Meta-analyses comparing spine simulators with cadavers and finite element models by analysing range-of-motion data before and after lumbar total disc replacement

[Display omitted] •Data from two different in vitro test methods for the same evaluation subjects were compared. It was investigated whether spine simulators with real human cadavers (SSCs) and finite element models (FEMs) provide the same data exemplarily for range of motion (ROM) before and after...

Full description

Saved in:
Bibliographic Details
Published inJournal of advanced research Vol. 26; pp. 29 - 41
Main Authors Bohn, Tobias, Lang, Susanne A.J., Roll, Stephanie, Schrader, Helene, Pumberger, Matthias, Büttner-Janz, Karin
Format Journal Article
LanguageEnglish
Published Egypt Elsevier B.V 01.11.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Data from two different in vitro test methods for the same evaluation subjects were compared. It was investigated whether spine simulators with real human cadavers (SSCs) and finite element models (FEMs) provide the same data exemplarily for range of motion (ROM) before and after insertion of motion-retaining devices.•Only fifty-nine percent of SSC meta-analyses show restored ROM after insertion of the device compared to the intact spinal segment. In FEM meta-analyses, ROM is restored in ninety percent.•Ten percent of ROM analyses show significantly different data between SSCs and FEMs.•With regard to the included studies, data generated by SSCs and FEMs cannot be used unrestricted as alternative and complementary data.•Our analysis provides a new approach to compare data from associated test methods. Range-of-motion (ROM) data generated by the in vitro test methods of spine simulators with cadavers (SSCs) and finite element models (FEMs) are used alternatively and complementarily for in vitro evaluations. Our purpose is to compare exemplary segmental ROM data from SSCs and FEMs before and after ball-and-socket total disc replacement (bsTDR) to determine whether the two test methods provide the same data for the same evaluation subjects. We performed 70 meta-analyses (MAs) and 20 additional comparative analyses based on data from 21 SSC studies used for 39 MAs and 16 FEM studies used for 31 MAs. Only fifty-nine percent (n = 23/39) of SSC MAs show a restored ROM after bsTDR, whereas in FEM MAs, the ROM is restored in ninety percent (n = 28/31). Among the analyses comparing data from the same spinal segments, motion directions and bsTDR, SSC and FEM data are significantly different in ten percent (n = 2/20). According to our results, data generated by SSCs and FEMs cannot be used as alternative and complementary data without restriction. The quality of the evaluation methods itself as well as potential technical reasons for the discrepant results were not our evaluation target. Further SSC and FEM data should be compared using the same approach.
AbstractList Range-of-motion (ROM) data generated by the in vitro test methods of spine simulators with cadavers (SSCs) and finite element models (FEMs) are used alternatively and complementarily for in vitro evaluations. Our purpose is to compare exemplary segmental ROM data from SSCs and FEMs before and after ball-and-socket total disc replacement (bsTDR) to determine whether the two test methods provide the same data for the same evaluation subjects. We performed 70 meta-analyses (MAs) and 20 additional comparative analyses based on data from 21 SSC studies used for 39 MAs and 16 FEM studies used for 31 MAs. Only fifty-nine percent (n = 23/39) of SSC MAs show a restored ROM after bsTDR, whereas in FEM MAs, the ROM is restored in ninety percent (n = 28/31). Among the analyses comparing data from the same spinal segments, motion directions and bsTDR, SSC and FEM data are significantly different in ten percent (n = 2/20). According to our results, data generated by SSCs and FEMs cannot be used as alternative and complementary data without restriction. The quality of the evaluation methods itself as well as potential technical reasons for the discrepant results were not our evaluation target. Further SSC and FEM data should be compared using the same approach.
Background: Range-of-motion (ROM) data generated by the in vitro test methods of spine simulators with cadavers (SSCs) and finite element models (FEMs) are used alternatively and complementarily for in vitro evaluations. Aim of Review: Our purpose is to compare exemplary segmental ROM data from SSCs and FEMs before and after ball-and-socket total disc replacement (bsTDR) to determine whether the two test methods provide the same data for the same evaluation subjects. Key Scientific Concepts of Review: We performed 70 meta-analyses (MAs) and 20 additional comparative analyses based on data from 21 SSC studies used for 39 MAs and 16 FEM studies used for 31 MAs. Only fifty-nine percent (n = 23/39) of SSC MAs show a restored ROM after bsTDR, whereas in FEM MAs, the ROM is restored in ninety percent (n = 28/31). Among the analyses comparing data from the same spinal segments, motion directions and bsTDR, SSC and FEM data are significantly different in ten percent (n = 2/20). According to our results, data generated by SSCs and FEMs cannot be used as alternative and complementary data without restriction. The quality of the evaluation methods itself as well as potential technical reasons for the discrepant results were not our evaluation target. Further SSC and FEM data should be compared using the same approach.
[Display omitted] •Data from two different in vitro test methods for the same evaluation subjects were compared. It was investigated whether spine simulators with real human cadavers (SSCs) and finite element models (FEMs) provide the same data exemplarily for range of motion (ROM) before and after insertion of motion-retaining devices.•Only fifty-nine percent of SSC meta-analyses show restored ROM after insertion of the device compared to the intact spinal segment. In FEM meta-analyses, ROM is restored in ninety percent.•Ten percent of ROM analyses show significantly different data between SSCs and FEMs.•With regard to the included studies, data generated by SSCs and FEMs cannot be used unrestricted as alternative and complementary data.•Our analysis provides a new approach to compare data from associated test methods. Range-of-motion (ROM) data generated by the in vitro test methods of spine simulators with cadavers (SSCs) and finite element models (FEMs) are used alternatively and complementarily for in vitro evaluations. Our purpose is to compare exemplary segmental ROM data from SSCs and FEMs before and after ball-and-socket total disc replacement (bsTDR) to determine whether the two test methods provide the same data for the same evaluation subjects. We performed 70 meta-analyses (MAs) and 20 additional comparative analyses based on data from 21 SSC studies used for 39 MAs and 16 FEM studies used for 31 MAs. Only fifty-nine percent (n = 23/39) of SSC MAs show a restored ROM after bsTDR, whereas in FEM MAs, the ROM is restored in ninety percent (n = 28/31). Among the analyses comparing data from the same spinal segments, motion directions and bsTDR, SSC and FEM data are significantly different in ten percent (n = 2/20). According to our results, data generated by SSCs and FEMs cannot be used as alternative and complementary data without restriction. The quality of the evaluation methods itself as well as potential technical reasons for the discrepant results were not our evaluation target. Further SSC and FEM data should be compared using the same approach.
• Data from two different in vitro test methods for the same evaluation subjects were compared. It was investigated whether spine simulators with real human cadavers (SSCs) and finite element models (FEMs) provide the same data exemplarily for range of motion (ROM) before and after insertion of motion-retaining devices. • Only fifty-nine percent of SSC meta-analyses show restored ROM after insertion of the device compared to the intact spinal segment. In FEM meta-analyses, ROM is restored in ninety percent. • Ten percent of ROM analyses show significantly different data between SSCs and FEMs. • With regard to the included studies, data generated by SSCs and FEMs cannot be used unrestricted as alternative and complementary data. • Our analysis provides a new approach to compare data from associated test methods.
Range-of-motion (ROM) data generated by the in vitro test methods of spine simulators with cadavers (SSCs) and finite element models (FEMs) are used alternatively and complementarily for in vitro evaluations.BACKGROUNDRange-of-motion (ROM) data generated by the in vitro test methods of spine simulators with cadavers (SSCs) and finite element models (FEMs) are used alternatively and complementarily for in vitro evaluations.Our purpose is to compare exemplary segmental ROM data from SSCs and FEMs before and after ball-and-socket total disc replacement (bsTDR) to determine whether the two test methods provide the same data for the same evaluation subjects.AIM OF REVIEWOur purpose is to compare exemplary segmental ROM data from SSCs and FEMs before and after ball-and-socket total disc replacement (bsTDR) to determine whether the two test methods provide the same data for the same evaluation subjects.We performed 70 meta-analyses (MAs) and 20 additional comparative analyses based on data from 21 SSC studies used for 39 MAs and 16 FEM studies used for 31 MAs. Only fifty-nine percent (n = 23/39) of SSC MAs show a restored ROM after bsTDR, whereas in FEM MAs, the ROM is restored in ninety percent (n = 28/31). Among the analyses comparing data from the same spinal segments, motion directions and bsTDR, SSC and FEM data are significantly different in ten percent (n = 2/20). According to our results, data generated by SSCs and FEMs cannot be used as alternative and complementary data without restriction. The quality of the evaluation methods itself as well as potential technical reasons for the discrepant results were not our evaluation target. Further SSC and FEM data should be compared using the same approach.KEY SCIENTIFIC CONCEPTS OF REVIEWWe performed 70 meta-analyses (MAs) and 20 additional comparative analyses based on data from 21 SSC studies used for 39 MAs and 16 FEM studies used for 31 MAs. Only fifty-nine percent (n = 23/39) of SSC MAs show a restored ROM after bsTDR, whereas in FEM MAs, the ROM is restored in ninety percent (n = 28/31). Among the analyses comparing data from the same spinal segments, motion directions and bsTDR, SSC and FEM data are significantly different in ten percent (n = 2/20). According to our results, data generated by SSCs and FEMs cannot be used as alternative and complementary data without restriction. The quality of the evaluation methods itself as well as potential technical reasons for the discrepant results were not our evaluation target. Further SSC and FEM data should be compared using the same approach.
Author Büttner-Janz, Karin
Schrader, Helene
Pumberger, Matthias
Lang, Susanne A.J.
Bohn, Tobias
Roll, Stephanie
Author_xml – sequence: 1
  givenname: Tobias
  surname: Bohn
  fullname: Bohn, Tobias
  email: tobias.bohn@charite.de, bohn-tobias@gmx.de
  organization: Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
– sequence: 2
  givenname: Susanne A.J.
  surname: Lang
  fullname: Lang, Susanne A.J.
  organization: Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
– sequence: 3
  givenname: Stephanie
  surname: Roll
  fullname: Roll, Stephanie
  organization: Institute for Social Medicine, Epidemiology and Health Economics at Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
– sequence: 4
  givenname: Helene
  surname: Schrader
  fullname: Schrader, Helene
  organization: Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
– sequence: 5
  givenname: Matthias
  surname: Pumberger
  fullname: Pumberger, Matthias
  organization: Center for Musculoskeletal Surgery at Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
– sequence: 6
  givenname: Karin
  surname: Büttner-Janz
  fullname: Büttner-Janz, Karin
  organization: Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33133681$$D View this record in MEDLINE/PubMed
BookMark eNp9kstuEzEUhkeoiJbSF2CBvGQzwbfxOBJCQhWXSkVsYG2dsc-kjmbsYDup-ji8KU5TIsqi3vh2_s_27_9lcxJiwKZ5zeiCUaberRdrSLjglNMFVQvK-mfNGadL2jLO5clxLPhpc5HzmtYmtF4y9qI5FYIJoTQ7a35_wwItBJjuMmZi47yB5MOK5I0PSLKftxOUmDK59eWGWHCwwzqD4Mjogy9IcMIZQyFzdDhlMtyRA25PSRBW2MaxnWPxMRAHBciAY0x4j4CxYCLTdh4gkRILTMT5bEnCzQT2nvuqeT7ClPHioT9vfn7-9OPya3v9_cvV5cfr1naclVZIbrVwXCopqOMj9MwNWE2QXAEMVgq17Djn0CuntKWd0yg7qxUMAnT16by5OnBdhLXZJD9DujMRvLlfiGllIBVvJzSI47LXTjIUvQQhNfLqqJK94IMaeltZHw6szXaY0dn6jATTI-jjneBvzCruTN9pqXpRAW8fACn-2mIuZq624DRBwLjNhstO6a6jcl_65t-zjof8_eNawA8FNsWcE47HEkbNPktmbfZZMvssGapMzVIV6f9E1hfY_2G9r5-elr4_SGsacOcxmWw9BovOJ7Sl2umfkv8BdjHnnw
CitedBy_id crossref_primary_10_14245_ns_2244734_367
crossref_primary_10_3390_jfb12030043
crossref_primary_10_1016_j_cmpb_2021_106355
crossref_primary_10_1016_j_cmpb_2024_108172
crossref_primary_10_1590_s1808_185120222201262320
Cites_doi 10.1097/00007632-200103150-00004
10.1007/s005860050045
10.1016/j.esas.2009.09.002
10.1097/01.BRS.0000092209.27573.90
10.3171/spi.2005.2.3.0339
10.3171/2009.7.SPINE094
10.1097/BRS.0b013e3181ae23d1
10.3340/jkns.2009.45.3.169
10.1007/s00586-010-1552-1
10.1016/j.medengphy.2008.07.007
10.3340/jkns.2009.46.2.144
10.1007/s00586-011-1743-4
10.1007/s11420-007-9049-0
10.1016/j.spinee.2009.04.014
10.1097/BRS.0b013e3181e5352d
10.1097/BRS.0b013e3181c87692
10.1097/BSD.0b013e3181a5db24
10.1097/BRS.0b013e318059af6f
10.1097/BRS.0b013e3181ebaa4d
10.1097/BRS.0b013e3181a4ec2d
10.1016/j.medengphy.2012.05.013
10.1002/cnm.3214
10.1016/j.jbiomech.2014.04.002
10.1007/s00586-009-1146-y
10.1097/BRS.0000000000001789
10.1007/s00586-012-2271-6
10.3340/jkns.2010.47.6.446
10.1007/s00586-015-4040-9
10.1016/j.medengphy.2008.09.006
10.1016/j.clinbiomech.2008.11.008
10.1097/01.brs.0000260792.13893.88
10.1097/01.brs.0000195897.17277.67
10.1016/j.spinee.2005.06.015
10.1302/0301-620X.95B1.29829
10.1097/BRS.0b013e3181c4eb9a
10.1097/BRS.0b013e318186b258
10.2174/1876532701406010009
10.1007/s00586-016-4793-9
10.1243/09544119JEIM476
10.1016/S0736-0266(02)00202-4
ContentType Journal Article
Copyright 2020
2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University.
2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. 2020
Copyright_xml – notice: 2020
– notice: 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University.
– notice: 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. 2020
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.jare.2020.06.017
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2090-1224
EndPage 41
ExternalDocumentID oai_doaj_org_article_eef978d41e374a348e233164732b6b7c
PMC7584673
33133681
10_1016_j_jare_2020_06_017
S2090123220301260
Genre Journal Article
Review
GroupedDBID --K
0R~
0SF
1B1
1~5
4.4
457
4G.
53G
5VS
6I.
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABFRF
ABMAC
ACGFS
ADBBV
ADEZE
AEFWE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
E3Z
EBS
EJD
FDB
GROUPED_DOAJ
GX1
HH5
HYE
HZ~
IPNFZ
IXB
J1W
KQ8
M41
NCXOZ
O-L
O9-
OK1
OZT
RIG
ROL
RPM
SES
SSZ
UNMZH
XH2
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-342c83d246430d2fa71dbe209426aabc43695222a76d68c05d8e45c86ab3a8123
IEDL.DBID DOA
ISSN 2090-1232
IngestDate Wed Aug 27 01:30:09 EDT 2025
Thu Aug 21 17:43:59 EDT 2025
Fri Jul 11 06:38:31 EDT 2025
Thu Jan 02 22:54:09 EST 2025
Tue Jul 01 03:01:30 EDT 2025
Thu Apr 24 23:05:01 EDT 2025
Fri Feb 23 02:41:29 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Range of motion
In vitro test methods
Total disc replacement
Meta-analysis
Language English
License This is an open access article under the CC BY-NC-ND license.
2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-342c83d246430d2fa71dbe209426aabc43695222a76d68c05d8e45c86ab3a8123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://doaj.org/article/eef978d41e374a348e233164732b6b7c
PMID 33133681
PQID 2456855043
PQPubID 23479
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_eef978d41e374a348e233164732b6b7c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7584673
proquest_miscellaneous_2456855043
pubmed_primary_33133681
crossref_primary_10_1016_j_jare_2020_06_017
crossref_citationtrail_10_1016_j_jare_2020_06_017
elsevier_sciencedirect_doi_10_1016_j_jare_2020_06_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Egypt
PublicationPlace_xml – name: Egypt
PublicationTitle Journal of advanced research
PublicationTitleAlternate J Adv Res
PublicationYear 2020
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Kikkawa, Cunningham, Shirado, Hu, McAfee, Oda (b0115) 2010; 35
Moldavsky, Neumann, Klocke, Hussain, Bucklen (b0125) 2017; 26
Johnsen, Brinckmann, Hellum, Rossvoll, Leivseth (b0220) 2013; 95-B
Choi, Shin, Kim (b0165) 2017; 42
DiAngelo, Foley, Morrow, Wong, Kiehm, Sin (b0085) 2014; 6
Hitchon, Eichholz, Barry, Rubenbauer, Ingalhalikar, Nakamura (b0105) 2005; 2
Ingalhalikar, Reddy, Lim, Torner, Hitchon (b0110) 2009; 11
Takigawa, Espinoza Orías, An, Gohgi, Udayakumar, Sugisaki (b0140) 2010; 35
Zander, Rohlmann, Bergmann (b0210) 2009; 24
Panjabi, Malcolmson, Teng, Tominaga, Henderson, Serhan (b0135) 2007; 32
Tsitsopoulos, Wojewnik, Voronov, Havey, Renner, Zelenakova (b0145) 2012; 21
Volkheimer, Malakoutian, Oxland, Wilke (b0060) 2005; 24
Demetropoulos, Sengupta, Knaub, Wiater, Abjornson, Truumees (b0080) 2009; 35
Dooris, Goel, Grosland, Gilbertson, Wilder (b0180) 2001; 26
Gaffey, Ghanayem, Voronov, Havey, Carandang, Abjornson (b0095) 2010; 35
Choi, Shin, Kim (b0170) 2019; 35
Panjabi, Henderson, Abjornson, Yue (b0130) 2007; 32
Kim, Lee, Suk, Lee, Jeong (b0190) 2010; 47
Wang, Zhang, Sadeghipour, Baran (b0030) 2013; 35
Jones, Wilcox (b0040) 2008; 30
Rundell, Auerbach, Balderston, Kurtz (b0200) 2008; 33
Chen, Zhong, Chen, Chen, Hung (b0020) 2009; 31
Schmidt, Midderhoff, Adkins, Wilke (b0205) 2009; 18
Büttner-Janz Spinefoundation.
Voronov, Havey, Sjovold, Funk, Carandang, Zindrick (b0150) 2009; 3
Wilke, Schmidt, Richter, Schmoelz, Reichel, Cakir (b0010) 2012; 21
Patwardhan, Havey, Carandang, Simonds, Voronov, Ghanayem (b0070) 2003; 21
Chung, Kim, Wang (b0025) 2009; 34
Chen, Park, Lee, Lee (b0160) 2009; 34
Le Huec, Lafage, Bonnet, Lavaste, Josse (b0050) 2010; 23
Wong P. Biomechanical comparison of lumbar disc replacements [Dissertation]. University of Tennessee Health Science Center; 2009.
Kim, Chang, Chang, Chun, Lim, Kim (b0120) 2009; 46
Knapik, Mendel, Marras (b0195) 2012; 21
Ha, Kim, Kim, Park, Lim, Lee (b0100) 2009; 45
DiMascio, Bellini, Galbusera, Raimondi, Brayda-Bruno, Assietti (b0175) 2010; 8
Meyers, Campbell, Lipman, Zhang, Myers, Girardi (b0075) 2007; 3
Dreischarf, Zander, Shirazi-Adl, Puttlitz, Adam, Chen (b0055) 2014; 47
.
O'Leary, Nicolakis, Lorenz, Voronov, Zindrick, Ghanayem (b0065) 2005; 5
Erkan, Rivera, Wu, Mehbod, Transfeldt (b0090) 2009; 9
Cunningham, Gordon, Dimitriev, Hu, McAfee (b0015) 2003; 28
White, Panjabi (b0045) 1990
Zhong, Chen, Hung (b0215) 2009; 223
Wilke, Wenger, Claes (b0035) 1998; 7
Goel, Grauer, Patel, Biyani, Sairyo, Vishnubhotla (b0185) 2005; 30
Cunningham (10.1016/j.jare.2020.06.017_b0015) 2003; 28
Moldavsky (10.1016/j.jare.2020.06.017_b0125) 2017; 26
10.1016/j.jare.2020.06.017_b0155
Chung (10.1016/j.jare.2020.06.017_b0025) 2009; 34
Zhong (10.1016/j.jare.2020.06.017_b0215) 2009; 223
O'Leary (10.1016/j.jare.2020.06.017_b0065) 2005; 5
Tsitsopoulos (10.1016/j.jare.2020.06.017_b0145) 2012; 21
White (10.1016/j.jare.2020.06.017_b0045) 1990
Le Huec (10.1016/j.jare.2020.06.017_b0050) 2010; 23
Erkan (10.1016/j.jare.2020.06.017_b0090) 2009; 9
Dooris (10.1016/j.jare.2020.06.017_b0180) 2001; 26
Wang (10.1016/j.jare.2020.06.017_b0030) 2013; 35
Volkheimer (10.1016/j.jare.2020.06.017_b0060) 2005; 24
Goel (10.1016/j.jare.2020.06.017_b0185) 2005; 30
Ingalhalikar (10.1016/j.jare.2020.06.017_b0110) 2009; 11
Kim (10.1016/j.jare.2020.06.017_b0190) 2010; 47
Demetropoulos (10.1016/j.jare.2020.06.017_b0080) 2009; 35
Patwardhan (10.1016/j.jare.2020.06.017_b0070) 2003; 21
Ha (10.1016/j.jare.2020.06.017_b0100) 2009; 45
Choi (10.1016/j.jare.2020.06.017_b0165) 2017; 42
Panjabi (10.1016/j.jare.2020.06.017_b0135) 2007; 32
Hitchon (10.1016/j.jare.2020.06.017_b0105) 2005; 2
Voronov (10.1016/j.jare.2020.06.017_b0150) 2009; 3
Gaffey (10.1016/j.jare.2020.06.017_b0095) 2010; 35
Takigawa (10.1016/j.jare.2020.06.017_b0140) 2010; 35
Dreischarf (10.1016/j.jare.2020.06.017_b0055) 2014; 47
Wilke (10.1016/j.jare.2020.06.017_b0010) 2012; 21
Choi (10.1016/j.jare.2020.06.017_b0170) 2019; 35
Wilke (10.1016/j.jare.2020.06.017_b0035) 1998; 7
Kikkawa (10.1016/j.jare.2020.06.017_b0115) 2010; 35
Knapik (10.1016/j.jare.2020.06.017_b0195) 2012; 21
10.1016/j.jare.2020.06.017_b0005
Panjabi (10.1016/j.jare.2020.06.017_b0130) 2007; 32
Jones (10.1016/j.jare.2020.06.017_b0040) 2008; 30
Kim (10.1016/j.jare.2020.06.017_b0120) 2009; 46
Chen (10.1016/j.jare.2020.06.017_b0160) 2009; 34
Johnsen (10.1016/j.jare.2020.06.017_b0220) 2013; 95-B
Meyers (10.1016/j.jare.2020.06.017_b0075) 2007; 3
Schmidt (10.1016/j.jare.2020.06.017_b0205) 2009; 18
DiAngelo (10.1016/j.jare.2020.06.017_b0085) 2014; 6
DiMascio (10.1016/j.jare.2020.06.017_b0175) 2010; 8
Rundell (10.1016/j.jare.2020.06.017_b0200) 2008; 33
Zander (10.1016/j.jare.2020.06.017_b0210) 2009; 24
Chen (10.1016/j.jare.2020.06.017_b0020) 2009; 31
References_xml – volume: 26
  start-page: 785
  year: 2017
  end-page: 793
  ident: b0125
  article-title: In vitro analysis of circumferential joint replacement, including bilateral facet joint replacement with lateral lumber disc prosthesis: a parametric investigation of disc sizing
  publication-title: Eur Spine J
– volume: 26
  start-page: 122
  year: 2001
  end-page: 129
  ident: b0180
  article-title: Load-sharing between anterior and posterior elements in a lumbar motion segment implanted with an artificial disc
  publication-title: Spine J.
– volume: 30
  start-page: 2755
  year: 2005
  end-page: 2764
  ident: b0185
  article-title: Effects of Charité artificial disc on the implanted and adjacent spinal segments mechanics using a hybrid testing protocol
  publication-title: Spine J
– volume: 24
  start-page: 135
  year: 2009
  end-page: 142
  ident: b0210
  article-title: Influence of different artificial disc kinematics on spine biomechanics
  publication-title: Clin Biomech
– volume: 34
  start-page: 716
  year: 2009
  end-page: 723
  ident: b0160
  article-title: In situ contact analysis of the prosthesis components of Prodisc-L in lumbar spine following total disc replacement
  publication-title: Spine J
– volume: 46
  start-page: 144
  year: 2009
  end-page: 151
  ident: b0120
  article-title: The changes in range of motion after a lumbar spinal arthroplasty with Charité in the human cadaveric spine under physiologic compressive follower preload: a comparative study between load control protocol and hybrid protocol
  publication-title: J Korean Neurosurg Soc
– volume: 21
  start-page: 540
  year: 2003
  end-page: 546
  ident: b0070
  article-title: Effect ofcompressive follower preload on the flexion-extension response of the human lumbar spine
  publication-title: J Orthop Res
– volume: 8
  start-page: 97
  year: 2010
  end-page: 101
  ident: b0175
  article-title: Lumbar total disc replacement: a numerical study
  publication-title: J Appl Biomater Biomech
– volume: 2
  start-page: 339
  year: 2005
  end-page: 343
  ident: b0105
  article-title: Biomechanical studies of an artificial disc implant in the human cadaveric spine
  publication-title: J Neurosurg Spine
– volume: 35
  year: 2019
  ident: b0170
  article-title: Finite element analysis of a ball-and-socket artificial disc design to suppress excessive loading on facet joints: a comparative study with ProDisc
  publication-title: Int J Numer Meth Biomed Eng
– volume: 32
  start-page: 959
  year: 2007
  end-page: 966
  ident: b0135
  article-title: Hybrid testing of lumbar Charité discs versus fusions
  publication-title: Spine J
– volume: 31
  start-page: 244
  year: 2009
  end-page: 253
  ident: b0020
  article-title: Biomechanical comparison between lumbar disc arthroplasty and fusion
  publication-title: Med Eng Phys
– volume: 5
  start-page: 590
  year: 2005
  end-page: 599
  ident: b0065
  article-title: Response of charite total disc replacement under physiologic loads: prosthesis component motion patterns
  publication-title: Spine J
– volume: 47
  start-page: 446
  year: 2010
  end-page: 453
  ident: b0190
  article-title: Biomechanical changes of the lumbar segment after total disc replacement: Charite, Prodisc and Maverick using finite element model study
  publication-title: J Korean Neurosurg
– volume: 3
  start-page: 164
  year: 2007
  end-page: 168
  ident: b0075
  article-title: Dynamics of an intervertebral disc prosthesis in human cadaveric spines
  publication-title: HSS J
– volume: 32
  start-page: 1311
  year: 2007
  end-page: 1319
  ident: b0130
  article-title: Multidirectional testing of one- and two-level ProDisc-L versus simulated fusion
  publication-title: Spine J
– volume: 47
  start-page: 1757
  year: 2014
  end-page: 1766
  ident: b0055
  article-title: Comparison of eight published static finite element models of the intact lumbar spine: Predictive power of models improves when combined together
  publication-title: J Biomech
– volume: 24
  start-page: 1882
  year: 2005
  end-page: 1892
  ident: b0060
  article-title: Limitations of current in vitro test protocols for investigation of instrumented adjacent segment biomechanics: critical analysis of the literature
  publication-title: Eur Spine J
– volume: 35
  start-page: 357
  year: 2013
  end-page: 364
  ident: b0030
  article-title: Effect of posterolateral disc replacement on kinematics and stress distribution in the lumbar spine: a finite element study
  publication-title: Med Eng Phys
– volume: 33
  start-page: 2510
  year: 2008
  end-page: 2517
  ident: b0200
  article-title: Total disc replacement positioning affects facet contact forces and vertebral body strains
  publication-title: Spine J
– volume: 21
  start-page: 585
  year: 2012
  end-page: 591
  ident: b0145
  article-title: Effect of prosthesis endplate lordosis angles on L5–S1 kinematics after disc arthroplasty
  publication-title: Eur Spine J
– volume: 21
  start-page: 641
  year: 2012
  end-page: 652
  ident: b0195
  article-title: Use of a personalized hybrid biomechanical model to assess change in lumbar spine function with a TDR compared to an intact spine
  publication-title: Eur. Spine J
– volume: 30
  start-page: 1287
  year: 2008
  end-page: 1304
  ident: b0040
  article-title: Finite element analysis of the spine: Towards a framework of verification, validation and sensitivity analysis
  publication-title: Med Eng Phys
– volume: 223
  start-page: 143
  year: 2009
  end-page: 157
  ident: b0215
  article-title: Load- and displacement-controlled finite element analyses on fusion and non-fusion spinal implants
  publication-title: Proc Inst Mech Eng H
– volume: 3
  start-page: 85
  year: 2009
  end-page: 90
  ident: b0150
  article-title: Kinematics of total facet replacement (TFAS-TL) with total disc replacement
  publication-title: SAS J
– volume: 23
  start-page: 249
  year: 2010
  end-page: 257
  ident: b0050
  article-title: Validated finite element analysis of the maverick total disc prosthesis
  publication-title: J Spinal Disord Tech
– volume: 35
  start-page: 1760
  year: 2010
  end-page: 1768
  ident: b0115
  article-title: Biomechanical evaluation of a posterolateral lumbar disc arthroplasty device
  publication-title: Spine J
– volume: 45
  start-page: 169
  year: 2009
  end-page: 175
  ident: b0100
  article-title: Biomechanical study of lumbar spinal arthroplasty
  publication-title: J Korean Neurosurg Soc
– reference: Büttner-Janz Spinefoundation.
– volume: 21
  start-page: 577
  year: 2012
  end-page: 584
  ident: b0010
  article-title: The role of prosthesis design on segmental biomechanics: semi-constrained versus unconstrained prostheses and anterior versus posterior centre of rotation
  publication-title: Eur Spine J
– volume: 35
  start-page: 26
  year: 2009
  end-page: 31
  ident: b0080
  article-title: Biomechanical evaluation of the kinematics of the cadaver lumbar spine following disc replacement with the ProDisc-L prosthesis
  publication-title: Spine J.
– reference: .
– volume: 28
  start-page: 110
  year: 2003
  end-page: 117
  ident: b0015
  article-title: Biomechanical evaluation of total disc replacement arthroplasty an in vitro human cadaveric model
  publication-title: Spine J
– volume: 18
  start-page: 1695
  year: 2009
  end-page: 1705
  ident: b0205
  article-title: The effect of different design concepts in lumbar total disc arthroplasty on the range of motion, facet joint forces and instantaneous center of rotation of a L4–5 segment
  publication-title: Eur Spine J
– year: 1990
  ident: b0045
  article-title: Clinical biomechanics of the spine
– volume: 35
  start-page: 1777
  year: 2010
  end-page: 1782
  ident: b0095
  article-title: Effect of increasing implant height on lumbar spine kinematics and foraminal size using the ProDisc-L prosthesis
  publication-title: Spine J
– volume: 6
  start-page: 9
  year: 2014
  end-page: 25
  ident: b0085
  article-title: In vitro testing of lumbar disc arthroplasty devices
  publication-title: Open Spine J.
– volume: 95-B
  start-page: 81
  year: 2013
  end-page: 89
  ident: b0220
  article-title: Segmental mobility, disc height and patient-reported outcomes after surgery for degenerative disc disease – a prospective randomised trial comparing disc replacement and multidisciplinary rehabilitation
  publication-title: Bone Joint J
– volume: 34
  start-page: 1281
  year: 2009
  end-page: 1286
  ident: b0025
  article-title: Biomechanical effect of constraint in lumbar total disc replacement - a study with finite element analysis
  publication-title: Spine J
– reference: Wong P. Biomechanical comparison of lumbar disc replacements [Dissertation]. University of Tennessee Health Science Center; 2009.
– volume: 42
  start-page: 332
  year: 2017
  end-page: 339
  ident: b0165
  article-title: Biomechanical effects of the geometry of ball-and-socket artificial disc on lumbar spine: a finite element study
  publication-title: Spine J
– volume: 11
  start-page: 715
  year: 2009
  end-page: 723
  ident: b0110
  article-title: Effect of lumbar total disc arthroplasty on the segmental motion and intradiscal pressure at the adjacent level: an in vitro biomechanical study
  publication-title: J Neurosurg Spine
– volume: 35
  start-page: 1160
  year: 2010
  end-page: 1166
  ident: b0140
  article-title: Spinal kinematics and facet load transmission after total disc replacement
  publication-title: Spine J.
– volume: 9
  start-page: 830
  year: 2009
  end-page: 835
  ident: b0090
  article-title: Biomechanical comparison of a two-level Maverick disc replacement with a hybrid one-level disc replacement and one-level anterior lumbar interbody fusion
  publication-title: Spine J
– volume: 7
  start-page: 148
  year: 1998
  end-page: 154
  ident: b0035
  article-title: Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants
  publication-title: Eur Spine J
– volume: 26
  start-page: 122
  year: 2001
  ident: 10.1016/j.jare.2020.06.017_b0180
  article-title: Load-sharing between anterior and posterior elements in a lumbar motion segment implanted with an artificial disc
  publication-title: Spine J.
  doi: 10.1097/00007632-200103150-00004
– volume: 7
  start-page: 148
  year: 1998
  ident: 10.1016/j.jare.2020.06.017_b0035
  article-title: Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants
  publication-title: Eur Spine J
  doi: 10.1007/s005860050045
– year: 1990
  ident: 10.1016/j.jare.2020.06.017_b0045
– volume: 3
  start-page: 85
  year: 2009
  ident: 10.1016/j.jare.2020.06.017_b0150
  article-title: Kinematics of total facet replacement (TFAS-TL) with total disc replacement
  publication-title: SAS J
  doi: 10.1016/j.esas.2009.09.002
– volume: 28
  start-page: 110
  year: 2003
  ident: 10.1016/j.jare.2020.06.017_b0015
  article-title: Biomechanical evaluation of total disc replacement arthroplasty an in vitro human cadaveric model
  publication-title: Spine J
  doi: 10.1097/01.BRS.0000092209.27573.90
– volume: 2
  start-page: 339
  year: 2005
  ident: 10.1016/j.jare.2020.06.017_b0105
  article-title: Biomechanical studies of an artificial disc implant in the human cadaveric spine
  publication-title: J Neurosurg Spine
  doi: 10.3171/spi.2005.2.3.0339
– volume: 11
  start-page: 715
  year: 2009
  ident: 10.1016/j.jare.2020.06.017_b0110
  article-title: Effect of lumbar total disc arthroplasty on the segmental motion and intradiscal pressure at the adjacent level: an in vitro biomechanical study
  publication-title: J Neurosurg Spine
  doi: 10.3171/2009.7.SPINE094
– volume: 34
  start-page: 716
  year: 2009
  ident: 10.1016/j.jare.2020.06.017_b0160
  article-title: In situ contact analysis of the prosthesis components of Prodisc-L in lumbar spine following total disc replacement
  publication-title: Spine J
  doi: 10.1097/BRS.0b013e3181ae23d1
– volume: 45
  start-page: 169
  year: 2009
  ident: 10.1016/j.jare.2020.06.017_b0100
  article-title: Biomechanical study of lumbar spinal arthroplasty
  publication-title: J Korean Neurosurg Soc
  doi: 10.3340/jkns.2009.45.3.169
– volume: 21
  start-page: 577
  year: 2012
  ident: 10.1016/j.jare.2020.06.017_b0010
  article-title: The role of prosthesis design on segmental biomechanics: semi-constrained versus unconstrained prostheses and anterior versus posterior centre of rotation
  publication-title: Eur Spine J
  doi: 10.1007/s00586-010-1552-1
– volume: 31
  start-page: 244
  year: 2009
  ident: 10.1016/j.jare.2020.06.017_b0020
  article-title: Biomechanical comparison between lumbar disc arthroplasty and fusion
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2008.07.007
– volume: 46
  start-page: 144
  year: 2009
  ident: 10.1016/j.jare.2020.06.017_b0120
  article-title: The changes in range of motion after a lumbar spinal arthroplasty with Charité in the human cadaveric spine under physiologic compressive follower preload: a comparative study between load control protocol and hybrid protocol
  publication-title: J Korean Neurosurg Soc
  doi: 10.3340/jkns.2009.46.2.144
– ident: 10.1016/j.jare.2020.06.017_b0005
– volume: 21
  start-page: 641
  year: 2012
  ident: 10.1016/j.jare.2020.06.017_b0195
  article-title: Use of a personalized hybrid biomechanical model to assess change in lumbar spine function with a TDR compared to an intact spine
  publication-title: Eur. Spine J
  doi: 10.1007/s00586-011-1743-4
– volume: 3
  start-page: 164
  year: 2007
  ident: 10.1016/j.jare.2020.06.017_b0075
  article-title: Dynamics of an intervertebral disc prosthesis in human cadaveric spines
  publication-title: HSS J
  doi: 10.1007/s11420-007-9049-0
– volume: 9
  start-page: 830
  year: 2009
  ident: 10.1016/j.jare.2020.06.017_b0090
  article-title: Biomechanical comparison of a two-level Maverick disc replacement with a hybrid one-level disc replacement and one-level anterior lumbar interbody fusion
  publication-title: Spine J
  doi: 10.1016/j.spinee.2009.04.014
– volume: 35
  start-page: 1160
  year: 2010
  ident: 10.1016/j.jare.2020.06.017_b0140
  article-title: Spinal kinematics and facet load transmission after total disc replacement
  publication-title: Spine J.
  doi: 10.1097/BRS.0b013e3181e5352d
– volume: 35
  start-page: 1760
  year: 2010
  ident: 10.1016/j.jare.2020.06.017_b0115
  article-title: Biomechanical evaluation of a posterolateral lumbar disc arthroplasty device
  publication-title: Spine J
  doi: 10.1097/BRS.0b013e3181c87692
– volume: 23
  start-page: 249
  year: 2010
  ident: 10.1016/j.jare.2020.06.017_b0050
  article-title: Validated finite element analysis of the maverick total disc prosthesis
  publication-title: J Spinal Disord Tech
  doi: 10.1097/BSD.0b013e3181a5db24
– volume: 32
  start-page: 1311
  year: 2007
  ident: 10.1016/j.jare.2020.06.017_b0130
  article-title: Multidirectional testing of one- and two-level ProDisc-L versus simulated fusion
  publication-title: Spine J
  doi: 10.1097/BRS.0b013e318059af6f
– volume: 35
  start-page: 1777
  year: 2010
  ident: 10.1016/j.jare.2020.06.017_b0095
  article-title: Effect of increasing implant height on lumbar spine kinematics and foraminal size using the ProDisc-L prosthesis
  publication-title: Spine J
  doi: 10.1097/BRS.0b013e3181ebaa4d
– volume: 34
  start-page: 1281
  year: 2009
  ident: 10.1016/j.jare.2020.06.017_b0025
  article-title: Biomechanical effect of constraint in lumbar total disc replacement - a study with finite element analysis
  publication-title: Spine J
  doi: 10.1097/BRS.0b013e3181a4ec2d
– volume: 35
  start-page: 357
  year: 2013
  ident: 10.1016/j.jare.2020.06.017_b0030
  article-title: Effect of posterolateral disc replacement on kinematics and stress distribution in the lumbar spine: a finite element study
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2012.05.013
– volume: 35
  year: 2019
  ident: 10.1016/j.jare.2020.06.017_b0170
  article-title: Finite element analysis of a ball-and-socket artificial disc design to suppress excessive loading on facet joints: a comparative study with ProDisc
  publication-title: Int J Numer Meth Biomed Eng
  doi: 10.1002/cnm.3214
– volume: 47
  start-page: 1757
  year: 2014
  ident: 10.1016/j.jare.2020.06.017_b0055
  article-title: Comparison of eight published static finite element models of the intact lumbar spine: Predictive power of models improves when combined together
  publication-title: J Biomech
  doi: 10.1016/j.jbiomech.2014.04.002
– volume: 18
  start-page: 1695
  year: 2009
  ident: 10.1016/j.jare.2020.06.017_b0205
  article-title: The effect of different design concepts in lumbar total disc arthroplasty on the range of motion, facet joint forces and instantaneous center of rotation of a L4–5 segment
  publication-title: Eur Spine J
  doi: 10.1007/s00586-009-1146-y
– volume: 42
  start-page: 332
  year: 2017
  ident: 10.1016/j.jare.2020.06.017_b0165
  article-title: Biomechanical effects of the geometry of ball-and-socket artificial disc on lumbar spine: a finite element study
  publication-title: Spine J
  doi: 10.1097/BRS.0000000000001789
– volume: 21
  start-page: 585
  year: 2012
  ident: 10.1016/j.jare.2020.06.017_b0145
  article-title: Effect of prosthesis endplate lordosis angles on L5–S1 kinematics after disc arthroplasty
  publication-title: Eur Spine J
  doi: 10.1007/s00586-012-2271-6
– volume: 47
  start-page: 446
  year: 2010
  ident: 10.1016/j.jare.2020.06.017_b0190
  article-title: Biomechanical changes of the lumbar segment after total disc replacement: Charite, Prodisc and Maverick using finite element model study
  publication-title: J Korean Neurosurg
  doi: 10.3340/jkns.2010.47.6.446
– volume: 24
  start-page: 1882
  year: 2005
  ident: 10.1016/j.jare.2020.06.017_b0060
  article-title: Limitations of current in vitro test protocols for investigation of instrumented adjacent segment biomechanics: critical analysis of the literature
  publication-title: Eur Spine J
  doi: 10.1007/s00586-015-4040-9
– volume: 30
  start-page: 1287
  year: 2008
  ident: 10.1016/j.jare.2020.06.017_b0040
  article-title: Finite element analysis of the spine: Towards a framework of verification, validation and sensitivity analysis
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2008.09.006
– ident: 10.1016/j.jare.2020.06.017_b0155
– volume: 24
  start-page: 135
  year: 2009
  ident: 10.1016/j.jare.2020.06.017_b0210
  article-title: Influence of different artificial disc kinematics on spine biomechanics
  publication-title: Clin Biomech
  doi: 10.1016/j.clinbiomech.2008.11.008
– volume: 32
  start-page: 959
  year: 2007
  ident: 10.1016/j.jare.2020.06.017_b0135
  article-title: Hybrid testing of lumbar Charité discs versus fusions
  publication-title: Spine J
  doi: 10.1097/01.brs.0000260792.13893.88
– volume: 8
  start-page: 97
  year: 2010
  ident: 10.1016/j.jare.2020.06.017_b0175
  article-title: Lumbar total disc replacement: a numerical study
  publication-title: J Appl Biomater Biomech.
– volume: 30
  start-page: 2755
  year: 2005
  ident: 10.1016/j.jare.2020.06.017_b0185
  article-title: Effects of Charité artificial disc on the implanted and adjacent spinal segments mechanics using a hybrid testing protocol
  publication-title: Spine J
  doi: 10.1097/01.brs.0000195897.17277.67
– volume: 5
  start-page: 590
  year: 2005
  ident: 10.1016/j.jare.2020.06.017_b0065
  article-title: Response of charite total disc replacement under physiologic loads: prosthesis component motion patterns
  publication-title: Spine J
  doi: 10.1016/j.spinee.2005.06.015
– volume: 95-B
  start-page: 81
  year: 2013
  ident: 10.1016/j.jare.2020.06.017_b0220
  article-title: Segmental mobility, disc height and patient-reported outcomes after surgery for degenerative disc disease – a prospective randomised trial comparing disc replacement and multidisciplinary rehabilitation
  publication-title: Bone Joint J
  doi: 10.1302/0301-620X.95B1.29829
– volume: 35
  start-page: 26
  year: 2009
  ident: 10.1016/j.jare.2020.06.017_b0080
  article-title: Biomechanical evaluation of the kinematics of the cadaver lumbar spine following disc replacement with the ProDisc-L prosthesis
  publication-title: Spine J.
  doi: 10.1097/BRS.0b013e3181c4eb9a
– volume: 33
  start-page: 2510
  year: 2008
  ident: 10.1016/j.jare.2020.06.017_b0200
  article-title: Total disc replacement positioning affects facet contact forces and vertebral body strains
  publication-title: Spine J
  doi: 10.1097/BRS.0b013e318186b258
– volume: 6
  start-page: 9
  year: 2014
  ident: 10.1016/j.jare.2020.06.017_b0085
  article-title: In vitro testing of lumbar disc arthroplasty devices
  publication-title: Open Spine J.
  doi: 10.2174/1876532701406010009
– volume: 26
  start-page: 785
  year: 2017
  ident: 10.1016/j.jare.2020.06.017_b0125
  article-title: In vitro analysis of circumferential joint replacement, including bilateral facet joint replacement with lateral lumber disc prosthesis: a parametric investigation of disc sizing
  publication-title: Eur Spine J
  doi: 10.1007/s00586-016-4793-9
– volume: 223
  start-page: 143
  year: 2009
  ident: 10.1016/j.jare.2020.06.017_b0215
  article-title: Load- and displacement-controlled finite element analyses on fusion and non-fusion spinal implants
  publication-title: Proc Inst Mech Eng H
  doi: 10.1243/09544119JEIM476
– volume: 21
  start-page: 540
  year: 2003
  ident: 10.1016/j.jare.2020.06.017_b0070
  article-title: Effect ofcompressive follower preload on the flexion-extension response of the human lumbar spine
  publication-title: J Orthop Res
  doi: 10.1016/S0736-0266(02)00202-4
SSID ssj0000388911
Score 2.227577
SecondaryResourceType review_article
Snippet [Display omitted] •Data from two different in vitro test methods for the same evaluation subjects were compared. It was investigated whether spine simulators...
Range-of-motion (ROM) data generated by the in vitro test methods of spine simulators with cadavers (SSCs) and finite element models (FEMs) are used...
• Data from two different in vitro test methods for the same evaluation subjects were compared. It was investigated whether spine simulators with real human...
Background: Range-of-motion (ROM) data generated by the in vitro test methods of spine simulators with cadavers (SSCs) and finite element models (FEMs) are...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 29
SubjectTerms In vitro test methods
Meta-analysis
Range of motion
Total disc replacement
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect Open Access Journals
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqnrggyudSiozEAYSsTWwnTo60oqqQygUq7c2yYwdSQbJKtgd-Dv-0M7azEJB64JjEcZzM2POSvHlDyGsnlauVyZlVvmQQby2rXFazmvNWNtaJOnBzLj-VF1fy46bYHJCzORcGaZVp7Y9relit0551eprrbdetP_OsDoCAI6oHWA7rsJBVSOLbnO6_s6DaSR3K8GJ7hiek3JlI87o2I6pl8izIeIa6Zb_jU5DxX4Spf2Ho32zKP8LT-QNyP-FK-j4O_Ygc-P4hOUozd6Jvkrz020fk16XfGWaCGAkciSR0CGB02gLipFP3Ayt6DeNE8RstbYwzSN2gpne07RCiUh855zSU0Zmo_Uljd9jLiNkKbGhZrA9EkYJKrQds7EMXoSg5hSXRmpHuBsD-FDOD6egDPQz7fUyuzj98ObtgqVADa7AeAhOSN5VwXAK8yRxvjcqd9fC8IfwbYxspyhpwHjeqdGXVZIWrvCyaqjRWGEAY4gk57IfePyNUGq-cFUXtMgvxtTXCgvVM7o1weebaFcln8-gmqZhjMY3veqarXWs0qUaTauTs5WpF3u3P2UYNjztbn6LV9y1RfzvsGMavOjmg9r6F128ncy-UNOB2nguB0myC29KqZkWK2Wf0wp2hq-7Oi7-aHUzDPMefN6b3w82k8Qc1is9JsSJPo8PthwiXFqKs8hVRC1dc3MPySN99C1riKgBQ8fw_x3tM7uFWTM58QQ53440_AZS2sy_DNLwFqS89KA
  priority: 102
  providerName: Elsevier
Title Meta-analyses comparing spine simulators with cadavers and finite element models by analysing range-of-motion data before and after lumbar total disc replacement
URI https://dx.doi.org/10.1016/j.jare.2020.06.017
https://www.ncbi.nlm.nih.gov/pubmed/33133681
https://www.proquest.com/docview/2456855043
https://pubmed.ncbi.nlm.nih.gov/PMC7584673
https://doaj.org/article/eef978d41e374a348e233164732b6b7c
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQuXBBlM_wURmJAwhZJLYTJ8cWURWqckBU7M0ax47YCpIq2R74OfxTZuzssgtSuXDZwzrrxJmx52Xz_B5jL7w2vjFQCGdCJbDeOlH7vBGNlJ1unVdN5OacfaxOzvWHRbnYsvoiTliSB0437k0IHT7oeF0EZTQoXQepFIlgKekqZ1pafbHmbT1MxTVY1XUTzXexkegHSs47ZhK56wJG0siUeRTvjG5lv6tSFO_fKU5_g88_OZRbRen4Drs9o0l-mEaxz26E_i7bn-frxF_OotKv7rGfZ2EFAqIECbYk6jmWLT5dIs7k0_I7-XgN48Tpn1neggcibHDoPe-WBEx5SExzHs1zJu5-8NQd9TLSHgUxdCK5AnEinnIXEBGH2EW0Iue4EDoY-WpAxM9pPzAfQySFUb_32fnxu89vT8RszyBackEQSsu2Vl5qBDW5lx2YwruA9xuLPoBrtaoaRHcSTOWrus1LXwddtnUFTgHiCvWA7fVDHx4xriEY71TZ-NxhVe1AOYweFAGUL3LfZaxYh8e2s3Y5WWh8s2uS2oWlkFoKqSWmXmEy9nrzm8uk3HHt0UcU9c2RpLodv8BctHMu2n_lYsbKdc7YGcAkYIJdLa89-fN1glmc3fTKBvowXE2WXkuT5JxWGXuYEm5ziXhqpaq6yJjZScWdMey29MuvUUHcRNipHv-PQT9ht2goaX_mU7a3Gq_CMwRqK3fAbh6efvpyehDnJn6-Xxz9AjjgPvg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKOcAFUT7Dp5E4gJC1ie3EyZFWVFvo9kIr7c2yYwdSQbJKtgd-Dv-UGSdZCEg9cI1jx8mMPS_JmzeEvHZSuUKZhFnlMwbx1rLcxQUrOK9kaZ0oAjdndZYtL-THdbreI0dTLgzSKse9f9jTw249HlmMT3OxqevFZx4XARBwRPUAy2-Qm4AGFNZvOFkf7j60oNxJEerwYgeGPcbkmYHndWk6lMvkcdDxDIXLfgeooOM_i1P_4tC_6ZR_xKfju-TOCCzp-2HuB2TPN_fIwbh0e_pm1Jd-e5_8XPmtYSaokUDLwEKHCEb7DUBO2tffsaRX2_UUP9LS0jiD3A1qGkerGjEq9QPpnIY6Oj21P-gwHI7SYboCays2FAiiyEGl1gM49mGIUJWcwp5oTUe3LYB_iqnBtPOBH4bjPiAXxx_Oj5ZsrNTASiyIwITkZS4cl4BvYscroxJnPTxviP_G2FKKrACgx43KXJaXcepyL9Myz4wVBiCGeEj2m7bxjwmVxitnRVq42EKArYywYD2TeCNcErsqIslkHl2OMuZYTeObnvhqlxpNqtGkGkl7iYrIu12fzSDice3Zh2j13ZkowB0OtN0XPXqg9r6C928nEy-UNELmnguB2myC28yqMiLp5DN65s8wVH3txV9NDqZhoePfG9P49qrX-Ica1eekiMijweF2U4RLC5HlSUTUzBVn9zBvaeqvQUxcBQQqnvznfF-SW8vz1ak-PTn79JTcxpYhU_MZ2d92V_45QLatfRGW5C-K60BH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meta-analyses+comparing+spine+simulators+with+cadavers+and+finite+element+models+by+analysing+range-of-motion+data+before+and+after+lumbar+total+disc+replacement&rft.jtitle=Journal+of+advanced+research&rft.au=Bohn%2C+Tobias&rft.au=Lang%2C+Susanne+A+J&rft.au=Roll%2C+Stephanie&rft.au=Schrader%2C+Helene&rft.date=2020-11-01&rft.issn=2090-1232&rft.volume=26&rft.spage=29&rft_id=info:doi/10.1016%2Fj.jare.2020.06.017&rft_id=info%3Apmid%2F33133681&rft.externalDocID=33133681
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2090-1232&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2090-1232&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2090-1232&client=summon