Automated medical diagnosis of COVID-19 through EfficientNet convolutional neural network
COVID-19 infection was reported in December 2019 at Wuhan, China. This virus critically affects several countries such as the USA, Brazil, India and Italy. Numerous research units are working at their higher level of effort to develop novel methods to prevent and control this pandemic scenario. The...
Saved in:
Published in | Applied soft computing Vol. 96; p. 106691 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier B.V
01.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | COVID-19 infection was reported in December 2019 at Wuhan, China. This virus critically affects several countries such as the USA, Brazil, India and Italy. Numerous research units are working at their higher level of effort to develop novel methods to prevent and control this pandemic scenario. The main objective of this paper is to propose a medical decision support system using the implementation of a convolutional neural network (CNN). This CNN has been developed using EfficientNet architecture. To the best of the authors’ knowledge, there is no similar study that proposes an automated method for COVID-19 diagnosis using EfficientNet. Therefore, the main contribution is to present the results of a CNN developed using EfficientNet and 10-fold stratified cross-validation. This paper presents two main experiments. First, the binary classification results using images from COVID-19 patients and normal patients are shown. Second, the multi-class results using images from COVID-19, pneumonia and normal patients are discussed. The results show average accuracy values for binary and multi-class of 99.62% and 96.70%, respectively. On the one hand, the proposed CNN model using EfficientNet presents an average recall value of 99.63% and 96.69% concerning binary and multi-class, respectively. On the other hand, 99.64% is the average precision value reported by binary classification, and 97.54% is presented in multi-class. Finally, the average F1-score for multi-class is 97.11%, and 99.62% is presented for binary classification. In conclusion, the proposed architecture can provide an automated medical diagnostics system to support healthcare specialists for enhanced decision making during this pandemic scenario.
•An automated system to support the diagnosis of COVID-19 patients using EfficientNet.•The proposed method has been validated using 10-fold cross-validation.•An external dataset also has been used for validation.•An accuracy of 99.62% and 96.70% is reported for binary and multi-class classification. |
---|---|
AbstractList | COVID-19 infection was reported in December 2019 at Wuhan, China. This virus critically affects several countries such as the USA, Brazil, India and Italy. Numerous research units are working at their higher level of effort to develop novel methods to prevent and control this pandemic scenario. The main objective of this paper is to propose a medical decision support system using the implementation of a convolutional neural network (CNN). This CNN has been developed using EfficientNet architecture. To the best of the authors’ knowledge, there is no similar study that proposes an automated method for COVID-19 diagnosis using EfficientNet. Therefore, the main contribution is to present the results of a CNN developed using EfficientNet and 10-fold stratified cross-validation. This paper presents two main experiments. First, the binary classification results using images from COVID-19 patients and normal patients are shown. Second, the multi-class results using images from COVID-19, pneumonia and normal patients are discussed. The results show average accuracy values for binary and multi-class of 99.62% and 96.70%, respectively. On the one hand, the proposed CNN model using EfficientNet presents an average recall value of 99.63% and 96.69% concerning binary and multi-class, respectively. On the other hand, 99.64% is the average precision value reported by binary classification, and 97.54% is presented in multi-class. Finally, the average F1-score for multi-class is 97.11%, and 99.62% is presented for binary classification. In conclusion, the proposed architecture can provide an automated medical diagnostics system to support healthcare specialists for enhanced decision making during this pandemic scenario. COVID-19 infection was reported in December 2019 at Wuhan, China. This virus critically affects several countries such as the USA, Brazil, India and Italy. Numerous research units are working at their higher level of effort to develop novel methods to prevent and control this pandemic scenario. The main objective of this paper is to propose a medical decision support system using the implementation of a convolutional neural network (CNN). This CNN has been developed using EfficientNet architecture. To the best of the authors’ knowledge, there is no similar study that proposes an automated method for COVID-19 diagnosis using EfficientNet. Therefore, the main contribution is to present the results of a CNN developed using EfficientNet and 10-fold stratified cross-validation. This paper presents two main experiments. First, the binary classification results using images from COVID-19 patients and normal patients are shown. Second, the multi-class results using images from COVID-19, pneumonia and normal patients are discussed. The results show average accuracy values for binary and multi-class of 99.62% and 96.70%, respectively. On the one hand, the proposed CNN model using EfficientNet presents an average recall value of 99.63% and 96.69% concerning binary and multi-class, respectively. On the other hand, 99.64% is the average precision value reported by binary classification, and 97.54% is presented in multi-class. Finally, the average F1-score for multi-class is 97.11%, and 99.62% is presented for binary classification. In conclusion, the proposed architecture can provide an automated medical diagnostics system to support healthcare specialists for enhanced decision making during this pandemic scenario. •An automated system to support the diagnosis of COVID-19 patients using EfficientNet.•The proposed method has been validated using 10-fold cross-validation.•An external dataset also has been used for validation.•An accuracy of 99.62% and 96.70% is reported for binary and multi-class classification. COVID-19 infection was reported in December 2019 at Wuhan, China. This virus critically affects several countries such as the USA, Brazil, India and Italy. Numerous research units are working at their higher level of effort to develop novel methods to prevent and control this pandemic scenario. The main objective of this paper is to propose a medical decision support system using the implementation of a convolutional neural network (CNN). This CNN has been developed using EfficientNet architecture. To the best of the authors' knowledge, there is no similar study that proposes an automated method for COVID-19 diagnosis using EfficientNet. Therefore, the main contribution is to present the results of a CNN developed using EfficientNet and 10-fold stratified cross-validation. This paper presents two main experiments. First, the binary classification results using images from COVID-19 patients and normal patients are shown. Second, the multi-class results using images from COVID-19, pneumonia and normal patients are discussed. The results show average accuracy values for binary and multi-class of 99.62% and 96.70%, respectively. On the one hand, the proposed CNN model using EfficientNet presents an average recall value of 99.63% and 96.69% concerning binary and multi-class, respectively. On the other hand, 99.64% is the average precision value reported by binary classification, and 97.54% is presented in multi-class. Finally, the average F1-score for multi-class is 97.11%, and 99.62% is presented for binary classification. In conclusion, the proposed architecture can provide an automated medical diagnostics system to support healthcare specialists for enhanced decision making during this pandemic scenario.COVID-19 infection was reported in December 2019 at Wuhan, China. This virus critically affects several countries such as the USA, Brazil, India and Italy. Numerous research units are working at their higher level of effort to develop novel methods to prevent and control this pandemic scenario. The main objective of this paper is to propose a medical decision support system using the implementation of a convolutional neural network (CNN). This CNN has been developed using EfficientNet architecture. To the best of the authors' knowledge, there is no similar study that proposes an automated method for COVID-19 diagnosis using EfficientNet. Therefore, the main contribution is to present the results of a CNN developed using EfficientNet and 10-fold stratified cross-validation. This paper presents two main experiments. First, the binary classification results using images from COVID-19 patients and normal patients are shown. Second, the multi-class results using images from COVID-19, pneumonia and normal patients are discussed. The results show average accuracy values for binary and multi-class of 99.62% and 96.70%, respectively. On the one hand, the proposed CNN model using EfficientNet presents an average recall value of 99.63% and 96.69% concerning binary and multi-class, respectively. On the other hand, 99.64% is the average precision value reported by binary classification, and 97.54% is presented in multi-class. Finally, the average F1-score for multi-class is 97.11%, and 99.62% is presented for binary classification. In conclusion, the proposed architecture can provide an automated medical diagnostics system to support healthcare specialists for enhanced decision making during this pandemic scenario. |
ArticleNumber | 106691 |
Author | Marques, Gonçalo de la Torre Díez, Isabel Agarwal, Deevyankar |
Author_xml | – sequence: 1 givenname: Gonçalo orcidid: 0000-0001-5834-6571 surname: Marques fullname: Marques, Gonçalo email: goncalosantosmarques@gmail.com – sequence: 2 givenname: Deevyankar orcidid: 0000-0001-8083-7342 surname: Agarwal fullname: Agarwal, Deevyankar email: deevyankar.agarwal@hct.edu.om – sequence: 3 givenname: Isabel surname: de la Torre Díez fullname: de la Torre Díez, Isabel email: isator@tel.uva.es |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33519327$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1rGzEQhkVJaT7_QA9lj7msq49drQSlEJyPBkJ8aQM5CVk7a8tdS4mkdei_rzZ2QtpDDmLEaJ53RvMeoj3nHSD0meAJwYR_XU109GZCMR0TnEvyAR0Q0dBSckH28r3moqxkxffRYYwrnCFJxSe0z1hNJKPNAbo_G5Jf6wRtsYbWGt0XrdUL56ONhe-K6ezu-rwkskjL4IfFsrjoOmssuHQLqTDebXw_JOtdBh0M4TmkJx9-H6OPne4jnOziEfp1efFz-qO8mV1dT89uSlNTkkomqRHAhcSVoVgT2WgOVdNUuGOGal0zbtqm5rQFkB3NQ7eiZRJqPp8LowU7Qt-3ug_DPH_B5NHyFOoh2LUOf5TXVv374uxSLfxGNYJxgUeB051A8I8DxKTWNhroe-3AD1HRSlT54Jrl0i9ve702edlnLhDbAhN8jAE6ZWzS435ya9srgtVonVqp0To1Wqe21mWU_oe-qL8LfdtCkDe8sRBUHM0x2coAJqnW2_fwvyGSszw |
CitedBy_id | crossref_primary_10_3390_app12199606 crossref_primary_10_1016_j_aiia_2025_02_006 crossref_primary_10_1109_ACCESS_2024_3396728 crossref_primary_10_1148_ryai_210099 crossref_primary_10_3390_computation9010003 crossref_primary_10_1016_j_compeleceng_2025_110077 crossref_primary_10_1016_j_asoc_2021_107155 crossref_primary_10_1016_j_ipm_2024_103934 crossref_primary_10_1186_s12911_024_02646_5 crossref_primary_10_1016_j_asoc_2022_109851 crossref_primary_10_3390_diagnostics13193155 crossref_primary_10_1007_s00521_023_08588_9 crossref_primary_10_1016_j_eswa_2024_123608 crossref_primary_10_3390_s21186160 crossref_primary_10_1038_s41598_024_82586_2 crossref_primary_10_23939_ujit2023_01_061 crossref_primary_10_3390_bdcc5040073 crossref_primary_10_1002_hsr2_1919 crossref_primary_10_1016_j_eswa_2021_115805 crossref_primary_10_3390_electronics11162514 crossref_primary_10_3390_electronics11193060 crossref_primary_10_1016_j_iot_2023_100828 crossref_primary_10_1016_j_jksus_2022_101898 crossref_primary_10_1007_s42979_024_03266_6 crossref_primary_10_3390_electronics11193068 crossref_primary_10_1007_s41870_024_01867_1 crossref_primary_10_1016_j_compbiomed_2022_105604 crossref_primary_10_3389_fnins_2023_1273931 crossref_primary_10_1016_j_compbiomed_2022_105961 crossref_primary_10_1142_S0218488524500077 crossref_primary_10_3390_agronomy14123064 crossref_primary_10_1007_s10489_020_02102_7 crossref_primary_10_3390_ijerph20043627 crossref_primary_10_3390_rs14010106 crossref_primary_10_1016_j_iswa_2022_200147 crossref_primary_10_32604_cmc_2022_026131 crossref_primary_10_3390_s21030764 crossref_primary_10_3390_s25010163 crossref_primary_10_3390_diagnostics13020248 crossref_primary_10_3390_app12136364 crossref_primary_10_1111_exsy_13688 crossref_primary_10_3390_jimaging10080176 crossref_primary_10_1007_s11042_022_13843_7 crossref_primary_10_1016_j_asoc_2023_110904 crossref_primary_10_32628_IJSRSET241132 crossref_primary_10_1016_j_patrec_2021_10_027 crossref_primary_10_1016_j_trpro_2022_06_287 crossref_primary_10_3389_fonc_2022_901475 crossref_primary_10_17714_gumusfenbil_1487192 crossref_primary_10_1155_2022_9518910 crossref_primary_10_3390_diagnostics12030742 crossref_primary_10_7717_peerj_cs_1877 