Flavivirus Antagonism of Type I Interferon Signaling Reveals Prolidase as a Regulator of IFNAR1 Surface Expression

Type I interferon (IFN-α/β or IFN-I) signals through two receptor subunits, IFNAR1 and IFNAR2, to orchestrate sterile and infectious immunity. Cellular pathways that regulate IFNAR1 are often targeted by viruses to suppress the antiviral effects of IFN-I. Here we report that encephalitic flaviviruse...

Full description

Saved in:
Bibliographic Details
Published inCell host & microbe Vol. 18; no. 1; pp. 61 - 74
Main Authors Lubick, Kirk J., Robertson, Shelly J., McNally, Kristin L., Freedman, Brett A., Rasmussen, Angela L., Taylor, R. Travis, Walts, Avram D., Tsuruda, Seitaro, Sakai, Mizuki, Ishizuka, Mariko, Boer, Elena F., Foster, Erin C., Chiramel, Abhilash I., Addison, Conrad B., Green, Richard, Kastner, Daniel L., Katze, Michael G., Holland, Steven M., Forlino, Antonella, Freeman, Alexandra F., Boehm, Manfred, Yoshii, Kentaro, Best, Sonja M.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 08.07.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Type I interferon (IFN-α/β or IFN-I) signals through two receptor subunits, IFNAR1 and IFNAR2, to orchestrate sterile and infectious immunity. Cellular pathways that regulate IFNAR1 are often targeted by viruses to suppress the antiviral effects of IFN-I. Here we report that encephalitic flaviviruses, including tick-borne encephalitis virus and West Nile virus, antagonize IFN-I signaling by inhibiting IFNAR1 surface expression. Loss of IFNAR1 was associated with binding of the viral IFN-I antagonist, NS5, to prolidase (PEPD), a cellular dipeptidase implicated in primary immune deficiencies in humans. Prolidase was required for IFNAR1 maturation and accumulation, activation of IFNβ-stimulated gene induction, and IFN-I-dependent viral control. Human fibroblasts derived from patients with genetic prolidase deficiency exhibited decreased IFNAR1 surface expression and reduced IFNβ-stimulated signaling. Thus, by understanding flavivirus IFN-I antagonism, prolidase is revealed as a central regulator of IFN-I responses. [Display omitted] •TBEV and WNV inhibit surface expression of the interferon α/β (IFN-I) receptor, IFNAR1•The viral IFN antagonist NS5 binds to prolidase to prevent IFNAR1 surface expression•Prolidase is required for surface expression of IFNAR1•IFN signaling is compromised in fibroblasts from humans with prolidase deficiency Tick-borne encephalitis virus and West Nile virus antagonize type I interferon (IFN-I) signaling through unknown mechanisms. Lubick et al. demonstrate that prolidase promotes surface expression of the IFN-I receptor, IFNAR1, and is a target of viral antagonism. Further, prolidase deficiency in humans is associated with compromised IFN-I signaling.
AbstractList Type I interferon (IFN-α/β or IFN-I) signals through two receptor subunits, IFNAR1 and IFNAR2, to orchestrate sterile and infectious immunity. Cellular pathways that regulate IFNAR1 are often targeted by viruses to suppress the antiviral effects of IFN-I. Here we report that encephalitic flaviviruses, including tick-borne encephalitis virus and West Nile virus, antagonize IFN-I signaling by inhibiting IFNAR1 surface expression. Loss of IFNAR1 was associated with binding of the viral IFN-I antagonist, NS5, to prolidase (PEPD), a cellular dipeptidase implicated in primary immune deficiencies in humans. Prolidase was required for IFNAR1 maturation and accumulation, activation of IFNβ-stimulated gene induction, and IFN-I-dependent viral control. Human fibroblasts derived from patients with genetic prolidase deficiency exhibited decreased IFNAR1 surface expression and reduced IFNβ-stimulated signaling. Thus, by understanding flavivirus IFN-I antagonism, prolidase is revealed as a central regulator of IFN-I responses. [Display omitted] •TBEV and WNV inhibit surface expression of the interferon α/β (IFN-I) receptor, IFNAR1•The viral IFN antagonist NS5 binds to prolidase to prevent IFNAR1 surface expression•Prolidase is required for surface expression of IFNAR1•IFN signaling is compromised in fibroblasts from humans with prolidase deficiency Tick-borne encephalitis virus and West Nile virus antagonize type I interferon (IFN-I) signaling through unknown mechanisms. Lubick et al. demonstrate that prolidase promotes surface expression of the IFN-I receptor, IFNAR1, and is a target of viral antagonism. Further, prolidase deficiency in humans is associated with compromised IFN-I signaling.
Type I interferon (IFN-α/β or IFN-I) signals through two receptor subunits, IFNAR1 and IFNAR2, to orchestrate sterile and infectious immunity. Cellular pathways that regulate IFNAR1 are often targeted by viruses to suppress the antiviral effects of IFN-I. Here we report that encephalitic flaviviruses, including tick-borne encephalitis virus and West Nile virus, antagonize IFN-I signaling by inhibiting IFNAR1 surface expression. Loss of IFNAR1 was associated with binding of the viral IFN-I antagonist, NS5, to prolidase (PEPD), a cellular dipeptidase implicated in primary immune deficiencies in humans. Prolidase was required for IFNAR1 maturation and accumulation, activation of IFNβ-stimulated gene induction, and IFN-I-dependent viral control. Human fibroblasts derived from patients with genetic prolidase deficiency exhibited decreased IFNAR1 surface expression and reduced IFNβ-stimulated signaling. Thus, by understanding flavivirus IFN-I antagonism, prolidase is revealed as a central regulator of IFN-I responses.
Type I interferon (IFN-α/β or IFN-I) signals through two receptor subunits, IFNAR1 and IFNAR2, to orchestrate sterile and infectious immunity. Cellular pathways that regulate IFNAR1 are often targeted by viruses to suppress the antiviral effects of IFN-I. Here we report that encephalitic flaviviruses, including tick-borne encephalitis virus and West Nile virus, antagonize IFN-I signaling by inhibiting IFNAR1 surface expression. Loss of IFNAR1 was associated with binding of the viral IFN-I antagonist, NS5, to prolidase (PEPD), a cellular dipeptidase implicated in primary immune deficiencies in humans. Prolidase was required for IFNAR1 maturation and accumulation, activation of IFNβ-stimulated gene induction, and IFN-I-dependent viral control. Human fibroblasts derived from patients with genetic prolidase deficiency exhibited decreased IFNAR1 surface expression and reduced IFNβ-stimulated signaling. Thus, by understanding flavivirus IFN-I antagonism, prolidase is revealed as a central regulator of IFN-I responses.Type I interferon (IFN-α/β or IFN-I) signals through two receptor subunits, IFNAR1 and IFNAR2, to orchestrate sterile and infectious immunity. Cellular pathways that regulate IFNAR1 are often targeted by viruses to suppress the antiviral effects of IFN-I. Here we report that encephalitic flaviviruses, including tick-borne encephalitis virus and West Nile virus, antagonize IFN-I signaling by inhibiting IFNAR1 surface expression. Loss of IFNAR1 was associated with binding of the viral IFN-I antagonist, NS5, to prolidase (PEPD), a cellular dipeptidase implicated in primary immune deficiencies in humans. Prolidase was required for IFNAR1 maturation and accumulation, activation of IFNβ-stimulated gene induction, and IFN-I-dependent viral control. Human fibroblasts derived from patients with genetic prolidase deficiency exhibited decreased IFNAR1 surface expression and reduced IFNβ-stimulated signaling. Thus, by understanding flavivirus IFN-I antagonism, prolidase is revealed as a central regulator of IFN-I responses.
Author Foster, Erin C.
Yoshii, Kentaro
Ishizuka, Mariko
Boer, Elena F.
Rasmussen, Angela L.
Sakai, Mizuki
Taylor, R. Travis
Lubick, Kirk J.
Freeman, Alexandra F.
Kastner, Daniel L.
Holland, Steven M.
McNally, Kristin L.
Addison, Conrad B.
Green, Richard
Forlino, Antonella
Tsuruda, Seitaro
Freedman, Brett A.
Katze, Michael G.
Robertson, Shelly J.
Best, Sonja M.
Boehm, Manfred
Chiramel, Abhilash I.
Walts, Avram D.
AuthorAffiliation 7 Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20814, USA
6 Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
1 Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT, 59840, USA
4 Translational Medicine Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, 20892, USA
5 Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
8 Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
2 Department of Microbiology, University of Washington, Seattle, Washington, 98109, USA
3 Department of Medical Microbiology and Immunology, College of Medicine, University of Toledo Health Science Campus, Toledo, OH, 43614, USA
AuthorAffiliation_xml – name: 6 Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892, USA
– name: 4 Translational Medicine Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, 20892, USA
– name: 1 Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT, 59840, USA
– name: 5 Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
– name: 3 Department of Medical Microbiology and Immunology, College of Medicine, University of Toledo Health Science Campus, Toledo, OH, 43614, USA
– name: 8 Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
– name: 7 Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20814, USA
– name: 2 Department of Microbiology, University of Washington, Seattle, Washington, 98109, USA
Author_xml – sequence: 1
  givenname: Kirk J.
  surname: Lubick
  fullname: Lubick, Kirk J.
  organization: Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
– sequence: 2
  givenname: Shelly J.
  surname: Robertson
  fullname: Robertson, Shelly J.
  organization: Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
– sequence: 3
  givenname: Kristin L.
  surname: McNally
  fullname: McNally, Kristin L.
  organization: Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
– sequence: 4
  givenname: Brett A.
  surname: Freedman
  fullname: Freedman, Brett A.
  organization: Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
– sequence: 5
  givenname: Angela L.
  surname: Rasmussen
  fullname: Rasmussen, Angela L.
  organization: Department of Microbiology, University of Washington, Seattle, WA 98109, USA
– sequence: 6
  givenname: R. Travis
  surname: Taylor
  fullname: Taylor, R. Travis
  organization: Department of Medical Microbiology and Immunology, College of Medicine, University of Toledo Health Science Campus, Toledo, OH 43614, USA
– sequence: 7
  givenname: Avram D.
  surname: Walts
  fullname: Walts, Avram D.
  organization: Translational Medicine Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
– sequence: 8
  givenname: Seitaro
  surname: Tsuruda
  fullname: Tsuruda, Seitaro
  organization: Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
– sequence: 9
  givenname: Mizuki
  surname: Sakai
  fullname: Sakai, Mizuki
  organization: Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
– sequence: 10
  givenname: Mariko
  surname: Ishizuka
  fullname: Ishizuka, Mariko
  organization: Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
– sequence: 11
  givenname: Elena F.
  surname: Boer
  fullname: Boer, Elena F.
  organization: Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
– sequence: 12
  givenname: Erin C.
  surname: Foster
  fullname: Foster, Erin C.
  organization: Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
– sequence: 13
  givenname: Abhilash I.
  surname: Chiramel
  fullname: Chiramel, Abhilash I.
  organization: Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
– sequence: 14
  givenname: Conrad B.
  surname: Addison
  fullname: Addison, Conrad B.
  organization: Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
– sequence: 15
  givenname: Richard
  surname: Green
  fullname: Green, Richard
  organization: Department of Microbiology, University of Washington, Seattle, WA 98109, USA
– sequence: 16
  givenname: Daniel L.
  surname: Kastner
  fullname: Kastner, Daniel L.
  organization: Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
– sequence: 17
  givenname: Michael G.
  surname: Katze
  fullname: Katze, Michael G.
  organization: Department of Microbiology, University of Washington, Seattle, WA 98109, USA
– sequence: 18
  givenname: Steven M.
  surname: Holland
  fullname: Holland, Steven M.
  organization: Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20814, USA
– sequence: 19
  givenname: Antonella
  surname: Forlino
  fullname: Forlino, Antonella
  organization: Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100 Pavia, Italy
– sequence: 20
  givenname: Alexandra F.
  surname: Freeman
  fullname: Freeman, Alexandra F.
  organization: Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20814, USA
– sequence: 21
  givenname: Manfred
  surname: Boehm
  fullname: Boehm, Manfred
  organization: Translational Medicine Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
– sequence: 22
  givenname: Kentaro
  surname: Yoshii
  fullname: Yoshii, Kentaro
  organization: Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
– sequence: 23
  givenname: Sonja M.
  surname: Best
  fullname: Best, Sonja M.
