Meta-analyses comparing spine simulators with cadavers and finite element models by analysing range-of-motion data before and after lumbar total disc replacement
[Display omitted] •Data from two different in vitro test methods for the same evaluation subjects were compared. It was investigated whether spine simulators with real human cadavers (SSCs) and finite element models (FEMs) provide the same data exemplarily for range of motion (ROM) before and after...
Saved in:
Published in | Journal of advanced research Vol. 26; pp. 29 - 41 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Egypt
Elsevier B.V
01.11.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Data from two different in vitro test methods for the same evaluation subjects were compared. It was investigated whether spine simulators with real human cadavers (SSCs) and finite element models (FEMs) provide the same data exemplarily for range of motion (ROM) before and after insertion of motion-retaining devices.•Only fifty-nine percent of SSC meta-analyses show restored ROM after insertion of the device compared to the intact spinal segment. In FEM meta-analyses, ROM is restored in ninety percent.•Ten percent of ROM analyses show significantly different data between SSCs and FEMs.•With regard to the included studies, data generated by SSCs and FEMs cannot be used unrestricted as alternative and complementary data.•Our analysis provides a new approach to compare data from associated test methods.
Range-of-motion (ROM) data generated by the in vitro test methods of spine simulators with cadavers (SSCs) and finite element models (FEMs) are used alternatively and complementarily for in vitro evaluations.
Our purpose is to compare exemplary segmental ROM data from SSCs and FEMs before and after ball-and-socket total disc replacement (bsTDR) to determine whether the two test methods provide the same data for the same evaluation subjects.
We performed 70 meta-analyses (MAs) and 20 additional comparative analyses based on data from 21 SSC studies used for 39 MAs and 16 FEM studies used for 31 MAs. Only fifty-nine percent (n = 23/39) of SSC MAs show a restored ROM after bsTDR, whereas in FEM MAs, the ROM is restored in ninety percent (n = 28/31). Among the analyses comparing data from the same spinal segments, motion directions and bsTDR, SSC and FEM data are significantly different in ten percent (n = 2/20). According to our results, data generated by SSCs and FEMs cannot be used as alternative and complementary data without restriction. The quality of the evaluation methods itself as well as potential technical reasons for the discrepant results were not our evaluation target. Further SSC and FEM data should be compared using the same approach. |
---|---|
AbstractList | Range-of-motion (ROM) data generated by the in vitro test methods of spine simulators with cadavers (SSCs) and finite element models (FEMs) are used alternatively and complementarily for in vitro evaluations.
Our purpose is to compare exemplary segmental ROM data from SSCs and FEMs before and after ball-and-socket total disc replacement (bsTDR) to determine whether the two test methods provide the same data for the same evaluation subjects.
We performed 70 meta-analyses (MAs) and 20 additional comparative analyses based on data from 21 SSC studies used for 39 MAs and 16 FEM studies used for 31 MAs. Only fifty-nine percent (n = 23/39) of SSC MAs show a restored ROM after bsTDR, whereas in FEM MAs, the ROM is restored in ninety percent (n = 28/31). Among the analyses comparing data from the same spinal segments, motion directions and bsTDR, SSC and FEM data are significantly different in ten percent (n = 2/20). According to our results, data generated by SSCs and FEMs cannot be used as alternative and complementary data without restriction. The quality of the evaluation methods itself as well as potential technical reasons for the discrepant results were not our evaluation target. Further SSC and FEM data should be compared using the same approach. Background: Range-of-motion (ROM) data generated by the in vitro test methods of spine simulators with cadavers (SSCs) and finite element models (FEMs) are used alternatively and complementarily for in vitro evaluations. Aim of Review: Our purpose is to compare exemplary segmental ROM data from SSCs and FEMs before and after ball-and-socket total disc replacement (bsTDR) to determine whether the two test methods provide the same data for the same evaluation subjects. Key Scientific Concepts of Review: We performed 70 meta-analyses (MAs) and 20 additional comparative analyses based on data from 21 SSC studies used for 39 MAs and 16 FEM studies used for 31 MAs. Only fifty-nine percent (n = 23/39) of SSC MAs show a restored ROM after bsTDR, whereas in FEM MAs, the ROM is restored in ninety percent (n = 28/31). Among the analyses comparing data from the same spinal segments, motion directions and bsTDR, SSC and FEM data are significantly different in ten percent (n = 2/20). According to our results, data generated by SSCs and FEMs cannot be used as alternative and complementary data without restriction. The quality of the evaluation methods itself as well as potential technical reasons for the discrepant results were not our evaluation target. Further SSC and FEM data should be compared using the same approach. [Display omitted] •Data from two different in vitro test methods for the same evaluation subjects were compared. It was investigated whether spine simulators with real human cadavers (SSCs) and finite element models (FEMs) provide the same data exemplarily for range of motion (ROM) before and after insertion of motion-retaining devices.•Only fifty-nine percent of SSC meta-analyses show restored ROM after insertion of the device compared to the intact spinal segment. In FEM meta-analyses, ROM is restored in ninety percent.•Ten percent of ROM analyses show significantly different data between SSCs and FEMs.•With regard to the included studies, data generated by SSCs and FEMs cannot be used unrestricted as alternative and complementary data.•Our analysis provides a new approach to compare data from associated test methods. Range-of-motion (ROM) data generated by the in vitro test methods of spine simulators with cadavers (SSCs) and finite element models (FEMs) are used alternatively and complementarily for in vitro evaluations. Our purpose is to compare exemplary segmental ROM data from SSCs and FEMs before and after ball-and-socket total disc replacement (bsTDR) to determine whether the two test methods provide the same data for the same evaluation subjects. We performed 70 meta-analyses (MAs) and 20 additional comparative analyses based on data from 21 SSC studies used for 39 MAs and 16 FEM studies used for 31 MAs. Only fifty-nine percent (n = 23/39) of SSC MAs show a restored ROM after bsTDR, whereas in FEM MAs, the ROM is restored in ninety percent (n = 28/31). Among the analyses comparing data from the same spinal segments, motion directions and bsTDR, SSC and FEM data are significantly different in ten percent (n = 2/20). According to our results, data generated by SSCs and FEMs cannot be used as alternative and complementary data without restriction. The quality of the evaluation methods itself as well as potential technical reasons for the discrepant results were not our evaluation target. Further SSC and FEM data should be compared using the same approach. • Data from two different in vitro test methods for the same evaluation subjects were compared. It was investigated whether spine simulators with real human cadavers (SSCs) and finite element models (FEMs) provide the same data exemplarily for range of motion (ROM) before and after insertion of motion-retaining devices. • Only fifty-nine percent of SSC meta-analyses show restored ROM after insertion of the device compared to the intact spinal segment. In FEM meta-analyses, ROM is restored in ninety percent. • Ten percent of ROM analyses show significantly different data between SSCs and FEMs. • With regard to the included studies, data generated by SSCs and FEMs cannot be used unrestricted as alternative and complementary data. • Our analysis provides a new approach to compare data from associated test methods. Range-of-motion (ROM) data generated by the in vitro test methods of spine simulators with cadavers (SSCs) and finite element models (FEMs) are used alternatively and complementarily for in vitro evaluations.BACKGROUNDRange-of-motion (ROM) data generated by the in vitro test methods of spine simulators with cadavers (SSCs) and finite element models (FEMs) are used alternatively and complementarily for in vitro evaluations.Our purpose is to compare exemplary segmental ROM data from SSCs and FEMs before and after ball-and-socket total disc replacement (bsTDR) to determine whether the two test methods provide the same data for the same evaluation subjects.AIM OF REVIEWOur purpose is to compare exemplary segmental ROM data from SSCs and FEMs before and after ball-and-socket total disc replacement (bsTDR) to determine whether the two test methods provide the same data for the same evaluation subjects.We performed 70 meta-analyses (MAs) and 20 additional comparative analyses based on data from 21 SSC studies used for 39 MAs and 16 FEM studies used for 31 MAs. Only fifty-nine percent (n = 23/39) of SSC MAs show a restored ROM after bsTDR, whereas in FEM MAs, the ROM is restored in ninety percent (n = 28/31). Among the analyses comparing data from the same spinal segments, motion directions and bsTDR, SSC and FEM data are significantly different in ten percent (n = 2/20). According to our results, data generated by SSCs and FEMs cannot be used as alternative and complementary data without restriction. The quality of the evaluation methods itself as well as potential technical reasons for the discrepant results were not our evaluation target. Further SSC and FEM data should be compared using the same approach.KEY SCIENTIFIC CONCEPTS OF REVIEWWe performed 70 meta-analyses (MAs) and 20 additional comparative analyses based on data from 21 SSC studies used for 39 MAs and 16 FEM studies used for 31 MAs. Only fifty-nine percent (n = 23/39) of SSC MAs show a restored ROM after bsTDR, whereas in FEM MAs, the ROM is restored in ninety percent (n = 28/31). Among the analyses comparing data from the same spinal segments, motion directions and bsTDR, SSC and FEM data are significantly different in ten percent (n = 2/20). According to our results, data generated by SSCs and FEMs cannot be used as alternative and complementary data without restriction. The quality of the evaluation methods itself as well as potential technical reasons for the discrepant results were not our evaluation target. Further SSC and FEM data should be compared using the same approach. |
Author | Büttner-Janz, Karin Schrader, Helene Pumberger, Matthias Lang, Susanne A.J. Bohn, Tobias Roll, Stephanie |
Author_xml | – sequence: 1 givenname: Tobias surname: Bohn fullname: Bohn, Tobias email: tobias.bohn@charite.de, bohn-tobias@gmx.de organization: Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany – sequence: 2 givenname: Susanne A.J. surname: Lang fullname: Lang, Susanne A.J. organization: Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany – sequence: 3 givenname: Stephanie surname: Roll fullname: Roll, Stephanie organization: Institute for Social Medicine, Epidemiology and Health Economics at Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany – sequence: 4 givenname: Helene surname: Schrader fullname: Schrader, Helene organization: Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany – sequence: 5 givenname: Matthias surname: Pumberger fullname: Pumberger, Matthias organization: Center for Musculoskeletal Surgery at Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany – sequence: 6 givenname: Karin surname: Büttner-Janz fullname: Büttner-Janz, Karin organization: Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33133681$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstuEzEUhkeoiJbSF2CBvGQzwbfxOBJCQhWXSkVsYG2dsc-kjmbsYDup-ji8KU5TIsqi3vh2_s_27_9lcxJiwKZ5zeiCUaberRdrSLjglNMFVQvK-mfNGadL2jLO5clxLPhpc5HzmtYmtF4y9qI5FYIJoTQ7a35_wwItBJjuMmZi47yB5MOK5I0PSLKftxOUmDK59eWGWHCwwzqD4Mjogy9IcMIZQyFzdDhlMtyRA25PSRBW2MaxnWPxMRAHBciAY0x4j4CxYCLTdh4gkRILTMT5bEnCzQT2nvuqeT7ClPHioT9vfn7-9OPya3v9_cvV5cfr1naclVZIbrVwXCopqOMj9MwNWE2QXAEMVgq17Djn0CuntKWd0yg7qxUMAnT16by5OnBdhLXZJD9DujMRvLlfiGllIBVvJzSI47LXTjIUvQQhNfLqqJK94IMaeltZHw6szXaY0dn6jATTI-jjneBvzCruTN9pqXpRAW8fACn-2mIuZq624DRBwLjNhstO6a6jcl_65t-zjof8_eNawA8FNsWcE47HEkbNPktmbfZZMvssGapMzVIV6f9E1hfY_2G9r5-elr4_SGsacOcxmWw9BovOJ7Sl2umfkv8BdjHnnw |
CitedBy_id | crossref_primary_10_14245_ns_2244734_367 crossref_primary_10_3390_jfb12030043 crossref_primary_10_1016_j_cmpb_2021_106355 crossref_primary_10_1016_j_cmpb_2024_108172 crossref_primary_10_1590_s1808_185120222201262320 |
Cites_doi | 10.1097/00007632-200103150-00004 10.1007/s005860050045 10.1016/j.esas.2009.09.002 10.1097/01.BRS.0000092209.27573.90 10.3171/spi.2005.2.3.0339 10.3171/2009.7.SPINE094 10.1097/BRS.0b013e3181ae23d1 10.3340/jkns.2009.45.3.169 10.1007/s00586-010-1552-1 10.1016/j.medengphy.2008.07.007 10.3340/jkns.2009.46.2.144 10.1007/s00586-011-1743-4 10.1007/s11420-007-9049-0 10.1016/j.spinee.2009.04.014 10.1097/BRS.0b013e3181e5352d 10.1097/BRS.0b013e3181c87692 10.1097/BSD.0b013e3181a5db24 10.1097/BRS.0b013e318059af6f 10.1097/BRS.0b013e3181ebaa4d 10.1097/BRS.0b013e3181a4ec2d 10.1016/j.medengphy.2012.05.013 10.1002/cnm.3214 10.1016/j.jbiomech.2014.04.002 10.1007/s00586-009-1146-y 10.1097/BRS.0000000000001789 10.1007/s00586-012-2271-6 10.3340/jkns.2010.47.6.446 10.1007/s00586-015-4040-9 10.1016/j.medengphy.2008.09.006 10.1016/j.clinbiomech.2008.11.008 10.1097/01.brs.0000260792.13893.88 10.1097/01.brs.0000195897.17277.67 10.1016/j.spinee.2005.06.015 10.1302/0301-620X.95B1.29829 10.1097/BRS.0b013e3181c4eb9a 10.1097/BRS.0b013e318186b258 10.2174/1876532701406010009 10.1007/s00586-016-4793-9 10.1243/09544119JEIM476 10.1016/S0736-0266(02)00202-4 |
ContentType | Journal Article |
Copyright | 2020 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. 2020 |
Copyright_xml | – notice: 2020 – notice: 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. – notice: 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. 2020 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.jare.2020.06.017 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2090-1224 |
EndPage | 41 |
ExternalDocumentID | oai_doaj_org_article_eef978d41e374a348e233164732b6b7c PMC7584673 33133681 10_1016_j_jare_2020_06_017 S2090123220301260 |
Genre | Journal Article Review |
GroupedDBID | --K 0R~ 0SF 1B1 1~5 4.4 457 4G. 53G 5VS 6I. 7-5 AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABFRF ABMAC ACGFS ADBBV ADEZE AEFWE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV E3Z EBS EJD FDB GROUPED_DOAJ GX1 HH5 HYE HZ~ IPNFZ IXB J1W KQ8 M41 NCXOZ O-L O9- OK1 OZT RIG ROL RPM SES SSZ UNMZH XH2 AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-342c83d246430d2fa71dbe209426aabc43695222a76d68c05d8e45c86ab3a8123 |
IEDL.DBID | DOA |
ISSN | 2090-1232 |
IngestDate | Wed Aug 27 01:30:09 EDT 2025 Thu Aug 21 17:43:59 EDT 2025 Fri Jul 11 06:38:31 EDT 2025 Thu Jan 02 22:54:09 EST 2025 Tue Jul 01 03:01:30 EDT 2025 Thu Apr 24 23:05:01 EDT 2025 Fri Feb 23 02:41:29 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Range of motion In vitro test methods Total disc replacement Meta-analysis |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-342c83d246430d2fa71dbe209426aabc43695222a76d68c05d8e45c86ab3a8123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://doaj.org/article/eef978d41e374a348e233164732b6b7c |
PMID | 33133681 |
PQID | 2456855043 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_eef978d41e374a348e233164732b6b7c pubmedcentral_primary_oai_pubmedcentral_nih_gov_7584673 proquest_miscellaneous_2456855043 pubmed_primary_33133681 crossref_primary_10_1016_j_jare_2020_06_017 crossref_citationtrail_10_1016_j_jare_2020_06_017 elsevier_sciencedirect_doi_10_1016_j_jare_2020_06_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Egypt |
PublicationPlace_xml | – name: Egypt |
PublicationTitle | Journal of advanced research |
PublicationTitleAlternate | J Adv Res |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Kikkawa, Cunningham, Shirado, Hu, McAfee, Oda (b0115) 2010; 35 Moldavsky, Neumann, Klocke, Hussain, Bucklen (b0125) 2017; 26 Johnsen, Brinckmann, Hellum, Rossvoll, Leivseth (b0220) 2013; 95-B Choi, Shin, Kim (b0165) 2017; 42 DiAngelo, Foley, Morrow, Wong, Kiehm, Sin (b0085) 2014; 6 Hitchon, Eichholz, Barry, Rubenbauer, Ingalhalikar, Nakamura (b0105) 2005; 2 Ingalhalikar, Reddy, Lim, Torner, Hitchon (b0110) 2009; 11 Takigawa, Espinoza Orías, An, Gohgi, Udayakumar, Sugisaki (b0140) 2010; 35 Zander, Rohlmann, Bergmann (b0210) 2009; 24 Panjabi, Malcolmson, Teng, Tominaga, Henderson, Serhan (b0135) 2007; 32 Tsitsopoulos, Wojewnik, Voronov, Havey, Renner, Zelenakova (b0145) 2012; 21 Volkheimer, Malakoutian, Oxland, Wilke (b0060) 2005; 24 Demetropoulos, Sengupta, Knaub, Wiater, Abjornson, Truumees (b0080) 2009; 35 Dooris, Goel, Grosland, Gilbertson, Wilder (b0180) 2001; 26 Gaffey, Ghanayem, Voronov, Havey, Carandang, Abjornson (b0095) 2010; 35 Choi, Shin, Kim (b0170) 2019; 35 Panjabi, Henderson, Abjornson, Yue (b0130) 2007; 32 Kim, Lee, Suk, Lee, Jeong (b0190) 2010; 47 Wang, Zhang, Sadeghipour, Baran (b0030) 2013; 35 Jones, Wilcox (b0040) 2008; 30 Rundell, Auerbach, Balderston, Kurtz (b0200) 2008; 33 Chen, Zhong, Chen, Chen, Hung (b0020) 2009; 31 Schmidt, Midderhoff, Adkins, Wilke (b0205) 2009; 18 Büttner-Janz Spinefoundation. Voronov, Havey, Sjovold, Funk, Carandang, Zindrick (b0150) 2009; 3 Wilke, Schmidt, Richter, Schmoelz, Reichel, Cakir (b0010) 2012; 21 Patwardhan, Havey, Carandang, Simonds, Voronov, Ghanayem (b0070) 2003; 21 Chung, Kim, Wang (b0025) 2009; 34 Chen, Park, Lee, Lee (b0160) 2009; 34 Le Huec, Lafage, Bonnet, Lavaste, Josse (b0050) 2010; 23 Wong P. Biomechanical comparison of lumbar disc replacements [Dissertation]. University of Tennessee Health Science Center; 2009. Kim, Chang, Chang, Chun, Lim, Kim (b0120) 2009; 46 Knapik, Mendel, Marras (b0195) 2012; 21 Ha, Kim, Kim, Park, Lim, Lee (b0100) 2009; 45 DiMascio, Bellini, Galbusera, Raimondi, Brayda-Bruno, Assietti (b0175) 2010; 8 Meyers, Campbell, Lipman, Zhang, Myers, Girardi (b0075) 2007; 3 Dreischarf, Zander, Shirazi-Adl, Puttlitz, Adam, Chen (b0055) 2014; 47 . O'Leary, Nicolakis, Lorenz, Voronov, Zindrick, Ghanayem (b0065) 2005; 5 Erkan, Rivera, Wu, Mehbod, Transfeldt (b0090) 2009; 9 Cunningham, Gordon, Dimitriev, Hu, McAfee (b0015) 2003; 28 White, Panjabi (b0045) 1990 Zhong, Chen, Hung (b0215) 2009; 223 Wilke, Wenger, Claes (b0035) 1998; 7 Goel, Grauer, Patel, Biyani, Sairyo, Vishnubhotla (b0185) 2005; 30 Cunningham (10.1016/j.jare.2020.06.017_b0015) 2003; 28 Moldavsky (10.1016/j.jare.2020.06.017_b0125) 2017; 26 10.1016/j.jare.2020.06.017_b0155 Chung (10.1016/j.jare.2020.06.017_b0025) 2009; 34 Zhong (10.1016/j.jare.2020.06.017_b0215) 2009; 223 O'Leary (10.1016/j.jare.2020.06.017_b0065) 2005; 5 Tsitsopoulos (10.1016/j.jare.2020.06.017_b0145) 2012; 21 White (10.1016/j.jare.2020.06.017_b0045) 1990 Le Huec (10.1016/j.jare.2020.06.017_b0050) 2010; 23 Erkan (10.1016/j.jare.2020.06.017_b0090) 2009; 9 Dooris (10.1016/j.jare.2020.06.017_b0180) 2001; 26 Wang (10.1016/j.jare.2020.06.017_b0030) 2013; 35 Volkheimer (10.1016/j.jare.2020.06.017_b0060) 2005; 24 Goel (10.1016/j.jare.2020.06.017_b0185) 2005; 30 Ingalhalikar (10.1016/j.jare.2020.06.017_b0110) 2009; 11 Kim (10.1016/j.jare.2020.06.017_b0190) 2010; 47 Demetropoulos (10.1016/j.jare.2020.06.017_b0080) 2009; 35 Patwardhan (10.1016/j.jare.2020.06.017_b0070) 2003; 21 Ha (10.1016/j.jare.2020.06.017_b0100) 2009; 45 Choi (10.1016/j.jare.2020.06.017_b0165) 2017; 42 Panjabi (10.1016/j.jare.2020.06.017_b0135) 2007; 32 Hitchon (10.1016/j.jare.2020.06.017_b0105) 2005; 2 Voronov (10.1016/j.jare.2020.06.017_b0150) 2009; 3 Gaffey (10.1016/j.jare.2020.06.017_b0095) 2010; 35 Takigawa (10.1016/j.jare.2020.06.017_b0140) 2010; 35 Dreischarf (10.1016/j.jare.2020.06.017_b0055) 2014; 47 Wilke (10.1016/j.jare.2020.06.017_b0010) 2012; 21 Choi (10.1016/j.jare.2020.06.017_b0170) 2019; 35 Wilke (10.1016/j.jare.2020.06.017_b0035) 1998; 7 Kikkawa (10.1016/j.jare.2020.06.017_b0115) 2010; 35 Knapik (10.1016/j.jare.2020.06.017_b0195) 2012; 21 10.1016/j.jare.2020.06.017_b0005 Panjabi (10.1016/j.jare.2020.06.017_b0130) 2007; 32 Jones (10.1016/j.jare.2020.06.017_b0040) 2008; 30 Kim (10.1016/j.jare.2020.06.017_b0120) 2009; 46 Chen (10.1016/j.jare.2020.06.017_b0160) 2009; 34 Johnsen (10.1016/j.jare.2020.06.017_b0220) 2013; 95-B Meyers (10.1016/j.jare.2020.06.017_b0075) 2007; 3 Schmidt (10.1016/j.jare.2020.06.017_b0205) 2009; 18 DiAngelo (10.1016/j.jare.2020.06.017_b0085) 2014; 6 DiMascio (10.1016/j.jare.2020.06.017_b0175) 2010; 8 Rundell (10.1016/j.jare.2020.06.017_b0200) 2008; 33 Zander (10.1016/j.jare.2020.06.017_b0210) 2009; 24 Chen (10.1016/j.jare.2020.06.017_b0020) 2009; 31 |
References_xml | – volume: 26 start-page: 785 year: 2017 end-page: 793 ident: b0125 article-title: In vitro analysis of circumferential joint replacement, including bilateral facet joint replacement with lateral lumber disc prosthesis: a parametric investigation of disc sizing publication-title: Eur Spine J – volume: 26 start-page: 122 year: 2001 end-page: 129 ident: b0180 article-title: Load-sharing between anterior and posterior elements in a lumbar motion segment implanted with an artificial disc publication-title: Spine J. – volume: 30 start-page: 2755 year: 2005 end-page: 2764 ident: b0185 article-title: Effects of Charité artificial disc on the implanted and adjacent spinal segments mechanics using a hybrid testing protocol publication-title: Spine J – volume: 24 start-page: 135 year: 2009 end-page: 142 ident: b0210 article-title: Influence of different artificial disc kinematics on spine biomechanics publication-title: Clin Biomech – volume: 34 start-page: 716 year: 2009 end-page: 723 ident: b0160 article-title: In situ contact analysis of the prosthesis components of Prodisc-L in lumbar spine following total disc replacement publication-title: Spine J – volume: 46 start-page: 144 year: 2009 end-page: 151 ident: b0120 article-title: The changes in range of motion after a lumbar spinal arthroplasty with Charité in the human cadaveric spine under physiologic compressive follower preload: a comparative study between load control protocol and hybrid protocol publication-title: J Korean Neurosurg Soc – volume: 21 start-page: 540 year: 2003 end-page: 546 ident: b0070 article-title: Effect ofcompressive follower preload on the flexion-extension response of the human lumbar spine publication-title: J Orthop Res – volume: 8 start-page: 97 year: 2010 end-page: 101 ident: b0175 article-title: Lumbar total disc replacement: a numerical study publication-title: J Appl Biomater Biomech – volume: 2 start-page: 339 year: 2005 end-page: 343 ident: b0105 article-title: Biomechanical studies of an artificial disc implant in the human cadaveric spine publication-title: J Neurosurg Spine – volume: 35 year: 2019 ident: b0170 article-title: Finite element analysis of a ball-and-socket artificial disc design to suppress excessive loading on facet joints: a comparative study with ProDisc publication-title: Int J Numer Meth Biomed Eng – volume: 32 start-page: 959 year: 2007 end-page: 966 ident: b0135 article-title: Hybrid testing of lumbar Charité discs versus fusions publication-title: Spine J – volume: 31 start-page: 244 year: 2009 end-page: 253 ident: b0020 article-title: Biomechanical comparison between lumbar disc arthroplasty and fusion publication-title: Med Eng Phys – volume: 5 start-page: 590 year: 2005 end-page: 599 ident: b0065 article-title: Response of charite total disc replacement under physiologic loads: prosthesis component motion patterns publication-title: Spine J – volume: 47 start-page: 446 year: 2010 end-page: 453 ident: b0190 article-title: Biomechanical changes of the lumbar segment after total disc replacement: Charite, Prodisc and Maverick using finite element model study publication-title: J Korean Neurosurg – volume: 3 start-page: 164 year: 2007 end-page: 168 ident: b0075 article-title: Dynamics of an intervertebral disc prosthesis in human cadaveric spines publication-title: HSS J – volume: 32 start-page: 1311 year: 2007 end-page: 1319 ident: b0130 article-title: Multidirectional testing of one- and two-level ProDisc-L versus simulated fusion publication-title: Spine J – volume: 47 start-page: 1757 year: 2014 end-page: 1766 ident: b0055 article-title: Comparison of eight published static finite element models of the intact lumbar spine: Predictive power of models improves when combined together publication-title: J Biomech – volume: 24 start-page: 1882 year: 2005 end-page: 1892 ident: b0060 article-title: Limitations of current in vitro test protocols for investigation of instrumented adjacent segment biomechanics: critical analysis of the literature publication-title: Eur Spine J – volume: 35 start-page: 357 year: 2013 end-page: 364 ident: b0030 article-title: Effect of posterolateral disc replacement on kinematics and stress distribution in the lumbar spine: a finite element study publication-title: Med Eng Phys – volume: 33 start-page: 2510 year: 2008 end-page: 2517 ident: b0200 article-title: Total disc replacement positioning affects facet contact forces and vertebral body strains publication-title: Spine J – volume: 21 start-page: 585 year: 2012 end-page: 591 ident: b0145 article-title: Effect of prosthesis endplate lordosis angles on L5–S1 kinematics after disc arthroplasty publication-title: Eur Spine J – volume: 21 start-page: 641 year: 2012 end-page: 652 ident: b0195 article-title: Use of a personalized hybrid biomechanical model to assess change in lumbar spine function with a TDR compared to an intact spine publication-title: Eur. Spine J – volume: 30 start-page: 1287 year: 2008 end-page: 1304 ident: b0040 article-title: Finite element analysis of the spine: Towards a framework of verification, validation and sensitivity analysis publication-title: Med Eng Phys – volume: 223 start-page: 143 year: 2009 end-page: 157 ident: b0215 article-title: Load- and displacement-controlled finite element analyses on fusion and non-fusion spinal implants publication-title: Proc Inst Mech Eng H – volume: 3 start-page: 85 year: 2009 end-page: 90 ident: b0150 article-title: Kinematics of total facet replacement (TFAS-TL) with total disc replacement publication-title: SAS J – volume: 23 start-page: 249 year: 2010 end-page: 257 ident: b0050 article-title: Validated finite element analysis of the maverick total disc prosthesis publication-title: J Spinal Disord Tech – volume: 35 start-page: 1760 year: 2010 end-page: 1768 ident: b0115 article-title: Biomechanical evaluation of a posterolateral lumbar disc arthroplasty device publication-title: Spine J – volume: 45 start-page: 169 year: 2009 end-page: 175 ident: b0100 article-title: Biomechanical study of lumbar spinal arthroplasty publication-title: J Korean Neurosurg Soc – reference: Büttner-Janz Spinefoundation. – volume: 21 start-page: 577 year: 2012 end-page: 584 ident: b0010 article-title: The role of prosthesis design on segmental biomechanics: semi-constrained versus unconstrained prostheses and anterior versus posterior centre of rotation publication-title: Eur Spine J – volume: 35 start-page: 26 year: 2009 end-page: 31 ident: b0080 article-title: Biomechanical evaluation of the kinematics of the cadaver lumbar spine following disc replacement with the ProDisc-L prosthesis publication-title: Spine J. – reference: . – volume: 28 start-page: 110 year: 2003 end-page: 117 ident: b0015 article-title: Biomechanical evaluation of total disc replacement arthroplasty an in vitro human cadaveric model publication-title: Spine J – volume: 18 start-page: 1695 year: 2009 end-page: 1705 ident: b0205 article-title: The effect of different design concepts in lumbar total disc arthroplasty on the range of motion, facet joint forces and instantaneous center of rotation of a L4–5 segment publication-title: Eur Spine J – year: 1990 ident: b0045 article-title: Clinical biomechanics of the spine – volume: 35 start-page: 1777 year: 2010 end-page: 1782 ident: b0095 article-title: Effect of increasing implant height on lumbar spine kinematics and foraminal size using the ProDisc-L prosthesis publication-title: Spine J – volume: 6 start-page: 9 year: 2014 end-page: 25 ident: b0085 article-title: In vitro testing of lumbar disc arthroplasty devices publication-title: Open Spine J. – volume: 95-B start-page: 81 year: 2013 end-page: 89 ident: b0220 article-title: Segmental mobility, disc height and patient-reported outcomes after surgery for degenerative disc disease – a prospective randomised trial comparing disc replacement and multidisciplinary rehabilitation publication-title: Bone Joint J – volume: 34 start-page: 1281 year: 2009 end-page: 1286 ident: b0025 article-title: Biomechanical effect of constraint in lumbar total disc replacement - a study with finite element analysis publication-title: Spine J – reference: Wong P. Biomechanical comparison of lumbar disc replacements [Dissertation]. University of Tennessee Health Science Center; 2009. – volume: 42 start-page: 332 year: 2017 end-page: 339 ident: b0165 article-title: Biomechanical effects of the geometry of ball-and-socket artificial disc on lumbar spine: a finite element study publication-title: Spine J – volume: 11 start-page: 715 year: 2009 end-page: 723 ident: b0110 article-title: Effect of lumbar total disc arthroplasty on the segmental motion and intradiscal pressure at the adjacent level: an in vitro biomechanical study publication-title: J Neurosurg Spine – volume: 35 start-page: 1160 year: 2010 end-page: 1166 ident: b0140 article-title: Spinal kinematics and facet load transmission after total disc replacement publication-title: Spine J. – volume: 9 start-page: 830 year: 2009 end-page: 835 ident: b0090 article-title: Biomechanical comparison of a two-level Maverick disc replacement with a hybrid one-level disc replacement and one-level anterior lumbar interbody fusion publication-title: Spine J – volume: 7 start-page: 148 year: 1998 end-page: 154 ident: b0035 article-title: Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants publication-title: Eur Spine J – volume: 26 start-page: 122 year: 2001 ident: 10.1016/j.jare.2020.06.017_b0180 article-title: Load-sharing between anterior and posterior elements in a lumbar motion segment implanted with an artificial disc publication-title: Spine J. doi: 10.1097/00007632-200103150-00004 – volume: 7 start-page: 148 year: 1998 ident: 10.1016/j.jare.2020.06.017_b0035 article-title: Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants publication-title: Eur Spine J doi: 10.1007/s005860050045 – year: 1990 ident: 10.1016/j.jare.2020.06.017_b0045 – volume: 3 start-page: 85 year: 2009 ident: 10.1016/j.jare.2020.06.017_b0150 article-title: Kinematics of total facet replacement (TFAS-TL) with total disc replacement publication-title: SAS J doi: 10.1016/j.esas.2009.09.002 – volume: 28 start-page: 110 year: 2003 ident: 10.1016/j.jare.2020.06.017_b0015 article-title: Biomechanical evaluation of total disc replacement arthroplasty an in vitro human cadaveric model publication-title: Spine J doi: 10.1097/01.BRS.0000092209.27573.90 – volume: 2 start-page: 339 year: 2005 ident: 10.1016/j.jare.2020.06.017_b0105 article-title: Biomechanical studies of an artificial disc implant in the human cadaveric spine publication-title: J Neurosurg Spine doi: 10.3171/spi.2005.2.3.0339 – volume: 11 start-page: 715 year: 2009 ident: 10.1016/j.jare.2020.06.017_b0110 article-title: Effect of lumbar total disc arthroplasty on the segmental motion and intradiscal pressure at the adjacent level: an in vitro biomechanical study publication-title: J Neurosurg Spine doi: 10.3171/2009.7.SPINE094 – volume: 34 start-page: 716 year: 2009 ident: 10.1016/j.jare.2020.06.017_b0160 article-title: In situ contact analysis of the prosthesis components of Prodisc-L in lumbar spine following total disc replacement publication-title: Spine J doi: 10.1097/BRS.0b013e3181ae23d1 – volume: 45 start-page: 169 year: 2009 ident: 10.1016/j.jare.2020.06.017_b0100 article-title: Biomechanical study of lumbar spinal arthroplasty publication-title: J Korean Neurosurg Soc doi: 10.3340/jkns.2009.45.3.169 – volume: 21 start-page: 577 year: 2012 ident: 10.1016/j.jare.2020.06.017_b0010 article-title: The role of prosthesis design on segmental biomechanics: semi-constrained versus unconstrained prostheses and anterior versus posterior centre of rotation publication-title: Eur Spine J doi: 10.1007/s00586-010-1552-1 – volume: 31 start-page: 244 year: 2009 ident: 10.1016/j.jare.2020.06.017_b0020 article-title: Biomechanical comparison between lumbar disc arthroplasty and fusion publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2008.07.007 – volume: 46 start-page: 144 year: 2009 ident: 10.1016/j.jare.2020.06.017_b0120 article-title: The changes in range of motion after a lumbar spinal arthroplasty with Charité in the human cadaveric spine under physiologic compressive follower preload: a comparative study between load control protocol and hybrid protocol publication-title: J Korean Neurosurg Soc doi: 10.3340/jkns.2009.46.2.144 – ident: 10.1016/j.jare.2020.06.017_b0005 – volume: 21 start-page: 641 year: 2012 ident: 10.1016/j.jare.2020.06.017_b0195 article-title: Use of a personalized hybrid biomechanical model to assess change in lumbar spine function with a TDR compared to an intact spine publication-title: Eur. Spine J doi: 10.1007/s00586-011-1743-4 – volume: 3 start-page: 164 year: 2007 ident: 10.1016/j.jare.2020.06.017_b0075 article-title: Dynamics of an intervertebral disc prosthesis in human cadaveric spines publication-title: HSS J doi: 10.1007/s11420-007-9049-0 – volume: 9 start-page: 830 year: 2009 ident: 10.1016/j.jare.2020.06.017_b0090 article-title: Biomechanical comparison of a two-level Maverick disc replacement with a hybrid one-level disc replacement and one-level anterior lumbar interbody fusion publication-title: Spine J doi: 10.1016/j.spinee.2009.04.014 – volume: 35 start-page: 1160 year: 2010 ident: 10.1016/j.jare.2020.06.017_b0140 article-title: Spinal kinematics and facet load transmission after total disc replacement publication-title: Spine J. doi: 10.1097/BRS.0b013e3181e5352d – volume: 35 start-page: 1760 year: 2010 ident: 10.1016/j.jare.2020.06.017_b0115 article-title: Biomechanical evaluation of a posterolateral lumbar disc arthroplasty device publication-title: Spine J doi: 10.1097/BRS.0b013e3181c87692 – volume: 23 start-page: 249 year: 2010 ident: 10.1016/j.jare.2020.06.017_b0050 article-title: Validated finite element analysis of the maverick total disc prosthesis publication-title: J Spinal Disord Tech doi: 10.1097/BSD.0b013e3181a5db24 – volume: 32 start-page: 1311 year: 2007 ident: 10.1016/j.jare.2020.06.017_b0130 article-title: Multidirectional testing of one- and two-level ProDisc-L versus simulated fusion publication-title: Spine J doi: 10.1097/BRS.0b013e318059af6f – volume: 35 start-page: 1777 year: 2010 ident: 10.1016/j.jare.2020.06.017_b0095 article-title: Effect of increasing implant height on lumbar spine kinematics and foraminal size using the ProDisc-L prosthesis publication-title: Spine J doi: 10.1097/BRS.0b013e3181ebaa4d – volume: 34 start-page: 1281 year: 2009 ident: 10.1016/j.jare.2020.06.017_b0025 article-title: Biomechanical effect of constraint in lumbar total disc replacement - a study with finite element analysis publication-title: Spine J doi: 10.1097/BRS.0b013e3181a4ec2d – volume: 35 start-page: 357 year: 2013 ident: 10.1016/j.jare.2020.06.017_b0030 article-title: Effect of posterolateral disc replacement on kinematics and stress distribution in the lumbar spine: a finite element study publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2012.05.013 – volume: 35 year: 2019 ident: 10.1016/j.jare.2020.06.017_b0170 article-title: Finite element analysis of a ball-and-socket artificial disc design to suppress excessive loading on facet joints: a comparative study with ProDisc publication-title: Int J Numer Meth Biomed Eng doi: 10.1002/cnm.3214 – volume: 47 start-page: 1757 year: 2014 ident: 10.1016/j.jare.2020.06.017_b0055 article-title: Comparison of eight published static finite element models of the intact lumbar spine: Predictive power of models improves when combined together publication-title: J Biomech doi: 10.1016/j.jbiomech.2014.04.002 – volume: 18 start-page: 1695 year: 2009 ident: 10.1016/j.jare.2020.06.017_b0205 article-title: The effect of different design concepts in lumbar total disc arthroplasty on the range of motion, facet joint forces and instantaneous center of rotation of a L4–5 segment publication-title: Eur Spine J doi: 10.1007/s00586-009-1146-y – volume: 42 start-page: 332 year: 2017 ident: 10.1016/j.jare.2020.06.017_b0165 article-title: Biomechanical effects of the geometry of ball-and-socket artificial disc on lumbar spine: a finite element study publication-title: Spine J doi: 10.1097/BRS.0000000000001789 – volume: 21 start-page: 585 year: 2012 ident: 10.1016/j.jare.2020.06.017_b0145 article-title: Effect of prosthesis endplate lordosis angles on L5–S1 kinematics after disc arthroplasty publication-title: Eur Spine J doi: 10.1007/s00586-012-2271-6 – volume: 47 start-page: 446 year: 2010 ident: 10.1016/j.jare.2020.06.017_b0190 article-title: Biomechanical changes of the lumbar segment after total disc replacement: Charite, Prodisc and Maverick using finite element model study publication-title: J Korean Neurosurg doi: 10.3340/jkns.2010.47.6.446 – volume: 24 start-page: 1882 year: 2005 ident: 10.1016/j.jare.2020.06.017_b0060 article-title: Limitations of current in vitro test protocols for investigation of instrumented adjacent segment biomechanics: critical analysis of the literature publication-title: Eur Spine J doi: 10.1007/s00586-015-4040-9 – volume: 30 start-page: 1287 year: 2008 ident: 10.1016/j.jare.2020.06.017_b0040 article-title: Finite element analysis of the spine: Towards a framework of verification, validation and sensitivity analysis publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2008.09.006 – ident: 10.1016/j.jare.2020.06.017_b0155 – volume: 24 start-page: 135 year: 2009 ident: 10.1016/j.jare.2020.06.017_b0210 article-title: Influence of different artificial disc kinematics on spine biomechanics publication-title: Clin Biomech doi: 10.1016/j.clinbiomech.2008.11.008 – volume: 32 start-page: 959 year: 2007 ident: 10.1016/j.jare.2020.06.017_b0135 article-title: Hybrid testing of lumbar Charité discs versus fusions publication-title: Spine J doi: 10.1097/01.brs.0000260792.13893.88 – volume: 8 start-page: 97 year: 2010 ident: 10.1016/j.jare.2020.06.017_b0175 article-title: Lumbar total disc replacement: a numerical study publication-title: J Appl Biomater Biomech. – volume: 30 start-page: 2755 year: 2005 ident: 10.1016/j.jare.2020.06.017_b0185 article-title: Effects of Charité artificial disc on the implanted and adjacent spinal segments mechanics using a hybrid testing protocol publication-title: Spine J doi: 10.1097/01.brs.0000195897.17277.67 – volume: 5 start-page: 590 year: 2005 ident: 10.1016/j.jare.2020.06.017_b0065 article-title: Response of charite total disc replacement under physiologic loads: prosthesis component motion patterns publication-title: Spine J doi: 10.1016/j.spinee.2005.06.015 – volume: 95-B start-page: 81 year: 2013 ident: 10.1016/j.jare.2020.06.017_b0220 article-title: Segmental mobility, disc height and patient-reported outcomes after surgery for degenerative disc disease – a prospective randomised trial comparing disc replacement and multidisciplinary rehabilitation publication-title: Bone Joint J doi: 10.1302/0301-620X.95B1.29829 – volume: 35 start-page: 26 year: 2009 ident: 10.1016/j.jare.2020.06.017_b0080 article-title: Biomechanical evaluation of the kinematics of the cadaver lumbar spine following disc replacement with the ProDisc-L prosthesis publication-title: Spine J. doi: 10.1097/BRS.0b013e3181c4eb9a – volume: 33 start-page: 2510 year: 2008 ident: 10.1016/j.jare.2020.06.017_b0200 article-title: Total disc replacement positioning affects facet contact forces and vertebral body strains publication-title: Spine J doi: 10.1097/BRS.0b013e318186b258 – volume: 6 start-page: 9 year: 2014 ident: 10.1016/j.jare.2020.06.017_b0085 article-title: In vitro testing of lumbar disc arthroplasty devices publication-title: Open Spine J. doi: 10.2174/1876532701406010009 – volume: 26 start-page: 785 year: 2017 ident: 10.1016/j.jare.2020.06.017_b0125 article-title: In vitro analysis of circumferential joint replacement, including bilateral facet joint replacement with lateral lumber disc prosthesis: a parametric investigation of disc sizing publication-title: Eur Spine J doi: 10.1007/s00586-016-4793-9 – volume: 223 start-page: 143 year: 2009 ident: 10.1016/j.jare.2020.06.017_b0215 article-title: Load- and displacement-controlled finite element analyses on fusion and non-fusion spinal implants publication-title: Proc Inst Mech Eng H doi: 10.1243/09544119JEIM476 – volume: 21 start-page: 540 year: 2003 ident: 10.1016/j.jare.2020.06.017_b0070 article-title: Effect ofcompressive follower preload on the flexion-extension response of the human lumbar spine publication-title: J Orthop Res doi: 10.1016/S0736-0266(02)00202-4 |
SSID | ssj0000388911 |
Score | 2.227577 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•Data from two different in vitro test methods for the same evaluation subjects were compared. It was investigated whether spine simulators... Range-of-motion (ROM) data generated by the in vitro test methods of spine simulators with cadavers (SSCs) and finite element models (FEMs) are used... • Data from two different in vitro test methods for the same evaluation subjects were compared. It was investigated whether spine simulators with real human... Background: Range-of-motion (ROM) data generated by the in vitro test methods of spine simulators with cadavers (SSCs) and finite element models (FEMs) are... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 29 |
SubjectTerms | In vitro test methods Meta-analysis Range of motion Total disc replacement |
SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect Open Access Journals dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqnrggyudSiozEAYSsTWwnTo60oqqQygUq7c2yYwdSQbJKtgd-Dv-0M7azEJB64JjEcZzM2POSvHlDyGsnlauVyZlVvmQQby2rXFazmvNWNtaJOnBzLj-VF1fy46bYHJCzORcGaZVp7Y9relit0551eprrbdetP_OsDoCAI6oHWA7rsJBVSOLbnO6_s6DaSR3K8GJ7hiek3JlI87o2I6pl8izIeIa6Zb_jU5DxX4Spf2Ho32zKP8LT-QNyP-FK-j4O_Ygc-P4hOUozd6Jvkrz020fk16XfGWaCGAkciSR0CGB02gLipFP3Ayt6DeNE8RstbYwzSN2gpne07RCiUh855zSU0Zmo_Uljd9jLiNkKbGhZrA9EkYJKrQds7EMXoSg5hSXRmpHuBsD-FDOD6egDPQz7fUyuzj98ObtgqVADa7AeAhOSN5VwXAK8yRxvjcqd9fC8IfwbYxspyhpwHjeqdGXVZIWrvCyaqjRWGEAY4gk57IfePyNUGq-cFUXtMgvxtTXCgvVM7o1weebaFcln8-gmqZhjMY3veqarXWs0qUaTauTs5WpF3u3P2UYNjztbn6LV9y1RfzvsGMavOjmg9r6F128ncy-UNOB2nguB0myC29KqZkWK2Wf0wp2hq-7Oi7-aHUzDPMefN6b3w82k8Qc1is9JsSJPo8PthwiXFqKs8hVRC1dc3MPySN99C1riKgBQ8fw_x3tM7uFWTM58QQ53440_AZS2sy_DNLwFqS89KA priority: 102 providerName: Elsevier |
Title | Meta-analyses comparing spine simulators with cadavers and finite element models by analysing range-of-motion data before and after lumbar total disc replacement |
URI | https://dx.doi.org/10.1016/j.jare.2020.06.017 https://www.ncbi.nlm.nih.gov/pubmed/33133681 https://www.proquest.com/docview/2456855043 https://pubmed.ncbi.nlm.nih.gov/PMC7584673 https://doaj.org/article/eef978d41e374a348e233164732b6b7c |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQuXBBlM_wURmJAwhZJLYTJ8cWURWqckBU7M0ax47YCpIq2R74OfxTZuzssgtSuXDZwzrrxJmx52Xz_B5jL7w2vjFQCGdCJbDeOlH7vBGNlJ1unVdN5OacfaxOzvWHRbnYsvoiTliSB0437k0IHT7oeF0EZTQoXQepFIlgKekqZ1pafbHmbT1MxTVY1XUTzXexkegHSs47ZhK56wJG0siUeRTvjG5lv6tSFO_fKU5_g88_OZRbRen4Drs9o0l-mEaxz26E_i7bn-frxF_OotKv7rGfZ2EFAqIECbYk6jmWLT5dIs7k0_I7-XgN48Tpn1neggcibHDoPe-WBEx5SExzHs1zJu5-8NQd9TLSHgUxdCK5AnEinnIXEBGH2EW0Iue4EDoY-WpAxM9pPzAfQySFUb_32fnxu89vT8RszyBackEQSsu2Vl5qBDW5lx2YwruA9xuLPoBrtaoaRHcSTOWrus1LXwddtnUFTgHiCvWA7fVDHx4xriEY71TZ-NxhVe1AOYweFAGUL3LfZaxYh8e2s3Y5WWh8s2uS2oWlkFoKqSWmXmEy9nrzm8uk3HHt0UcU9c2RpLodv8BctHMu2n_lYsbKdc7YGcAkYIJdLa89-fN1glmc3fTKBvowXE2WXkuT5JxWGXuYEm5ziXhqpaq6yJjZScWdMey29MuvUUHcRNipHv-PQT9ht2goaX_mU7a3Gq_CMwRqK3fAbh6efvpyehDnJn6-Xxz9AjjgPvg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVKOcAFUT7Dp5E4gJC1ie3EyZFWVFvo9kIr7c2yYwdSQbJKtgd-Dv-UGSdZCEg9cI1jx8mMPS_JmzeEvHZSuUKZhFnlMwbx1rLcxQUrOK9kaZ0oAjdndZYtL-THdbreI0dTLgzSKse9f9jTw249HlmMT3OxqevFZx4XARBwRPUAy2-Qm4AGFNZvOFkf7j60oNxJEerwYgeGPcbkmYHndWk6lMvkcdDxDIXLfgeooOM_i1P_4tC_6ZR_xKfju-TOCCzp-2HuB2TPN_fIwbh0e_pm1Jd-e5_8XPmtYSaokUDLwEKHCEb7DUBO2tffsaRX2_UUP9LS0jiD3A1qGkerGjEq9QPpnIY6Oj21P-gwHI7SYboCays2FAiiyEGl1gM49mGIUJWcwp5oTUe3LYB_iqnBtPOBH4bjPiAXxx_Oj5ZsrNTASiyIwITkZS4cl4BvYscroxJnPTxviP_G2FKKrACgx43KXJaXcepyL9Myz4wVBiCGeEj2m7bxjwmVxitnRVq42EKArYywYD2TeCNcErsqIslkHl2OMuZYTeObnvhqlxpNqtGkGkl7iYrIu12fzSDice3Zh2j13ZkowB0OtN0XPXqg9r6C928nEy-UNELmnguB2myC28yqMiLp5DN65s8wVH3txV9NDqZhoePfG9P49qrX-Ica1eekiMijweF2U4RLC5HlSUTUzBVn9zBvaeqvQUxcBQQqnvznfF-SW8vz1ak-PTn79JTcxpYhU_MZ2d92V_45QLatfRGW5C-K60BH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meta-analyses+comparing+spine+simulators+with+cadavers+and+finite+element+models+by+analysing+range-of-motion+data+before+and+after+lumbar+total+disc+replacement&rft.jtitle=Journal+of+advanced+research&rft.au=Bohn%2C+Tobias&rft.au=Lang%2C+Susanne+A+J&rft.au=Roll%2C+Stephanie&rft.au=Schrader%2C+Helene&rft.date=2020-11-01&rft.issn=2090-1232&rft.volume=26&rft.spage=29&rft_id=info:doi/10.1016%2Fj.jare.2020.06.017&rft_id=info%3Apmid%2F33133681&rft.externalDocID=33133681 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2090-1232&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2090-1232&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2090-1232&client=summon |