9073 |
OpenAccessLink | https://doaj.org/article/6e03af0f34c44441bdb01edc51a79317 |
PMID | 31382186 |
PQID | 2268944309 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6e03af0f34c44441bdb01edc51a79317 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6698286 proquest_miscellaneous_2268944309 pubmed_primary_31382186 crossref_citationtrail_10_1016_j_isci_2019_07_024 crossref_primary_10_1016_j_isci_2019_07_024 elsevier_sciencedirect_doi_10_1016_j_isci_2019_07_024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-27 |
PublicationDateYYYYMMDD | 2019-09-27 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-27 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | iScience |
PublicationTitleAlternate | iScience |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Wang, Fan, Wang, Ding, Zhao, Li (bib41) 2016; 6 Abirami, Hwang, Yang, Senthilkumar, Kim, Go, Senthilkumar, Song, Kim (bib1) 2016; 8 Li, Li, Liu, Wang, Zhou (bib18) 2016; 6 Li, Liu, Guo, Zhou (bib19) 2017; 16 Li, Fu, Li, Cabán-Acevedo, He, Jin (bib20) 2016; 55 Liu, Shi, Zhang, Chen, Han, Ding, Chen, Wang, Han, Li (bib23) 2014; 53 Blankenship, Tiede, Barber, Brudvig, Fleming, Ghirardi, Gunner, Junge, Kramer, Melis (bib4) 2011; 332 Xu, Li, Zhang, Shen, Zakeeruddin, Graetzel, Cheng, Wang (bib43) 2015; 9 Lee, Choi (bib16) 2017 Liu, Li, Liao, Li, Ishida, Zhou (bib24) 2016; 4 Ma, Pendlebury, Reynal, Le Formal, Durrant (bib27) 2014; 5 Sun, Saadi, Lichterman, Hale, Wang, Zhou, Plymale, Omelchenko, He, Papadantonakis (bib39) 2015; 112 Um, Choi, Hwang, Kim, Seo, Lee (bib40) 2017; 10 Ashim, Ke, Reza, Saad, Geetha, Rajesh, Roya, Qiquan (bib2) 2017; 7 Kim, Kim, Park, Seo, Kim (bib14) 2016; 191 Shinagawa, Ng, Takanabe (bib37) 2017; 10 Kim, Oh, Park (bib7) 2016; 6 Kim, Ping, Galli, Choi (bib13) 2015; 6 Pellow, Emmott, Barnhart, Benson (bib33) 2015; 8 Liao, Zong, Seger, Pedersen, Yao, Ding, Shi, Chen, Li (bib22) 2016; 7 Xu, Chen, Dai (bib42) 2015; 6 Kim, Jang, Jo, Abdi, Lee, van de Krol, Lee (bib10) 2016; 7 Kurtz, Haegel, Sinton, Margolis (bib15) 2017; 11 Yang, Zhang, Kintner-Meyer, Lu, Choi, Lemmon, Liu (bib44) 2011; 111 Ma, Kafizas, Pendlebury, Le Formal, Durrant (bib26) 2016; 26 Cheng, Fan, He, Ma, Vanka, Fan, Mi, Wang (bib5) 2017; 29 Yu, McCulloch, Huang, Trang, Lu, Amine, Wu (bib45) 2016; 4 Roger, Shipman, Symes (bib34) 2017; 1 Kim, Choi (bib12) 2014; 343 Rongé, Bosserez, Huguenin, Dumortier, Haussener, Martens (bib35) 2015; 70 Pan, Kim, Mayer, Son, Ummadisingu, Lee, Hagfeldt, Luo, Grätzel (bib32) 2018 Kim, Hansora, Sharma, Jang, Lee (bib9) 2019; 48 Yu, Ren, Ma, Wu (bib46) 2014; 5 Lewis (bib17) 2016; 351 Li, Fu, Zhao, He, Jin (bib21) 2018; 4 Zhou, Liu, Sun, Papadantonakis, Brunschwig, Lewis (bib47) 2016; 9 Azevedo, Seipp, Burfeind, Sousa, Bentien, Araújo, Mendes (bib3) 2016; 22 Cook, Dogutan, Reece, Surendranath, Teets, Nocera (bib6) 2010; 110 Luo, Yang, Li, Zhang, Liu, Zhao, Wang, Yan, Yu, Zou (bib25) 2011; 4 Kim, Mueller, Kim, Bresser, Park, Lim, Kim, Passerini, Kim (bib8) 2014; 6 Mayer (bib28) 2017; 2 Montoya, Seitz, Chakthranont, Vojvodic, Jaramillo, Nørskov (bib29) 2016; 16 Seitz, Chen, Forman, Pinaud, Benck, Jaramillo (bib36) 2014; 7 Nikiforidis, Tajima, Byon (bib30) 2016; 1 Sivula, van de Krol (bib38) 2016; 1 Kim, Lee (bib11) 2019; 31 Nocera (bib31) 2017; 50 Kim (10.1016/j.isci.2019.07.024_bib11) 2019; 31 Pan (10.1016/j.isci.2019.07.024_bib32) 2018 Li (10.1016/j.isci.2019.07.024_bib21) 2018; 4 Yang (10.1016/j.isci.2019.07.024_bib44) 2011; 111 Zhou (10.1016/j.isci.2019.07.024_bib47) 2016; 9 Pellow (10.1016/j.isci.2019.07.024_bib33) 2015; 8 Li (10.1016/j.isci.2019.07.024_bib20) 2016; 55 Kim (10.1016/j.isci.2019.07.024_bib7) 2016; 6 Seitz (10.1016/j.isci.2019.07.024_bib36) 2014; 7 Li (10.1016/j.isci.2019.07.024_bib18) 2016; 6 Azevedo (10.1016/j.isci.2019.07.024_bib3) 2016; 22 Lee (10.1016/j.isci.2019.07.024_bib16) 2017 Liu (10.1016/j.isci.2019.07.024_bib23) 2014; 53 Um (10.1016/j.isci.2019.07.024_bib40) 2017; 10 Yu (10.1016/j.isci.2019.07.024_bib46) 2014; 5 Kim (10.1016/j.isci.2019.07.024_bib9) 2019; 48 Abirami (10.1016/j.isci.2019.07.024_bib1) 2016; 8 Cook (10.1016/j.isci.2019.07.024_bib6) 2010; 110 Xu (10.1016/j.isci.2019.07.024_bib43) 2015; 9 Shinagawa (10.1016/j.isci.2019.07.024_bib37) 2017; 10 Blankenship (10.1016/j.isci.2019.07.024_bib4) 2011; 332 Montoya (10.1016/j.isci.2019.07.024_bib29) 2016; 16 Yu (10.1016/j.isci.2019.07.024_bib45) 2016; 4 Nikiforidis (10.1016/j.isci.2019.07.024_bib30) 2016; 1 Ashim (10.1016/j.isci.2019.07.024_bib2) 2017; 7 Kim (10.1016/j.isci.2019.07.024_bib13) 2015; 6 Sun (10.1016/j.isci.2019.07.024_bib39) 2015; 112 Luo (10.1016/j.isci.2019.07.024_bib25) 2011; 4 Kim (10.1016/j.isci.2019.07.024_bib14) 2016; 191 Nocera (10.1016/j.isci.2019.07.024_bib31) 2017; 50 Kurtz (10.1016/j.isci.2019.07.024_bib15) 2017; 11 Kim (10.1016/j.isci.2019.07.024_bib8) 2014; 6 Kim (10.1016/j.isci.2019.07.024_bib10) 2016; 7 Ma (10.1016/j.isci.2019.07.024_bib27) 2014; 5 Sivula (10.1016/j.isci.2019.07.024_bib38) 2016; 1 Wang (10.1016/j.isci.2019.07.024_bib41) 2016; 6 Xu (10.1016/j.isci.2019.07.024_bib42) 2015; 6 Cheng (10.1016/j.isci.2019.07.024_bib5) 2017; 29 Ma (10.1016/j.isci.2019.07.024_bib26) 2016; 26 Lewis (10.1016/j.isci.2019.07.024_bib17) 2016; 351 Roger (10.1016/j.isci.2019.07.024_bib34) 2017; 1 Kim (10.1016/j.isci.2019.07.024_bib12) 2014; 343 Li (10.1016/j.isci.2019.07.024_bib19) 2017; 16 Mayer (10.1016/j.isci.2019.07.024_bib28) 2017; 2 Liu (10.1016/j.isci.2019.07.024_bib24) 2016; 4 Liao (10.1016/j.isci.2019.07.024_bib22) 2016; 7 Rongé (10.1016/j.isci.2019.07.024_bib35) 2015; 70 |
References_xml | – volume: 7 start-page: 13380 year: 2016 ident: bib10 article-title: Hetero-type dual photoanodes for unbiased solar water splitting with extended light harvesting publication-title: Nat. Commun. – volume: 6 start-page: 8769 year: 2015 ident: bib13 article-title: Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting publication-title: Nat. Commun. – volume: 31 start-page: e1806938 year: 2019 ident: bib11 article-title: Elaborately modified BiVO4 photoanodes for solar water splitting publication-title: Adv. Mater. – volume: 4 start-page: 2644 year: 2018 end-page: 2657 ident: bib21 article-title: 14.1% efficient monolithically integrated solar flow battery publication-title: Chem – volume: 1 start-page: 0003 year: 2017 ident: bib34 article-title: Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting publication-title: Nat. Rev. Chem. – volume: 29 start-page: 1700312 year: 2017 end-page: 1700319 ident: bib5 article-title: Photorechargeable high voltage redox battery enabled by Ta3N5 and GaN/Si dual-photoelectrode publication-title: Adv. Mater. – volume: 6 start-page: e144 year: 2014 ident: bib8 article-title: Rechargeable-hybrid-seawater fuel cell publication-title: NPG Asia Mater. – volume: 9 start-page: 1782 year: 2015 end-page: 1787 ident: bib43 article-title: A power pack based on organometallic perovskite solar cell and supercapacitor publication-title: ACS Nano – volume: 4 start-page: 2766 year: 2016 end-page: 2782 ident: bib45 article-title: Solar-powered electrochemical energy storage: an alternative to solar fuels publication-title: J. Mater. Chem. A – volume: 16 start-page: 46 year: 2017 end-page: 60 ident: bib19 article-title: Solar energy storage in the rechargeable batteries publication-title: Nano Today – volume: 53 start-page: 7295 year: 2014 end-page: 7299 ident: bib23 article-title: A tantalum nitride photoanode modified with a hole-storage layer for highly stable solar water splitting publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 85582 year: 2016 end-page: 85586 ident: bib41 article-title: Bridging surface states and current-potential response over hematite-based photoelectrochemical water oxidation publication-title: RSC Adv. – volume: 10 start-page: 4155 year: 2017 end-page: 4162 ident: bib37 article-title: Electrolyte engineering towards efficient water splitting at mild pH publication-title: ChemSusChem – volume: 1 start-page: 806 year: 2016 end-page: 813 ident: bib30 article-title: High energy efficiency and stability for photoassisted aqueous lithium–iodine redox batteries publication-title: ACS Energy Lett. – volume: 2 start-page: 104 year: 2017 end-page: 110 ident: bib28 article-title: Photovoltage at semiconductor–electrolyte junctions publication-title: Curr. Opin. Electrochem. – volume: 16 start-page: 70 year: 2016 end-page: 81 ident: bib29 article-title: Materials for solar fuels and chemicals publication-title: Nat. Mater. – volume: 5 start-page: 5111 year: 2014 ident: bib46 article-title: Integrating a redox-coupled dye-sensitized photoelectrode into a lithium–oxygen battery for photoassisted charging publication-title: Nat. Commun. – volume: 332 start-page: 805 year: 2011 end-page: 809 ident: bib4 article-title: Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement publication-title: Science – volume: 48 start-page: 1908 year: 2019 end-page: 1971 ident: bib9 article-title: Toward practical solar hydrogen production – an artificial photosynthetic leaf-to-farm challenge publication-title: Chem. Soc. Rev. – volume: 343 start-page: 990 year: 2014 end-page: 994 ident: bib12 article-title: Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting publication-title: Science – volume: 6 start-page: 1600632 year: 2016 end-page: 1600637 ident: bib18 article-title: High-safety and low-cost photoassisted chargeable aqueous sodium-ion batteries with 90% input electric energy savings publication-title: Adv. Energy Mater. – volume: 111 start-page: 3577 year: 2011 end-page: 3613 ident: bib44 article-title: Electrochemical energy storage for green grid publication-title: Chem. Rev. – volume: 8 start-page: 32778 year: 2016 end-page: 32787 ident: bib1 article-title: A metal–organic framework derived porous cobalt manganese oxide bifunctional electrocatalyst for hybrid Na–Air/Seawater batteries publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 8103 year: 2015 ident: bib42 article-title: Efficiently photo-charging lithium-ion battery by perovskite solar cell publication-title: Nat. Commun. – volume: 7 start-page: 1602105 year: 2017 ident: bib2 article-title: Highly efficient perovskite solar cell photocharging of lithium ion battery using DC–DC booster publication-title: Adv. Energy Mater. – volume: 11 start-page: 3 year: 2017 end-page: 5 ident: bib15 article-title: A new era for solar publication-title: Nat. Photon. – volume: 9 start-page: 892 year: 2016 end-page: 897 ident: bib47 article-title: 570 mV photovoltage, stabilized n-Si/CoOx heterojunction photoanodes fabricated using atomic layer deposition publication-title: Energy Envrion. Sci. – volume: 6 start-page: 33400 year: 2016 ident: bib7 article-title: Solar-rechargeable battery based on photoelectrochemical water oxidation: solar water battery publication-title: Sci. Rep. – start-page: 412 year: 2018 end-page: 420 ident: bib32 article-title: Boosting the performance of Cu2O photocathodes for unassisted solar water splitting devices publication-title: Nat. Catal. – volume: 191 start-page: 1 year: 2016 end-page: 7 ident: bib14 article-title: Na ion- conducting ceramic as solid electrolyte for rechargeable seawater batteries publication-title: Electrochim Acta – volume: 1 start-page: 15010 year: 2016 ident: bib38 article-title: Semiconducting materials for photoelectrochemical energy conversion publication-title: Nat. Rev. Mater. – volume: 4 start-page: 12411 year: 2016 end-page: 12415 ident: bib24 article-title: Lowering the charge voltage of Li-O2 batteries via an unmediated photoelectrochemical oxidation approach publication-title: J. Mater. Chem. A – volume: 8 start-page: 1938 year: 2015 end-page: 1952 ident: bib33 article-title: Hydrogen or batteries for grid storage? A net energy analysis publication-title: Energy Envrion. Sci. – volume: 70 start-page: 863 year: 2015 end-page: 876 ident: bib35 article-title: Solar hydrogen reaching maturity publication-title: Oil Gas Sci. Technol. – volume: 10 start-page: 931 year: 2017 end-page: 940 ident: bib40 article-title: Monolithically integrated, photo-rechargeable portable power sources based on miniaturized Si solar cells and printed solid-state lithium-ion batteries publication-title: Energy Envrion. Sci. – volume: 22 start-page: 396 year: 2016 end-page: 405 ident: bib3 article-title: Unbiased solar energy storage: photoelectrochemical redox flow battery publication-title: Nano Energy – volume: 110 start-page: 6474 year: 2010 end-page: 6502 ident: bib6 article-title: Solar energy supply and storage for the legacy and nonlegacy worlds publication-title: Chem. Rev. – volume: 351 start-page: aad1920 year: 2016 ident: bib17 article-title: Research opportunities to advance solar energy utilization publication-title: Science – volume: 7 start-page: 1372 year: 2014 end-page: 1385 ident: bib36 article-title: Modeling practical performance limits of photoelectrochemical water splitting based on the current state of materials research publication-title: ChemSusChem – volume: 7 start-page: 11474 year: 2016 ident: bib22 article-title: Integrating a dual-silicon photoelectrochemical cell into a redox flow battery for unassisted photocharging publication-title: Nat. Commun. – volume: 55 start-page: 13104 year: 2016 end-page: 13108 ident: bib20 article-title: Integrated photoelectrochemical solar energy conversion and organic redox flow battery devices publication-title: Angew. Chem. Int. Ed. – volume: 26 start-page: 4951 year: 2016 end-page: 4960 ident: bib26 article-title: Photoinduced absorption spectroscopy of CoPi on BiVO4: the function of CoPi during water oxidation publication-title: Adv. Funct. Mater. – volume: 5 start-page: 2964 year: 2014 end-page: 2973 ident: bib27 article-title: Dynamics of photogenerated holes in undoped BiVO4 photoanodes for solar water oxidation publication-title: Chem. Sci. – volume: 4 start-page: 4046 year: 2011 end-page: 4051 ident: bib25 article-title: Solar hydrogen generation from seawater with a modified BiVO4 photoanode publication-title: Energy Envrion. Sci. – volume: 50 start-page: 616 year: 2017 end-page: 619 ident: bib31 article-title: Solar fuels and solar chemicals industry publication-title: Acc. Chem. Res. – volume: 112 start-page: 3612 year: 2015 ident: bib39 article-title: Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films publication-title: Proc. Natl. Acad. Sci. U S A – start-page: 53 year: 2017 end-page: 60 ident: bib16 article-title: Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition publication-title: Nat. Energy – start-page: 412 year: 2018 ident: 10.1016/j.isci.2019.07.024_bib32 article-title: Boosting the performance of Cu2O photocathodes for unassisted solar water splitting devices publication-title: Nat. Catal. doi: 10.1038/s41929-018-0077-6 – volume: 7 start-page: 1372 year: 2014 ident: 10.1016/j.isci.2019.07.024_bib36 article-title: Modeling practical performance limits of photoelectrochemical water splitting based on the current state of materials research publication-title: ChemSusChem doi: 10.1002/cssc.201301030 – volume: 50 start-page: 616 year: 2017 ident: 10.1016/j.isci.2019.07.024_bib31 article-title: Solar fuels and solar chemicals industry publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00615 – volume: 1 start-page: 0003 year: 2017 ident: 10.1016/j.isci.2019.07.024_bib34 article-title: Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-016-0003 – volume: 48 start-page: 1908 year: 2019 ident: 10.1016/j.isci.2019.07.024_bib9 article-title: Toward practical solar hydrogen production – an artificial photosynthetic leaf-to-farm challenge publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00699G – volume: 9 start-page: 1782 year: 2015 ident: 10.1016/j.isci.2019.07.024_bib43 article-title: A power pack based on organometallic perovskite solar cell and supercapacitor publication-title: ACS Nano doi: 10.1021/nn506651m – volume: 6 start-page: 8103 year: 2015 ident: 10.1016/j.isci.2019.07.024_bib42 article-title: Efficiently photo-charging lithium-ion battery by perovskite solar cell publication-title: Nat. Commun. doi: 10.1038/ncomms9103 – volume: 4 start-page: 4046 year: 2011 ident: 10.1016/j.isci.2019.07.024_bib25 article-title: Solar hydrogen generation from seawater with a modified BiVO4 photoanode publication-title: Energy Envrion. Sci. doi: 10.1039/c1ee01812d – volume: 26 start-page: 4951 year: 2016 ident: 10.1016/j.isci.2019.07.024_bib26 article-title: Photoinduced absorption spectroscopy of CoPi on BiVO4: the function of CoPi during water oxidation publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201600711 – volume: 1 start-page: 806 year: 2016 ident: 10.1016/j.isci.2019.07.024_bib30 article-title: High energy efficiency and stability for photoassisted aqueous lithium–iodine redox batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.6b00359 – volume: 6 start-page: e144 year: 2014 ident: 10.1016/j.isci.2019.07.024_bib8 article-title: Rechargeable-hybrid-seawater fuel cell publication-title: NPG Asia Mater. doi: 10.1038/am.2014.106 – volume: 8 start-page: 1938 year: 2015 ident: 10.1016/j.isci.2019.07.024_bib33 article-title: Hydrogen or batteries for grid storage? A net energy analysis publication-title: Energy Envrion. Sci. doi: 10.1039/C4EE04041D – volume: 29 start-page: 1700312 year: 2017 ident: 10.1016/j.isci.2019.07.024_bib5 article-title: Photorechargeable high voltage redox battery enabled by Ta3N5 and GaN/Si dual-photoelectrode publication-title: Adv. Mater. doi: 10.1002/adma.201700312 – volume: 112 start-page: 3612 year: 2015 ident: 10.1016/j.isci.2019.07.024_bib39 article-title: Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1423034112 – volume: 191 start-page: 1 year: 2016 ident: 10.1016/j.isci.2019.07.024_bib14 article-title: Na ion- conducting ceramic as solid electrolyte for rechargeable seawater batteries publication-title: Electrochim Acta doi: 10.1016/j.electacta.2016.01.054 – volume: 10 start-page: 4155 year: 2017 ident: 10.1016/j.isci.2019.07.024_bib37 article-title: Electrolyte engineering towards efficient water splitting at mild pH publication-title: ChemSusChem doi: 10.1002/cssc.201701266 – volume: 111 start-page: 3577 year: 2011 ident: 10.1016/j.isci.2019.07.024_bib44 article-title: Electrochemical energy storage for green grid publication-title: Chem. Rev. doi: 10.1021/cr100290v – volume: 5 start-page: 5111 year: 2014 ident: 10.1016/j.isci.2019.07.024_bib46 article-title: Integrating a redox-coupled dye-sensitized photoelectrode into a lithium–oxygen battery for photoassisted charging publication-title: Nat. Commun. doi: 10.1038/ncomms6111 – volume: 6 start-page: 1600632 year: 2016 ident: 10.1016/j.isci.2019.07.024_bib18 article-title: High-safety and low-cost photoassisted chargeable aqueous sodium-ion batteries with 90% input electric energy savings publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600632 – volume: 4 start-page: 12411 year: 2016 ident: 10.1016/j.isci.2019.07.024_bib24 article-title: Lowering the charge voltage of Li-O2 batteries via an unmediated photoelectrochemical oxidation approach publication-title: J. Mater. Chem. A doi: 10.1039/C6TA03583C – volume: 22 start-page: 396 year: 2016 ident: 10.1016/j.isci.2019.07.024_bib3 article-title: Unbiased solar energy storage: photoelectrochemical redox flow battery publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.02.029 – volume: 6 start-page: 85582 year: 2016 ident: 10.1016/j.isci.2019.07.024_bib41 article-title: Bridging surface states and current-potential response over hematite-based photoelectrochemical water oxidation publication-title: RSC Adv. doi: 10.1039/C6RA18123F – volume: 351 start-page: aad1920 year: 2016 ident: 10.1016/j.isci.2019.07.024_bib17 article-title: Research opportunities to advance solar energy utilization publication-title: Science doi: 10.1126/science.aad1920 – volume: 4 start-page: 2766 year: 2016 ident: 10.1016/j.isci.2019.07.024_bib45 article-title: Solar-powered electrochemical energy storage: an alternative to solar fuels publication-title: J. Mater. Chem. A doi: 10.1039/C5TA06950E – volume: 6 start-page: 8769 year: 2015 ident: 10.1016/j.isci.2019.07.024_bib13 article-title: Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting publication-title: Nat. Commun. doi: 10.1038/ncomms9769 – volume: 343 start-page: 990 year: 2014 ident: 10.1016/j.isci.2019.07.024_bib12 article-title: Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting publication-title: Science doi: 10.1126/science.1246913 – volume: 53 start-page: 7295 year: 2014 ident: 10.1016/j.isci.2019.07.024_bib23 article-title: A tantalum nitride photoanode modified with a hole-storage layer for highly stable solar water splitting publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201404697 – volume: 11 start-page: 3 year: 2017 ident: 10.1016/j.isci.2019.07.024_bib15 article-title: A new era for solar publication-title: Nat. Photon. doi: 10.1038/nphoton.2016.232 – volume: 8 start-page: 32778 year: 2016 ident: 10.1016/j.isci.2019.07.024_bib1 article-title: A metal–organic framework derived porous cobalt manganese oxide bifunctional electrocatalyst for hybrid Na–Air/Seawater batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b10082 – volume: 332 start-page: 805 year: 2011 ident: 10.1016/j.isci.2019.07.024_bib4 article-title: Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement publication-title: Science doi: 10.1126/science.1200165 – volume: 5 start-page: 2964 year: 2014 ident: 10.1016/j.isci.2019.07.024_bib27 article-title: Dynamics of photogenerated holes in undoped BiVO4 photoanodes for solar water oxidation publication-title: Chem. Sci. doi: 10.1039/C4SC00469H – volume: 9 start-page: 892 year: 2016 ident: 10.1016/j.isci.2019.07.024_bib47 article-title: 570 mV photovoltage, stabilized n-Si/CoOx heterojunction photoanodes fabricated using atomic layer deposition publication-title: Energy Envrion. Sci. doi: 10.1039/C5EE03655K – volume: 10 start-page: 931 year: 2017 ident: 10.1016/j.isci.2019.07.024_bib40 article-title: Monolithically integrated, photo-rechargeable portable power sources based on miniaturized Si solar cells and printed solid-state lithium-ion batteries publication-title: Energy Envrion. Sci. doi: 10.1039/C6EE03266D – volume: 6 start-page: 33400 year: 2016 ident: 10.1016/j.isci.2019.07.024_bib7 article-title: Solar-rechargeable battery based on photoelectrochemical water oxidation: solar water battery publication-title: Sci. Rep. doi: 10.1038/srep33400 – volume: 70 start-page: 863 year: 2015 ident: 10.1016/j.isci.2019.07.024_bib35 article-title: Solar hydrogen reaching maturity publication-title: Oil Gas Sci. Technol. doi: 10.2516/ogst/2014061 – volume: 16 start-page: 46 year: 2017 ident: 10.1016/j.isci.2019.07.024_bib19 article-title: Solar energy storage in the rechargeable batteries publication-title: Nano Today doi: 10.1016/j.nantod.2017.08.007 – volume: 7 start-page: 13380 year: 2016 ident: 10.1016/j.isci.2019.07.024_bib10 article-title: Hetero-type dual photoanodes for unbiased solar water splitting with extended light harvesting publication-title: Nat. Commun. doi: 10.1038/ncomms13380 – volume: 31 start-page: e1806938 year: 2019 ident: 10.1016/j.isci.2019.07.024_bib11 article-title: Elaborately modified BiVO4 photoanodes for solar water splitting publication-title: Adv. Mater. doi: 10.1002/adma.201806938 – volume: 7 start-page: 11474 year: 2016 ident: 10.1016/j.isci.2019.07.024_bib22 article-title: Integrating a dual-silicon photoelectrochemical cell into a redox flow battery for unassisted photocharging publication-title: Nat. Commun. doi: 10.1038/ncomms11474 – volume: 55 start-page: 13104 year: 2016 ident: 10.1016/j.isci.2019.07.024_bib20 article-title: Integrated photoelectrochemical solar energy conversion and organic redox flow battery devices publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201606986 – start-page: 53 year: 2017 ident: 10.1016/j.isci.2019.07.024_bib16 article-title: Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition publication-title: Nat. Energy doi: 10.1038/s41560-017-0057-0 – volume: 2 start-page: 104 year: 2017 ident: 10.1016/j.isci.2019.07.024_bib28 article-title: Photovoltage at semiconductor–electrolyte junctions publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2017.03.006 – volume: 16 start-page: 70 year: 2016 ident: 10.1016/j.isci.2019.07.024_bib29 article-title: Materials for solar fuels and chemicals publication-title: Nat. Mater. doi: 10.1038/nmat4778 – volume: 110 start-page: 6474 year: 2010 ident: 10.1016/j.isci.2019.07.024_bib6 article-title: Solar energy supply and storage for the legacy and nonlegacy worlds publication-title: Chem. Rev. doi: 10.1021/cr100246c – volume: 1 start-page: 15010 year: 2016 ident: 10.1016/j.isci.2019.07.024_bib38 article-title: Semiconducting materials for photoelectrochemical energy conversion publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2015.10 – volume: 7 start-page: 1602105 year: 2017 ident: 10.1016/j.isci.2019.07.024_bib2 article-title: Highly efficient perovskite solar cell photocharging of lithium ion battery using DC–DC booster publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602105 – volume: 4 start-page: 2644 year: 2018 ident: 10.1016/j.isci.2019.07.024_bib21 article-title: 14.1% efficient monolithically integrated solar flow battery publication-title: Chem doi: 10.1016/j.chempr.2018.08.023 |
SSID | ssj0002002496 |
Score | 2.2140944 |
Snippet | Conversion of sunlight to chemical energy based on photoelectrochemical (PEC) processes has been considered as a promising strategy for solar energy... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 232 |
SubjectTerms | Electrochemical Energy Conversion Energy Storage Materials Characterization |
Title | Seawater-Mediated Solar-to-Sodium Conversion by Bismuth Vanadate Photoanode- Photovoltaic Tandem Cell: Solar Rechargeable Seawater Battery |
URI | https://dx.doi.org/10.1016/j.isci.2019.07.024 https://www.ncbi.nlm.nih.gov/pubmed/31382186 https://www.proquest.com/docview/2268944309 https://pubmed.ncbi.nlm.nih.gov/PMC6698286 https://doaj.org/article/6e03af0f34c44441bdb01edc51a79317 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp15KS1_uCxV6K6KWJVtWb01oCIWUwiYlN6GXWYeNXRIvJX-hv7ozlr2sW0gvNT4YW37I-uT5ZM18Q8i7SsBHv5GSicLlTJY2Ml3VOMuuajDYWoYcY4dPv1Yn5_LLRXmxl-oLfcKSPHB6cR-qmAvb5I2QXsLCXXA5j8GX3AK0-BhHDjZvbzB1OU6voRTemFmuRJ8ggOYUMZOcuzDiFf269KjcWciFVRrF-xfG6W_y-acP5Z5ROn5IHkxskn5KtXhE7sXuMfm1ivYnUMhrdjrm4YiBrnAAy4aerfrQbq_oEfqajz_KqLulh-3N1XZY0-_oAAbl6bd1P_S260NkaRu-YYNtPT3DX85wetxsPqaLUuCdKLYUMQSLznemSbbz9gk5P_58dnTCppQLzGNmAya9Dg10S-6VgLW2hS082HzhLVe5i0FH74LQMPCJpSuFllE2dYMszMZaFeIpOej6Lj4nNHouVN0obq2WjfXauqqpgvdVEaVTeUb4_MqNn_TIMS3GxsyOZ5cGm8lgM5lcGWimjLzfnfMjqXHcWfoQW3JXEpW0xx2ALzPhy_wLXxkpZxyYiZQksgGXau-8-dsZNAZ6LE7D2C722xsDhLfWUopcZ-RZAtHuEQVKQvK6yohawGtRh-WRrl2PquBVpVES4MX_qPRLch-rgn4xhXpFDobrbXwN5Gtwb8Z-9htPRi1A |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seawater-Mediated+Solar-to-Sodium+Conversion+by+Bismuth+Vanadate+Photoanode-+Photovoltaic+Tandem+Cell%3A+Solar+Rechargeable+Seawater+Battery&rft.jtitle=iScience&rft.au=Kim%2C+Jin+Hyun&rft.au=Hwang%2C+Soo+Min&rft.au=Hwang%2C+Inchan&rft.au=Han%2C+Jinhyup&rft.date=2019-09-27&rft.pub=Elsevier+Inc&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=19&rft.spage=232&rft.epage=243&rft_id=info:doi/10.1016%2Fj.isci.2019.07.024&rft.externalDocID=S2589004219302494 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |