Optimized protocol to isolate primary mouse peritoneal macrophage metabolites

Peritoneal macrophages (PMs) have been shown to have higher stability compared to other macrophage subtypes. However, obtaining enough PMs from a single mouse is often a limitation for metabolomics analysis. Here, we describe a protocol to isolate metabolites from a small number of mouse primary PMs...

Full description

Saved in:
Bibliographic Details
Published inSTAR protocols Vol. 3; no. 4; p. 101668
Main Authors De Jesus, Adam, Pusec, Carolina M., Nguyen, Tivoli, Keyhani-Nejad, Farnaz, Gao, Peng, Weinberg, Samuel E., Ardehali, Hossein
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 16.12.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Peritoneal macrophages (PMs) have been shown to have higher stability compared to other macrophage subtypes. However, obtaining enough PMs from a single mouse is often a limitation for metabolomics analysis. Here, we describe a protocol to isolate metabolites from a small number of mouse primary PMs for 13C-stable glucose tracing and metabolomics. Our protocol uses X for metabolite extraction instead of methanol. Our protocol can consistently extract metabolites from low cell number samples with fewer steps than methanol-based approaches. For complete details on the use and execution of this protocol, please refer to De Jesus et al., (2022). [Display omitted] •Streamlined isolation of murine peritoneal macrophages•Efficient metabolite extraction of limited sample amount•Detection of carbon-labeled polar metabolites from small sample size•Protocol applied to mouse primary PMs, but applicable to other cell types Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics. Peritoneal macrophages (PMs) have been shown to have higher stability compared to other macrophage subtypes. However, obtaining enough PMs from a single mouse is often a limitation for metabolomics analysis. Here, we describe a protocol to isolate metabolites from a small number of mouse primary PMs for 13C-stable glucose tracing and metabolomics. Our protocol uses X for metabolite extraction instead of methanol. Our protocol can consistently extract metabolites from low cell number samples with fewer steps than methanol-based approaches.
AbstractList Peritoneal macrophages (PMs) have been shown to have higher stability compared to other macrophage subtypes. However, obtaining enough PMs from a single mouse is often a limitation for metabolomics analysis. Here, we describe a protocol to isolate metabolites from a small number of mouse primary PMs for 13C-stable glucose tracing and metabolomics. Our protocol uses X for metabolite extraction instead of methanol. Our protocol can consistently extract metabolites from low cell number samples with fewer steps than methanol-based approaches. For complete details on the use and execution of this protocol, please refer to De Jesus et al., (2022). [Display omitted] •Streamlined isolation of murine peritoneal macrophages•Efficient metabolite extraction of limited sample amount•Detection of carbon-labeled polar metabolites from small sample size•Protocol applied to mouse primary PMs, but applicable to other cell types Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics. Peritoneal macrophages (PMs) have been shown to have higher stability compared to other macrophage subtypes. However, obtaining enough PMs from a single mouse is often a limitation for metabolomics analysis. Here, we describe a protocol to isolate metabolites from a small number of mouse primary PMs for 13C-stable glucose tracing and metabolomics. Our protocol uses X for metabolite extraction instead of methanol. Our protocol can consistently extract metabolites from low cell number samples with fewer steps than methanol-based approaches.
Peritoneal macrophages (PMs) have been shown to have higher stability compared to other macrophage subtypes. However, obtaining enough PMs from a single mouse is often a limitation for metabolomics analysis. Here, we describe a protocol to isolate metabolites from a small number of mouse primary PMs for 13C-stable glucose tracing and metabolomics. Our protocol uses X for metabolite extraction instead of methanol. Our protocol can consistently extract metabolites from low cell number samples with fewer steps than methanol-based approaches.For complete details on the use and execution of this protocol, please refer to De Jesus et al., (2022). : Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Peritoneal macrophages (PMs) have been shown to have higher stability compared to other macrophage subtypes. However, obtaining enough PMs from a single mouse is often a limitation for metabolomics analysis. Here, we describe a protocol to isolate metabolites from a small number of mouse primary PMs for 13C-stable glucose tracing and metabolomics. Our protocol uses X for metabolite extraction instead of methanol. Our protocol can consistently extract metabolites from low cell number samples with fewer steps than methanol-based approaches. For complete details on the use and execution of this protocol, please refer to De Jesus et al., (2022).
Peritoneal macrophages (PMs) have been shown to have higher stability compared to other macrophage subtypes. However, obtaining enough PMs from a single mouse is often a limitation for metabolomics analysis. Here, we describe a protocol to isolate metabolites from a small number of mouse primary PMs for 13C-stable glucose tracing and metabolomics. Our protocol uses X for metabolite extraction instead of methanol. Our protocol can consistently extract metabolites from low cell number samples with fewer steps than methanol-based approaches. For complete details on the use and execution of this protocol, please refer to De Jesus et al., (2022).Peritoneal macrophages (PMs) have been shown to have higher stability compared to other macrophage subtypes. However, obtaining enough PMs from a single mouse is often a limitation for metabolomics analysis. Here, we describe a protocol to isolate metabolites from a small number of mouse primary PMs for 13C-stable glucose tracing and metabolomics. Our protocol uses X for metabolite extraction instead of methanol. Our protocol can consistently extract metabolites from low cell number samples with fewer steps than methanol-based approaches. For complete details on the use and execution of this protocol, please refer to De Jesus et al., (2022).
Peritoneal macrophages (PMs) have been shown to have higher stability compared to other macrophage subtypes. However, obtaining enough PMs from a single mouse is often a limitation for metabolomics analysis. Here, we describe a protocol to isolate metabolites from a small number of mouse primary PMs for 13C-stable glucose tracing and metabolomics. Our protocol uses X for metabolite extraction instead of methanol. Our protocol can consistently extract metabolites from low cell number samples with fewer steps than methanol-based approaches. For complete details on the use and execution of this protocol, please refer to De Jesus et al., (2022 ). • Streamlined isolation of murine peritoneal macrophages • Efficient metabolite extraction of limited sample amount • Detection of carbon-labeled polar metabolites from small sample size • Protocol applied to mouse primary PMs, but applicable to other cell types Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics. Peritoneal macrophages (PMs) have been shown to have higher stability compared to other macrophage subtypes. However, obtaining enough PMs from a single mouse is often a limitation for metabolomics analysis. Here, we describe a protocol to isolate metabolites from a small number of mouse primary PMs for 13C-stable glucose tracing and metabolomics. Our protocol uses X for metabolite extraction instead of methanol. Our protocol can consistently extract metabolites from low cell number samples with fewer steps than methanol-based approaches.
ArticleNumber 101668
Author Nguyen, Tivoli
Weinberg, Samuel E.
Pusec, Carolina M.
Keyhani-Nejad, Farnaz
Gao, Peng
Ardehali, Hossein
De Jesus, Adam
Author_xml – sequence: 1
  givenname: Adam
  orcidid: 0000-0002-7491-4732
  surname: De Jesus
  fullname: De Jesus, Adam
  organization: Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
– sequence: 2
  givenname: Carolina M.
  surname: Pusec
  fullname: Pusec, Carolina M.
  organization: Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
– sequence: 3
  givenname: Tivoli
  surname: Nguyen
  fullname: Nguyen, Tivoli
  organization: Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
– sequence: 4
  givenname: Farnaz
  surname: Keyhani-Nejad
  fullname: Keyhani-Nejad, Farnaz
  organization: Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
– sequence: 5
  givenname: Peng
  surname: Gao
  fullname: Gao, Peng
  organization: Robert H. Lurie Cancer Center Metabolomics Core, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
– sequence: 6
  givenname: Samuel E.
  surname: Weinberg
  fullname: Weinberg, Samuel E.