  email: sbest@niaid.nih.gov
  organization: Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26159719$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u3CAUhVGVqvlpX6CLimU3dsE2xkhVpVGUaUaK2ipJ14iBa4eRDVOwreTtizNp1HaRDSA43z3onFN05LwDhN5TklNC60-7XN_5IS8IZTmpc0L4K3RCRVllNanF0eOZZiUtmmN0GuOOEMYIp2_QcVFTJjgVJyisezXb2YYp4pUbVeedjQP2Lb592APe4I0bIbQQvMM3tnOqt67D1zCD6iP-EXxvjYqAVcQqXXdTr0YfFn6z_ra6pvhmCq3SgC_u9wFitN69Ra_bBMO7p_0M_Vxf3J5fZlffv27OV1eZZgUds5IbqrlpippzVlVaE2G2lQKt9LYSaaWacF0VTUEKqs1WmabUqqQEeMuFqcsz9OUwdz9tBzAa3BhUL_fBDio8SK-s_PfF2TvZ-VlWjDAuqjTg49OA4H9NEEc52Kih75UDP0VJa8E445wvXh_-9no2-RN0EhQHgQ4-xgDts4QSubQpd3JpUy5tSlLL1GaCmv8gbUc1pgzTf23_Mvr5gEJKeLYQZNQWnAZjA-hRGm9fwn8DT7S87w
CitedBy_id crossref_primary_10_1371_journal_ppat_1010100
crossref_primary_10_1038_s41598_023_29075_0
crossref_primary_10_1016_j_nmni_2019_01_002
crossref_primary_10_1371_journal_ppat_1008944
crossref_primary_10_1128_JVI_02749_15
crossref_primary_10_3390_vaccines12080865
crossref_primary_10_1684_ecn_2019_0433
crossref_primary_10_1016_j_jbc_2023_105605
crossref_primary_10_3390_v10060329
crossref_primary_10_1038_s42003_024_05768_8
crossref_primary_10_3390_ph15121493
crossref_primary_10_1016_j_bbrc_2017_05_146
crossref_primary_10_1038_ncomms14763
crossref_primary_10_33442_26613980_9_6
crossref_primary_10_1038_cti_2017_32
crossref_primary_10_33442_26613980_9_4
crossref_primary_10_1016_j_isci_2025_112046
crossref_primary_10_33442_26613980_9_5
crossref_primary_10_1128_JVI_00665_19
crossref_primary_10_3390_v13112116
crossref_primary_10_1007_s00335_018_9775_2
crossref_primary_10_1016_j_antiviral_2019_104703
crossref_primary_10_1073_pnas_2403235121
crossref_primary_10_3390_ijms21165906
crossref_primary_10_3389_fmolb_2021_723003
crossref_primary_10_3390_v13050748
crossref_primary_10_3389_fimmu_2022_829433
crossref_primary_10_1016_j_genrep_2016_02_008
crossref_primary_10_1016_j_dci_2018_11_003
crossref_primary_10_1007_s11926_016_0621_9
crossref_primary_10_1292_jvms_18_0373
crossref_primary_10_3390_v10070340
crossref_primary_10_1002_ajmg_a_63137
crossref_primary_10_1007_s12035_017_0635_y
crossref_primary_10_3390_cells11203284
crossref_primary_10_1016_j_vetmic_2020_108587
crossref_primary_10_1186_s12862_017_1107_8
crossref_primary_10_3390_v11111024
crossref_primary_10_1128_JVI_01148_17
crossref_primary_10_1146_annurev_immunol_042718_041553
crossref_primary_10_1073_pnas_2105170118
crossref_primary_10_1080_22221751_2021_1932609
crossref_primary_10_3389_fmicb_2022_847588
crossref_primary_10_1136_jitc_2022_004974
crossref_primary_10_1038_s41564_019_0421_x
crossref_primary_10_1016_j_ijantimicag_2024_107187
crossref_primary_10_15252_embr_202357424
crossref_primary_10_3389_fcimb_2022_823181
crossref_primary_10_3390_microorganisms12040660
crossref_primary_10_1186_s13578_023_00957_0
crossref_primary_10_3390_v10120712
crossref_primary_10_1186_s13223_022_00658_2
crossref_primary_10_1242_jcs_260682
crossref_primary_10_1080_22221751_2021_1964384
crossref_primary_10_1016_j_virol_2017_11_008
crossref_primary_10_1016_j_clim_2023_109699
crossref_primary_10_3389_fcimb_2018_00096
crossref_primary_10_1016_j_bbrc_2017_02_006
crossref_primary_10_1128_JVI_01970_16
crossref_primary_10_1002_jmv_24731
crossref_primary_10_3389_fmicb_2023_1257024
crossref_primary_10_1089_dna_2019_5115
crossref_primary_10_1080_21505594_2021_1996059
crossref_primary_10_1007_s40588_016_0043_5
crossref_primary_10_1128_JVI_01454_19
crossref_primary_10_1038_s41467_024_49758_0
crossref_primary_10_3389_fimmu_2020_615603
crossref_primary_10_3390_v16050781
crossref_primary_10_1038_s41564_019_0582_7
crossref_primary_10_1016_j_virol_2025_110456
crossref_primary_10_1016_j_cyto_2016_04_013
crossref_primary_10_1371_journal_ppat_1011620
crossref_primary_10_1038_s41467_017_02097_9
crossref_primary_10_3390_ijms25147892
crossref_primary_10_1002_jmv_29522
crossref_primary_10_1016_j_antiviral_2019_01_014
crossref_primary_10_1016_j_pharmthera_2018_05_004
crossref_primary_10_1111_joa_12959
crossref_primary_10_3390_v14030506
crossref_primary_10_1007_s00018_018_2751_x
crossref_primary_10_33442_978_981_14_0914_1_9
crossref_primary_10_1089_vim_2019_0082
crossref_primary_10_3390_v9040091
crossref_primary_10_3390_v16020202
crossref_primary_10_33442_978_981_14_0914_1_4
crossref_primary_10_1016_j_chom_2016_05_009
crossref_primary_10_3389_fimmu_2016_00498
crossref_primary_10_1038_s41594_020_0472_y
crossref_primary_10_1002_ppul_24602
crossref_primary_10_1016_j_chom_2017_07_012
crossref_primary_10_1080_21645515_2019_1609823
crossref_primary_10_3389_fimmu_2018_00597
crossref_primary_10_1128_jvi_01301_24
crossref_primary_10_1016_j_virol_2018_06_017
crossref_primary_10_1016_j_cell_2018_11_028
crossref_primary_10_3390_vaccines9060664
crossref_primary_10_1099_jgv_0_001400
crossref_primary_10_1038_s41598_021_82751_x
crossref_primary_10_3390_v13050763
crossref_primary_10_1099_jgv_0_001376
crossref_primary_10_1128_JVI_01778_18
crossref_primary_10_33442_26613980_4_5
crossref_primary_10_33442_26613980_4_6
crossref_primary_10_1128_JVI_03036_15
crossref_primary_10_33442_26613980_4_4
Cites_doi 10.1002/ajmg.b.30945
10.1111/1756-185X.12254
10.1089/jir.2012.0117
10.1128/JVI.79.20.12828-12839.2005
10.1038/nrm3270
10.1371/journal.ppat.1002065
10.1073/pnas.94.22.11839
10.1089/vim.2010.0126
10.1089/jir.1995.15.55
10.1128/JVI.01161-09
10.1126/science.1254790
10.1016/j.chom.2007.09.003
10.1016/j.chom.2008.11.008
10.1073/pnas.0903487106
10.1007/s00726-008-0055-4
10.1093/emboj/cdg524
10.1128/JVI.02714-05
10.1074/jbc.M111.263608
10.1007/8904_2011_62
10.1128/JVI.79.3.1343-1350.2005
10.1007/s00726-008-0051-8
10.1016/j.coi.2014.10.005
10.1128/JVI.02188-08
10.1038/nri3133
10.1128/JVI.00800-14
10.1038/ni.3046
10.1128/JVI.02050-10
10.1038/nri3210
10.1016/j.febslet.2004.10.085
10.1002/ijc.23263
10.1016/j.devcel.2014.06.008
10.1126/scisignal.2000628
10.1128/JVI.02830-06
10.1038/nmeth846
10.1016/j.chom.2014.07.015
10.1038/icb.2012.9
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright © 2015 Elsevier Inc. All rights reserved.
2015 Published by Elsevier Inc. 2015
Copyright_xml – notice: 2015 Elsevier Inc.
– notice: Copyright © 2015 Elsevier Inc. All rights reserved.
– notice: 2015 Published by Elsevier Inc. 2015
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.chom.2015.06.007
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1934-6069
EndPage 74
ExternalDocumentID PMC4505794
26159719
10_1016_j_chom_2015_06_007
S1931312815002553
Genre Research Support, N.I.H., Intramural
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: ZIA AI001125
– fundername: NIH HHS
  grantid: P51 OD010425
– fundername: NIAID NIH HHS
  grantid: U19 AI109761
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
5GY
62-
6I.
6J9
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHFR
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
HVGLF
IHE
IXB
JIG
K97
M41
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SES
SSZ
TR2
UNMZH
WQ6
ZA5
53G
AAIKJ
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
OZT
ZBA
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-37d1c7d82677544cc09db4aecacb49cac1c07c4282021cdbad83ca310e7f79d63
IEDL.DBID IXB
ISSN 1931-3128
1934-6069
IngestDate Thu Aug 21 18:16:38 EDT 2025
Fri Jul 11 09:07:22 EDT 2025
Mon Jul 21 05:58:42 EDT 2025
Tue Jul 01 02:44:17 EDT 2025
Thu Apr 24 23:00:08 EDT 2025
Fri Feb 23 02:31:05 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2015 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-37d1c7d82677544cc09db4aecacb49cac1c07c4282021cdbad83ca310e7f79d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1931312815002553
PMID 26159719
PQID 1695757776
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4505794
proquest_miscellaneous_1695757776
pubmed_primary_26159719
crossref_primary_10_1016_j_chom_2015_06_007
crossref_citationtrail_10_1016_j_chom_2015_06_007
elsevier_sciencedirect_doi_10_1016_j_chom_2015_06_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-07-08
PublicationDateYYYYMMDD 2015-07-08
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-08
  day: 08
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell host & microbe
PublicationTitleAlternate Cell Host Microbe
PublicationYear 2015
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Chou, Wang, Hsieh, Li, Xia, Chang, Chang, Cheng, Lai, Hsu (bib6) 2014; 30
Surazynski, Donald, Cooper, Whiteside, Salnikow, Liu, Phang (bib34) 2008; 122
Subramaniam, Johnson (bib33) 2004; 578
Fuchs (bib11) 2013; 33
Park, Morris, Hallett, Bloom, Best (bib27) 2007; 81
Lupi, Tenni, Rossi, Cetta, Forlino (bib24) 2008; 35
Ashour, Laurent-Rolle, Shi, García-Sastre (bib2) 2009; 83
Kurien, D’Sousa, Bruner, Gross, James, Targoff, Maier-Moore, Harley, Wang, Scofield (bib18) 2013; 16
Liu, HuangFu, Kumar, Qian, Casey, Hamanaka, Grigoriadou, Aldabe, Diehl, Fuchs (bib23) 2009; 5
Caselli, Cimaz, Besio, Rossi, De Lorenzi, Colombo, Cantarini, Riva, Spada, Forlino, Aricò (bib4) 2012; 3
Laurent-Rolle, Boer, Lubick, Wolfinbarger, Carmody, Rockx, Liu, Ashour, Shupert, Holbrook (bib19) 2010; 84
Ambrose, Mackenzie (bib1) 2011; 85
González-Navajas, Lee, David, Raz (bib13) 2012; 12
Laurent-Rolle, Morrison, Rajsbaum, Macleod, Pisanelli, Pham, Ayllon, Miorin, Martínez-Romero, tenOever, García-Sastre (bib20) 2014; 16
Gauzzi, Barbieri, Richter, Uzé, Ling, Fellous, Pellegrini (bib12) 1997; 94
Hetz (bib16) 2012; 13
Szulc, Wiznerowicz, Sauvain, Trono, Aebischer (bib36) 2006; 3
Best, Morris, Shannon, Robertson, Mitzel, Park, Boer, Wolfinbarger, Bloom (bib3) 2005; 79
Crow (bib7) 2015; 32
Cheon, Stark (bib5) 2009; 106
Pohl, Edinger, Stertz (bib28) 2014; 88
Falik-Zaccai, Khayat, Luder, Frenkel, Magen, Brik, Gershoni-Baruch, Mandel (bib10) 2010; 153B
MacMicking (bib26) 2012; 12
de Weerd, Nguyen (bib8) 2012; 90
Hechtman (bib15) 2006
Schliehe, Flynn, Vilagos, Richson, Swaminathan, Bosnjak, Bauer, Kandasamy, Griesshammer, Kosack (bib31) 2015; 16
Reboldi, Dang, McDonald, Liang, Russell, Cyster (bib30) 2014; 345
Sehat, Tofigh, Lin, Trocmé, Liljedahl, Lagergren, Larsson (bib32) 2010; 3
Evans, Crown, Sohn, Seeger (bib9) 2011; 24
Lin, Chang, Yu, Liao, Lin (bib21) 2006; 80
Guo, Hayashi, Seeger (bib14) 2005; 79
Kumar, Tang, Ravindranath, Clark, Croze, Fuchs (bib17) 2003; 22
Qian, Zheng, Huangfu, Liu, Carbone, Leu, Baker, Fuchs (bib29) 2011; 7
Surazynski, Miltyk, Palka, Phang (bib35) 2008; 35
Zheng, Qian, Baker, Fuchs (bib37) 2011; 286
Ling, Zafari, Reardon, Brickelmeier, Goelz, Benjamin (bib22) 1995; 15
Mackenzie, Khromykh, Parton (bib25) 2007; 2
González-Navajas (10.1016/j.chom.2015.06.007_bib13) 2012; 12
Falik-Zaccai (10.1016/j.chom.2015.06.007_bib10) 2010; 153B
Park (10.1016/j.chom.2015.06.007_bib27) 2007; 81
Best (10.1016/j.chom.2015.06.007_bib3) 2005; 79
Gauzzi (10.1016/j.chom.2015.06.007_bib12) 1997; 94
Crow (10.1016/j.chom.2015.06.007_bib7) 2015; 32
Surazynski (10.1016/j.chom.2015.06.007_bib35) 2008; 35
Chou (10.1016/j.chom.2015.06.007_bib6) 2014; 30
Schliehe (10.1016/j.chom.2015.06.007_bib31) 2015; 16
Kurien (10.1016/j.chom.2015.06.007_bib18) 2013; 16
Ambrose (10.1016/j.chom.2015.06.007_bib1) 2011; 85
Fuchs (10.1016/j.chom.2015.06.007_bib11) 2013; 33
Ling (10.1016/j.chom.2015.06.007_bib22) 1995; 15
de Weerd (10.1016/j.chom.2015.06.007_bib8) 2012; 90
Laurent-Rolle (10.1016/j.chom.2015.06.007_bib19) 2010; 84
Surazynski (10.1016/j.chom.2015.06.007_bib34) 2008; 122
Ashour (10.1016/j.chom.2015.06.007_bib2) 2009; 83
MacMicking (10.1016/j.chom.2015.06.007_bib26) 2012; 12
Liu (10.1016/j.chom.2015.06.007_bib23) 2009; 5
Qian (10.1016/j.chom.2015.06.007_bib29) 2011; 7
Szulc (10.1016/j.chom.2015.06.007_bib36) 2006; 3
Caselli (10.1016/j.chom.2015.06.007_bib4) 2012; 3
Cheon (10.1016/j.chom.2015.06.007_bib5) 2009; 106
Hechtman (10.1016/j.chom.2015.06.007_bib15) 2006
Subramaniam (10.1016/j.chom.2015.06.007_bib33) 2004; 578
Sehat (10.1016/j.chom.2015.06.007_bib32) 2010; 3
Zheng (10.1016/j.chom.2015.06.007_bib37) 2011; 286
Kumar (10.1016/j.chom.2015.06.007_bib17) 2003; 22
Guo (10.1016/j.chom.2015.06.007_bib14) 2005; 79
Lupi (10.1016/j.chom.2015.06.007_bib24) 2008; 35
Pohl (10.1016/j.chom.2015.06.007_bib28) 2014; 88
Hetz (10.1016/j.chom.2015.06.007_bib16) 2012; 13
Lin (10.1016/j.chom.2015.06.007_bib21) 2006; 80
Evans (10.1016/j.chom.2015.06.007_bib9) 2011; 24
Mackenzie (10.1016/j.chom.2015.06.007_bib25) 2007; 2
Laurent-Rolle (10.1016/j.chom.2015.06.007_bib20) 2014; 16
Reboldi (10.1016/j.chom.2015.06.007_bib30) 2014; 345
References_xml – volume: 81
  start-page: 6936
  year: 2007
  end-page: 6946
  ident: bib27
  article-title: Identification of residues critical for the interferon antagonist function of Langat virus NS5 reveals a role for the RNA-dependent RNA polymerase domain
  publication-title: J. Virol.
– volume: 85
  start-page: 2723
  year: 2011
  end-page: 2732
  ident: bib1
  article-title: West Nile virus differentially modulates the unfolded protein response to facilitate replication and immune evasion
  publication-title: J. Virol.
– volume: 24
  start-page: 253
  year: 2011
  end-page: 263
  ident: bib9
  article-title: West Nile virus infection induces depletion of IFNAR1 protein levels
  publication-title: Viral Immunol.
– volume: 3
  start-page: ra10
  year: 2010
  ident: bib32
  article-title: SUMOylation mediates the nuclear translocation and signaling of the IGF-1 receptor
  publication-title: Sci. Signal.
– volume: 30
  start-page: 224
  year: 2014
  end-page: 237
  ident: bib6
  article-title: EGFR modulates DNA synthesis and repair through Tyr phosphorylation of histone H4
  publication-title: Dev. Cell
– volume: 80
  start-page: 5908
  year: 2006
  end-page: 5918
  ident: bib21
  article-title: Blocking of interferon-induced Jak-Stat signaling by Japanese encephalitis virus NS5 through a protein tyrosine phosphatase-mediated mechanism
  publication-title: J. Virol.
– volume: 286
  start-page: 35733
  year: 2011
  end-page: 35741
  ident: bib37
  article-title: Tyrosine phosphorylation of protein kinase D2 mediates ligand-inducible elimination of the Type 1 interferon receptor
  publication-title: J. Biol. Chem.
– volume: 106
  start-page: 9373
  year: 2009
  end-page: 9378
  ident: bib5
  article-title: Unphosphorylated STAT1 prolongs the expression of interferon-induced immune regulatory genes
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 12
  start-page: 367
  year: 2012
  end-page: 382
  ident: bib26
  article-title: Interferon-inducible effector mechanisms in cell-autonomous immunity
  publication-title: Nat. Rev. Immunol.
– volume: 84
  start-page: 3503
  year: 2010
  end-page: 3515
  ident: bib19
  article-title: The NS5 protein of the virulent West Nile virus NY99 strain is a potent antagonist of type I interferon-mediated JAK-STAT signaling
  publication-title: J. Virol.
– volume: 345
  start-page: 679
  year: 2014
  end-page: 684
  ident: bib30
  article-title: Inflammation. 25-Hydroxycholesterol suppresses interleukin-1-driven inflammation downstream of type I interferon
  publication-title: Science
– volume: 7
  start-page: e1002065
  year: 2011
  ident: bib29
  article-title: Pathogen recognition receptor signaling accelerates phosphorylation-dependent degradation of IFNAR1
  publication-title: PLoS Pathog.
– volume: 33
  start-page: 211
  year: 2013
  end-page: 225
  ident: bib11
  article-title: Hope and fear for interferon: the receptor-centric outlook on the future of interferon therapy
  publication-title: J. Interferon Cytokine Res.
– volume: 35
  start-page: 731
  year: 2008
  end-page: 738
  ident: bib35
  article-title: Prolidase-dependent regulation of collagen biosynthesis
  publication-title: Amino Acids
– volume: 15
  start-page: 55
  year: 1995
  end-page: 61
  ident: bib22
  article-title: Human type I interferon receptor, IFNAR, is a heavily glycosylated 120-130 kD membrane protein
  publication-title: J. Interferon Cytokine Res.
– volume: 2
  start-page: 229
  year: 2007
  end-page: 239
  ident: bib25
  article-title: Cholesterol manipulation by West Nile virus perturbs the cellular immune response
  publication-title: Cell Host Microbe
– volume: 79
  start-page: 1343
  year: 2005
  end-page: 1350
  ident: bib14
  article-title: West Nile virus inhibits the signal transduction pathway of alpha interferon
  publication-title: J. Virol.
– volume: 578
  start-page: 207
  year: 2004
  end-page: 210
  ident: bib33
  article-title: The IFNAR1 subunit of the type I IFN receptor complex contains a functional nuclear localization sequence
  publication-title: FEBS Lett.
– volume: 16
  start-page: 67
  year: 2015
  end-page: 74
  ident: bib31
  article-title: The methyltransferase Setdb2 mediates virus-induced susceptibility to bacterial superinfection
  publication-title: Nat. Immunol.
– start-page: 1839
  year: 2006
  end-page: 1855
  ident: bib15
  article-title: Prolidase Deficiency
  publication-title: The metabolic and molecular basis of inherited disease
– volume: 16
  start-page: 674
  year: 2013
  end-page: 680
  ident: bib18
  article-title: Prolidase deficiency breaks tolerance to lupus-associated antigens
  publication-title: Int. J. Rheum. Dis.
– volume: 90
  start-page: 483
  year: 2012
  end-page: 491
  ident: bib8
  article-title: The interferons and their receptors—distribution and regulation
  publication-title: Immunol. Cell Biol.
– volume: 88
  start-page: 11271
  year: 2014
  end-page: 11283
  ident: bib28
  article-title: Prolidase is required for early trafficking events during influenza A virus entry
  publication-title: J. Virol.
– volume: 5
  start-page: 72
  year: 2009
  end-page: 83
  ident: bib23
  article-title: Virus-induced unfolded protein response attenuates antiviral defenses via phosphorylation-dependent degradation of the type I interferon receptor
  publication-title: Cell Host Microbe
– volume: 153B
  start-page: 46
  year: 2010
  end-page: 56
  ident: bib10
  article-title: A broad spectrum of developmental delay in a large cohort of prolidase deficiency patients demonstrates marked interfamilial and intrafamilial phenotypic variability
  publication-title: Am. J. Med. Genet. B. Neuropsychiatr. Genet.
– volume: 83
  start-page: 5408
  year: 2009
  end-page: 5418
  ident: bib2
  article-title: NS5 of dengue virus mediates STAT2 binding and degradation
  publication-title: J. Virol.
– volume: 22
  start-page: 5480
  year: 2003
  end-page: 5490
  ident: bib17
  article-title: SCF(HOS) ubiquitin ligase mediates the ligand-induced down-regulation of the interferon-alpha receptor
  publication-title: EMBO J.
– volume: 122
  start-page: 1435
  year: 2008
  end-page: 1440
  ident: bib34
  article-title: Extracellular matrix and HIF-1 signaling: the role of prolidase
  publication-title: Int. J. Cancer
– volume: 79
  start-page: 12828
  year: 2005
  end-page: 12839
  ident: bib3
  article-title: Inhibition of interferon-stimulated JAK-STAT signaling by a tick-borne flavivirus and identification of NS5 as an interferon antagonist
  publication-title: J. Virol.
– volume: 94
  start-page: 11839
  year: 1997
  end-page: 11844
  ident: bib12
  article-title: The amino-terminal region of Tyk2 sustains the level of interferon alpha receptor 1, a component of the interferon alpha/beta receptor
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 13
  start-page: 89
  year: 2012
  end-page: 102
  ident: bib16
  article-title: The unfolded protein response: controlling cell fate decisions under ER stress and beyond
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 12
  start-page: 125
  year: 2012
  end-page: 135
  ident: bib13
  article-title: Immunomodulatory functions of type I interferons
  publication-title: Nat. Rev. Immunol.
– volume: 16
  start-page: 314
  year: 2014
  end-page: 327
  ident: bib20
  article-title: The interferon signaling antagonist function of yellow fever virus NS5 protein is activated by type I interferon
  publication-title: Cell Host Microbe
– volume: 3
  start-page: 109
  year: 2006
  end-page: 116
  ident: bib36
  article-title: A versatile tool for conditional gene expression and knockdown
  publication-title: Nat. Methods
– volume: 32
  start-page: 7
  year: 2015
  end-page: 12
  ident: bib7
  article-title: Type I interferonopathies: mendelian type I interferon up-regulation
  publication-title: Curr. Opin. Immunol.
– volume: 3
  start-page: 71
  year: 2012
  end-page: 77
  ident: bib4
  article-title: Partial Rescue of Biochemical Parameters After Hematopoietic Stem Cell Transplantation in a Patient with Prolidase Deficiency Due to Two Novel PEPD Mutations
  publication-title: JIMD Rep.
– volume: 35
  start-page: 739
  year: 2008
  end-page: 752
  ident: bib24
  article-title: Human prolidase and prolidase deficiency: an overview on the characterization of the enzyme involved in proline recycling and on the effects of its mutations
  publication-title: Amino Acids
– volume: 153B
  start-page: 46
  year: 2010
  ident: 10.1016/j.chom.2015.06.007_bib10
  article-title: A broad spectrum of developmental delay in a large cohort of prolidase deficiency patients demonstrates marked interfamilial and intrafamilial phenotypic variability
  publication-title: Am. J. Med. Genet. B. Neuropsychiatr. Genet.
  doi: 10.1002/ajmg.b.30945
– volume: 16
  start-page: 674
  year: 2013
  ident: 10.1016/j.chom.2015.06.007_bib18
  article-title: Prolidase deficiency breaks tolerance to lupus-associated antigens
  publication-title: Int. J. Rheum. Dis.
  doi: 10.1111/1756-185X.12254
– volume: 33
  start-page: 211
  year: 2013
  ident: 10.1016/j.chom.2015.06.007_bib11
  article-title: Hope and fear for interferon: the receptor-centric outlook on the future of interferon therapy
  publication-title: J. Interferon Cytokine Res.
  doi: 10.1089/jir.2012.0117
– volume: 79
  start-page: 12828
  year: 2005
  ident: 10.1016/j.chom.2015.06.007_bib3
  article-title: Inhibition of interferon-stimulated JAK-STAT signaling by a tick-borne flavivirus and identification of NS5 as an interferon antagonist
  publication-title: J. Virol.
  doi: 10.1128/JVI.79.20.12828-12839.2005
– volume: 13
  start-page: 89
  year: 2012
  ident: 10.1016/j.chom.2015.06.007_bib16
  article-title: The unfolded protein response: controlling cell fate decisions under ER stress and beyond
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3270
– volume: 7
  start-page: e1002065
  year: 2011
  ident: 10.1016/j.chom.2015.06.007_bib29
  article-title: Pathogen recognition receptor signaling accelerates phosphorylation-dependent degradation of IFNAR1
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1002065
– volume: 94
  start-page: 11839
  year: 1997
  ident: 10.1016/j.chom.2015.06.007_bib12
  article-title: The amino-terminal region of Tyk2 sustains the level of interferon alpha receptor 1, a component of the interferon alpha/beta receptor
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.94.22.11839
– volume: 24
  start-page: 253
  year: 2011
  ident: 10.1016/j.chom.2015.06.007_bib9
  article-title: West Nile virus infection induces depletion of IFNAR1 protein levels
  publication-title: Viral Immunol.
  doi: 10.1089/vim.2010.0126
– volume: 15
  start-page: 55
  year: 1995
  ident: 10.1016/j.chom.2015.06.007_bib22
  article-title: Human type I interferon receptor, IFNAR, is a heavily glycosylated 120-130 kD membrane protein
  publication-title: J. Interferon Cytokine Res.
  doi: 10.1089/jir.1995.15.55
– volume: 84
  start-page: 3503
  year: 2010
  ident: 10.1016/j.chom.2015.06.007_bib19
  article-title: The NS5 protein of the virulent West Nile virus NY99 strain is a potent antagonist of type I interferon-mediated JAK-STAT signaling
  publication-title: J. Virol.
  doi: 10.1128/JVI.01161-09
– volume: 345
  start-page: 679
  year: 2014
  ident: 10.1016/j.chom.2015.06.007_bib30
  article-title: Inflammation. 25-Hydroxycholesterol suppresses interleukin-1-driven inflammation downstream of type I interferon
  publication-title: Science
  doi: 10.1126/science.1254790
– volume: 2
  start-page: 229
  year: 2007
  ident: 10.1016/j.chom.2015.06.007_bib25
  article-title: Cholesterol manipulation by West Nile virus perturbs the cellular immune response
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2007.09.003
– volume: 5
  start-page: 72
  year: 2009
  ident: 10.1016/j.chom.2015.06.007_bib23
  article-title: Virus-induced unfolded protein response attenuates antiviral defenses via phosphorylation-dependent degradation of the type I interferon receptor
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2008.11.008
– volume: 106
  start-page: 9373
  year: 2009
  ident: 10.1016/j.chom.2015.06.007_bib5
  article-title: Unphosphorylated STAT1 prolongs the expression of interferon-induced immune regulatory genes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0903487106
– volume: 35
  start-page: 739
  year: 2008
  ident: 10.1016/j.chom.2015.06.007_bib24
  article-title: Human prolidase and prolidase deficiency: an overview on the characterization of the enzyme involved in proline recycling and on the effects of its mutations
  publication-title: Amino Acids
  doi: 10.1007/s00726-008-0055-4
– volume: 22
  start-page: 5480
  year: 2003
  ident: 10.1016/j.chom.2015.06.007_bib17
  article-title: SCF(HOS) ubiquitin ligase mediates the ligand-induced down-regulation of the interferon-alpha receptor
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdg524
– volume: 80
  start-page: 5908
  year: 2006
  ident: 10.1016/j.chom.2015.06.007_bib21
  article-title: Blocking of interferon-induced Jak-Stat signaling by Japanese encephalitis virus NS5 through a protein tyrosine phosphatase-mediated mechanism
  publication-title: J. Virol.
  doi: 10.1128/JVI.02714-05
– volume: 286
  start-page: 35733
  year: 2011
  ident: 10.1016/j.chom.2015.06.007_bib37
  article-title: Tyrosine phosphorylation of protein kinase D2 mediates ligand-inducible elimination of the Type 1 interferon receptor
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.263608
– volume: 3
  start-page: 71
  year: 2012
  ident: 10.1016/j.chom.2015.06.007_bib4
  article-title: Partial Rescue of Biochemical Parameters After Hematopoietic Stem Cell Transplantation in a Patient with Prolidase Deficiency Due to Two Novel PEPD Mutations
  publication-title: JIMD Rep.
  doi: 10.1007/8904_2011_62
– volume: 79
  start-page: 1343
  year: 2005
  ident: 10.1016/j.chom.2015.06.007_bib14
  article-title: West Nile virus inhibits the signal transduction pathway of alpha interferon
  publication-title: J. Virol.
  doi: 10.1128/JVI.79.3.1343-1350.2005
– volume: 35
  start-page: 731
  year: 2008
  ident: 10.1016/j.chom.2015.06.007_bib35
  article-title: Prolidase-dependent regulation of collagen biosynthesis
  publication-title: Amino Acids
  doi: 10.1007/s00726-008-0051-8
– volume: 32
  start-page: 7
  year: 2015
  ident: 10.1016/j.chom.2015.06.007_bib7
  article-title: Type I interferonopathies: mendelian type I interferon up-regulation
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/j.coi.2014.10.005
– volume: 83
  start-page: 5408
  year: 2009
  ident: 10.1016/j.chom.2015.06.007_bib2
  article-title: NS5 of dengue virus mediates STAT2 binding and degradation
  publication-title: J. Virol.
  doi: 10.1128/JVI.02188-08
– volume: 12
  start-page: 125
  year: 2012
  ident: 10.1016/j.chom.2015.06.007_bib13
  article-title: Immunomodulatory functions of type I interferons
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3133
– volume: 88
  start-page: 11271
  year: 2014
  ident: 10.1016/j.chom.2015.06.007_bib28
  article-title: Prolidase is required for early trafficking events during influenza A virus entry
  publication-title: J. Virol.
  doi: 10.1128/JVI.00800-14
– volume: 16
  start-page: 67
  year: 2015
  ident: 10.1016/j.chom.2015.06.007_bib31
  article-title: The methyltransferase Setdb2 mediates virus-induced susceptibility to bacterial superinfection
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3046
– volume: 85
  start-page: 2723
  year: 2011
  ident: 10.1016/j.chom.2015.06.007_bib1
  article-title: West Nile virus differentially modulates the unfolded protein response to facilitate replication and immune evasion
  publication-title: J. Virol.
  doi: 10.1128/JVI.02050-10
– volume: 12
  start-page: 367
  year: 2012
  ident: 10.1016/j.chom.2015.06.007_bib26
  article-title: Interferon-inducible effector mechanisms in cell-autonomous immunity
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3210
– volume: 578
  start-page: 207
  year: 2004
  ident: 10.1016/j.chom.2015.06.007_bib33
  article-title: The IFNAR1 subunit of the type I IFN receptor complex contains a functional nuclear localization sequence
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2004.10.085
– volume: 122
  start-page: 1435
  year: 2008
  ident: 10.1016/j.chom.2015.06.007_bib34
  article-title: Extracellular matrix and HIF-1 signaling: the role of prolidase
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.23263
– volume: 30
  start-page: 224
  year: 2014
  ident: 10.1016/j.chom.2015.06.007_bib6
  article-title: EGFR modulates DNA synthesis and repair through Tyr phosphorylation of histone H4
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2014.06.008
– volume: 3
  start-page: ra10
  year: 2010
  ident: 10.1016/j.chom.2015.06.007_bib32
  article-title: SUMOylation mediates the nuclear translocation and signaling of the IGF-1 receptor
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.2000628
– volume: 81
  start-page: 6936
  year: 2007
  ident: 10.1016/j.chom.2015.06.007_bib27
  article-title: Identification of residues critical for the interferon antagonist function of Langat virus NS5 reveals a role for the RNA-dependent RNA polymerase domain
  publication-title: J. Virol.
  doi: 10.1128/JVI.02830-06
– start-page: 1839
  year: 2006
  ident: 10.1016/j.chom.2015.06.007_bib15
  article-title: Prolidase Deficiency
– volume: 3
  start-page: 109
  year: 2006
  ident: 10.1016/j.chom.2015.06.007_bib36
  article-title: A versatile tool for conditional gene expression and knockdown
  publication-title: Nat. Methods
  doi: 10.1038/nmeth846
– volume: 16
  start-page: 314
  year: 2014
  ident: 10.1016/j.chom.2015.06.007_bib20
  article-title: The interferon signaling antagonist function of yellow fever virus NS5 protein is activated by type I interferon
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2014.07.015
– volume: 90
  start-page: 483
  year: 2012
  ident: 10.1016/j.chom.2015.06.007_bib8
  article-title: The interferons and their receptors—distribution and regulation
  publication-title: Immunol. Cell Biol.
  doi: 10.1038/icb.2012.9
SSID ssj0055071
Score 2.4760072
Snippet Type I interferon (IFN-α/β or IFN-I) signals through two receptor subunits, IFNAR1 and IFNAR2, to orchestrate sterile and infectious immunity. Cellular...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 61
SubjectTerms Dipeptidases - metabolism
Encephalitis Viruses, Tick-Borne - immunology
Fibroblasts - immunology
Host-Pathogen Interactions
Humans
Interferon Type I - metabolism
Protein Binding
Receptor, Interferon alpha-beta - metabolism
Signal Transduction
Viral Nonstructural Proteins - metabolism
West Nile virus - immunology
Title Flavivirus Antagonism of Type I Interferon Signaling Reveals Prolidase as a Regulator of IFNAR1 Surface Expression
URI https://dx.doi.org/10.1016/j.chom.2015.06.007
https://www.ncbi.nlm.nih.gov/pubmed/26159719
https://www.proquest.com/docview/1695757776
https://pubmed.ncbi.nlm.nih.gov/PMC4505794
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBalMNjL2Nb9SNcVDfpWTCLHlqLHLCQ0HS2lWSFvQpbkzqWVi92E9r_vnWyHZRt92IvBsgRCJ9195zt9R8jRgOc8k9rhXScbJcaJSLskjvLUgrVM5cgFdv2zc35ylZwu0-UOmXR3YTCtstX9jU4P2rpt6ber2b8viv4CoAcbYiAoDcAYGT-HyShc4lt-77Qx0nWxJrLMIuzdXpxpcrywHgmmd6WBwxNLyv7bOP0NPv_MofzNKM3ekjctmqTjZsLvyI7z78mrpr7k0x6pZrd6XayLalXTscf4ky_qO1rmFN1POqfhf2DuqtLTRXGNmNxf00u3BvRY0wss6GPBylFdUw3NoWp9WeH4-ex8fMnoYlXl2jg6fWzzaf0HcjWb_pycRG2RhchgLQNQMJYZYcHLCFx4xgykzRLtjDZZIuHJzEAYcFJiQAPGZtqOhkYDKHQiF9Ly4Uey60vvPhMaD7gDeCGlACeLaSN1Dj157KzlLItNj7BudZVpGcixEMat6lLNbhRKRKFEVMi3Ez1yvBlz3_BvvNg77YSmtnaRAgPx4rhvnYQVHC-MmWjvylWtGJcAaIUQvEc-NRLfzAOcT3DHmOwRsbUXNh2Qunv7iy9-BQrvBP1Cmez_53y_kNf4FtKGRwdk96Faua8Ajh6yQ3AL5j8Owxl4BuqhD68
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBddx1hfRvfZ7FODvQ2TyLGl6DErDcnWhtG0kDchS3Ln0srFbsL23-9OtkOzjT7sxQ_6AKGT7n7nO92PkE8DnvNMaodvnWyUGCci7ZI4ylML1jKVIxeq65_M-fQ8-bpMlzvksHsLg2mVre5vdHrQ1m1Lv93N_k1R9BcAPdgQA0FpAMbDB-QhoAGB_A2z5ZdOHWO9LtaEllmEw9uXM02SFxKSYH5XGop4Iqfsv63T3-jzzyTKO1Zpsk-etHCSjpsVPyU7zj8jjxqCyV_PSTW50utiXVSrmo49BqB8UV_TMqfof9IZDT8Ec1eVni6KCwTl_oKeujXAx5p-R0YfC2aO6ppqaA609WWF82eT-fiU0cWqyrVx9Ohnm1DrX5DzydHZ4TRqWRYig2QGoGEsM8KCmxGK4RkzkDZLtDPaZImELzMDYcBLiQEOGJtpOxoaDajQiVxIy4cvya4vvTsgNB5wB_hCSgFeFtNG6hxG8thZy1kWmx5h3e4q05YgRyaMK9Xlml0qlIhCiaiQcCd65PNmzk1TgOPe0WknNLV1jBRYiHvnfewkrOB-YdBEe1euasW4BEQrhOA98qqR-GYd4H2CP8Zkj4its7AZgLW7t3t88SPU8E7QMZTJ6_9c7wfyeHp2cqyOZ_Nvb8ge9oQc4tFbsntbrdw7QEq32ftwE34DJ6ER1Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flavivirus+antagonism+of+type+I+interferon+signaling+reveals+prolidase+as+a+regulator+of+IFNAR1+surface+expression&rft.jtitle=Cell+host+%26+microbe&rft.au=Lubick%2C+Kirk+J.&rft.au=Robertson%2C+Shelly+J.&rft.au=McNally%2C+Kristin+L.&rft.au=Freedman%2C+Brett+A.&rft.date=2015-07-08&rft.issn=1931-3128&rft.eissn=1934-6069&rft.volume=18&rft.issue=1&rft.spage=61&rft.epage=74&rft_id=info:doi/10.1016%2Fj.chom.2015.06.007&rft_id=info%3Apmid%2F26159719&rft.externalDocID=PMC4505794
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3128&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3128&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3128&client=summon