crossref_primary_10_1007_s10278_023_00894_x crossref_primary_10_1016_j_asoc_2021_107197 crossref_primary_10_3389_fevo_2023_1208643 crossref_primary_10_1016_j_oceaneng_2024_118947 crossref_primary_10_1016_j_asoc_2021_107878 crossref_primary_10_1038_s41598_024_51317_y crossref_primary_10_3233_IDT_220150 crossref_primary_10_1002_ima_23014 crossref_primary_10_1007_s10916_023_01941_4 crossref_primary_10_1016_j_cmpb_2021_105973 crossref_primary_10_1016_j_heliyon_2024_e25757 crossref_primary_10_1016_j_bspc_2022_104126 crossref_primary_10_1007_s43069_022_00128_w crossref_primary_10_3390_jpm10040213 crossref_primary_10_1016_j_compeleceng_2022_108292 crossref_primary_10_3390_bdcc6040122 crossref_primary_10_1016_j_matpr_2021_02_244 crossref_primary_10_1089_end_2024_0250 crossref_primary_10_2139_ssrn_4176789 crossref_primary_10_1007_s00521_023_08344_z crossref_primary_10_3389_fmed_2022_955765 crossref_primary_10_1016_j_eswa_2022_116540 crossref_primary_10_1111_exsy_13750 crossref_primary_10_1038_s41598_021_03572_6 crossref_primary_10_1155_2022_6786203 crossref_primary_10_1371_journal_pone_0296352 crossref_primary_10_1142_S0129065724500321 crossref_primary_10_1007_s13198_024_02402_y crossref_primary_10_1080_10106049_2022_2034989 crossref_primary_10_1007_s13246_023_01261_4 crossref_primary_10_1155_2021_6919483 crossref_primary_10_1007_s10489_021_02193_w crossref_primary_10_1155_2022_8683855 crossref_primary_10_3390_jpm13030519 crossref_primary_10_1016_j_asoc_2020_106906 crossref_primary_10_1007_s11042_022_12624_6 crossref_primary_10_3390_diagnostics13040798 crossref_primary_10_1088_1361_6501_ac3945 crossref_primary_10_2139_ssrn_4088408 crossref_primary_10_1007_s00371_022_02732_7 crossref_primary_10_1093_jcde_qwac003 crossref_primary_10_1016_j_eswa_2023_122399 crossref_primary_10_1111_vru_13465 crossref_primary_10_3390_jimaging9110247 crossref_primary_10_1016_j_ebiom_2023_104541 crossref_primary_10_1016_j_chaos_2021_111310 crossref_primary_10_3390_electronics10161996 crossref_primary_10_3390_jpm12020310 crossref_primary_10_4108_eetpht_9_4212 crossref_primary_10_1016_j_chemolab_2022_104695 crossref_primary_10_3389_frai_2024_1467051 crossref_primary_10_3389_fninf_2022_961588 crossref_primary_10_1111_exsy_13012 crossref_primary_10_1007_s00354_024_00255_4 crossref_primary_10_1186_s40644_024_00784_7 crossref_primary_10_3389_fonc_2024_1347856 crossref_primary_10_1016_j_jmir_2024_03_046 crossref_primary_10_3233_XST_211031 crossref_primary_10_2991_jaims_d_210618_001 crossref_primary_10_32604_cmc_2023_034654 crossref_primary_10_3390_su13126900 crossref_primary_10_3390_app13169310 crossref_primary_10_1016_j_asoc_2022_109319 crossref_primary_10_1080_1206212X_2024_2404082 crossref_primary_10_1016_j_compeleceng_2023_108711 crossref_primary_10_1007_s10489_022_03825_5 crossref_primary_10_1016_j_engappai_2024_109628 crossref_primary_10_1016_j_compbiomed_2022_105418 crossref_primary_10_3390_math9243282 crossref_primary_10_1038_s41598_023_42577_1 crossref_primary_10_3390_ijerph182111086 crossref_primary_10_1007_s00500_024_10305_0 crossref_primary_10_1016_j_heliyon_2023_e15137 crossref_primary_10_16984_saufenbilder_1067061 crossref_primary_10_1142_S1469026822500134 crossref_primary_10_1088_1361_6501_adaa91 crossref_primary_10_1016_j_asoc_2022_109906 crossref_primary_10_1016_j_iswa_2024_200463 crossref_primary_10_3389_fmed_2021_755309 crossref_primary_10_3390_bdcc8080084 crossref_primary_10_3390_cancers13040661 crossref_primary_10_3390_software3010003 crossref_primary_10_1016_j_cmpb_2022_106833 crossref_primary_10_1142_S0218001422520103 crossref_primary_10_1109_TNNLS_2021_3114747 crossref_primary_10_1016_j_patcog_2021_108110 crossref_primary_10_1587_transinf_2023EDP7221 crossref_primary_10_3389_fmed_2022_1005920 crossref_primary_10_1038_s41598_024_58220_6 crossref_primary_10_3389_fpubh_2022_948205 crossref_primary_10_3390_electronics12030684 crossref_primary_10_1007_s00521_023_08683_x crossref_primary_10_1007_s00521_023_09358_3 crossref_primary_10_2298_CSIS210209056V crossref_primary_10_1007_s11042_022_12952_7 crossref_primary_10_7717_peerj_cs_2062 crossref_primary_10_1007_s10489_024_05820_4 crossref_primary_10_1109_ACCESS_2024_3455750 crossref_primary_10_1016_j_eclinm_2022_101541 crossref_primary_10_1016_j_asoc_2023_110191 crossref_primary_10_1016_j_istruc_2025_108245 crossref_primary_10_1016_j_heliyon_2023_e22561 crossref_primary_10_1016_j_compbiomed_2023_106947 crossref_primary_10_1007_s10489_024_05325_0 crossref_primary_10_1166_jmihi_2022_3942 crossref_primary_10_1007_s42044_024_00181_0 crossref_primary_10_1007_s11042_022_13847_3 crossref_primary_10_37391_ijeer_110204 crossref_primary_10_1016_j_conbuildmat_2022_130099 crossref_primary_10_3389_fpubh_2023_1025746 crossref_primary_10_1371_journal_pone_0312257 crossref_primary_10_3390_app13137967 crossref_primary_10_31466_kfbd_1168320 crossref_primary_10_1007_s10278_025_01436_3 crossref_primary_10_1016_j_measurement_2025_117294 crossref_primary_10_1007_s10278_022_00671_2 crossref_primary_10_1007_s10278_024_01263_y crossref_primary_10_3389_fpubh_2022_855994 crossref_primary_10_1155_2022_4409336 crossref_primary_10_1016_j_neucom_2022_01_055 crossref_primary_10_1016_j_chemolab_2022_104539 crossref_primary_10_1016_j_bspc_2022_103778 crossref_primary_10_1016_j_inffus_2022_08_010 crossref_primary_10_3389_fpubh_2022_869238 crossref_primary_10_3233_IDT_210055 crossref_primary_10_1088_1361_6501_ac57ec crossref_primary_10_3390_app13074434 crossref_primary_10_1016_j_imu_2024_101582 crossref_primary_10_1155_2021_5527923 crossref_primary_10_1007_s00521_023_09129_0 crossref_primary_10_2139_ssrn_4010398 crossref_primary_10_1016_j_health_2023_100278 crossref_primary_10_32604_cmc_2023_033920 crossref_primary_10_1007_s12530_024_09575_8 crossref_primary_10_3390_app11041573 crossref_primary_10_1007_s00371_021_02352_7 crossref_primary_10_32604_cmc_2022_029265 crossref_primary_10_21595_rsa_2021_22108 crossref_primary_10_1016_j_mlwa_2024_100556 crossref_primary_10_1016_j_ijhm_2020_102707 crossref_primary_10_1186_s13018_024_05352_0 crossref_primary_10_1016_j_health_2024_100332 crossref_primary_10_3390_math10152575 crossref_primary_10_59746_jfes_v1i1_9 crossref_primary_10_3233_JIFS_211784 crossref_primary_10_1371_journal_pone_0281498 crossref_primary_10_32604_cmc_2021_014199 crossref_primary_10_32604_cmes_2021_017679 crossref_primary_10_1007_s13369_023_08607_w crossref_primary_10_3390_healthcare9121614 crossref_primary_10_1007_s13369_024_09193_1 crossref_primary_10_1109_JSEN_2023_3307425 crossref_primary_10_1007_s11042_024_19990_3 crossref_primary_10_1088_1361_6501_ad0afe crossref_primary_10_1007_s00530_021_00878_3 crossref_primary_10_1016_j_asoc_2025_112878 crossref_primary_10_1016_j_compbiomed_2022_105244 crossref_primary_10_1088_1361_6501_ada053 crossref_primary_10_1364_BOE_525119 crossref_primary_10_1049_cit2_12254 crossref_primary_10_3928_01477447_20240718_02 crossref_primary_10_1155_2023_7282944 crossref_primary_10_1016_j_jksuci_2020_12_009 crossref_primary_10_21923_jesd_1350375 crossref_primary_10_3390_app132413051 crossref_primary_10_1016_j_compbiomed_2024_109507 crossref_primary_10_1080_10095020_2023_2183145 crossref_primary_10_3390_molecules29153512 crossref_primary_10_1007_s10916_021_01747_2 crossref_primary_10_1038_s41598_025_85777_7 crossref_primary_10_1007_s00366_024_02010_1 crossref_primary_10_1007_s11042_022_12826_y crossref_primary_10_1007_s11082_023_06245_y crossref_primary_10_3390_diagnostics14242877 |
Cites_doi | 10.3390/su12135250 10.1016/j.dsx.2020.04.012 10.1016/j.worlddev.2020.105057 10.1016/j.asoc.2020.106253 10.1038/s41586-020-2405-7 10.1016/j.asoc.2018.02.005 10.1016/S0140-6736(20)30627-9 10.1016/j.thromres.2020.04.024 10.1038/s41569-020-0360-5 10.1016/S0140-6736(20)30183-5 10.1152/physiolgenomics.00029.2020 10.1016/S1473-3099(20)30200-0 10.3390/info11020125 10.1109/72.554195 10.1186/s42234-020-00050-8 10.1016/j.ijmedinf.2016.06.007 10.1007/s00264-020-04609-7 10.1038/s41591-018-0300-7 10.4018/IJACI.2019070106 10.1016/j.compbiomed.2020.103792 10.1016/j.chaos.2020.109944 10.1016/j.asoc.2020.106302 10.1016/S0140-6736(20)30628-0 10.1016/j.asoc.2019.105642 10.1016/j.compag.2020.105326 10.1038/s41597-020-0477-8 10.1016/j.ajp.2020.102083 10.1016/j.bbi.2020.03.007 10.1002/hpm.2769 10.1016/j.chaos.2020.110122 10.1016/j.jiph.2020.03.019 10.1056/NEJMc2014816 10.1007/s13246-020-00865-4 10.1126/science.abc0473 10.1017/ice.2020.61 10.1038/s41577-020-0308-3 10.1089/tmj.2020.0106 10.1089/tmj.2020.0109 10.1016/j.neunet.2018.12.002 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: 2020 Elsevier B.V. All rights reserved. – notice: 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V. |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1016/j.asoc.2020.106691 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
EndPage | 106691 |
ExternalDocumentID | PMC7836808 33519327 10_1016_j_asoc_2020_106691 S1568494620306293 |
Genre | Journal Article |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-392c8e68904c20a197a6e47740f3c2aa536cd7562dee9f2327d8d39e56bb8ca83 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Thu Aug 21 14:12:18 EDT 2025 Mon Jul 21 11:56:35 EDT 2025 Mon Jul 21 06:00:25 EDT 2025 Tue Jul 01 01:50:07 EDT 2025 Thu Apr 24 22:50:42 EDT 2025 Fri Feb 23 02:43:24 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | COVID-19 Deep learning Automated decision support system Machine learning Convolutional Neural Network (CNN) |
Language | English |
License | 2020 Elsevier B.V. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-392c8e68904c20a197a6e47740f3c2aa536cd7562dee9f2327d8d39e56bb8ca83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5834-6571 0000-0001-8083-7342 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7836808 |
PMID | 33519327 |
PQID | 2484248053 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7836808 proquest_miscellaneous_2484248053 pubmed_primary_33519327 crossref_citationtrail_10_1016_j_asoc_2020_106691 crossref_primary_10_1016_j_asoc_2020_106691 elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106691 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Applied soft computing |
PublicationTitleAlternate | Appl Soft Comput |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Muralidharan, Sakthivel, Velmurugan, Gromiha (b19) 2020 Rangel, Martínez-Gómez, Romero-González, García-Varea, Cazorla (b38) 2018; 65 Lescure, Bouadma, Nguyen, Parisey, Wicky, Behillil, Gaymard, Bouscambert-Duchamp, Donati, Le Hingrat, Enouf, Houhou-Fidouh, Valette, Mailles, Lucet, Mentre, Duval, Descamps, Malvy, Timsit, Lina, van-der Werf, Yazdanpanah (b5) 2020; 20 Das, Koley, Bose, Maiti, Mitra, Mukherjee, Dutta (b33) 2019; 83 Duong, Nguyen, Di Sipio, Di Ruscio (b40) 2020; 171 Ahuja, Panigrahi, Dey, Gandhi, Rajinikanth (b49) 2020 M. Tukiainen, ImageDataAugmentor. GitHub, GitHub repository. Dong, Loy, Tang (b31) 2016 Karthik, Hariharan, Anand, Mathikshara, Johnson, Menaka (b36) 2020; 86 Doshi, Platt, Dressen, Mathews, Siy (b14) 2020 Drew, Nguyen, Steves, Menni, Freydin, Varsavsky, Sudre, Cardoso, Ourselin, Wolf, Spector, Chan (b21) 2020; 368 Mehta, McAuley, Brown, Sanchez, Tattersall, Manson (b12) 2020; 395 Cohen, Morrison, Dao, Roth, Duong, Ghassemi (b52) 2020 Ostaszewski, Mazein, Gillespie, Kuperstein, Niarakis, Hermjakob, Pico, Willighagen, Evelo, Hasenauer, Schreiber, Dräger, Demir, Wolkenhauer, Furlong, Barillot, Dopazo, Orta-Resendiz, Messina, Valencia, Funahashi, Kitano, Auffray, Balling, Schneider (b18) 2020; 7 Ji, Yu, Liu, Kong (b34) 2019 Zheng, Ma, Zhang, Xie (b3) 2020; 17 S. Omboni, Telemedicine During The COVID-19 in Italy: A Missed Opportunity? Cao (b11) 2020; 20 Buzaev, Plechev, Nikolaeva, Galimova (b27) 2016; 2 Wang, Wei, Shen, Ding, Wan (b37) 2020; 92 Toraman, Alakus, Turkoglu (b47) 2020; 140 . Topol (b26) 2019; 25 Roy, Tripathy, Kar, Sharma, Verma, Kaushal (b8) 2020; 51 Tavanaei, Ghodrati, Kheradpisheh, Masquelier, Maida (b35) 2019; 111 Apostolopoulos, Mpesiana (b45) 2020; 43 Ozturk, Talo, Yildirim, Baloglu, Yildirim, Rajendra Acharya (b43) 2020; 121 (b51) 2020 Nour, Cömert, Polat (b48) 2020; 106580 Kansagra, Goyal, Hamilton, Albers (b6) 2020; 383 Tashiro, Shaw (b16) 2020; 12 Srinivasa Rao, Vazquez (b24) 2020; 41 Luo, Li, Liu, Shen (b29) 2019; 34 Harapan, Itoh, Yufika, Winardi, Keam, Te, Megawati, Hayati, Wagner, Mudatsir (b10) 2020; 13 Buslaev, Iglovikov, Khvedchenya, Parinov, Druzhinin, Kalinin (b53) 2020; 11 Shi, Wang, Shi, Wu, Wang, Tang, He, Shi, Shen (b22) 2020; 1 Vaid, Kalantar, Bhandari (b44) 2020; 44 Li, Ge, Yang, Feng, Qiao, Jiang, Bi, Zhan, Xu, Wang, Zhou, Zhou, Pan, Liu, Zhang, Yang, Zhu, Hu, Hashimoto, Jia, Wang, Wang, Liu, Yang (b20) 2020; 88 Vaishya, Javaid, Khan, Haleem (b25) 2020; 14 Panwar, Gupta, Siddiqui, Morales-Menendez, Singh (b46) 2020; 138 Debnath, Barnaby, Coppa, Makhnevich, Kim, Chatterjee, Tóth, Levy, Paradis, Cohen, Hirsch, Zanos (b30) 2020; 6 Lawrence, Giles, Ah Chung Tsoi (b32) 1997; 8 Wang, Zhao, Ren, Xu, Yu (b39) 2020; 91 S. Al Kasab, E. Almallouhi, C.A. Holmstedt, Optimizing the Use Of Teleneurology During the COVID-19 Pandemic. Araújo, Santana, de A. Santos Neto (b28) 2016; 94 Lodigiani, Iapichino, Carenzo, Cecconi, Ferrazzi, Sebastian, Kucher, Studt, Sacco, Alexia, Sandri, Barco (b1) 2020; 191 Flaxman, Mishra, Gandy, Unwin, Mellan, Coupland, Whittaker, Zhu, Berah, Eaton, Monod, Ghani, Donnelly, Riley, Vollmer, Ferguson, Okell, Bhatt (b4) 2020; 584 Rodriguez-Morales, Gallego, Escalera-Antezana, Méndez, Zambrano, Franco-Paredes, Suárez, Rodriguez-Enciso, Balbin-Ramon, Savio-Larriera, Risquez, Cimerman (b7) 2020; 35 Tan, Le (b41) 2019 Lee, Heo, Seo (b17) 2020; 135 Huang, Wang, Li, Ren, Zhao, Hu, Zhang, Fan, Xu, Gu, Cheng, Yu, Xia, Wei, Wu, Xie, Yin, Li, Liu, Xiao, Gao, Guo, Xie, Wang, Jiang, Gao, Jin, Wang, Cao (b2) 2020; 395 Remuzzi, Remuzzi (b9) 2020; 395 Alimadadi, Aryal, Manandhar, Munroe, Joe, Cheng (b23) 2020; 52 (b42) 2020 Ali, Sarowar, Rahman, Chaki, Dey, Tavares (b55) 2019; 10 Konar, Panigrahi, Bhattacharyya, Dey (b50) 2020 Roy (10.1016/j.asoc.2020.106691_b8) 2020; 51 Shi (10.1016/j.asoc.2020.106691_b22) 2020; 1 Toraman (10.1016/j.asoc.2020.106691_b47) 2020; 140 Flaxman (10.1016/j.asoc.2020.106691_b4) 2020; 584 Topol (10.1016/j.asoc.2020.106691_b26) 2019; 25 (10.1016/j.asoc.2020.106691_b51) 2020 Remuzzi (10.1016/j.asoc.2020.106691_b9) 2020; 395 Debnath (10.1016/j.asoc.2020.106691_b30) 2020; 6 Harapan (10.1016/j.asoc.2020.106691_b10) 2020; 13 Rodriguez-Morales (10.1016/j.asoc.2020.106691_b7) 2020; 35 Srinivasa Rao (10.1016/j.asoc.2020.106691_b24) 2020; 41 Wang (10.1016/j.asoc.2020.106691_b39) 2020; 91 Tan (10.1016/j.asoc.2020.106691_b41) 2019 Muralidharan (10.1016/j.asoc.2020.106691_b19) 2020 Cohen (10.1016/j.asoc.2020.106691_b52) 2020 Vaishya (10.1016/j.asoc.2020.106691_b25) 2020; 14 Apostolopoulos (10.1016/j.asoc.2020.106691_b45) 2020; 43 Araújo (10.1016/j.asoc.2020.106691_b28) 2016; 94 Tashiro (10.1016/j.asoc.2020.106691_b16) 2020; 12 Karthik (10.1016/j.asoc.2020.106691_b36) 2020; 86 Panwar (10.1016/j.asoc.2020.106691_b46) 2020; 138 Ozturk (10.1016/j.asoc.2020.106691_b43) 2020; 121 Vaid (10.1016/j.asoc.2020.106691_b44) 2020; 44 Rangel (10.1016/j.asoc.2020.106691_b38) 2018; 65 Huang (10.1016/j.asoc.2020.106691_b2) 2020; 395 Luo (10.1016/j.asoc.2020.106691_b29) 2019; 34 Konar (10.1016/j.asoc.2020.106691_b50) 2020 Buslaev (10.1016/j.asoc.2020.106691_b53) 2020; 11 Tavanaei (10.1016/j.asoc.2020.106691_b35) 2019; 111 Ahuja (10.1016/j.asoc.2020.106691_b49) 2020 10.1016/j.asoc.2020.106691_b15 10.1016/j.asoc.2020.106691_b13 Wang (10.1016/j.asoc.2020.106691_b37) 2020; 92 10.1016/j.asoc.2020.106691_b54 Kansagra (10.1016/j.asoc.2020.106691_b6) 2020; 383 Li (10.1016/j.asoc.2020.106691_b20) 2020; 88 Alimadadi (10.1016/j.asoc.2020.106691_b23) 2020; 52 Lawrence (10.1016/j.asoc.2020.106691_b32) 1997; 8 Cao (10.1016/j.asoc.2020.106691_b11) 2020; 20 Duong (10.1016/j.asoc.2020.106691_b40) 2020; 171 Buzaev (10.1016/j.asoc.2020.106691_b27) 2016; 2 Mehta (10.1016/j.asoc.2020.106691_b12) 2020; 395 Lescure (10.1016/j.asoc.2020.106691_b5) 2020; 20 Das (10.1016/j.asoc.2020.106691_b33) 2019; 83 Ji (10.1016/j.asoc.2020.106691_b34) 2019 (10.1016/j.asoc.2020.106691_b42) 2020 Lodigiani (10.1016/j.asoc.2020.106691_b1) 2020; 191 Zheng (10.1016/j.asoc.2020.106691_b3) 2020; 17 Lee (10.1016/j.asoc.2020.106691_b17) 2020; 135 Nour (10.1016/j.asoc.2020.106691_b48) 2020; 106580 Ali (10.1016/j.asoc.2020.106691_b55) 2019; 10 Doshi (10.1016/j.asoc.2020.106691_b14) 2020 Drew (10.1016/j.asoc.2020.106691_b21) 2020; 368 Dong (10.1016/j.asoc.2020.106691_b31) 2016 Ostaszewski (10.1016/j.asoc.2020.106691_b18) 2020; 7 |
References_xml | – volume: 11 start-page: 125 year: 2020 ident: b53 article-title: Albumentations: Fast and flexible image augmentations publication-title: Information – year: 2020 ident: b52 article-title: COVID-19 image data collection: Prospective predictions are the future – start-page: 1 year: 2020 end-page: 6 ident: b19 article-title: Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 protease against COVID-19 publication-title: J. Biomol. Struct. Dyn. – volume: 2 start-page: 166 year: 2016 end-page: 172 ident: b27 article-title: Artificial intelligence: Neural network model as the multidisciplinary team member in clinical decision support to avoid medical mistakes publication-title: Chronic Dis. Transl. Med. – volume: 25 start-page: 44 year: 2019 end-page: 56 ident: b26 article-title: High-performance medicine: the convergence of human and artificial intelligence publication-title: Nat. Med. – volume: 51 year: 2020 ident: b8 article-title: Study of knowledge, attitude, anxiety & perceived mental healthcare need in Indian population during COVID-19 pandemic publication-title: Asian J. Psychiatry – volume: 92 year: 2020 ident: b37 article-title: Robust fusion for RGB-D tracking using CNN features publication-title: Appl. Soft Comput. – volume: 17 start-page: 259 year: 2020 end-page: 260 ident: b3 article-title: COVID-19 and the cardiovascular system publication-title: Nat. Rev. Cardiol. – volume: 91 year: 2020 ident: b39 article-title: A novel multi-focus image fusion by combining simplified very deep convolutional networks and patch-based sequential reconstruction strategy publication-title: Appl. Soft Comput. – volume: 383 start-page: 400 year: 2020 end-page: 401 ident: b6 article-title: Collateral effect of Covid-19 on stroke evaluation in the United States publication-title: New Engl. J. Med. – volume: 138 year: 2020 ident: b46 article-title: Application of deep learning for fast detection of COVID-19 in X-rays using ncovnet publication-title: Chaos, Solitons Fractals – volume: 44 start-page: 1539 year: 2020 end-page: 1542 ident: b44 article-title: Deep learning COVID-19 detection bias: accuracy through artificial intelligence publication-title: Int. Orthopaedics – year: 2019 ident: b41 article-title: Efficientnet: Rethinking model scaling for convolutional neural networks – volume: 395 start-page: 1033 year: 2020 end-page: 1034 ident: b12 article-title: COVID-19: consider cytokine storm syndromes and immunosuppression publication-title: Lancet – year: 2020 ident: b14 article-title: Keep calm and log on: Telemedicine for COVID-19 pandemic response – volume: 135 year: 2020 ident: b17 article-title: COVID-19 in South Korea: Lessons for developing countries publication-title: World Dev. – volume: 395 start-page: 497 year: 2020 end-page: 506 ident: b2 article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China publication-title: Lancet – volume: 43 start-page: 635 year: 2020 end-page: 640 ident: b45 article-title: Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks publication-title: Phys. Eng. Sci. Med. – volume: 1 year: 2020 ident: b22 article-title: Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for COVID-19 publication-title: IEEE Rev. Biomed. Eng. – volume: 111 start-page: 47 year: 2019 end-page: 63 ident: b35 article-title: Deep learning in spiking neural networks publication-title: Neural Netw. – volume: 86 year: 2020 ident: b36 article-title: Attention embedded residual CNN for disease detection in tomato leaves publication-title: Appl. Soft Comput. – volume: 10 start-page: 92 year: 2019 end-page: 116 ident: b55 article-title: Adam deep learning with SOM for human sentiment classification publication-title: Int. J. Ambient Comput. Intell. – start-page: 391 year: 2016 end-page: 407 ident: b31 article-title: Accelerating the super-resolution convolutional neural network publication-title: Computer Vision – ECCV – volume: 12 start-page: 5250 year: 2020 ident: b16 article-title: COVID-19 pandemic response in Japan: What is behind the initial flattening of the curve? publication-title: Sustainability – volume: 395 start-page: 1225 year: 2020 end-page: 1228 ident: b9 article-title: COVID-19 and Italy: What Next? publication-title: Lancet – volume: 7 start-page: 136 year: 2020 ident: b18 article-title: COVID-19 disease map, building a computational repository of SARS-CoV-2 virus–host interaction mechanisms publication-title: Sci Data. – volume: 140 year: 2020 ident: b47 article-title: Convolutional capsnet: A novel artificial neural network approach to detect COVID-19 disease from X-ray images using capsule networks publication-title: Chaos, Solitons Fractals – volume: 584 start-page: 257 year: 2020 end-page: 261 ident: b4 article-title: Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe publication-title: Nature – volume: 88 start-page: 916 year: 2020 end-page: 919 ident: b20 article-title: Vicarious traumatization in the general public, members, and non-members of medical teams aiding in COVID-19 control publication-title: Brain, Behav. Immunity – reference: S. Omboni, Telemedicine During The COVID-19 in Italy: A Missed Opportunity? – volume: 83 year: 2019 ident: b33 article-title: Computer aided tool for automatic detection and delineation of nucleus from oral histopathology images for OSCC screening publication-title: Appl. Soft Comput. – volume: 171 year: 2020 ident: b40 article-title: Automated fruit recognition using efficientnet and mixnet publication-title: Comput. Electron. Agric. – volume: 41 start-page: 826 year: 2020 end-page: 830 ident: b24 article-title: Identification of COVID-19 can be quicker through artificial intelligence framework using a mobile phone–based survey when cities and towns are under quarantine publication-title: Infect. Control Hosp. Epidemiol. – volume: 20 start-page: 269 year: 2020 end-page: 270 ident: b11 article-title: COVID-19: Immunopathology And its implications for therapy publication-title: Nat. Rev. Immunol. – volume: 8 start-page: 98 year: 1997 end-page: 113 ident: b32 article-title: Face recognition: a convolutional neural-network approach publication-title: IEEE Trans. Neural Netw. – volume: 94 start-page: 1 year: 2016 end-page: 7 ident: b28 article-title: Using machine learning to support healthcare professionals in making preauthorisation decisions publication-title: Int. J. Med. Inform. – volume: 191 start-page: 9 year: 2020 end-page: 14 ident: b1 article-title: Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy publication-title: Thrombosis Res. – start-page: 653 year: 2019 end-page: 664 ident: b34 article-title: A recognition method for Italian alphabet gestures based on convolutional neural network publication-title: Intelligent Computing Theories and Application – volume: 13 start-page: 667 year: 2020 end-page: 673 ident: b10 article-title: Coronavirus disease 2019 (COVID-19): A literature review publication-title: J. Infection Public Health – volume: 52 start-page: 200 year: 2020 end-page: 202 ident: b23 article-title: Artificial intelligence and machine learning to fight COVID-19 publication-title: Physiol. Genomics – year: 2020 ident: b51 article-title: Chest X-ray images (pneumonia) – volume: 20 start-page: 697 year: 2020 end-page: 706 ident: b5 article-title: Clinical and virological data of the first cases of COVID-19 in Europe: A case series publication-title: Lancet Infectious Dis. – volume: 106580 year: 2020 ident: b48 article-title: A novel medical diagnosis model for COVID-19 infection detection based on deep features and Bayesian optimization publication-title: Appl. Soft Comput. – reference: S. Al Kasab, E. Almallouhi, C.A. Holmstedt, Optimizing the Use Of Teleneurology During the COVID-19 Pandemic. – reference: M. Tukiainen, ImageDataAugmentor. GitHub, GitHub repository. – year: 2020 ident: b49 article-title: Deep transfer learning - based automated detection of COVID-19 from lung CT scan slices – reference: . – volume: 121 year: 2020 ident: b43 article-title: Automated detection of COVID-19 cases using deep neural networks with X-ray images publication-title: Comput. Biol. Med. – year: 2020 ident: b50 article-title: Auto-diagnosis of COVID-19 using lung CT images with semi-supervised shallow learning network publication-title: Review – volume: 14 start-page: 337 year: 2020 end-page: 339 ident: b25 article-title: Artificial intelligence (AI) applications for COVID-19 pandemic publication-title: Diabetes Metab. Syndr: Clin. Res. Rev. – volume: 6 start-page: 14 year: 2020 ident: b30 article-title: Machine learning to assist clinical decision-making during the COVID-19 pandemic publication-title: Bioelectron Med. – year: 2020 ident: b42 article-title: Efficientnet: Improving accuracy and efficiency through automl and model scaling – volume: 368 start-page: 1362 year: 2020 end-page: 1367 ident: b21 article-title: COPE Consortium§: Rapid implementation of mobile technology for real-time epidemiology of COVID-19 publication-title: Science. – volume: 34 year: 2019 ident: b29 article-title: Using machine-learning methods to support health-care professionals in making admission decisions publication-title: Int. J. Health Plann. Mgmt. – volume: 65 start-page: 603 year: 2018 end-page: 613 ident: b38 article-title: Semi-supervised 3D object recognition through CNN labeling publication-title: Appl. Soft Comput. – volume: 35 year: 2020 ident: b7 article-title: COVID-19 in Latin America: The implications of the first confirmed case in Brazil publication-title: Travel Med. Infectious Dis. – volume: 2 start-page: 166 year: 2016 ident: 10.1016/j.asoc.2020.106691_b27 article-title: Artificial intelligence: Neural network model as the multidisciplinary team member in clinical decision support to avoid medical mistakes publication-title: Chronic Dis. Transl. Med. – volume: 86 year: 2020 ident: 10.1016/j.asoc.2020.106691_b36 article-title: Attention embedded residual CNN for disease detection in tomato leaves publication-title: Appl. Soft Comput. – year: 2020 ident: 10.1016/j.asoc.2020.106691_b42 – volume: 12 start-page: 5250 year: 2020 ident: 10.1016/j.asoc.2020.106691_b16 article-title: COVID-19 pandemic response in Japan: What is behind the initial flattening of the curve? publication-title: Sustainability doi: 10.3390/su12135250 – volume: 14 start-page: 337 year: 2020 ident: 10.1016/j.asoc.2020.106691_b25 article-title: Artificial intelligence (AI) applications for COVID-19 pandemic publication-title: Diabetes Metab. Syndr: Clin. Res. Rev. doi: 10.1016/j.dsx.2020.04.012 – volume: 135 year: 2020 ident: 10.1016/j.asoc.2020.106691_b17 article-title: COVID-19 in South Korea: Lessons for developing countries publication-title: World Dev. doi: 10.1016/j.worlddev.2020.105057 – volume: 91 year: 2020 ident: 10.1016/j.asoc.2020.106691_b39 article-title: A novel multi-focus image fusion by combining simplified very deep convolutional networks and patch-based sequential reconstruction strategy publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106253 – volume: 584 start-page: 257 year: 2020 ident: 10.1016/j.asoc.2020.106691_b4 article-title: Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe publication-title: Nature doi: 10.1038/s41586-020-2405-7 – year: 2020 ident: 10.1016/j.asoc.2020.106691_b50 article-title: Auto-diagnosis of COVID-19 using lung CT images with semi-supervised shallow learning network – volume: 65 start-page: 603 year: 2018 ident: 10.1016/j.asoc.2020.106691_b38 article-title: Semi-supervised 3D object recognition through CNN labeling publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.02.005 – volume: 395 start-page: 1225 year: 2020 ident: 10.1016/j.asoc.2020.106691_b9 article-title: COVID-19 and Italy: What Next? publication-title: Lancet doi: 10.1016/S0140-6736(20)30627-9 – volume: 191 start-page: 9 year: 2020 ident: 10.1016/j.asoc.2020.106691_b1 article-title: Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy publication-title: Thrombosis Res. doi: 10.1016/j.thromres.2020.04.024 – volume: 17 start-page: 259 year: 2020 ident: 10.1016/j.asoc.2020.106691_b3 article-title: COVID-19 and the cardiovascular system publication-title: Nat. Rev. Cardiol. doi: 10.1038/s41569-020-0360-5 – volume: 395 start-page: 497 year: 2020 ident: 10.1016/j.asoc.2020.106691_b2 article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China publication-title: Lancet doi: 10.1016/S0140-6736(20)30183-5 – volume: 52 start-page: 200 year: 2020 ident: 10.1016/j.asoc.2020.106691_b23 article-title: Artificial intelligence and machine learning to fight COVID-19 publication-title: Physiol. Genomics doi: 10.1152/physiolgenomics.00029.2020 – volume: 1 year: 2020 ident: 10.1016/j.asoc.2020.106691_b22 article-title: Review of artificial intelligence techniques in imaging data acquisition, segmentation and diagnosis for COVID-19 publication-title: IEEE Rev. Biomed. Eng. – year: 2020 ident: 10.1016/j.asoc.2020.106691_b49 – volume: 20 start-page: 697 year: 2020 ident: 10.1016/j.asoc.2020.106691_b5 article-title: Clinical and virological data of the first cases of COVID-19 in Europe: A case series publication-title: Lancet Infectious Dis. doi: 10.1016/S1473-3099(20)30200-0 – volume: 11 start-page: 125 year: 2020 ident: 10.1016/j.asoc.2020.106691_b53 article-title: Albumentations: Fast and flexible image augmentations publication-title: Information doi: 10.3390/info11020125 – start-page: 653 year: 2019 ident: 10.1016/j.asoc.2020.106691_b34 article-title: A recognition method for Italian alphabet gestures based on convolutional neural network – volume: 8 start-page: 98 year: 1997 ident: 10.1016/j.asoc.2020.106691_b32 article-title: Face recognition: a convolutional neural-network approach publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.554195 – volume: 6 start-page: 14 year: 2020 ident: 10.1016/j.asoc.2020.106691_b30 article-title: Machine learning to assist clinical decision-making during the COVID-19 pandemic publication-title: Bioelectron Med. doi: 10.1186/s42234-020-00050-8 – volume: 94 start-page: 1 year: 2016 ident: 10.1016/j.asoc.2020.106691_b28 article-title: Using machine learning to support healthcare professionals in making preauthorisation decisions publication-title: Int. J. Med. Inform. doi: 10.1016/j.ijmedinf.2016.06.007 – volume: 44 start-page: 1539 year: 2020 ident: 10.1016/j.asoc.2020.106691_b44 article-title: Deep learning COVID-19 detection bias: accuracy through artificial intelligence publication-title: Int. Orthopaedics doi: 10.1007/s00264-020-04609-7 – volume: 25 start-page: 44 year: 2019 ident: 10.1016/j.asoc.2020.106691_b26 article-title: High-performance medicine: the convergence of human and artificial intelligence publication-title: Nat. Med. doi: 10.1038/s41591-018-0300-7 – ident: 10.1016/j.asoc.2020.106691_b54 – volume: 10 start-page: 92 year: 2019 ident: 10.1016/j.asoc.2020.106691_b55 article-title: Adam deep learning with SOM for human sentiment classification publication-title: Int. J. Ambient Comput. Intell. doi: 10.4018/IJACI.2019070106 – volume: 121 year: 2020 ident: 10.1016/j.asoc.2020.106691_b43 article-title: Automated detection of COVID-19 cases using deep neural networks with X-ray images publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103792 – volume: 138 year: 2020 ident: 10.1016/j.asoc.2020.106691_b46 article-title: Application of deep learning for fast detection of COVID-19 in X-rays using ncovnet publication-title: Chaos, Solitons Fractals doi: 10.1016/j.chaos.2020.109944 – volume: 92 year: 2020 ident: 10.1016/j.asoc.2020.106691_b37 article-title: Robust fusion for RGB-D tracking using CNN features publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106302 – volume: 395 start-page: 1033 year: 2020 ident: 10.1016/j.asoc.2020.106691_b12 article-title: COVID-19: consider cytokine storm syndromes and immunosuppression publication-title: Lancet doi: 10.1016/S0140-6736(20)30628-0 – volume: 83 year: 2019 ident: 10.1016/j.asoc.2020.106691_b33 article-title: Computer aided tool for automatic detection and delineation of nucleus from oral histopathology images for OSCC screening publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105642 – start-page: 1 year: 2020 ident: 10.1016/j.asoc.2020.106691_b19 article-title: Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 protease against COVID-19 publication-title: J. Biomol. Struct. Dyn. – volume: 171 year: 2020 ident: 10.1016/j.asoc.2020.106691_b40 article-title: Automated fruit recognition using efficientnet and mixnet publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105326 – volume: 7 start-page: 136 year: 2020 ident: 10.1016/j.asoc.2020.106691_b18 article-title: COVID-19 disease map, building a computational repository of SARS-CoV-2 virus–host interaction mechanisms publication-title: Sci Data. doi: 10.1038/s41597-020-0477-8 – volume: 51 year: 2020 ident: 10.1016/j.asoc.2020.106691_b8 article-title: Study of knowledge, attitude, anxiety & perceived mental healthcare need in Indian population during COVID-19 pandemic publication-title: Asian J. Psychiatry doi: 10.1016/j.ajp.2020.102083 – volume: 88 start-page: 916 year: 2020 ident: 10.1016/j.asoc.2020.106691_b20 article-title: Vicarious traumatization in the general public, members, and non-members of medical teams aiding in COVID-19 control publication-title: Brain, Behav. Immunity doi: 10.1016/j.bbi.2020.03.007 – volume: 34 year: 2019 ident: 10.1016/j.asoc.2020.106691_b29 article-title: Using machine-learning methods to support health-care professionals in making admission decisions publication-title: Int. J. Health Plann. Mgmt. doi: 10.1002/hpm.2769 – year: 2020 ident: 10.1016/j.asoc.2020.106691_b52 – start-page: 391 year: 2016 ident: 10.1016/j.asoc.2020.106691_b31 article-title: Accelerating the super-resolution convolutional neural network – volume: 140 year: 2020 ident: 10.1016/j.asoc.2020.106691_b47 article-title: Convolutional capsnet: A novel artificial neural network approach to detect COVID-19 disease from X-ray images using capsule networks publication-title: Chaos, Solitons Fractals doi: 10.1016/j.chaos.2020.110122 – volume: 13 start-page: 667 year: 2020 ident: 10.1016/j.asoc.2020.106691_b10 article-title: Coronavirus disease 2019 (COVID-19): A literature review publication-title: J. Infection Public Health doi: 10.1016/j.jiph.2020.03.019 – year: 2020 ident: 10.1016/j.asoc.2020.106691_b51 – volume: 383 start-page: 400 year: 2020 ident: 10.1016/j.asoc.2020.106691_b6 article-title: Collateral effect of Covid-19 on stroke evaluation in the United States publication-title: New Engl. J. Med. doi: 10.1056/NEJMc2014816 – volume: 106580 year: 2020 ident: 10.1016/j.asoc.2020.106691_b48 article-title: A novel medical diagnosis model for COVID-19 infection detection based on deep features and Bayesian optimization publication-title: Appl. Soft Comput. – year: 2019 ident: 10.1016/j.asoc.2020.106691_b41 – volume: 43 start-page: 635 year: 2020 ident: 10.1016/j.asoc.2020.106691_b45 article-title: Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks publication-title: Phys. Eng. Sci. Med. doi: 10.1007/s13246-020-00865-4 – year: 2020 ident: 10.1016/j.asoc.2020.106691_b14 – volume: 368 start-page: 1362 year: 2020 ident: 10.1016/j.asoc.2020.106691_b21 article-title: COPE Consortium§: Rapid implementation of mobile technology for real-time epidemiology of COVID-19 publication-title: Science. doi: 10.1126/science.abc0473 – volume: 41 start-page: 826 year: 2020 ident: 10.1016/j.asoc.2020.106691_b24 article-title: Identification of COVID-19 can be quicker through artificial intelligence framework using a mobile phone–based survey when cities and towns are under quarantine publication-title: Infect. Control Hosp. Epidemiol. doi: 10.1017/ice.2020.61 – volume: 20 start-page: 269 year: 2020 ident: 10.1016/j.asoc.2020.106691_b11 article-title: COVID-19: Immunopathology And its implications for therapy publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-020-0308-3 – ident: 10.1016/j.asoc.2020.106691_b15 doi: 10.1089/tmj.2020.0106 – ident: 10.1016/j.asoc.2020.106691_b13 doi: 10.1089/tmj.2020.0109 – volume: 111 start-page: 47 year: 2019 ident: 10.1016/j.asoc.2020.106691_b35 article-title: Deep learning in spiking neural networks publication-title: Neural Netw. doi: 10.1016/j.neunet.2018.12.002 – volume: 35 year: 2020 ident: 10.1016/j.asoc.2020.106691_b7 article-title: COVID-19 in Latin America: The implications of the first confirmed case in Brazil publication-title: Travel Med. Infectious Dis. |
SSID | ssj0016928 |
Score | 2.666798 |
Snippet | COVID-19 infection was reported in December 2019 at Wuhan, China. This virus critically affects several countries such as the USA, Brazil, India and Italy.... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 106691 |
SubjectTerms | Automated decision support system Convolutional Neural Network (CNN) COVID-19 Deep learning Machine learning |
Title | Automated medical diagnosis of COVID-19 through EfficientNet convolutional neural network |
URI | https://dx.doi.org/10.1016/j.asoc.2020.106691 https://www.ncbi.nlm.nih.gov/pubmed/33519327 https://www.proquest.com/docview/2484248053 https://pubmed.ncbi.nlm.nih.gov/PMC7836808 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V5cIFynvbUhmJGzKbh-PHcbW02vJYEFBUTpbjOGIRZKt299rfzkzsrFgQPXCIrDjjxPJMZj7L8wB4HtosZEF47lVVc0oox00rc-6cqHPXKDR6FDv8bi5nZ-L1eXW-A9MhFobcKpPujzq919apZ5xWc3yxWIw_4c5DCyNkQbAXrRZFsAtFUv7yeuPmkUvT11clYk7UKXAm-ng5XAHcIxbUIaXJ_2Wc_gaff_pQ_maUTvbgTkKTbBInfA92Qncf7g6VGlj6cR_A18l6tURsGhr2M57MsCb62C2u2LJl0_dfTl_x3LBUtocd95kl8KPzsGLkmZ4kFAdSBsy-6f3HH8LZyfHn6YynogrcU-0CjnjI6yC1yYQvMpcb5WQQCAKztvSFc1UpfaMQFTUhmBbxlmp0U5pQybrW3unyEex2yy48AaZN5YMqytapXLRV5ZALRmfeU7JbfN0I8mE1rU8Zx6nwxQ87uJZ9t8QBSxywkQMjeLEZcxHzbdxIXQ1MsltSY9Eg3Dju2cBRi78TnZG4LizXV7YQWuCFqmkEjyOHN_Moyx7uqhGoLd5vCChV9_aTbvGtT9lNsTI60_v_Od8DuE13MQbyEHZXl-vwFMHQqj7qpf0Ibk2mH99-oPb0zWz-CwZZCzU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcoAL70d4LhKc0BI_1vs4cKj6UELbcKBF5bRdr9ciCJyKJEJc-FP8QWbsdURA9IDUQxTJ9tqr-bwz38oz3wA8D3USkiA896ooOQnKcVPLlDsnytRVCoMe1Q4fTuToWLw5KU424GdfC0NpldH3dz699dbxyDBac3g2nQ7f4c5DCyNkRrQXo1bMrNwP37_hvm3-eryDIL_Isr3do-0Rj60FuCcFf46swOsgtUmEzxKXGuVkEEiFkjr3mXNFLn2lkBtUIZgaWYeqdJWbUMiy1N7pHO97CS4LdBfUNuHVj1VeSSpN29CVZsdperFSp0sqc2hy3JRmdEBKk_4rGv7Ndv9M2vwtCu7dgGuRvrKtzkI3YSM0t-B63xqCRU9xGz5sLRczJMOhYl-6T0Gs6pL6pnM2q9n22_fjHZ4aFvsEsd1WygIfOgkLRqnwcUngQJLcbP_ahPU7cHwhpr4Lm82sCfeBaVP4oLK8dioVdVE4hN3oxHtS18XbDSDtrWl9lDinThufbZ_L9skSApYQsB0CA3i5GnPWCXyce3XRg2TXXlOLEejccc96RC2uX_oo45owW85tJrTAH_rCAdzrEF7NI89bfq0GoNawX11A2uDrZ5rpx1YjnIpzdKIf_Od8n8KV0dHhgT0YT_YfwlU60xVgPoLNxddleIxMbFE-ad98BqcXvdR-ARGdRMg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+medical+diagnosis+of+COVID-19+through+EfficientNet+convolutional+neural+network&rft.jtitle=Applied+soft+computing&rft.au=Marques%2C+Gon%C3%A7alo&rft.au=Agarwal%2C+Deevyankar&rft.au=de+la+Torre+D%C3%ADez%2C+Isabel&rft.date=2020-11-01&rft.issn=1568-4946&rft.volume=96&rft.spage=106691&rft_id=info:doi/10.1016%2Fj.asoc.2020.106691&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |