Automated medical diagnosis of COVID-19 through EfficientNet convolutional neural network

COVID-19 infection was reported in December 2019 at Wuhan, China. This virus critically affects several countries such as the USA, Brazil, India and Italy. Numerous research units are working at their higher level of effort to develop novel methods to prevent and control this pandemic scenario. The...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 96; p. 106691
Main Authors Marques, Gonçalo, Agarwal, Deevyankar, de la Torre Díez, Isabel
Format Journal Article
LanguageEnglish
Published United States Elsevier B.V 01.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract COVID-19 infection was reported in December 2019 at Wuhan, China. This virus critically affects several countries such as the USA, Brazil, India and Italy. Numerous research units are working at their higher level of effort to develop novel methods to prevent and control this pandemic scenario. The main objective of this paper is to propose a medical decision support system using the implementation of a convolutional neural network (CNN). This CNN has been developed using EfficientNet architecture. To the best of the authors’ knowledge, there is no similar study that proposes an automated method for COVID-19 diagnosis using EfficientNet. Therefore, the main contribution is to present the results of a CNN developed using EfficientNet and 10-fold stratified cross-validation. This paper presents two main experiments. First, the binary classification results using images from COVID-19 patients and normal patients are shown. Second, the multi-class results using images from COVID-19, pneumonia and normal patients are discussed. The results show average accuracy values for binary and multi-class of 99.62% and 96.70%, respectively. On the one hand, the proposed CNN model using EfficientNet presents an average recall value of 99.63% and 96.69% concerning binary and multi-class, respectively. On the other hand, 99.64% is the average precision value reported by binary classification, and 97.54% is presented in multi-class. Finally, the average F1-score for multi-class is 97.11%, and 99.62% is presented for binary classification. In conclusion, the proposed architecture can provide an automated medical diagnostics system to support healthcare specialists for enhanced decision making during this pandemic scenario. •An automated system to support the diagnosis of COVID-19 patients using EfficientNet.•The proposed method has been validated using 10-fold cross-validation.•An external dataset also has been used for validation.•An accuracy of 99.62% and 96.70% is reported for binary and multi-class classification.
AbstractList COVID-19 infection was reported in December 2019 at Wuhan, China. This virus critically affects several countries such as the USA, Brazil, India and Italy. Numerous research units are working at their higher level of effort to develop novel methods to prevent and control this pandemic scenario. The main objective of this paper is to propose a medical decision support system using the implementation of a convolutional neural network (CNN). This CNN has been developed using EfficientNet architecture. To the best of the authors’ knowledge, there is no similar study that proposes an automated method for COVID-19 diagnosis using EfficientNet. Therefore, the main contribution is to present the results of a CNN developed using EfficientNet and 10-fold stratified cross-validation. This paper presents two main experiments. First, the binary classification results using images from COVID-19 patients and normal patients are shown. Second, the multi-class results using images from COVID-19, pneumonia and normal patients are discussed. The results show average accuracy values for binary and multi-class of 99.62% and 96.70%, respectively. On the one hand, the proposed CNN model using EfficientNet presents an average recall value of 99.63% and 96.69% concerning binary and multi-class, respectively. On the other hand, 99.64% is the average precision value reported by binary classification, and 97.54% is presented in multi-class. Finally, the average F1-score for multi-class is 97.11%, and 99.62% is presented for binary classification. In conclusion, the proposed architecture can provide an automated medical diagnostics system to support healthcare specialists for enhanced decision making during this pandemic scenario.
COVID-19 infection was reported in December 2019 at Wuhan, China. This virus critically affects several countries such as the USA, Brazil, India and Italy. Numerous research units are working at their higher level of effort to develop novel methods to prevent and control this pandemic scenario. The main objective of this paper is to propose a medical decision support system using the implementation of a convolutional neural network (CNN). This CNN has been developed using EfficientNet architecture. To the best of the authors’ knowledge, there is no similar study that proposes an automated method for COVID-19 diagnosis using EfficientNet. Therefore, the main contribution is to present the results of a CNN developed using EfficientNet and 10-fold stratified cross-validation. This paper presents two main experiments. First, the binary classification results using images from COVID-19 patients and normal patients are shown. Second, the multi-class results using images from COVID-19, pneumonia and normal patients are discussed. The results show average accuracy values for binary and multi-class of 99.62% and 96.70%, respectively. On the one hand, the proposed CNN model using EfficientNet presents an average recall value of 99.63% and 96.69% concerning binary and multi-class, respectively. On the other hand, 99.64% is the average precision value reported by binary classification, and 97.54% is presented in multi-class. Finally, the average F1-score for multi-class is 97.11%, and 99.62% is presented for binary classification. In conclusion, the proposed architecture can provide an automated medical diagnostics system to support healthcare specialists for enhanced decision making during this pandemic scenario. •An automated system to support the diagnosis of COVID-19 patients using EfficientNet.•The proposed method has been validated using 10-fold cross-validation.•An external dataset also has been used for validation.•An accuracy of 99.62% and 96.70% is reported for binary and multi-class classification.
COVID-19 infection was reported in December 2019 at Wuhan, China. This virus critically affects several countries such as the USA, Brazil, India and Italy. Numerous research units are working at their higher level of effort to develop novel methods to prevent and control this pandemic scenario. The main objective of this paper is to propose a medical decision support system using the implementation of a convolutional neural network (CNN). This CNN has been developed using EfficientNet architecture. To the best of the authors' knowledge, there is no similar study that proposes an automated method for COVID-19 diagnosis using EfficientNet. Therefore, the main contribution is to present the results of a CNN developed using EfficientNet and 10-fold stratified cross-validation. This paper presents two main experiments. First, the binary classification results using images from COVID-19 patients and normal patients are shown. Second, the multi-class results using images from COVID-19, pneumonia and normal patients are discussed. The results show average accuracy values for binary and multi-class of 99.62% and 96.70%, respectively. On the one hand, the proposed CNN model using EfficientNet presents an average recall value of 99.63% and 96.69% concerning binary and multi-class, respectively. On the other hand, 99.64% is the average precision value reported by binary classification, and 97.54% is presented in multi-class. Finally, the average F1-score for multi-class is 97.11%, and 99.62% is presented for binary classification. In conclusion, the proposed architecture can provide an automated medical diagnostics system to support healthcare specialists for enhanced decision making during this pandemic scenario.COVID-19 infection was reported in December 2019 at Wuhan, China. This virus critically affects several countries such as the USA, Brazil, India and Italy. Numerous research units are working at their higher level of effort to develop novel methods to prevent and control this pandemic scenario. The main objective of this paper is to propose a medical decision support system using the implementation of a convolutional neural network (CNN). This CNN has been developed using EfficientNet architecture. To the best of the authors' knowledge, there is no similar study that proposes an automated method for COVID-19 diagnosis using EfficientNet. Therefore, the main contribution is to present the results of a CNN developed using EfficientNet and 10-fold stratified cross-validation. This paper presents two main experiments. First, the binary classification results using images from COVID-19 patients and normal patients are shown. Second, the multi-class results using images from COVID-19, pneumonia and normal patients are discussed. The results show average accuracy values for binary and multi-class of 99.62% and 96.70%, respectively. On the one hand, the proposed CNN model using EfficientNet presents an average recall value of 99.63% and 96.69% concerning binary and multi-class, respectively. On the other hand, 99.64% is the average precision value reported by binary classification, and 97.54% is presented in multi-class. Finally, the average F1-score for multi-class is 97.11%, and 99.62% is presented for binary classification. In conclusion, the proposed architecture can provide an automated medical diagnostics system to support healthcare specialists for enhanced decision making during this pandemic scenario.
