Direct microRNA Sequencing Using Nanopore-Induced Phase-Shift Sequencing
MicroRNAs (miRNAs) are a class of short non-coding RNAs that function in RNA silencing and post-transcriptional gene regulation. However, direct characterization of miRNA is challenging due to its unique properties such as its low abundance, sequence similarities, and short length. Although urgently...
Saved in:
Published in | iScience Vol. 23; no. 3; p. 100916 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
27.03.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | MicroRNAs (miRNAs) are a class of short non-coding RNAs that function in RNA silencing and post-transcriptional gene regulation. However, direct characterization of miRNA is challenging due to its unique properties such as its low abundance, sequence similarities, and short length. Although urgently needed, single molecule sequencing of miRNA has never been demonstrated, to the best of our knowledge. Nanopore-induced phase-shift sequencing (NIPSS), which is a variant form of nanopore sequencing, could directly sequence any short analytes including miRNA. In practice, NIPSS clearly discriminates between different identities, isoforms, and epigenetic variants of model miRNA sequences. This work thus demonstrates direct sequencing of miRNA, which serves as a complement to existing miRNA sensing routines by the introduction of the single molecule resolution. Future engineering of this technique may assist miRNA-based early stage diagnosis or inspire novel cancer therapeutics.
[Display omitted]
•The first demonstration of single molecule miRNA sequencing•miRNA sequencing by NIPSS can directly identify epigenetic modifications•Enzymatic conjugation enables NIPSS sequencing of natural miRNAs
Analytical Chemistry; Molecular Biology; Biotechnology; Nanotechnology |
---|---|
AbstractList | MicroRNAs (miRNAs) are a class of short non-coding RNAs that function in RNA silencing and post-transcriptional gene regulation. However, direct characterization of miRNA is challenging due to its unique properties such as its low abundance, sequence similarities, and short length. Although urgently needed, single molecule sequencing of miRNA has never been demonstrated, to the best of our knowledge. Nanopore-induced phase-shift sequencing (NIPSS), which is a variant form of nanopore sequencing, could directly sequence any short analytes including miRNA. In practice, NIPSS clearly discriminates between different identities, isoforms, and epigenetic variants of model miRNA sequences. This work thus demonstrates direct sequencing of miRNA, which serves as a complement to existing miRNA sensing routines by the introduction of the single molecule resolution. Future engineering of this technique may assist miRNA-based early stage diagnosis or inspire novel cancer therapeutics. : Analytical Chemistry; Molecular Biology; Biotechnology; Nanotechnology Subject Areas: Analytical Chemistry, Molecular Biology, Biotechnology, Nanotechnology MicroRNAs (miRNAs) are a class of short non-coding RNAs that function in RNA silencing and post-transcriptional gene regulation. However, direct characterization of miRNA is challenging due to its unique properties such as its low abundance, sequence similarities, and short length. Although urgently needed, single molecule sequencing of miRNA has never been demonstrated, to the best of our knowledge. Nanopore-induced phase-shift sequencing (NIPSS), which is a variant form of nanopore sequencing, could directly sequence any short analytes including miRNA. In practice, NIPSS clearly discriminates between different identities, isoforms, and epigenetic variants of model miRNA sequences. This work thus demonstrates direct sequencing of miRNA, which serves as a complement to existing miRNA sensing routines by the introduction of the single molecule resolution. Future engineering of this technique may assist miRNA-based early stage diagnosis or inspire novel cancer therapeutics. [Display omitted] •The first demonstration of single molecule miRNA sequencing•miRNA sequencing by NIPSS can directly identify epigenetic modifications•Enzymatic conjugation enables NIPSS sequencing of natural miRNAs Analytical Chemistry; Molecular Biology; Biotechnology; Nanotechnology MicroRNAs (miRNAs) are a class of short non-coding RNAs that function in RNA silencing and post-transcriptional gene regulation. However, direct characterization of miRNA is challenging due to its unique properties such as its low abundance, sequence similarities, and short length. Although urgently needed, single molecule sequencing of miRNA has never been demonstrated, to the best of our knowledge. Nanopore-induced phase-shift sequencing (NIPSS), which is a variant form of nanopore sequencing, could directly sequence any short analytes including miRNA. In practice, NIPSS clearly discriminates between different identities, isoforms, and epigenetic variants of model miRNA sequences. This work thus demonstrates direct sequencing of miRNA, which serves as a complement to existing miRNA sensing routines by the introduction of the single molecule resolution. Future engineering of this technique may assist miRNA-based early stage diagnosis or inspire novel cancer therapeutics. MicroRNAs (miRNAs) are a class of short non-coding RNAs that function in RNA silencing and post-transcriptional gene regulation. However, direct characterization of miRNA is challenging due to its unique properties such as its low abundance, sequence similarities, and short length. Although urgently needed, single molecule sequencing of miRNA has never been demonstrated, to the best of our knowledge. Nanopore-induced phase-shift sequencing (NIPSS), which is a variant form of nanopore sequencing, could directly sequence any short analytes including miRNA. In practice, NIPSS clearly discriminates between different identities, isoforms, and epigenetic variants of model miRNA sequences. This work thus demonstrates direct sequencing of miRNA, which serves as a complement to existing miRNA sensing routines by the introduction of the single molecule resolution. Future engineering of this technique may assist miRNA-based early stage diagnosis or inspire novel cancer therapeutics.MicroRNAs (miRNAs) are a class of short non-coding RNAs that function in RNA silencing and post-transcriptional gene regulation. However, direct characterization of miRNA is challenging due to its unique properties such as its low abundance, sequence similarities, and short length. Although urgently needed, single molecule sequencing of miRNA has never been demonstrated, to the best of our knowledge. Nanopore-induced phase-shift sequencing (NIPSS), which is a variant form of nanopore sequencing, could directly sequence any short analytes including miRNA. In practice, NIPSS clearly discriminates between different identities, isoforms, and epigenetic variants of model miRNA sequences. This work thus demonstrates direct sequencing of miRNA, which serves as a complement to existing miRNA sensing routines by the introduction of the single molecule resolution. Future engineering of this technique may assist miRNA-based early stage diagnosis or inspire novel cancer therapeutics. MicroRNAs (miRNAs) are a class of short non-coding RNAs that function in RNA silencing and post-transcriptional gene regulation. However, direct characterization of miRNA is challenging due to its unique properties such as its low abundance, sequence similarities, and short length. Although urgently needed, single molecule sequencing of miRNA has never been demonstrated, to the best of our knowledge. Nanopore-induced phase-shift sequencing (NIPSS), which is a variant form of nanopore sequencing, could directly sequence any short analytes including miRNA. In practice, NIPSS clearly discriminates between different identities, isoforms, and epigenetic variants of model miRNA sequences. This work thus demonstrates direct sequencing of miRNA, which serves as a complement to existing miRNA sensing routines by the introduction of the single molecule resolution. Future engineering of this technique may assist miRNA-based early stage diagnosis or inspire novel cancer therapeutics. • The first demonstration of single molecule miRNA sequencing • miRNA sequencing by NIPSS can directly identify epigenetic modifications • Enzymatic conjugation enables NIPSS sequencing of natural miRNAs Analytical Chemistry; Molecular Biology; Biotechnology; Nanotechnology |
ArticleNumber | 100916 |
Author | Huang, Shuo Wang, Yuqin Wang, Yu Zhang, Panke Chen, Hong-Yuan Yan, Shuanghong Chang, Le Guo, Weiming Zhang, Jinyue |
AuthorAffiliation | 1 State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China 2 Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China 3 Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China |
AuthorAffiliation_xml | – name: 1 State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China – name: 3 Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China – name: 2 Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China |
Author_xml | – sequence: 1 givenname: Jinyue surname: Zhang fullname: Zhang, Jinyue organization: State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China – sequence: 2 givenname: Shuanghong surname: Yan fullname: Yan, Shuanghong organization: State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China – sequence: 3 givenname: Le surname: Chang fullname: Chang, Le organization: State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China – sequence: 4 givenname: Weiming surname: Guo fullname: Guo, Weiming organization: State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China – sequence: 5 givenname: Yuqin surname: Wang fullname: Wang, Yuqin organization: State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China – sequence: 6 givenname: Yu surname: Wang fullname: Wang, Yu organization: State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China – sequence: 7 givenname: Panke surname: Zhang fullname: Zhang, Panke organization: State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China – sequence: 8 givenname: Hong-Yuan surname: Chen fullname: Chen, Hong-Yuan organization: State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China – sequence: 9 givenname: Shuo surname: Huang fullname: Huang, Shuo email: shuo.huang@nju.edu.cn organization: State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32113156$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktPGzEUha2KqjzKH2CBsuxmgt_OSAgJ0QKREK1KWVse-07iaGKn9gSp_74ehqLQBRv7yj7n2L6fD9FeiAEQOiF4SjCRZ6upz9ZPKabDAq6J_IAOqJjVFcac7u3U--g45xXGRYkpr-UntM8oIYwIeYBuv_oEtp-svU3x5_3l5AF-byFYHxaTxzyM9ybETUxQzYPbWnCTH0uToXpY-rbfUX9GH1vTZTh-mY_Q4_W3X1e31d33m_nV5V1lBSV9xbgVpRLUCCxhhq1ylDhnGykcUFkD5y2AcoYzKYkwTHFZHkIclcKqRrEjNB9zXTQrvUl-bdIfHY3XzwsxLbRJvbcdaFBEtI1hjjnBGShDW8KsZaxuRcNAlKyLMWuzbdbgLIQ-me5N6Nud4Jd6EZ-0wlyRmpWALy8BKZZG5F6vCxXoOhMgbrOmTNYcC0VlkZ7unvV6yD8URUBHQQGRc4L2VUKwHpDrlR6Q6wG5HpEX0-w_k_W96X0c7uu7963noxUKrScPSRdFYQnu-UeUdvr37H8BwYPF1A |
CitedBy_id | crossref_primary_10_1039_D1SC01399H crossref_primary_10_1002_asia_202200364 crossref_primary_10_3390_life12010030 crossref_primary_10_1002_pro_4912 crossref_primary_10_1016_j_tranon_2022_101613 crossref_primary_10_1021_acsnano_3c05628 crossref_primary_10_1002_ange_202203769 crossref_primary_10_1016_j_vas_2024_100382 crossref_primary_10_1073_pnas_2108118120 crossref_primary_10_3389_fbioe_2021_787551 crossref_primary_10_1007_s00216_023_04693_9 crossref_primary_10_1002_ijc_35100 crossref_primary_10_1038_s41592_023_02021_8 crossref_primary_10_1021_acs_nanolett_2c01833 crossref_primary_10_1021_acssensors_1c01212 crossref_primary_10_1515_mr_2021_0013 crossref_primary_10_1002_anie_202203769 crossref_primary_10_1002_smtd_202401562 crossref_primary_10_3390_mi14020459 crossref_primary_10_1039_D1RA02364K crossref_primary_10_1021_acs_langmuir_4c03212 crossref_primary_10_1021_acs_nanolett_1c02371 crossref_primary_10_1021_acs_nanolett_4c02547 crossref_primary_10_1002_cpz1_495 crossref_primary_10_3390_genes13071289 crossref_primary_10_1039_D2TB02277J crossref_primary_10_1089_ars_2023_0233 crossref_primary_10_3390_life12122010 crossref_primary_10_1021_acsabm_1c00587 crossref_primary_10_1039_D1SC04342K |
Cites_doi | 10.1002/cbic.201200214 10.1016/j.gene.2014.12.030 10.1038/nbt.2171 10.1186/s12943-015-0385-2 10.1021/acs.analchem.7b00892 10.1038/35053110 10.1038/nnano.2015.189 10.1016/j.bios.2016.03.013 10.1038/nature20568 10.1038/ncomms9864 10.1093/nar/gku805 10.1371/journal.pone.0118438 10.1038/nrc1840 10.1016/j.bios.2017.08.007 10.1038/nrm3089 10.1038/s41467-017-01006-4 10.1158/0008-5472.CAN-05-0137 10.1016/j.gpb.2012.12.002 10.1038/nbt.2147 10.1016/j.bios.2015.12.051 10.1016/j.tig.2018.05.008 10.1021/ja508527b 10.1038/nbt.2950 10.1021/cr300362f 10.1038/35040556 10.1016/j.celrep.2014.08.027 10.1038/nrg3198 10.1038/nature14281 10.1016/j.cell.2011.10.043 10.1038/nrm.2016.132 10.1126/sciadv.aar3309 10.1016/j.trsl.2014.04.003 10.1016/j.ymeth.2011.02.008 10.1016/j.tig.2012.07.005 10.1038/nrg2934 10.1016/j.cell.2012.05.003 10.1007/s10555-017-9712-y 10.7717/peerj.1332 10.1016/j.cell.2017.05.045 10.1038/s41467-019-11826-1 10.1016/j.jaut.2009.02.012 10.1373/clinchem.2015.241190 10.1039/C8SC05228J 10.1073/pnas.1807403115 10.1038/nrg.2016.134 10.18632/oncotarget.8124 10.1038/nmeth.4577 10.1073/pnas.1317751111 10.1093/nar/gky201 10.1038/nnano.2011.147 10.1016/j.pharmthera.2016.11.012 10.1038/nature11112 10.1021/nl3024438 10.1093/bib/bbp019 10.1002/anie.201902521 10.1038/nri.2016.40 10.1038/ncomms14448 10.1038/s41419-017-0129-x |
ContentType | Journal Article |
Copyright | 2020 The Author(s) Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved. 2020 The Author(s) 2020 |
Copyright_xml | – notice: 2020 The Author(s) – notice: Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2020 The Author(s) 2020 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.isci.2020.100916 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2589-0042 |
ExternalDocumentID | oai_doaj_org_article_e715fba3d3d543e7a2f13cc339f5b3e5 PMC7047193 32113156 10_1016_j_isci_2020_100916 S2589004220301000 |
Genre | Journal Article |
GroupedDBID | 0SF 53G 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ 0R~ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION EJD NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-34c5c5252a506e80c7d21ddcb65de269e44fee7da436615a37465891d265c7b73 |
IEDL.DBID | DOA |
ISSN | 2589-0042 |
IngestDate | Wed Aug 27 01:25:20 EDT 2025 Thu Aug 21 13:14:11 EDT 2025 Fri Jul 11 01:35:10 EDT 2025 Thu Jan 02 22:56:01 EST 2025 Thu Apr 24 23:07:50 EDT 2025 Tue Jul 01 01:03:28 EDT 2025 Tue Jul 25 21:04:23 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Biotechnology Analytical Chemistry Molecular Biology Nanotechnology |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-34c5c5252a506e80c7d21ddcb65de269e44fee7da436615a37465891d265c7b73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact These authors contributed equally |
OpenAccessLink | https://doaj.org/article/e715fba3d3d543e7a2f13cc339f5b3e5 |
PMID | 32113156 |
PQID | 2369405726 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e715fba3d3d543e7a2f13cc339f5b3e5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7047193 proquest_miscellaneous_2369405726 pubmed_primary_32113156 crossref_primary_10_1016_j_isci_2020_100916 crossref_citationtrail_10_1016_j_isci_2020_100916 elsevier_sciencedirect_doi_10_1016_j_isci_2020_100916 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-27 |
PublicationDateYYYYMMDD | 2020-03-27 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | iScience |
PublicationTitleAlternate | iScience |
PublicationYear | 2020 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Fei, Yu, Liu, Zhang, Baldrich, Dai, Chen, Meyers (bib15) 2018; 115 Kaushik, Saraf, Mukherjee, Gupta (bib21) 2015; 3 Konno, Koseki, Asai, Yamagata, Shimamura, Motooka, Okuzaki, Kawamoto, Mizushima, Eguchi (bib24) 2019; 10 Pritchard, Cheng, Tewari (bib43) 2012; 13 Wescoe, Schreiber, Akeson (bib55) 2014; 136 Lee, Yi (bib28) 2014; 93 Chan, Krichevsky, Kosik (bib7) 2005; 65 Paredes, Evans, Das (bib40) 2011; 54 Kim, Yao, Xiao, Sun, Ma (bib23) 2018; 37 Alarcon, Lee, Goodarzi, Halberg, Tavazoie (bib1) 2015; 519 Garalde, Snell, Jachimowicz, Sipos, Lloyd, Bruce, Pantic, Admassu, James, Warland (bib16) 2018; 15 Koppers-Lalic, Hackenberg, Bijnsdorp, van Eijndhoven, Sadek, Sie, Zini, Middeldorp, Ylstra, de Menezes (bib25) 2014; 8 Pauley, Cha, Chan (bib42) 2009; 32 Wang, Wang, Du, Yan, Zhang, Chen, Huang (bib53) 2019; 5 Bernstein, Caudy, Hammond, Hannon (bib2) 2001; 409 Wu, Zeng, Wu, Zhong, Yang, Xu (bib57) 2015; 557 Pasquinelli, Reinhart, Slack, Martindale, Kuroda, Maller, Hayward, Ball, Degnan, Müller (bib41) 2000; 408 Cherf, Lieberman, Rashid, Lam, Karplus, Akeson (bib9) 2012; 30 He, Lin, Kong, Huang, Xu, Kim, Etheridge, Luo, Ding, Wang (bib18) 2015; 61 Mehta, Baltimore (bib33) 2016; 16 Dong, Lei, Ding, Wen, Ju, Zhang (bib13) 2013; 113 Dai, Wang, Zhu, Jin, Wang (bib11) 2018; 9 Bracken, Scott, Goodall (bib5) 2016; 17 Koppers-Lalic, Hackenberg, De Menezes, Misovic, Wachalska, Geldof, Zini, De Reijke, Wurdinger, Vis (bib26) 2016; 7 Meyer, Saletore, Zumbo, Elemento, Mason, Jaffrey (bib34) 2012; 149 Kilic, Erdem, Ozsoz, Carrara (bib22) 2018; 99 Ozsolak, Milos (bib39) 2011; 12 Roundtree, Evans, Pan, He (bib44) 2017; 169 Dominissini, Moshitch-Moshkovitz, Schwartz, Salmon-Divon, Ungar, Osenberg, Cesarkas, Jacob-Hirsch, Amariglio, Kupiec (bib12) 2012; 485 Soskine, Biesemans, Moeyaert, Cheley, Bayley, Maglia (bib47) 2012; 12 Huang, Romero-Ruiz, Castell, Bayley, Wallace (bib20) 2015; 10 Wang, Patil, Yan, Zhang, Guo, Wang, Chen, Gillingham, Huang (bib52) 2019; 58 Wang, Zheng, Tan, Wang, Gu (bib54) 2011; 6 Boele, Persson, Shin, Ishizu, Newie, Sokilde, Hawkins, Coarfa, Ikeda, Takayama (bib4) 2014; 111 Laszlo, Derrington, Ross, Brinkerhoff, Adey, Nova, Craig, Langford, Samson, Daza (bib27) 2014; 32 Vogel, Richert (bib51) 2012; 13 Li, Liu, Peng, Zhou, Fan, Yin, Ai, Zhang (bib30) 2016; 79 Siomi, Sato, Pezic, Aravin (bib46) 2011; 12 Brancati, Großhans (bib6) 2018; 46 Manrao, Derrington, Laszlo, Langford, Hopper, Gillgren, Pavlenok, Niederweis, Gundlach (bib32) 2012; 30 Nassar, Nasr, Talhouk (bib36) 2017; 172 Neilsen, Goodall, Bracken (bib37) 2012; 28 Wu, Liu, Wang, Wu, Zhu, Zou (bib56) 2016; 81 Zhao, Roundtree, He (bib60) 2017; 18 Lence, Akhtar, Bayer, Schmid, Spindler, Ho, Kreim, Andrade-Navarro, Poeck, Helm (bib29) 2016; 540 Creighton, Reid, Gunaratne (bib10) 2009; 10 Berulava, Rahmann, Rademacher, Klein-Hitpass, Horsthemke (bib3) 2015; 10 Moore, Scheel, Luna, Park, Fak, Nishiuchi, Rice, Darnell (bib35) 2015; 6 Liu, Pan (bib31) 2015; 165 Thornton, Du, Jing, Sjekloca, Lin, Grossi, Sliz, Zon, Gregory (bib49) 2014; 42 Xu, Ma, Huang, Tang, Zhang (bib58) 2017; 89 Hatziapostolou, Polytarchou, Aggelidou, Drakaki, Poultsides, Jaeger, Ogata, Karin, Struhl, Hadzopoulou-Cladaras (bib17) 2011; 147 Shishodia, Shukla, Srivastava, Masaldan, Mehta, Bhambhani, Sharma, Mehrotra, Das, Bharti (bib45) 2015; 14 Huang, Willems, Soskine, Wloka, Maglia (bib19) 2017; 8 Yan, Li, Zhang, Wang, Chen, Huang, Yu (bib59) 2019; 10 Teng, Ren, Hu, Mu, Samykutty, Zhuang, Deng, Kumar, Zhang, Merchant (bib48) 2017; 8 van Dijk, Jaszczyszyn, Naquin, Thermes (bib50) 2018; 34 Chen, Qin (bib8) 2011; 39 Niu, Zhao, Wu, Li, Wang, Yang (bib38) 2013; 11 Esquela-Kerscher, Slack (bib14) 2006; 6 Creighton (10.1016/j.isci.2020.100916_bib10) 2009; 10 Lence (10.1016/j.isci.2020.100916_bib29) 2016; 540 Ozsolak (10.1016/j.isci.2020.100916_bib39) 2011; 12 Konno (10.1016/j.isci.2020.100916_bib24) 2019; 10 Vogel (10.1016/j.isci.2020.100916_bib51) 2012; 13 Laszlo (10.1016/j.isci.2020.100916_bib27) 2014; 32 Pritchard (10.1016/j.isci.2020.100916_bib43) 2012; 13 Siomi (10.1016/j.isci.2020.100916_bib46) 2011; 12 Wescoe (10.1016/j.isci.2020.100916_bib55) 2014; 136 Koppers-Lalic (10.1016/j.isci.2020.100916_bib26) 2016; 7 Chen (10.1016/j.isci.2020.100916_bib8) 2011; 39 Kilic (10.1016/j.isci.2020.100916_bib22) 2018; 99 Huang (10.1016/j.isci.2020.100916_bib19) 2017; 8 Berulava (10.1016/j.isci.2020.100916_bib3) 2015; 10 Cherf (10.1016/j.isci.2020.100916_bib9) 2012; 30 Manrao (10.1016/j.isci.2020.100916_bib32) 2012; 30 Dominissini (10.1016/j.isci.2020.100916_bib12) 2012; 485 Roundtree (10.1016/j.isci.2020.100916_bib44) 2017; 169 Mehta (10.1016/j.isci.2020.100916_bib33) 2016; 16 Kim (10.1016/j.isci.2020.100916_bib23) 2018; 37 Fei (10.1016/j.isci.2020.100916_bib15) 2018; 115 Meyer (10.1016/j.isci.2020.100916_bib34) 2012; 149 Kaushik (10.1016/j.isci.2020.100916_bib21) 2015; 3 Dong (10.1016/j.isci.2020.100916_bib13) 2013; 113 Neilsen (10.1016/j.isci.2020.100916_bib37) 2012; 28 Zhao (10.1016/j.isci.2020.100916_bib60) 2017; 18 Dai (10.1016/j.isci.2020.100916_bib11) 2018; 9 Brancati (10.1016/j.isci.2020.100916_bib6) 2018; 46 Wang (10.1016/j.isci.2020.100916_bib53) 2019; 5 Chan (10.1016/j.isci.2020.100916_bib7) 2005; 65 Lee (10.1016/j.isci.2020.100916_bib28) 2014; 93 Niu (10.1016/j.isci.2020.100916_bib38) 2013; 11 Garalde (10.1016/j.isci.2020.100916_bib16) 2018; 15 Yan (10.1016/j.isci.2020.100916_bib59) 2019; 10 Huang (10.1016/j.isci.2020.100916_bib20) 2015; 10 Thornton (10.1016/j.isci.2020.100916_bib49) 2014; 42 He (10.1016/j.isci.2020.100916_bib18) 2015; 61 Nassar (10.1016/j.isci.2020.100916_bib36) 2017; 172 Pauley (10.1016/j.isci.2020.100916_bib42) 2009; 32 Wu (10.1016/j.isci.2020.100916_bib57) 2015; 557 Bracken (10.1016/j.isci.2020.100916_bib5) 2016; 17 Shishodia (10.1016/j.isci.2020.100916_bib45) 2015; 14 Moore (10.1016/j.isci.2020.100916_bib35) 2015; 6 van Dijk (10.1016/j.isci.2020.100916_bib50) 2018; 34 Alarcon (10.1016/j.isci.2020.100916_bib1) 2015; 519 Li (10.1016/j.isci.2020.100916_bib30) 2016; 79 Teng (10.1016/j.isci.2020.100916_bib48) 2017; 8 Wang (10.1016/j.isci.2020.100916_bib54) 2011; 6 Liu (10.1016/j.isci.2020.100916_bib31) 2015; 165 Koppers-Lalic (10.1016/j.isci.2020.100916_bib25) 2014; 8 Bernstein (10.1016/j.isci.2020.100916_bib2) 2001; 409 Pasquinelli (10.1016/j.isci.2020.100916_bib41) 2000; 408 Soskine (10.1016/j.isci.2020.100916_bib47) 2012; 12 Esquela-Kerscher (10.1016/j.isci.2020.100916_bib14) 2006; 6 Hatziapostolou (10.1016/j.isci.2020.100916_bib17) 2011; 147 Wu (10.1016/j.isci.2020.100916_bib56) 2016; 81 Boele (10.1016/j.isci.2020.100916_bib4) 2014; 111 Wang (10.1016/j.isci.2020.100916_bib52) 2019; 58 Paredes (10.1016/j.isci.2020.100916_bib40) 2011; 54 Xu (10.1016/j.isci.2020.100916_bib58) 2017; 89 |
References_xml | – volume: 557 start-page: 195 year: 2015 end-page: 200 ident: bib57 article-title: Comprehensive expression analysis of miRNA in breast cancer at the miRNA and isomiR levels publication-title: Gene – volume: 30 start-page: 344 year: 2012 end-page: 348 ident: bib9 article-title: Automated forward and reverse ratcheting of DNA in a nanopore at 5-A precision publication-title: Nat. Biotechnol. – volume: 147 start-page: 1233 year: 2011 end-page: 1247 ident: bib17 article-title: An HNF4α-miRNA inflammatory feedback circuit regulates hepatocellular oncogenesis publication-title: Cell – volume: 81 start-page: 303 year: 2016 end-page: 308 ident: bib56 article-title: Label-free and enzyme-free colorimetric detection of microRNA by catalyzed hairpin assembly coupled with hybridization chain reaction publication-title: Biosens. Bioelectron. – volume: 12 start-page: 4895 year: 2012 end-page: 4900 ident: bib47 article-title: An engineered ClyA nanopore detects folded target proteins by selective external association and pore entry publication-title: Nano Lett. – volume: 14 start-page: 116 year: 2015 ident: bib45 article-title: Alterations in microRNAs miR-21 and let-7a correlate with aberrant STAT3 signaling and downstream effects during cervical carcinogenesis publication-title: Mol. Cancer – volume: 149 start-page: 1635 year: 2012 end-page: 1646 ident: bib34 article-title: Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons publication-title: Cell – volume: 169 start-page: 1187 year: 2017 end-page: 1200 ident: bib44 article-title: Dynamic RNA modifications in gene expression regulation publication-title: Cell – volume: 113 start-page: 6207 year: 2013 end-page: 6233 ident: bib13 article-title: MicroRNA: function, detection, and bioanalysis publication-title: Chem. Rev. – volume: 30 start-page: 349 year: 2012 end-page: 353 ident: bib32 article-title: Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase publication-title: Nat. Biotechnol. – volume: 46 start-page: 3259 year: 2018 end-page: 3269 ident: bib6 article-title: An interplay of miRNA abundance and target site architecture determines miRNA activity and specificity publication-title: Nucleic Acids Res. – volume: 58 start-page: 8432 year: 2019 end-page: 8436 ident: bib52 article-title: Nanopore sequencing accurately identifies the mutagenic DNA lesion O6-carboxymethyl guanine and reveals its behavior in replication publication-title: Angew.Chem. Int. Ed. – volume: 111 start-page: 11467 year: 2014 end-page: 11472 ident: bib4 article-title: PAPD5-mediated 3' adenylation and subsequent degradation of miR-21 is disrupted in proliferative disease publication-title: Proc Natl Acad Sci U S A – volume: 540 start-page: 242 year: 2016 end-page: 247 ident: bib29 article-title: m(6)A modulates neuronal functions and sex determination in Drosophila publication-title: Nature – volume: 15 start-page: 201 year: 2018 end-page: 206 ident: bib16 article-title: Highly parallel direct RNA sequencing on an array of nanopores publication-title: Nat. Methods – volume: 3 start-page: e1332 year: 2015 ident: bib21 article-title: miRMOD: a tool for identification and analysis of 5' and 3' miRNA modifications in Next Generation Sequencing small RNA data publication-title: PeerJ – volume: 7 start-page: 22566 year: 2016 end-page: 22578 ident: bib26 article-title: Non-invasive prostate cancer detection by measuring miRNA variants (isomiRs) in urine extracellular vesicles publication-title: Oncotarget – volume: 28 start-page: 544 year: 2012 end-page: 549 ident: bib37 article-title: IsomiRs–the overlooked repertoire in the dynamic microRNAome publication-title: Trends Genet. – volume: 54 start-page: 251 year: 2011 end-page: 259 ident: bib40 article-title: RNA labeling, conjugation and ligation publication-title: Methods – volume: 65 start-page: 6029 year: 2005 end-page: 6033 ident: bib7 article-title: MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells publication-title: Cancer Res. – volume: 32 start-page: 829 year: 2014 end-page: 833 ident: bib27 article-title: Decoding long nanopore sequencing reads of natural DNA publication-title: Nat. Biotechnol. – volume: 32 start-page: 189 year: 2009 end-page: 194 ident: bib42 article-title: MicroRNA in autoimmunity and autoimmune diseases publication-title: J. Autoimmun. – volume: 5 start-page: eaar3309 year: 2019 ident: bib53 article-title: Electrode-free nanopore sensing by DiffusiOptoPhysiology publication-title: Sci. Adv. – volume: 12 start-page: 87 year: 2011 end-page: 98 ident: bib39 article-title: RNA sequencing: advances, challenges and opportunities publication-title: Nat. Rev. Genet. – volume: 79 start-page: 307 year: 2016 end-page: 312 ident: bib30 article-title: Two-stage cyclic enzymatic amplification method for ultrasensitive electrochemical assay of microRNA-21 in the blood serum of gastric cancer patients publication-title: Biosens. Bioelectron. – volume: 93 start-page: e52095 year: 2014 ident: bib28 article-title: Highly efficient ligation of small RNA molecules for microRNA quantitation by high-throughput sequencing publication-title: J. Vis. Exp. – volume: 6 start-page: 668 year: 2011 end-page: 674 ident: bib54 article-title: Nanopore-based detection of circulating microRNAs in lung cancer patients publication-title: Nat. Nanotechnol. – volume: 39 start-page: 2110 year: 2011 end-page: 2118 ident: bib8 article-title: Post-transcriptional regulation by microrna-21 and let-7a microRNA in paediatriccholesteatoma publication-title: J. Int. Med. Res. – volume: 6 start-page: 259 year: 2006 end-page: 269 ident: bib14 article-title: Oncomirs—microRNAs with a role in cancer publication-title: Nat. Rev. Cancer – volume: 165 start-page: 28 year: 2015 end-page: 35 ident: bib31 article-title: RNA epigenetics publication-title: Transl. Res. – volume: 408 start-page: 86 year: 2000 end-page: 89 ident: bib41 article-title: Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA publication-title: Nature – volume: 10 start-page: 3888 year: 2019 ident: bib24 article-title: Distinct methylation levels of mature microRNAs in gastrointestinal cancers publication-title: Nat. Commun. – volume: 8 start-page: 935 year: 2017 ident: bib19 article-title: Electro-osmotic capture and ionic discrimination of peptide and protein biomarkers with FraC nanopores publication-title: Nat. Commun. – volume: 11 start-page: 8 year: 2013 end-page: 17 ident: bib38 article-title: N6-methyl-adenosine (m6A) in RNA: an old modification with a novel epigenetic function publication-title: Genomics Proteomics Bioinformatics – volume: 89 start-page: 7077 year: 2017 end-page: 7083 ident: bib58 article-title: Nucleic acid amplification-free bioluminescent detection of MicroRNAs with high sensitivity and accuracy based on controlled target degradation publication-title: Anal. Chem. – volume: 42 start-page: 11777 year: 2014 end-page: 11791 ident: bib49 article-title: Selective microRNA uridylation by Zcchc6 (TUT7) and Zcchc11 (TUT4) publication-title: Nucleic Acids Res. – volume: 10 start-page: 490 year: 2009 end-page: 497 ident: bib10 article-title: Expression profiling of microRNAs by deep sequencing publication-title: Brief. Bioinform. – volume: 10 start-page: e0118438 year: 2015 ident: bib3 article-title: N6-adenosine methylation in MiRNAs publication-title: PLoS One – volume: 8 start-page: 1649 year: 2014 end-page: 1658 ident: bib25 article-title: Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes publication-title: Cell Rep. – volume: 8 start-page: 14448 year: 2017 ident: bib48 article-title: MVP-mediated exosomal sorting of miR-193a promotes colon cancer progression publication-title: Nat. Commun. – volume: 17 start-page: 719 year: 2016 end-page: 732 ident: bib5 article-title: A network-biology perspective of microRNA function and dysfunction in cancer publication-title: Nat. Rev. Genet. – volume: 16 start-page: 279 year: 2016 end-page: 294 ident: bib33 article-title: MicroRNAs as regulatory elements in immune system logic publication-title: Nat. Rev. Immunol. – volume: 34 start-page: 666 year: 2018 end-page: 681 ident: bib50 article-title: The third revolution in sequencing technology publication-title: Trends Genet. – volume: 10 start-page: 3110 year: 2019 end-page: 3117 ident: bib59 article-title: Direct sequencing of 2′-deoxy-2′-fluoroarabinonucleic acid (FANA) using nanopore-induced phase-shift sequencing (NIPSS) publication-title: Chem. Sci. – volume: 13 start-page: 358 year: 2012 end-page: 369 ident: bib43 article-title: MicroRNA profiling: approaches and considerations publication-title: Nat. Rev. Genet. – volume: 12 start-page: 246 year: 2011 end-page: 258 ident: bib46 article-title: PIWI-interacting small RNAs: the vanguard of genome defence publication-title: Nat. Rev. Mol. Cell Biol. – volume: 10 start-page: 986 year: 2015 end-page: 991 ident: bib20 article-title: High-throughput optical sensing of nucleic acids in a nanopore array publication-title: Nat. Nanotechnol. – volume: 409 start-page: 363 year: 2001 end-page: 366 ident: bib2 article-title: Role for a bidentateribonuclease in the initiation step of RNA interference publication-title: Nature – volume: 9 start-page: 124 year: 2018 ident: bib11 article-title: N6-methyladenosine links RNA metabolism to cancer progression publication-title: Cell Death Dis. – volume: 6 start-page: 8864 year: 2015 ident: bib35 article-title: miRNA–target chimeras reveal miRNA 3′-end pairing as a major determinant of Argonaute target specificity publication-title: Nat. Commun. – volume: 37 start-page: 5 year: 2018 end-page: 15 ident: bib23 article-title: MicroRNAs and metastasis: small RNAs play big roles publication-title: Cancer Metastasis Rev. – volume: 115 start-page: 8037 year: 2018 end-page: 8042 ident: bib15 article-title: Biogenesis of a 22-nt microRNA in Phaseoleae species by precursor-programmed uridylation publication-title: Proc Natl Acad Sci U S A – volume: 99 start-page: 525 year: 2018 end-page: 546 ident: bib22 article-title: microRNA biosensors: opportunities and challenges among conventional and commercially available techniques publication-title: Biosens. Bioelectron. – volume: 172 start-page: 34 year: 2017 end-page: 49 ident: bib36 article-title: MicroRNAs as biomarkers for early breast cancer diagnosis, prognosis and therapy prediction publication-title: Pharmacol. Ther. – volume: 485 start-page: 201 year: 2012 end-page: 206 ident: bib12 article-title: Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq publication-title: Nature – volume: 519 start-page: 482 year: 2015 end-page: 485 ident: bib1 article-title: N6-methyladenosine marks primary microRNAs for processing publication-title: Nature – volume: 18 start-page: 31 year: 2017 end-page: 42 ident: bib60 article-title: Post-transcriptional gene regulation by mRNA modifications publication-title: Nat. Rev. Mol. Cell Biol. – volume: 61 start-page: 1138 year: 2015 end-page: 1155 ident: bib18 article-title: Current state of circulating MicroRNAs as cancer biomarkers publication-title: Clin. Chem. – volume: 13 start-page: 1474 year: 2012 end-page: 1482 ident: bib51 article-title: Labeling small RNAs through chemical ligation at the 5' terminus: enzyme-free or combined with enzymatic 3'-labeling publication-title: Chembiochem – volume: 136 start-page: 16582 year: 2014 end-page: 16587 ident: bib55 article-title: Nanopores discriminate among five C5-cytosine variants in DNA publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 1474 year: 2012 ident: 10.1016/j.isci.2020.100916_bib51 article-title: Labeling small RNAs through chemical ligation at the 5' terminus: enzyme-free or combined with enzymatic 3'-labeling publication-title: Chembiochem doi: 10.1002/cbic.201200214 – volume: 557 start-page: 195 year: 2015 ident: 10.1016/j.isci.2020.100916_bib57 article-title: Comprehensive expression analysis of miRNA in breast cancer at the miRNA and isomiR levels publication-title: Gene doi: 10.1016/j.gene.2014.12.030 – volume: 30 start-page: 349 year: 2012 ident: 10.1016/j.isci.2020.100916_bib32 article-title: Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2171 – volume: 14 start-page: 116 year: 2015 ident: 10.1016/j.isci.2020.100916_bib45 article-title: Alterations in microRNAs miR-21 and let-7a correlate with aberrant STAT3 signaling and downstream effects during cervical carcinogenesis publication-title: Mol. Cancer doi: 10.1186/s12943-015-0385-2 – volume: 89 start-page: 7077 year: 2017 ident: 10.1016/j.isci.2020.100916_bib58 article-title: Nucleic acid amplification-free bioluminescent detection of MicroRNAs with high sensitivity and accuracy based on controlled target degradation publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b00892 – volume: 409 start-page: 363 year: 2001 ident: 10.1016/j.isci.2020.100916_bib2 article-title: Role for a bidentateribonuclease in the initiation step of RNA interference publication-title: Nature doi: 10.1038/35053110 – volume: 10 start-page: 986 year: 2015 ident: 10.1016/j.isci.2020.100916_bib20 article-title: High-throughput optical sensing of nucleic acids in a nanopore array publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.189 – volume: 81 start-page: 303 year: 2016 ident: 10.1016/j.isci.2020.100916_bib56 article-title: Label-free and enzyme-free colorimetric detection of microRNA by catalyzed hairpin assembly coupled with hybridization chain reaction publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.03.013 – volume: 540 start-page: 242 year: 2016 ident: 10.1016/j.isci.2020.100916_bib29 article-title: m(6)A modulates neuronal functions and sex determination in Drosophila publication-title: Nature doi: 10.1038/nature20568 – volume: 6 start-page: 8864 year: 2015 ident: 10.1016/j.isci.2020.100916_bib35 article-title: miRNA–target chimeras reveal miRNA 3′-end pairing as a major determinant of Argonaute target specificity publication-title: Nat. Commun. doi: 10.1038/ncomms9864 – volume: 42 start-page: 11777 year: 2014 ident: 10.1016/j.isci.2020.100916_bib49 article-title: Selective microRNA uridylation by Zcchc6 (TUT7) and Zcchc11 (TUT4) publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku805 – volume: 10 start-page: e0118438 year: 2015 ident: 10.1016/j.isci.2020.100916_bib3 article-title: N6-adenosine methylation in MiRNAs publication-title: PLoS One doi: 10.1371/journal.pone.0118438 – volume: 6 start-page: 259 year: 2006 ident: 10.1016/j.isci.2020.100916_bib14 article-title: Oncomirs—microRNAs with a role in cancer publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1840 – volume: 99 start-page: 525 year: 2018 ident: 10.1016/j.isci.2020.100916_bib22 article-title: microRNA biosensors: opportunities and challenges among conventional and commercially available techniques publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2017.08.007 – volume: 12 start-page: 246 year: 2011 ident: 10.1016/j.isci.2020.100916_bib46 article-title: PIWI-interacting small RNAs: the vanguard of genome defence publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3089 – volume: 8 start-page: 935 year: 2017 ident: 10.1016/j.isci.2020.100916_bib19 article-title: Electro-osmotic capture and ionic discrimination of peptide and protein biomarkers with FraC nanopores publication-title: Nat. Commun. doi: 10.1038/s41467-017-01006-4 – volume: 39 start-page: 2110 year: 2011 ident: 10.1016/j.isci.2020.100916_bib8 article-title: Post-transcriptional regulation by microrna-21 and let-7a microRNA in paediatriccholesteatoma publication-title: J. Int. Med. Res. – volume: 65 start-page: 6029 year: 2005 ident: 10.1016/j.isci.2020.100916_bib7 article-title: MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-05-0137 – volume: 11 start-page: 8 year: 2013 ident: 10.1016/j.isci.2020.100916_bib38 article-title: N6-methyl-adenosine (m6A) in RNA: an old modification with a novel epigenetic function publication-title: Genomics Proteomics Bioinformatics doi: 10.1016/j.gpb.2012.12.002 – volume: 30 start-page: 344 year: 2012 ident: 10.1016/j.isci.2020.100916_bib9 article-title: Automated forward and reverse ratcheting of DNA in a nanopore at 5-A precision publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2147 – volume: 79 start-page: 307 year: 2016 ident: 10.1016/j.isci.2020.100916_bib30 article-title: Two-stage cyclic enzymatic amplification method for ultrasensitive electrochemical assay of microRNA-21 in the blood serum of gastric cancer patients publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2015.12.051 – volume: 34 start-page: 666 year: 2018 ident: 10.1016/j.isci.2020.100916_bib50 article-title: The third revolution in sequencing technology publication-title: Trends Genet. doi: 10.1016/j.tig.2018.05.008 – volume: 136 start-page: 16582 year: 2014 ident: 10.1016/j.isci.2020.100916_bib55 article-title: Nanopores discriminate among five C5-cytosine variants in DNA publication-title: J. Am. Chem. Soc. doi: 10.1021/ja508527b – volume: 32 start-page: 829 year: 2014 ident: 10.1016/j.isci.2020.100916_bib27 article-title: Decoding long nanopore sequencing reads of natural DNA publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2950 – volume: 93 start-page: e52095 year: 2014 ident: 10.1016/j.isci.2020.100916_bib28 article-title: Highly efficient ligation of small RNA molecules for microRNA quantitation by high-throughput sequencing publication-title: J. Vis. Exp. – volume: 113 start-page: 6207 year: 2013 ident: 10.1016/j.isci.2020.100916_bib13 article-title: MicroRNA: function, detection, and bioanalysis publication-title: Chem. Rev. doi: 10.1021/cr300362f – volume: 408 start-page: 86 year: 2000 ident: 10.1016/j.isci.2020.100916_bib41 article-title: Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA publication-title: Nature doi: 10.1038/35040556 – volume: 8 start-page: 1649 year: 2014 ident: 10.1016/j.isci.2020.100916_bib25 article-title: Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.08.027 – volume: 13 start-page: 358 year: 2012 ident: 10.1016/j.isci.2020.100916_bib43 article-title: MicroRNA profiling: approaches and considerations publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3198 – volume: 519 start-page: 482 year: 2015 ident: 10.1016/j.isci.2020.100916_bib1 article-title: N6-methyladenosine marks primary microRNAs for processing publication-title: Nature doi: 10.1038/nature14281 – volume: 147 start-page: 1233 year: 2011 ident: 10.1016/j.isci.2020.100916_bib17 article-title: An HNF4α-miRNA inflammatory feedback circuit regulates hepatocellular oncogenesis publication-title: Cell doi: 10.1016/j.cell.2011.10.043 – volume: 18 start-page: 31 year: 2017 ident: 10.1016/j.isci.2020.100916_bib60 article-title: Post-transcriptional gene regulation by mRNA modifications publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2016.132 – volume: 5 start-page: eaar3309 year: 2019 ident: 10.1016/j.isci.2020.100916_bib53 article-title: Electrode-free nanopore sensing by DiffusiOptoPhysiology publication-title: Sci. Adv. doi: 10.1126/sciadv.aar3309 – volume: 165 start-page: 28 year: 2015 ident: 10.1016/j.isci.2020.100916_bib31 article-title: RNA epigenetics publication-title: Transl. Res. doi: 10.1016/j.trsl.2014.04.003 – volume: 54 start-page: 251 year: 2011 ident: 10.1016/j.isci.2020.100916_bib40 article-title: RNA labeling, conjugation and ligation publication-title: Methods doi: 10.1016/j.ymeth.2011.02.008 – volume: 28 start-page: 544 year: 2012 ident: 10.1016/j.isci.2020.100916_bib37 article-title: IsomiRs–the overlooked repertoire in the dynamic microRNAome publication-title: Trends Genet. doi: 10.1016/j.tig.2012.07.005 – volume: 12 start-page: 87 year: 2011 ident: 10.1016/j.isci.2020.100916_bib39 article-title: RNA sequencing: advances, challenges and opportunities publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2934 – volume: 149 start-page: 1635 year: 2012 ident: 10.1016/j.isci.2020.100916_bib34 article-title: Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons publication-title: Cell doi: 10.1016/j.cell.2012.05.003 – volume: 37 start-page: 5 year: 2018 ident: 10.1016/j.isci.2020.100916_bib23 article-title: MicroRNAs and metastasis: small RNAs play big roles publication-title: Cancer Metastasis Rev. doi: 10.1007/s10555-017-9712-y – volume: 3 start-page: e1332 year: 2015 ident: 10.1016/j.isci.2020.100916_bib21 article-title: miRMOD: a tool for identification and analysis of 5' and 3' miRNA modifications in Next Generation Sequencing small RNA data publication-title: PeerJ doi: 10.7717/peerj.1332 – volume: 169 start-page: 1187 year: 2017 ident: 10.1016/j.isci.2020.100916_bib44 article-title: Dynamic RNA modifications in gene expression regulation publication-title: Cell doi: 10.1016/j.cell.2017.05.045 – volume: 10 start-page: 3888 year: 2019 ident: 10.1016/j.isci.2020.100916_bib24 article-title: Distinct methylation levels of mature microRNAs in gastrointestinal cancers publication-title: Nat. Commun. doi: 10.1038/s41467-019-11826-1 – volume: 32 start-page: 189 year: 2009 ident: 10.1016/j.isci.2020.100916_bib42 article-title: MicroRNA in autoimmunity and autoimmune diseases publication-title: J. Autoimmun. doi: 10.1016/j.jaut.2009.02.012 – volume: 61 start-page: 1138 year: 2015 ident: 10.1016/j.isci.2020.100916_bib18 article-title: Current state of circulating MicroRNAs as cancer biomarkers publication-title: Clin. Chem. doi: 10.1373/clinchem.2015.241190 – volume: 10 start-page: 3110 year: 2019 ident: 10.1016/j.isci.2020.100916_bib59 article-title: Direct sequencing of 2′-deoxy-2′-fluoroarabinonucleic acid (FANA) using nanopore-induced phase-shift sequencing (NIPSS) publication-title: Chem. Sci. doi: 10.1039/C8SC05228J – volume: 115 start-page: 8037 year: 2018 ident: 10.1016/j.isci.2020.100916_bib15 article-title: Biogenesis of a 22-nt microRNA in Phaseoleae species by precursor-programmed uridylation publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1807403115 – volume: 17 start-page: 719 year: 2016 ident: 10.1016/j.isci.2020.100916_bib5 article-title: A network-biology perspective of microRNA function and dysfunction in cancer publication-title: Nat. Rev. Genet. doi: 10.1038/nrg.2016.134 – volume: 7 start-page: 22566 year: 2016 ident: 10.1016/j.isci.2020.100916_bib26 article-title: Non-invasive prostate cancer detection by measuring miRNA variants (isomiRs) in urine extracellular vesicles publication-title: Oncotarget doi: 10.18632/oncotarget.8124 – volume: 15 start-page: 201 year: 2018 ident: 10.1016/j.isci.2020.100916_bib16 article-title: Highly parallel direct RNA sequencing on an array of nanopores publication-title: Nat. Methods doi: 10.1038/nmeth.4577 – volume: 111 start-page: 11467 year: 2014 ident: 10.1016/j.isci.2020.100916_bib4 article-title: PAPD5-mediated 3' adenylation and subsequent degradation of miR-21 is disrupted in proliferative disease publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1317751111 – volume: 46 start-page: 3259 year: 2018 ident: 10.1016/j.isci.2020.100916_bib6 article-title: An interplay of miRNA abundance and target site architecture determines miRNA activity and specificity publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky201 – volume: 6 start-page: 668 year: 2011 ident: 10.1016/j.isci.2020.100916_bib54 article-title: Nanopore-based detection of circulating microRNAs in lung cancer patients publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.147 – volume: 172 start-page: 34 year: 2017 ident: 10.1016/j.isci.2020.100916_bib36 article-title: MicroRNAs as biomarkers for early breast cancer diagnosis, prognosis and therapy prediction publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2016.11.012 – volume: 485 start-page: 201 year: 2012 ident: 10.1016/j.isci.2020.100916_bib12 article-title: Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq publication-title: Nature doi: 10.1038/nature11112 – volume: 12 start-page: 4895 year: 2012 ident: 10.1016/j.isci.2020.100916_bib47 article-title: An engineered ClyA nanopore detects folded target proteins by selective external association and pore entry publication-title: Nano Lett. doi: 10.1021/nl3024438 – volume: 10 start-page: 490 year: 2009 ident: 10.1016/j.isci.2020.100916_bib10 article-title: Expression profiling of microRNAs by deep sequencing publication-title: Brief. Bioinform. doi: 10.1093/bib/bbp019 – volume: 58 start-page: 8432 year: 2019 ident: 10.1016/j.isci.2020.100916_bib52 article-title: Nanopore sequencing accurately identifies the mutagenic DNA lesion O6-carboxymethyl guanine and reveals its behavior in replication publication-title: Angew.Chem. Int. Ed. doi: 10.1002/anie.201902521 – volume: 16 start-page: 279 year: 2016 ident: 10.1016/j.isci.2020.100916_bib33 article-title: MicroRNAs as regulatory elements in immune system logic publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2016.40 – volume: 8 start-page: 14448 year: 2017 ident: 10.1016/j.isci.2020.100916_bib48 article-title: MVP-mediated exosomal sorting of miR-193a promotes colon cancer progression publication-title: Nat. Commun. doi: 10.1038/ncomms14448 – volume: 9 start-page: 124 year: 2018 ident: 10.1016/j.isci.2020.100916_bib11 article-title: N6-methyladenosine links RNA metabolism to cancer progression publication-title: Cell Death Dis. doi: 10.1038/s41419-017-0129-x |
SSID | ssj0002002496 |
Score | 2.3083758 |
Snippet | MicroRNAs (miRNAs) are a class of short non-coding RNAs that function in RNA silencing and post-transcriptional gene regulation. However, direct... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 100916 |
SubjectTerms | Analytical Chemistry Biotechnology Molecular Biology Nanotechnology |
Title | Direct microRNA Sequencing Using Nanopore-Induced Phase-Shift Sequencing |
URI | https://dx.doi.org/10.1016/j.isci.2020.100916 https://www.ncbi.nlm.nih.gov/pubmed/32113156 https://www.proquest.com/docview/2369405726 https://pubmed.ncbi.nlm.nih.gov/PMC7047193 https://doaj.org/article/e715fba3d3d543e7a2f13cc339f5b3e5 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEA7SJ19EqdVTK1vwTYK3mWSzeaxiOQqWYi30LWSTWe6K7hW9_v_OJHvHnkJ98W3Znf2RyWTnC_nyjRDvCAS3GlMtHUYtOeXKtu9qCQ4Nw29wWcT1y0WzuNbnN-ZmUuqLOWFFHrg47gPa2vRdgATJaEAbVF9DjACuNx1gVi-lnDeZTN3m5TWWwsuV5Qxzgig0xx0zhdzFO15pcqgyS8BxsfNJVsri_XvJ6W_w-SeHcpKUzp6KJyOarE5LK56JRzgcikX5jVU_mGv39eK0uip0aUpSVWYIVPRLXRPuRsmFOyKm6nJJyUxeLVf9ZmL9XFyfff72aSHHggkycl0CCToaOjIqmHmD7TzapOqUYteYhKpxqHWPaFPQQGnZBLC64aqCSTUm2s7CkTgY1gO-FFWjVCDsGFTL1sG1WmMkT6Xa9qyQPxP11mE-jmriXNTiu9_Sxm49O9mzk31x8ky8391zV7Q0HrT-yP2ws2Qd7HyCosOP0eH_FR0zYba96EdIUaACPWr14MtPtl3uabzxIkoYcH3_yytoHINcRTYvSgjsPhFoNg00IZ4Juxcce23YvzKsllnT284JJTh49T8a_Vo85qYwU07ZN-Jg8_Mejwk6bbq3eZT8BnNbE7g |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+microRNA+Sequencing+Using+Nanopore-Induced+Phase-Shift+Sequencing&rft.jtitle=iScience&rft.au=Jinyue+Zhang&rft.au=Shuanghong+Yan&rft.au=Le+Chang&rft.au=Weiming+Guo&rft.date=2020-03-27&rft.pub=Elsevier&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=23&rft.issue=3&rft_id=info:doi/10.1016%2Fj.isci.2020.100916&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e715fba3d3d543e7a2f13cc339f5b3e5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |