Flavivirus Antagonism of Type I Interferon Signaling Reveals Prolidase as a Regulator of IFNAR1 Surface Expression
Type I interferon (IFN-α/β or IFN-I) signals through two receptor subunits, IFNAR1 and IFNAR2, to orchestrate sterile and infectious immunity. Cellular pathways that regulate IFNAR1 are often targeted by viruses to suppress the antiviral effects of IFN-I. Here we report that encephalitic flaviviruse...
Saved in:
Published in | Cell host & microbe Vol. 18; no. 1; pp. 61 - 74 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
08.07.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Type I interferon (IFN-α/β or IFN-I) signals through two receptor subunits, IFNAR1 and IFNAR2, to orchestrate sterile and infectious immunity. Cellular pathways that regulate IFNAR1 are often targeted by viruses to suppress the antiviral effects of IFN-I. Here we report that encephalitic flaviviruses, including tick-borne encephalitis virus and West Nile virus, antagonize IFN-I signaling by inhibiting IFNAR1 surface expression. Loss of IFNAR1 was associated with binding of the viral IFN-I antagonist, NS5, to prolidase (PEPD), a cellular dipeptidase implicated in primary immune deficiencies in humans. Prolidase was required for IFNAR1 maturation and accumulation, activation of IFNβ-stimulated gene induction, and IFN-I-dependent viral control. Human fibroblasts derived from patients with genetic prolidase deficiency exhibited decreased IFNAR1 surface expression and reduced IFNβ-stimulated signaling. Thus, by understanding flavivirus IFN-I antagonism, prolidase is revealed as a central regulator of IFN-I responses.
[Display omitted]
•TBEV and WNV inhibit surface expression of the interferon α/β (IFN-I) receptor, IFNAR1•The viral IFN antagonist NS5 binds to prolidase to prevent IFNAR1 surface expression•Prolidase is required for surface expression of IFNAR1•IFN signaling is compromised in fibroblasts from humans with prolidase deficiency
Tick-borne encephalitis virus and West Nile virus antagonize type I interferon (IFN-I) signaling through unknown mechanisms. Lubick et al. demonstrate that prolidase promotes surface expression of the IFN-I receptor, IFNAR1, and is a target of viral antagonism. Further, prolidase deficiency in humans is associated with compromised IFN-I signaling. |
---|---|
AbstractList | Type I interferon (IFN-α/β or IFN-I) signals through two receptor subunits, IFNAR1 and IFNAR2, to orchestrate sterile and infectious immunity. Cellular pathways that regulate IFNAR1 are often targeted by viruses to suppress the antiviral effects of IFN-I. Here we report that encephalitic flaviviruses, including tick-borne encephalitis virus and West Nile virus, antagonize IFN-I signaling by inhibiting IFNAR1 surface expression. Loss of IFNAR1 was associated with binding of the viral IFN-I antagonist, NS5, to prolidase (PEPD), a cellular dipeptidase implicated in primary immune deficiencies in humans. Prolidase was required for IFNAR1 maturation and accumulation, activation of IFNβ-stimulated gene induction, and IFN-I-dependent viral control. Human fibroblasts derived from patients with genetic prolidase deficiency exhibited decreased IFNAR1 surface expression and reduced IFNβ-stimulated signaling. Thus, by understanding flavivirus IFN-I antagonism, prolidase is revealed as a central regulator of IFN-I responses.
[Display omitted]
•TBEV and WNV inhibit surface expression of the interferon α/β (IFN-I) receptor, IFNAR1•The viral IFN antagonist NS5 binds to prolidase to prevent IFNAR1 surface expression•Prolidase is required for surface expression of IFNAR1•IFN signaling is compromised in fibroblasts from humans with prolidase deficiency
Tick-borne encephalitis virus and West Nile virus antagonize type I interferon (IFN-I) signaling through unknown mechanisms. Lubick et al. demonstrate that prolidase promotes surface expression of the IFN-I receptor, IFNAR1, and is a target of viral antagonism. Further, prolidase deficiency in humans is associated with compromised IFN-I signaling. Type I interferon (IFN-α/β or IFN-I) signals through two receptor subunits, IFNAR1 and IFNAR2, to orchestrate sterile and infectious immunity. Cellular pathways that regulate IFNAR1 are often targeted by viruses to suppress the antiviral effects of IFN-I. Here we report that encephalitic flaviviruses, including tick-borne encephalitis virus and West Nile virus, antagonize IFN-I signaling by inhibiting IFNAR1 surface expression. Loss of IFNAR1 was associated with binding of the viral IFN-I antagonist, NS5, to prolidase (PEPD), a cellular dipeptidase implicated in primary immune deficiencies in humans. Prolidase was required for IFNAR1 maturation and accumulation, activation of IFNβ-stimulated gene induction, and IFN-I-dependent viral control. Human fibroblasts derived from patients with genetic prolidase deficiency exhibited decreased IFNAR1 surface expression and reduced IFNβ-stimulated signaling. Thus, by understanding flavivirus IFN-I antagonism, prolidase is revealed as a central regulator of IFN-I responses. Type I interferon (IFN-α/β or IFN-I) signals through two receptor subunits, IFNAR1 and IFNAR2, to orchestrate sterile and infectious immunity. Cellular pathways that regulate IFNAR1 are often targeted by viruses to suppress the antiviral effects of IFN-I. Here we report that encephalitic flaviviruses, including tick-borne encephalitis virus and West Nile virus, antagonize IFN-I signaling by inhibiting IFNAR1 surface expression. Loss of IFNAR1 was associated with binding of the viral IFN-I antagonist, NS5, to prolidase (PEPD), a cellular dipeptidase implicated in primary immune deficiencies in humans. Prolidase was required for IFNAR1 maturation and accumulation, activation of IFNβ-stimulated gene induction, and IFN-I-dependent viral control. Human fibroblasts derived from patients with genetic prolidase deficiency exhibited decreased IFNAR1 surface expression and reduced IFNβ-stimulated signaling. Thus, by understanding flavivirus IFN-I antagonism, prolidase is revealed as a central regulator of IFN-I responses.Type I interferon (IFN-α/β or IFN-I) signals through two receptor subunits, IFNAR1 and IFNAR2, to orchestrate sterile and infectious immunity. Cellular pathways that regulate IFNAR1 are often targeted by viruses to suppress the antiviral effects of IFN-I. Here we report that encephalitic flaviviruses, including tick-borne encephalitis virus and West Nile virus, antagonize IFN-I signaling by inhibiting IFNAR1 surface expression. Loss of IFNAR1 was associated with binding of the viral IFN-I antagonist, NS5, to prolidase (PEPD), a cellular dipeptidase implicated in primary immune deficiencies in humans. Prolidase was required for IFNAR1 maturation and accumulation, activation of IFNβ-stimulated gene induction, and IFN-I-dependent viral control. Human fibroblasts derived from patients with genetic prolidase deficiency exhibited decreased IFNAR1 surface expression and reduced IFNβ-stimulated signaling. Thus, by understanding flavivirus IFN-I antagonism, prolidase is revealed as a central regulator of IFN-I responses. |
Author | Foster, Erin C. Yoshii, Kentaro Ishizuka, Mariko Boer, Elena F. Rasmussen, Angela L. Sakai, Mizuki Taylor, R. Travis Lubick, Kirk J. Freeman, Alexandra F. Kastner, Daniel L. Holland, Steven M. McNally, Kristin L. Addison, Conrad B. Green, Richard Forlino, Antonella Tsuruda, Seitaro Freedman, Brett A. Katze, Michael G. Robertson, Shelly J. Best, Sonja M. Boehm, Manfred Chiramel, Abhilash I. Walts, Avram D. |
AuthorAffiliation | 7 Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20814, USA 6 Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA 1 Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT, 59840, USA 4 Translational Medicine Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, 20892, USA 5 Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan 8 Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy 2 Department of Microbiology, University of Washington, Seattle, Washington, 98109, USA 3 Department of Medical Microbiology and Immunology, College of Medicine, University of Toledo Health Science Campus, Toledo, OH, 43614, USA |
AuthorAffiliation_xml | – name: 6 Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA – name: 4 Translational Medicine Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, 20892, USA – name: 1 Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT, 59840, USA – name: 5 Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan – name: 3 Department of Medical Microbiology and Immunology, College of Medicine, University of Toledo Health Science Campus, Toledo, OH, 43614, USA – name: 8 Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy – name: 7 Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20814, USA – name: 2 Department of Microbiology, University of Washington, Seattle, Washington, 98109, USA |
Author_xml | – sequence: 1 givenname: Kirk J. surname: Lubick fullname: Lubick, Kirk J. organization: Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA – sequence: 2 givenname: Shelly J. surname: Robertson fullname: Robertson, Shelly J. organization: Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA – sequence: 3 givenname: Kristin L. surname: McNally fullname: McNally, Kristin L. organization: Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA – sequence: 4 givenname: Brett A. surname: Freedman fullname: Freedman, Brett A. organization: Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA – sequence: 5 givenname: Angela L. surname: Rasmussen fullname: Rasmussen, Angela L. organization: Department of Microbiology, University of Washington, Seattle, WA 98109, USA – sequence: 6 givenname: R. Travis surname: Taylor fullname: Taylor, R. Travis organization: Department of Medical Microbiology and Immunology, College of Medicine, University of Toledo Health Science Campus, Toledo, OH 43614, USA – sequence: 7 givenname: Avram D. surname: Walts fullname: Walts, Avram D. organization: Translational Medicine Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA – sequence: 8 givenname: Seitaro surname: Tsuruda fullname: Tsuruda, Seitaro organization: Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan – sequence: 9 givenname: Mizuki surname: Sakai fullname: Sakai, Mizuki organization: Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan – sequence: 10 givenname: Mariko surname: Ishizuka fullname: Ishizuka, Mariko organization: Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan – sequence: 11 givenname: Elena F. surname: Boer fullname: Boer, Elena F. organization: Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA – sequence: 12 givenname: Erin C. surname: Foster fullname: Foster, Erin C. organization: Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA – sequence: 13 givenname: Abhilash I. surname: Chiramel fullname: Chiramel, Abhilash I. organization: Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA – sequence: 14 givenname: Conrad B. surname: Addison fullname: Addison, Conrad B. organization: Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA – sequence: 15 givenname: Richard surname: Green fullname: Green, Richard organization: Department of Microbiology, University of Washington, Seattle, WA 98109, USA – sequence: 16 givenname: Daniel L. surname: Kastner fullname: Kastner, Daniel L. organization: Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA – sequence: 17 givenname: Michael G. surname: Katze fullname: Katze, Michael G. organization: Department of Microbiology, University of Washington, Seattle, WA 98109, USA – sequence: 18 givenname: Steven M. surname: Holland fullname: Holland, Steven M. organization: Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20814, USA – sequence: 19 givenname: Antonella surname: Forlino fullname: Forlino, Antonella organization: Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy – sequence: 20 givenname: Alexandra F. surname: Freeman fullname: Freeman, Alexandra F. organization: Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20814, USA – sequence: 21 givenname: Manfred surname: Boehm fullname: Boehm, Manfred organization: Translational Medicine Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA – sequence: 22 givenname: Kentaro surname: Yoshii fullname: Yoshii, Kentaro organization: Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan – sequence: 23 givenname: Sonja M. surname: Best fullname: Best, Sonja M. email: sbest@niaid.nih.gov organization: Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26159719$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u3CAUhVGVqvlpX6CLimU3dsE2xkhVpVGUaUaK2ipJ14iBa4eRDVOwreTtizNp1HaRDSA43z3onFN05LwDhN5TklNC60-7XN_5IS8IZTmpc0L4K3RCRVllNanF0eOZZiUtmmN0GuOOEMYIp2_QcVFTJjgVJyisezXb2YYp4pUbVeedjQP2Lb592APe4I0bIbQQvMM3tnOqt67D1zCD6iP-EXxvjYqAVcQqXXdTr0YfFn6z_ra6pvhmCq3SgC_u9wFitN69Ra_bBMO7p_0M_Vxf3J5fZlffv27OV1eZZgUds5IbqrlpippzVlVaE2G2lQKt9LYSaaWacF0VTUEKqs1WmabUqqQEeMuFqcsz9OUwdz9tBzAa3BhUL_fBDio8SK-s_PfF2TvZ-VlWjDAuqjTg49OA4H9NEEc52Kih75UDP0VJa8E445wvXh_-9no2-RN0EhQHgQ4-xgDts4QSubQpd3JpUy5tSlLL1GaCmv8gbUc1pgzTf23_Mvr5gEJKeLYQZNQWnAZjA-hRGm9fwn8DT7S87w |
CitedBy_id | crossref_primary_10_1371_journal_ppat_1010100 crossref_primary_10_1038_s41598_023_29075_0 crossref_primary_10_1016_j_nmni_2019_01_002 crossref_primary_10_1371_journal_ppat_1008944 crossref_primary_10_1128_JVI_02749_15 crossref_primary_10_3390_vaccines12080865 crossref_primary_10_1684_ecn_2019_0433 crossref_primary_10_1016_j_jbc_2023_105605 crossref_primary_10_3390_v10060329 crossref_primary_10_1038_s42003_024_05768_8 crossref_primary_10_3390_ph15121493 crossref_primary_10_1016_j_bbrc_2017_05_146 crossref_primary_10_1038_ncomms14763 crossref_primary_10_33442_26613980_9_6 crossref_primary_10_1038_cti_2017_32 crossref_primary_10_33442_26613980_9_4 crossref_primary_10_1016_j_isci_2025_112046 crossref_primary_10_33442_26613980_9_5 crossref_primary_10_1128_JVI_00665_19 crossref_primary_10_3390_v13112116 crossref_primary_10_1007_s00335_018_9775_2 crossref_primary_10_1016_j_antiviral_2019_104703 crossref_primary_10_1073_pnas_2403235121 crossref_primary_10_3390_ijms21165906 crossref_primary_10_3389_fmolb_2021_723003 crossref_primary_10_3390_v13050748 crossref_primary_10_3389_fimmu_2022_829433 crossref_primary_10_1016_j_genrep_2016_02_008 crossref_primary_10_1016_j_dci_2018_11_003 crossref_primary_10_1007_s11926_016_0621_9 crossref_primary_10_1292_jvms_18_0373 crossref_primary_10_3390_v10070340 crossref_primary_10_1002_ajmg_a_63137 crossref_primary_10_1007_s12035_017_0635_y crossref_primary_10_3390_cells11203284 crossref_primary_10_1016_j_vetmic_2020_108587 crossref_primary_10_1186_s12862_017_1107_8 crossref_primary_10_3390_v11111024 crossref_primary_10_1128_JVI_01148_17 crossref_primary_10_1146_annurev_immunol_042718_041553 crossref_primary_10_1073_pnas_2105170118 crossref_primary_10_1080_22221751_2021_1932609 crossref_primary_10_3389_fmicb_2022_847588 crossref_primary_10_1136_jitc_2022_004974 crossref_primary_10_1038_s41564_019_0421_x crossref_primary_10_1016_j_ijantimicag_2024_107187 crossref_primary_10_15252_embr_202357424 crossref_primary_10_3389_fcimb_2022_823181 crossref_primary_10_3390_microorganisms12040660 crossref_primary_10_1186_s13578_023_00957_0 crossref_primary_10_3390_v10120712 crossref_primary_10_1186_s13223_022_00658_2 crossref_primary_10_1242_jcs_260682 crossref_primary_10_1080_22221751_2021_1964384 crossref_primary_10_1016_j_virol_2017_11_008 crossref_primary_10_1016_j_clim_2023_109699 crossref_primary_10_3389_fcimb_2018_00096 crossref_primary_10_1016_j_bbrc_2017_02_006 crossref_primary_10_1128_JVI_01970_16 crossref_primary_10_1002_jmv_24731 crossref_primary_10_3389_fmicb_2023_1257024 crossref_primary_10_1089_dna_2019_5115 crossref_primary_10_1080_21505594_2021_1996059 crossref_primary_10_1007_s40588_016_0043_5 crossref_primary_10_1128_JVI_01454_19 crossref_primary_10_1038_s41467_024_49758_0 crossref_primary_10_3389_fimmu_2020_615603 crossref_primary_10_3390_v16050781 crossref_primary_10_1038_s41564_019_0582_7 crossref_primary_10_1016_j_virol_2025_110456 crossref_primary_10_1016_j_cyto_2016_04_013 crossref_primary_10_1371_journal_ppat_1011620 crossref_primary_10_1038_s41467_017_02097_9 crossref_primary_10_3390_ijms25147892 crossref_primary_10_1002_jmv_29522 crossref_primary_10_1016_j_antiviral_2019_01_014 crossref_primary_10_1016_j_pharmthera_2018_05_004 crossref_primary_10_1111_joa_12959 crossref_primary_10_3390_v14030506 crossref_primary_10_1007_s00018_018_2751_x crossref_primary_10_33442_978_981_14_0914_1_9 crossref_primary_10_1089_vim_2019_0082 crossref_primary_10_3390_v9040091 crossref_primary_10_3390_v16020202 crossref_primary_10_33442_978_981_14_0914_1_4 crossref_primary_10_1016_j_chom_2016_05_009 crossref_primary_10_3389_fimmu_2016_00498 crossref_primary_10_1038_s41594_020_0472_y crossref_primary_10_1002_ppul_24602 crossref_primary_10_1016_j_chom_2017_07_012 crossref_primary_10_1080_21645515_2019_1609823 crossref_primary_10_3389_fimmu_2018_00597 crossref_primary_10_1128_jvi_01301_24 crossref_primary_10_1016_j_virol_2018_06_017 crossref_primary_10_1016_j_cell_2018_11_028 crossref_primary_10_3390_vaccines9060664 crossref_primary_10_1099_jgv_0_001400 crossref_primary_10_1038_s41598_021_82751_x crossref_primary_10_3390_v13050763 crossref_primary_10_1099_jgv_0_001376 crossref_primary_10_1128_JVI_01778_18 crossref_primary_10_33442_26613980_4_5 crossref_primary_10_33442_26613980_4_6 crossref_primary_10_1128_JVI_03036_15 crossref_primary_10_33442_26613980_4_4 |
Cites_doi | 10.1002/ajmg.b.30945 10.1111/1756-185X.12254 10.1089/jir.2012.0117 10.1128/JVI.79.20.12828-12839.2005 10.1038/nrm3270 10.1371/journal.ppat.1002065 10.1073/pnas.94.22.11839 10.1089/vim.2010.0126 10.1089/jir.1995.15.55 10.1128/JVI.01161-09 10.1126/science.1254790 10.1016/j.chom.2007.09.003 10.1016/j.chom.2008.11.008 10.1073/pnas.0903487106 10.1007/s00726-008-0055-4 10.1093/emboj/cdg524 10.1128/JVI.02714-05 10.1074/jbc.M111.263608 10.1007/8904_2011_62 10.1128/JVI.79.3.1343-1350.2005 10.1007/s00726-008-0051-8 10.1016/j.coi.2014.10.005 10.1128/JVI.02188-08 10.1038/nri3133 10.1128/JVI.00800-14 10.1038/ni.3046 10.1128/JVI.02050-10 10.1038/nri3210 10.1016/j.febslet.2004.10.085 10.1002/ijc.23263 10.1016/j.devcel.2014.06.008 10.1126/scisignal.2000628 10.1128/JVI.02830-06 10.1038/nmeth846 10.1016/j.chom.2014.07.015 10.1038/icb.2012.9 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Inc. Copyright © 2015 Elsevier Inc. All rights reserved. 2015 Published by Elsevier Inc. 2015 |
Copyright_xml | – notice: 2015 Elsevier Inc. – notice: Copyright © 2015 Elsevier Inc. All rights reserved. – notice: 2015 Published by Elsevier Inc. 2015 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.chom.2015.06.007 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1934-6069 |
EndPage | 74 |
ExternalDocumentID | PMC4505794 26159719 10_1016_j_chom_2015_06_007 S1931312815002553 |
Genre | Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Intramural NIH HHS grantid: ZIA AI001125 – fundername: NIH HHS grantid: P51 OD010425 – fundername: NIAID NIH HHS grantid: U19 AI109761 |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 5GY 62- 6I. 6J9 7-5 AACTN AAEDT AAEDW AAFTH AAIAV AAKRW AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHFR AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE HVGLF IHE IXB JIG K97 M41 NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SES SSZ TR2 UNMZH WQ6 ZA5 53G AAIKJ AAMRU AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION HZ~ OZT ZBA CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-37d1c7d82677544cc09db4aecacb49cac1c07c4282021cdbad83ca310e7f79d63 |
IEDL.DBID | IXB |
ISSN | 1931-3128 1934-6069 |
IngestDate | Thu Aug 21 18:16:38 EDT 2025 Fri Jul 11 09:07:22 EDT 2025 Mon Jul 21 05:58:42 EDT 2025 Tue Jul 01 02:44:17 EDT 2025 Thu Apr 24 23:00:08 EDT 2025 Fri Feb 23 02:31:05 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2015 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-37d1c7d82677544cc09db4aecacb49cac1c07c4282021cdbad83ca310e7f79d63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1931312815002553 |
PMID | 26159719 |
PQID | 1695757776 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4505794 proquest_miscellaneous_1695757776 pubmed_primary_26159719 crossref_primary_10_1016_j_chom_2015_06_007 crossref_citationtrail_10_1016_j_chom_2015_06_007 elsevier_sciencedirect_doi_10_1016_j_chom_2015_06_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-07-08 |
PublicationDateYYYYMMDD | 2015-07-08 |
PublicationDate_xml | – month: 07 year: 2015 text: 2015-07-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell host & microbe |
PublicationTitleAlternate | Cell Host Microbe |
PublicationYear | 2015 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Chou, Wang, Hsieh, Li, Xia, Chang, Chang, Cheng, Lai, Hsu (bib6) 2014; 30 Surazynski, Donald, Cooper, Whiteside, Salnikow, Liu, Phang (bib34) 2008; 122 Subramaniam, Johnson (bib33) 2004; 578 Fuchs (bib11) 2013; 33 Park, Morris, Hallett, Bloom, Best (bib27) 2007; 81 Lupi, Tenni, Rossi, Cetta, Forlino (bib24) 2008; 35 Ashour, Laurent-Rolle, Shi, García-Sastre (bib2) 2009; 83 Kurien, D’Sousa, Bruner, Gross, James, Targoff, Maier-Moore, Harley, Wang, Scofield (bib18) 2013; 16 Liu, HuangFu, Kumar, Qian, Casey, Hamanaka, Grigoriadou, Aldabe, Diehl, Fuchs (bib23) 2009; 5 Caselli, Cimaz, Besio, Rossi, De Lorenzi, Colombo, Cantarini, Riva, Spada, Forlino, Aricò (bib4) 2012; 3 Laurent-Rolle, Boer, Lubick, Wolfinbarger, Carmody, Rockx, Liu, Ashour, Shupert, Holbrook (bib19) 2010; 84 Ambrose, Mackenzie (bib1) 2011; 85 González-Navajas, Lee, David, Raz (bib13) 2012; 12 Laurent-Rolle, Morrison, Rajsbaum, Macleod, Pisanelli, Pham, Ayllon, Miorin, Martínez-Romero, tenOever, García-Sastre (bib20) 2014; 16 Gauzzi, Barbieri, Richter, Uzé, Ling, Fellous, Pellegrini (bib12) 1997; 94 Hetz (bib16) 2012; 13 Szulc, Wiznerowicz, Sauvain, Trono, Aebischer (bib36) 2006; 3 Best, Morris, Shannon, Robertson, Mitzel, Park, Boer, Wolfinbarger, Bloom (bib3) 2005; 79 Crow (bib7) 2015; 32 Cheon, Stark (bib5) 2009; 106 Pohl, Edinger, Stertz (bib28) 2014; 88 Falik-Zaccai, Khayat, Luder, Frenkel, Magen, Brik, Gershoni-Baruch, Mandel (bib10) 2010; 153B MacMicking (bib26) 2012; 12 de Weerd, Nguyen (bib8) 2012; 90 Hechtman (bib15) 2006 Schliehe, Flynn, Vilagos, Richson, Swaminathan, Bosnjak, Bauer, Kandasamy, Griesshammer, Kosack (bib31) 2015; 16 Reboldi, Dang, McDonald, Liang, Russell, Cyster (bib30) 2014; 345 Sehat, Tofigh, Lin, Trocmé, Liljedahl, Lagergren, Larsson (bib32) 2010; 3 Evans, Crown, Sohn, Seeger (bib9) 2011; 24 Lin, Chang, Yu, Liao, Lin (bib21) 2006; 80 Guo, Hayashi, Seeger (bib14) 2005; 79 Kumar, Tang, Ravindranath, Clark, Croze, Fuchs (bib17) 2003; 22 Qian, Zheng, Huangfu, Liu, Carbone, Leu, Baker, Fuchs (bib29) 2011; 7 Surazynski, Miltyk, Palka, Phang (bib35) 2008; 35 Zheng, Qian, Baker, Fuchs (bib37) 2011; 286 Ling, Zafari, Reardon, Brickelmeier, Goelz, Benjamin (bib22) 1995; 15 Mackenzie, Khromykh, Parton (bib25) 2007; 2 González-Navajas (10.1016/j.chom.2015.06.007_bib13) 2012; 12 Falik-Zaccai (10.1016/j.chom.2015.06.007_bib10) 2010; 153B Park (10.1016/j.chom.2015.06.007_bib27) 2007; 81 Best (10.1016/j.chom.2015.06.007_bib3) 2005; 79 Gauzzi (10.1016/j.chom.2015.06.007_bib12) 1997; 94 Crow (10.1016/j.chom.2015.06.007_bib7) 2015; 32 Surazynski (10.1016/j.chom.2015.06.007_bib35) 2008; 35 Chou (10.1016/j.chom.2015.06.007_bib6) 2014; 30 Schliehe (10.1016/j.chom.2015.06.007_bib31) 2015; 16 Kurien (10.1016/j.chom.2015.06.007_bib18) 2013; 16 Ambrose (10.1016/j.chom.2015.06.007_bib1) 2011; 85 Fuchs (10.1016/j.chom.2015.06.007_bib11) 2013; 33 Ling (10.1016/j.chom.2015.06.007_bib22) 1995; 15 de Weerd (10.1016/j.chom.2015.06.007_bib8) 2012; 90 Laurent-Rolle (10.1016/j.chom.2015.06.007_bib19) 2010; 84 Surazynski (10.1016/j.chom.2015.06.007_bib34) 2008; 122 Ashour (10.1016/j.chom.2015.06.007_bib2) 2009; 83 MacMicking (10.1016/j.chom.2015.06.007_bib26) 2012; 12 Liu (10.1016/j.chom.2015.06.007_bib23) 2009; 5 Qian (10.1016/j.chom.2015.06.007_bib29) 2011; 7 Szulc (10.1016/j.chom.2015.06.007_bib36) 2006; 3 Caselli (10.1016/j.chom.2015.06.007_bib4) 2012; 3 Cheon (10.1016/j.chom.2015.06.007_bib5) 2009; 106 Hechtman (10.1016/j.chom.2015.06.007_bib15) 2006 Subramaniam (10.1016/j.chom.2015.06.007_bib33) 2004; 578 Sehat (10.1016/j.chom.2015.06.007_bib32) 2010; 3 Zheng (10.1016/j.chom.2015.06.007_bib37) 2011; 286 Kumar (10.1016/j.chom.2015.06.007_bib17) 2003; 22 Guo (10.1016/j.chom.2015.06.007_bib14) 2005; 79 Lupi (10.1016/j.chom.2015.06.007_bib24) 2008; 35 Pohl (10.1016/j.chom.2015.06.007_bib28) 2014; 88 Hetz (10.1016/j.chom.2015.06.007_bib16) 2012; 13 Lin (10.1016/j.chom.2015.06.007_bib21) 2006; 80 Evans (10.1016/j.chom.2015.06.007_bib9) 2011; 24 Mackenzie (10.1016/j.chom.2015.06.007_bib25) 2007; 2 Laurent-Rolle (10.1016/j.chom.2015.06.007_bib20) 2014; 16 Reboldi (10.1016/j.chom.2015.06.007_bib30) 2014; 345 |
References_xml | – volume: 81 start-page: 6936 year: 2007 end-page: 6946 ident: bib27 article-title: Identification of residues critical for the interferon antagonist function of Langat virus NS5 reveals a role for the RNA-dependent RNA polymerase domain publication-title: J. Virol. – volume: 85 start-page: 2723 year: 2011 end-page: 2732 ident: bib1 article-title: West Nile virus differentially modulates the unfolded protein response to facilitate replication and immune evasion publication-title: J. Virol. – volume: 24 start-page: 253 year: 2011 end-page: 263 ident: bib9 article-title: West Nile virus infection induces depletion of IFNAR1 protein levels publication-title: Viral Immunol. – volume: 3 start-page: ra10 year: 2010 ident: bib32 article-title: SUMOylation mediates the nuclear translocation and signaling of the IGF-1 receptor publication-title: Sci. Signal. – volume: 30 start-page: 224 year: 2014 end-page: 237 ident: bib6 article-title: EGFR modulates DNA synthesis and repair through Tyr phosphorylation of histone H4 publication-title: Dev. Cell – volume: 80 start-page: 5908 year: 2006 end-page: 5918 ident: bib21 article-title: Blocking of interferon-induced Jak-Stat signaling by Japanese encephalitis virus NS5 through a protein tyrosine phosphatase-mediated mechanism publication-title: J. Virol. – volume: 286 start-page: 35733 year: 2011 end-page: 35741 ident: bib37 article-title: Tyrosine phosphorylation of protein kinase D2 mediates ligand-inducible elimination of the Type 1 interferon receptor publication-title: J. Biol. Chem. – volume: 106 start-page: 9373 year: 2009 end-page: 9378 ident: bib5 article-title: Unphosphorylated STAT1 prolongs the expression of interferon-induced immune regulatory genes publication-title: Proc. Natl. Acad. Sci. USA – volume: 12 start-page: 367 year: 2012 end-page: 382 ident: bib26 article-title: Interferon-inducible effector mechanisms in cell-autonomous immunity publication-title: Nat. Rev. Immunol. – volume: 84 start-page: 3503 year: 2010 end-page: 3515 ident: bib19 article-title: The NS5 protein of the virulent West Nile virus NY99 strain is a potent antagonist of type I interferon-mediated JAK-STAT signaling publication-title: J. Virol. – volume: 345 start-page: 679 year: 2014 end-page: 684 ident: bib30 article-title: Inflammation. 25-Hydroxycholesterol suppresses interleukin-1-driven inflammation downstream of type I interferon publication-title: Science – volume: 7 start-page: e1002065 year: 2011 ident: bib29 article-title: Pathogen recognition receptor signaling accelerates phosphorylation-dependent degradation of IFNAR1 publication-title: PLoS Pathog. – volume: 33 start-page: 211 year: 2013 end-page: 225 ident: bib11 article-title: Hope and fear for interferon: the receptor-centric outlook on the future of interferon therapy publication-title: J. Interferon Cytokine Res. – volume: 35 start-page: 731 year: 2008 end-page: 738 ident: bib35 article-title: Prolidase-dependent regulation of collagen biosynthesis publication-title: Amino Acids – volume: 15 start-page: 55 year: 1995 end-page: 61 ident: bib22 article-title: Human type I interferon receptor, IFNAR, is a heavily glycosylated 120-130 kD membrane protein publication-title: J. Interferon Cytokine Res. – volume: 2 start-page: 229 year: 2007 end-page: 239 ident: bib25 article-title: Cholesterol manipulation by West Nile virus perturbs the cellular immune response publication-title: Cell Host Microbe – volume: 79 start-page: 1343 year: 2005 end-page: 1350 ident: bib14 article-title: West Nile virus inhibits the signal transduction pathway of alpha interferon publication-title: J. Virol. – volume: 578 start-page: 207 year: 2004 end-page: 210 ident: bib33 article-title: The IFNAR1 subunit of the type I IFN receptor complex contains a functional nuclear localization sequence publication-title: FEBS Lett. – volume: 16 start-page: 67 year: 2015 end-page: 74 ident: bib31 article-title: The methyltransferase Setdb2 mediates virus-induced susceptibility to bacterial superinfection publication-title: Nat. Immunol. – start-page: 1839 year: 2006 end-page: 1855 ident: bib15 article-title: Prolidase Deficiency publication-title: The metabolic and molecular basis of inherited disease – volume: 16 start-page: 674 year: 2013 end-page: 680 ident: bib18 article-title: Prolidase deficiency breaks tolerance to lupus-associated antigens publication-title: Int. J. Rheum. Dis. – volume: 90 start-page: 483 year: 2012 end-page: 491 ident: bib8 article-title: The interferons and their receptors—distribution and regulation publication-title: Immunol. Cell Biol. – volume: 88 start-page: 11271 year: 2014 end-page: 11283 ident: bib28 article-title: Prolidase is required for early trafficking events during influenza A virus entry publication-title: J. Virol. – volume: 5 start-page: 72 year: 2009 end-page: 83 ident: bib23 article-title: Virus-induced unfolded protein response attenuates antiviral defenses via phosphorylation-dependent degradation of the type I interferon receptor publication-title: Cell Host Microbe – volume: 153B start-page: 46 year: 2010 end-page: 56 ident: bib10 article-title: A broad spectrum of developmental delay in a large cohort of prolidase deficiency patients demonstrates marked interfamilial and intrafamilial phenotypic variability publication-title: Am. J. Med. Genet. B. Neuropsychiatr. Genet. – volume: 83 start-page: 5408 year: 2009 end-page: 5418 ident: bib2 article-title: NS5 of dengue virus mediates STAT2 binding and degradation publication-title: J. Virol. – volume: 22 start-page: 5480 year: 2003 end-page: 5490 ident: bib17 article-title: SCF(HOS) ubiquitin ligase mediates the ligand-induced down-regulation of the interferon-alpha receptor publication-title: EMBO J. – volume: 122 start-page: 1435 year: 2008 end-page: 1440 ident: bib34 article-title: Extracellular matrix and HIF-1 signaling: the role of prolidase publication-title: Int. J. Cancer – volume: 79 start-page: 12828 year: 2005 end-page: 12839 ident: bib3 article-title: Inhibition of interferon-stimulated JAK-STAT signaling by a tick-borne flavivirus and identification of NS5 as an interferon antagonist publication-title: J. Virol. – volume: 94 start-page: 11839 year: 1997 end-page: 11844 ident: bib12 article-title: The amino-terminal region of Tyk2 sustains the level of interferon alpha receptor 1, a component of the interferon alpha/beta receptor publication-title: Proc. Natl. Acad. Sci. USA – volume: 13 start-page: 89 year: 2012 end-page: 102 ident: bib16 article-title: The unfolded protein response: controlling cell fate decisions under ER stress and beyond publication-title: Nat. Rev. Mol. Cell Biol. – volume: 12 start-page: 125 year: 2012 end-page: 135 ident: bib13 article-title: Immunomodulatory functions of type I interferons publication-title: Nat. Rev. Immunol. – volume: 16 start-page: 314 year: 2014 end-page: 327 ident: bib20 article-title: The interferon signaling antagonist function of yellow fever virus NS5 protein is activated by type I interferon publication-title: Cell Host Microbe – volume: 3 start-page: 109 year: 2006 end-page: 116 ident: bib36 article-title: A versatile tool for conditional gene expression and knockdown publication-title: Nat. Methods – volume: 32 start-page: 7 year: 2015 end-page: 12 ident: bib7 article-title: Type I interferonopathies: mendelian type I interferon up-regulation publication-title: Curr. Opin. Immunol. – volume: 3 start-page: 71 year: 2012 end-page: 77 ident: bib4 article-title: Partial Rescue of Biochemical Parameters After Hematopoietic Stem Cell Transplantation in a Patient with Prolidase Deficiency Due to Two Novel PEPD Mutations publication-title: JIMD Rep. – volume: 35 start-page: 739 year: 2008 end-page: 752 ident: bib24 article-title: Human prolidase and prolidase deficiency: an overview on the characterization of the enzyme involved in proline recycling and on the effects of its mutations publication-title: Amino Acids – volume: 153B start-page: 46 year: 2010 ident: 10.1016/j.chom.2015.06.007_bib10 article-title: A broad spectrum of developmental delay in a large cohort of prolidase deficiency patients demonstrates marked interfamilial and intrafamilial phenotypic variability publication-title: Am. J. Med. Genet. B. Neuropsychiatr. Genet. doi: 10.1002/ajmg.b.30945 – volume: 16 start-page: 674 year: 2013 ident: 10.1016/j.chom.2015.06.007_bib18 article-title: Prolidase deficiency breaks tolerance to lupus-associated antigens publication-title: Int. J. Rheum. Dis. doi: 10.1111/1756-185X.12254 – volume: 33 start-page: 211 year: 2013 ident: 10.1016/j.chom.2015.06.007_bib11 article-title: Hope and fear for interferon: the receptor-centric outlook on the future of interferon therapy publication-title: J. Interferon Cytokine Res. doi: 10.1089/jir.2012.0117 – volume: 79 start-page: 12828 year: 2005 ident: 10.1016/j.chom.2015.06.007_bib3 article-title: Inhibition of interferon-stimulated JAK-STAT signaling by a tick-borne flavivirus and identification of NS5 as an interferon antagonist publication-title: J. Virol. doi: 10.1128/JVI.79.20.12828-12839.2005 – volume: 13 start-page: 89 year: 2012 ident: 10.1016/j.chom.2015.06.007_bib16 article-title: The unfolded protein response: controlling cell fate decisions under ER stress and beyond publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3270 – volume: 7 start-page: e1002065 year: 2011 ident: 10.1016/j.chom.2015.06.007_bib29 article-title: Pathogen recognition receptor signaling accelerates phosphorylation-dependent degradation of IFNAR1 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002065 – volume: 94 start-page: 11839 year: 1997 ident: 10.1016/j.chom.2015.06.007_bib12 article-title: The amino-terminal region of Tyk2 sustains the level of interferon alpha receptor 1, a component of the interferon alpha/beta receptor publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.94.22.11839 – volume: 24 start-page: 253 year: 2011 ident: 10.1016/j.chom.2015.06.007_bib9 article-title: West Nile virus infection induces depletion of IFNAR1 protein levels publication-title: Viral Immunol. doi: 10.1089/vim.2010.0126 – volume: 15 start-page: 55 year: 1995 ident: 10.1016/j.chom.2015.06.007_bib22 article-title: Human type I interferon receptor, IFNAR, is a heavily glycosylated 120-130 kD membrane protein publication-title: J. Interferon Cytokine Res. doi: 10.1089/jir.1995.15.55 – volume: 84 start-page: 3503 year: 2010 ident: 10.1016/j.chom.2015.06.007_bib19 article-title: The NS5 protein of the virulent West Nile virus NY99 strain is a potent antagonist of type I interferon-mediated JAK-STAT signaling publication-title: J. Virol. doi: 10.1128/JVI.01161-09 – volume: 345 start-page: 679 year: 2014 ident: 10.1016/j.chom.2015.06.007_bib30 article-title: Inflammation. 25-Hydroxycholesterol suppresses interleukin-1-driven inflammation downstream of type I interferon publication-title: Science doi: 10.1126/science.1254790 – volume: 2 start-page: 229 year: 2007 ident: 10.1016/j.chom.2015.06.007_bib25 article-title: Cholesterol manipulation by West Nile virus perturbs the cellular immune response publication-title: Cell Host Microbe doi: 10.1016/j.chom.2007.09.003 – volume: 5 start-page: 72 year: 2009 ident: 10.1016/j.chom.2015.06.007_bib23 article-title: Virus-induced unfolded protein response attenuates antiviral defenses via phosphorylation-dependent degradation of the type I interferon receptor publication-title: Cell Host Microbe doi: 10.1016/j.chom.2008.11.008 – volume: 106 start-page: 9373 year: 2009 ident: 10.1016/j.chom.2015.06.007_bib5 article-title: Unphosphorylated STAT1 prolongs the expression of interferon-induced immune regulatory genes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0903487106 – volume: 35 start-page: 739 year: 2008 ident: 10.1016/j.chom.2015.06.007_bib24 article-title: Human prolidase and prolidase deficiency: an overview on the characterization of the enzyme involved in proline recycling and on the effects of its mutations publication-title: Amino Acids doi: 10.1007/s00726-008-0055-4 – volume: 22 start-page: 5480 year: 2003 ident: 10.1016/j.chom.2015.06.007_bib17 article-title: SCF(HOS) ubiquitin ligase mediates the ligand-induced down-regulation of the interferon-alpha receptor publication-title: EMBO J. doi: 10.1093/emboj/cdg524 – volume: 80 start-page: 5908 year: 2006 ident: 10.1016/j.chom.2015.06.007_bib21 article-title: Blocking of interferon-induced Jak-Stat signaling by Japanese encephalitis virus NS5 through a protein tyrosine phosphatase-mediated mechanism publication-title: J. Virol. doi: 10.1128/JVI.02714-05 – volume: 286 start-page: 35733 year: 2011 ident: 10.1016/j.chom.2015.06.007_bib37 article-title: Tyrosine phosphorylation of protein kinase D2 mediates ligand-inducible elimination of the Type 1 interferon receptor publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.263608 – volume: 3 start-page: 71 year: 2012 ident: 10.1016/j.chom.2015.06.007_bib4 article-title: Partial Rescue of Biochemical Parameters After Hematopoietic Stem Cell Transplantation in a Patient with Prolidase Deficiency Due to Two Novel PEPD Mutations publication-title: JIMD Rep. doi: 10.1007/8904_2011_62 – volume: 79 start-page: 1343 year: 2005 ident: 10.1016/j.chom.2015.06.007_bib14 article-title: West Nile virus inhibits the signal transduction pathway of alpha interferon publication-title: J. Virol. doi: 10.1128/JVI.79.3.1343-1350.2005 – volume: 35 start-page: 731 year: 2008 ident: 10.1016/j.chom.2015.06.007_bib35 article-title: Prolidase-dependent regulation of collagen biosynthesis publication-title: Amino Acids doi: 10.1007/s00726-008-0051-8 – volume: 32 start-page: 7 year: 2015 ident: 10.1016/j.chom.2015.06.007_bib7 article-title: Type I interferonopathies: mendelian type I interferon up-regulation publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2014.10.005 – volume: 83 start-page: 5408 year: 2009 ident: 10.1016/j.chom.2015.06.007_bib2 article-title: NS5 of dengue virus mediates STAT2 binding and degradation publication-title: J. Virol. doi: 10.1128/JVI.02188-08 – volume: 12 start-page: 125 year: 2012 ident: 10.1016/j.chom.2015.06.007_bib13 article-title: Immunomodulatory functions of type I interferons publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3133 – volume: 88 start-page: 11271 year: 2014 ident: 10.1016/j.chom.2015.06.007_bib28 article-title: Prolidase is required for early trafficking events during influenza A virus entry publication-title: J. Virol. doi: 10.1128/JVI.00800-14 – volume: 16 start-page: 67 year: 2015 ident: 10.1016/j.chom.2015.06.007_bib31 article-title: The methyltransferase Setdb2 mediates virus-induced susceptibility to bacterial superinfection publication-title: Nat. Immunol. doi: 10.1038/ni.3046 – volume: 85 start-page: 2723 year: 2011 ident: 10.1016/j.chom.2015.06.007_bib1 article-title: West Nile virus differentially modulates the unfolded protein response to facilitate replication and immune evasion publication-title: J. Virol. doi: 10.1128/JVI.02050-10 – volume: 12 start-page: 367 year: 2012 ident: 10.1016/j.chom.2015.06.007_bib26 article-title: Interferon-inducible effector mechanisms in cell-autonomous immunity publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3210 – volume: 578 start-page: 207 year: 2004 ident: 10.1016/j.chom.2015.06.007_bib33 article-title: The IFNAR1 subunit of the type I IFN receptor complex contains a functional nuclear localization sequence publication-title: FEBS Lett. doi: 10.1016/j.febslet.2004.10.085 – volume: 122 start-page: 1435 year: 2008 ident: 10.1016/j.chom.2015.06.007_bib34 article-title: Extracellular matrix and HIF-1 signaling: the role of prolidase publication-title: Int. J. Cancer doi: 10.1002/ijc.23263 – volume: 30 start-page: 224 year: 2014 ident: 10.1016/j.chom.2015.06.007_bib6 article-title: EGFR modulates DNA synthesis and repair through Tyr phosphorylation of histone H4 publication-title: Dev. Cell doi: 10.1016/j.devcel.2014.06.008 – volume: 3 start-page: ra10 year: 2010 ident: 10.1016/j.chom.2015.06.007_bib32 article-title: SUMOylation mediates the nuclear translocation and signaling of the IGF-1 receptor publication-title: Sci. Signal. doi: 10.1126/scisignal.2000628 – volume: 81 start-page: 6936 year: 2007 ident: 10.1016/j.chom.2015.06.007_bib27 article-title: Identification of residues critical for the interferon antagonist function of Langat virus NS5 reveals a role for the RNA-dependent RNA polymerase domain publication-title: J. Virol. doi: 10.1128/JVI.02830-06 – start-page: 1839 year: 2006 ident: 10.1016/j.chom.2015.06.007_bib15 article-title: Prolidase Deficiency – volume: 3 start-page: 109 year: 2006 ident: 10.1016/j.chom.2015.06.007_bib36 article-title: A versatile tool for conditional gene expression and knockdown publication-title: Nat. Methods doi: 10.1038/nmeth846 – volume: 16 start-page: 314 year: 2014 ident: 10.1016/j.chom.2015.06.007_bib20 article-title: The interferon signaling antagonist function of yellow fever virus NS5 protein is activated by type I interferon publication-title: Cell Host Microbe doi: 10.1016/j.chom.2014.07.015 – volume: 90 start-page: 483 year: 2012 ident: 10.1016/j.chom.2015.06.007_bib8 article-title: The interferons and their receptors—distribution and regulation publication-title: Immunol. Cell Biol. doi: 10.1038/icb.2012.9 |
SSID | ssj0055071 |
Score | 2.4760072 |
Snippet | Type I interferon (IFN-α/β or IFN-I) signals through two receptor subunits, IFNAR1 and IFNAR2, to orchestrate sterile and infectious immunity. Cellular... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 61 |
SubjectTerms | Dipeptidases - metabolism Encephalitis Viruses, Tick-Borne - immunology Fibroblasts - immunology Host-Pathogen Interactions Humans Interferon Type I - metabolism Protein Binding Receptor, Interferon alpha-beta - metabolism Signal Transduction Viral Nonstructural Proteins - metabolism West Nile virus - immunology |
Title | Flavivirus Antagonism of Type I Interferon Signaling Reveals Prolidase as a Regulator of IFNAR1 Surface Expression |
URI | https://dx.doi.org/10.1016/j.chom.2015.06.007 https://www.ncbi.nlm.nih.gov/pubmed/26159719 https://www.proquest.com/docview/1695757776 https://pubmed.ncbi.nlm.nih.gov/PMC4505794 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBalMNjL2Nb9SNcVDfpWTCLHlqLHLCQ0HS2lWSFvQpbkzqWVi92E9r_vnWyHZRt92IvBsgRCJ9195zt9R8jRgOc8k9rhXScbJcaJSLskjvLUgrVM5cgFdv2zc35ylZwu0-UOmXR3YTCtstX9jU4P2rpt6ber2b8viv4CoAcbYiAoDcAYGT-HyShc4lt-77Qx0nWxJrLMIuzdXpxpcrywHgmmd6WBwxNLyv7bOP0NPv_MofzNKM3ekjctmqTjZsLvyI7z78mrpr7k0x6pZrd6XayLalXTscf4ky_qO1rmFN1POqfhf2DuqtLTRXGNmNxf00u3BvRY0wss6GPBylFdUw3NoWp9WeH4-ex8fMnoYlXl2jg6fWzzaf0HcjWb_pycRG2RhchgLQNQMJYZYcHLCFx4xgykzRLtjDZZIuHJzEAYcFJiQAPGZtqOhkYDKHQiF9Ly4Uey60vvPhMaD7gDeCGlACeLaSN1Dj157KzlLItNj7BudZVpGcixEMat6lLNbhRKRKFEVMi3Ez1yvBlz3_BvvNg77YSmtnaRAgPx4rhvnYQVHC-MmWjvylWtGJcAaIUQvEc-NRLfzAOcT3DHmOwRsbUXNh2Qunv7iy9-BQrvBP1Cmez_53y_kNf4FtKGRwdk96Faua8Ajh6yQ3AL5j8Owxl4BuqhD68 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBddx1hfRvfZ7FODvQ2TyLGl6DErDcnWhtG0kDchS3Ln0srFbsL23-9OtkOzjT7sxQ_6AKGT7n7nO92PkE8DnvNMaodvnWyUGCci7ZI4ylML1jKVIxeq65_M-fQ8-bpMlzvksHsLg2mVre5vdHrQ1m1Lv93N_k1R9BcAPdgQA0FpAMbDB-QhoAGB_A2z5ZdOHWO9LtaEllmEw9uXM02SFxKSYH5XGop4Iqfsv63T3-jzzyTKO1Zpsk-etHCSjpsVPyU7zj8jjxqCyV_PSTW50utiXVSrmo49BqB8UV_TMqfof9IZDT8Ec1eVni6KCwTl_oKeujXAx5p-R0YfC2aO6ppqaA609WWF82eT-fiU0cWqyrVx9Ohnm1DrX5DzydHZ4TRqWRYig2QGoGEsM8KCmxGK4RkzkDZLtDPaZImELzMDYcBLiQEOGJtpOxoaDajQiVxIy4cvya4vvTsgNB5wB_hCSgFeFtNG6hxG8thZy1kWmx5h3e4q05YgRyaMK9Xlml0qlIhCiaiQcCd65PNmzk1TgOPe0WknNLV1jBRYiHvnfewkrOB-YdBEe1euasW4BEQrhOA98qqR-GYd4H2CP8Zkj4its7AZgLW7t3t88SPU8E7QMZTJ6_9c7wfyeHp2cqyOZ_Nvb8ge9oQc4tFbsntbrdw7QEq32ftwE34DJ6ER1Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flavivirus+antagonism+of+type+I+interferon+signaling+reveals+prolidase+as+a+regulator+of+IFNAR1+surface+expression&rft.jtitle=Cell+host+%26+microbe&rft.au=Lubick%2C+Kirk+J.&rft.au=Robertson%2C+Shelly+J.&rft.au=McNally%2C+Kristin+L.&rft.au=Freedman%2C+Brett+A.&rft.date=2015-07-08&rft.issn=1931-3128&rft.eissn=1934-6069&rft.volume=18&rft.issue=1&rft.spage=61&rft.epage=74&rft_id=info:doi/10.1016%2Fj.chom.2015.06.007&rft_id=info%3Apmid%2F26159719&rft.externalDocID=PMC4505794 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3128&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3128&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3128&client=summon |