  email: samuel.weinberg@nm.org
  organization: Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
– sequence: 7
  givenname: Hossein
  orcidid: 0000-0002-7662-0551
  surname: Ardehali
  fullname: Ardehali, Hossein
  email: h-ardehali@northwestern.edu
  organization: Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36103306$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9vEzEQxS1UREvpF-CA9sglwf9ieyWEhKoWKhX10rs1651NHXnXwXYq4NPjdEPVcujJ9vi934zmvSVHU5yQkPeMLhll6tNm-Wub4pJTzh8KyrwiJ1wptah3ffTkfkzOct5QSvmKccnMG3IsFKNCUHVCftxsix_9H-ybiivRxdCU2PgcAxSsNT9C-t2McZfrC5MvdQwIzQguxe0drLEZsUAXgy-Y35HXA4SMZ4fzlNxeXtyef19c33y7Ov96vXArzspCci17iQOYgQrjWqmkBqpAG9a2mg5OKj0wzg0fulYAtrodeK9Nv8KeaiVOydWM7SNs7GFGG8Hbh0JMawupeBfQms45QcE5zlCiMR13AxeghBEAGnRlfZlZ2103Yu9wKgnCM-jzn8nf2XW8t600QkleAR8PgBR_7jAXO_rsMASYsG7Ncs2kaJnQtEo_PO312ORfHFXAZ0Fdbs4Jh0cJo3afst3Yfex2H7udY68m85_J-QLFx_28Prxs_TxbsYZ17zHZ7DxODnuf0JW6Tv-S_S-e58nC
CitedBy_id crossref_primary_10_1161_CIRCRESAHA_124_325023
crossref_primary_10_20473_ijtid_v11i1_42672
crossref_primary_10_1016_j_intimp_2024_112121
crossref_primary_10_1016_j_ijbiomac_2024_139353
crossref_primary_10_1016_j_ejphar_2024_176852
crossref_primary_10_1038_s44319_024_00288_2
crossref_primary_10_1016_j_intimp_2024_112829
Cites_doi 10.3390/metabo10090338
10.7554/eLife.61980
10.1002/cpbi.86
10.1016/j.cell.2018.03.055
10.1016/j.molcel.2022.02.028
ContentType Journal Article
Copyright 2022 The Authors
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
2022 The Authors 2022
Copyright_xml – notice: 2022 The Authors
– notice: Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2022 The Authors 2022
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1016/j.xpro.2022.101668
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2666-1667
ExternalDocumentID oai_doaj_org_article_8bcc30acc21e4e88b2cf23a6383aa7a7
PMC9483642
36103306
10_1016_j_xpro_2022_101668
S2666166722005482
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL140973
– fundername: NHLBI NIH HHS
  grantid: R01 HL127646
– fundername: NHLBI NIH HHS
  grantid: R01 HL140927
– fundername: NHLBI NIH HHS
  grantid: F31 HL132552
– fundername: NHLBI NIH HHS
  grantid: R01 HL138982
– fundername: NHLBI NIH HHS
  grantid: R01 HL155953
GroupedDBID 0R~
53G
6I.
AAEDW
AAFTH
AALRI
AAMRU
AAXUO
ADVLN
AEXQZ
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
RPM
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-4274d4efa8f038c94647a06a7819970fc467f12282fb93ae979f2d78d5ed0763
IEDL.DBID DOA
ISSN 2666-1667
IngestDate Wed Aug 27 00:55:25 EDT 2025
Thu Aug 21 18:39:09 EDT 2025
Fri Jul 11 05:48:13 EDT 2025
Thu Jan 02 22:54:43 EST 2025
Thu Apr 24 23:00:51 EDT 2025
Tue Jul 01 01:14:30 EDT 2025
Tue Dec 03 03:44:38 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Metabolomics
Immunology
Metabolism
Cell isolation
Mass spectrometry
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-4274d4efa8f038c94647a06a7819970fc467f12282fb93ae979f2d78d5ed0763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Technical contact
Lead contact
ORCID 0000-0002-7662-0551
0000-0002-7491-4732
OpenAccessLink https://doaj.org/article/8bcc30acc21e4e88b2cf23a6383aa7a7
PMID 36103306
PQID 2714391370
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_8bcc30acc21e4e88b2cf23a6383aa7a7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9483642
proquest_miscellaneous_2714391370
pubmed_primary_36103306
crossref_primary_10_1016_j_xpro_2022_101668
crossref_citationtrail_10_1016_j_xpro_2022_101668
elsevier_sciencedirect_doi_10_1016_j_xpro_2022_101668
