A fully automated deep learning-based network for detecting COVID-19 from a new and large lung CT scan dataset
[Display omitted] •We introduce and share a new and large dataset of original CT scans.•We introduce a fully automated system for detecting COVID-19 cases that acts with high accuracy and speed.•We propose a new architecture to improve the classification accuracy of images containing important objec...
Saved in:
Published in | Biomedical signal processing and control Vol. 68; p. 102588 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•We introduce and share a new and large dataset of original CT scans.•We introduce a fully automated system for detecting COVID-19 cases that acts with high accuracy and speed.•We propose a new architecture to improve the classification accuracy of images containing important objects in various scales (especially in small scales), which has shown very good improvement.•We evaluated our model in two ways: one based on single-image classification (tested on more than 7,996 images) and the other one for evaluating the automated diagnosis system (tested on 235 patients and 41,892 images).•We have segmented the infection areas of the CT scan images.
This paper aims to propose a high-speed and accurate fully-automated method to detect COVID-19 from the patient's chest CT scan images. We introduce a new dataset that contains 48,260 CT scan images from 282 normal persons and 15,589 images from 95 patients with COVID-19 infections. At the first stage, this system runs our proposed image processing algorithm that analyzes the view of the lung to discard those CT images that inside the lung is not properly visible in them. This action helps to reduce the processing time and false detections. At the next stage, we introduce a novel architecture for improving the classification accuracy of convolutional networks on images containing small important objects. Our architecture applies a new feature pyramid network designed for classification problems to the ResNet50V2 model so the model becomes able to investigate different resolutions of the image and do not lose the data of small objects. As the infections of COVID-19 exist in various scales, especially many of them are tiny, using our method helps to increase the classification performance remarkably. After running these two phases, the system determines the condition of the patient using a selected threshold. We are the first to evaluate our system in two different ways on Xception, ResNet50V2, and our model. In the single image classification stage, our model achieved 98.49% accuracy on more than 7996 test images. At the patient condition identification phase, the system correctly identified almost 234 of 245 patients with high speed. Our dataset is accessible at https://github.com/mr7495/COVID-CTset. |
---|---|
AbstractList | This paper aims to propose a high-speed and accurate fully-automated method to detect COVID-19 from the patient's chest CT scan images. We introduce a new dataset that contains 48,260 CT scan images from 282 normal persons and 15,589 images from 95 patients with COVID-19 infections. At the first stage, this system runs our proposed image processing algorithm that analyzes the view of the lung to discard those CT images that inside the lung is not properly visible in them. This action helps to reduce the processing time and false detections. At the next stage, we introduce a novel architecture for improving the classification accuracy of convolutional networks on images containing small important objects. Our architecture applies a new feature pyramid network designed for classification problems to the ResNet50V2 model so the model becomes able to investigate different resolutions of the image and do not lose the data of small objects. As the infections of COVID-19 exist in various scales, especially many of them are tiny, using our method helps to increase the classification performance remarkably. After running these two phases, the system determines the condition of the patient using a selected threshold. We are the first to evaluate our system in two different ways on Xception, ResNet50V2, and our model. In the single image classification stage, our model achieved 98.49% accuracy on more than 7996 test images. At the patient condition identification phase, the system correctly identified almost 234 of 245 patients with high speed. Our dataset is accessible at
https://github.com/mr7495/COVID-CTset
. [Display omitted] •We introduce and share a new and large dataset of original CT scans.•We introduce a fully automated system for detecting COVID-19 cases that acts with high accuracy and speed.•We propose a new architecture to improve the classification accuracy of images containing important objects in various scales (especially in small scales), which has shown very good improvement.•We evaluated our model in two ways: one based on single-image classification (tested on more than 7,996 images) and the other one for evaluating the automated diagnosis system (tested on 235 patients and 41,892 images).•We have segmented the infection areas of the CT scan images. This paper aims to propose a high-speed and accurate fully-automated method to detect COVID-19 from the patient's chest CT scan images. We introduce a new dataset that contains 48,260 CT scan images from 282 normal persons and 15,589 images from 95 patients with COVID-19 infections. At the first stage, this system runs our proposed image processing algorithm that analyzes the view of the lung to discard those CT images that inside the lung is not properly visible in them. This action helps to reduce the processing time and false detections. At the next stage, we introduce a novel architecture for improving the classification accuracy of convolutional networks on images containing small important objects. Our architecture applies a new feature pyramid network designed for classification problems to the ResNet50V2 model so the model becomes able to investigate different resolutions of the image and do not lose the data of small objects. As the infections of COVID-19 exist in various scales, especially many of them are tiny, using our method helps to increase the classification performance remarkably. After running these two phases, the system determines the condition of the patient using a selected threshold. We are the first to evaluate our system in two different ways on Xception, ResNet50V2, and our model. In the single image classification stage, our model achieved 98.49% accuracy on more than 7996 test images. At the patient condition identification phase, the system correctly identified almost 234 of 245 patients with high speed. Our dataset is accessible at https://github.com/mr7495/COVID-CTset. This paper aims to propose a high-speed and accurate fully-automated method to detect COVID-19 from the patient's chest CT scan images. We introduce a new dataset that contains 48,260 CT scan images from 282 normal persons and 15,589 images from 95 patients with COVID-19 infections. At the first stage, this system runs our proposed image processing algorithm that analyzes the view of the lung to discard those CT images that inside the lung is not properly visible in them. This action helps to reduce the processing time and false detections. At the next stage, we introduce a novel architecture for improving the classification accuracy of convolutional networks on images containing small important objects. Our architecture applies a new feature pyramid network designed for classification problems to the ResNet50V2 model so the model becomes able to investigate different resolutions of the image and do not lose the data of small objects. As the infections of COVID-19 exist in various scales, especially many of them are tiny, using our method helps to increase the classification performance remarkably. After running these two phases, the system determines the condition of the patient using a selected threshold. We are the first to evaluate our system in two different ways on Xception, ResNet50V2, and our model. In the single image classification stage, our model achieved 98.49% accuracy on more than 7996 test images. At the patient condition identification phase, the system correctly identified almost 234 of 245 patients with high speed. Our dataset is accessible at https://github.com/mr7495/COVID-CTset.This paper aims to propose a high-speed and accurate fully-automated method to detect COVID-19 from the patient's chest CT scan images. We introduce a new dataset that contains 48,260 CT scan images from 282 normal persons and 15,589 images from 95 patients with COVID-19 infections. At the first stage, this system runs our proposed image processing algorithm that analyzes the view of the lung to discard those CT images that inside the lung is not properly visible in them. This action helps to reduce the processing time and false detections. At the next stage, we introduce a novel architecture for improving the classification accuracy of convolutional networks on images containing small important objects. Our architecture applies a new feature pyramid network designed for classification problems to the ResNet50V2 model so the model becomes able to investigate different resolutions of the image and do not lose the data of small objects. As the infections of COVID-19 exist in various scales, especially many of them are tiny, using our method helps to increase the classification performance remarkably. After running these two phases, the system determines the condition of the patient using a selected threshold. We are the first to evaluate our system in two different ways on Xception, ResNet50V2, and our model. In the single image classification stage, our model achieved 98.49% accuracy on more than 7996 test images. At the patient condition identification phase, the system correctly identified almost 234 of 245 patients with high speed. Our dataset is accessible at https://github.com/mr7495/COVID-CTset. This paper aims to propose a high-speed and accurate fully-automated method to detect COVID-19 from the patient's chest CT scan images. We introduce a new dataset that contains 48,260 CT scan images from 282 normal persons and 15,589 images from 95 patients with COVID-19 infections. At the first stage, this system runs our proposed image processing algorithm that analyzes the view of the lung to discard those CT images that inside the lung is not properly visible in them. This action helps to reduce the processing time and false detections. At the next stage, we introduce a novel architecture for improving the classification accuracy of convolutional networks on images containing small important objects. Our architecture applies a new feature pyramid network designed for classification problems to the ResNet50V2 model so the model becomes able to investigate different resolutions of the image and do not lose the data of small objects. As the infections of COVID-19 exist in various scales, especially many of them are tiny, using our method helps to increase the classification performance remarkably. After running these two phases, the system determines the condition of the patient using a selected threshold. We are the first to evaluate our system in two different ways on Xception, ResNet50V2, and our model. In the single image classification stage, our model achieved 98.49% accuracy on more than 7996 test images. At the patient condition identification phase, the system correctly identified almost 234 of 245 patients with high speed. Our dataset is accessible at https://github.com/mr7495/COVID-CTset. |
ArticleNumber | 102588 |
Author | Attar, Abolfazl Sakhaei, Seyed Mohammad Rahimzadeh, Mohammad |
Author_xml | – sequence: 1 givenname: Mohammad orcidid: 0000-0002-8550-8967 surname: Rahimzadeh fullname: Rahimzadeh, Mohammad email: mr7495@yahoo.com organization: School of Computer Engineering, Iran University of Science and Technology, Iran – sequence: 2 givenname: Abolfazl orcidid: 0000-0001-6727-432X surname: Attar fullname: Attar, Abolfazl email: attar.abolfazl@ee.sharif.edu organization: Department of Electrical Engineering, Sharif University of Technology, Iran – sequence: 3 givenname: Seyed Mohammad surname: Sakhaei fullname: Sakhaei, Seyed Mohammad email: yaghobsakhaei@yahoo.com organization: Department of Medical Sciences, Sari Azad University, Iran |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33821166$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uctu3CAURVWq5tH-QBcVy248BQw2I1WVokkfkSJlk3aLMFxPmWKYAk6Uvy_WJFHbRVagex736pxTdBRiAITeUrKihHYfdqsh782KEUbrgAkpX6AT2vOukZTIo8c_WfNjdJrzjhAue8pfoeO2lYzSrjtB4RyPs_f3WM8lTrqAxRZgjz3oFFzYNoPOdRag3MX0C48xVbyAKRXDm-sflxcNXeMxxQnryrrDOljsddoC9vNCucHZ6ICtLtWovEYvR-0zvHl4z9D3L59vNt-aq-uvl5vzq8YIRkvTWmk46VsBba-ZBSFHMXIiWmp5R7teCGlHIwWXfKTUGkN7GIAYKXsAMcj2DH06-O7nYQJrIJSkvdonN-l0r6J26l8kuJ9qG2-VJEsuXTV4_2CQ4u8ZclGTywa81wHinBUTZM1qmIRV6ru_dz0teQy5EtiBYFLMOcH4RKFELU2qnVqaVEuT6tBkFcn_RMYVXVxc7nX-eenHgxRqwrcOksrGQTBgXarNKRvdc_I__bK5KA |
CitedBy_id | crossref_primary_10_1016_j_engappai_2023_106126 crossref_primary_10_1016_j_engappai_2022_105398 crossref_primary_10_1016_j_cmpb_2022_106731 crossref_primary_10_1002_jemt_24088 crossref_primary_10_1007_s11042_023_16017_1 crossref_primary_10_1038_s41598_023_49534_y crossref_primary_10_1088_1361_6560_ac4316 crossref_primary_10_3390_tomography8020071 crossref_primary_10_1109_ACCESS_2024_3396728 crossref_primary_10_1155_2022_5998042 crossref_primary_10_1007_s42979_021_00785_4 crossref_primary_10_3390_app12083895 crossref_primary_10_2174_1573405618666220928145344 crossref_primary_10_3390_diagnostics12081853 crossref_primary_10_3390_electronics12051167 crossref_primary_10_1142_S0129065722500071 crossref_primary_10_1038_s41598_023_32462_2 crossref_primary_10_3389_frai_2022_912022 crossref_primary_10_1109_ACCESS_2022_3207207 crossref_primary_10_1109_TMI_2023_3313778 crossref_primary_10_1007_s42235_024_00539_x crossref_primary_10_1002_mef2_38 crossref_primary_10_3390_s23010480 crossref_primary_10_1109_ACCESS_2023_3323574 crossref_primary_10_1007_s00500_023_09111_x crossref_primary_10_1155_2023_6070970 crossref_primary_10_1109_TNNLS_2023_3280646 crossref_primary_10_3389_fmedt_2022_980735 crossref_primary_10_3390_s22197303 crossref_primary_10_1016_j_imu_2022_101156 crossref_primary_10_1016_j_cmpb_2022_107097 crossref_primary_10_1109_ACCESS_2021_3108455 crossref_primary_10_1109_TETCI_2022_3219858 crossref_primary_10_3390_s22051890 crossref_primary_10_1038_s41598_022_15268_6 crossref_primary_10_21923_jesd_1415150 crossref_primary_10_1016_j_compbiomed_2023_107451 crossref_primary_10_1038_s41598_021_99015_3 crossref_primary_10_20473_jisebi_9_2_288_304 crossref_primary_10_1016_j_comcom_2021_06_011 crossref_primary_10_1007_s11042_023_16432_4 crossref_primary_10_1038_s41597_021_00900_3 crossref_primary_10_1186_s12880_024_01253_0 crossref_primary_10_3233_HIS_240027 crossref_primary_10_3390_diagnostics15030248 crossref_primary_10_1007_s11042_024_18670_6 crossref_primary_10_1038_s41597_023_01976_9 crossref_primary_10_1002_ima_22911 crossref_primary_10_3389_fmed_2022_1005920 crossref_primary_10_3390_jimaging9010001 crossref_primary_10_1016_j_compbiomed_2021_105123 crossref_primary_10_1016_j_neucom_2025_129731 crossref_primary_10_3390_electronics12030684 crossref_primary_10_1016_j_asoc_2022_109111 crossref_primary_10_3390_biology11010033 crossref_primary_10_3390_diagnostics12071527 crossref_primary_10_1016_j_engappai_2023_105820 crossref_primary_10_1109_TEM_2021_3094544 crossref_primary_10_3390_healthcare11172388 crossref_primary_10_1016_j_knosys_2023_110985 crossref_primary_10_1016_j_bspc_2024_105995 crossref_primary_10_1007_s00521_022_07701_8 crossref_primary_10_1007_s00521_023_09317_y crossref_primary_10_4018_IJAIML_313574 crossref_primary_10_4018_IJSSMET_323452 crossref_primary_10_1016_j_bspc_2024_106687 crossref_primary_10_32604_cmc_2023_038915 crossref_primary_10_1007_s00500_021_06137_x crossref_primary_10_1002_ima_22905 crossref_primary_10_1371_journal_pone_0259179 crossref_primary_10_3389_frai_2021_694875 crossref_primary_10_1038_s41598_023_50742_9 crossref_primary_10_1155_2022_2564022 crossref_primary_10_31466_kfbd_1168320 crossref_primary_10_1016_j_imed_2022_07_002 crossref_primary_10_1109_TETCI_2022_3210582 crossref_primary_10_3390_bioengineering10020203 crossref_primary_10_32604_cmc_2023_033413 crossref_primary_10_1080_07391102_2023_2226215 crossref_primary_10_1016_j_cmpbup_2021_100022 crossref_primary_10_1016_j_eswa_2025_126806 crossref_primary_10_3390_bioengineering10050534 crossref_primary_10_1145_3558000 crossref_primary_10_4103_jfmpc_jfmpc_695_23 crossref_primary_10_1177_20552076241232882 crossref_primary_10_1016_j_bspc_2021_103415 crossref_primary_10_1016_j_eswa_2023_120425 crossref_primary_10_1016_j_procs_2025_02_206 crossref_primary_10_1007_s11227_022_04775_y crossref_primary_10_1016_j_compbiomed_2022_105464 crossref_primary_10_1109_ACCESS_2023_3268704 crossref_primary_10_1007_s10278_024_01062_5 crossref_primary_10_1007_s42044_024_00190_z crossref_primary_10_1016_j_compbiomed_2022_105461 crossref_primary_10_1007_s12204_021_2392_3 crossref_primary_10_1016_j_bspc_2023_105152 crossref_primary_10_1016_j_media_2022_102722 crossref_primary_10_3390_diagnostics13081484 crossref_primary_10_3389_fmed_2021_729287 crossref_primary_10_4018_IJRQEH_299961 crossref_primary_10_3389_fpubh_2022_892499 crossref_primary_10_53898_josse2024415 crossref_primary_10_1142_S0219467825500044 crossref_primary_10_1016_j_compbiomed_2022_105298 crossref_primary_10_1007_s42044_021_00090_6 crossref_primary_10_3390_bioengineering10010006 crossref_primary_10_1016_j_jiph_2021_11_013 crossref_primary_10_1016_j_asoc_2022_109401 crossref_primary_10_1007_s11548_023_02965_4 crossref_primary_10_1007_s40998_023_00611_y crossref_primary_10_1007_s00354_025_00291_8 crossref_primary_10_3389_frai_2022_919672 crossref_primary_10_1007_s10723_022_09615_0 crossref_primary_10_1016_j_bspc_2025_107767 crossref_primary_10_1080_21681163_2023_2280619 crossref_primary_10_1016_j_bspc_2023_104974 crossref_primary_10_1093_bib_bbad373 crossref_primary_10_1002_ima_22679 crossref_primary_10_61189_323428onxlas crossref_primary_10_3390_technologies11050128 crossref_primary_10_1186_s13640_024_00656_x crossref_primary_10_1016_j_compbiomed_2023_107268 crossref_primary_10_1371_journal_pone_0296352 crossref_primary_10_1007_s12553_022_00677_4 crossref_primary_10_1109_JTEHM_2021_3134096 crossref_primary_10_1007_s13246_021_01093_0 crossref_primary_10_1016_j_compbiomed_2024_109461 crossref_primary_10_1038_s41598_022_05615_y crossref_primary_10_1016_j_compbiomed_2024_109100 crossref_primary_10_3390_app11178227 crossref_primary_10_3389_frsip_2022_936790 crossref_primary_10_3390_s23020743 crossref_primary_10_1016_j_sciaf_2023_e01961 crossref_primary_10_1080_24725579_2022_2142866 crossref_primary_10_1186_s13244_021_01081_8 crossref_primary_10_1186_s13104_024_06693_z crossref_primary_10_3390_healthcare10010166 crossref_primary_10_1016_j_compbiomed_2024_109507 crossref_primary_10_54392_irjmt24316 crossref_primary_10_1007_s13721_022_00382_2 crossref_primary_10_1142_S0218001423570033 crossref_primary_10_1016_j_bspc_2023_105801 crossref_primary_10_3390_bdcc8090099 crossref_primary_10_54751_revistafoco_v18n1_017 crossref_primary_10_1016_j_compag_2024_109104 crossref_primary_10_1049_ipr2_12837 crossref_primary_10_1007_s11227_022_04349_y crossref_primary_10_1038_s41598_025_91322_3 |
Cites_doi | 10.1002/ima.22469 10.1117/1.JMI.7.1.014502 10.1007/978-3-319-46493-0_38 10.1148/radiol.2020200343 10.1148/radiol.2020200642 10.11591/ijece.v11i1.pp365-374 10.1016/j.imu.2020.100360 10.1148/radiol.2020200274 10.1109/TII.2018.2842821 10.1016/j.imu.2020.100505 10.1016/j.media.2016.08.004 10.1183/13993003.00775-2020 10.1146/annurev-bioeng-071516-044442 10.1016/j.media.2017.07.005 10.1148/radiol.2020200905 10.1080/00220485.2013.770338 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd 2021 Elsevier Ltd. All rights reserved. 2021 Elsevier Ltd. All rights reserved. 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: 2021 Elsevier Ltd. All rights reserved. – notice: 2021 Elsevier Ltd. All rights reserved. 2021 Elsevier Ltd |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1016/j.bspc.2021.102588 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1746-8108 1746-8094 |
EndPage | 102588 |
ExternalDocumentID | PMC8011666 33821166 10_1016_j_bspc_2021_102588 S1746809421001853 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSZ T5K UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 5PM EFKBS |
ID | FETCH-LOGICAL-c521t-3d8c40735e37a2de58f5f40531d46167558dfc85484f11dcc17ebe0c887ee5b83 |
IEDL.DBID | .~1 |
ISSN | 1746-8094 |
IngestDate | Thu Aug 21 14:12:50 EDT 2025 Fri Jul 11 07:22:56 EDT 2025 Thu Apr 03 07:06:38 EDT 2025 Tue Jul 01 01:34:09 EDT 2025 Thu Apr 24 23:06:43 EDT 2025 Fri Feb 23 02:43:37 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning COVID-19 Lung CT scan dataset Automatic medical diagnosis Coronavirus Medical image analysis Radiology Convolutional neural networks CT scan |
Language | English |
License | 2021 Elsevier Ltd. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-3d8c40735e37a2de58f5f40531d46167558dfc85484f11dcc17ebe0c887ee5b83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8550-8967 0000-0001-6727-432X |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8011666 |
PMID | 33821166 |
PQID | 2509271402 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8011666 proquest_miscellaneous_2509271402 pubmed_primary_33821166 crossref_primary_10_1016_j_bspc_2021_102588 crossref_citationtrail_10_1016_j_bspc_2021_102588 elsevier_sciencedirect_doi_10_1016_j_bspc_2021_102588 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Biomedical signal processing and control |
PublicationTitleAlternate | Biomed Signal Process Control |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Deng, Dong, Socher, Li, Li, Fei-Fei (bib0045) 2009 WHO (bib0190) 2020 Barstugan, Ozkaya, Ozturk (bib0025) 2020 Chollet (bib0035) 2017 Rahimzadeh, Attar (bib0140) 2020 Wikipedia (bib0195) 2020 05 Green, Bean, Peterson (bib0055) 2013; 44 Shen, Wu, Suk (bib0155) 2017; 19 Yang, Chen, Liu, Zhong, Qin, Lu, Feng, Chen (bib0205) 2017; 35 Li, Qin, Xu, Yin, Wang, Kong, Bai, Lu, Fang, Song (bib0085) 2020 Narin, Kaya, Pamuk (bib0115) 2020 Tan, Le (bib0170) 2020 Saha, Sadi, Islam (bib0145) 2021; 22 Cheng, Ni, Chou, Qin, Tiu, Chang, Huang, Shen, Chen (bib0030) 2016; 6 Chollet (bib0040) 2015 Abdulmunem, Abutiheen, Aleqabie (bib0010) 2021; 11 He, Zhang, Ren, Sun (bib0060) 2016 ACR (bib0015) 2020 05 Huang, Liu, van der Maaten, Weinberger (bib0070) 2018 Litjens, Kooi, Bejnordi, Setio, Ciompi, Ghafoorian, Van Der Laak, Van Ginneken, Sánchez (bib0100) 2017; 42 Xie, Zhong, Zhao, Zheng, Wang, Liu (bib0200) 2020 Lybrate (bib0105) 2020 Öztürk, Özkaya, Barstuğan (bib0125) 2021; 31 Ai, Yang, Hou, Zhan, Chen, Lv, Tao, Sun, Xia (bib0020) 2020 Javaheri, Homayounfar, Amoozgar, Reiazi, Homayounieh, Abbas, Laali, Radmard, Gharib, Mousavi (bib0075) 2020 Lin, Dollár, Girshick, He, Hariharan, Belongie (bib0090) 2017 Soares, Angelov, Biaso, Froes, Abe (bib0160) 2020 Song, Shi, Shan, Zhang, Shen, Lu, Ling, Jiang, Shi (bib0165) 2020; 295 Geneticeducation (bib0050) 2020 He, Zhang, Ren, Sun (bib0065) 2016 Li, Ota, Dong (bib0080) 2018; 14 Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado, Davis, Dean, Devin, Ghemawat, Goodfellow, Harp, Irving, Isard, Jia, Jozefowicz, Kaiser, Kudlur, Levenberg, Mané, Monga, Moore, Murray, Olah, Schuster, Shlens, Steiner, Sutskever, Talwar, Tucker, Vanhoucke, Vasudevan, Viégas, Vinyals, Warden, Wattenberg, Wicke, Yu, Zheng (bib0005) 2015 Rahimzadeh, Attar (bib0135) 2020 Wang, Lin, Wong (bib0180) 2020; 10 Lin, Goyal, Girshick, He, Dollár (bib0095) 2018 Rahimzadeh, Attar (bib0130) 2020 Ozkaya, Ozturk, Barstugan (bib0120) 2020 Selvaraju, Cogswell, Das, Vedantam, Parikh, Batra (bib0150) 2019; 128 Voulodimos, Protopapadakis, Katsamenis, Doulamis, Doulamis (bib0175) 2020 Wang, Zha, Li, Wu, Li, Niu, Wang, Qiu, Li, Yu (bib0185) 2020 Mlynarski, Delingette, Alghamdi, Bondiau, Ayache (bib0110) 2020; 7 Cheng (10.1016/j.bspc.2021.102588_bib0030) 2016; 6 Barstugan (10.1016/j.bspc.2021.102588_bib0025) 2020 Öztürk (10.1016/j.bspc.2021.102588_bib0125) 2021; 31 Li (10.1016/j.bspc.2021.102588_bib0085) 2020 Li (10.1016/j.bspc.2021.102588_bib0080) 2018; 14 Lin (10.1016/j.bspc.2021.102588_bib0095) 2018 Geneticeducation (10.1016/j.bspc.2021.102588_bib0050) 2020 Lin (10.1016/j.bspc.2021.102588_bib0090) 2017 Green (10.1016/j.bspc.2021.102588_bib0055) 2013; 44 Shen (10.1016/j.bspc.2021.102588_bib0155) 2017; 19 Soares (10.1016/j.bspc.2021.102588_bib0160) 2020 Narin (10.1016/j.bspc.2021.102588_bib0115) 2020 Yang (10.1016/j.bspc.2021.102588_bib0205) 2017; 35 Abadi (10.1016/j.bspc.2021.102588_bib0005) 2015 Chollet (10.1016/j.bspc.2021.102588_bib0040) 2015 Abdulmunem (10.1016/j.bspc.2021.102588_bib0010) 2021; 11 He (10.1016/j.bspc.2021.102588_bib0065) 2016 Ozkaya (10.1016/j.bspc.2021.102588_bib0120) 2020 Chollet (10.1016/j.bspc.2021.102588_bib0035) 2017 Saha (10.1016/j.bspc.2021.102588_bib0145) 2021; 22 ACR (10.1016/j.bspc.2021.102588_bib0015) 2020 Xie (10.1016/j.bspc.2021.102588_bib0200) 2020 Ai (10.1016/j.bspc.2021.102588_bib0020) 2020 Wang (10.1016/j.bspc.2021.102588_bib0185) 2020 He (10.1016/j.bspc.2021.102588_bib0060) 2016 Rahimzadeh (10.1016/j.bspc.2021.102588_bib0135) 2020 Mlynarski (10.1016/j.bspc.2021.102588_bib0110) 2020; 7 Wikipedia (10.1016/j.bspc.2021.102588_bib0195) 2020 Rahimzadeh (10.1016/j.bspc.2021.102588_bib0130) 2020 Rahimzadeh (10.1016/j.bspc.2021.102588_bib0140) 2020 Huang (10.1016/j.bspc.2021.102588_bib0070) 2018 WHO (10.1016/j.bspc.2021.102588_bib0190) 2020 Song (10.1016/j.bspc.2021.102588_bib0165) 2020; 295 Wang (10.1016/j.bspc.2021.102588_bib0180) 2020; 10 Javaheri (10.1016/j.bspc.2021.102588_bib0075) 2020 Litjens (10.1016/j.bspc.2021.102588_bib0100) 2017; 42 Deng (10.1016/j.bspc.2021.102588_bib0045) 2009 Tan (10.1016/j.bspc.2021.102588_bib0170) 2020 Lybrate (10.1016/j.bspc.2021.102588_bib0105) 2020 Selvaraju (10.1016/j.bspc.2021.102588_bib0150) 2019; 128 Voulodimos (10.1016/j.bspc.2021.102588_bib0175) 2020 |
References_xml | – start-page: 248 year: 2009 end-page: 255 ident: bib0045 article-title: Imagenet: a large-scale hierarchical image database publication-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition – volume: 7 start-page: 014502 year: 2020 ident: bib0110 article-title: Anatomically consistent cnn-based segmentation of organs-at-risk in cranial radiotherapy publication-title: J. Med. Imaging – year: 2020 ident: bib0120 article-title: Coronavirus (Covid-19) Classification Using Deep Features Fusion and Ranking Technique – year: 2020 ident: bib0130 article-title: Detecting and Counting Pistachios based on Deep Learning – year: 2020 ident: bib0135 article-title: A modified deep convolutional neural network for detecting covid-19 and pneumonia from chest x-ray images based on the concatenation of xception and resnet50v2 publication-title: Inform. Med. Unlocked – volume: 19 start-page: 221 year: 2017 end-page: 248 ident: bib0155 article-title: Deep learning in medical image analysis publication-title: Annu. Rev. Biomed. Eng. – volume: 44 start-page: 142 year: 2013 end-page: 157 ident: bib0055 article-title: Deep learning in intermediate microeconomics: using scaffolding assignments to teach theory and promote transfer publication-title: J. Econ. Educ. – volume: 42 start-page: 60 year: 2017 end-page: 88 ident: bib0100 article-title: A survey on deep learning in medical image analysis publication-title: Med. Image Anal. – year: 2020 ident: bib0160 article-title: Sars-cov-2 CT-scan dataset: a large dataset of real patients CT scans for sars-cov-2 identification publication-title: medRxiv – year: 2020 ident: bib0170 article-title: Efficientnet: Rethinking Model Scaling for Convolutional Neural Networks – volume: 22 start-page: 100505 year: 2021 ident: bib0145 article-title: Emcnet: automated covid-19 diagnosis from X-ray images using convolutional neural network and ensemble of machine learning classifiers publication-title: Inform. Med. Unlocked – volume: 35 start-page: 421 year: 2017 end-page: 433 ident: bib0205 article-title: Cascade of multi-scale convolutional neural networks for bone suppression of chest radiographs in gradient domain publication-title: Med. Image Anal. – start-page: 770 year: 2016 end-page: 778 ident: bib0060 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 630 year: 2016 end-page: 645 ident: bib0065 article-title: Identity mappings in deep residual networks publication-title: Lect. Notes Comput. Sci. – year: 2020 ident: bib0075 article-title: Covidctnet: An Open-Source Deep Learning Approach to Identify Covid-19 Using CT Image – year: 2020 ident: bib0200 article-title: Chest ct for typical 2019-ncov pneumonia: relationship to negative rt-pcr testing publication-title: Radiology – year: 2020 ident: bib0175 article-title: Deep learning models for Covid-19 infected area segmentation in CT images publication-title: medRxiv – volume: 14 start-page: 4665 year: 2018 end-page: 4673 ident: bib0080 article-title: Deep learning for smart industry: efficient manufacture inspection system with fog computing publication-title: IEEE Trans. Ind. Inform. – volume: 128 start-page: 336 year: 2019 end-page: 359 ident: bib0150 article-title: Grad-cam: visual explanations from deep networks via gradient-based localization publication-title: Int. J. Comput. Vis. – year: 2020 ident: bib0105 article-title: Huntington’s Disease – Understanding the Stages of Symptoms! – by MS. Sadhana Ghaisas | Lybrate – volume: 11 start-page: 365 year: 2021 end-page: 374 ident: bib0010 article-title: Recognition of corona virus disease (covid-19) using deep learning network publication-title: Int. J. Electr. Comput. Eng. (IJECE) – year: 2020 ident: bib0025 article-title: Coronavirus (covid-19) Classification Using CT Images by Machine Learning Methods – volume: 10 start-page: 1 year: 2020 end-page: 12 ident: bib0180 article-title: Covid-net: a tailored deep convolutional neural network design for detection of covid-19 cases from chest X-ray images publication-title: Sci. Rep. – year: 2020 ident: bib0140 article-title: Sperm Detection and Tracking in Phase-Contrast Microscopy Image Sequences Using Deep Learning and Modified csr-dcf – year: 2018 ident: bib0070 article-title: Densely Connected Convolutional Networks – year: 2020 ident: bib0115 article-title: Automatic Detection of Coronavirus Disease (Covid-19) Using X-ray Images and Deep Convolutional Neural Networks – year: 2020 ident: bib0050 article-title: Reverse Transcription PCR: Principle, Procedure, Application, Advantages and Disadvantages – start-page: 2117 year: 2017 end-page: 2125 ident: bib0090 article-title: Feature pyramid networks for object detection publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 31 start-page: 5 year: 2021 end-page: 15 ident: bib0125 article-title: Classification of coronavirus (covid-19) from X-ray and ct images using shrunken features publication-title: Int. J. Imaging Syst. Technol. – volume: 295 start-page: 210 year: 2020 end-page: 217 ident: bib0165 article-title: Emerging 2019 novel coronavirus (2019-ncov) pneumonia publication-title: Radiology – year: 2015 ident: bib0005 article-title: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems – year: 2020 ident: bib0085 article-title: Artificial intelligence distinguishes covid-19 from community acquired pneumonia on chest ct publication-title: Radiology – year: 2020 05 ident: bib0195 article-title: Covid-19 Testing – Wikipedia – volume: 6 start-page: 1 year: 2016 end-page: 13 ident: bib0030 article-title: Computer-aided diagnosis with deep learning architecture: applications to breast lesions in us images and pulmonary nodules in ct scans publication-title: Sci. Rep. – start-page: 1251 year: 2017 end-page: 1258 ident: bib0035 article-title: Xception: deep learning with depthwise separable convolutions publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 2020 ident: bib0020 article-title: Correlation of chest ct and rt-pcr testing in coronavirus disease 2019 (covid-19) in China: a report of 1014 cases publication-title: Radiology – year: 2020 ident: bib0185 article-title: A fully automatic deep learning system for covid-19 diagnostic and prognostic analysis publication-title: Eur. Respir. J. – year: 2018 ident: bib0095 article-title: Focal loss for dense object detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2015 ident: bib0040 article-title: keras – year: 2020 05 ident: bib0015 article-title: ACR Recommendations for the Use of Chest Radiography and Computed Tomography (CT) for Suspected Covid-19 Infection | American College of Radiology – year: 2020 ident: bib0190 article-title: Q&A on Coronaviruses (Covid-19) – start-page: 248 year: 2009 ident: 10.1016/j.bspc.2021.102588_bib0045 article-title: Imagenet: a large-scale hierarchical image database – year: 2015 ident: 10.1016/j.bspc.2021.102588_bib0005 – year: 2020 ident: 10.1016/j.bspc.2021.102588_bib0025 – year: 2020 ident: 10.1016/j.bspc.2021.102588_bib0170 – volume: 31 start-page: 5 issue: 1 year: 2021 ident: 10.1016/j.bspc.2021.102588_bib0125 article-title: Classification of coronavirus (covid-19) from X-ray and ct images using shrunken features publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.22469 – start-page: 2117 year: 2017 ident: 10.1016/j.bspc.2021.102588_bib0090 article-title: Feature pyramid networks for object detection publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 7 start-page: 014502 issue: 1 year: 2020 ident: 10.1016/j.bspc.2021.102588_bib0110 article-title: Anatomically consistent cnn-based segmentation of organs-at-risk in cranial radiotherapy publication-title: J. Med. Imaging doi: 10.1117/1.JMI.7.1.014502 – start-page: 630 year: 2016 ident: 10.1016/j.bspc.2021.102588_bib0065 article-title: Identity mappings in deep residual networks publication-title: Lect. Notes Comput. Sci. doi: 10.1007/978-3-319-46493-0_38 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.bspc.2021.102588_bib0180 article-title: Covid-net: a tailored deep convolutional neural network design for detection of covid-19 cases from chest X-ray images publication-title: Sci. Rep. – year: 2020 ident: 10.1016/j.bspc.2021.102588_bib0200 article-title: Chest ct for typical 2019-ncov pneumonia: relationship to negative rt-pcr testing publication-title: Radiology doi: 10.1148/radiol.2020200343 – year: 2020 ident: 10.1016/j.bspc.2021.102588_bib0020 article-title: Correlation of chest ct and rt-pcr testing in coronavirus disease 2019 (covid-19) in China: a report of 1014 cases publication-title: Radiology doi: 10.1148/radiol.2020200642 – year: 2018 ident: 10.1016/j.bspc.2021.102588_bib0095 article-title: Focal loss for dense object detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 11 start-page: 365 issue: 1 year: 2021 ident: 10.1016/j.bspc.2021.102588_bib0010 article-title: Recognition of corona virus disease (covid-19) using deep learning network publication-title: Int. J. Electr. Comput. Eng. (IJECE) doi: 10.11591/ijece.v11i1.pp365-374 – year: 2020 ident: 10.1016/j.bspc.2021.102588_bib0015 – year: 2020 ident: 10.1016/j.bspc.2021.102588_bib0050 – year: 2020 ident: 10.1016/j.bspc.2021.102588_bib0135 article-title: A modified deep convolutional neural network for detecting covid-19 and pneumonia from chest x-ray images based on the concatenation of xception and resnet50v2 publication-title: Inform. Med. Unlocked doi: 10.1016/j.imu.2020.100360 – year: 2020 ident: 10.1016/j.bspc.2021.102588_bib0130 – volume: 295 start-page: 210 issue: 1 year: 2020 ident: 10.1016/j.bspc.2021.102588_bib0165 article-title: Emerging 2019 novel coronavirus (2019-ncov) pneumonia publication-title: Radiology doi: 10.1148/radiol.2020200274 – volume: 6 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.bspc.2021.102588_bib0030 article-title: Computer-aided diagnosis with deep learning architecture: applications to breast lesions in us images and pulmonary nodules in ct scans publication-title: Sci. Rep. – year: 2020 ident: 10.1016/j.bspc.2021.102588_bib0120 – year: 2020 ident: 10.1016/j.bspc.2021.102588_bib0190 – year: 2020 ident: 10.1016/j.bspc.2021.102588_bib0195 – year: 2020 ident: 10.1016/j.bspc.2021.102588_bib0075 – volume: 14 start-page: 4665 issue: 10 year: 2018 ident: 10.1016/j.bspc.2021.102588_bib0080 article-title: Deep learning for smart industry: efficient manufacture inspection system with fog computing publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2018.2842821 – volume: 22 start-page: 100505 year: 2021 ident: 10.1016/j.bspc.2021.102588_bib0145 article-title: Emcnet: automated covid-19 diagnosis from X-ray images using convolutional neural network and ensemble of machine learning classifiers publication-title: Inform. Med. Unlocked doi: 10.1016/j.imu.2020.100505 – volume: 35 start-page: 421 year: 2017 ident: 10.1016/j.bspc.2021.102588_bib0205 article-title: Cascade of multi-scale convolutional neural networks for bone suppression of chest radiographs in gradient domain publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.08.004 – year: 2020 ident: 10.1016/j.bspc.2021.102588_bib0140 – year: 2020 ident: 10.1016/j.bspc.2021.102588_bib0160 article-title: Sars-cov-2 CT-scan dataset: a large dataset of real patients CT scans for sars-cov-2 identification publication-title: medRxiv – year: 2020 ident: 10.1016/j.bspc.2021.102588_bib0105 – year: 2020 ident: 10.1016/j.bspc.2021.102588_bib0175 article-title: Deep learning models for Covid-19 infected area segmentation in CT images publication-title: medRxiv – year: 2020 ident: 10.1016/j.bspc.2021.102588_bib0185 article-title: A fully automatic deep learning system for covid-19 diagnostic and prognostic analysis publication-title: Eur. Respir. J. doi: 10.1183/13993003.00775-2020 – volume: 19 start-page: 221 year: 2017 ident: 10.1016/j.bspc.2021.102588_bib0155 article-title: Deep learning in medical image analysis publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-071516-044442 – volume: 128 start-page: 336 issue: October (2) year: 2019 ident: 10.1016/j.bspc.2021.102588_bib0150 article-title: Grad-cam: visual explanations from deep networks via gradient-based localization publication-title: Int. J. Comput. Vis. – volume: 42 start-page: 60 year: 2017 ident: 10.1016/j.bspc.2021.102588_bib0100 article-title: A survey on deep learning in medical image analysis publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.07.005 – year: 2020 ident: 10.1016/j.bspc.2021.102588_bib0085 article-title: Artificial intelligence distinguishes covid-19 from community acquired pneumonia on chest ct publication-title: Radiology doi: 10.1148/radiol.2020200905 – year: 2018 ident: 10.1016/j.bspc.2021.102588_bib0070 – volume: 44 start-page: 142 issue: 2 year: 2013 ident: 10.1016/j.bspc.2021.102588_bib0055 article-title: Deep learning in intermediate microeconomics: using scaffolding assignments to teach theory and promote transfer publication-title: J. Econ. Educ. doi: 10.1080/00220485.2013.770338 – start-page: 1251 year: 2017 ident: 10.1016/j.bspc.2021.102588_bib0035 article-title: Xception: deep learning with depthwise separable convolutions publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 2020 ident: 10.1016/j.bspc.2021.102588_bib0115 – start-page: 770 year: 2016 ident: 10.1016/j.bspc.2021.102588_bib0060 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 2015 ident: 10.1016/j.bspc.2021.102588_bib0040 |
SSID | ssj0048714 |
Score | 2.6202068 |
Snippet | [Display omitted]
•We introduce and share a new and large dataset of original CT scans.•We introduce a fully automated system for detecting COVID-19 cases that... This paper aims to propose a high-speed and accurate fully-automated method to detect COVID-19 from the patient's chest CT scan images. We introduce a new... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 102588 |
SubjectTerms | Automatic medical diagnosis Convolutional neural networks Coronavirus COVID-19 CT scan Deep learning Lung CT scan dataset Medical image analysis Radiology |
Title | A fully automated deep learning-based network for detecting COVID-19 from a new and large lung CT scan dataset |
URI | https://dx.doi.org/10.1016/j.bspc.2021.102588 https://www.ncbi.nlm.nih.gov/pubmed/33821166 https://www.proquest.com/docview/2509271402 https://pubmed.ncbi.nlm.nih.gov/PMC8011666 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQWWBAvCkvGYkNmdZpnKRjVUAtCBh4qJvl2BcoqtKKtkIs_Hbu8qgoIAbGxBfF8uf47uLP3zF2TOLHkQ2lCH3jU4LSFMZAIuIAYhWDMdbR_47rm6Dz4F_2VG-BtcuzMESrLNb-fE3PVuviTq0Yzdqo36_d4VuCCLMTj2SE0OvQCXY_pFl--jGjeWA8nul7k7Eg6-LgTM7xiscjkjH0JCkYqKz6yq_O6Wfw-Z1D-cUpXayylSKa5K28w2tsAdJ1tvxFY3CDpS1Ov9jfuZlOhhieguMOYMSLchFPgvyY42lOB-cYw2I77SxgG2_fPnbPhGxyOoXCDVq9cZM6PiD-OB9MyeSejxEeTlTTMUw22cPF-X27I4oiC8JSLQPRcJHFpK6hoBEaz4GKEpX49Gk6P5CYTqjIJTbCxMZPpHTWyhBxr1tcnABUHDW2WCUdprDDOCSy7rwEXT6OuUWoMbYMgfbHpfVd4lWZLEdX20KBnAphDHRJNXvRhIgmRHSOSJWdzJ4Z5fobf1qrEjQ9N4s0Oog_nzsqEdb4edGeiUlhOB1rjBCbHokaYu-3c8Rn_cDsHtPnIKiycG4uzAxIunu-Je0_ZxLeEe1_BcHuP_u7x5boKqcN77PK5HUKBxgcTeLDbPYfssVW96pz8wkI_A5L |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB7RcGg5oL4J0OJKvVVW8Ga9uzlGoSjhkR4aKm6W156lQdEmIokQ_56ZrDcibcWh1_VYa_mz52GPvwH4yuTHmUuVTGMbc4DSkdZiIfMEc52jtc7zecflMOlfxWfX-noLevVbGE6rDLq_0ukrbR2-tMJstmbjcesn_SXJKDqJmEaIrM4L2GZ2Kt2A7e7gvD-sFTK55CuKb5aX3CG8nanSvPL5jJkMI8UkBnpVgOWf9ulv__PPNMondun0NewGh1J0qzG_gS0s38LOE5rBd1B2BZ-yPwi7XEzJQ0UvPOJMhIoRN5JNmRdllREuyI2ldr5coDbR-_FrcCJVR_BDFGFJ6l7Y0osJp5CLyZJFRmJOCAnONp3j4j1cnX4f9foy1FmQjssZyLbPHMV1bY3t1EYedVboIubd6eNEUUShM1-4jGKbuFDKO6dSgv7YkX5C1HnW_gCNclriHggs1LGPCrL6NOeO0Cb3MkW-Ilcu9kXUBFXPrnGBhJxrYUxMnW12axgRw4iYCpEmfFv3mVUUHM9K6xo0s7GQDNmIZ_t9qRE2tMP42sSWOF3ODTmJnYh5DWn0HyvE1-OgAJ8i6CRpQrqxFtYCzN692VKOf69YvDO-AkuS_f8c7xG87I8uL8zFYHh-AK-4pcoiPoTG4m6Jn8hXWuSfw154BEIqEPw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fully+automated+deep+learning-based+network+for+detecting+COVID-19+from+a+new+and+large+lung+CT+scan+dataset&rft.jtitle=Biomedical+signal+processing+and+control&rft.au=Rahimzadeh%2C+Mohammad&rft.au=Attar%2C+Abolfazl&rft.au=Sakhaei%2C+Seyed+Mohammad&rft.date=2021-07-01&rft.pub=Elsevier+Ltd&rft.issn=1746-8094&rft.eissn=1746-8108&rft.volume=68&rft_id=info:doi/10.1016%2Fj.bspc.2021.102588&rft.externalDocID=S1746809421001853 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1746-8094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1746-8094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1746-8094&client=summon |