Neutralization of SARS-CoV-2 pseudovirus using ACE2-engineered extracellular vesicles

The spread of coronavirus disease 2019 (COVID-19) throughout the world has resulted in stressful healthcare burdens and global health crises. Developing an effective measure to protect people from infection is an urgent need. The blockage of interaction between angiotensin-converting enzyme 2 (ACE2)...

Full description

Saved in:
Bibliographic Details
Published inActa pharmaceutica Sinica. B Vol. 12; no. 3; pp. 1523 - 1533
Main Authors Wu, Canhao, Xu, Qin, Wang, Huiyuan, Tu, Bin, Zeng, Jiaxin, Zhao, Pengfei, Shi, Mingjie, Qiu, Hong, Huang, Yongzhuo
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.03.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The spread of coronavirus disease 2019 (COVID-19) throughout the world has resulted in stressful healthcare burdens and global health crises. Developing an effective measure to protect people from infection is an urgent need. The blockage of interaction between angiotensin-converting enzyme 2 (ACE2) and S protein is considered an essential target for anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) drugs. A full-length ACE2 protein could be a potential drug to block early entry of SARS-CoV-2 into host cells. In this study, a therapeutic strategy was developed by using extracellular vesicles (EVs) with decoy receptor ACE2 for neutralization of SARS-CoV-2. The EVs embedded with engineered ACE2 (EVs-ACE2) were prepared; the EVs-ACE2 were derived from an engineered cell line with stable ACE2 expression. The potential effect of the EVs-ACE2 on anti-SARS-CoV-2 was demonstrated by both in vitro and in vivo neutralization experiments using the pseudovirus with the S protein (S-pseudovirus). EVs-ACE2 can inhibit the infection of S-pseudovirus in various cells, and importantly, the mice treated with intranasal administration of EVs-ACE2 can suppress the entry of S-pseudovirus into the mucosal epithelium. Therefore, the intranasal EVs-ACE2 could be a preventive medicine to protect from SARS-CoV-2 infection. This EVs-based strategy offers a potential route to COVID-19 drug development. Extracellular vesicles (EVs) embedded with engineered ACE2 can inhibit the transfection of S-pseudovirus in the host cells by serving as decoy receptors and competitively binding with the virus. [Display omitted]
AbstractList The spread of coronavirus disease 2019 (COVID-19) throughout the world has resulted in stressful healthcare burdens and global health crises. Developing an effective measure to protect people from infection is an urgent need. The blockage of interaction between angiotensin-converting enzyme 2 (ACE2) and S protein is considered an essential target for anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) drugs. A full-length ACE2 protein could be a potential drug to block early entry of SARS-CoV-2 into host cells. In this study, a therapeutic strategy was developed by using extracellular vesicles (EVs) with decoy receptor ACE2 for neutralization of SARS-CoV-2. The EVs embedded with engineered ACE2 (EVs-ACE2) were prepared; the EVs-ACE2 were derived from an engineered cell line with stable ACE2 expression. The potential effect of the EVs-ACE2 on anti-SARS-CoV-2 was demonstrated by both in vitro and in vivo neutralization experiments using the pseudovirus with the S protein (S-pseudovirus). EVs-ACE2 can inhibit the infection of S-pseudovirus in various cells, and importantly, the mice treated with intranasal administration of EVs-ACE2 can suppress the entry of S-pseudovirus into the mucosal epithelium. Therefore, the intranasal EVs-ACE2 could be a preventive medicine to protect from SARS-CoV-2 infection. This EVs-based strategy offers a potential route to COVID-19 drug development. Extracellular vesicles (EVs) embedded with engineered ACE2 can inhibit the transfection of S-pseudovirus in the host cells by serving as decoy receptors and competitively binding with the virus. [Display omitted]
The spread of coronavirus disease 2019 (COVID-19) throughout the world has resulted in stressful healthcare burdens and global health crises. Developing an effective measure to protect people from infection is an urgent need. The blockage of interaction between angiotensin-converting enzyme 2 (ACE2) and S protein is considered an essential target for anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) drugs. A full-length ACE2 protein could be a potential drug to block early entry of SARS-CoV-2 into host cells. In this study, a therapeutic strategy was developed by using extracellular vesicles (EVs) with decoy receptor ACE2 for neutralization of SARS-CoV-2. The EVs embedded with engineered ACE2 (EVs-ACE2) were prepared; the EVs-ACE2 were derived from an engineered cell line with stable ACE2 expression. The potential effect of the EVs-ACE2 on anti-SARS-CoV-2 was demonstrated by both in vitro and in vivo neutralization experiments using the pseudovirus with the S protein (S-pseudovirus). EVs-ACE2 can inhibit the infection of S-pseudovirus in various cells, and importantly, the mice treated with intranasal administration of EVs-ACE2 can suppress the entry of S-pseudovirus into the mucosal epithelium. Therefore, the intranasal EVs-ACE2 could be a preventive medicine to protect from SARS-CoV-2 infection. This EVs-based strategy offers a potential route to COVID-19 drug development.
The spread of coronavirus disease 2019 (COVID-19) throughout the world has resulted in stressful healthcare burdens and global health crises. Developing an effective measure to protect people from infection is an urgent need. The blockage of interaction between angiotensin-converting enzyme 2 (ACE2) and S protein is considered an essential target for anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) drugs. A full-length ACE2 protein could be a potential drug to block early entry of SARS-CoV-2 into host cells. In this study, a therapeutic strategy was developed by using extracellular vesicles (EVs) with decoy receptor ACE2 for neutralization of SARS-CoV-2. The EVs embedded with engineered ACE2 (EVs-ACE2) were prepared; the EVs-ACE2 were derived from an engineered cell line with stable ACE2 expression. The potential effect of the EVs-ACE2 on anti-SARS-CoV-2 was demonstrated by both in vitro and in vivo neutralization experiments using the pseudovirus with the S protein (S-pseudovirus). EVs-ACE2 can inhibit the infection of S-pseudovirus in various cells, and importantly, the mice treated with intranasal administration of EVs-ACE2 can suppress the entry of S-pseudovirus into the mucosal epithelium. Therefore, the intranasal EVs-ACE2 could be a preventive medicine to protect from SARS-CoV-2 infection. This EVs-based strategy offers a potential route to COVID-19 drug development.The spread of coronavirus disease 2019 (COVID-19) throughout the world has resulted in stressful healthcare burdens and global health crises. Developing an effective measure to protect people from infection is an urgent need. The blockage of interaction between angiotensin-converting enzyme 2 (ACE2) and S protein is considered an essential target for anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) drugs. A full-length ACE2 protein could be a potential drug to block early entry of SARS-CoV-2 into host cells. In this study, a therapeutic strategy was developed by using extracellular vesicles (EVs) with decoy receptor ACE2 for neutralization of SARS-CoV-2. The EVs embedded with engineered ACE2 (EVs-ACE2) were prepared; the EVs-ACE2 were derived from an engineered cell line with stable ACE2 expression. The potential effect of the EVs-ACE2 on anti-SARS-CoV-2 was demonstrated by both in vitro and in vivo neutralization experiments using the pseudovirus with the S protein (S-pseudovirus). EVs-ACE2 can inhibit the infection of S-pseudovirus in various cells, and importantly, the mice treated with intranasal administration of EVs-ACE2 can suppress the entry of S-pseudovirus into the mucosal epithelium. Therefore, the intranasal EVs-ACE2 could be a preventive medicine to protect from SARS-CoV-2 infection. This EVs-based strategy offers a potential route to COVID-19 drug development.
The spread of coronavirus disease 2019 (COVID-19) throughout the world has resulted in stressful healthcare burdens and global health crises. Developing an effective measure to protect people from infection is an urgent need. The blockage of interaction between angiotensin-converting enzyme 2 (ACE2) and S protein is considered an essential target for anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) drugs. A full-length ACE2 protein could be a potential drug to block early entry of SARS-CoV-2 into host cells. In this study, a therapeutic strategy was developed by using extracellular vesicles (EVs) with decoy receptor ACE2 for neutralization of SARS-CoV-2. The EVs embedded with engineered ACE2 (EVs-ACE2) were prepared; the EVs-ACE2 were derived from an engineered cell line with stable ACE2 expression. The potential effect of the EVs-ACE2 on anti-SARS-CoV-2 was demonstrated by both in vitro and in vivo neutralization experiments using the pseudovirus with the S protein (S-pseudovirus). EVs-ACE2 can inhibit the infection of S-pseudovirus in various cells, and importantly, the mice treated with intranasal administration of EVs-ACE2 can suppress the entry of S-pseudovirus into the mucosal epithelium. Therefore, the intranasal EVs-ACE2 could be a preventive medicine to protect from SARS-CoV-2 infection. This EVs-based strategy offers a potential route to COVID-19 drug development. Extracellular vesicles (EVs) embedded with engineered ACE2 can inhibit the transfection of S-pseudovirus in the host cells by serving as decoy receptors and competitively binding with the virus. Image 1
The spread of coronavirus disease 2019 (COVID-19) throughout the world has resulted in stressful healthcare burdens and global health crises. Developing an effective measure to protect people from infection is an urgent need. The blockage of interaction between angiotensin-converting enzyme 2 (ACE2) and S protein is considered an essential target for anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) drugs. A full-length ACE2 protein could be a potential drug to block early entry of SARS-CoV-2 into host cells. In this study, a therapeutic strategy was developed by using extracellular vesicles (EVs) with decoy receptor ACE2 for neutralization of SARS-CoV-2. The EVs embedded with engineered ACE2 (EVs-ACE2) were prepared; the EVs-ACE2 were derived from an engineered cell line with stable ACE2 expression. The potential effect of the EVs-ACE2 on anti-SARS-CoV-2 was demonstrated by both and neutralization experiments using the pseudovirus with the S protein (S-pseudovirus). EVs-ACE2 can inhibit the infection of S-pseudovirus in various cells, and importantly, the mice treated with intranasal administration of EVs-ACE2 can suppress the entry of S-pseudovirus into the mucosal epithelium. Therefore, the intranasal EVs-ACE2 could be a preventive medicine to protect from SARS-CoV-2 infection. This EVs-based strategy offers a potential route to COVID-19 drug development.
Author Xu, Qin
Zhao, Pengfei
Wang, Huiyuan
Qiu, Hong
Tu, Bin
Huang, Yongzhuo
Shi, Mingjie
Wu, Canhao
Zeng, Jiaxin
Author_xml – sequence: 1
  givenname: Canhao
  surname: Wu
  fullname: Wu, Canhao
  organization: Artemisinin Research Center, First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou 510450, China
– sequence: 2
  givenname: Qin
  surname: Xu
  fullname: Xu, Qin
  organization: Artemisinin Research Center, First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou 510450, China
– sequence: 3
  givenname: Huiyuan
  surname: Wang
  fullname: Wang, Huiyuan
  email: wanghuiyuan@simm.ac.cn
  organization: State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
– sequence: 4
  givenname: Bin
  surname: Tu
  fullname: Tu, Bin
  organization: State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
– sequence: 5
  givenname: Jiaxin
  surname: Zeng
  fullname: Zeng, Jiaxin
  organization: Artemisinin Research Center, First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou 510450, China
– sequence: 6
  givenname: Pengfei
  surname: Zhao
  fullname: Zhao, Pengfei
  organization: State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
– sequence: 7
  givenname: Mingjie
  surname: Shi
  fullname: Shi, Mingjie
  organization: State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
– sequence: 8
  givenname: Hong
  surname: Qiu
  fullname: Qiu, Hong
  email: hongqiu@simm.ac.cn
  organization: State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
– sequence: 9
  givenname: Yongzhuo
  orcidid: 0000-0001-7067-8915
  surname: Huang
  fullname: Huang, Yongzhuo
  email: yzhuang@simm.ac.cn
  organization: State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34522576$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFv1DAUhC1UREvpH-CAcuSSxX524kRCSKtVgUoVSJRytRznefEqay92sgJ-PU63rCiH-mLLnplnzfecnPjgkZCXjC4YZfWbzULvUrcACmxB2wWl4gk5A2Cs5I3gJ8czr07JRUobmldNAWT1jJxyUQFUsj4jt59wGqMe3G89uuCLYIub5ZebchW-lVDsEk592Ls4pWJKzq-L5eoSSvRr5xEj9gX-zG6DwzANOhZ7TM4MmF6Qp1YPCS_u93Ny-_7y6-pjef35w9VqeV2aCthYCiEk1FKAaHpqDecCuGxrZiorNe9kw422omIN07XVAhvTVFgLlKZreGMkPydXh9w-6I3aRbfV8ZcK2qm7ixDXSsdx_pKi2GsLllswnZAUuq5G00MndEVtp2nOenfI2k3dFnuDfu7lQejDF---q3XYq0aAbGWbA17fB8TwY8I0qq1LczXaY5iSyoVDy1kLLEtf_TvrOOQvlyyAg8DEkFJEe5Qwqmb-aqNm_mrmr2irMv9sav4zGTfeYc3_dcPj1rcHK2Zae4dRJePQG-xdRDPmOt1j9j_d_sub
CitedBy_id crossref_primary_10_1016_j_apsb_2022_01_019
crossref_primary_10_1016_j_jconrel_2023_11_004
crossref_primary_10_1080_14760584_2023_2299380
crossref_primary_10_1016_j_apsb_2022_08_020
crossref_primary_10_1002_eji_202350916
crossref_primary_10_1007_s12013_024_01495_3
crossref_primary_10_1016_j_apsb_2022_09_011
crossref_primary_10_2147_IJN_S446093
crossref_primary_10_1186_s12967_023_04552_2
crossref_primary_10_1039_D2SC06665C
crossref_primary_10_1016_j_medidd_2024_100198
crossref_primary_10_1002_adhm_202300404
crossref_primary_10_1002_jev2_12231
crossref_primary_10_1002_jev2_12296
crossref_primary_10_1016_j_jconrel_2023_01_062
crossref_primary_10_54097_hset_v54i_9727
crossref_primary_10_1002_jev2_12288
crossref_primary_10_1007_s00253_023_12468_6
crossref_primary_10_2147_IJN_S450829
crossref_primary_10_1039_D3NR05470E
crossref_primary_10_1016_j_nantod_2024_102473
crossref_primary_10_1002_adfm_202407842
crossref_primary_10_1016_j_heliyon_2024_e29939
crossref_primary_10_1038_s12276_025_01416_1
crossref_primary_10_1007_s12274_022_5275_5
crossref_primary_10_1002_smll_202200125
crossref_primary_10_1021_acsmaterialslett_3c01442
crossref_primary_10_1016_j_isci_2023_108708
crossref_primary_10_1016_S2666_5247_23_00011_3
crossref_primary_10_3390_pharmaceutics16030311
crossref_primary_10_1002_adma_202311537
crossref_primary_10_1016_j_ijpharm_2024_124097
Cites_doi 10.1002/0471143030.cb0322s30
10.1080/20013078.2017.1324730
10.1007/s12035-020-02149-0
10.1016/S2468-1253(21)00076-5
10.1038/aps.2017.162
10.1126/scitranslmed.aav8521
10.1016/j.vascn.2004.08.014
10.1038/cr.2016.95
10.1016/S2213-2600(20)30418-5
10.1016/j.biomaterials.2020.120435
10.1371/journal.ppat.1007236
10.1152/ajpcell.00478.2020
10.1007/s40262-013-0072-7
10.1016/j.cell.2020.02.052
10.1021/jacs.8b10047
10.1182/blood.2020008423
10.7554/eLife.61390
10.1016/j.ijpharm.2020.119333
10.1056/NEJMoa2028700
10.1016/j.mayocp.2020.05.030
10.1038/s41591-020-0868-6
10.1016/j.annonc.2021.01.074
10.3390/v12050513
10.1038/s41586-020-2012-7
10.1002/jev2.12050
10.3389/fnana.2020.00037
10.1038/s41467-020-18319-6
10.1021/acs.nanolett.0c02278
10.1016/S0140-6736(20)31022-9
10.1111/cas.13488
10.1038/s41587-020-0725-7
10.1038/s41582-020-0402-y
10.1016/j.gendis.2020.07.006
10.1016/j.bj.2020.06.003
10.1038/s41422-020-00450-0
10.1042/CS20200623
10.1016/S0140-6736(20)32656-8
10.1038/d41586-021-00650-7
10.1016/j.tibtech.2017.03.004
10.1016/j.cell.2020.04.004
ContentType Journal Article
Copyright 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences
2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V.
2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences
Copyright_xml – notice: 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences
– notice: 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V.
– notice: 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.apsb.2021.09.004
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 2211-3843
EndPage 1533
ExternalDocumentID oai_doaj_org_article_0edaf2f3f2cb4702bb6ecd2b4a50fba0
PMC8427979
34522576
10_1016_j_apsb_2021_09_004
S2211383521003464
Genre Journal Article
GroupedDBID ---
--K
-05
-0E
-SE
-S~
0R~
0SF
1~5
4.4
457
4G.
53G
5VR
5VS
6I.
7-5
92M
9D9
9DE
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABKZE
ABMAC
ACGFS
ADBBV
ADEZE
ADRAZ
AEXQZ
AFUIB
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BCNDV
CAJEE
CAJUS
CCEZO
CIEJG
DIK
EBS
EJD
FDB
GROUPED_DOAJ
GX1
HH5
HYE
HZ~
IPNFZ
IXB
JUIAU
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
Q--
Q-4
R-E
RIG
ROL
RPM
RT5
SES
SSZ
T8U
U1F
U1G
U5E
U5O
XH2
~NG
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-44472674248d0fc334237961c5f7a3b783caf45181a6fa4e8c85e64e7cb838c73
IEDL.DBID DOA
ISSN 2211-3835
IngestDate Wed Aug 27 01:25:13 EDT 2025
Thu Aug 21 18:20:44 EDT 2025
Thu Jul 10 22:18:16 EDT 2025
Thu Apr 03 07:02:40 EDT 2025
Thu Aug 14 00:21:03 EDT 2025
Thu Apr 24 23:13:18 EDT 2025
Thu Jul 20 20:11:22 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords EVs
SDS
Spike protein
Extracellular vesicles
Intranasal administration
PAGE
WB
RIPA
COVID-19
ACE2
BSA
SARS-CoV-2
FBS
Pseudovirus
NTA
RLU
S protein
TEM
Neutralization
FBS, fetal bovine serum
S protein, spike protein
WB, western blot
SDS, sodium dodecyl sulfate
NTA, nanoparticle tracking analysis
RLU, relative luminescence units
PAGE, polyacrylamide gel electrophoresis
BSA, bovine albumin
TEM, transmission electron microscope
ACE2, angiotensin-converting enzyme 2
RIPA, radio immunoprecipitation assay
EVs, extracellular vesicles
Language English
License This is an open access article under the CC BY-NC-ND license.
2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-44472674248d0fc334237961c5f7a3b783caf45181a6fa4e8c85e64e7cb838c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors made equal contributions to this work.
ORCID 0000-0001-7067-8915
OpenAccessLink https://doaj.org/article/0edaf2f3f2cb4702bb6ecd2b4a50fba0
PMID 34522576
PQID 2572931921
PQPubID 23479
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_0edaf2f3f2cb4702bb6ecd2b4a50fba0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8427979
proquest_miscellaneous_2572931921
pubmed_primary_34522576
crossref_primary_10_1016_j_apsb_2021_09_004
crossref_citationtrail_10_1016_j_apsb_2021_09_004
elsevier_sciencedirect_doi_10_1016_j_apsb_2021_09_004
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Acta pharmaceutica Sinica. B
PublicationTitleAlternate Acta Pharm Sin B
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Zamorano Cuervo, Grandvaux (bib9) 2020; 9
Conceicao, Forcina, Wiklander, Gupta, Nordin, Vrellaku (bib42) 2021; 266
Crawford, Eguia, Dingens, Loes, Malone, Wolf (bib21) 2020; 12
Gao, Monian, Pan, Zhang, Xiang, Jiang (bib26) 2016; 26
Samanta, Rajasingh, Drosos, Zhou, Dawn, Rajasingh (bib15) 2018; 39
Liu, Wang, Lv, Li (bib17) 2020; 583
De Virgiliis, Di Giovanni (bib32) 2020; 16
Ledford (bib36) 2021; 591
Huang, Tai, Hsu, Cheng, Hung, Chai (bib23) 2020; 43
Zipkin (bib19) 2020; 38
Hueso, Pouderoux, Pere, Beaumont, Raillon, Ader (bib37) 2020; 136
Yang, Petitjean, Koehler, Zhang, Dumitru, Chen (bib8) 2020; 11
Agyeman, Chin, Landersdorfer, Liew, Ofori-Asenso (bib45) 2020; 95
Wang, Zhang, Du, Du, Zhao, Jin (bib4) 2020; 395
Hu, Gao, He, Huang, Tang, Wang (bib22) 2020; 7
Sungnak, Huang, Becavin, Berg, Queen, Litvinukova (bib31) 2020; 26
Zhou, Yang, Wang, Hu, Zhang, Zhang (bib30) 2020; 579
Zhu, Li, Pang (bib11) 2021; 16
Rosas, Brau, Waters, Go, Hunter, Bhagani (bib6) 2021; 384
Syn, Wang, Chow, Lim, Goh (bib16) 2017; 35
Zhang, Honko, Zhou, Gong, Downs, Vasquez (bib40) 2020; 20
Cheng, Shi, Han, Smbatyan, Lenz, Zhang (bib27) 2018; 140
Soltani Zangbar, Gorji, Ghadiri (bib34) 2021; 58
Song, Gui, Wang, Xiang (bib29) 2018; 14
Zoufaly, Poglitsch, Aberle, Hoepler, Seitz, Traugott (bib38) 2020; 8
Wang, Yang, Duan, Liu, Jin, Long (bib10) 2021; 31
Inal (bib43) 2020; 134
DosSantos, Devalle, Aran, Capra, Roque, Coelho-Aguiar (bib33) 2020; 14
Liu, Ren, Li, Li, Zheng, Yang (bib14) 2021
Cathcart, Havenar-Daughton, Lempp, Ma, Schmid, Agostini (bib35) 2021
Yu, Hurley, Roberts, Chakrabortty, Enderle, Noerholm (bib41) 2021; 32
Zhu, Badawi, Pomeroy, Sutaria, Xie, Baek (bib28) 2017; 6
Krishnamurthy, Lockey, Kolliputi (bib39) 2021; 320
Hoffmann, Kleine-Weber, Schroeder, Kruger, Herrler, Erichsen (bib7) 2020; 181
Cocozza, Nevo, Piovesana, Lahaye, Buchrieser, Schwartz (bib44) 2020; 10
Monteil, Kwon, Prado, Hagelkrüys, Wimmer, Stahl (bib12) 2020; 181
Zhang, Wang, Bai, Wang, Zhu, Liu (bib25) 2018; 109
Singh, Ryan, Kredo, Chaplin, Fletcher (bib5) 2021; 2
bib1
Théry, Amigorena, Raposo, Clayton (bib20) 2006; 30
Weng, Li, Li, Shen, Zhu, Liang (bib2) 2021; 6
Huang, Huang, Wang, Li, Ren, Gu (bib3) 2021; 397
Wiklander, Brennan, Lotvall, Breakefield, El Andaloussi (bib18) 2019; 11
Haschke, Schuster, Poglitsch, Loibner, Salzberg, Bruggisser (bib13) 2013; 52
Thomas, Smart (bib24) 2005; 51
Hu (10.1016/j.apsb.2021.09.004_bib22) 2020; 7
Conceicao (10.1016/j.apsb.2021.09.004_bib42) 2021; 266
Cathcart (10.1016/j.apsb.2021.09.004_bib35) 2021
Cocozza (10.1016/j.apsb.2021.09.004_bib44) 2020; 10
Krishnamurthy (10.1016/j.apsb.2021.09.004_bib39) 2021; 320
Théry (10.1016/j.apsb.2021.09.004_bib20) 2006; 30
Zhu (10.1016/j.apsb.2021.09.004_bib11) 2021; 16
Thomas (10.1016/j.apsb.2021.09.004_bib24) 2005; 51
Monteil (10.1016/j.apsb.2021.09.004_bib12) 2020; 181
Huang (10.1016/j.apsb.2021.09.004_bib23) 2020; 43
Samanta (10.1016/j.apsb.2021.09.004_bib15) 2018; 39
Crawford (10.1016/j.apsb.2021.09.004_bib21) 2020; 12
Zhou (10.1016/j.apsb.2021.09.004_bib30) 2020; 579
Zhu (10.1016/j.apsb.2021.09.004_bib28) 2017; 6
Syn (10.1016/j.apsb.2021.09.004_bib16) 2017; 35
Soltani Zangbar (10.1016/j.apsb.2021.09.004_bib34) 2021; 58
Singh (10.1016/j.apsb.2021.09.004_bib5) 2021; 2
Weng (10.1016/j.apsb.2021.09.004_bib2) 2021; 6
Gao (10.1016/j.apsb.2021.09.004_bib26) 2016; 26
Song (10.1016/j.apsb.2021.09.004_bib29) 2018; 14
Zhang (10.1016/j.apsb.2021.09.004_bib25) 2018; 109
Hoffmann (10.1016/j.apsb.2021.09.004_bib7) 2020; 181
Liu (10.1016/j.apsb.2021.09.004_bib14) 2021
Inal (10.1016/j.apsb.2021.09.004_bib43) 2020; 134
Huang (10.1016/j.apsb.2021.09.004_bib3) 2021; 397
Wiklander (10.1016/j.apsb.2021.09.004_bib18) 2019; 11
Wang (10.1016/j.apsb.2021.09.004_bib10) 2021; 31
Haschke (10.1016/j.apsb.2021.09.004_bib13) 2013; 52
Wang (10.1016/j.apsb.2021.09.004_bib4) 2020; 395
Ledford (10.1016/j.apsb.2021.09.004_bib36) 2021; 591
Hueso (10.1016/j.apsb.2021.09.004_bib37) 2020; 136
Zamorano Cuervo (10.1016/j.apsb.2021.09.004_bib9) 2020; 9
Zhang (10.1016/j.apsb.2021.09.004_bib40) 2020; 20
Rosas (10.1016/j.apsb.2021.09.004_bib6) 2021; 384
Zoufaly (10.1016/j.apsb.2021.09.004_bib38) 2020; 8
Yu (10.1016/j.apsb.2021.09.004_bib41) 2021; 32
Cheng (10.1016/j.apsb.2021.09.004_bib27) 2018; 140
Agyeman (10.1016/j.apsb.2021.09.004_bib45) 2020; 95
Yang (10.1016/j.apsb.2021.09.004_bib8) 2020; 11
Sungnak (10.1016/j.apsb.2021.09.004_bib31) 2020; 26
De Virgiliis (10.1016/j.apsb.2021.09.004_bib32) 2020; 16
DosSantos (10.1016/j.apsb.2021.09.004_bib33) 2020; 14
Liu (10.1016/j.apsb.2021.09.004_bib17) 2020; 583
Zipkin (10.1016/j.apsb.2021.09.004_bib19) 2020; 38
References_xml – volume: 583
  start-page: 119333
  year: 2020
  ident: bib17
  article-title: Exosomes: from garbage bins to translational medicine
  publication-title: Int J Pharm
– volume: 39
  start-page: 501
  year: 2018
  end-page: 513
  ident: bib15
  article-title: Exosomes: new molecular targets of diseases
  publication-title: Acta Pharmacol Sin
– volume: 397
  start-page: 220
  year: 2021
  end-page: 232
  ident: bib3
  article-title: 6-Month consequences of COVID-19 in patients discharged from hospital: a cohort study
  publication-title: Lancet
– volume: 20
  start-page: 5570
  year: 2020
  end-page: 5574
  ident: bib40
  article-title: Cellular nanosponges inhibit SARS-CoV-2 infectivity
  publication-title: Nano Lett
– volume: 320
  start-page: C279
  year: 2021
  end-page: C281
  ident: bib39
  article-title: Soluble ACE2 as a potential therapy for COVID-19
  publication-title: Am J Physiol Cell Physiol
– volume: 134
  start-page: 1301
  year: 2020
  end-page: 1304
  ident: bib43
  article-title: Decoy ACE2-expressing extracellular vesicles that competitively bind SARS-CoV-2 as a possible COVID-19 therapy
  publication-title: Clin Sci
– volume: 136
  start-page: 2290
  year: 2020
  end-page: 2295
  ident: bib37
  article-title: Convalescent plasma therapy for B-cell-depleted patients with protracted COVID-19
  publication-title: Blood
– volume: 14
  start-page: 37
  year: 2020
  ident: bib33
  article-title: Neuromechanisms of SARS-CoV-2: a review
  publication-title: Front Neuroanat
– volume: 9
  start-page: e61390
  year: 2020
  ident: bib9
  article-title: ACE2: evidence of role as entry receptor for SARS-CoV-2 and implications in comorbidities
  publication-title: Elife
– volume: 58
  start-page: 536
  year: 2021
  end-page: 549
  ident: bib34
  article-title: A Review on the neurological manifestations of COVID-19 infection: a mechanistic view
  publication-title: Mol Neurobiol
– volume: 52
  start-page: 783
  year: 2013
  end-page: 792
  ident: bib13
  article-title: Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects
  publication-title: Clin Pharmacokinet
– volume: 2
  year: 2021
  ident: bib5
  article-title: Chloroquine or hydroxychloroquine for prevention and treatment of COVID-19
  publication-title: Cochrane Database Syst Rev
– volume: 109
  start-page: 629
  year: 2018
  end-page: 641
  ident: bib25
  article-title: Exosomes serve as nanoparticles to suppress tumor growth and angiogenesis in gastric cancer by delivering hepatocyte growth factor siRNA
  publication-title: Cancer Sci
– volume: 26
  start-page: 1021
  year: 2016
  end-page: 1032
  ident: bib26
  article-title: Ferroptosis is an autophagic cell death process
  publication-title: Cell Res
– volume: 7
  start-page: 551
  year: 2020
  end-page: 557
  ident: bib22
  article-title: Development of cell-based pseudovirus entry assay to identify potential viral entry inhibitors and neutralizing antibodies against SARS-CoV-2
  publication-title: Genes Dis
– volume: 579
  start-page: 270
  year: 2020
  end-page: 273
  ident: bib30
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
– volume: 8
  start-page: 1154
  year: 2020
  end-page: 1158
  ident: bib38
  article-title: Human recombinant soluble ACE2 in severe COVID-19
  publication-title: Lancet Respir Med
– volume: 31
  start-page: 17
  year: 2021
  end-page: 24
  ident: bib10
  article-title: Dalbavancin binds ACE2 to block its interaction with SARS-CoV-2 spike protein and is effective in inhibiting SARS-CoV-2 infection in animal models
  publication-title: Cell Res
– volume: 51
  start-page: 187
  year: 2005
  end-page: 200
  ident: bib24
  article-title: HEK293 cell line: a vehicle for the expression of recombinant proteins
  publication-title: J Pharmacol Toxicol Methods
– volume: 181
  year: 2020
  ident: bib12
  article-title: Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2
  publication-title: Cell
– volume: 140
  start-page: 16413
  year: 2018
  end-page: 16417
  ident: bib27
  article-title: Reprogramming exosomes as nanoscale controllers of cellular immunity
  publication-title: J Am Chem Soc
– volume: 26
  start-page: 681
  year: 2020
  end-page: 687
  ident: bib31
  article-title: SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes
  publication-title: Nat Med
– volume: 11
  year: 2019
  ident: bib18
  article-title: Advances in therapeutic applications of extracellular vesicles
  publication-title: Sci Transl Med
– volume: 384
  start-page: 1503
  year: 2021
  end-page: 1516
  ident: bib6
  article-title: Tocilizumab in hospitalized patients with severe COVID-19 pneumonia
  publication-title: N Engl J Med
– volume: 95
  start-page: 1621
  year: 2020
  end-page: 1631
  ident: bib45
  article-title: Smell and taste dysfunction in patients with COVID-19: a systematic review and meta-analysis
  publication-title: Mayo Clin Proc
– year: 2021
  ident: bib14
  article-title: The biology, function, and applications of exosomes in cancer
  publication-title: Acta Pharm Sin B
– volume: 30
  year: 2006
  ident: bib20
  article-title: Isolation and characterization of exosomes from cell culture supernatants and biological fluids
  publication-title: Curr Protoc Cell Biol
– volume: 43
  start-page: 375
  year: 2020
  end-page: 387
  ident: bib23
  article-title: Assessing the application of a pseudovirus system for emerging SARS-CoV-2 and re-emerging avian influenza virus H5 subtypes in vaccine development
  publication-title: Biomed J
– volume: 16
  start-page: 645
  year: 2020
  end-page: 652
  ident: bib32
  article-title: Lung innervation in the eye of a cytokine storm: neuroimmune interactions and COVID-19
  publication-title: Nat Rev Neurol
– volume: 11
  start-page: 4541
  year: 2020
  ident: bib8
  article-title: Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor
  publication-title: Nat Commun
– volume: 6
  start-page: 1324730
  year: 2017
  ident: bib28
  article-title: Comprehensive toxicity and immunogenicity studies reveal minimal effects in mice following sustained dosing of extracellular vesicles derived from HEK293T cells
  publication-title: J Extracell Vesicles
– volume: 591
  start-page: 513
  year: 2021
  end-page: 514
  ident: bib36
  article-title: COVID antibody treatments show promise for preventing severe disease
  publication-title: Nature
– volume: 6
  start-page: 344
  year: 2021
  end-page: 346
  ident: bib2
  article-title: Gastrointestinal sequelae 90 days after discharge for COVID-19
  publication-title: Lancet Gastroenterol Hepatol
– year: 2021
  ident: bib35
  article-title: The dual function monoclonal antibodies VIR-7831 and VIR-7832 demonstrate potent
  publication-title: bioRxiv
– volume: 10
  start-page: e12050
  year: 2020
  ident: bib44
  article-title: Extracellular vesicles containing ACE2 efficiently prevent infection by SARS-CoV-2 spike protein-containing virus
  publication-title: J Extracell Vesicles
– volume: 395
  start-page: 1569
  year: 2020
  end-page: 1578
  ident: bib4
  article-title: Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial
  publication-title: Lancet
– ident: bib1
  article-title: COVID-19 coronavirus pandemic
– volume: 181
  start-page: 271
  year: 2020
  end-page: 280 e8
  ident: bib7
  article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor
  publication-title: Cell
– volume: 38
  start-page: 1226
  year: 2020
  end-page: 1228
  ident: bib19
  article-title: Big pharma buys into exosomes for drug delivery
  publication-title: Nat Biotechnol
– volume: 35
  start-page: 665
  year: 2017
  end-page: 676
  ident: bib16
  article-title: Exosomes in cancer nanomedicine and immunotherapy: prospects and challenges
  publication-title: Trends Biotechnol
– volume: 14
  start-page: e1007236
  year: 2018
  ident: bib29
  article-title: Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2
  publication-title: PLoS Pathog
– volume: 12
  start-page: 513
  year: 2020
  ident: bib21
  article-title: Protocol and reagents for pseudotyping lentiviral particles with SARS-CoV-2 spike protein for neutralization assays
  publication-title: Viruses
– volume: 32
  start-page: 466
  year: 2021
  end-page: 477
  ident: bib41
  article-title: Exosome-based liquid biopsies in cancer: opportunities and challenges
  publication-title: Ann Oncol
– volume: 266
  start-page: 120435
  year: 2021
  ident: bib42
  article-title: Engineered extracellular vesicle decoy receptor-mediated modulation of the IL6 trans-signalling pathway in muscle
  publication-title: Biomaterials
– volume: 16
  start-page: 4
  year: 2021
  end-page: 23
  ident: bib11
  article-title: Recent insights for the emerging COVID-19: drug discovery, therapeutic options and vaccine development
  publication-title: Asian J Pharm Sci
– volume: 30
  year: 2006
  ident: 10.1016/j.apsb.2021.09.004_bib20
  article-title: Isolation and characterization of exosomes from cell culture supernatants and biological fluids
  publication-title: Curr Protoc Cell Biol
  doi: 10.1002/0471143030.cb0322s30
– volume: 6
  start-page: 1324730
  year: 2017
  ident: 10.1016/j.apsb.2021.09.004_bib28
  article-title: Comprehensive toxicity and immunogenicity studies reveal minimal effects in mice following sustained dosing of extracellular vesicles derived from HEK293T cells
  publication-title: J Extracell Vesicles
  doi: 10.1080/20013078.2017.1324730
– volume: 58
  start-page: 536
  year: 2021
  ident: 10.1016/j.apsb.2021.09.004_bib34
  article-title: A Review on the neurological manifestations of COVID-19 infection: a mechanistic view
  publication-title: Mol Neurobiol
  doi: 10.1007/s12035-020-02149-0
– volume: 6
  start-page: 344
  year: 2021
  ident: 10.1016/j.apsb.2021.09.004_bib2
  article-title: Gastrointestinal sequelae 90 days after discharge for COVID-19
  publication-title: Lancet Gastroenterol Hepatol
  doi: 10.1016/S2468-1253(21)00076-5
– volume: 39
  start-page: 501
  year: 2018
  ident: 10.1016/j.apsb.2021.09.004_bib15
  article-title: Exosomes: new molecular targets of diseases
  publication-title: Acta Pharmacol Sin
  doi: 10.1038/aps.2017.162
– volume: 16
  start-page: 4
  year: 2021
  ident: 10.1016/j.apsb.2021.09.004_bib11
  article-title: Recent insights for the emerging COVID-19: drug discovery, therapeutic options and vaccine development
  publication-title: Asian J Pharm Sci
– volume: 11
  year: 2019
  ident: 10.1016/j.apsb.2021.09.004_bib18
  article-title: Advances in therapeutic applications of extracellular vesicles
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aav8521
– volume: 51
  start-page: 187
  year: 2005
  ident: 10.1016/j.apsb.2021.09.004_bib24
  article-title: HEK293 cell line: a vehicle for the expression of recombinant proteins
  publication-title: J Pharmacol Toxicol Methods
  doi: 10.1016/j.vascn.2004.08.014
– year: 2021
  ident: 10.1016/j.apsb.2021.09.004_bib14
  article-title: The biology, function, and applications of exosomes in cancer
  publication-title: Acta Pharm Sin B
– volume: 26
  start-page: 1021
  year: 2016
  ident: 10.1016/j.apsb.2021.09.004_bib26
  article-title: Ferroptosis is an autophagic cell death process
  publication-title: Cell Res
  doi: 10.1038/cr.2016.95
– volume: 8
  start-page: 1154
  year: 2020
  ident: 10.1016/j.apsb.2021.09.004_bib38
  article-title: Human recombinant soluble ACE2 in severe COVID-19
  publication-title: Lancet Respir Med
  doi: 10.1016/S2213-2600(20)30418-5
– volume: 266
  start-page: 120435
  year: 2021
  ident: 10.1016/j.apsb.2021.09.004_bib42
  article-title: Engineered extracellular vesicle decoy receptor-mediated modulation of the IL6 trans-signalling pathway in muscle
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.120435
– volume: 14
  start-page: e1007236
  year: 2018
  ident: 10.1016/j.apsb.2021.09.004_bib29
  article-title: Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1007236
– volume: 320
  start-page: C279
  year: 2021
  ident: 10.1016/j.apsb.2021.09.004_bib39
  article-title: Soluble ACE2 as a potential therapy for COVID-19
  publication-title: Am J Physiol Cell Physiol
  doi: 10.1152/ajpcell.00478.2020
– volume: 52
  start-page: 783
  year: 2013
  ident: 10.1016/j.apsb.2021.09.004_bib13
  article-title: Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects
  publication-title: Clin Pharmacokinet
  doi: 10.1007/s40262-013-0072-7
– volume: 181
  start-page: 271
  year: 2020
  ident: 10.1016/j.apsb.2021.09.004_bib7
  article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.052
– volume: 140
  start-page: 16413
  year: 2018
  ident: 10.1016/j.apsb.2021.09.004_bib27
  article-title: Reprogramming exosomes as nanoscale controllers of cellular immunity
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.8b10047
– volume: 136
  start-page: 2290
  year: 2020
  ident: 10.1016/j.apsb.2021.09.004_bib37
  article-title: Convalescent plasma therapy for B-cell-depleted patients with protracted COVID-19
  publication-title: Blood
  doi: 10.1182/blood.2020008423
– volume: 9
  start-page: e61390
  year: 2020
  ident: 10.1016/j.apsb.2021.09.004_bib9
  article-title: ACE2: evidence of role as entry receptor for SARS-CoV-2 and implications in comorbidities
  publication-title: Elife
  doi: 10.7554/eLife.61390
– volume: 583
  start-page: 119333
  year: 2020
  ident: 10.1016/j.apsb.2021.09.004_bib17
  article-title: Exosomes: from garbage bins to translational medicine
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2020.119333
– volume: 384
  start-page: 1503
  year: 2021
  ident: 10.1016/j.apsb.2021.09.004_bib6
  article-title: Tocilizumab in hospitalized patients with severe COVID-19 pneumonia
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa2028700
– volume: 95
  start-page: 1621
  year: 2020
  ident: 10.1016/j.apsb.2021.09.004_bib45
  article-title: Smell and taste dysfunction in patients with COVID-19: a systematic review and meta-analysis
  publication-title: Mayo Clin Proc
  doi: 10.1016/j.mayocp.2020.05.030
– volume: 26
  start-page: 681
  year: 2020
  ident: 10.1016/j.apsb.2021.09.004_bib31
  article-title: SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes
  publication-title: Nat Med
  doi: 10.1038/s41591-020-0868-6
– volume: 32
  start-page: 466
  year: 2021
  ident: 10.1016/j.apsb.2021.09.004_bib41
  article-title: Exosome-based liquid biopsies in cancer: opportunities and challenges
  publication-title: Ann Oncol
  doi: 10.1016/j.annonc.2021.01.074
– volume: 12
  start-page: 513
  year: 2020
  ident: 10.1016/j.apsb.2021.09.004_bib21
  article-title: Protocol and reagents for pseudotyping lentiviral particles with SARS-CoV-2 spike protein for neutralization assays
  publication-title: Viruses
  doi: 10.3390/v12050513
– volume: 579
  start-page: 270
  year: 2020
  ident: 10.1016/j.apsb.2021.09.004_bib30
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
  doi: 10.1038/s41586-020-2012-7
– volume: 10
  start-page: e12050
  year: 2020
  ident: 10.1016/j.apsb.2021.09.004_bib44
  article-title: Extracellular vesicles containing ACE2 efficiently prevent infection by SARS-CoV-2 spike protein-containing virus
  publication-title: J Extracell Vesicles
  doi: 10.1002/jev2.12050
– volume: 14
  start-page: 37
  year: 2020
  ident: 10.1016/j.apsb.2021.09.004_bib33
  article-title: Neuromechanisms of SARS-CoV-2: a review
  publication-title: Front Neuroanat
  doi: 10.3389/fnana.2020.00037
– volume: 11
  start-page: 4541
  year: 2020
  ident: 10.1016/j.apsb.2021.09.004_bib8
  article-title: Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-18319-6
– volume: 20
  start-page: 5570
  year: 2020
  ident: 10.1016/j.apsb.2021.09.004_bib40
  article-title: Cellular nanosponges inhibit SARS-CoV-2 infectivity
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.0c02278
– volume: 395
  start-page: 1569
  year: 2020
  ident: 10.1016/j.apsb.2021.09.004_bib4
  article-title: Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)31022-9
– volume: 109
  start-page: 629
  year: 2018
  ident: 10.1016/j.apsb.2021.09.004_bib25
  article-title: Exosomes serve as nanoparticles to suppress tumor growth and angiogenesis in gastric cancer by delivering hepatocyte growth factor siRNA
  publication-title: Cancer Sci
  doi: 10.1111/cas.13488
– volume: 38
  start-page: 1226
  year: 2020
  ident: 10.1016/j.apsb.2021.09.004_bib19
  article-title: Big pharma buys into exosomes for drug delivery
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-020-0725-7
– year: 2021
  ident: 10.1016/j.apsb.2021.09.004_bib35
  article-title: The dual function monoclonal antibodies VIR-7831 and VIR-7832 demonstrate potent in vitro and in vivo activity against SARS-CoV-2
  publication-title: bioRxiv
– volume: 16
  start-page: 645
  year: 2020
  ident: 10.1016/j.apsb.2021.09.004_bib32
  article-title: Lung innervation in the eye of a cytokine storm: neuroimmune interactions and COVID-19
  publication-title: Nat Rev Neurol
  doi: 10.1038/s41582-020-0402-y
– volume: 7
  start-page: 551
  year: 2020
  ident: 10.1016/j.apsb.2021.09.004_bib22
  article-title: Development of cell-based pseudovirus entry assay to identify potential viral entry inhibitors and neutralizing antibodies against SARS-CoV-2
  publication-title: Genes Dis
  doi: 10.1016/j.gendis.2020.07.006
– volume: 2
  year: 2021
  ident: 10.1016/j.apsb.2021.09.004_bib5
  article-title: Chloroquine or hydroxychloroquine for prevention and treatment of COVID-19
  publication-title: Cochrane Database Syst Rev
– volume: 43
  start-page: 375
  year: 2020
  ident: 10.1016/j.apsb.2021.09.004_bib23
  article-title: Assessing the application of a pseudovirus system for emerging SARS-CoV-2 and re-emerging avian influenza virus H5 subtypes in vaccine development
  publication-title: Biomed J
  doi: 10.1016/j.bj.2020.06.003
– volume: 31
  start-page: 17
  year: 2021
  ident: 10.1016/j.apsb.2021.09.004_bib10
  article-title: Dalbavancin binds ACE2 to block its interaction with SARS-CoV-2 spike protein and is effective in inhibiting SARS-CoV-2 infection in animal models
  publication-title: Cell Res
  doi: 10.1038/s41422-020-00450-0
– volume: 134
  start-page: 1301
  year: 2020
  ident: 10.1016/j.apsb.2021.09.004_bib43
  article-title: Decoy ACE2-expressing extracellular vesicles that competitively bind SARS-CoV-2 as a possible COVID-19 therapy
  publication-title: Clin Sci
  doi: 10.1042/CS20200623
– volume: 397
  start-page: 220
  year: 2021
  ident: 10.1016/j.apsb.2021.09.004_bib3
  article-title: 6-Month consequences of COVID-19 in patients discharged from hospital: a cohort study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)32656-8
– volume: 591
  start-page: 513
  year: 2021
  ident: 10.1016/j.apsb.2021.09.004_bib36
  article-title: COVID antibody treatments show promise for preventing severe disease
  publication-title: Nature
  doi: 10.1038/d41586-021-00650-7
– volume: 35
  start-page: 665
  year: 2017
  ident: 10.1016/j.apsb.2021.09.004_bib16
  article-title: Exosomes in cancer nanomedicine and immunotherapy: prospects and challenges
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2017.03.004
– volume: 181
  year: 2020
  ident: 10.1016/j.apsb.2021.09.004_bib12
  article-title: Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2
  publication-title: Cell
  doi: 10.1016/j.cell.2020.04.004
SSID ssj0000602275
Score 2.388759
Snippet The spread of coronavirus disease 2019 (COVID-19) throughout the world has resulted in stressful healthcare burdens and global health crises. Developing an...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1523
SubjectTerms ACE2
COVID-19
Extracellular vesicles
Intranasal administration
Neutralization
Pseudovirus
SARS-CoV-2
Short Communication
Spike protein
SummonAdditionalLinks – databaseName: ScienceDirect Free and Delayed Access Titles
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhp15K33VfqFByacx6JdnSHjdLQughhG627E3omboEe1lnA_n31cjypm4hh15t2ZY9o3nI33yD0BdOgw_2JqSpPKwmBpS30FckZzOqSalE8BgRbXFRna_Yt3W5PkCLoRYGYJXJ9vc2PVrrdGSSvuZkU9eTJQm5C4UAYgokKxVwglImYhHf-mS_z1JUQJIHSEYYn8MFqXamh3mpTadDmkimke409Wsb_FOk8R-5qX_D0L_RlH-4p7Nn6GmKK_G8n_pzdOCaF-josiemvj_GVw91Vt0xPsKXD5TV9y_R6iKcgS2PvigTtx4v59-X-aL9kRO86dzOtnf1dtdhwMlf4_nilOQuURk6i4OF3yr4BwCgVnznugi2e4VWZ6dXi_M8NVzIDfQ1yBljnFQhWWbCFt5QYAfkQXSm9FxRzQU1yrMyBAWq8oo5YUTpKua40YIKw-lrdNi0jXuLsHKUlJaY0tqCwc_FaYh0bGVFMACEWJOh6fCZpUls5NAU40YOsLNfEkQjQTSymMkgmgx93V-z6bk4Hh19AtLbjwQe7Xig3V7LpEiycFZ54qknRjNeEK0rZyzRTJWF16rIUDnIXo7UMtyqfvThnwdFkWG9ggBU49pdJ4OJDBEWsNBl6E2vOPspUqC3DwlghvhIpUbvMD7T1D8jJ7hghM_47N1_zvc9ekKgriOC6z6gw9vtzn0M0dat_hSX029J9CaX
  priority: 102
  providerName: Elsevier
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqcuGCeBOgyEioFxqUtZ04e6iqZdWqQqKqaBf1ZvlZFlXJknQr9t93Jo9dAlVPXPNwYo_H803y-RtCPkgOMThYSFMleJNAyVusKxKLMTcs1TlEjIZtcZIdz8SXi_Rii_TljroBrO9M7bCe1Ky6-vT71-oAHH5_w9XSi9pArsdGjWYpyoM-gMgk0VG_dnC_XZlRMA9ZjYyheh-gj24fzd3NDGJVI-k_CFn_QtK_mZV_hKqjx-RRhzHppJ0UT8iWL56S3dNWpHq1R883e67qPbpLTzfy1atnZHYCZ_DzR7tBk5aBnk2-ncXT8nvM6KL2S1fezKtlTZEzf0kn00MW-07W0DsKq32l8X8AElzpja8b4t1zMjs6PJ8ex13xhdhijYNYCCFZBomzyF0SLEelQAlmtGmQmhuZc6uDSAEg6Cxo4XObpz4TXlqT89xK_oJsF2XhXxGqPWepYzZ1LhH4o3EEqMdlLofFgDFnIzLqh1nZTpkcC2RcqZ6C9lOhaRSaRiVjBaaJyMf1PYtWl-Peqz-j9dZXoqZ2c6CsLlXnoirxTgcWeGDWCJkwYzJvHTNCp0kwOolI2ttedfCkhR3Q1Pzeh7_vJ4oC30UD6MKXy1rBcgloCxXpIvKynTjrV-QodQ_JYETkYEoN-jA8U8x_NPrguWByLMev_0en35CHDDd8NKy7t2T7ulr6HYBh1-Zd41u36PUvtw
  priority: 102
  providerName: Scholars Portal
Title Neutralization of SARS-CoV-2 pseudovirus using ACE2-engineered extracellular vesicles
URI https://dx.doi.org/10.1016/j.apsb.2021.09.004
https://www.ncbi.nlm.nih.gov/pubmed/34522576
https://www.proquest.com/docview/2572931921
https://pubmed.ncbi.nlm.nih.gov/PMC8427979
https://doaj.org/article/0edaf2f3f2cb4702bb6ecd2b4a50fba0
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQb8JLRkK90Iis7cTe43bVqoCoCu2ivVl-wiKUrDbdSv33zMTJdhekcuHiQ97OjD3fJJ-_IeSt5BCDo4M0VcJoEih5i3VFcjHmlpVGQcTo2Ban1clMfJyX861SX8gJS_LA6cW9L4I3kUUembNCFszaKjjPrDBlEa3psnWIeVvJVJqDURoP-YuMoU4f4Ix-xUwid5llayE5ZKNO5LSv0jZEpU68fyc4_Q0-_-RQbgWl4_vkXo8m6ST14gG5E-qHZP8syVFfH9CLm9VV7QHdp2c3QtXXj8jsFPbgh460FJM2kZ5Pvp7n0-ZbzuiyDWvfXC1W65YiO_47nUyPWB56AcPgKczrK4Nf_pHKSq9C21HsHpPZ8dHF9CTvyyzkDqsZ5EIIySpIkYXyRXQcNQElGMyVURpupeLORFECFDBVNCIop8pQiSCdVVw5yZ-QvbqpwzNCTeCs9MyV3hcCfymOAN_4yisY9ox5l5HR8Jq16zXIsRTGLz2QzX5qNI1G0-hirME0GXm3OWeZFDhuPfoQrbc5EtWzuw3gU7r3Kf0vn8pIOdhe90AkAQy41OLWm78ZHEXDKEUDmDo061bDxAi4CrXnMvI0Oc7mETmK2kPalxG541I7fdjdUy9-dErgSjA5luPn_6PTL8hdhks7On7dS7J3uVqHVwC4Lu3rbmxB-2F-CO2nLwraz0L9BhgiKy8
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VcoAL4l3zXCTUC7Xi7K69zjGNWqVQoookKLfVeh_FCNlR3FTqv2fGjxSD1ANX22uvPbPzWH_zDSEfJQcf7A2kqRJWk0DKW-wrEooRz1isU_AYNdpilkyX4vMqXu2RSVcLg7DK1vY3Nr221u2RQfs1B-s8H8wZ5C4cA4ghkqwk4h65D9GAxP4NZ6vj3UZLlCBLHkIZcUCII9rimQbnpddVBnkiG9Z8p23Dts5B1Tz-PT_1bxz6N5zyD_90-pg8agNLOm7m_oTsueIpObxomKlvjujittCqOqKH9OKWs_rmGVnO4AzueTRVmbT0dD7-Ng8n5feQ0XXltra8zjfbiiJQ_pKOJycsdC2XobMUTPxG408ARLXSa1fVaLvnZHl6sphMw7bjQmiwsUEohJAsgWxZpDbyhiM9oATZmdhLzTOZcqO9iCEq0InXwqUmjV0inDRZylMj-QuyX5SFOyBUO85iy0xsbSTw7-IQQh2b2BQsAGPWBGTYfWZlWjpy7IrxS3W4s58KRaNQNCoaKRBNQD7txqwbMo47rz5G6e2uRCLt-kC5uVStJqnIWe2Z556ZTMiIZVnijGWZ0HHkMx0FJO5kr3p6CbfK73z4h05RFCxYFIAuXLmtFNhICLGQhi4gLxvF2U2RI789ZIABkT2V6r1D_0yR_6hJwVPB5EiOXv3nfN-TB9PF13N1fjb78po8ZFjkUSPt3pD9q83WvYXQ6yp7Vy-t3w_BKbY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neutralization+of+SARS-CoV-2+pseudovirus+using+ACE2-engineered+extracellular+vesicles&rft.jtitle=Acta+pharmaceutica+Sinica.+B&rft.au=Canhao+Wu&rft.au=Qin+Xu&rft.au=Huiyuan+Wang&rft.au=Bin+Tu&rft.date=2022-03-01&rft.pub=Elsevier&rft.issn=2211-3835&rft.volume=12&rft.issue=3&rft.spage=1523&rft.epage=1533&rft_id=info:doi/10.1016%2Fj.apsb.2021.09.004&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0edaf2f3f2cb4702bb6ecd2b4a50fba0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3835&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3835&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3835&client=summon