ArticleNumber 106691
Author Marques, Gonçalo
de la Torre Díez, Isabel
Agarwal, Deevyankar
Author_xml – sequence: 1
  givenname: Gonçalo
  orcidid: 0000-0001-5834-6571
  surname: Marques
  fullname: Marques, Gonçalo
  email: goncalosantosmarques@gmail.com
– sequence: 2
  givenname: Deevyankar
  orcidid: 0000-0001-8083-7342
  surname: Agarwal
  fullname: Agarwal, Deevyankar
  email: deevyankar.agarwal@hct.edu.om
– sequence: 3
  givenname: Isabel
  surname: de la Torre Díez
  fullname: de la Torre Díez, Isabel
  email: isator@tel.uva.es
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33519327$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1rGzEQhkVJaT7_QA9lj7msq49drQSlEJyPBkJ8aQM5CVk7a8tdS4mkdei_rzZ2QtpDDmLEaJ53RvMeoj3nHSD0meAJwYR_XU109GZCMR0TnEvyAR0Q0dBSckH28r3moqxkxffRYYwrnCFJxSe0z1hNJKPNAbo_G5Jf6wRtsYbWGt0XrdUL56ONhe-K6ezu-rwkskjL4IfFsrjoOmssuHQLqTDebXw_JOtdBh0M4TmkJx9-H6OPne4jnOziEfp1efFz-qO8mV1dT89uSlNTkkomqRHAhcSVoVgT2WgOVdNUuGOGal0zbtqm5rQFkB3NQ7eiZRJqPp8LowU7Qt-3ug_DPH_B5NHyFOoh2LUOf5TXVv374uxSLfxGNYJxgUeB051A8I8DxKTWNhroe-3AD1HRSlT54Jrl0i9ve702edlnLhDbAhN8jAE6ZWzS435ya9srgtVonVqp0To1Wqe21mWU_oe-qL8LfdtCkDe8sRBUHM0x2coAJqnW2_fwvyGSszw
CitedBy_id crossref_primary_10_3390_app12199606
crossref_primary_10_1016_j_aiia_2025_02_006
crossref_primary_10_1109_ACCESS_2024_3396728
crossref_primary_10_1148_ryai_210099
crossref_primary_10_3390_computation9010003
crossref_primary_10_1016_j_compeleceng_2025_110077
crossref_primary_10_1016_j_asoc_2021_107155
crossref_primary_10_1016_j_ipm_2024_103934
crossref_primary_10_1186_s12911_024_02646_5
crossref_primary_10_1016_j_asoc_2022_109851
crossref_primary_10_3390_diagnostics13193155
crossref_primary_10_1007_s00521_023_08588_9
crossref_primary_10_1016_j_eswa_2024_123608
crossref_primary_10_3390_s21186160
crossref_primary_10_1038_s41598_024_82586_2
crossref_primary_10_23939_ujit2023_01_061
crossref_primary_10_3390_bdcc5040073
crossref_primary_10_1002_hsr2_1919
crossref_primary_10_1016_j_eswa_2021_115805
crossref_primary_10_3390_electronics11162514
crossref_primary_10_3390_electronics11193060
crossref_primary_10_1016_j_iot_2023_100828
crossref_primary_10_1016_j_jksus_2022_101898
crossref_primary_10_1007_s42979_024_03266_6
crossref_primary_10_3390_electronics11193068
crossref_primary_10_1007_s41870_024_01867_1
crossref_primary_10_1016_j_compbiomed_2022_105604
crossref_primary_10_3389_fnins_2023_1273931
crossref_primary_10_1016_j_compbiomed_2022_105961
crossref_primary_10_1142_S0218488524500077
crossref_primary_10_3390_agronomy14123064
crossref_primary_10_1007_s10489_020_02102_7
crossref_primary_10_3390_ijerph20043627
crossref_primary_10_3390_rs14010106
crossref_primary_10_1016_j_iswa_2022_200147
crossref_primary_10_32604_cmc_2022_026131
crossref_primary_10_3390_s21030764
crossref_primary_10_3390_s25010163
crossref_primary_10_3390_diagnostics13020248
crossref_primary_10_3390_app12136364
crossref_primary_10_1111_exsy_13688
crossref_primary_10_3390_jimaging10080176
crossref_primary_10_1007_s11042_022_13843_7
crossref_primary_10_1016_j_asoc_2023_110904
crossref_primary_10_32628_IJSRSET241132
crossref_primary_10_1016_j_patrec_2021_10_027
crossref_primary_10_1016_j_trpro_2022_06_287
crossref_primary_10_3389_fonc_2022_901475
crossref_primary_10_17714_gumusfenbil_1487192
crossref_primary_10_1155_2022_9518910
crossref_primary_10_3390_diagnostics12030742
crossref_primary_10_7717_peerj_cs_1877
crossref_primary_10_1007_s10278_023_00894_x
crossref_primary_10_1016_j_asoc_2021_107197
crossref_primary_10_3389_fevo_2023_1208643
crossref_primary_10_1016_j_oceaneng_2024_118947
crossref_primary_10_1016_j_asoc_2021_107878
crossref_primary_10_1038_s41598_024_51317_y
crossref_primary_10_3233_IDT_220150
crossref_primary_10_1002_ima_23014
crossref_primary_10_1007_s10916_023_01941_4
crossref_primary_10_1016_j_cmpb_2021_105973
crossref_primary_10_1016_j_heliyon_2024_e25757
crossref_primary_10_1016_j_bspc_2022_104126
crossref_primary_10_1007_s43069_022_00128_w
crossref_primary_10_3390_jpm10040213
crossref_primary_10_1016_j_compeleceng_2022_108292
crossref_primary_10_3390_bdcc6040122
crossref_primary_10_1016_j_matpr_2021_02_244
crossref_primary_10_1089_end_2024_0250
crossref_primary_10_2139_ssrn_4176789
crossref_primary_10_1007_s00521_023_08344_z
crossref_primary_10_3389_fmed_2022_955765
crossref_primary_10_1016_j_eswa_2022_116540
crossref_primary_10_1111_exsy_13750
crossref_primary_10_1038_s41598_021_03572_6
crossref_primary_10_1155_2022_6786203
crossref_primary_10_1371_journal_pone_0296352
crossref_primary_10_1142_S0129065724500321
crossref_primary_10_1007_s13198_024_02402_y
crossref_primary_10_1080_10106049_2022_2034989
crossref_primary_10_1007_s13246_023_01261_4
crossref_primary_10_1155_2021_6919483
crossref_primary_10_1007_s10489_021_02193_w
crossref_primary_10_1155_2022_8683855
crossref_primary_10_3390_jpm13030519
crossref_primary_10_1016_j_asoc_2020_106906
crossref_primary_10_1007_s11042_022_12624_6
crossref_primary_10_3390_diagnostics13040798
crossref_primary_10_1088_1361_6501_ac3945
crossref_primary_10_2139_ssrn_4088408
crossref_primary_10_1007_s00371_022_02732_7
crossref_primary_10_1093_jcde_qwac003
crossref_primary_10_1016_j_eswa_2023_122399
crossref_primary_10_1111_vru_13465
crossref_primary_10_3390_jimaging9110247
crossref_primary_10_1016_j_ebiom_2023_104541
crossref_primary_10_1016_j_chaos_2021_111310
crossref_primary_10_3390_electronics10161996
crossref_primary_10_3390_jpm12020310
crossref_primary_10_4108_eetpht_9_4212
crossref_primary_10_1016_j_chemolab_2022_104695
crossref_primary_10_3389_frai_2024_1467051
crossref_primary_10_3389_fninf_2022_961588
crossref_primary_10_1111_exsy_13012
crossref_primary_10_1007_s00354_024_00255_4
crossref_primary_10_1186_s40644_024_00784_7
crossref_primary_10_3389_fonc_2024_1347856
crossref_primary_10_1016_j_jmir_2024_03_046
crossref_primary_10_3233_XST_211031
crossref_primary_10_2991_jaims_d_210618_001
crossref_primary_10_32604_cmc_2023_034654
crossref_primary_10_3390_su13126900
crossref_primary_10_3390_app13169310
crossref_primary_10_1016_j_asoc_2022_109319
crossref_primary_10_1080_1206212X_2024_2404082
crossref_primary_10_1016_j_compeleceng_2023_108711
crossref_primary_10_1007_s10489_022_03825_5
crossref_primary_10_1016_j_engappai_2024_109628
crossref_primary_10_1016_j_compbiomed_2022_105418
crossref_primary_10_3390_math9243282
crossref_primary_10_1038_s41598_023_42577_1
crossref_primary_10_3390_ijerph182111086
crossref_primary_10_1007_s00500_024_10305_0
crossref_primary_10_1016_j_heliyon_2023_e15137
crossref_primary_10_16984_saufenbilder_1067061
crossref_primary_10_1142_S1469026822500134
crossref_primary_10_1088_1361_6501_adaa91
crossref_primary_10_1016_j_asoc_2022_109906
crossref_primary_10_1016_j_iswa_2024_200463
crossref_primary_10_3389_fmed_2021_755309
crossref_primary_10_3390_bdcc8080084
crossref_primary_10_3390_cancers13040661
crossref_primary_10_3390_software3010003
crossref_primary_10_1016_j_cmpb_2022_106833
crossref_primary_10_1142_S0218001422520103
crossref_primary_10_1109_TNNLS_2021_3114747
crossref_primary_10_1016_j_patcog_2021_108110
crossref_primary_10_1587_transinf_2023EDP7221
crossref_primary_10_3389_fmed_2022_1005920
crossref_primary_10_1038_s41598_024_58220_6
crossref_primary_10_3389_fpubh_2022_948205
crossref_primary_10_3390_electronics12030684
crossref_primary_10_1007_s00521_023_08683_x
crossref_primary_10_1007_s00521_023_09358_3
crossref_primary_10_2298_CSIS210209056V
crossref_primary_10_1007_s11042_022_12952_7
crossref_primary_10_7717_peerj_cs_2062
crossref_primary_10_1007_s10489_024_05820_4
crossref_primary_10_1109_ACCESS_2024_3455750
crossref_primary_10_1016_j_eclinm_2022_101541
crossref_primary_10_1016_j_asoc_2023_110191
crossref_primary_10_1016_j_istruc_2025_108245
crossref_primary_10_1016_j_heliyon_2023_e22561
crossref_primary_10_1016_j_compbiomed_2023_106947
crossref_primary_10_1007_s10489_024_05325_0
crossref_primary_10_1166_jmihi_2022_3942
crossref_primary_10_1007_s42044_024_00181_0
crossref_primary_10_1007_s11042_022_13847_3
crossref_primary_10_37391_ijeer_110204
crossref_primary_10_1016_j_conbuildmat_2022_130099
crossref_primary_10_3389_fpubh_2023_1025746
crossref_primary_10_1371_journal_pone_0312257
crossref_primary_10_3390_app13137967
crossref_primary_10_31466_kfbd_1168320
crossref_primary_10_1007_s10278_025_01436_3
crossref_primary_10_1016_j_measurement_2025_117294
crossref_primary_10_1007_s10278_022_00671_2
crossref_primary_10_1007_s10278_024_01263_y
crossref_primary_10_3389_fpubh_2022_855994
crossref_primary_10_1155_2022_4409336
crossref_primary_10_1016_j_neucom_2022_01_055
crossref_primary_10_1016_j_chemolab_2022_104539
crossref_primary_10_1016_j_bspc_2022_103778
crossref_primary_10_1016_j_inffus_2022_08_010
crossref_primary_10_3389_fpubh_2022_869238
crossref_primary_10_3233_IDT_210055
crossref_primary_10_1088_1361_6501_ac57ec
crossref_primary_10_3390_app13074434
crossref_primary_10_1016_j_imu_2024_101582
crossref_primary_10_1155_2021_5527923
crossref_primary_10_1007_s00521_023_09129_0
crossref_primary_10_2139_ssrn_4010398
crossref_primary_10_1016_j_health_2023_100278
crossref_primary_10_32604_cmc_2023_033920
crossref_primary_10_1007_s12530_024_09575_8
crossref_primary_10_3390_app11041573
crossref_primary_10_1007_s00371_021_02352_7
crossref_primary_10_32604_cmc_2022_029265
crossref_primary_10_21595_rsa_2021_22108
crossref_primary_10_1016_j_mlwa_2024_100556
crossref_primary_10_1016_j_ijhm_2020_102707
crossref_primary_10_1186_s13018_024_05352_0
crossref_primary_10_1016_j_health_2024_100332
crossref_primary_10_3390_math10152575
crossref_primary_10_59746_jfes_v1i1_9
crossref_primary_10_3233_JIFS_211784
crossref_primary_10_1371_journal_pone_0281498
crossref_primary_10_32604_cmc_2021_014199
crossref_primary_10_32604_cmes_2021_017679
crossref_primary_10_1007_s13369_023_08607_w
crossref_primary_10_3390_healthcare9121614
crossref_primary_10_1007_s13369_024_09193_1
crossref_primary_10_1109_JSEN_2023_3307425
crossref_primary_10_1007_s11042_024_19990_3
crossref_primary_10_1088_1361_6501_ad0afe
crossref_primary_10_1007_s00530_021_00878_3
crossref_primary_10_1016_j_asoc_2025_112878
crossref_primary_10_1016_j_compbiomed_2022_105244
crossref_primary_10_1088_1361_6501_ada053
crossref_primary_10_1364_BOE_525119
crossref_primary_10_1049_cit2_12254
crossref_primary_10_3928_01477447_20240718_02
crossref_primary_10_1155_2023_7282944
crossref_primary_10_1016_j_jksuci_2020_12_009
crossref_primary_10_21923_jesd_1350375
crossref_primary_10_3390_app132413051
crossref_primary_10_1016_j_compbiomed_2024_109507
crossref_primary_10_1080_10095020_2023_2183145
crossref_primary_10_3390_molecules29153512
crossref_primary_10_1007_s10916_021_01747_2
crossref_primary_10_1038_s41598_025_85777_7
crossref_primary_10_1007_s00366_024_02010_1
crossref_primary_10_1007_s11042_022_12826_y
crossref_primary_10_1007_s11082_023_06245_y
crossref_primary_10_3390_diagnostics14242877
Cites_doi 10.3390/su12135250
10.1016/j.dsx.2020.04.012
10.1016/j.worlddev.2020.105057
10.1016/j.asoc.2020.106253
10.1038/s41586-020-2405-7
10.1016/j.asoc.2018.02.005
10.1016/S0140-6736(20)30627-9
10.1016/j.thromres.2020.04.024
10.1038/s41569-020-0360-5
10.1016/S0140-6736(20)30183-5
10.1152/physiolgenomics.00029.2020
10.1016/S1473-3099(20)30200-0
10.3390/info11020125
10.1109/72.554195
10.1186/s42234-020-00050-8
10.1016/j.ijmedinf.2016.06.007
10.1007/s00264-020-04609-7
10.1038/s41591-018-0300-7
10.4018/IJACI.2019070106
10.1016/j.compbiomed.2020.103792
10.1016/j.chaos.2020.109944
10.1016/j.asoc.2020.106302
10.1016/S0140-6736(20)30628-0
10.1016/j.asoc.2019.105642
10.1016/j.compag.2020.105326
10.1038/s41597-020-0477-8
10.1016/j.ajp.2020.102083
10.1016/j.bbi.2020.03.007
10.1002/hpm.2769
10.1016/j.chaos.2020.110122
10.1016/j.jiph.2020.03.019
10.1056/NEJMc2014816
10.1007/s13246-020-00865-4
10.1126/science.abc0473
10.1017/ice.2020.61
10.1038/s41577-020-0308-3
10.1089/tmj.2020.0106
10.1089/tmj.2020.0109
10.1016/j.neunet.2018.12.002
ContentType Journal Article
Copyright 2020 Elsevier B.V.
2020 Elsevier B.V. All rights reserved.
2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: 2020 Elsevier B.V. All rights reserved.
– notice: 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1016/j.asoc.2020.106691
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 106691
ExternalDocumentID PMC7836808
33519327
10_1016_j_asoc_2020_106691
S1568494620306293
Genre Journal Article
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-392c8e68904c20a197a6e47740f3c2aa536cd7562dee9f2327d8d39e56bb8ca83
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Aug 21 14:12:18 EDT 2025
Mon Jul 21 11:56:35 EDT 2025
Mon Jul 21 06:00:25 EDT 2025
Tue Jul 01 01:50:07 EDT 2025
Thu Apr 24 22:50:42 EDT 2025
Fri Feb 23 02:43:24 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords COVID-19
Deep learning
Automated decision support system
Machine learning
Convolutional Neural Network (CNN)
Language English
License 2020 Elsevier B.V. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-392c8e68904c20a197a6e47740f3c2aa536cd7562dee9f2327d8d39e56bb8ca83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5834-6571
0000-0001-8083-7342
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7836808
PMID 33519327
PQID 2484248053
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7836808
proquest_miscellaneous_2484248053
pubmed_primary_33519327
crossref_citationtrail_10_1016_j_asoc_2020_106691
crossref_primary_10_1016_j_asoc_2020_106691
elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106691
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Applied soft computing
PublicationTitleAlternate Appl Soft Comput
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Muralidharan, Sakthivel, Velmurugan, Gromiha (b19) 2020
Rangel, Martínez-Gómez, Romero-González, García-Varea, Cazorla (b38) 2018; 65
Lescure, Bouadma, Nguyen, Parisey, Wicky, Behillil, Gaymard, Bouscambert-Duchamp, Donati, Le Hingrat, Enouf, Houhou-Fidouh, Valette, Mailles, Lucet, Mentre, Duval, Descamps, Malvy, Timsit, Lina, van-der Werf, Yazdanpanah (b5) 2020; 20
Das, Koley, Bose, Maiti, Mitra, Mukherjee, Dutta (b33) 2019; 83
Duong, Nguyen, Di Sipio, Di Ruscio (b40) 2020; 171
Ahuja, Panigrahi, Dey, Gandhi, Rajinikanth (b49) 2020
M. Tukiainen, ImageDataAugmentor. GitHub, GitHub repository.
Dong, Loy, Tang (b31) 2016
Karthik, Hariharan, Anand, Mathikshara, Johnson, Menaka (b36) 2020; 86
Doshi, Platt, Dressen, Mathews, Siy (b14) 2020
Drew, Nguyen, Steves, Menni, Freydin, Varsavsky, Sudre, Cardoso, Ourselin, Wolf, Spector, Chan (b21) 2020; 368
Mehta, McAuley, Brown, Sanchez, Tattersall, Manson (b12) 2020; 395
Cohen, Morrison, Dao, Roth, Duong, Ghassemi (b52) 2020
Ostaszewski, Mazein, Gillespie, Kuperstein, Niarakis, Hermjakob, Pico, Willighagen, Evelo, Hasenauer, Schreiber, Dräger, Demir, Wolkenhauer, Furlong, Barillot, Dopazo, Orta-Resendiz, Messina, Valencia, Funahashi, Kitano, Auffray, Balling, Schneider (b18) 2020; 7
Ji, Yu, Liu, Kong (b34) 2019
Zheng, Ma, Zhang, Xie (b3) 2020; 17
S. Omboni, Telemedicine During The COVID-19 in Italy: A Missed Opportunity?
Cao (b11) 2020; 20
Buzaev, Plechev, Nikolaeva, Galimova (b27) 2016; 2
Wang, Wei, Shen, Ding, Wan (b37) 2020; 92
Toraman, Alakus, Turkoglu (b47) 2020; 140
.
Topol (b26) 2019; 25
Roy, Tripathy, Kar, Sharma, Verma, Kaushal (b8) 2020; 51
Tavanaei, Ghodrati, Kheradpisheh, Masquelier, Maida (b35) 2019; 111
Apostolopoulos, Mpesiana (b45) 2020; 43
Ozturk, Talo, Yildirim, Baloglu, Yildirim, Rajendra Acharya (b43) 2020; 121
(b51) 2020
Nour, Cömert, Polat (b48) 2020; 106580
Kansagra, Goyal, Hamilton, Albers (b6) 2020; 383
Tashiro, Shaw (b16) 2020; 12
Srinivasa Rao, Vazquez (b24) 2020; 41
Luo, Li, Liu, Shen (b29) 2019; 34
Harapan, Itoh, Yufika, Winardi, Keam, Te, Megawati, Hayati, Wagner, Mudatsir (b10) 2020; 13
Buslaev, Iglovikov, Khvedchenya, Parinov, Druzhinin, Kalinin (b53) 2020; 11
Shi, Wang, Shi, Wu, Wang, Tang, He, Shi, Shen (b22) 2020; 1
Vaid, Kalantar, Bhandari (b44) 2020; 44
Li, Ge, Yang, Feng, Qiao, Jiang, Bi, Zhan, Xu, Wang, Zhou, Zhou, Pan, Liu, Zhang, Yang, Zhu, Hu, Hashimoto, Jia, Wang, Wang, Liu, Yang (b20) 2020; 88
Vaishya, Javaid, Khan, Haleem (b25) 2020; 14
Panwar, Gupta, Siddiqui, Morales-Menendez, Singh (b46) 2020; 138
Debnath, Barnaby, Coppa, Makhnevich, Kim, Chatterjee, Tóth, Levy, Paradis, Cohen, Hirsch, Zanos (b30) 2020; 6
Lawrence, Giles, Ah Chung Tsoi (b32) 1997; 8
Wang, Zhao, Ren, Xu, Yu (b39) 2020; 91
S. Al Kasab, E. Almallouhi, C.A. Holmstedt, Optimizing the Use Of Teleneurology During the COVID-19 Pandemic.
Araújo, Santana, de A. Santos Neto (b28) 2016; 94
Lodigiani, Iapichino, Carenzo, Cecconi, Ferrazzi, Sebastian, Kucher, Studt, Sacco, Alexia, Sandri, Barco (b1) 2020; 191
Flaxman, Mishra, Gandy, Unwin, Mellan, Coupland, Whittaker, Zhu, Berah, Eaton, Monod, Ghani, Donnelly, Riley, Vollmer, Ferguson, Okell, Bhatt (b4) 2020; 584
Rodriguez-Morales, Gallego, Escalera-Antezana, Méndez, Zambrano, Franco-Paredes, Suárez, Rodriguez-Enciso, Balbin-Ramon, Savio-Larriera, Risquez, Cimerman (b7) 2020; 35
Tan, Le (b41) 2019
Lee, Heo, Seo (b17) 2020; 135
Huang, Wang, Li, Ren, Zhao, Hu, Zhang, Fan, Xu, Gu, Cheng, Yu, Xia, Wei, Wu, Xie, Yin, Li, Liu, Xiao, Gao, Guo, Xie, Wang, Jiang, Gao, Jin, Wang, Cao (b2) 2020; 395
Remuzzi, Remuzzi (b9) 2020; 395
Alimadadi, Aryal, Manandhar, Munroe, Joe, Cheng (b23) 2020; 52
(b42) 2020
Ali, Sarowar, Rahman, Chaki, Dey, Tavares (b55) 2019; 10
Konar, Panigrahi, Bhattacharyya, Dey (b50) 2020
Roy (10.1016/j.asoc.2020.106691_b8) 2020; 51
Shi (10.1016/j.asoc.2020.106691_b22) 2020; 1
Toraman (10.1016/j.asoc.2020.106691_b47) 2020; 140
Flaxman (10.1016/j.asoc.2020.106691_b4) 2020; 584
Topol (10.1016/j.asoc.2020.106691_b26) 2019; 25
(10.1016/j.asoc.2020.106691_b51) 2020
Remuzzi (10.1016/j.asoc.2020.106691_b9) 2020; 395
Debnath (10.1016/j.asoc.2020.106691_b30) 2020; 6
Harapan (10.1016/j.asoc.2020.106691_b10) 2020; 13
Rodriguez-Morales (10.1016/j.asoc.2020.106691_b7) 2020; 35
Srinivasa Rao (10.1016/j.asoc.2020.106691_b24) 2020; 41
Wang (10.1016/j.asoc.2020.106691_b39) 2020; 91
Tan (10.1016/j.asoc.2020.106691_b41) 2019
Muralidharan (10.1016/j.asoc.2020.106691_b19) 2020
Cohen (10.1016/j.asoc.2020.106691_b52) 2020
Vaishya (10.1016/j.asoc.2020.106691_b25) 2020; 14
Apostolopoulos (10.1016/j.asoc.2020.106691_b45) 2020; 43
Araújo (10.1016/j.asoc.2020.106691_b28) 2016; 94
Tashiro (10.1016/j.asoc.2020.106691_b16) 2020; 12
Karthik (10.1016/j.asoc.2020.106691_b36) 2020; 86
Panwar (10.1016/j.asoc.2020.106691_b46) 2020; 138
Ozturk (10.1016/j.asoc.2020.106691_b43) 2020; 121
Vaid (10.1016/j.asoc.2020.106691_b44) 2020; 44
Rangel (10.1016/j.asoc.2020.106691_b38) 2018; 65
Huang (10.1016/j.asoc.2020.106691_b2) 2020; 395
Luo (10.1016/j.asoc.2020.106691_b29) 2019; 34
Konar (10.1016/j.asoc.2020.106691_b50) 2020
Buslaev (10.1016/j.asoc.2020.106691_b53) 2020; 11
Tavanaei (10.1016/j.asoc.2020.106691_b35) 2019; 111
Ahuja (10.1016/j.asoc.2020.106691_b49) 2020
10.1016/j.asoc.2020.106691_b15
10.1016/j.asoc.2020.106691_b13
Wang (10.1016/j.asoc.2020.106691_b37) 2020; 92
10.1016/j.asoc.2020.106691_b54
Kansagra (10.1016/j.asoc.2020.106691_b6) 2020; 383
Li (10.1016/j.asoc.2020.106691_b20) 2020; 88
Alimadadi (10.1016/j.asoc.2020.106691_b23) 2020; 52
Lawrence (10.1016/j.asoc.2020.106691_b32) 1997; 8
Cao (10.1016/j.asoc.2020.106691_b11) 2020; 20
Duong (10.1016/j.asoc.2020.106691_b40) 2020; 171
Buzaev (10.1016/j.asoc.2020.106691_b27) 2016; 2
Mehta (10.1016/j.asoc.2020.106691_b12) 2020; 395
Lescure (10.1016/j.asoc.2020.106691_b5) 2020; 20
Das (10.1016/j.asoc.2020.106691_b33) 2019; 83
Ji (10.1016/j.asoc.2020.106691_b34) 2019
(10.1016/j.asoc.2020.106691_b42) 2020
Lodigiani (10.1016/j.asoc.2020.106691_b1) 2020; 191
Zheng (10.1016/j.asoc.2020.106691_b3) 2020; 17
Lee (10.1016/j.asoc.2020.106691_b17) 2020; 135
Nour (10.1016/j.asoc.2020.106691_b48) 2020; 106580
Ali (10.1016/j.asoc.2020.106691_b55) 2019; 10
Doshi (10.1016/j.asoc.2020.106691_b14) 2020
Drew (10.1016/j.asoc.2020.106691_b21) 2020; 368
Dong (10.1016/j.asoc.2020.106691_b31) 2016
Ostaszewski (10.1016/j.asoc.2020.106691_b18) 2020; 7
References_xml – volume: 11
  start-page: 125
  year: 2020
  ident: b53
  article-title: Albumentations: Fast and flexible image augmentations
  publication-title: Information
– year: 2020
  ident: b52
  article-title: COVID-19 image data collection: Prospective predictions are the future
– start-page: 1
  year: 2020
  end-page: 6
  ident: b19
  article-title: Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 protease against COVID-19
  publication-title: J. Biomol. Struct. Dyn.
– volume: 2
  start-page: 166
  year: 2016
  end-page: 172
  ident: b27
  article-title: Artificial intelligence: Neural network model as the multidisciplinary team member in clinical decision support to avoid medical mistakes
  publication-title: Chronic Dis. Transl. Med.
– volume: 25
  start-page: 44
  year: 2019
  end-page: 56
  ident: b26
  article-title: High-performance medicine: the convergence of human and artificial intelligence
  publication-title: Nat. Med.
– volume: 51
  year: 2020
  ident: b8
  article-title: Study of knowledge, attitude, anxiety & perceived mental healthcare need in Indian population during COVID-19 pandemic
  publication-title: Asian J. Psychiatry
– volume: 92
  year: 2020
  ident: b37
  article-title: Robust fusion for RGB-D tracking using CNN features
  publication-title: Appl. Soft Comput.
– volume: 17
  start-page: 259
  year: 2020
  end-page: 260
  ident: b3
  article-title: COVID-19 and the cardiovascular system
  publication-title: Nat. Rev. Cardiol.
– volume: 91
  year: 2020
  ident: b39
  article-title: A novel multi-focus image fusion by combining simplified very deep convolutional networks and patch-based sequential reconstruction strategy
  publication-title: Appl. Soft Comput.
– volume: 383
  start-page: 400
  year: 2020
  end-page: 401
  ident: b6
  article-title: Collateral effect of Covid-19 on stroke evaluation in the United States
  publication-title: New Engl. J. Med.
– volume: 138
  year: 2020
  ident: b46
  article-title: Application of deep learning for fast detection of COVID-19 in X-rays using ncovnet
  publication-title: Chaos, Solitons Fractals
– volume: 44
  start-page: 1539
  year: 2020
  end-page: 1542
  ident: b44
  article-title: Deep learning COVID-19 detection bias: accuracy through artificial intelligence
  publication-title: Int. Orthopaedics
– year: 2019
  ident: b41
  article-title: Efficientnet: Rethinking model scaling for convolutional neural networks
– volume: 395
  start-page: 1033
  year: 2020
  end-page: 1034
  ident: b12
  article-title: COVID-19: consider cytokine storm syndromes and immunosuppression
  publication-title: Lancet
– year: 2020
  ident: b14
  article-title: Keep calm and log on: Telemedicine for COVID-19 pandemic response
– volume: 135
  year: 2020
  ident: b17
  article-title: COVID-19 in South Korea: Lessons for developing countries
  publication-title: World Dev.
– volume: 395
  start-page: 497
  year: 2020
  end-page: 506
  ident: b2
  article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China
  publication-title: Lancet
– volume: 43
  start-page: 635
  year: 2020
  end-page: 640
  ident: b45
  article-title: Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks
  publication-title: Phys. Eng. Sci. Med.
– volume: 1
  year: 2020
  ident: b22
  article-title: Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for COVID-19
  publication-title: IEEE Rev. Biomed. Eng.
– volume: 111
  start-page: 47
  year: 2019
  end-page: 63
  ident: b35
  article-title: Deep learning in spiking neural networks
  publication-title: Neural Netw.
– volume: 86
  year: 2020
  ident: b36
  article-title: Attention embedded residual CNN for disease detection in tomato leaves
  publication-title: Appl. Soft Comput.
– volume: 10
  start-page: 92
  year: 2019
  end-page: 116
  ident: b55
  article-title: Adam deep learning with SOM for human sentiment classification
  publication-title: Int. J. Ambient Comput. Intell.
– start-page: 391
  year: 2016
  end-page: 407
  ident: b31
  article-title: Accelerating the super-resolution convolutional neural network
  publication-title: Computer Vision – ECCV
– volume: 12
  start-page: 5250
  year: 2020
  ident: b16
  article-title: COVID-19 pandemic response in Japan: What is behind the initial flattening of the curve?
  publication-title: Sustainability
– volume: 395
  start-page: 1225
  year: 2020
  end-page: 1228
  ident: b9
  article-title: COVID-19 and Italy: What Next?
  publication-title: Lancet
– volume: 7
  start-page: 136
  year: 2020
  ident: b18
  article-title: COVID-19 disease map, building a computational repository of SARS-CoV-2 virus–host interaction mechanisms
  publication-title: Sci Data.
– volume: 140
  year: 2020
  ident: b47
  article-title: Convolutional capsnet: A novel artificial neural network approach to detect COVID-19 disease from X-ray images using capsule networks
  publication-title: Chaos, Solitons Fractals
– volume: 584
  start-page: 257
  year: 2020
  end-page: 261
  ident: b4
  article-title: Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe
  publication-title: Nature
– volume: 88
  start-page: 916
  year: 2020
  end-page: 919
  ident: b20
  article-title: Vicarious traumatization in the general public, members, and non-members of medical teams aiding in COVID-19 control
  publication-title: Brain, Behav. Immunity
– reference: S. Omboni, Telemedicine During The COVID-19 in Italy: A Missed Opportunity?
– volume: 83
  year: 2019
  ident: b33
  article-title: Computer aided tool for automatic detection and delineation of nucleus from oral histopathology images for OSCC screening
  publication-title: Appl. Soft Comput.
– volume: 171
  year: 2020
  ident: b40
  article-title: Automated fruit recognition using efficientnet and mixnet
  publication-title: Comput. Electron. Agric.
– volume: 41
  start-page: 826
  year: 2020
  end-page: 830
  ident: b24
  article-title: Identification of COVID-19 can be quicker through artificial intelligence framework using a mobile phone–based survey when cities and towns are under quarantine
  publication-title: Infect. Control Hosp. Epidemiol.
– volume: 20
  start-page: 269
  year: 2020
  end-page: 270
  ident: b11
  article-title: COVID-19: Immunopathology And its implications for therapy
  publication-title: Nat. Rev. Immunol.
– volume: 8
  start-page: 98
  year: 1997
  end-page: 113
  ident: b32
  article-title: Face recognition: a convolutional neural-network approach
  publication-title: IEEE Trans. Neural Netw.
– volume: 94
  start-page: 1
  year: 2016
  end-page: 7
  ident: b28
  article-title: Using machine learning to support healthcare professionals in making preauthorisation decisions
  publication-title: Int. J. Med. Inform.
– volume: 191
  start-page: 9
  year: 2020
  end-page: 14
  ident: b1
  article-title: Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy
  publication-title: Thrombosis Res.
– start-page: 653
  year: 2019
  end-page: 664
  ident: b34
  article-title: A recognition method for Italian alphabet gestures based on convolutional neural network
  publication-title: Intelligent Computing Theories and Application
– volume: 13
  start-page: 667
  year: 2020
  end-page: 673
  ident: b10
  article-title: Coronavirus disease 2019 (COVID-19): A literature review
  publication-title: J. Infection Public Health
– volume: 52
  start-page: 200
  year: 2020
  end-page: 202
  ident: b23
  article-title: Artificial intelligence and machine learning to fight COVID-19
  publication-title: Physiol. Genomics
– year: 2020
  ident: b51
  article-title: Chest X-ray images (pneumonia)
– volume: 20
  start-page: 697
  year: 2020
  end-page: 706
  ident: b5
  article-title: Clinical and virological data of the first cases of COVID-19 in Europe: A case series
  publication-title: Lancet Infectious Dis.
– volume: 106580
  year: 2020
  ident: b48
  article-title: A novel medical diagnosis model for COVID-19 infection detection based on deep features and Bayesian optimization
  publication-title: Appl. Soft Comput.
– reference: S. Al Kasab, E. Almallouhi, C.A. Holmstedt, Optimizing the Use Of Teleneurology During the COVID-19 Pandemic.
– reference: M. Tukiainen, ImageDataAugmentor. GitHub, GitHub repository.
– year: 2020
  ident: b49
  article-title: Deep transfer learning - based automated detection of COVID-19 from lung CT scan slices
– reference: .
– volume: 121
  year: 2020
  ident: b43
  article-title: Automated detection of COVID-19 cases using deep neural networks with X-ray images
  publication-title: Comput. Biol. Med.
– year: 2020
  ident: b50
  article-title: Auto-diagnosis of COVID-19 using lung CT images with semi-supervised shallow learning network
  publication-title: Review
– volume: 14
  start-page: 337
  year: 2020
  end-page: 339
  ident: b25
  article-title: Artificial intelligence (AI) applications for COVID-19 pandemic
  publication-title: Diabetes Metab. Syndr: Clin. Res. Rev.
– volume: 6
  start-page: 14
  year: 2020
  ident: b30
  article-title: Machine learning to assist clinical decision-making during the COVID-19 pandemic
  publication-title: Bioelectron Med.
– year: 2020
  ident: b42
  article-title: Efficientnet: Improving accuracy and efficiency through automl and model scaling
– volume: 368
  start-page: 1362
  year: 2020
  end-page: 1367
  ident: b21
  article-title: COPE Consortium§: Rapid implementation of mobile technology for real-time epidemiology of COVID-19
  publication-title: Science.
– volume: 34
  year: 2019
  ident: b29
  article-title: Using machine-learning methods to support health-care professionals in making admission decisions
  publication-title: Int. J. Health Plann. Mgmt.
– volume: 65
  start-page: 603
  year: 2018
  end-page: 613
  ident: b38
  article-title: Semi-supervised 3D object recognition through CNN labeling
  publication-title: Appl. Soft Comput.
– volume: 35
  year: 2020
  ident: b7
  article-title: COVID-19 in Latin America: The implications of the first confirmed case in Brazil
  publication-title: Travel Med. Infectious Dis.
– volume: 2
  start-page: 166
  year: 2016
  ident: 10.1016/j.asoc.2020.106691_b27
  article-title: Artificial intelligence: Neural network model as the multidisciplinary team member in clinical decision support to avoid medical mistakes
  publication-title: Chronic Dis. Transl. Med.
– volume: 86
  year: 2020
  ident: 10.1016/j.asoc.2020.106691_b36
  article-title: Attention embedded residual CNN for disease detection in tomato leaves
  publication-title: Appl. Soft Comput.
– year: 2020
  ident: 10.1016/j.asoc.2020.106691_b42
– volume: 12
  start-page: 5250
  year: 2020
  ident: 10.1016/j.asoc.2020.106691_b16
  article-title: COVID-19 pandemic response in Japan: What is behind the initial flattening of the curve?
  publication-title: Sustainability
  doi: 10.3390/su12135250
– volume: 14
  start-page: 337
  year: 2020
  ident: 10.1016/j.asoc.2020.106691_b25
  article-title: Artificial intelligence (AI) applications for COVID-19 pandemic
  publication-title: Diabetes Metab. Syndr: Clin. Res. Rev.
  doi: 10.1016/j.dsx.2020.04.012
– volume: 135
  year: 2020
  ident: 10.1016/j.asoc.2020.106691_b17
  article-title: COVID-19 in South Korea: Lessons for developing countries
  publication-title: World Dev.
  doi: 10.1016/j.worlddev.2020.105057
– volume: 91
  year: 2020
  ident: 10.1016/j.asoc.2020.106691_b39
  article-title: A novel multi-focus image fusion by combining simplified very deep convolutional networks and patch-based sequential reconstruction strategy
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106253
– volume: 584
  start-page: 257
  year: 2020
  ident: 10.1016/j.asoc.2020.106691_b4
  article-title: Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe
  publication-title: Nature
  doi: 10.1038/s41586-020-2405-7
– year: 2020
  ident: 10.1016/j.asoc.2020.106691_b50
  article-title: Auto-diagnosis of COVID-19 using lung CT images with semi-supervised shallow learning network
– volume: 65
  start-page: 603
  year: 2018
  ident: 10.1016/j.asoc.2020.106691_b38
  article-title: Semi-supervised 3D object recognition through CNN labeling
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.02.005
– volume: 395
  start-page: 1225
  year: 2020
  ident: 10.1016/j.asoc.2020.106691_b9
  article-title: COVID-19 and Italy: What Next?
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30627-9
– volume: 191
  start-page: 9
  year: 2020
  ident: 10.1016/j.asoc.2020.106691_b1
  article-title: Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy
  publication-title: Thrombosis Res.
  doi: 10.1016/j.thromres.2020.04.024
– volume: 17
  start-page: 259
  year: 2020
  ident: 10.1016/j.asoc.2020.106691_b3
  article-title: COVID-19 and the cardiovascular system
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/s41569-020-0360-5
– volume: 395
  start-page: 497
  year: 2020
  ident: 10.1016/j.asoc.2020.106691_b2
  article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30183-5
– volume: 52
  start-page: 200
  year: 2020
  ident: 10.1016/j.asoc.2020.106691_b23
  article-title: Artificial intelligence and machine learning to fight COVID-19
  publication-title: Physiol. Genomics
  doi: 10.1152/physiolgenomics.00029.2020
– volume: 1
  year: 2020
  ident: 10.1016/j.asoc.2020.106691_b22
  article-title: Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for COVID-19
  publication-title: IEEE Rev. Biomed. Eng.
– year: 2020
  ident: 10.1016/j.asoc.2020.106691_b49
– volume: 20
  start-page: 697
  year: 2020
  ident: 10.1016/j.asoc.2020.106691_b5
  article-title: Clinical and virological data of the first cases of COVID-19 in Europe: A case series
  publication-title: Lancet Infectious Dis.
  doi: 10.1016/S1473-3099(20)30200-0
– volume: 11
  start-page: 125
  year: 2020
  ident: 10.1016/j.asoc.2020.106691_b53
  article-title: Albumentations: Fast and flexible image augmentations
  publication-title: Information
  doi: 10.3390/info11020125
– start-page: 653
  year: 2019
  ident: 10.1016/j.asoc.2020.106691_b34
  article-title: A recognition method for Italian alphabet gestures based on convolutional neural network
– volume: 8
  start-page: 98
  year: 1997
  ident: 10.1016/j.asoc.2020.106691_b32
  article-title: Face recognition: a convolutional neural-network approach
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.554195
– volume: 6
  start-page: 14
  year: 2020
  ident: 10.1016/j.asoc.2020.106691_b30
  article-title: Machine learning to assist clinical decision-making during the COVID-19 pandemic
  publication-title: Bioelectron Med.
  doi: 10.1186/s42234-020-00050-8
– volume: 94
  start-page: 1
  year: 2016
  ident: 10.1016/j.asoc.2020.106691_b28
  article-title: Using machine learning to support healthcare professionals in making preauthorisation decisions
  publication-title: Int. J. Med. Inform.
  doi: 10.1016/j.ijmedinf.2016.06.007
– volume: 44
  start-page: 1539
  year: 2020
  ident: 10.1016/j.asoc.2020.106691_b44
  article-title: Deep learning COVID-19 detection bias: accuracy through artificial intelligence
  publication-title: Int. Orthopaedics
  doi: 10.1007/s00264-020-04609-7
– volume: 25
  start-page: 44
  year: 2019
  ident: 10.1016/j.asoc.2020.106691_b26
  article-title: High-performance medicine: the convergence of human and artificial intelligence
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0300-7
– ident: 10.1016/j.asoc.2020.106691_b54
– volume: 10
  start-page: 92
  year: 2019
  ident: 10.1016/j.asoc.2020.106691_b55
  article-title: Adam deep learning with SOM for human sentiment classification
  publication-title: Int. J. Ambient Comput. Intell.
  doi: 10.4018/IJACI.2019070106
– volume: 121
  year: 2020
  ident: 10.1016/j.asoc.2020.106691_b43
  article-title: Automated detection of COVID-19 cases using deep neural networks with X-ray images
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103792
– volume: 138
  year: 2020
  ident: 10.1016/j.asoc.2020.106691_b46
  article-title: Application of deep learning for fast detection of COVID-19 in X-rays using ncovnet
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/j.chaos.2020.109944
– volume: 92
  year: 2020
  ident: 10.1016/j.asoc.2020.106691_b37
  article-title: Robust fusion for RGB-D tracking using CNN features
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106302
– volume: 395
  start-page: 1033
  year: 2020
  ident: 10.1016/j.asoc.2020.106691_b12
  article-title: COVID-19: consider cytokine storm syndromes and immunosuppression
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30628-0
– volume: 83
  year: 2019
  ident: 10.1016/j.asoc.2020.106691_b33
  article-title: Computer aided tool for automatic detection and delineation of nucleus from oral histopathology images for OSCC screening
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105642
– start-page: 1
  year: 2020
  ident: 10.1016/j.asoc.2020.106691_b19
  article-title: Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 protease against COVID-19
  publication-title: J. Biomol. Struct. Dyn.
– volume: 171
  year: 2020
  ident: 10.1016/j.asoc.2020.106691_b40
  article-title: Automated fruit recognition using efficientnet and mixnet
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105326
– volume: 7
  start-page: 136
  year: 2020
  ident: 10.1016/j.asoc.2020.106691_b18
  article-title: COVID-19 disease map, building a computational repository of SARS-CoV-2 virus–host interaction mechanisms
  publication-title: Sci Data.
  doi: 10.1038/s41597-020-0477-8
– volume: 51
  year: 2020
  ident: 10.1016/j.asoc.2020.106691_b8
  article-title: Study of knowledge, attitude, anxiety & perceived mental healthcare need in Indian population during COVID-19 pandemic
  publication-title: Asian J. Psychiatry
  doi: 10.1016/j.ajp.2020.102083
– volume: 88
  start-page: 916
  year: 2020
  ident: 10.1016/j.asoc.2020.106691_b20
  article-title: Vicarious traumatization in the general public, members, and non-members of medical teams aiding in COVID-19 control
  publication-title: Brain, Behav. Immunity
  doi: 10.1016/j.bbi.2020.03.007
– volume: 34
  year: 2019
  ident: 10.1016/j.asoc.2020.106691_b29
  article-title: Using machine-learning methods to support health-care professionals in making admission decisions
  publication-title: Int. J. Health Plann. Mgmt.
  doi: 10.1002/hpm.2769
– year: 2020
  ident: 10.1016/j.asoc.2020.106691_b52
– start-page: 391
  year: 2016
  ident: 10.1016/j.asoc.2020.106691_b31
  article-title: Accelerating the super-resolution convolutional neural network
– volume: 140
  year: 2020
  ident: 10.1016/j.asoc.2020.106691_b47
  article-title: Convolutional capsnet: A novel artificial neural network approach to detect COVID-19 disease from X-ray images using capsule networks
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/j.chaos.2020.110122
– volume: 13
  start-page: 667
  year: 2020
  ident: 10.1016/j.asoc.2020.106691_b10
  article-title: Coronavirus disease 2019 (COVID-19): A literature review
  publication-title: J. Infection Public Health
  doi: 10.1016/j.jiph.2020.03.019
– year: 2020
  ident: 10.1016/j.asoc.2020.106691_b51
– volume: 383
  start-page: 400
  year: 2020
  ident: 10.1016/j.asoc.2020.106691_b6
  article-title: Collateral effect of Covid-19 on stroke evaluation in the United States
  publication-title: New Engl. J. Med.
  doi: 10.1056/NEJMc2014816
– volume: 106580
  year: 2020
  ident: 10.1016/j.asoc.2020.106691_b48
  article-title: A novel medical diagnosis model for COVID-19 infection detection based on deep features and Bayesian optimization
  publication-title: Appl. Soft Comput.
– year: 2019
  ident: 10.1016/j.asoc.2020.106691_b41
– volume: 43
  start-page: 635
  year: 2020
  ident: 10.1016/j.asoc.2020.106691_b45
  article-title: Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks
  publication-title: Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-020-00865-4
– year: 2020
  ident: 10.1016/j.asoc.2020.106691_b14
– volume: 368
  start-page: 1362
  year: 2020
  ident: 10.1016/j.asoc.2020.106691_b21
  article-title: COPE Consortium§: Rapid implementation of mobile technology for real-time epidemiology of COVID-19
  publication-title: Science.
  doi: 10.1126/science.abc0473
– volume: 41
  start-page: 826
  year: 2020
  ident: 10.1016/j.asoc.2020.106691_b24
  article-title: Identification of COVID-19 can be quicker through artificial intelligence framework using a mobile phone–based survey when cities and towns are under quarantine
  publication-title: Infect. Control Hosp. Epidemiol.
  doi: 10.1017/ice.2020.61
– volume: 20
  start-page: 269
  year: 2020
  ident: 10.1016/j.asoc.2020.106691_b11
  article-title: COVID-19: Immunopathology And its implications for therapy
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-020-0308-3
– ident: 10.1016/j.asoc.2020.106691_b15
  doi: 10.1089/tmj.2020.0106
– ident: 10.1016/j.asoc.2020.106691_b13
  doi: 10.1089/tmj.2020.0109
– volume: 111
  start-page: 47
  year: 2019
  ident: 10.1016/j.asoc.2020.106691_b35
  article-title: Deep learning in spiking neural networks
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2018.12.002
– volume: 35
  year: 2020
  ident: 10.1016/j.asoc.2020.106691_b7
  article-title: COVID-19 in Latin America: The implications of the first confirmed case in Brazil
  publication-title: Travel Med. Infectious Dis.
SSID ssj0016928
Score 2.666798
Snippet COVID-19 infection was reported in December 2019 at Wuhan, China. This virus critically affects several countries such as the USA, Brazil, India and Italy....
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 106691
SubjectTerms Automated decision support system
Convolutional Neural Network (CNN)
COVID-19
Deep learning
Machine learning
Title Automated medical diagnosis of COVID-19 through EfficientNet convolutional neural network
URI https://dx.doi.org/10.1016/j.asoc.2020.106691
https://www.ncbi.nlm.nih.gov/pubmed/33519327
https://www.proquest.com/docview/2484248053
https://pubmed.ncbi.nlm.nih.gov/PMC7836808
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V5cIFynvbUhmJGzKbh-PHcbW02vJYEFBUTpbjOGIRZKt299rfzkzsrFgQPXCIrDjjxPJMZj7L8wB4HtosZEF47lVVc0oox00rc-6cqHPXKDR6FDv8bi5nZ-L1eXW-A9MhFobcKpPujzq919apZ5xWc3yxWIw_4c5DCyNkQbAXrRZFsAtFUv7yeuPmkUvT11clYk7UKXAm-ng5XAHcIxbUIaXJ_2Wc_gaff_pQ_maUTvbgTkKTbBInfA92Qncf7g6VGlj6cR_A18l6tURsGhr2M57MsCb62C2u2LJl0_dfTl_x3LBUtocd95kl8KPzsGLkmZ4kFAdSBsy-6f3HH8LZyfHn6YynogrcU-0CjnjI6yC1yYQvMpcb5WQQCAKztvSFc1UpfaMQFTUhmBbxlmp0U5pQybrW3unyEex2yy48AaZN5YMqytapXLRV5ZALRmfeU7JbfN0I8mE1rU8Zx6nwxQ87uJZ9t8QBSxywkQMjeLEZcxHzbdxIXQ1MsltSY9Eg3Dju2cBRi78TnZG4LizXV7YQWuCFqmkEjyOHN_Moyx7uqhGoLd5vCChV9_aTbvGtT9lNsTI60_v_Od8DuE13MQbyEHZXl-vwFMHQqj7qpf0Ibk2mH99-oPb0zWz-CwZZCzU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcoAL70d4LhKc0BI_1vs4cKj6UELbcKBF5bRdr9ciCJyKJEJc-FP8QWbsdURA9IDUQxTJ9tqr-bwz38oz3wA8D3USkiA896ooOQnKcVPLlDsnytRVCoMe1Q4fTuToWLw5KU424GdfC0NpldH3dz699dbxyDBac3g2nQ7f4c5DCyNkRrQXo1bMrNwP37_hvm3-eryDIL_Isr3do-0Rj60FuCcFf46swOsgtUmEzxKXGuVkEEiFkjr3mXNFLn2lkBtUIZgaWYeqdJWbUMiy1N7pHO97CS4LdBfUNuHVj1VeSSpN29CVZsdperFSp0sqc2hy3JRmdEBKk_4rGv7Ndv9M2vwtCu7dgGuRvrKtzkI3YSM0t-B63xqCRU9xGz5sLRczJMOhYl-6T0Gs6pL6pnM2q9n22_fjHZ4aFvsEsd1WygIfOgkLRqnwcUngQJLcbP_ahPU7cHwhpr4Lm82sCfeBaVP4oLK8dioVdVE4hN3oxHtS18XbDSDtrWl9lDinThufbZ_L9skSApYQsB0CA3i5GnPWCXyce3XRg2TXXlOLEejccc96RC2uX_oo45owW85tJrTAH_rCAdzrEF7NI89bfq0GoNawX11A2uDrZ5rpx1YjnIpzdKIf_Od8n8KV0dHhgT0YT_YfwlU60xVgPoLNxddleIxMbFE-ad98BqcXvdR-ARGdRMg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+medical+diagnosis+of+COVID-19+through+EfficientNet+convolutional+neural+network&rft.jtitle=Applied+soft+computing&rft.au=Marques%2C+Gon%C3%A7alo&rft.au=Agarwal%2C+Deevyankar&rft.au=de+la+Torre+D%C3%ADez%2C+Isabel&rft.date=2020-11-01&rft.issn=1568-4946&rft.volume=96&rft.spage=106691&rft_id=info:doi/10.1016%2Fj.asoc.2020.106691&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon