Neutralization of SARS-CoV-2 pseudovirus using ACE2-engineered extracellular vesicles
The spread of coronavirus disease 2019 (COVID-19) throughout the world has resulted in stressful healthcare burdens and global health crises. Developing an effective measure to protect people from infection is an urgent need. The blockage of interaction between angiotensin-converting enzyme 2 (ACE2)...
Saved in:
Published in | Acta pharmaceutica Sinica. B Vol. 12; no. 3; pp. 1523 - 1533 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.03.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The spread of coronavirus disease 2019 (COVID-19) throughout the world has resulted in stressful healthcare burdens and global health crises. Developing an effective measure to protect people from infection is an urgent need. The blockage of interaction between angiotensin-converting enzyme 2 (ACE2) and S protein is considered an essential target for anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) drugs. A full-length ACE2 protein could be a potential drug to block early entry of SARS-CoV-2 into host cells. In this study, a therapeutic strategy was developed by using extracellular vesicles (EVs) with decoy receptor ACE2 for neutralization of SARS-CoV-2. The EVs embedded with engineered ACE2 (EVs-ACE2) were prepared; the EVs-ACE2 were derived from an engineered cell line with stable ACE2 expression. The potential effect of the EVs-ACE2 on anti-SARS-CoV-2 was demonstrated by both in vitro and in vivo neutralization experiments using the pseudovirus with the S protein (S-pseudovirus). EVs-ACE2 can inhibit the infection of S-pseudovirus in various cells, and importantly, the mice treated with intranasal administration of EVs-ACE2 can suppress the entry of S-pseudovirus into the mucosal epithelium. Therefore, the intranasal EVs-ACE2 could be a preventive medicine to protect from SARS-CoV-2 infection. This EVs-based strategy offers a potential route to COVID-19 drug development.
Extracellular vesicles (EVs) embedded with engineered ACE2 can inhibit the transfection of S-pseudovirus in the host cells by serving as decoy receptors and competitively binding with the virus. [Display omitted] |
---|---|
AbstractList | The spread of coronavirus disease 2019 (COVID-19) throughout the world has resulted in stressful healthcare burdens and global health crises. Developing an effective measure to protect people from infection is an urgent need. The blockage of interaction between angiotensin-converting enzyme 2 (ACE2) and S protein is considered an essential target for anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) drugs. A full-length ACE2 protein could be a potential drug to block early entry of SARS-CoV-2 into host cells. In this study, a therapeutic strategy was developed by using extracellular vesicles (EVs) with decoy receptor ACE2 for neutralization of SARS-CoV-2. The EVs embedded with engineered ACE2 (EVs-ACE2) were prepared; the EVs-ACE2 were derived from an engineered cell line with stable ACE2 expression. The potential effect of the EVs-ACE2 on anti-SARS-CoV-2 was demonstrated by both in vitro and in vivo neutralization experiments using the pseudovirus with the S protein (S-pseudovirus). EVs-ACE2 can inhibit the infection of S-pseudovirus in various cells, and importantly, the mice treated with intranasal administration of EVs-ACE2 can suppress the entry of S-pseudovirus into the mucosal epithelium. Therefore, the intranasal EVs-ACE2 could be a preventive medicine to protect from SARS-CoV-2 infection. This EVs-based strategy offers a potential route to COVID-19 drug development.
Extracellular vesicles (EVs) embedded with engineered ACE2 can inhibit the transfection of S-pseudovirus in the host cells by serving as decoy receptors and competitively binding with the virus. [Display omitted] The spread of coronavirus disease 2019 (COVID-19) throughout the world has resulted in stressful healthcare burdens and global health crises. Developing an effective measure to protect people from infection is an urgent need. The blockage of interaction between angiotensin-converting enzyme 2 (ACE2) and S protein is considered an essential target for anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) drugs. A full-length ACE2 protein could be a potential drug to block early entry of SARS-CoV-2 into host cells. In this study, a therapeutic strategy was developed by using extracellular vesicles (EVs) with decoy receptor ACE2 for neutralization of SARS-CoV-2. The EVs embedded with engineered ACE2 (EVs-ACE2) were prepared; the EVs-ACE2 were derived from an engineered cell line with stable ACE2 expression. The potential effect of the EVs-ACE2 on anti-SARS-CoV-2 was demonstrated by both in vitro and in vivo neutralization experiments using the pseudovirus with the S protein (S-pseudovirus). EVs-ACE2 can inhibit the infection of S-pseudovirus in various cells, and importantly, the mice treated with intranasal administration of EVs-ACE2 can suppress the entry of S-pseudovirus into the mucosal epithelium. Therefore, the intranasal EVs-ACE2 could be a preventive medicine to protect from SARS-CoV-2 infection. This EVs-based strategy offers a potential route to COVID-19 drug development. The spread of coronavirus disease 2019 (COVID-19) throughout the world has resulted in stressful healthcare burdens and global health crises. Developing an effective measure to protect people from infection is an urgent need. The blockage of interaction between angiotensin-converting enzyme 2 (ACE2) and S protein is considered an essential target for anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) drugs. A full-length ACE2 protein could be a potential drug to block early entry of SARS-CoV-2 into host cells. In this study, a therapeutic strategy was developed by using extracellular vesicles (EVs) with decoy receptor ACE2 for neutralization of SARS-CoV-2. The EVs embedded with engineered ACE2 (EVs-ACE2) were prepared; the EVs-ACE2 were derived from an engineered cell line with stable ACE2 expression. The potential effect of the EVs-ACE2 on anti-SARS-CoV-2 was demonstrated by both in vitro and in vivo neutralization experiments using the pseudovirus with the S protein (S-pseudovirus). EVs-ACE2 can inhibit the infection of S-pseudovirus in various cells, and importantly, the mice treated with intranasal administration of EVs-ACE2 can suppress the entry of S-pseudovirus into the mucosal epithelium. Therefore, the intranasal EVs-ACE2 could be a preventive medicine to protect from SARS-CoV-2 infection. This EVs-based strategy offers a potential route to COVID-19 drug development.The spread of coronavirus disease 2019 (COVID-19) throughout the world has resulted in stressful healthcare burdens and global health crises. Developing an effective measure to protect people from infection is an urgent need. The blockage of interaction between angiotensin-converting enzyme 2 (ACE2) and S protein is considered an essential target for anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) drugs. A full-length ACE2 protein could be a potential drug to block early entry of SARS-CoV-2 into host cells. In this study, a therapeutic strategy was developed by using extracellular vesicles (EVs) with decoy receptor ACE2 for neutralization of SARS-CoV-2. The EVs embedded with engineered ACE2 (EVs-ACE2) were prepared; the EVs-ACE2 were derived from an engineered cell line with stable ACE2 expression. The potential effect of the EVs-ACE2 on anti-SARS-CoV-2 was demonstrated by both in vitro and in vivo neutralization experiments using the pseudovirus with the S protein (S-pseudovirus). EVs-ACE2 can inhibit the infection of S-pseudovirus in various cells, and importantly, the mice treated with intranasal administration of EVs-ACE2 can suppress the entry of S-pseudovirus into the mucosal epithelium. Therefore, the intranasal EVs-ACE2 could be a preventive medicine to protect from SARS-CoV-2 infection. This EVs-based strategy offers a potential route to COVID-19 drug development. The spread of coronavirus disease 2019 (COVID-19) throughout the world has resulted in stressful healthcare burdens and global health crises. Developing an effective measure to protect people from infection is an urgent need. The blockage of interaction between angiotensin-converting enzyme 2 (ACE2) and S protein is considered an essential target for anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) drugs. A full-length ACE2 protein could be a potential drug to block early entry of SARS-CoV-2 into host cells. In this study, a therapeutic strategy was developed by using extracellular vesicles (EVs) with decoy receptor ACE2 for neutralization of SARS-CoV-2. The EVs embedded with engineered ACE2 (EVs-ACE2) were prepared; the EVs-ACE2 were derived from an engineered cell line with stable ACE2 expression. The potential effect of the EVs-ACE2 on anti-SARS-CoV-2 was demonstrated by both in vitro and in vivo neutralization experiments using the pseudovirus with the S protein (S-pseudovirus). EVs-ACE2 can inhibit the infection of S-pseudovirus in various cells, and importantly, the mice treated with intranasal administration of EVs-ACE2 can suppress the entry of S-pseudovirus into the mucosal epithelium. Therefore, the intranasal EVs-ACE2 could be a preventive medicine to protect from SARS-CoV-2 infection. This EVs-based strategy offers a potential route to COVID-19 drug development. Extracellular vesicles (EVs) embedded with engineered ACE2 can inhibit the transfection of S-pseudovirus in the host cells by serving as decoy receptors and competitively binding with the virus. Image 1 The spread of coronavirus disease 2019 (COVID-19) throughout the world has resulted in stressful healthcare burdens and global health crises. Developing an effective measure to protect people from infection is an urgent need. The blockage of interaction between angiotensin-converting enzyme 2 (ACE2) and S protein is considered an essential target for anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) drugs. A full-length ACE2 protein could be a potential drug to block early entry of SARS-CoV-2 into host cells. In this study, a therapeutic strategy was developed by using extracellular vesicles (EVs) with decoy receptor ACE2 for neutralization of SARS-CoV-2. The EVs embedded with engineered ACE2 (EVs-ACE2) were prepared; the EVs-ACE2 were derived from an engineered cell line with stable ACE2 expression. The potential effect of the EVs-ACE2 on anti-SARS-CoV-2 was demonstrated by both and neutralization experiments using the pseudovirus with the S protein (S-pseudovirus). EVs-ACE2 can inhibit the infection of S-pseudovirus in various cells, and importantly, the mice treated with intranasal administration of EVs-ACE2 can suppress the entry of S-pseudovirus into the mucosal epithelium. Therefore, the intranasal EVs-ACE2 could be a preventive medicine to protect from SARS-CoV-2 infection. This EVs-based strategy offers a potential route to COVID-19 drug development. |
Author | Xu, Qin Zhao, Pengfei Wang, Huiyuan Qiu, Hong Tu, Bin Huang, Yongzhuo Shi, Mingjie Wu, Canhao Zeng, Jiaxin |
Author_xml | – sequence: 1 givenname: Canhao surname: Wu fullname: Wu, Canhao organization: Artemisinin Research Center, First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou 510450, China – sequence: 2 givenname: Qin surname: Xu fullname: Xu, Qin organization: Artemisinin Research Center, First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou 510450, China – sequence: 3 givenname: Huiyuan surname: Wang fullname: Wang, Huiyuan email: wanghuiyuan@simm.ac.cn organization: State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China – sequence: 4 givenname: Bin surname: Tu fullname: Tu, Bin organization: State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China – sequence: 5 givenname: Jiaxin surname: Zeng fullname: Zeng, Jiaxin organization: Artemisinin Research Center, First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou 510450, China – sequence: 6 givenname: Pengfei surname: Zhao fullname: Zhao, Pengfei organization: State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China – sequence: 7 givenname: Mingjie surname: Shi fullname: Shi, Mingjie organization: State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China – sequence: 8 givenname: Hong surname: Qiu fullname: Qiu, Hong email: hongqiu@simm.ac.cn organization: State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China – sequence: 9 givenname: Yongzhuo orcidid: 0000-0001-7067-8915 surname: Huang fullname: Huang, Yongzhuo email: yzhuang@simm.ac.cn organization: State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34522576$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFv1DAUhC1UREvpH-CAcuSSxX524kRCSKtVgUoVSJRytRznefEqay92sgJ-PU63rCiH-mLLnplnzfecnPjgkZCXjC4YZfWbzULvUrcACmxB2wWl4gk5A2Cs5I3gJ8czr07JRUobmldNAWT1jJxyUQFUsj4jt59wGqMe3G89uuCLYIub5ZebchW-lVDsEk592Ls4pWJKzq-L5eoSSvRr5xEj9gX-zG6DwzANOhZ7TM4MmF6Qp1YPCS_u93Ny-_7y6-pjef35w9VqeV2aCthYCiEk1FKAaHpqDecCuGxrZiorNe9kw422omIN07XVAhvTVFgLlKZreGMkPydXh9w-6I3aRbfV8ZcK2qm7ixDXSsdx_pKi2GsLllswnZAUuq5G00MndEVtp2nOenfI2k3dFnuDfu7lQejDF---q3XYq0aAbGWbA17fB8TwY8I0qq1LczXaY5iSyoVDy1kLLEtf_TvrOOQvlyyAg8DEkFJEe5Qwqmb-aqNm_mrmr2irMv9sav4zGTfeYc3_dcPj1rcHK2Zae4dRJePQG-xdRDPmOt1j9j_d_sub |
CitedBy_id | crossref_primary_10_1016_j_apsb_2022_01_019 crossref_primary_10_1016_j_jconrel_2023_11_004 crossref_primary_10_1080_14760584_2023_2299380 crossref_primary_10_1016_j_apsb_2022_08_020 crossref_primary_10_1002_eji_202350916 crossref_primary_10_1007_s12013_024_01495_3 crossref_primary_10_1016_j_apsb_2022_09_011 crossref_primary_10_2147_IJN_S446093 crossref_primary_10_1186_s12967_023_04552_2 crossref_primary_10_1039_D2SC06665C crossref_primary_10_1016_j_medidd_2024_100198 crossref_primary_10_1002_adhm_202300404 crossref_primary_10_1002_jev2_12231 crossref_primary_10_1002_jev2_12296 crossref_primary_10_1016_j_jconrel_2023_01_062 crossref_primary_10_54097_hset_v54i_9727 crossref_primary_10_1002_jev2_12288 crossref_primary_10_1007_s00253_023_12468_6 crossref_primary_10_2147_IJN_S450829 crossref_primary_10_1039_D3NR05470E crossref_primary_10_1016_j_nantod_2024_102473 crossref_primary_10_1002_adfm_202407842 crossref_primary_10_1016_j_heliyon_2024_e29939 crossref_primary_10_1038_s12276_025_01416_1 crossref_primary_10_1007_s12274_022_5275_5 crossref_primary_10_1002_smll_202200125 crossref_primary_10_1021_acsmaterialslett_3c01442 crossref_primary_10_1016_j_isci_2023_108708 crossref_primary_10_1016_S2666_5247_23_00011_3 crossref_primary_10_3390_pharmaceutics16030311 crossref_primary_10_1002_adma_202311537 crossref_primary_10_1016_j_ijpharm_2024_124097 |
Cites_doi | 10.1002/0471143030.cb0322s30 10.1080/20013078.2017.1324730 10.1007/s12035-020-02149-0 10.1016/S2468-1253(21)00076-5 10.1038/aps.2017.162 10.1126/scitranslmed.aav8521 10.1016/j.vascn.2004.08.014 10.1038/cr.2016.95 10.1016/S2213-2600(20)30418-5 10.1016/j.biomaterials.2020.120435 10.1371/journal.ppat.1007236 10.1152/ajpcell.00478.2020 10.1007/s40262-013-0072-7 10.1016/j.cell.2020.02.052 10.1021/jacs.8b10047 10.1182/blood.2020008423 10.7554/eLife.61390 10.1016/j.ijpharm.2020.119333 10.1056/NEJMoa2028700 10.1016/j.mayocp.2020.05.030 10.1038/s41591-020-0868-6 10.1016/j.annonc.2021.01.074 10.3390/v12050513 10.1038/s41586-020-2012-7 10.1002/jev2.12050 10.3389/fnana.2020.00037 10.1038/s41467-020-18319-6 10.1021/acs.nanolett.0c02278 10.1016/S0140-6736(20)31022-9 10.1111/cas.13488 10.1038/s41587-020-0725-7 10.1038/s41582-020-0402-y 10.1016/j.gendis.2020.07.006 10.1016/j.bj.2020.06.003 10.1038/s41422-020-00450-0 10.1042/CS20200623 10.1016/S0140-6736(20)32656-8 10.1038/d41586-021-00650-7 10.1016/j.tibtech.2017.03.004 10.1016/j.cell.2020.04.004 |
ContentType | Journal Article |
Copyright | 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences |
Copyright_xml | – notice: 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences – notice: 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. – notice: 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.apsb.2021.09.004 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 2211-3843 |
EndPage | 1533 |
ExternalDocumentID | oai_doaj_org_article_0edaf2f3f2cb4702bb6ecd2b4a50fba0 PMC8427979 34522576 10_1016_j_apsb_2021_09_004 S2211383521003464 |
Genre | Journal Article |
GroupedDBID | --- --K -05 -0E -SE -S~ 0R~ 0SF 1~5 4.4 457 4G. 53G 5VR 5VS 6I. 7-5 92M 9D9 9DE AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABKZE ABMAC ACGFS ADBBV ADEZE ADRAZ AEXQZ AFUIB AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV CAJEE CAJUS CCEZO CIEJG DIK EBS EJD FDB GROUPED_DOAJ GX1 HH5 HYE HZ~ IPNFZ IXB JUIAU KQ8 M41 M48 NCXOZ O-L O9- OK1 Q-- Q-4 R-E RIG ROL RPM RT5 SES SSZ T8U U1F U1G U5E U5O XH2 ~NG AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-44472674248d0fc334237961c5f7a3b783caf45181a6fa4e8c85e64e7cb838c73 |
IEDL.DBID | DOA |
ISSN | 2211-3835 |
IngestDate | Wed Aug 27 01:25:13 EDT 2025 Thu Aug 21 18:20:44 EDT 2025 Thu Jul 10 22:18:16 EDT 2025 Thu Apr 03 07:02:40 EDT 2025 Thu Aug 14 00:21:03 EDT 2025 Thu Apr 24 23:13:18 EDT 2025 Thu Jul 20 20:11:22 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | EVs SDS Spike protein Extracellular vesicles Intranasal administration PAGE WB RIPA COVID-19 ACE2 BSA SARS-CoV-2 FBS Pseudovirus NTA RLU S protein TEM Neutralization FBS, fetal bovine serum S protein, spike protein WB, western blot SDS, sodium dodecyl sulfate NTA, nanoparticle tracking analysis RLU, relative luminescence units PAGE, polyacrylamide gel electrophoresis BSA, bovine albumin TEM, transmission electron microscope ACE2, angiotensin-converting enzyme 2 RIPA, radio immunoprecipitation assay EVs, extracellular vesicles |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-44472674248d0fc334237961c5f7a3b783caf45181a6fa4e8c85e64e7cb838c73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors made equal contributions to this work. |
ORCID | 0000-0001-7067-8915 |
OpenAccessLink | https://doaj.org/article/0edaf2f3f2cb4702bb6ecd2b4a50fba0 |
PMID | 34522576 |
PQID | 2572931921 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0edaf2f3f2cb4702bb6ecd2b4a50fba0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8427979 proquest_miscellaneous_2572931921 pubmed_primary_34522576 crossref_primary_10_1016_j_apsb_2021_09_004 crossref_citationtrail_10_1016_j_apsb_2021_09_004 elsevier_sciencedirect_doi_10_1016_j_apsb_2021_09_004 |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Acta pharmaceutica Sinica. B |
PublicationTitleAlternate | Acta Pharm Sin B |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Zamorano Cuervo, Grandvaux (bib9) 2020; 9 Conceicao, Forcina, Wiklander, Gupta, Nordin, Vrellaku (bib42) 2021; 266 Crawford, Eguia, Dingens, Loes, Malone, Wolf (bib21) 2020; 12 Gao, Monian, Pan, Zhang, Xiang, Jiang (bib26) 2016; 26 Samanta, Rajasingh, Drosos, Zhou, Dawn, Rajasingh (bib15) 2018; 39 Liu, Wang, Lv, Li (bib17) 2020; 583 De Virgiliis, Di Giovanni (bib32) 2020; 16 Ledford (bib36) 2021; 591 Huang, Tai, Hsu, Cheng, Hung, Chai (bib23) 2020; 43 Zipkin (bib19) 2020; 38 Hueso, Pouderoux, Pere, Beaumont, Raillon, Ader (bib37) 2020; 136 Yang, Petitjean, Koehler, Zhang, Dumitru, Chen (bib8) 2020; 11 Agyeman, Chin, Landersdorfer, Liew, Ofori-Asenso (bib45) 2020; 95 Wang, Zhang, Du, Du, Zhao, Jin (bib4) 2020; 395 Hu, Gao, He, Huang, Tang, Wang (bib22) 2020; 7 Sungnak, Huang, Becavin, Berg, Queen, Litvinukova (bib31) 2020; 26 Zhou, Yang, Wang, Hu, Zhang, Zhang (bib30) 2020; 579 Zhu, Li, Pang (bib11) 2021; 16 Rosas, Brau, Waters, Go, Hunter, Bhagani (bib6) 2021; 384 Syn, Wang, Chow, Lim, Goh (bib16) 2017; 35 Zhang, Honko, Zhou, Gong, Downs, Vasquez (bib40) 2020; 20 Cheng, Shi, Han, Smbatyan, Lenz, Zhang (bib27) 2018; 140 Soltani Zangbar, Gorji, Ghadiri (bib34) 2021; 58 Song, Gui, Wang, Xiang (bib29) 2018; 14 Zoufaly, Poglitsch, Aberle, Hoepler, Seitz, Traugott (bib38) 2020; 8 Wang, Yang, Duan, Liu, Jin, Long (bib10) 2021; 31 Inal (bib43) 2020; 134 DosSantos, Devalle, Aran, Capra, Roque, Coelho-Aguiar (bib33) 2020; 14 Liu, Ren, Li, Li, Zheng, Yang (bib14) 2021 Cathcart, Havenar-Daughton, Lempp, Ma, Schmid, Agostini (bib35) 2021 Yu, Hurley, Roberts, Chakrabortty, Enderle, Noerholm (bib41) 2021; 32 Zhu, Badawi, Pomeroy, Sutaria, Xie, Baek (bib28) 2017; 6 Krishnamurthy, Lockey, Kolliputi (bib39) 2021; 320 Hoffmann, Kleine-Weber, Schroeder, Kruger, Herrler, Erichsen (bib7) 2020; 181 Cocozza, Nevo, Piovesana, Lahaye, Buchrieser, Schwartz (bib44) 2020; 10 Monteil, Kwon, Prado, Hagelkrüys, Wimmer, Stahl (bib12) 2020; 181 Zhang, Wang, Bai, Wang, Zhu, Liu (bib25) 2018; 109 Singh, Ryan, Kredo, Chaplin, Fletcher (bib5) 2021; 2 bib1 Théry, Amigorena, Raposo, Clayton (bib20) 2006; 30 Weng, Li, Li, Shen, Zhu, Liang (bib2) 2021; 6 Huang, Huang, Wang, Li, Ren, Gu (bib3) 2021; 397 Wiklander, Brennan, Lotvall, Breakefield, El Andaloussi (bib18) 2019; 11 Haschke, Schuster, Poglitsch, Loibner, Salzberg, Bruggisser (bib13) 2013; 52 Thomas, Smart (bib24) 2005; 51 Hu (10.1016/j.apsb.2021.09.004_bib22) 2020; 7 Conceicao (10.1016/j.apsb.2021.09.004_bib42) 2021; 266 Cathcart (10.1016/j.apsb.2021.09.004_bib35) 2021 Cocozza (10.1016/j.apsb.2021.09.004_bib44) 2020; 10 Krishnamurthy (10.1016/j.apsb.2021.09.004_bib39) 2021; 320 Théry (10.1016/j.apsb.2021.09.004_bib20) 2006; 30 Zhu (10.1016/j.apsb.2021.09.004_bib11) 2021; 16 Thomas (10.1016/j.apsb.2021.09.004_bib24) 2005; 51 Monteil (10.1016/j.apsb.2021.09.004_bib12) 2020; 181 Huang (10.1016/j.apsb.2021.09.004_bib23) 2020; 43 Samanta (10.1016/j.apsb.2021.09.004_bib15) 2018; 39 Crawford (10.1016/j.apsb.2021.09.004_bib21) 2020; 12 Zhou (10.1016/j.apsb.2021.09.004_bib30) 2020; 579 Zhu (10.1016/j.apsb.2021.09.004_bib28) 2017; 6 Syn (10.1016/j.apsb.2021.09.004_bib16) 2017; 35 Soltani Zangbar (10.1016/j.apsb.2021.09.004_bib34) 2021; 58 Singh (10.1016/j.apsb.2021.09.004_bib5) 2021; 2 Weng (10.1016/j.apsb.2021.09.004_bib2) 2021; 6 Gao (10.1016/j.apsb.2021.09.004_bib26) 2016; 26 Song (10.1016/j.apsb.2021.09.004_bib29) 2018; 14 Zhang (10.1016/j.apsb.2021.09.004_bib25) 2018; 109 Hoffmann (10.1016/j.apsb.2021.09.004_bib7) 2020; 181 Liu (10.1016/j.apsb.2021.09.004_bib14) 2021 Inal (10.1016/j.apsb.2021.09.004_bib43) 2020; 134 Huang (10.1016/j.apsb.2021.09.004_bib3) 2021; 397 Wiklander (10.1016/j.apsb.2021.09.004_bib18) 2019; 11 Wang (10.1016/j.apsb.2021.09.004_bib10) 2021; 31 Haschke (10.1016/j.apsb.2021.09.004_bib13) 2013; 52 Wang (10.1016/j.apsb.2021.09.004_bib4) 2020; 395 Ledford (10.1016/j.apsb.2021.09.004_bib36) 2021; 591 Hueso (10.1016/j.apsb.2021.09.004_bib37) 2020; 136 Zamorano Cuervo (10.1016/j.apsb.2021.09.004_bib9) 2020; 9 Zhang (10.1016/j.apsb.2021.09.004_bib40) 2020; 20 Rosas (10.1016/j.apsb.2021.09.004_bib6) 2021; 384 Zoufaly (10.1016/j.apsb.2021.09.004_bib38) 2020; 8 Yu (10.1016/j.apsb.2021.09.004_bib41) 2021; 32 Cheng (10.1016/j.apsb.2021.09.004_bib27) 2018; 140 Agyeman (10.1016/j.apsb.2021.09.004_bib45) 2020; 95 Yang (10.1016/j.apsb.2021.09.004_bib8) 2020; 11 Sungnak (10.1016/j.apsb.2021.09.004_bib31) 2020; 26 De Virgiliis (10.1016/j.apsb.2021.09.004_bib32) 2020; 16 DosSantos (10.1016/j.apsb.2021.09.004_bib33) 2020; 14 Liu (10.1016/j.apsb.2021.09.004_bib17) 2020; 583 Zipkin (10.1016/j.apsb.2021.09.004_bib19) 2020; 38 |
References_xml | – volume: 583 start-page: 119333 year: 2020 ident: bib17 article-title: Exosomes: from garbage bins to translational medicine publication-title: Int J Pharm – volume: 39 start-page: 501 year: 2018 end-page: 513 ident: bib15 article-title: Exosomes: new molecular targets of diseases publication-title: Acta Pharmacol Sin – volume: 397 start-page: 220 year: 2021 end-page: 232 ident: bib3 article-title: 6-Month consequences of COVID-19 in patients discharged from hospital: a cohort study publication-title: Lancet – volume: 20 start-page: 5570 year: 2020 end-page: 5574 ident: bib40 article-title: Cellular nanosponges inhibit SARS-CoV-2 infectivity publication-title: Nano Lett – volume: 320 start-page: C279 year: 2021 end-page: C281 ident: bib39 article-title: Soluble ACE2 as a potential therapy for COVID-19 publication-title: Am J Physiol Cell Physiol – volume: 134 start-page: 1301 year: 2020 end-page: 1304 ident: bib43 article-title: Decoy ACE2-expressing extracellular vesicles that competitively bind SARS-CoV-2 as a possible COVID-19 therapy publication-title: Clin Sci – volume: 136 start-page: 2290 year: 2020 end-page: 2295 ident: bib37 article-title: Convalescent plasma therapy for B-cell-depleted patients with protracted COVID-19 publication-title: Blood – volume: 14 start-page: 37 year: 2020 ident: bib33 article-title: Neuromechanisms of SARS-CoV-2: a review publication-title: Front Neuroanat – volume: 9 start-page: e61390 year: 2020 ident: bib9 article-title: ACE2: evidence of role as entry receptor for SARS-CoV-2 and implications in comorbidities publication-title: Elife – volume: 58 start-page: 536 year: 2021 end-page: 549 ident: bib34 article-title: A Review on the neurological manifestations of COVID-19 infection: a mechanistic view publication-title: Mol Neurobiol – volume: 52 start-page: 783 year: 2013 end-page: 792 ident: bib13 article-title: Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects publication-title: Clin Pharmacokinet – volume: 2 year: 2021 ident: bib5 article-title: Chloroquine or hydroxychloroquine for prevention and treatment of COVID-19 publication-title: Cochrane Database Syst Rev – volume: 109 start-page: 629 year: 2018 end-page: 641 ident: bib25 article-title: Exosomes serve as nanoparticles to suppress tumor growth and angiogenesis in gastric cancer by delivering hepatocyte growth factor siRNA publication-title: Cancer Sci – volume: 26 start-page: 1021 year: 2016 end-page: 1032 ident: bib26 article-title: Ferroptosis is an autophagic cell death process publication-title: Cell Res – volume: 7 start-page: 551 year: 2020 end-page: 557 ident: bib22 article-title: Development of cell-based pseudovirus entry assay to identify potential viral entry inhibitors and neutralizing antibodies against SARS-CoV-2 publication-title: Genes Dis – volume: 579 start-page: 270 year: 2020 end-page: 273 ident: bib30 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature – volume: 8 start-page: 1154 year: 2020 end-page: 1158 ident: bib38 article-title: Human recombinant soluble ACE2 in severe COVID-19 publication-title: Lancet Respir Med – volume: 31 start-page: 17 year: 2021 end-page: 24 ident: bib10 article-title: Dalbavancin binds ACE2 to block its interaction with SARS-CoV-2 spike protein and is effective in inhibiting SARS-CoV-2 infection in animal models publication-title: Cell Res – volume: 51 start-page: 187 year: 2005 end-page: 200 ident: bib24 article-title: HEK293 cell line: a vehicle for the expression of recombinant proteins publication-title: J Pharmacol Toxicol Methods – volume: 181 year: 2020 ident: bib12 article-title: Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2 publication-title: Cell – volume: 140 start-page: 16413 year: 2018 end-page: 16417 ident: bib27 article-title: Reprogramming exosomes as nanoscale controllers of cellular immunity publication-title: J Am Chem Soc – volume: 26 start-page: 681 year: 2020 end-page: 687 ident: bib31 article-title: SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes publication-title: Nat Med – volume: 11 year: 2019 ident: bib18 article-title: Advances in therapeutic applications of extracellular vesicles publication-title: Sci Transl Med – volume: 384 start-page: 1503 year: 2021 end-page: 1516 ident: bib6 article-title: Tocilizumab in hospitalized patients with severe COVID-19 pneumonia publication-title: N Engl J Med – volume: 95 start-page: 1621 year: 2020 end-page: 1631 ident: bib45 article-title: Smell and taste dysfunction in patients with COVID-19: a systematic review and meta-analysis publication-title: Mayo Clin Proc – year: 2021 ident: bib14 article-title: The biology, function, and applications of exosomes in cancer publication-title: Acta Pharm Sin B – volume: 30 year: 2006 ident: bib20 article-title: Isolation and characterization of exosomes from cell culture supernatants and biological fluids publication-title: Curr Protoc Cell Biol – volume: 43 start-page: 375 year: 2020 end-page: 387 ident: bib23 article-title: Assessing the application of a pseudovirus system for emerging SARS-CoV-2 and re-emerging avian influenza virus H5 subtypes in vaccine development publication-title: Biomed J – volume: 16 start-page: 645 year: 2020 end-page: 652 ident: bib32 article-title: Lung innervation in the eye of a cytokine storm: neuroimmune interactions and COVID-19 publication-title: Nat Rev Neurol – volume: 11 start-page: 4541 year: 2020 ident: bib8 article-title: Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor publication-title: Nat Commun – volume: 6 start-page: 1324730 year: 2017 ident: bib28 article-title: Comprehensive toxicity and immunogenicity studies reveal minimal effects in mice following sustained dosing of extracellular vesicles derived from HEK293T cells publication-title: J Extracell Vesicles – volume: 591 start-page: 513 year: 2021 end-page: 514 ident: bib36 article-title: COVID antibody treatments show promise for preventing severe disease publication-title: Nature – volume: 6 start-page: 344 year: 2021 end-page: 346 ident: bib2 article-title: Gastrointestinal sequelae 90 days after discharge for COVID-19 publication-title: Lancet Gastroenterol Hepatol – year: 2021 ident: bib35 article-title: The dual function monoclonal antibodies VIR-7831 and VIR-7832 demonstrate potent publication-title: bioRxiv – volume: 10 start-page: e12050 year: 2020 ident: bib44 article-title: Extracellular vesicles containing ACE2 efficiently prevent infection by SARS-CoV-2 spike protein-containing virus publication-title: J Extracell Vesicles – volume: 395 start-page: 1569 year: 2020 end-page: 1578 ident: bib4 article-title: Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial publication-title: Lancet – ident: bib1 article-title: COVID-19 coronavirus pandemic – volume: 181 start-page: 271 year: 2020 end-page: 280 e8 ident: bib7 article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor publication-title: Cell – volume: 38 start-page: 1226 year: 2020 end-page: 1228 ident: bib19 article-title: Big pharma buys into exosomes for drug delivery publication-title: Nat Biotechnol – volume: 35 start-page: 665 year: 2017 end-page: 676 ident: bib16 article-title: Exosomes in cancer nanomedicine and immunotherapy: prospects and challenges publication-title: Trends Biotechnol – volume: 14 start-page: e1007236 year: 2018 ident: bib29 article-title: Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2 publication-title: PLoS Pathog – volume: 12 start-page: 513 year: 2020 ident: bib21 article-title: Protocol and reagents for pseudotyping lentiviral particles with SARS-CoV-2 spike protein for neutralization assays publication-title: Viruses – volume: 32 start-page: 466 year: 2021 end-page: 477 ident: bib41 article-title: Exosome-based liquid biopsies in cancer: opportunities and challenges publication-title: Ann Oncol – volume: 266 start-page: 120435 year: 2021 ident: bib42 article-title: Engineered extracellular vesicle decoy receptor-mediated modulation of the IL6 trans-signalling pathway in muscle publication-title: Biomaterials – volume: 16 start-page: 4 year: 2021 end-page: 23 ident: bib11 article-title: Recent insights for the emerging COVID-19: drug discovery, therapeutic options and vaccine development publication-title: Asian J Pharm Sci – volume: 30 year: 2006 ident: 10.1016/j.apsb.2021.09.004_bib20 article-title: Isolation and characterization of exosomes from cell culture supernatants and biological fluids publication-title: Curr Protoc Cell Biol doi: 10.1002/0471143030.cb0322s30 – volume: 6 start-page: 1324730 year: 2017 ident: 10.1016/j.apsb.2021.09.004_bib28 article-title: Comprehensive toxicity and immunogenicity studies reveal minimal effects in mice following sustained dosing of extracellular vesicles derived from HEK293T cells publication-title: J Extracell Vesicles doi: 10.1080/20013078.2017.1324730 – volume: 58 start-page: 536 year: 2021 ident: 10.1016/j.apsb.2021.09.004_bib34 article-title: A Review on the neurological manifestations of COVID-19 infection: a mechanistic view publication-title: Mol Neurobiol doi: 10.1007/s12035-020-02149-0 – volume: 6 start-page: 344 year: 2021 ident: 10.1016/j.apsb.2021.09.004_bib2 article-title: Gastrointestinal sequelae 90 days after discharge for COVID-19 publication-title: Lancet Gastroenterol Hepatol doi: 10.1016/S2468-1253(21)00076-5 – volume: 39 start-page: 501 year: 2018 ident: 10.1016/j.apsb.2021.09.004_bib15 article-title: Exosomes: new molecular targets of diseases publication-title: Acta Pharmacol Sin doi: 10.1038/aps.2017.162 – volume: 16 start-page: 4 year: 2021 ident: 10.1016/j.apsb.2021.09.004_bib11 article-title: Recent insights for the emerging COVID-19: drug discovery, therapeutic options and vaccine development publication-title: Asian J Pharm Sci – volume: 11 year: 2019 ident: 10.1016/j.apsb.2021.09.004_bib18 article-title: Advances in therapeutic applications of extracellular vesicles publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aav8521 – volume: 51 start-page: 187 year: 2005 ident: 10.1016/j.apsb.2021.09.004_bib24 article-title: HEK293 cell line: a vehicle for the expression of recombinant proteins publication-title: J Pharmacol Toxicol Methods doi: 10.1016/j.vascn.2004.08.014 – year: 2021 ident: 10.1016/j.apsb.2021.09.004_bib14 article-title: The biology, function, and applications of exosomes in cancer publication-title: Acta Pharm Sin B – volume: 26 start-page: 1021 year: 2016 ident: 10.1016/j.apsb.2021.09.004_bib26 article-title: Ferroptosis is an autophagic cell death process publication-title: Cell Res doi: 10.1038/cr.2016.95 – volume: 8 start-page: 1154 year: 2020 ident: 10.1016/j.apsb.2021.09.004_bib38 article-title: Human recombinant soluble ACE2 in severe COVID-19 publication-title: Lancet Respir Med doi: 10.1016/S2213-2600(20)30418-5 – volume: 266 start-page: 120435 year: 2021 ident: 10.1016/j.apsb.2021.09.004_bib42 article-title: Engineered extracellular vesicle decoy receptor-mediated modulation of the IL6 trans-signalling pathway in muscle publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.120435 – volume: 14 start-page: e1007236 year: 2018 ident: 10.1016/j.apsb.2021.09.004_bib29 article-title: Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2 publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1007236 – volume: 320 start-page: C279 year: 2021 ident: 10.1016/j.apsb.2021.09.004_bib39 article-title: Soluble ACE2 as a potential therapy for COVID-19 publication-title: Am J Physiol Cell Physiol doi: 10.1152/ajpcell.00478.2020 – volume: 52 start-page: 783 year: 2013 ident: 10.1016/j.apsb.2021.09.004_bib13 article-title: Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects publication-title: Clin Pharmacokinet doi: 10.1007/s40262-013-0072-7 – volume: 181 start-page: 271 year: 2020 ident: 10.1016/j.apsb.2021.09.004_bib7 article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor publication-title: Cell doi: 10.1016/j.cell.2020.02.052 – volume: 140 start-page: 16413 year: 2018 ident: 10.1016/j.apsb.2021.09.004_bib27 article-title: Reprogramming exosomes as nanoscale controllers of cellular immunity publication-title: J Am Chem Soc doi: 10.1021/jacs.8b10047 – volume: 136 start-page: 2290 year: 2020 ident: 10.1016/j.apsb.2021.09.004_bib37 article-title: Convalescent plasma therapy for B-cell-depleted patients with protracted COVID-19 publication-title: Blood doi: 10.1182/blood.2020008423 – volume: 9 start-page: e61390 year: 2020 ident: 10.1016/j.apsb.2021.09.004_bib9 article-title: ACE2: evidence of role as entry receptor for SARS-CoV-2 and implications in comorbidities publication-title: Elife doi: 10.7554/eLife.61390 – volume: 583 start-page: 119333 year: 2020 ident: 10.1016/j.apsb.2021.09.004_bib17 article-title: Exosomes: from garbage bins to translational medicine publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2020.119333 – volume: 384 start-page: 1503 year: 2021 ident: 10.1016/j.apsb.2021.09.004_bib6 article-title: Tocilizumab in hospitalized patients with severe COVID-19 pneumonia publication-title: N Engl J Med doi: 10.1056/NEJMoa2028700 – volume: 95 start-page: 1621 year: 2020 ident: 10.1016/j.apsb.2021.09.004_bib45 article-title: Smell and taste dysfunction in patients with COVID-19: a systematic review and meta-analysis publication-title: Mayo Clin Proc doi: 10.1016/j.mayocp.2020.05.030 – volume: 26 start-page: 681 year: 2020 ident: 10.1016/j.apsb.2021.09.004_bib31 article-title: SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes publication-title: Nat Med doi: 10.1038/s41591-020-0868-6 – volume: 32 start-page: 466 year: 2021 ident: 10.1016/j.apsb.2021.09.004_bib41 article-title: Exosome-based liquid biopsies in cancer: opportunities and challenges publication-title: Ann Oncol doi: 10.1016/j.annonc.2021.01.074 – volume: 12 start-page: 513 year: 2020 ident: 10.1016/j.apsb.2021.09.004_bib21 article-title: Protocol and reagents for pseudotyping lentiviral particles with SARS-CoV-2 spike protein for neutralization assays publication-title: Viruses doi: 10.3390/v12050513 – volume: 579 start-page: 270 year: 2020 ident: 10.1016/j.apsb.2021.09.004_bib30 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature doi: 10.1038/s41586-020-2012-7 – volume: 10 start-page: e12050 year: 2020 ident: 10.1016/j.apsb.2021.09.004_bib44 article-title: Extracellular vesicles containing ACE2 efficiently prevent infection by SARS-CoV-2 spike protein-containing virus publication-title: J Extracell Vesicles doi: 10.1002/jev2.12050 – volume: 14 start-page: 37 year: 2020 ident: 10.1016/j.apsb.2021.09.004_bib33 article-title: Neuromechanisms of SARS-CoV-2: a review publication-title: Front Neuroanat doi: 10.3389/fnana.2020.00037 – volume: 11 start-page: 4541 year: 2020 ident: 10.1016/j.apsb.2021.09.004_bib8 article-title: Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor publication-title: Nat Commun doi: 10.1038/s41467-020-18319-6 – volume: 20 start-page: 5570 year: 2020 ident: 10.1016/j.apsb.2021.09.004_bib40 article-title: Cellular nanosponges inhibit SARS-CoV-2 infectivity publication-title: Nano Lett doi: 10.1021/acs.nanolett.0c02278 – volume: 395 start-page: 1569 year: 2020 ident: 10.1016/j.apsb.2021.09.004_bib4 article-title: Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial publication-title: Lancet doi: 10.1016/S0140-6736(20)31022-9 – volume: 109 start-page: 629 year: 2018 ident: 10.1016/j.apsb.2021.09.004_bib25 article-title: Exosomes serve as nanoparticles to suppress tumor growth and angiogenesis in gastric cancer by delivering hepatocyte growth factor siRNA publication-title: Cancer Sci doi: 10.1111/cas.13488 – volume: 38 start-page: 1226 year: 2020 ident: 10.1016/j.apsb.2021.09.004_bib19 article-title: Big pharma buys into exosomes for drug delivery publication-title: Nat Biotechnol doi: 10.1038/s41587-020-0725-7 – year: 2021 ident: 10.1016/j.apsb.2021.09.004_bib35 article-title: The dual function monoclonal antibodies VIR-7831 and VIR-7832 demonstrate potent in vitro and in vivo activity against SARS-CoV-2 publication-title: bioRxiv – volume: 16 start-page: 645 year: 2020 ident: 10.1016/j.apsb.2021.09.004_bib32 article-title: Lung innervation in the eye of a cytokine storm: neuroimmune interactions and COVID-19 publication-title: Nat Rev Neurol doi: 10.1038/s41582-020-0402-y – volume: 7 start-page: 551 year: 2020 ident: 10.1016/j.apsb.2021.09.004_bib22 article-title: Development of cell-based pseudovirus entry assay to identify potential viral entry inhibitors and neutralizing antibodies against SARS-CoV-2 publication-title: Genes Dis doi: 10.1016/j.gendis.2020.07.006 – volume: 2 year: 2021 ident: 10.1016/j.apsb.2021.09.004_bib5 article-title: Chloroquine or hydroxychloroquine for prevention and treatment of COVID-19 publication-title: Cochrane Database Syst Rev – volume: 43 start-page: 375 year: 2020 ident: 10.1016/j.apsb.2021.09.004_bib23 article-title: Assessing the application of a pseudovirus system for emerging SARS-CoV-2 and re-emerging avian influenza virus H5 subtypes in vaccine development publication-title: Biomed J doi: 10.1016/j.bj.2020.06.003 – volume: 31 start-page: 17 year: 2021 ident: 10.1016/j.apsb.2021.09.004_bib10 article-title: Dalbavancin binds ACE2 to block its interaction with SARS-CoV-2 spike protein and is effective in inhibiting SARS-CoV-2 infection in animal models publication-title: Cell Res doi: 10.1038/s41422-020-00450-0 – volume: 134 start-page: 1301 year: 2020 ident: 10.1016/j.apsb.2021.09.004_bib43 article-title: Decoy ACE2-expressing extracellular vesicles that competitively bind SARS-CoV-2 as a possible COVID-19 therapy publication-title: Clin Sci doi: 10.1042/CS20200623 – volume: 397 start-page: 220 year: 2021 ident: 10.1016/j.apsb.2021.09.004_bib3 article-title: 6-Month consequences of COVID-19 in patients discharged from hospital: a cohort study publication-title: Lancet doi: 10.1016/S0140-6736(20)32656-8 – volume: 591 start-page: 513 year: 2021 ident: 10.1016/j.apsb.2021.09.004_bib36 article-title: COVID antibody treatments show promise for preventing severe disease publication-title: Nature doi: 10.1038/d41586-021-00650-7 – volume: 35 start-page: 665 year: 2017 ident: 10.1016/j.apsb.2021.09.004_bib16 article-title: Exosomes in cancer nanomedicine and immunotherapy: prospects and challenges publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2017.03.004 – volume: 181 year: 2020 ident: 10.1016/j.apsb.2021.09.004_bib12 article-title: Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2 publication-title: Cell doi: 10.1016/j.cell.2020.04.004 |
SSID | ssj0000602275 |
Score | 2.388759 |
Snippet | The spread of coronavirus disease 2019 (COVID-19) throughout the world has resulted in stressful healthcare burdens and global health crises. Developing an... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1523 |
SubjectTerms | ACE2 COVID-19 Extracellular vesicles Intranasal administration Neutralization Pseudovirus SARS-CoV-2 Short Communication Spike protein |
SummonAdditionalLinks | – databaseName: ScienceDirect Free and Delayed Access Titles dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhp15K33VfqFByacx6JdnSHjdLQughhG627E3omboEe1lnA_n31cjypm4hh15t2ZY9o3nI33yD0BdOgw_2JqSpPKwmBpS30FckZzOqSalE8BgRbXFRna_Yt3W5PkCLoRYGYJXJ9vc2PVrrdGSSvuZkU9eTJQm5C4UAYgokKxVwglImYhHf-mS_z1JUQJIHSEYYn8MFqXamh3mpTadDmkimke409Wsb_FOk8R-5qX_D0L_RlH-4p7Nn6GmKK_G8n_pzdOCaF-josiemvj_GVw91Vt0xPsKXD5TV9y_R6iKcgS2PvigTtx4v59-X-aL9kRO86dzOtnf1dtdhwMlf4_nilOQuURk6i4OF3yr4BwCgVnznugi2e4VWZ6dXi_M8NVzIDfQ1yBljnFQhWWbCFt5QYAfkQXSm9FxRzQU1yrMyBAWq8oo5YUTpKua40YIKw-lrdNi0jXuLsHKUlJaY0tqCwc_FaYh0bGVFMACEWJOh6fCZpUls5NAU40YOsLNfEkQjQTSymMkgmgx93V-z6bk4Hh19AtLbjwQe7Xig3V7LpEiycFZ54qknRjNeEK0rZyzRTJWF16rIUDnIXo7UMtyqfvThnwdFkWG9ggBU49pdJ4OJDBEWsNBl6E2vOPspUqC3DwlghvhIpUbvMD7T1D8jJ7hghM_47N1_zvc9ekKgriOC6z6gw9vtzn0M0dat_hSX029J9CaX priority: 102 providerName: Elsevier – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqcuGCeBOgyEioFxqUtZ04e6iqZdWqQqKqaBf1ZvlZFlXJknQr9t93Jo9dAlVPXPNwYo_H803y-RtCPkgOMThYSFMleJNAyVusKxKLMTcs1TlEjIZtcZIdz8SXi_Rii_TljroBrO9M7bCe1Ky6-vT71-oAHH5_w9XSi9pArsdGjWYpyoM-gMgk0VG_dnC_XZlRMA9ZjYyheh-gj24fzd3NDGJVI-k_CFn_QtK_mZV_hKqjx-RRhzHppJ0UT8iWL56S3dNWpHq1R883e67qPbpLTzfy1atnZHYCZ_DzR7tBk5aBnk2-ncXT8nvM6KL2S1fezKtlTZEzf0kn00MW-07W0DsKq32l8X8AElzpja8b4t1zMjs6PJ8ex13xhdhijYNYCCFZBomzyF0SLEelQAlmtGmQmhuZc6uDSAEg6Cxo4XObpz4TXlqT89xK_oJsF2XhXxGqPWepYzZ1LhH4o3EEqMdlLofFgDFnIzLqh1nZTpkcC2RcqZ6C9lOhaRSaRiVjBaaJyMf1PYtWl-Peqz-j9dZXoqZ2c6CsLlXnoirxTgcWeGDWCJkwYzJvHTNCp0kwOolI2ttedfCkhR3Q1Pzeh7_vJ4oC30UD6MKXy1rBcgloCxXpIvKynTjrV-QodQ_JYETkYEoN-jA8U8x_NPrguWByLMev_0en35CHDDd8NKy7t2T7ulr6HYBh1-Zd41u36PUvtw priority: 102 providerName: Scholars Portal |
Title | Neutralization of SARS-CoV-2 pseudovirus using ACE2-engineered extracellular vesicles |
URI | https://dx.doi.org/10.1016/j.apsb.2021.09.004 https://www.ncbi.nlm.nih.gov/pubmed/34522576 https://www.proquest.com/docview/2572931921 https://pubmed.ncbi.nlm.nih.gov/PMC8427979 https://doaj.org/article/0edaf2f3f2cb4702bb6ecd2b4a50fba0 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQb8JLRkK90Iis7cTe43bVqoCoCu2ivVl-wiKUrDbdSv33zMTJdhekcuHiQ97OjD3fJJ-_IeSt5BCDo4M0VcJoEih5i3VFcjHmlpVGQcTo2Ban1clMfJyX861SX8gJS_LA6cW9L4I3kUUembNCFszaKjjPrDBlEa3psnWIeVvJVJqDURoP-YuMoU4f4Ix-xUwid5llayE5ZKNO5LSv0jZEpU68fyc4_Q0-_-RQbgWl4_vkXo8m6ST14gG5E-qHZP8syVFfH9CLm9VV7QHdp2c3QtXXj8jsFPbgh460FJM2kZ5Pvp7n0-ZbzuiyDWvfXC1W65YiO_47nUyPWB56AcPgKczrK4Nf_pHKSq9C21HsHpPZ8dHF9CTvyyzkDqsZ5EIIySpIkYXyRXQcNQElGMyVURpupeLORFECFDBVNCIop8pQiSCdVVw5yZ-QvbqpwzNCTeCs9MyV3hcCfymOAN_4yisY9ox5l5HR8Jq16zXIsRTGLz2QzX5qNI1G0-hirME0GXm3OWeZFDhuPfoQrbc5EtWzuw3gU7r3Kf0vn8pIOdhe90AkAQy41OLWm78ZHEXDKEUDmDo061bDxAi4CrXnMvI0Oc7mETmK2kPalxG541I7fdjdUy9-dErgSjA5luPn_6PTL8hdhks7On7dS7J3uVqHVwC4Lu3rbmxB-2F-CO2nLwraz0L9BhgiKy8 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VcoAL4l3zXCTUC7Xi7K69zjGNWqVQoookKLfVeh_FCNlR3FTqv2fGjxSD1ANX22uvPbPzWH_zDSEfJQcf7A2kqRJWk0DKW-wrEooRz1isU_AYNdpilkyX4vMqXu2RSVcLg7DK1vY3Nr221u2RQfs1B-s8H8wZ5C4cA4ghkqwk4h65D9GAxP4NZ6vj3UZLlCBLHkIZcUCII9rimQbnpddVBnkiG9Z8p23Dts5B1Tz-PT_1bxz6N5zyD_90-pg8agNLOm7m_oTsueIpObxomKlvjujittCqOqKH9OKWs_rmGVnO4AzueTRVmbT0dD7-Ng8n5feQ0XXltra8zjfbiiJQ_pKOJycsdC2XobMUTPxG408ARLXSa1fVaLvnZHl6sphMw7bjQmiwsUEohJAsgWxZpDbyhiM9oATZmdhLzTOZcqO9iCEq0InXwqUmjV0inDRZylMj-QuyX5SFOyBUO85iy0xsbSTw7-IQQh2b2BQsAGPWBGTYfWZlWjpy7IrxS3W4s58KRaNQNCoaKRBNQD7txqwbMo47rz5G6e2uRCLt-kC5uVStJqnIWe2Z556ZTMiIZVnijGWZ0HHkMx0FJO5kr3p6CbfK73z4h05RFCxYFIAuXLmtFNhICLGQhi4gLxvF2U2RI789ZIABkT2V6r1D_0yR_6hJwVPB5EiOXv3nfN-TB9PF13N1fjb78po8ZFjkUSPt3pD9q83WvYXQ6yp7Vy-t3w_BKbY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neutralization+of+SARS-CoV-2+pseudovirus+using+ACE2-engineered+extracellular+vesicles&rft.jtitle=Acta+pharmaceutica+Sinica.+B&rft.au=Canhao+Wu&rft.au=Qin+Xu&rft.au=Huiyuan+Wang&rft.au=Bin+Tu&rft.date=2022-03-01&rft.pub=Elsevier&rft.issn=2211-3835&rft.volume=12&rft.issue=3&rft.spage=1523&rft.epage=1533&rft_id=info:doi/10.1016%2Fj.apsb.2021.09.004&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0edaf2f3f2cb4702bb6ecd2b4a50fba0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3835&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3835&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3835&client=summon |