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-16
PublicationDateYYYYMMDD 2022-12-16
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-16
  day: 16
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle STAR protocols
PublicationTitleAlternate STAR Protoc
PublicationYear 2022
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Pineda-Torra, Gage, de Juan, Pello (bib4) 2015
Zhang, Goncalves, Mosser (bib6) 2008; 83
Villaret-Cazadamont, Poupin, Tournadre, Batut, Gales, Zalko, Cabaton, Bellvert, Bertrand-Michel (bib5) 2020; 10
Jang, Chen, Rabinowitz (bib3) 2018; 173
Chong, Wishart, Xia (bib7) 2019; 68
DeVilbiss, Zhao, Martin-Sandoval, Ubellacker, Tasdogan, Agathocleous, Mathews, Morrison (bib2) 2021; 10
De Jesus, Keyhani-Nejad, Pusec, Goodman, Geier, Stoolman, Stanczyk, Nguyen, Xu, Suresh (bib1) 2022; 82
De Jesus (10.1016/j.xpro.2022.101668_bib1) 2022; 82
Villaret-Cazadamont (10.1016/j.xpro.2022.101668_bib5) 2020; 10
Zhang (10.1016/j.xpro.2022.101668_bib6) 2008; 83
Jang (10.1016/j.xpro.2022.101668_bib3) 2018; 173
Chong (10.1016/j.xpro.2022.101668_bib7) 2019; 68
Pineda-Torra (10.1016/j.xpro.2022.101668_bib4) 2015
DeVilbiss (10.1016/j.xpro.2022.101668_bib2) 2021; 10
References_xml – volume: 173
  start-page: 822
  year: 2018
  end-page: 837
  ident: bib3
  article-title: Metabolomics and isotope tracing
  publication-title: Cell
– volume: 83
  start-page: 14-11.11
  year: 2008
  end-page: 14.11.14
  ident: bib6
  article-title: The isolation and characterization of murine macrophages
  publication-title: Curr. Protoc. Im.
– volume: 10
  start-page: 338
  year: 2020
  ident: bib5
  article-title: An optimized dual extraction method for the simultaneous and accurate analysis of polar metabolites and lipids carried out on single biological samples
  publication-title: Metabolites
– volume: 82
  start-page: 1261
  year: 2022
  end-page: 1277.e9
  ident: bib1
  article-title: Hexokinase 1 cellular localization regulates the metabolic fate of glucose
  publication-title: Mol. Cell
– volume: 10
  start-page: e61980
  year: 2021
  ident: bib2
  article-title: Metabolomic profiling of rare cell populations isolated by flow cytometry from tissues
  publication-title: Elife
– volume: 68
  start-page: e86
  year: 2019
  ident: bib7
  article-title: Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis
  publication-title: Current Protocols in Bioinformatics
– start-page: 101
  year: 2015
  end-page: 109
  ident: bib4
  article-title: Isolation, culture, and polarization of murine bone marrow-derived and peritoneal macrophages
  publication-title: Methods in Mouse Atherosclerosis
– volume: 10
  start-page: 338
  year: 2020
  ident: 10.1016/j.xpro.2022.101668_bib5
  article-title: An optimized dual extraction method for the simultaneous and accurate analysis of polar metabolites and lipids carried out on single biological samples
  publication-title: Metabolites
  doi: 10.3390/metabo10090338
– volume: 10
  start-page: e61980
  year: 2021
  ident: 10.1016/j.xpro.2022.101668_bib2
  article-title: Metabolomic profiling of rare cell populations isolated by flow cytometry from tissues
  publication-title: Elife
  doi: 10.7554/eLife.61980
– start-page: 101
  year: 2015
  ident: 10.1016/j.xpro.2022.101668_bib4
  article-title: Isolation, culture, and polarization of murine bone marrow-derived and peritoneal macrophages
– volume: 83
  start-page: 14-11.11
  year: 2008
  ident: 10.1016/j.xpro.2022.101668_bib6
  article-title: The isolation and characterization of murine macrophages
  publication-title: Curr. Protoc. Im.
– volume: 68
  start-page: e86
  year: 2019
  ident: 10.1016/j.xpro.2022.101668_bib7
  article-title: Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis
  publication-title: Current Protocols in Bioinformatics
  doi: 10.1002/cpbi.86
– volume: 173
  start-page: 822
  year: 2018
  ident: 10.1016/j.xpro.2022.101668_bib3
  article-title: Metabolomics and isotope tracing
  publication-title: Cell
  doi: 10.1016/j.cell.2018.03.055
– volume: 82
  start-page: 1261
  year: 2022
  ident: 10.1016/j.xpro.2022.101668_bib1
  article-title: Hexokinase 1 cellular localization regulates the metabolic fate of glucose
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2022.02.028
SSID ssj0002512418
Score 2.28223
Snippet Peritoneal macrophages (PMs) have been shown to have higher stability compared to other macrophage subtypes. However, obtaining enough PMs from a single mouse...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 101668
SubjectTerms Animals
Cell isolation
Glucose
Immunology
Macrophages, Peritoneal
Mass spectrometry
Metabolism
Metabolomics
Metabolomics - methods
Methanol
Mice
Protocol
Title Optimized protocol to isolate primary mouse peritoneal macrophage metabolites
URI https://dx.doi.org/10.1016/j.xpro.2022.101668
https://www.ncbi.nlm.nih.gov/pubmed/36103306
https://www.proquest.com/docview/2714391370
https://pubmed.ncbi.nlm.nih.gov/PMC9483642
https://doaj.org/article/8bcc30acc21e4e88b2cf23a6383aa7a7
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-ykxdR_Kofo4I3KTYfS9qjimMI08uE3UKaJmziOtAJ4l_ve2k3OoV58TJo1jV7H3kf6cvvEXKpFDdGZXmibFomopA0gTTCJSAPS2WJeMi4Dzl8lINn8TDujVutvrAmrIYHrhl3nRXW8tRYy6gTLssKZj3jBtQGJzHhHDn4vFYyhTYYvbYIm3vggGRCpVTNiZm6uOsTzBMkh4yFAcRZbXmlAN6_5px-B58_ayhbTqm_S3aaaDK-qanYI1uu2ifDJzADs-mXK2NEYZiDqOPFPJ6ClkFgCWMBXyLGnB-uQAMRjxueMjPYzmsCBiaeuQUoBx5Pfj8go_796G6QNF0TEovNCRIBeWYpnDeZT3lmcyGFMqkEgWBNSeotmEZPGaRavsi5cbnKPStVVvZcmYK1OSSdCqY9JrH0BeeKWiq8ELaXGvgsrRKe5YxKxiJCl0zTtkEUx8YWr3pZOvaikdEaGa1rRkfkavWbht6Nd9-iLFZ3IhZ2GAAN0Y2G6L80JCK9pSR1E1bU4QI8arpx8oul2DWsOXyRYioHstEMm8bnlKs0Ike1Gqz-Iod4lEMeFhG1piBrNKx_U00nAdc7F7gy2Ml_EH1KtpEULLyh8ox0Fm8f7hzCp0XRDSulG_a1vgElBxkk
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+protocol+to+isolate+primary+mouse+peritoneal+macrophage+metabolites&rft.jtitle=STAR+protocols&rft.au=De+Jesus%2C+Adam&rft.au=Pusec%2C+Carolina+M.&rft.au=Nguyen%2C+Tivoli&rft.au=Keyhani-Nejad%2C+Farnaz&rft.date=2022-12-16&rft.issn=2666-1667&rft.eissn=2666-1667&rft.volume=3&rft.issue=4&rft.spage=101668&rft_id=info:doi/10.1016%2Fj.xpro.2022.101668&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_xpro_2022_101668
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-1667&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-1667&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-1667&client=summon