A fully automated deep learning-based network for detecting COVID-19 from a new and large lung CT scan dataset

[Display omitted] •We introduce and share a new and large dataset of original CT scans.•We introduce a fully automated system for detecting COVID-19 cases that acts with high accuracy and speed.•We propose a new architecture to improve the classification accuracy of images containing important objec...

Full description

Saved in:
Bibliographic Details
Published inBiomedical signal processing and control Vol. 68; p. 102588
Main Authors Rahimzadeh, Mohammad, Attar, Abolfazl, Sakhaei, Seyed Mohammad
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •We introduce and share a new and large dataset of original CT scans.•We introduce a fully automated system for detecting COVID-19 cases that acts with high accuracy and speed.•We propose a new architecture to improve the classification accuracy of images containing important objects in various scales (especially in small scales), which has shown very good improvement.•We evaluated our model in two ways: one based on single-image classification (tested on more than 7,996 images) and the other one for evaluating the automated diagnosis system (tested on 235 patients and 41,892 images).•We have segmented the infection areas of the CT scan images. This paper aims to propose a high-speed and accurate fully-automated method to detect COVID-19 from the patient's chest CT scan images. We introduce a new dataset that contains 48,260 CT scan images from 282 normal persons and 15,589 images from 95 patients with COVID-19 infections. At the first stage, this system runs our proposed image processing algorithm that analyzes the view of the lung to discard those CT images that inside the lung is not properly visible in them. This action helps to reduce the processing time and false detections. At the next stage, we introduce a novel architecture for improving the classification accuracy of convolutional networks on images containing small important objects. Our architecture applies a new feature pyramid network designed for classification problems to the ResNet50V2 model so the model becomes able to investigate different resolutions of the image and do not lose the data of small objects. As the infections of COVID-19 exist in various scales, especially many of them are tiny, using our method helps to increase the classification performance remarkably. After running these two phases, the system determines the condition of the patient using a selected threshold. We are the first to evaluate our system in two different ways on Xception, ResNet50V2, and our model. In the single image classification stage, our model achieved 98.49% accuracy on more than 7996 test images. At the patient condition identification phase, the system correctly identified almost 234 of 245 patients with high speed. Our dataset is accessible at https://github.com/mr7495/COVID-CTset.
AbstractList This paper aims to propose a high-speed and accurate fully-automated method to detect COVID-19 from the patient's chest CT scan images. We introduce a new dataset that contains 48,260 CT scan images from 282 normal persons and 15,589 images from 95 patients with COVID-19 infections. At the first stage, this system runs our proposed image processing algorithm that analyzes the view of the lung to discard those CT images that inside the lung is not properly visible in them. This action helps to reduce the processing time and false detections. At the next stage, we introduce a novel architecture for improving the classification accuracy of convolutional networks on images containing small important objects. Our architecture applies a new feature pyramid network designed for classification problems to the ResNet50V2 model so the model becomes able to investigate different resolutions of the image and do not lose the data of small objects. As the infections of COVID-19 exist in various scales, especially many of them are tiny, using our method helps to increase the classification performance remarkably. After running these two phases, the system determines the condition of the patient using a selected threshold. We are the first to evaluate our system in two different ways on Xception, ResNet50V2, and our model. In the single image classification stage, our model achieved 98.49% accuracy on more than 7996 test images. At the patient condition identification phase, the system correctly identified almost 234 of 245 patients with high speed. Our dataset is accessible at https://github.com/mr7495/COVID-CTset .
[Display omitted] •We introduce and share a new and large dataset of original CT scans.•We introduce a fully automated system for detecting COVID-19 cases that acts with high accuracy and speed.•We propose a new architecture to improve the classification accuracy of images containing important objects in various scales (especially in small scales), which has shown very good improvement.•We evaluated our model in two ways: one based on single-image classification (tested on more than 7,996 images) and the other one for evaluating the automated diagnosis system (tested on 235 patients and 41,892 images).•We have segmented the infection areas of the CT scan images. This paper aims to propose a high-speed and accurate fully-automated method to detect COVID-19 from the patient's chest CT scan images. We introduce a new dataset that contains 48,260 CT scan images from 282 normal persons and 15,589 images from 95 patients with COVID-19 infections. At the first stage, this system runs our proposed image processing algorithm that analyzes the view of the lung to discard those CT images that inside the lung is not properly visible in them. This action helps to reduce the processing time and false detections. At the next stage, we introduce a novel architecture for improving the classification accuracy of convolutional networks on images containing small important objects. Our architecture applies a new feature pyramid network designed for classification problems to the ResNet50V2 model so the model becomes able to investigate different resolutions of the image and do not lose the data of small objects. As the infections of COVID-19 exist in various scales, especially many of them are tiny, using our method helps to increase the classification performance remarkably. After running these two phases, the system determines the condition of the patient using a selected threshold. We are the first to evaluate our system in two different ways on Xception, ResNet50V2, and our model. In the single image classification stage, our model achieved 98.49% accuracy on more than 7996 test images. At the patient condition identification phase, the system correctly identified almost 234 of 245 patients with high speed. Our dataset is accessible at https://github.com/mr7495/COVID-CTset.
This paper aims to propose a high-speed and accurate fully-automated method to detect COVID-19 from the patient's chest CT scan images. We introduce a new dataset that contains 48,260 CT scan images from 282 normal persons and 15,589 images from 95 patients with COVID-19 infections. At the first stage, this system runs our proposed image processing algorithm that analyzes the view of the lung to discard those CT images that inside the lung is not properly visible in them. This action helps to reduce the processing time and false detections. At the next stage, we introduce a novel architecture for improving the classification accuracy of convolutional networks on images containing small important objects. Our architecture applies a new feature pyramid network designed for classification problems to the ResNet50V2 model so the model becomes able to investigate different resolutions of the image and do not lose the data of small objects. As the infections of COVID-19 exist in various scales, especially many of them are tiny, using our method helps to increase the classification performance remarkably. After running these two phases, the system determines the condition of the patient using a selected threshold. We are the first to evaluate our system in two different ways on Xception, ResNet50V2, and our model. In the single image classification stage, our model achieved 98.49% accuracy on more than 7996 test images. At the patient condition identification phase, the system correctly identified almost 234 of 245 patients with high speed. Our dataset is accessible at https://github.com/mr7495/COVID-CTset.This paper aims to propose a high-speed and accurate fully-automated method to detect COVID-19 from the patient's chest CT scan images. We introduce a new dataset that contains 48,260 CT scan images from 282 normal persons and 15,589 images from 95 patients with COVID-19 infections. At the first stage, this system runs our proposed image processing algorithm that analyzes the view of the lung to discard those CT images that inside the lung is not properly visible in them. This action helps to reduce the processing time and false detections. At the next stage, we introduce a novel architecture for improving the classification accuracy of convolutional networks on images containing small important objects. Our architecture applies a new feature pyramid network designed for classification problems to the ResNet50V2 model so the model becomes able to investigate different resolutions of the image and do not lose the data of small objects. As the infections of COVID-19 exist in various scales, especially many of them are tiny, using our method helps to increase the classification performance remarkably. After running these two phases, the system determines the condition of the patient using a selected threshold. We are the first to evaluate our system in two different ways on Xception, ResNet50V2, and our model. In the single image classification stage, our model achieved 98.49% accuracy on more than 7996 test images. At the patient condition identification phase, the system correctly identified almost 234 of 245 patients with high speed. Our dataset is accessible at https://github.com/mr7495/COVID-CTset.
This paper aims to propose a high-speed and accurate fully-automated method to detect COVID-19 from the patient's chest CT scan images. We introduce a new dataset that contains 48,260 CT scan images from 282 normal persons and 15,589 images from 95 patients with COVID-19 infections. At the first stage, this system runs our proposed image processing algorithm that analyzes the view of the lung to discard those CT images that inside the lung is not properly visible in them. This action helps to reduce the processing time and false detections. At the next stage, we introduce a novel architecture for improving the classification accuracy of convolutional networks on images containing small important objects. Our architecture applies a new feature pyramid network designed for classification problems to the ResNet50V2 model so the model becomes able to investigate different resolutions of the image and do not lose the data of small objects. As the infections of COVID-19 exist in various scales, especially many of them are tiny, using our method helps to increase the classification performance remarkably. After running these two phases, the system determines the condition of the patient using a selected threshold. We are the first to evaluate our system in two different ways on Xception, ResNet50V2, and our model. In the single image classification stage, our model achieved 98.49% accuracy on more than 7996 test images. At the patient condition identification phase, the system correctly identified almost 234 of 245 patients with high speed. Our dataset is accessible at https://github.com/mr7495/COVID-CTset.
ArticleNumber 102588
Author Attar, Abolfazl
Sakhaei, Seyed Mohammad
Rahimzadeh, Mohammad
Author_xml – sequence: 1
  givenname: Mohammad
  orcidid: 0000-0002-8550-8967
  surname: Rahimzadeh
  fullname: Rahimzadeh, Mohammad
  email: mr7495@yahoo.com
  organization: School of Computer Engineering, Iran University of Science and Technology, Iran
– sequence: 2
  givenname: Abolfazl
  orcidid: 0000-0001-6727-432X
  surname: Attar
  fullname: Attar, Abolfazl
  email: attar.abolfazl@ee.sharif.edu
  organization: Department of Electrical Engineering, Sharif University of Technology, Iran
– sequence: 3
  givenname: Seyed Mohammad
  surname: Sakhaei
  fullname: Sakhaei, Seyed Mohammad
  email: yaghobsakhaei@yahoo.com
  organization: Department of Medical Sciences, Sari Azad University, Iran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33821166$$D View this record in MEDLINE/PubMed
BookMark eNp9Uctu3CAURVWq5tH-QBcVy248BQw2I1WVokkfkSJlk3aLMFxPmWKYAk6Uvy_WJFHbRVagex736pxTdBRiAITeUrKihHYfdqsh782KEUbrgAkpX6AT2vOukZTIo8c_WfNjdJrzjhAue8pfoeO2lYzSrjtB4RyPs_f3WM8lTrqAxRZgjz3oFFzYNoPOdRag3MX0C48xVbyAKRXDm-sflxcNXeMxxQnryrrDOljsddoC9vNCucHZ6ICtLtWovEYvR-0zvHl4z9D3L59vNt-aq-uvl5vzq8YIRkvTWmk46VsBba-ZBSFHMXIiWmp5R7teCGlHIwWXfKTUGkN7GIAYKXsAMcj2DH06-O7nYQJrIJSkvdonN-l0r6J26l8kuJ9qG2-VJEsuXTV4_2CQ4u8ZclGTywa81wHinBUTZM1qmIRV6ru_dz0teQy5EtiBYFLMOcH4RKFELU2qnVqaVEuT6tBkFcn_RMYVXVxc7nX-eenHgxRqwrcOksrGQTBgXarNKRvdc_I__bK5KA
CitedBy_id crossref_primary_10_1016_j_engappai_2023_106126
crossref_primary_10_1016_j_engappai_2022_105398
crossref_primary_10_1016_j_cmpb_2022_106731
crossref_primary_10_1002_jemt_24088
crossref_primary_10_1007_s11042_023_16017_1
crossref_primary_10_1038_s41598_023_49534_y
crossref_primary_10_1088_1361_6560_ac4316
crossref_primary_10_3390_tomography8020071
crossref_primary_10_1109_ACCESS_2024_3396728
crossref_primary_10_1155_2022_5998042
crossref_primary_10_1007_s42979_021_00785_4
crossref_primary_10_3390_app12083895
crossref_primary_10_2174_1573405618666220928145344
crossref_primary_10_3390_diagnostics12081853
crossref_primary_10_3390_electronics12051167
crossref_primary_10_1142_S0129065722500071
crossref_primary_10_1038_s41598_023_32462_2
crossref_primary_10_3389_frai_2022_912022
crossref_primary_10_1109_ACCESS_2022_3207207
crossref_primary_10_1109_TMI_2023_3313778
crossref_primary_10_1007_s42235_024_00539_x
crossref_primary_10_1002_mef2_38
crossref_primary_10_3390_s23010480
crossref_primary_10_1109_ACCESS_2023_3323574
crossref_primary_10_1007_s00500_023_09111_x
crossref_primary_10_1155_2023_6070970
crossref_primary_10_1109_TNNLS_2023_3280646
crossref_primary_10_3389_fmedt_2022_980735
crossref_primary_10_3390_s22197303
crossref_primary_10_1016_j_imu_2022_101156
crossref_primary_10_1016_j_cmpb_2022_107097
crossref_primary_10_1109_ACCESS_2021_3108455
crossref_primary_10_1109_TETCI_2022_3219858
crossref_primary_10_3390_s22051890
crossref_primary_10_1038_s41598_022_15268_6
crossref_primary_10_21923_jesd_1415150
crossref_primary_10_1016_j_compbiomed_2023_107451
crossref_primary_10_1038_s41598_021_99015_3
crossref_primary_10_20473_jisebi_9_2_288_304
crossref_primary_10_1016_j_comcom_2021_06_011
crossref_primary_10_1007_s11042_023_16432_4
crossref_primary_10_1038_s41597_021_00900_3
crossref_primary_10_1186_s12880_024_01253_0
crossref_primary_10_3233_HIS_240027
crossref_primary_10_3390_diagnostics15030248
crossref_primary_10_1007_s11042_024_18670_6
crossref_primary_10_1038_s41597_023_01976_9
crossref_primary_10_1002_ima_22911
crossref_primary_10_3389_fmed_2022_1005920
crossref_primary_10_3390_jimaging9010001
crossref_primary_10_1016_j_compbiomed_2021_105123
crossref_primary_10_1016_j_neucom_2025_129731
crossref_primary_10_3390_electronics12030684
crossref_primary_10_1016_j_asoc_2022_109111
crossref_primary_10_3390_biology11010033
crossref_primary_10_3390_diagnostics12071527
crossref_primary_10_1016_j_engappai_2023_105820
crossref_primary_10_1109_TEM_2021_3094544
crossref_primary_10_3390_healthcare11172388
crossref_primary_10_1016_j_knosys_2023_110985
crossref_primary_10_1016_j_bspc_2024_105995
crossref_primary_10_1007_s00521_022_07701_8
crossref_primary_10_1007_s00521_023_09317_y
crossref_primary_10_4018_IJAIML_313574
crossref_primary_10_4018_IJSSMET_323452
crossref_primary_10_1016_j_bspc_2024_106687
crossref_primary_10_32604_cmc_2023_038915
crossref_primary_10_1007_s00500_021_06137_x
crossref_primary_10_1002_ima_22905
crossref_primary_10_1371_journal_pone_0259179
crossref_primary_10_3389_frai_2021_694875
crossref_primary_10_1038_s41598_023_50742_9
crossref_primary_10_1155_2022_2564022
crossref_primary_10_31466_kfbd_1168320
crossref_primary_10_1016_j_imed_2022_07_002
crossref_primary_10_1109_TETCI_2022_3210582
crossref_primary_10_3390_bioengineering10020203
crossref_primary_10_32604_cmc_2023_033413
crossref_primary_10_1080_07391102_2023_2226215
crossref_primary_10_1016_j_cmpbup_2021_100022
crossref_primary_10_1016_j_eswa_2025_126806
crossref_primary_10_3390_bioengineering10050534
crossref_primary_10_1145_3558000
crossref_primary_10_4103_jfmpc_jfmpc_695_23
crossref_primary_10_1177_20552076241232882
crossref_primary_10_1016_j_bspc_2021_103415
crossref_primary_10_1016_j_eswa_2023_120425
crossref_primary_10_1016_j_procs_2025_02_206
crossref_primary_10_1007_s11227_022_04775_y
crossref_primary_10_1016_j_compbiomed_2022_105464
crossref_primary_10_1109_ACCESS_2023_3268704
crossref_primary_10_1007_s10278_024_01062_5
crossref_primary_10_1007_s42044_024_00190_z
crossref_primary_10_1016_j_compbiomed_2022_105461
crossref_primary_10_1007_s12204_021_2392_3
crossref_primary_10_1016_j_bspc_2023_105152
crossref_primary_10_1016_j_media_2022_102722
crossref_primary_10_3390_diagnostics13081484
crossref_primary_10_3389_fmed_2021_729287
crossref_primary_10_4018_IJRQEH_299961
crossref_primary_10_3389_fpubh_2022_892499
crossref_primary_10_53898_josse2024415
crossref_primary_10_1142_S0219467825500044
crossref_primary_10_1016_j_compbiomed_2022_105298
crossref_primary_10_1007_s42044_021_00090_6
crossref_primary_10_3390_bioengineering10010006
crossref_primary_10_1016_j_jiph_2021_11_013
crossref_primary_10_1016_j_asoc_2022_109401
crossref_primary_10_1007_s11548_023_02965_4
crossref_primary_10_1007_s40998_023_00611_y
crossref_primary_10_1007_s00354_025_00291_8
crossref_primary_10_3389_frai_2022_919672
crossref_primary_10_1007_s10723_022_09615_0
crossref_primary_10_1016_j_bspc_2025_107767
crossref_primary_10_1080_21681163_2023_2280619
crossref_primary_10_1016_j_bspc_2023_104974
crossref_primary_10_1093_bib_bbad373
crossref_primary_10_1002_ima_22679
crossref_primary_10_61189_323428onxlas
crossref_primary_10_3390_technologies11050128
crossref_primary_10_1186_s13640_024_00656_x
crossref_primary_10_1016_j_compbiomed_2023_107268
crossref_primary_10_1371_journal_pone_0296352
crossref_primary_10_1007_s12553_022_00677_4
crossref_primary_10_1109_JTEHM_2021_3134096
crossref_primary_10_1007_s13246_021_01093_0
crossref_primary_10_1016_j_compbiomed_2024_109461
crossref_primary_10_1038_s41598_022_05615_y
crossref_primary_10_1016_j_compbiomed_2024_109100
crossref_primary_10_3390_app11178227
crossref_primary_10_3389_frsip_2022_936790
crossref_primary_10_3390_s23020743
crossref_primary_10_1016_j_sciaf_2023_e01961
crossref_primary_10_1080_24725579_2022_2142866
crossref_primary_10_1186_s13244_021_01081_8
crossref_primary_10_1186_s13104_024_06693_z
crossref_primary_10_3390_healthcare10010166
crossref_primary_10_1016_j_compbiomed_2024_109507
crossref_primary_10_54392_irjmt24316
crossref_primary_10_1007_s13721_022_00382_2
crossref_primary_10_1142_S0218001423570033
crossref_primary_10_1016_j_bspc_2023_105801
crossref_primary_10_3390_bdcc8090099
crossref_primary_10_54751_revistafoco_v18n1_017
crossref_primary_10_1016_j_compag_2024_109104
crossref_primary_10_1049_ipr2_12837
crossref_primary_10_1007_s11227_022_04349_y
crossref_primary_10_1038_s41598_025_91322_3
Cites_doi 10.1002/ima.22469
10.1117/1.JMI.7.1.014502
10.1007/978-3-319-46493-0_38
10.1148/radiol.2020200343
10.1148/radiol.2020200642
10.11591/ijece.v11i1.pp365-374
10.1016/j.imu.2020.100360
10.1148/radiol.2020200274
10.1109/TII.2018.2842821
10.1016/j.imu.2020.100505
10.1016/j.media.2016.08.004
10.1183/13993003.00775-2020
10.1146/annurev-bioeng-071516-044442
10.1016/j.media.2017.07.005
10.1148/radiol.2020200905
10.1080/00220485.2013.770338
ContentType Journal Article
Copyright 2021 Elsevier Ltd
2021 Elsevier Ltd. All rights reserved.
2021 Elsevier Ltd. All rights reserved. 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: 2021 Elsevier Ltd. All rights reserved.
– notice: 2021 Elsevier Ltd. All rights reserved. 2021 Elsevier Ltd
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1016/j.bspc.2021.102588
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1746-8108
1746-8094
EndPage 102588
ExternalDocumentID PMC8011666
33821166
10_1016_j_bspc_2021_102588
S1746809421001853
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
5PM
EFKBS
ID FETCH-LOGICAL-c521t-3d8c40735e37a2de58f5f40531d46167558dfc85484f11dcc17ebe0c887ee5b83
IEDL.DBID .~1
ISSN 1746-8094
IngestDate Thu Aug 21 14:12:50 EDT 2025
Fri Jul 11 07:22:56 EDT 2025
Thu Apr 03 07:06:38 EDT 2025
Tue Jul 01 01:34:09 EDT 2025
Thu Apr 24 23:06:43 EDT 2025
Fri Feb 23 02:43:37 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
COVID-19
Lung CT scan dataset
Automatic medical diagnosis
Coronavirus
Medical image analysis
Radiology
Convolutional neural networks
CT scan
Language English
License 2021 Elsevier Ltd. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-3d8c40735e37a2de58f5f40531d46167558dfc85484f11dcc17ebe0c887ee5b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8550-8967
0000-0001-6727-432X
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8011666
PMID 33821166
PQID 2509271402
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8011666
proquest_miscellaneous_2509271402
pubmed_primary_33821166
crossref_primary_10_1016_j_bspc_2021_102588
crossref_citationtrail_10_1016_j_bspc_2021_102588
elsevier_sciencedirect_doi_10_1016_j_bspc_2021_102588
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biomedical signal processing and control
PublicationTitleAlternate Biomed Signal Process Control
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Deng, Dong, Socher, Li, Li, Fei-Fei (bib0045) 2009
WHO (bib0190) 2020
Barstugan, Ozkaya, Ozturk (bib0025) 2020
Chollet (bib0035) 2017
Rahimzadeh, Attar (bib0140) 2020
Wikipedia (bib0195) 2020 05
Green, Bean, Peterson (bib0055) 2013; 44
Shen, Wu, Suk (bib0155) 2017; 19
Yang, Chen, Liu, Zhong, Qin, Lu, Feng, Chen (bib0205) 2017; 35
Li, Qin, Xu, Yin, Wang, Kong, Bai, Lu, Fang, Song (bib0085) 2020
Narin, Kaya, Pamuk (bib0115) 2020
Tan, Le (bib0170) 2020
Saha, Sadi, Islam (bib0145) 2021; 22
Cheng, Ni, Chou, Qin, Tiu, Chang, Huang, Shen, Chen (bib0030) 2016; 6
Chollet (bib0040) 2015
Abdulmunem, Abutiheen, Aleqabie (bib0010) 2021; 11
He, Zhang, Ren, Sun (bib0060) 2016
ACR (bib0015) 2020 05
Huang, Liu, van der Maaten, Weinberger (bib0070) 2018
Litjens, Kooi, Bejnordi, Setio, Ciompi, Ghafoorian, Van Der Laak, Van Ginneken, Sánchez (bib0100) 2017; 42
Xie, Zhong, Zhao, Zheng, Wang, Liu (bib0200) 2020
Lybrate (bib0105) 2020
Öztürk, Özkaya, Barstuğan (bib0125) 2021; 31
Ai, Yang, Hou, Zhan, Chen, Lv, Tao, Sun, Xia (bib0020) 2020
Javaheri, Homayounfar, Amoozgar, Reiazi, Homayounieh, Abbas, Laali, Radmard, Gharib, Mousavi (bib0075) 2020
Lin, Dollár, Girshick, He, Hariharan, Belongie (bib0090) 2017
Soares, Angelov, Biaso, Froes, Abe (bib0160) 2020
Song, Shi, Shan, Zhang, Shen, Lu, Ling, Jiang, Shi (bib0165) 2020; 295
Geneticeducation (bib0050) 2020
He, Zhang, Ren, Sun (bib0065) 2016
Li, Ota, Dong (bib0080) 2018; 14
Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado, Davis, Dean, Devin, Ghemawat, Goodfellow, Harp, Irving, Isard, Jia, Jozefowicz, Kaiser, Kudlur, Levenberg, Mané, Monga, Moore, Murray, Olah, Schuster, Shlens, Steiner, Sutskever, Talwar, Tucker, Vanhoucke, Vasudevan, Viégas, Vinyals, Warden, Wattenberg, Wicke, Yu, Zheng (bib0005) 2015
Rahimzadeh, Attar (bib0135) 2020
Wang, Lin, Wong (bib0180) 2020; 10
Lin, Goyal, Girshick, He, Dollár (bib0095) 2018
Rahimzadeh, Attar (bib0130) 2020
Ozkaya, Ozturk, Barstugan (bib0120) 2020
Selvaraju, Cogswell, Das, Vedantam, Parikh, Batra (bib0150) 2019; 128
Voulodimos, Protopapadakis, Katsamenis, Doulamis, Doulamis (bib0175) 2020
Wang, Zha, Li, Wu, Li, Niu, Wang, Qiu, Li, Yu (bib0185) 2020
Mlynarski, Delingette, Alghamdi, Bondiau, Ayache (bib0110) 2020; 7
Cheng (10.1016/j.bspc.2021.102588_bib0030) 2016; 6
Barstugan (10.1016/j.bspc.2021.102588_bib0025) 2020
Öztürk (10.1016/j.bspc.2021.102588_bib0125) 2021; 31
Li (10.1016/j.bspc.2021.102588_bib0085) 2020
Li (10.1016/j.bspc.2021.102588_bib0080) 2018; 14
Lin (10.1016/j.bspc.2021.102588_bib0095) 2018
Geneticeducation (10.1016/j.bspc.2021.102588_bib0050) 2020
Lin (10.1016/j.bspc.2021.102588_bib0090) 2017
Green (10.1016/j.bspc.2021.102588_bib0055) 2013; 44
Shen (10.1016/j.bspc.2021.102588_bib0155) 2017; 19
Soares (10.1016/j.bspc.2021.102588_bib0160) 2020
Narin (10.1016/j.bspc.2021.102588_bib0115) 2020
Yang (10.1016/j.bspc.2021.102588_bib0205) 2017; 35
Abadi (10.1016/j.bspc.2021.102588_bib0005) 2015
Chollet (10.1016/j.bspc.2021.102588_bib0040) 2015
Abdulmunem (10.1016/j.bspc.2021.102588_bib0010) 2021; 11
He (10.1016/j.bspc.2021.102588_bib0065) 2016
Ozkaya (10.1016/j.bspc.2021.102588_bib0120) 2020
Chollet (10.1016/j.bspc.2021.102588_bib0035) 2017
Saha (10.1016/j.bspc.2021.102588_bib0145) 2021; 22
ACR (10.1016/j.bspc.2021.102588_bib0015) 2020
Xie (10.1016/j.bspc.2021.102588_bib0200) 2020
Ai (10.1016/j.bspc.2021.102588_bib0020) 2020
Wang (10.1016/j.bspc.2021.102588_bib0185) 2020
He (10.1016/j.bspc.2021.102588_bib0060) 2016
Rahimzadeh (10.1016/j.bspc.2021.102588_bib0135) 2020
Mlynarski (10.1016/j.bspc.2021.102588_bib0110) 2020; 7
Wikipedia (10.1016/j.bspc.2021.102588_bib0195) 2020
Rahimzadeh (10.1016/j.bspc.2021.102588_bib0130) 2020
Rahimzadeh (10.1016/j.bspc.2021.102588_bib0140) 2020
Huang (10.1016/j.bspc.2021.102588_bib0070) 2018
WHO (10.1016/j.bspc.2021.102588_bib0190) 2020
Song (10.1016/j.bspc.2021.102588_bib0165) 2020; 295
Wang (10.1016/j.bspc.2021.102588_bib0180) 2020; 10
Javaheri (10.1016/j.bspc.2021.102588_bib0075) 2020
Litjens (10.1016/j.bspc.2021.102588_bib0100) 2017; 42
Deng (10.1016/j.bspc.2021.102588_bib0045) 2009
Tan (10.1016/j.bspc.2021.102588_bib0170) 2020
Lybrate (10.1016/j.bspc.2021.102588_bib0105) 2020
Selvaraju (10.1016/j.bspc.2021.102588_bib0150) 2019; 128
Voulodimos (10.1016/j.bspc.2021.102588_bib0175) 2020
References_xml – start-page: 248
  year: 2009
  end-page: 255
  ident: bib0045
  article-title: Imagenet: a large-scale hierarchical image database
  publication-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition
– volume: 7
  start-page: 014502
  year: 2020
  ident: bib0110
  article-title: Anatomically consistent cnn-based segmentation of organs-at-risk in cranial radiotherapy
  publication-title: J. Med. Imaging
– year: 2020
  ident: bib0120
  article-title: Coronavirus (Covid-19) Classification Using Deep Features Fusion and Ranking Technique
– year: 2020
  ident: bib0130
  article-title: Detecting and Counting Pistachios based on Deep Learning
– year: 2020
  ident: bib0135
  article-title: A modified deep convolutional neural network for detecting covid-19 and pneumonia from chest x-ray images based on the concatenation of xception and resnet50v2
  publication-title: Inform. Med. Unlocked
– volume: 19
  start-page: 221
  year: 2017
  end-page: 248
  ident: bib0155
  article-title: Deep learning in medical image analysis
  publication-title: Annu. Rev. Biomed. Eng.
– volume: 44
  start-page: 142
  year: 2013
  end-page: 157
  ident: bib0055
  article-title: Deep learning in intermediate microeconomics: using scaffolding assignments to teach theory and promote transfer
  publication-title: J. Econ. Educ.
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  ident: bib0100
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
– year: 2020
  ident: bib0160
  article-title: Sars-cov-2 CT-scan dataset: a large dataset of real patients CT scans for sars-cov-2 identification
  publication-title: medRxiv
– year: 2020
  ident: bib0170
  article-title: Efficientnet: Rethinking Model Scaling for Convolutional Neural Networks
– volume: 22
  start-page: 100505
  year: 2021
  ident: bib0145
  article-title: Emcnet: automated covid-19 diagnosis from X-ray images using convolutional neural network and ensemble of machine learning classifiers
  publication-title: Inform. Med. Unlocked
– volume: 35
  start-page: 421
  year: 2017
  end-page: 433
  ident: bib0205
  article-title: Cascade of multi-scale convolutional neural networks for bone suppression of chest radiographs in gradient domain
  publication-title: Med. Image Anal.
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0060
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 630
  year: 2016
  end-page: 645
  ident: bib0065
  article-title: Identity mappings in deep residual networks
  publication-title: Lect. Notes Comput. Sci.
– year: 2020
  ident: bib0075
  article-title: Covidctnet: An Open-Source Deep Learning Approach to Identify Covid-19 Using CT Image
– year: 2020
  ident: bib0200
  article-title: Chest ct for typical 2019-ncov pneumonia: relationship to negative rt-pcr testing
  publication-title: Radiology
– year: 2020
  ident: bib0175
  article-title: Deep learning models for Covid-19 infected area segmentation in CT images
  publication-title: medRxiv
– volume: 14
  start-page: 4665
  year: 2018
  end-page: 4673
  ident: bib0080
  article-title: Deep learning for smart industry: efficient manufacture inspection system with fog computing
  publication-title: IEEE Trans. Ind. Inform.
– volume: 128
  start-page: 336
  year: 2019
  end-page: 359
  ident: bib0150
  article-title: Grad-cam: visual explanations from deep networks via gradient-based localization
  publication-title: Int. J. Comput. Vis.
– year: 2020
  ident: bib0105
  article-title: Huntington’s Disease – Understanding the Stages of Symptoms! – by MS. Sadhana Ghaisas | Lybrate
– volume: 11
  start-page: 365
  year: 2021
  end-page: 374
  ident: bib0010
  article-title: Recognition of corona virus disease (covid-19) using deep learning network
  publication-title: Int. J. Electr. Comput. Eng. (IJECE)
– year: 2020
  ident: bib0025
  article-title: Coronavirus (covid-19) Classification Using CT Images by Machine Learning Methods
– volume: 10
  start-page: 1
  year: 2020
  end-page: 12
  ident: bib0180
  article-title: Covid-net: a tailored deep convolutional neural network design for detection of covid-19 cases from chest X-ray images
  publication-title: Sci. Rep.
– year: 2020
  ident: bib0140
  article-title: Sperm Detection and Tracking in Phase-Contrast Microscopy Image Sequences Using Deep Learning and Modified csr-dcf
– year: 2018
  ident: bib0070
  article-title: Densely Connected Convolutional Networks
– year: 2020
  ident: bib0115
  article-title: Automatic Detection of Coronavirus Disease (Covid-19) Using X-ray Images and Deep Convolutional Neural Networks
– year: 2020
  ident: bib0050
  article-title: Reverse Transcription PCR: Principle, Procedure, Application, Advantages and Disadvantages
– start-page: 2117
  year: 2017
  end-page: 2125
  ident: bib0090
  article-title: Feature pyramid networks for object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 31
  start-page: 5
  year: 2021
  end-page: 15
  ident: bib0125
  article-title: Classification of coronavirus (covid-19) from X-ray and ct images using shrunken features
  publication-title: Int. J. Imaging Syst. Technol.
– volume: 295
  start-page: 210
  year: 2020
  end-page: 217
  ident: bib0165
  article-title: Emerging 2019 novel coronavirus (2019-ncov) pneumonia
  publication-title: Radiology
– year: 2015
  ident: bib0005
  article-title: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems
– year: 2020
  ident: bib0085
  article-title: Artificial intelligence distinguishes covid-19 from community acquired pneumonia on chest ct
  publication-title: Radiology
– year: 2020 05
  ident: bib0195
  article-title: Covid-19 Testing – Wikipedia
– volume: 6
  start-page: 1
  year: 2016
  end-page: 13
  ident: bib0030
  article-title: Computer-aided diagnosis with deep learning architecture: applications to breast lesions in us images and pulmonary nodules in ct scans
  publication-title: Sci. Rep.
– start-page: 1251
  year: 2017
  end-page: 1258
  ident: bib0035
  article-title: Xception: deep learning with depthwise separable convolutions
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2020
  ident: bib0020
  article-title: Correlation of chest ct and rt-pcr testing in coronavirus disease 2019 (covid-19) in China: a report of 1014 cases
  publication-title: Radiology
– year: 2020
  ident: bib0185
  article-title: A fully automatic deep learning system for covid-19 diagnostic and prognostic analysis
  publication-title: Eur. Respir. J.
– year: 2018
  ident: bib0095
  article-title: Focal loss for dense object detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2015
  ident: bib0040
  article-title: keras
– year: 2020 05
  ident: bib0015
  article-title: ACR Recommendations for the Use of Chest Radiography and Computed Tomography (CT) for Suspected Covid-19 Infection | American College of Radiology
– year: 2020
  ident: bib0190
  article-title: Q&A on Coronaviruses (Covid-19)
– start-page: 248
  year: 2009
  ident: 10.1016/j.bspc.2021.102588_bib0045
  article-title: Imagenet: a large-scale hierarchical image database
– year: 2015
  ident: 10.1016/j.bspc.2021.102588_bib0005
– year: 2020
  ident: 10.1016/j.bspc.2021.102588_bib0025
– year: 2020
  ident: 10.1016/j.bspc.2021.102588_bib0170
– volume: 31
  start-page: 5
  issue: 1
  year: 2021
  ident: 10.1016/j.bspc.2021.102588_bib0125
  article-title: Classification of coronavirus (covid-19) from X-ray and ct images using shrunken features
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22469
– start-page: 2117
  year: 2017
  ident: 10.1016/j.bspc.2021.102588_bib0090
  article-title: Feature pyramid networks for object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 7
  start-page: 014502
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2021.102588_bib0110
  article-title: Anatomically consistent cnn-based segmentation of organs-at-risk in cranial radiotherapy
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.7.1.014502
– start-page: 630
  year: 2016
  ident: 10.1016/j.bspc.2021.102588_bib0065
  article-title: Identity mappings in deep residual networks
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-319-46493-0_38
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2021.102588_bib0180
  article-title: Covid-net: a tailored deep convolutional neural network design for detection of covid-19 cases from chest X-ray images
  publication-title: Sci. Rep.
– year: 2020
  ident: 10.1016/j.bspc.2021.102588_bib0200
  article-title: Chest ct for typical 2019-ncov pneumonia: relationship to negative rt-pcr testing
  publication-title: Radiology
  doi: 10.1148/radiol.2020200343
– year: 2020
  ident: 10.1016/j.bspc.2021.102588_bib0020
  article-title: Correlation of chest ct and rt-pcr testing in coronavirus disease 2019 (covid-19) in China: a report of 1014 cases
  publication-title: Radiology
  doi: 10.1148/radiol.2020200642
– year: 2018
  ident: 10.1016/j.bspc.2021.102588_bib0095
  article-title: Focal loss for dense object detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 11
  start-page: 365
  issue: 1
  year: 2021
  ident: 10.1016/j.bspc.2021.102588_bib0010
  article-title: Recognition of corona virus disease (covid-19) using deep learning network
  publication-title: Int. J. Electr. Comput. Eng. (IJECE)
  doi: 10.11591/ijece.v11i1.pp365-374
– year: 2020
  ident: 10.1016/j.bspc.2021.102588_bib0015
– year: 2020
  ident: 10.1016/j.bspc.2021.102588_bib0050
– year: 2020
  ident: 10.1016/j.bspc.2021.102588_bib0135
  article-title: A modified deep convolutional neural network for detecting covid-19 and pneumonia from chest x-ray images based on the concatenation of xception and resnet50v2
  publication-title: Inform. Med. Unlocked
  doi: 10.1016/j.imu.2020.100360
– year: 2020
  ident: 10.1016/j.bspc.2021.102588_bib0130
– volume: 295
  start-page: 210
  issue: 1
  year: 2020
  ident: 10.1016/j.bspc.2021.102588_bib0165
  article-title: Emerging 2019 novel coronavirus (2019-ncov) pneumonia
  publication-title: Radiology
  doi: 10.1148/radiol.2020200274
– volume: 6
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.bspc.2021.102588_bib0030
  article-title: Computer-aided diagnosis with deep learning architecture: applications to breast lesions in us images and pulmonary nodules in ct scans
  publication-title: Sci. Rep.
– year: 2020
  ident: 10.1016/j.bspc.2021.102588_bib0120
– year: 2020
  ident: 10.1016/j.bspc.2021.102588_bib0190
– year: 2020
  ident: 10.1016/j.bspc.2021.102588_bib0195
– year: 2020
  ident: 10.1016/j.bspc.2021.102588_bib0075
– volume: 14
  start-page: 4665
  issue: 10
  year: 2018
  ident: 10.1016/j.bspc.2021.102588_bib0080
  article-title: Deep learning for smart industry: efficient manufacture inspection system with fog computing
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2018.2842821
– volume: 22
  start-page: 100505
  year: 2021
  ident: 10.1016/j.bspc.2021.102588_bib0145
  article-title: Emcnet: automated covid-19 diagnosis from X-ray images using convolutional neural network and ensemble of machine learning classifiers
  publication-title: Inform. Med. Unlocked
  doi: 10.1016/j.imu.2020.100505
– volume: 35
  start-page: 421
  year: 2017
  ident: 10.1016/j.bspc.2021.102588_bib0205
  article-title: Cascade of multi-scale convolutional neural networks for bone suppression of chest radiographs in gradient domain
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.08.004
– year: 2020
  ident: 10.1016/j.bspc.2021.102588_bib0140
– year: 2020
  ident: 10.1016/j.bspc.2021.102588_bib0160
  article-title: Sars-cov-2 CT-scan dataset: a large dataset of real patients CT scans for sars-cov-2 identification
  publication-title: medRxiv
– year: 2020
  ident: 10.1016/j.bspc.2021.102588_bib0105
– year: 2020
  ident: 10.1016/j.bspc.2021.102588_bib0175
  article-title: Deep learning models for Covid-19 infected area segmentation in CT images
  publication-title: medRxiv
– year: 2020
  ident: 10.1016/j.bspc.2021.102588_bib0185
  article-title: A fully automatic deep learning system for covid-19 diagnostic and prognostic analysis
  publication-title: Eur. Respir. J.
  doi: 10.1183/13993003.00775-2020
– volume: 19
  start-page: 221
  year: 2017
  ident: 10.1016/j.bspc.2021.102588_bib0155
  article-title: Deep learning in medical image analysis
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-071516-044442
– volume: 128
  start-page: 336
  issue: October (2)
  year: 2019
  ident: 10.1016/j.bspc.2021.102588_bib0150
  article-title: Grad-cam: visual explanations from deep networks via gradient-based localization
  publication-title: Int. J. Comput. Vis.
– volume: 42
  start-page: 60
  year: 2017
  ident: 10.1016/j.bspc.2021.102588_bib0100
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
– year: 2020
  ident: 10.1016/j.bspc.2021.102588_bib0085
  article-title: Artificial intelligence distinguishes covid-19 from community acquired pneumonia on chest ct
  publication-title: Radiology
  doi: 10.1148/radiol.2020200905
– year: 2018
  ident: 10.1016/j.bspc.2021.102588_bib0070
– volume: 44
  start-page: 142
  issue: 2
  year: 2013
  ident: 10.1016/j.bspc.2021.102588_bib0055
  article-title: Deep learning in intermediate microeconomics: using scaffolding assignments to teach theory and promote transfer
  publication-title: J. Econ. Educ.
  doi: 10.1080/00220485.2013.770338
– start-page: 1251
  year: 2017
  ident: 10.1016/j.bspc.2021.102588_bib0035
  article-title: Xception: deep learning with depthwise separable convolutions
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2020
  ident: 10.1016/j.bspc.2021.102588_bib0115
– start-page: 770
  year: 2016
  ident: 10.1016/j.bspc.2021.102588_bib0060
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2015
  ident: 10.1016/j.bspc.2021.102588_bib0040
SSID ssj0048714
Score 2.6202068
Snippet [Display omitted] •We introduce and share a new and large dataset of original CT scans.•We introduce a fully automated system for detecting COVID-19 cases that...
This paper aims to propose a high-speed and accurate fully-automated method to detect COVID-19 from the patient's chest CT scan images. We introduce a new...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102588
SubjectTerms Automatic medical diagnosis
Convolutional neural networks
Coronavirus
COVID-19
CT scan
Deep learning
Lung CT scan dataset
Medical image analysis
Radiology
Title A fully automated deep learning-based network for detecting COVID-19 from a new and large lung CT scan dataset
URI https://dx.doi.org/10.1016/j.bspc.2021.102588
https://www.ncbi.nlm.nih.gov/pubmed/33821166
https://www.proquest.com/docview/2509271402
https://pubmed.ncbi.nlm.nih.gov/PMC8011666
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQWWBAvCkvGYkNmdZpnKRjVUAtCBh4qJvl2BcoqtKKtkIs_Hbu8qgoIAbGxBfF8uf47uLP3zF2TOLHkQ2lCH3jU4LSFMZAIuIAYhWDMdbR_47rm6Dz4F_2VG-BtcuzMESrLNb-fE3PVuviTq0Yzdqo36_d4VuCCLMTj2SE0OvQCXY_pFl--jGjeWA8nul7k7Eg6-LgTM7xiscjkjH0JCkYqKz6yq_O6Wfw-Z1D-cUpXayylSKa5K28w2tsAdJ1tvxFY3CDpS1Ov9jfuZlOhhieguMOYMSLchFPgvyY42lOB-cYw2I77SxgG2_fPnbPhGxyOoXCDVq9cZM6PiD-OB9MyeSejxEeTlTTMUw22cPF-X27I4oiC8JSLQPRcJHFpK6hoBEaz4GKEpX49Gk6P5CYTqjIJTbCxMZPpHTWyhBxr1tcnABUHDW2WCUdprDDOCSy7rwEXT6OuUWoMbYMgfbHpfVd4lWZLEdX20KBnAphDHRJNXvRhIgmRHSOSJWdzJ4Z5fobf1qrEjQ9N4s0Oog_nzsqEdb4edGeiUlhOB1rjBCbHokaYu-3c8Rn_cDsHtPnIKiycG4uzAxIunu-Je0_ZxLeEe1_BcHuP_u7x5boKqcN77PK5HUKBxgcTeLDbPYfssVW96pz8wkI_A5L
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB7RcGg5oL4J0OJKvVVW8Ga9uzlGoSjhkR4aKm6W156lQdEmIokQ_56ZrDcibcWh1_VYa_mz52GPvwH4yuTHmUuVTGMbc4DSkdZiIfMEc52jtc7zecflMOlfxWfX-noLevVbGE6rDLq_0ukrbR2-tMJstmbjcesn_SXJKDqJmEaIrM4L2GZ2Kt2A7e7gvD-sFTK55CuKb5aX3CG8nanSvPL5jJkMI8UkBnpVgOWf9ulv__PPNMondun0NewGh1J0qzG_gS0s38LOE5rBd1B2BZ-yPwi7XEzJQ0UvPOJMhIoRN5JNmRdllREuyI2ldr5coDbR-_FrcCJVR_BDFGFJ6l7Y0osJp5CLyZJFRmJOCAnONp3j4j1cnX4f9foy1FmQjssZyLbPHMV1bY3t1EYedVboIubd6eNEUUShM1-4jGKbuFDKO6dSgv7YkX5C1HnW_gCNclriHggs1LGPCrL6NOeO0Cb3MkW-Ilcu9kXUBFXPrnGBhJxrYUxMnW12axgRw4iYCpEmfFv3mVUUHM9K6xo0s7GQDNmIZ_t9qRE2tMP42sSWOF3ODTmJnYh5DWn0HyvE1-OgAJ8i6CRpQrqxFtYCzN692VKOf69YvDO-AkuS_f8c7xG87I8uL8zFYHh-AK-4pcoiPoTG4m6Jn8hXWuSfw154BEIqEPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fully+automated+deep+learning-based+network+for+detecting+COVID-19+from+a+new+and+large+lung+CT+scan+dataset&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Rahimzadeh%2C+Mohammad&rft.au=Attar%2C+Abolfazl&rft.au=Sakhaei%2C+Seyed+Mohammad&rft.date=2021-07-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=68&rft_id=info:doi/10.1016%2Fj.bspc.2021.102588&rft.externalDocID=S1746809421001853
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon