Smart E-Tongue Based on Polypyrrole Sensor Array as Tool for Rapid Analysis of Coffees from Different Varieties

Due to the lucrative coffee market, this product is often subject to adulteration, as inferior or non-coffee materials or varieties are mixed in, negatively affecting its quality. Traditional sensory evaluations by expert tasters and chemical analysis methods, although effective, are time-consuming,...

Full description

Saved in:
Bibliographic Details
Published inFoods Vol. 13; no. 22; p. 3586
Main Authors Almario, Alvaro Arrieta, Calabokis, Oriana Palma, Barrera, Eisa Arrieta
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 10.11.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to the lucrative coffee market, this product is often subject to adulteration, as inferior or non-coffee materials or varieties are mixed in, negatively affecting its quality. Traditional sensory evaluations by expert tasters and chemical analysis methods, although effective, are time-consuming, costly, and require skilled personnel. The aim of this work was to evaluate the capacity of a smart electronic tongue (e-tongue) based on a polypyrrole sensor array as a tool for the rapid analysis of coffees elaborated from beans of different varieties. The smart e-tongue device was developed with a polypyrrole-based voltammetric sensor array and portable multi-potentiostat operated via smartphone. The sensor array comprised seven electrodes, each doped with distinct counterions to enhance cross-selectivity. The smart e-tongue was tested on five Arabica coffee varieties (Typica, Bourbon, Maragogype, Tabi, and Caturra). The resulting voltammetric signals were analyzed using principal component analysis assisted by neural networks (PCNN) and cluster analysis (CA), enabling clear discrimination among the coffee samples. The results demonstrate that the polypyrrole sensors can generate distinct electrochemical patterns, serving as “fingerprints” for each coffee variety. This study highlights the potential of polypyrrole-based smart e-tongues as a rapid, cost-effective, and portable alternative for coffee quality assessment and adulteration detection, with broader applications in the food and beverage industry.
AbstractList Due to the lucrative coffee market, this product is often subject to adulteration, as inferior or non-coffee materials or varieties are mixed in, negatively affecting its quality. Traditional sensory evaluations by expert tasters and chemical analysis methods, although effective, are time-consuming, costly, and require skilled personnel. The aim of this work was to evaluate the capacity of a smart electronic tongue (e-tongue) based on a polypyrrole sensor array as a tool for the rapid analysis of coffees elaborated from beans of different varieties. The smart e-tongue device was developed with a polypyrrole-based voltammetric sensor array and portable multi-potentiostat operated via smartphone. The sensor array comprised seven electrodes, each doped with distinct counterions to enhance cross-selectivity. The smart e-tongue was tested on five Arabica coffee varieties (Typica, Bourbon, Maragogype, Tabi, and Caturra). The resulting voltammetric signals were analyzed using principal component analysis assisted by neural networks (PCNN) and cluster analysis (CA), enabling clear discrimination among the coffee samples. The results demonstrate that the polypyrrole sensors can generate distinct electrochemical patterns, serving as “fingerprints” for each coffee variety. This study highlights the potential of polypyrrole-based smart e-tongues as a rapid, cost-effective, and portable alternative for coffee quality assessment and adulteration detection, with broader applications in the food and beverage industry.
Due to the lucrative coffee market, this product is often subject to adulteration, as inferior or non-coffee materials or varieties are mixed in, negatively affecting its quality. Traditional sensory evaluations by expert tasters and chemical analysis methods, although effective, are time-consuming, costly, and require skilled personnel. The aim of this work was to evaluate the capacity of a smart electronic tongue (e-tongue) based on a polypyrrole sensor array as a tool for the rapid analysis of coffees elaborated from beans of different varieties. The smart e-tongue device was developed with a polypyrrole-based voltammetric sensor array and portable multi-potentiostat operated via smartphone. The sensor array comprised seven electrodes, each doped with distinct counterions to enhance cross-selectivity. The smart e-tongue was tested on five Arabica coffee varieties (Typica, Bourbon, Maragogype, Tabi, and Caturra). The resulting voltammetric signals were analyzed using principal component analysis assisted by neural networks (PCNN) and cluster analysis (CA), enabling clear discrimination among the coffee samples. The results demonstrate that the polypyrrole sensors can generate distinct electrochemical patterns, serving as "fingerprints" for each coffee variety. This study highlights the potential of polypyrrole-based smart e-tongues as a rapid, cost-effective, and portable alternative for coffee quality assessment and adulteration detection, with broader applications in the food and beverage industry.Due to the lucrative coffee market, this product is often subject to adulteration, as inferior or non-coffee materials or varieties are mixed in, negatively affecting its quality. Traditional sensory evaluations by expert tasters and chemical analysis methods, although effective, are time-consuming, costly, and require skilled personnel. The aim of this work was to evaluate the capacity of a smart electronic tongue (e-tongue) based on a polypyrrole sensor array as a tool for the rapid analysis of coffees elaborated from beans of different varieties. The smart e-tongue device was developed with a polypyrrole-based voltammetric sensor array and portable multi-potentiostat operated via smartphone. The sensor array comprised seven electrodes, each doped with distinct counterions to enhance cross-selectivity. The smart e-tongue was tested on five Arabica coffee varieties (Typica, Bourbon, Maragogype, Tabi, and Caturra). The resulting voltammetric signals were analyzed using principal component analysis assisted by neural networks (PCNN) and cluster analysis (CA), enabling clear discrimination among the coffee samples. The results demonstrate that the polypyrrole sensors can generate distinct electrochemical patterns, serving as "fingerprints" for each coffee variety. This study highlights the potential of polypyrrole-based smart e-tongues as a rapid, cost-effective, and portable alternative for coffee quality assessment and adulteration detection, with broader applications in the food and beverage industry.
Audience Academic
Author Barrera, Eisa Arrieta
Calabokis, Oriana Palma
Almario, Alvaro Arrieta
AuthorAffiliation 1 Department of Biology and Chemistry, Universidad de Sucre, Sincelejo 700001, Colombia; eisa.v.arrieta@gmail.com
2 Faculty of Engineering and Basic Sciences, Fundación Universitaria Los Libertadores, Bogotá 111221, Colombia; opalmac@libertadores.edu.co
AuthorAffiliation_xml – name: 2 Faculty of Engineering and Basic Sciences, Fundación Universitaria Los Libertadores, Bogotá 111221, Colombia; opalmac@libertadores.edu.co
– name: 1 Department of Biology and Chemistry, Universidad de Sucre, Sincelejo 700001, Colombia; eisa.v.arrieta@gmail.com
Author_xml – sequence: 1
  givenname: Alvaro Arrieta
  orcidid: 0000-0003-0610-847X
  surname: Almario
  fullname: Almario, Alvaro Arrieta
– sequence: 2
  givenname: Oriana Palma
  orcidid: 0000-0003-0346-2609
  surname: Calabokis
  fullname: Calabokis, Oriana Palma
– sequence: 3
  givenname: Eisa Arrieta
  surname: Barrera
  fullname: Barrera, Eisa Arrieta
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39594001$$D View this record in MEDLINE/PubMed
BookMark eNptkstvEzEQxleoiJbSI1dkiQuXLbZnvY8TCqFApUogGrhas34ER5udYG-Q8t_jkBY1Fbbkx_g3n_1Z87w4GWl0RfFS8EuAjr_1RDYJkBJUWz8pziTwqmyFak8erE-Li5RWPLdOQAvyWXEKneoqzsVZQbdrjBO7Khc0LreOvcfkLKORfaVht9nFSINjt25MFNksRtwxTGxBNDCfI99wEyybjTjsUkiMPJuT984l5iOt2YeQN9GNE_uBMbgpuPSieOpxSO7ibj4vvn-8Wsw_lzdfPl3PZzelUVJMJUi0dS9s1eexc43zvGl6p7hSxva96dGi9eCNaCpjuahN5wRg3aLivO8Azovrg64lXOlNDNnmThMG_TdAcamz72AGp2ve1NiYxvpaVqgAlVDcihqllQ2Yvda7g9Zm26-dNdlQxOFI9PhkDD_1kn5rIfI3C9VkhTd3CpF-bV2a9Dok44YBR0fbpEEAVAKaqs3o60foirYx__CB4hLaWmbq8kAtMTsIo6d8scndunUwuUh8yPFZK1rJObT7hFcPPfx7_H0lZAAOgImUUnRemzDhFGhvKQxacL0vOX1UcjmrfJR1L_x__g9jHNhc
CitedBy_id crossref_primary_10_3390_app15031530
Cites_doi 10.1080/00032719.2013.816963
10.3390/pr10010071
10.1016/j.surfcoat.2006.11.009
10.1016/j.snb.2019.05.065
10.1016/j.talanta.2020.121253
10.3390/foods10112811
10.1201/9781420031898
10.1016/j.aca.2010.10.027
10.1016/j.aca.2022.340114
10.1016/j.bios.2017.03.072
10.1016/j.jelechem.2021.115815
10.3390/foods11091330
10.1016/j.talanta.2017.09.027
10.1016/j.bios.2022.114438
10.1016/j.trac.2017.10.009
10.1016/j.foodcont.2016.06.011
10.1016/0925-4005(90)85006-K
10.1016/j.foodchem.2010.05.006
10.1002/pat.5201
10.1016/j.electacta.2023.142011
10.4067/S0718-33052016000300009
10.1007/s11694-024-02608-5
10.1016/j.tifs.2024.104411
10.1016/j.foodchem.2018.10.091
10.14716/ijtech.v11i2.3225
10.1039/C9PY00033J
10.1016/j.jenvman.2022.116881
10.1016/j.foodcont.2020.107265
10.1016/j.apmt.2017.09.001
10.1016/j.foodqual.2019.103802
10.1016/j.foodcont.2020.107608
10.1007/978-3-540-73750-6
10.1007/s12161-016-0756-3
10.1016/j.tifs.2024.104415
10.1016/j.snb.2018.04.050
10.1021/acs.analchem.1c03709
10.1351/pac200577111965
10.1016/j.foodchem.2013.09.066
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
3V.
7QR
7T7
7X2
8FD
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
HCIFZ
M0K
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/foods13223586
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest SciTech Premium Collection
Agriculture Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database
MEDLINE - Academic

PubMed

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Diet & Clinical Nutrition
EISSN 2304-8158
ExternalDocumentID oai_doaj_org_article_6076a7c7df624a53a5150d16a2d273c3
PMC11594157
A818200382
39594001
10_3390_foods13223586
Genre Journal Article
GeographicLocations United States
United States--US
GeographicLocations_xml – name: United States
– name: United States--US
GrantInformation_xml – fundername: Fundación Universitaria Los Libertadores-Colombia (FULL)
  grantid: Project N° ING-07-24
– fundername: Fundación Universitaria Los Libertadores-Colombia (FULL)
  grantid: ING–07–24
GroupedDBID 53G
5VS
7X2
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
ITC
KQ8
M0K
M48
MODMG
M~E
OK1
OZF
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
PMFND
3V.
7QR
7T7
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c521t-32ad6b1d4b6b19e7ef077be5055cdbbcbadadf3fc174cd016c9e13a68a500b933
IEDL.DBID M48
ISSN 2304-8158
IngestDate Wed Aug 27 01:14:19 EDT 2025
Thu Aug 21 18:35:09 EDT 2025
Fri Jul 11 09:26:11 EDT 2025
Mon Jun 30 14:12:05 EDT 2025
Tue Jun 10 20:57:53 EDT 2025
Thu Apr 03 07:27:29 EDT 2025
Tue Jul 01 02:58:43 EDT 2025
Thu Apr 24 23:11:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords polypyrrole
smart e-tongue
coffee
sensor array
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-32ad6b1d4b6b19e7ef077be5055cdbbcbadadf3fc174cd016c9e13a68a500b933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0346-2609
0000-0003-0610-847X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/foods13223586
PMID 39594001
PQID 3133023862
PQPubID 2032399
ParticipantIDs doaj_primary_oai_doaj_org_article_6076a7c7df624a53a5150d16a2d273c3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11594157
proquest_miscellaneous_3133413748
proquest_journals_3133023862
gale_infotracacademiconefile_A818200382
pubmed_primary_39594001
crossref_citationtrail_10_3390_foods13223586
crossref_primary_10_3390_foods13223586
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241110
PublicationDateYYYYMMDD 2024-11-10
PublicationDate_xml – month: 11
  year: 2024
  text: 20241110
  day: 10
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Foods
PublicationTitleAlternate Foods
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References (ref_44) 2018; 267
Arrieta (ref_39) 2018; 12
Domingues (ref_12) 2014; 146
Yang (ref_18) 2021; 121
Sporchia (ref_2) 2023; 327
ref_13
Welna (ref_11) 2013; 46
Feng (ref_16) 2019; 10
Campmajo (ref_7) 2020; 114
Mondal (ref_22) 2024; 18
Jain (ref_30) 2017; 97
Spence (ref_1) 2020; 80
Wang (ref_10) 2020; 1
Zhong (ref_36) 2021; 902
ref_37
Gabrieli (ref_33) 2021; 93
Azpeitia (ref_34) 2023; 444
Tweed (ref_6) 2017; 10
Freitas (ref_3) 2024; 146
Shrestha (ref_31) 2017; 94
Tavares (ref_9) 2016; 70
Eloisa (ref_8) 2024; 147
Hayashi (ref_15) 1990; 2
Winquist (ref_17) 2011; 683
Walsh (ref_41) 2007; 201
Kamiloglu (ref_5) 2019; 277
Liu (ref_35) 2019; 295
Vlasov (ref_14) 2005; 77
Pigani (ref_24) 2017; 178
Pang (ref_29) 2021; 32
ref_43
ref_20
Vahdatiyekta (ref_21) 2022; 1221
ref_42
Shim (ref_28) 2017; 9
Arrieta (ref_38) 2015; 10
Arrieta (ref_23) 2010; 123
Arrieta (ref_32) 2016; 82
ref_27
ref_26
Arrieta (ref_40) 2016; 24
Ceto (ref_19) 2020; 219
Arrieta (ref_25) 2020; 11
ref_4
References_xml – volume: 46
  start-page: 2927
  year: 2013
  ident: ref_11
  article-title: Applicability of ICP-OES, UV-VIS, and FT-IR Methods for the Analysis of Coffee Products
  publication-title: Anal. Lett.
  doi: 10.1080/00032719.2013.816963
– ident: ref_13
  doi: 10.3390/pr10010071
– volume: 201
  start-page: 6025
  year: 2007
  ident: ref_41
  article-title: Electrochemically deposited polypyrrole films and their characterization
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2006.11.009
– volume: 295
  start-page: 86
  year: 2019
  ident: ref_35
  article-title: A flexible NO2 gas sensor based on polypyrrole/nitrogen-doped multiwall carbon nanotube operating at room temperature
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2019.05.065
– volume: 219
  start-page: 121253
  year: 2020
  ident: ref_19
  article-title: Voltammetric electronic tongue for vinegar fingerprinting
  publication-title: Talanta
  doi: 10.1016/j.talanta.2020.121253
– ident: ref_27
  doi: 10.3390/foods10112811
– volume: 82
  start-page: 152
  year: 2016
  ident: ref_32
  article-title: Optimization of the synthesis of polypyrrole for the elaboration of a array of sensors electrochemical (electronic tongue)
  publication-title: J. Peru Chem. Soc.
– ident: ref_42
  doi: 10.1201/9781420031898
– volume: 683
  start-page: 192
  year: 2011
  ident: ref_17
  article-title: Multicomponent analysis of drinking water by a voltammetric electronic tongue
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2010.10.027
– volume: 1221
  start-page: 340114
  year: 2022
  ident: ref_21
  article-title: A review on conjugated polymer-based electronic tongues
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2022.340114
– volume: 94
  start-page: 686
  year: 2017
  ident: ref_31
  article-title: In situ synthesis of cylindrical spongy polypyrrole doped protonated graphitic carbon nitride for cholesterol sensing application
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2017.03.072
– volume: 902
  start-page: 115815
  year: 2021
  ident: ref_36
  article-title: A high-performance electrochemical sensor for the determination of Pb(II) based on conductive dopamine polymer doped polypyrrole hidrogel
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2021.115815
– ident: ref_26
  doi: 10.3390/foods11091330
– volume: 178
  start-page: 178
  year: 2017
  ident: ref_24
  article-title: Prediction of parameters related to grape ripening by multivariate calibration of voltammetric signals acquired by an electronic tongue
  publication-title: Talanta
  doi: 10.1016/j.talanta.2017.09.027
– ident: ref_20
  doi: 10.1016/j.bios.2022.114438
– volume: 97
  start-page: 363
  year: 2017
  ident: ref_30
  article-title: Polypyrrole based next generation electrochemical sensors and biosensors: A review
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2017.10.009
– ident: ref_37
– volume: 70
  start-page: 318
  year: 2016
  ident: ref_9
  article-title: Free tocopherols as chemical markers for Arabica coffee adulteration with maize and coffee by-products
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2016.06.011
– volume: 2
  start-page: 205
  year: 1990
  ident: ref_15
  article-title: Multichannel taste sensor using lipid membranes
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/0925-4005(90)85006-K
– volume: 123
  start-page: 642
  year: 2010
  ident: ref_23
  article-title: Prediction of bitterness and alcoholic strength in beer using an electronic tongue
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2010.05.006
– volume: 32
  start-page: 1428
  year: 2021
  ident: ref_29
  article-title: Synthesis and factor affecting on the conductivity of polypyrrole: A short review
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.5201
– volume: 444
  start-page: 142011
  year: 2023
  ident: ref_34
  article-title: Benchmarking electrodes modified with bi-doped polypyrrole for sensing applications
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2023.142011
– volume: 24
  start-page: 445
  year: 2016
  ident: ref_40
  article-title: Portable Electronic Tongue for the Analysis of Raw Milk Based on PSoC (Programmable System on Chip) and Android Technology
  publication-title: Ingeniare J. Chil. Eng.
  doi: 10.4067/S0718-33052016000300009
– volume: 18
  start-page: 5779
  year: 2024
  ident: ref_22
  article-title: Disposable paper-based sensor array for detection of orange juice adulteration
  publication-title: J. Food Meas. Charact.
  doi: 10.1007/s11694-024-02608-5
– volume: 1
  start-page: 11
  year: 2020
  ident: ref_10
  article-title: Review of Analytical Methods to Detect Adulteration in Coffee
  publication-title: J. AOAC Int.
– volume: 146
  start-page: 104411
  year: 2024
  ident: ref_3
  article-title: Coffee: A comprehensive overview of origin, market, and the quality process
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2024.104411
– ident: ref_4
– volume: 277
  start-page: 12
  year: 2019
  ident: ref_5
  article-title: Authenticity and traceability in beverages
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2018.10.091
– volume: 11
  start-page: 288
  year: 2020
  ident: ref_25
  article-title: Mini-electronic Tongue Used to Discriminate between Coffee Samples of Different Geographical Origin
  publication-title: Int. J. Technol.
  doi: 10.14716/ijtech.v11i2.3225
– volume: 10
  start-page: 2256
  year: 2019
  ident: ref_16
  article-title: Fluorescent Electronic Tongue Based on Soluble Conjugated Polymeric Nanoparticles for the Discrimination of Heavy Metal Ions in Aqueous Solution
  publication-title: Polym. Chem.
  doi: 10.1039/C9PY00033J
– volume: 327
  start-page: 116881
  year: 2023
  ident: ref_2
  article-title: Estimating the impact on water scarcity due to coffee production, trade, and consumption worldwide and a focus on EU
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2022.116881
– volume: 114
  start-page: 107265
  year: 2020
  ident: ref_7
  article-title: High-performance liquid chromatography with fluorescence detection fingerprinting combined with chemometrics for nut classification and the detection and quantitation of almondbased product adulterations
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2020.107265
– volume: 9
  start-page: 419
  year: 2017
  ident: ref_28
  article-title: Applications of conducting polymer composites to electrochemical sensors: A review
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2017.09.001
– volume: 80
  start-page: 103802
  year: 2020
  ident: ref_1
  article-title: The coffee drinking experience: Product extrinsic (atmospheric) influences on taste and choice
  publication-title: Food Qual. Prefer.
  doi: 10.1016/j.foodqual.2019.103802
– volume: 10
  start-page: 782
  year: 2015
  ident: ref_38
  article-title: Android and PSoC Technology Applied to Electronic Tongue Development
  publication-title: J. Appl. Sci. Eng. Technol.
– volume: 121
  start-page: 107608
  year: 2021
  ident: ref_18
  article-title: Employment of an electronic tongue combined with deep learning and transfer learning for discriminating the storage time of Pu-erh tea
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2020.107608
– ident: ref_43
  doi: 10.1007/978-3-540-73750-6
– volume: 10
  start-page: 2302
  year: 2017
  ident: ref_6
  article-title: Ground roast coffee: Review of analytical strategies to estimate geographic origin, species authenticity and adulteration by dilution
  publication-title: Food Anal. Methods
  doi: 10.1007/s12161-016-0756-3
– volume: 147
  start-page: 104415
  year: 2024
  ident: ref_8
  article-title: Industrial food quality and consumer choice: Artificial intelligence-based tools in the chemistry of sensory notes in comfort foods (coffee, cocoa and tea)
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2024.104415
– volume: 267
  start-page: 570
  year: 2018
  ident: ref_44
  article-title: Comparison of various data analysis techniques applied for the classification of pharmaceutical samples by electronic tongue
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2018.04.050
– volume: 93
  start-page: 16853
  year: 2021
  ident: ref_33
  article-title: Combining an integrated sensor array with machine learning for the simultaneous quantification of multiple cations in aqueous mixtures
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.1c03709
– volume: 77
  start-page: 1965
  year: 2005
  ident: ref_14
  article-title: Nonspecific Sensor Arrays (“Electronic Tongue”) for Chemical Analysis of Liquids (IUPAC Technical Report)
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac200577111965
– volume: 12
  start-page: 28
  year: 2018
  ident: ref_39
  article-title: Miniaturised Multi-Channel System of Electrochemical Measurements for an Electronic Tongue for Milk Samples
  publication-title: Maejo Int. J. Sci. Technol.
– volume: 146
  start-page: 353
  year: 2014
  ident: ref_12
  article-title: Detection of roasted and ground coffee adulteration by HPLC by amperometric and by post-column derivatization UV–Vis detection
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2013.09.066
SSID ssj0000913832
Score 2.2941613
Snippet Due to the lucrative coffee market, this product is often subject to adulteration, as inferior or non-coffee materials or varieties are mixed in, negatively...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3586
SubjectTerms Acids
Arrays
Beverage industry
Chemical analysis
Chemical sensors
Cluster analysis
Coffee
Coffee industry
Electrochemistry
Electrodes
Electronic tongues
Food industry
Food quality
Integrated circuits
Neural networks
Pattern recognition
polypyrrole
Polypyrroles
Portable equipment
Potassium
Principal components analysis
Quality assessment
Quality control
Reagents
sensor array
Sensor arrays
Sensors
Sensory evaluation
Sensory properties
smart e-tongue
Smartphones
Sodium
Software
Voltammetry
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp15Km77cJmEKIb3UxLZsSz7mSSgklGZTcjN6tgtba9nHYf99ZmzvYlNKL734YAmjx0jzfXjmG8aOhdR57hIZC2spJcfIWHJDMq65oFK36DQpd_j2rrx5yL8-Fo-DUl8UE9bJA3cLd1oi0VbCCOvLLFcFV-iAE5uWKrPoeU2r84k-b0Cm2ju4SpF6ZZ2oJkdef-pDsEuiXrygvOmBE2q1-v-8kQcuaRwuOfA_1y_Zix44wlk34FfsmWv2WXQ5dSs4gV7dcwZ3W3H91yzc_8bZwVU8Cc3PtYNz9FcWQgPfwmwz3yworhDukcWGBX51oTagljAJYQaIY-G7mk8tbCVLIHi4CN47twRKSIHLvq7KCn4Q2SZV1jfs4fpqcnET9-UVYkNVDGKeKVvq1OYan5UTzidCaIeQqDBWa6OVVdZzb5C0GIvQ0FQu5aqUVERBV5y_ZXtNaNx7BpQOYAqe6woRIGI47VKvfZLZ1FcKSU7EvmzXuza99jiVwJjVyEFoe-rR9kTsZNd93olu_K3jOW3erhNpZbcv0ILq3oLqf1lQxD7T1td0onFQRvWJCTg10saqzySJ3CdcZhE72FpH3R_1Zc2R5RPwKbH5064ZDyn9eVGNC-uuD6IFkcuIveuMaTdmXhVUnD6NmByZ2WhS45Zm-qsVAkc0XyEAEx_-xzJ8ZM8zBGxxG-J4wPZWi7U7RMC10kft2XoC-zEoYQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9NAEF1Be-GC-MZQ0CKhcsGq7bW99gk1baoKiahqU9SbtZ8lUvCGODnk3zNjr00sBBcf7FW0zszsvLfeeUPIR17INDVREXKtsSRHFWHBFMq4phxb3ULSxNrhb7P88jb9epfd-Q23xh-r7NfEdqHWTuEe-QkDMoX5JU--rH6F2DUKv676FhoPySEswQWQr8PJdHZ1PeyyoOol-GwnrsmA359Y53SDFIxlWD-9l4xazf6_V-a91DQ-NrmXhy6ekMceQNLTzuJPyQNTPyPB-cJs6DH1Kp9LOutF9p8Td_MT3INOw7mr77eGTiBvaepqeuWWu9VujecL6Q2wWbeGX12LHRUNnTu3pIBn6bVYLTTtpUuos_TMWWtMQ7EwhZ77_iob-h1JN6qzviC3F9P52WXo2yyECrsZhCwROpexTiVcS8ONjTiXBqBRprSUSgottGVWAXlRGiCiKk3MRF5gMwVZMvaSHNSuNq8JxbIAlbFUloAEActJE1tpo0THthRAdgLyuf-_K-U1yLEVxrICLoLmqUbmCcjxMHzViW_8a-AEjTcMQs3s9oZb31c-BKs84rngimubJ6nImAAoF-k4F4kGDKdYQD6h6SuMbJiUEr5AAV4NNbKq0wLF7iNWJAE56r2j8iHfVH8cNCAfhscQrPgFRtTGbbsxgBp4WgTkVedMw5xZmWGT-jggxcjNRi81flIvfrSC4IDqSwBi_M3_5_WWPEoAkoXtIcYjcrBZb807gFQb-d7HzW_ELyH0
  priority: 102
  providerName: ProQuest
Title Smart E-Tongue Based on Polypyrrole Sensor Array as Tool for Rapid Analysis of Coffees from Different Varieties
URI https://www.ncbi.nlm.nih.gov/pubmed/39594001
https://www.proquest.com/docview/3133023862
https://www.proquest.com/docview/3133413748
https://pubmed.ncbi.nlm.nih.gov/PMC11594157
https://doaj.org/article/6076a7c7df624a53a5150d16a2d273c3
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5Be-GCeGMo0SKhcsFge22vfUCoaVNVSI2qNkG9WfsskYw3OIlE_j0zfoRahQsXH7xry_bMeL7P3vmGkHc8k3FsgsznWmNJjsr8jCmUcY05trqFpIm1w-fT9Gwef71Orv9ICnUPcPVXaof9pOZ1-fHXz-0XCPjPyDiBsn-yzukVsiqWZOl9sg9JiWOMnndIv3kp5yFwsahV2bx71CArNeL9d1_Rt3LUcP3krYR0-og87JAkPWpN_5jcM9UT4p0szJoe0k7us6TTXm3_KXFXP8BP6MSfuepmY-gYEpimrqIXrtwutzUuNKRXQGtdDWetxZaKFZ05V1IAtvRSLBea9hom1Fl67Kw1ZkWxQoWedI1W1vQbsm-UaX1G5qeT2fGZ3_Vb8BW2NfBZJHQqQx1L2OaGGxtwLg1gpERpKZUUWmjLrAIWozRgRZWbkIk0w64KMmfsOdmrXGVeEor1ASphscwBEgKokya00gaRDm0ugPV45EP_vAvViZFjT4yyAFKC5ikG5vHI4W76slXh-NfEMRpvNwnFs5sdrr4pulgs0oCngiuubRrFImECMF2gw1REGsCcYh55j6Yv0OngopToKhXg1lAsqzjKUPU-YFnkkYPeO4redQsGtB-RUArDb3fDELX4K0ZUxm3aOQAfeJx55EXrTLtrZnmC3epDj2QDNxvc1HCkWnxvlMEB3ueAyPir_z_0NXkQAW7zm5WOB2RvXW_MG8Bdazki--PJ9OJy1Hy3GDXx9RtiwzIc
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V6QEuiDemBRYJygWrttf22geEmiZVStuoalPUm9lniZR6Qx5C-VP8RmZiOyRCcOvFB3tlrT2vb3Z3viHkHc9kHJsg87nWWJKjMj9jCmlcY46tbiFoYu3wWT_tXcVfrpPrLfKrqYXBY5WNT1w6au0UrpHvM0imML6k0efxDx-7RuHuatNCo1KLE7P4CSnb9NNxB-T7PoqOuoPDnl93FfAVkvf7LBI6laGOJVxzw40NOJcGkECitJRKCi20ZVYBVlcaEJHKTchEmmHvAJnjAii4_O2YQSrTItvtbv_8YrWqgyybYCMVmSdjebBvndNTTPlYgvXaa8Fv2SPg70iwFgo3j2muxb2jh-RBDVjpQaVhj8iWKR8TrzM0M7pHa1bREe03pP5PiLu8BXWkXX_gypu5oW2Ik5q6kp670WK8mOB5RnoJ2bObwFsnYkHFlA6cG1HAz_RCjIeaNlQp1Fl66Kw1ZkqxEIZ26n4uM_oVk3xkg31Kru5EAM9Iq3SleUEoliGohMUyB-QJ2FGa0EobRDq0uYDkyiMfm_9dqJrzHFtvjArIfVA8xYZ4PLK3Gj6uyD7-NbCNwlsNQo7u5Q03uSlqky_SgKeCK65tGsUiYQKgY6DDVEQaMKNiHvmAoi_Qk8CklKgLIuDTkJOrOMiQXD9gWeSR3UY7itrFTIs_BuGRt6vH4Bxwx0eUxs2rMYBSeJx55HmlTKs5szzJwYGHHsk21GzjozaflMPvSwJyyCJyAH785f_n9Ybc6w3OTovT4_7JDrkfARz0lwcod0lrNpmbVwDnZvJ1bUOUfLtrs_0NkDxg9Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VqYS4IN4YCiwSlAtWbK_ttQ8INU2ilkIUtSnqzeyzRArekIdQ_hq_jpnYDokQ3HrxwV5F68zrm_XMN4S85pmMYxNkPtcaW3JU5mdMIY1rzHHULQRN7B3-PEhPLuOPV8nVHvnV9MJgWWXjE9eOWjuFZ-RtBskUxpc0atu6LGLY7X-Y_vBxghR-aW3GaVQqcmZWPyF9m78_7YKs30RRvzc6PvHrCQO-QiJ_n0VCpzLUsYRrbrixAefSACpIlJZSSaGFtswqwO1KAzpSuQmZSDOcIyBzPAwF97_PISsKWmS_0xsMzzcnPMi4CfZSEXsylgdt65yeY_rHEuzd3gqE63kBf0eFrbC4W7K5FQP7d8mdGrzSo0rb7pE9U94nXndsFvSQ1gyjEzpoCP4fEHfxHVST9vyRK6-XhnYgZmrqSjp0k9V0NcPaRnoBmbSbwa_OxIqKOR05N6GApem5mI41bWhTqLP02FlrzJxiUwzt1rNdFvQLJvzIDPuQXN6IAB6RVulK84RQbElQCYtlDigUcKQ0oZU2iHRocwGJlkfeNf93oWr-cxzDMSkgD0LxFDvi8cjhZvm0Iv7418IOCm-zCPm61zfc7Lqozb9IA54Krri2aRSLhAmAkYEOUxFpwI-KeeQtir5ArwKbUqJujoBXQ36u4ihDov2AZZFHDhrtKGp3My_-GIdHXm0eg6PArz-iNG5ZrQHEwuPMI48rZdrsmeVJDs489Ei2o2Y7L7X7pBx_W5ORQ0aRAwjkT_-_r5fkFphr8el0cPaM3I4AGfrrWsoD0lrMluY5ILuFfFGbECVfb9pqfwPLUWUq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+E-Tongue+Based+on+Polypyrrole+Sensor+Array+as+Tool+for+Rapid+Analysis+of+Coffees+from+Different+Varieties&rft.jtitle=Foods&rft.au=Almario%2C+Alvaro+Arrieta&rft.au=Calabokis%2C+Oriana+Palma&rft.au=Barrera%2C+Eisa+Arrieta&rft.date=2024-11-10&rft.pub=MDPI&rft.eissn=2304-8158&rft.volume=13&rft.issue=22&rft_id=info:doi/10.3390%2Ffoods13223586&rft.externalDocID=PMC11594157
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2304-8158&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2304-8158&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2304-8158&client=summon