Does an Index Composed of Clinical Data Reflect Effects of Inflammation, Coagulation, and Monocyte Activation on Mortality Among Those Aging With HIV?
Background. When added to age, CD4 count and human immunodeficiency virus type 1 (HIV-1) RNA alone (Restricted Index), hemoglobin, FIB-4 Index, hepatitis C virus (HCV), and estimated glomerular filtration rate improve prediction of mortality. Weighted and combined, these 7 routine clinical variables...
Saved in:
Published in | Clinical infectious diseases Vol. 54; no. 7; pp. 984 - 994 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
01.04.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background. When added to age, CD4 count and human immunodeficiency virus type 1 (HIV-1) RNA alone (Restricted Index), hemoglobin, FIB-4 Index, hepatitis C virus (HCV), and estimated glomerular filtration rate improve prediction of mortality. Weighted and combined, these 7 routine clinical variables constitute the Veterans Aging Cohort Study (VACS) Index. Because nonroutine biomarkers of inflammation (interleukin 6 [IL-6]), coagulation (D-dimer), and monocyte activation (sCD14) also predict mortality, we test the association of these indices and biomarkers with each other and with mortality. Methods. Samples from 1302 HIV-infected veterans on antiretroviral therapy were analyzed. Indices were calculated closest to date of collection. We calculated Spearman correlations stratified by HIV-1 RNA and HCV status and measured association with mortality using C statistics and net reclassification improvement (NRI). Results. Of 1302 subjects, 915 had HIV-1 RNA <500 copies/mL and 154 died. The VACS Index was more correlated with IL-6, D-dimer, and sCD14 than the Restricted Index (P < .001). It was also more predictive of mortality (C statistic, 0.76; 95% confidence interval [CI], .72-.80) than any biomarker (C statistic, 0.66-0.70) or the Restricted Index (C statistic, 0.71; 95% CI, .67-.75). Compared to the Restricted Index alone, NRI resulted from incremental addition of VACS Index components (10%), D-dimer (7%), and sCD14 (4%), but not from IL-6 (0%). Conclusions. Among HIV-infected individuals, independent of CD4, HIV-1 RNA, and age, hemoglobin and markers of liver and renal injury are associated with inflammation. Addition of D-dimer and sCD14, but not IL-6, improves the predictive accuracy of the VACS Index for mortality. |
---|---|
AbstractList | When added to age, CD4 count and human immunodeficiency virus type 1 (HIV-1) RNA alone (Restricted Index), hemoglobin, FIB-4 Index, hepatitis C virus (HCV), and estimated glomerular filtration rate improve prediction of mortality. Weighted and combined, these 7 routine clinical variables constitute the Veterans Aging Cohort Study (VACS) Index. Because nonroutine biomarkers of inflammation (interleukin 6 [IL-6]), coagulation (D-dimer), and monocyte activation (sCD14) also predict mortality, we test the association of these indices and biomarkers with each other and with mortality.BACKGROUNDWhen added to age, CD4 count and human immunodeficiency virus type 1 (HIV-1) RNA alone (Restricted Index), hemoglobin, FIB-4 Index, hepatitis C virus (HCV), and estimated glomerular filtration rate improve prediction of mortality. Weighted and combined, these 7 routine clinical variables constitute the Veterans Aging Cohort Study (VACS) Index. Because nonroutine biomarkers of inflammation (interleukin 6 [IL-6]), coagulation (D-dimer), and monocyte activation (sCD14) also predict mortality, we test the association of these indices and biomarkers with each other and with mortality.Samples from 1302 HIV-infected veterans on antiretroviral therapy were analyzed. Indices were calculated closest to date of collection. We calculated Spearman correlations stratified by HIV-1 RNA and HCV status and measured association with mortality using C statistics and net reclassification improvement (NRI).METHODSSamples from 1302 HIV-infected veterans on antiretroviral therapy were analyzed. Indices were calculated closest to date of collection. We calculated Spearman correlations stratified by HIV-1 RNA and HCV status and measured association with mortality using C statistics and net reclassification improvement (NRI).Of 1302 subjects, 915 had HIV-1 RNA <500 copies/mL and 154 died. The VACS Index was more correlated with IL-6, D-dimer, and sCD14 than the Restricted Index (P < .001). It was also more predictive of mortality (C statistic, 0.76; 95% confidence interval [CI], .72-.80) than any biomarker (C statistic, 0.66-0.70) or the Restricted Index (C statistic, 0.71; 95% CI, .67-.75). Compared to the Restricted Index alone, NRI resulted from incremental addition of VACS Index components (10%), D-dimer (7%), and sCD14 (4%), but not from IL-6 (0%).RESULTSOf 1302 subjects, 915 had HIV-1 RNA <500 copies/mL and 154 died. The VACS Index was more correlated with IL-6, D-dimer, and sCD14 than the Restricted Index (P < .001). It was also more predictive of mortality (C statistic, 0.76; 95% confidence interval [CI], .72-.80) than any biomarker (C statistic, 0.66-0.70) or the Restricted Index (C statistic, 0.71; 95% CI, .67-.75). Compared to the Restricted Index alone, NRI resulted from incremental addition of VACS Index components (10%), D-dimer (7%), and sCD14 (4%), but not from IL-6 (0%).Among HIV-infected individuals, independent of CD4, HIV-1 RNA, and age, hemoglobin and markers of liver and renal injury are associated with inflammation. Addition of D-dimer and sCD14, but not IL-6, improves the predictive accuracy of the VACS Index for mortality.CONCLUSIONSAmong HIV-infected individuals, independent of CD4, HIV-1 RNA, and age, hemoglobin and markers of liver and renal injury are associated with inflammation. Addition of D-dimer and sCD14, but not IL-6, improves the predictive accuracy of the VACS Index for mortality. When added to age, CD4 count and human immunodeficiency virus type 1 (HIV-1) RNA alone (Restricted Index), hemoglobin, FIB-4 Index, hepatitis C virus (HCV), and estimated glomerular filtration rate improve prediction of mortality. Weighted and combined, these 7 routine clinical variables constitute the Veterans Aging Cohort Study (VACS) Index. Because nonroutine biomarkers of inflammation (interleukin 6 [IL-6]), coagulation (D-dimer), and monocyte activation (sCD14) also predict mortality, we test the association of these indices and biomarkers with each other and with mortality. Samples from 1302 HIV-infected veterans on antiretroviral therapy were analyzed. Indices were calculated closest to date of collection. We calculated Spearman correlations stratified by HIV-1 RNA and HCV status and measured association with mortality using C statistics and net reclassification improvement (NRI). Of 1302 subjects, 915 had HIV-1 RNA <500 copies/mL and 154 died. The VACS Index was more correlated with IL-6, D-dimer, and sCD14 than the Restricted Index (P < .001). It was also more predictive of mortality (C statistic, 0.76; 95% confidence interval [CI], .72-.80) than any biomarker (C statistic, 0.66-0.70) or the Restricted Index (C statistic, 0.71; 95% CI, .67-.75). Compared to the Restricted Index alone, NRI resulted from incremental addition of VACS Index components (10%), D-dimer (7%), and sCD14 (4%), but not from IL-6 (0%). Among HIV-infected individuals, independent of CD4, HIV-1 RNA, and age, hemoglobin and markers of liver and renal injury are associated with inflammation. Addition of D-dimer and sCD14, but not IL-6, improves the predictive accuracy of the VACS Index for mortality. The Veterans Aging Cohort Study (VACS) Index, based on age and 8 routine clinical tests, is strongly correlated with 3 biomarkers of inflammation: interleukin 6 (IL-6), D-dimer, and soluble CD14 (sCD14). After adjustment for the VACS Index, D-dimer and sCD14, but not IL-6, remain independently associated with mortality. Background. When added to age, CD4 count and human immunodeficiency virus type 1 (HIV-1) RNA alone (Restricted Index), hemoglobin, FIB-4 Index, hepatitis C virus (HCV), and estimated glomerular filtration rate improve prediction of mortality. Weighted and combined, these 7 routine clinical variables constitute the Veterans Aging Cohort Study (VACS) Index. Because nonroutine biomarkers of inflammation (interleukin 6 [IL-6]), coagulation (D-dimer), and monocyte activation (sCD14) also predict mortality, we test the association of these indices and biomarkers with each other and with mortality. Methods. Samples from 1302 HIV-infected veterans on antiretroviral therapy were analyzed. Indices were calculated closest to date of collection. We calculated Spearman correlations stratified by HIV-1 RNA and HCV status and measured association with mortality using C statistics and net reclassification improvement (NRI). Results. Of 1302 subjects, 915 had HIV-1 RNA <500 copies/mL and 154 died. The VACS Index was more correlated with IL-6, D-dimer, and sCD14 than the Restricted Index (P < .001). It was also more predictive of mortality (C statistic, 0.76; 95% confidence interval [CI], .72-.80) than any biomarker (C statistic, 0.66-0.70) or the Restricted Index (C statistic, 0.71; 95% CI, .67-.75). Compared to the Restricted Index alone, NRI resulted from incremental addition of VACS Index components (10%), D-dimer (7%), and sCD14 (4%), but not from IL-6 (0%). Conclusions. Among HIV-infected individuals, independent of CD4, HIV-1 RNA, and age, hemoglobin and markers of liver and renal injury are associated with inflammation. Addition of D-dimer and sCD14, but not IL-6, improves the predictive accuracy of the VACS Index for mortality. When added to age, CD4 count and human immunodeficiency virus type 1 (HIV-1) RNA alone (Restricted Index), hemoglobin, FIB-4 Index, hepatitis C virus (HCV), and estimated glomerular filtration rate improve prediction of mortality. Weighted and combined, these 7 routine clinical variables constitute the Veterans Aging Cohort Study (VACS) Index. Because nonroutine biomarkers of inflammation (interleukin 6 [IL-6]), coagulation (D-dimer), and monocyte activation (sCD14) also predict mortality, we test the association of these indices and biomarkers with each other and with mortality. Samples from 1302 HIV-infected veterans on antiretroviral therapy were analyzed. Indices were calculated closest to date of collection. We calculated Spearman correlations stratified by HIV-1 RNA and HCV status and measured association with mortality using C statistics and net reclassification improvement (NRI). Of 1302 subjects, 915 had HIV-1 RNA <500 copies/mL and 154 died. The VACS Index was more correlated with IL-6, D-dimer, and sCD14 than the Restricted Index (P < .001). It was also more predictive of mortality (C statistic, 0.76; 95% confidence interval [CI], .72-.80) than any biomarker (C statistic, 0.66-0.70) or the Restricted Index (C statistic, 0.71; 95% CI, .67-.75). Compared to the Restricted Index alone, NRI resulted from incremental addition of VACS Index components (10%), D-dimer (7%), and sCD14 (4%), but not from IL-6 (0%). Among HIV-infected individuals, independent of CD4, HIV-1 RNA, and age, hemoglobin and markers of liver and renal injury are associated with inflammation. Addition of D-dimer and sCD14, but not IL-6, improves the predictive accuracy of the VACS Index for mortality. Background. When added to age, CD4 count and human immunodeficiency virus type 1 (HIV-1) RNA alone (Restricted Index), hemoglobin, FIB-4 Index, hepatitis C virus (HCV), and estimated glomerular filtration rate improve prediction of mortality. Weighted and combined, these 7 routine clinical variables constitute the Veterans Aging Cohort Study (VACS) Index. Because nonroutine biomarkers of inflammation (interleukin 6 [IL-6]), coagulation (D-dimer), and monocyte activation (sCD14) also predict mortality, we test the association of these indices and biomarkers with each other and with mortality. Methods. Samples from 1302 HIV-infected veterans on antiretroviral therapy were analyzed. Indices were calculated closest to date of collection. We calculated Spearman correlations stratified by HIV-1 RNA and HCV status and measured association with mortality using C statistics and net reclassification improvement (NRI). Results. Of 1302 subjects, 915 had HIV-1 RNA <500 copies/mL and 154 died. The VACS Index was more correlated with IL-6, D-dimer, and sCD14 than the Restricted Index (P < .001). It was also more predictive of mortality (C statistic, 0.76; 95% confidence interval [CI], .72-.80) than any biomarker (C statistic, 0.66-0.70) or the Restricted Index (C statistic, 0.71; 95% CI, .67-.75). Compared to the Restricted Index alone, NRI resulted from incremental addition of VACS Index components (10%), D-dimer (7%), and sCD14 (4%), but not from IL-6 (0%). Conclusions. Among HIV-infected individuals, independent of CD4, HIV-1 RNA, and age, hemoglobin and markers of liver and renal injury are associated with inflammation. Addition of D-dimer and sCD14, but not IL-6, improves the predictive accuracy of the VACS Index for mortality. The Veterans Aging Cohort Study (VACS) Index, based on age and 8 routine clinical tests, is strongly correlated with 3 biomarkers of inflammation: interleukin 6 (IL-6), D -dimer, and soluble CD14 (sCD14). After adjustment for the VACS Index, D -dimer and sCD14, but not IL-6, remain independently associated with mortality. Background. When added to age, CD4 count and human immunodeficiency virus type 1 (HIV-1) RNA alone (Restricted Index), hemoglobin, FIB-4 Index, hepatitis C virus (HCV), and estimated glomerular filtration rate improve prediction of mortality. Weighted and combined, these 7 routine clinical variables constitute the Veterans Aging Cohort Study (VACS) Index. Because nonroutine biomarkers of inflammation (interleukin 6 [IL-6]), coagulation ( D -dimer), and monocyte activation (sCD14) also predict mortality, we test the association of these indices and biomarkers with each other and with mortality. Methods. Samples from 1302 HIV-infected veterans on antiretroviral therapy were analyzed. Indices were calculated closest to date of collection. We calculated Spearman correlations stratified by HIV-1 RNA and HCV status and measured association with mortality using C statistics and net reclassification improvement (NRI). Results. Of 1302 subjects, 915 had HIV-1 RNA <500 copies/mL and 154 died. The VACS Index was more correlated with IL-6, D -dimer, and sCD14 than the Restricted Index ( P < .001). It was also more predictive of mortality (C statistic, 0.76; 95% confidence interval [CI], .72–.80) than any biomarker (C statistic, 0.66–0.70) or the Restricted Index (C statistic, 0.71; 95% CI, .67–.75). Compared to the Restricted Index alone, NRI resulted from incremental addition of VACS Index components (10%), D -dimer (7%), and sCD14 (4%), but not from IL-6 (0%). Conclusions. Among HIV-infected individuals, independent of CD4, HIV-1 RNA, and age, hemoglobin and markers of liver and renal injury are associated with inflammation. Addition of D -dimer and sCD14, but not IL-6, improves the predictive accuracy of the VACS Index for mortality. |
Author | Tracy, Russ Rodriguez-Barradas, Maria C. Deeks, Steven G. Oursler, Kris Ann Justice, Amy C. Fiellin, David A. Vanasse, Gary J. Freiberg, Matthew S. Bryant, Kendall Gibert, Cynthia Goetz, Matthew Bidwell Tate, Janet P. Butt, Adeel A. Kuller, Lew |
AuthorAffiliation | 2 Section of General Internal Medicine 4 University of Pittsburgh School of Medicine 8 David Geffen School of Medicine, University of California, Los Angeles 16 Department of Medicine, University of California, San Francisco 5 University of Pittsburgh Graduate School of Public Health, Pennsylvania 9 Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 3 Department of Medicine, Yale University, New Haven, Connecticut 15 University of Maryland School of Medicine, Baltimore 11 Infectious Disease Section, Baylor College of Medicine, Houston, Texas 7 Veteran Affairs Greater Los Angeles Health Care System 1 Veterans Affairs Connecticut Healthcare System, West Haven 13 George Washington University School of Medicine, Washington, DC 12 Washington DC Veteran Affairs Medical Center 14 Baltimore Veteran Affairs Health Care System, and 17 National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 10 Michael E. DeBakey Veteran Affairs Medical Center 6 Univ |
AuthorAffiliation_xml | – name: 16 Department of Medicine, University of California, San Francisco – name: 9 Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts – name: 7 Veteran Affairs Greater Los Angeles Health Care System – name: 4 University of Pittsburgh School of Medicine – name: 10 Michael E. DeBakey Veteran Affairs Medical Center – name: 11 Infectious Disease Section, Baylor College of Medicine, Houston, Texas – name: 14 Baltimore Veteran Affairs Health Care System, and – name: 1 Veterans Affairs Connecticut Healthcare System, West Haven – name: 2 Section of General Internal Medicine – name: 17 National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland – name: 5 University of Pittsburgh Graduate School of Public Health, Pennsylvania – name: 12 Washington DC Veteran Affairs Medical Center – name: 3 Department of Medicine, Yale University, New Haven, Connecticut – name: 6 University of Vermont College of Medicine, Burlington – name: 13 George Washington University School of Medicine, Washington, DC – name: 15 University of Maryland School of Medicine, Baltimore – name: 8 David Geffen School of Medicine, University of California, Los Angeles |
Author_xml | – sequence: 1 givenname: Amy C. surname: Justice fullname: Justice, Amy C. – sequence: 2 givenname: Matthew S. surname: Freiberg fullname: Freiberg, Matthew S. – sequence: 3 givenname: Russ surname: Tracy fullname: Tracy, Russ – sequence: 4 givenname: Lew surname: Kuller fullname: Kuller, Lew – sequence: 5 givenname: Janet P. surname: Tate fullname: Tate, Janet P. – sequence: 6 givenname: Matthew Bidwell surname: Goetz fullname: Goetz, Matthew Bidwell – sequence: 7 givenname: David A. surname: Fiellin fullname: Fiellin, David A. – sequence: 8 givenname: Gary J. surname: Vanasse fullname: Vanasse, Gary J. – sequence: 9 givenname: Adeel A. surname: Butt fullname: Butt, Adeel A. – sequence: 10 givenname: Maria C. surname: Rodriguez-Barradas fullname: Rodriguez-Barradas, Maria C. – sequence: 11 givenname: Cynthia surname: Gibert fullname: Gibert, Cynthia – sequence: 12 givenname: Kris Ann surname: Oursler fullname: Oursler, Kris Ann – sequence: 13 givenname: Steven G. surname: Deeks fullname: Deeks, Steven G. – sequence: 14 givenname: Kendall surname: Bryant fullname: Bryant, Kendall |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25704100$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22337823$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkm1rFDEQx4NUbHv6xvdKQAQRT_Nw2d28UY5rtQctglR9ueSyyV1KNjmTbPG-iJ_Xae9qtYhCwuThN_-ZzOQQ7YUYDEKPKXlNieRvtOtgJtnIe-iACl6PKyHpHqyJaMaThjf76DDnC0IobYh4gPYZ47xuGD9AP46iyVgFPA-d-Y5nsV_HbDocLZ55F5xWHh-povAnY73RBR9bCyZfAfNgvep7VVwMr8BVLQe_26jQ4bMYot4Ug6e6uMvrCwzjLKaivCsbPO1jWOLzFQTE06WD9VdXVvhk_uXdQ3TfKp_No50doc_vj89nJ-PTjx_ms-npWAtGy5gTtTCNNoJrw7mypqKcMtV1FdNKCGFqWxNBiOykkV2jidUTUzVSc10vRM34CL3d6q6HRW86bUJJyrfr5HqVNm1Urv3zJrhVu4yXLWeyrgQHgRc7gRS_DSaXtndZG-9VMHHILaWUM8aErP-PEkImpGKSAPrsDnoRhxSgEkCxSjIxAd0Revp78r-yvukuAM93gMrQSJtU0C7fcqImE4gKHNlyOsWck7GtduW6YfBm5yFme_XR4LRrtx8NXF7ecblR_Su8yyMO639zT7bcRS4x3ebJGRRR1PwnrMPrbQ |
CODEN | CIDIEL |
CitedBy_id | crossref_primary_10_1007_s13365_018_0643_3 crossref_primary_10_1080_15284336_2018_1459344 crossref_primary_10_1097_QAD_0000000000001092 crossref_primary_10_1093_cid_ciw328 crossref_primary_10_1111_hiv_12244 crossref_primary_10_1016_j_cct_2019_105833 crossref_primary_10_1093_cid_cit056 crossref_primary_10_1093_cid_ciw564 crossref_primary_10_1093_infdis_jix463 crossref_primary_10_4236_jbm_2016_410001 crossref_primary_10_1097_QAI_0000000000002922 crossref_primary_10_1097_MNH_0000000000000400 crossref_primary_10_1007_s13365_022_01076_1 crossref_primary_10_1111_jgs_14902 crossref_primary_10_1097_QAD_0000000000003279 crossref_primary_10_1097_COH_0000000000000677 crossref_primary_10_1089_apc_2012_0044 crossref_primary_10_1097_QAD_0b013e32836191b1 crossref_primary_10_1089_aid_2019_0136 crossref_primary_10_1093_cid_ciw219 crossref_primary_10_1007_s11904_014_0245_5 crossref_primary_10_1096_fj_201800923R crossref_primary_10_1111_ajad_12177 crossref_primary_10_1128_JVI_01186_18 crossref_primary_10_1186_s12981_021_00368_6 crossref_primary_10_3389_fimmu_2020_01321 crossref_primary_10_1007_s10461_017_1905_4 crossref_primary_10_1093_cid_cis539 crossref_primary_10_1111_cei_12814 crossref_primary_10_1093_cid_cis537 crossref_primary_10_3389_fpsyt_2024_1336233 crossref_primary_10_1089_aid_2014_0225 crossref_primary_10_1182_asheducation_2013_1_377 crossref_primary_10_1186_1741_7015_11_147 crossref_primary_10_1016_S2352_3018_15_00006_5 crossref_primary_10_1007_s11904_020_00494_2 crossref_primary_10_1093_infdis_jiu238 crossref_primary_10_1007_s10461_022_03648_y crossref_primary_10_1097_JNC_0000000000000235 crossref_primary_10_1007_s10461_016_1474_y crossref_primary_10_1097_PSY_0000000000000808 crossref_primary_10_1111_acer_13373 crossref_primary_10_1016_j_thromres_2014_03_012 crossref_primary_10_1007_s11904_018_0372_5 crossref_primary_10_2147_PROM_S391113 crossref_primary_10_1371_journal_pone_0116306 crossref_primary_10_1007_s11606_013_2346_z crossref_primary_10_1016_j_cct_2021_106486 crossref_primary_10_1097_INF_0000000000001326 crossref_primary_10_1016_S2055_6640_20_30303_4 crossref_primary_10_1016_j_ccl_2015_01_003 crossref_primary_10_1093_cid_cix1121 crossref_primary_10_1080_00952990_2016_1211667 crossref_primary_10_1080_10543406_2015_1008516 crossref_primary_10_1093_infdis_jiw275 crossref_primary_10_14283_jfa_2018_42 crossref_primary_10_1371_journal_pone_0092606 crossref_primary_10_3390_microorganisms9071389 crossref_primary_10_1007_s10461_018_2241_z crossref_primary_10_1097_QAD_0000000000000344 crossref_primary_10_1097_QAI_0000000000001133 crossref_primary_10_1016_j_ecl_2015_09_010 crossref_primary_10_1128_JVI_01622_19 crossref_primary_10_1111_hiv_12377 crossref_primary_10_1093_gerona_glt168 crossref_primary_10_1097_QAD_0000000000000184 crossref_primary_10_1080_13854046_2021_1967449 crossref_primary_10_1371_journal_pone_0115226 crossref_primary_10_1080_13854046_2019_1701084 crossref_primary_10_1016_j_cct_2021_106379 crossref_primary_10_1016_j_idc_2017_07_007 crossref_primary_10_1089_aid_2021_0231 crossref_primary_10_1111_acer_12908 crossref_primary_10_1007_s11904_012_0118_8 crossref_primary_10_1001_jamanetworkopen_2020_4330 crossref_primary_10_1093_infdis_jiu258 crossref_primary_10_1097_QAI_0000000000001009 crossref_primary_10_1186_s13148_018_0591_z crossref_primary_10_1007_s40271_015_0129_9 crossref_primary_10_1093_cid_cis708 crossref_primary_10_1371_journal_pone_0144312 crossref_primary_10_3390_v14020409 crossref_primary_10_1111_hiv_12128 crossref_primary_10_1111_odi_12473 crossref_primary_10_1097_QAI_0000000000001881 crossref_primary_10_1016_S0140_6736_13_61809_7 crossref_primary_10_1097_COH_0000000000000305 crossref_primary_10_1097_QAD_0000000000001162 crossref_primary_10_1089_aid_2019_0155 crossref_primary_10_1097_QAD_0000000000002493 crossref_primary_10_3851_IMP3100 crossref_primary_10_1007_s10461_015_1053_7 crossref_primary_10_1111_acel_14174 crossref_primary_10_1007_s13365_015_0411_6 crossref_primary_10_1111_add_12367 crossref_primary_10_1007_s10461_021_03524_1 crossref_primary_10_1080_13854046_2024_2319900 crossref_primary_10_1016_j_immuni_2013_10_001 crossref_primary_10_1007_s13365_019_00806_2 crossref_primary_10_1016_j_drugalcdep_2019_06_014 crossref_primary_10_1097_QAI_0000000000002049 crossref_primary_10_1097_QAD_0000000000002140 crossref_primary_10_1371_journal_pone_0221653 crossref_primary_10_1097_QAD_0b013e3283558500 crossref_primary_10_1186_s12979_024_00416_5 crossref_primary_10_1007_s11904_014_0247_3 crossref_primary_10_1172_jci_insight_146162 crossref_primary_10_1089_aid_2015_0369 crossref_primary_10_7448_IAS_15_6_18277 crossref_primary_10_1016_j_cct_2016_11_008 crossref_primary_10_1007_s12529_022_10096_4 crossref_primary_10_1182_blood_2012_06_436345 crossref_primary_10_1002_jcph_473 crossref_primary_10_1016_S2352_3018_14_00062_9 crossref_primary_10_1089_jwh_2019_8284 crossref_primary_10_1111_hiv_12665 crossref_primary_10_3389_fepid_2022_992718 crossref_primary_10_1089_aid_2023_0113 crossref_primary_10_1093_cid_ciu527 crossref_primary_10_1097_PSY_0000000000001119 crossref_primary_10_1111_hiv_13311 crossref_primary_10_1111_jgs_16034 crossref_primary_10_1371_journal_pone_0230339 crossref_primary_10_1097_QAD_0000000000001628 crossref_primary_10_1097_QAD_0000000000003805 crossref_primary_10_1097_QAD_0000000000002846 crossref_primary_10_1097_QAD_0000000000000544 crossref_primary_10_3390_microorganisms5040064 crossref_primary_10_1089_aid_2012_0388 crossref_primary_10_1161_JAHA_121_021268 crossref_primary_10_1007_s40266_013_0093_9 crossref_primary_10_1016_j_drugalcdep_2018_04_022 crossref_primary_10_1016_j_jacl_2015_09_002 crossref_primary_10_1097_QAD_0000000000000384 crossref_primary_10_1097_QAD_0000000000001473 crossref_primary_10_1111_adb_12670 crossref_primary_10_1186_1471_2334_13_399 crossref_primary_10_1007_s11883_017_0685_7 crossref_primary_10_1017_S1355617717000832 crossref_primary_10_4161_viru_25221 crossref_primary_10_1016_j_bbih_2021_100342 crossref_primary_10_1097_QAD_0b013e328355d659 crossref_primary_10_1089_apc_2024_0043 crossref_primary_10_1007_s10461_019_02638_x crossref_primary_10_1097_QAI_0000000000002812 crossref_primary_10_1097_QAD_0000000000000158 crossref_primary_10_1097_QAD_0b013e32835b8c7f crossref_primary_10_3748_wjg_v27_i23_3223 crossref_primary_10_1097_QAD_0000000000003301 crossref_primary_10_1371_journal_ppat_1004078 crossref_primary_10_1097_QAI_0000000000001287 crossref_primary_10_1080_21505594_2016_1245269 crossref_primary_10_1371_journal_pone_0161594 crossref_primary_10_3390_epigenomes8040046 crossref_primary_10_3390_v14010135 crossref_primary_10_1016_j_mad_2013_08_002 crossref_primary_10_1097_QAD_0b013e328363bf7f crossref_primary_10_1097_QAI_0000000000003107 |
Cites_doi | 10.1371/journal.pmed.0050203 10.1093/infdis/jiq118 10.1097/01.mlr.0000223670.00890.74 10.1016/S0140-6736(09)60612-7 10.1002/hep.21178 10.1200/JCO.2006.05.7984 10.1097/QAI.0b013e318030ff8e 10.1001/archinte.165.4.416 10.1007/s11904-010-0041-9 10.1161/CIRCULATIONAHA.106.672402 10.1001/archinte.166.15.1632 10.1097/01.mlr.0000223741.02074.66 10.1086/652749 10.1016/S0889-8561(02)00056-5 10.1002/hep.20384 10.1086/597468 10.1056/NEJMoa0807252 10.1002/hep.21669 10.1159/000178978 10.1038/nm1511 10.1111/j.1468-1293.2008.00673.x 10.7326/0003-4819-150-11-200906020-00007 10.1177/135965350801300802 10.1097/00042560-200201010-00007 10.1136/bmj.a3172 |
ContentType | Journal Article |
Copyright | Copyright © 2012 Oxford University Press on behalf of the Infectious Diseases Society of America Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2012. 2012 2015 INIST-CNRS Copyright University of Chicago, acting through its Press Apr 1, 2012 |
Copyright_xml | – notice: Copyright © 2012 Oxford University Press on behalf of the Infectious Diseases Society of America – notice: Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2012. 2012 – notice: 2015 INIST-CNRS – notice: Copyright University of Chicago, acting through its Press Apr 1, 2012 |
CorporateAuthor | VACS Project Team the VACS Project Team |
CorporateAuthor_xml | – name: VACS Project Team – name: the VACS Project Team |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QL 7T2 7T7 7U7 7U9 8FD C1K FR3 H94 K9. M7N P64 7X8 5PM |
DOI | 10.1093/cid/cir989 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Health and Safety Science Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Toxicology Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Health & Safety Science Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts MEDLINE Health & Safety Science Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1537-6591 |
EndPage | 994 |
ExternalDocumentID | PMC3297653 2715065111 22337823 25704100 10_1093_cid_cir989 10.1093/cid/cir989 23213257 |
Genre | Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIAAA NIH HHS grantid: U24 AA022001 – fundername: NIEHS NIH HHS grantid: T32 ES07069 – fundername: NIAID NIH HHS grantid: P30 AI027763 – fundername: NIEHS NIH HHS grantid: T32 ES007069 – fundername: NIAAA NIH HHS grantid: U10-AA13566 – fundername: NHLBI NIH HHS grantid: R01 HL095136 – fundername: NHLBI NIH HHS grantid: R01-HL095136 – fundername: NIA NIH HHS grantid: R01 AG029154 – fundername: NHLBI NIH HHS grantid: R01 HL090342 – fundername: NHLBI NIH HHS grantid: RCI-HL100347 |
GroupedDBID | --- ..I .2P .I3 .ZR 08P 0R~ 1KJ 1TH 29B 2AX 2WC 36B 4.4 48X 53G 5GY 5RE 5VS 5WD 6J9 70D AABZA AACGO AACZT AAJKP AAJQQ AAMVS AANCE AAOGV AAPNW AAPQZ AAPXW AAQQT AARHZ AAUAY AAUQX AAVAP ABBHK ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABKDP ABLJU ABNHQ ABNKS ABOCM ABPLY ABPQP ABPTD ABQLI ABQNK ABTLG ABVGC ABWST ABXSQ ABXVV ABZBJ ACGFO ACGFS ACHIC ACPRK ACUFI ACUTJ ACUTO ACYHN ADBBV ADEYI ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADQXQ ADRTK ADULT ADVEK ADYVW ADZXQ AEGPL AEGXH AEJOX AEKSI AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEUPB AEWNT AEXZC AFFNX AFFZL AFIYH AFOFC AFRAH AFXAL AGINJ AGKEF AGORE AGQXC AGSYK AGUTN AHMBA AHMMS AHXPO AIAGR AIJHB AJBYB AJEEA AJNCP ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN AQKUS AQVQM ATGXG AXUDD BAWUL BAYMD BCRHZ BEYMZ BHONS BTRTY BVRKM C1A C45 CDBKE CS3 CZ4 DAKXR DCCCD DIK DILTD DU5 D~K E3Z EBS EE~ EJD EMOBN ENERS F5P F9B FECEO FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC H13 H5~ HAR HW0 HZ~ IOX IPSME J21 JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST JXSIZ KAQDR KBUDW KOP KSI KSN L7B MHKGH MJL ML0 N9A NGC NOMLY NOYVH NU- NVLIB O0~ O9- OAUYM OAWHX OCZFY ODMLO ODZKP OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P P6G PAFKI PEELM PQQKQ Q1. Q5Y QBD RD5 ROX ROZ RUSNO RW1 RXO SA0 SJN TCURE TEORI TJX TMA TR2 W8F X7H YAYTL YKOAZ YXANX ~91 ~S- AASNB ADACV ADJQC ADRIX AFXEN DOOOF ESX JSODD M49 AAYXX CITATION .GJ 3O- AAPGJ AAWDT ABNGD ABSMQ ACFRR ACPQN ACUKT ACVCV ACZBC ADMTO AEKPW AFFQV AFSHK AFYAG AGKRT AGMDO AGQPQ AHGBF AI. AJDVS APJGH AQDSO ASPBG AVNTJ AVWKF AZFZN BZKNY EIHJH FEDTE HQ3 HTVGU HVGLF IQODW J5H MBLQV N4W OBFPC O~Y PB- VH1 Y6R ZGI CGR CUY CVF ECM EIF NPM 7QL 7T2 7T7 7U7 7U9 8FD C1K FR3 H94 K9. M7N P64 7X8 5PM |
ID | FETCH-LOGICAL-c521t-30abe8ce53ce33afe61312add62ca555e7f705009d9e9d8c0fc4e689c3c7b5723 |
ISSN | 1058-4838 1537-6591 |
IngestDate | Thu Aug 21 14:03:29 EDT 2025 Fri Jul 11 15:10:15 EDT 2025 Fri Jul 11 16:25:13 EDT 2025 Mon Jun 30 06:01:53 EDT 2025 Mon Jul 21 05:41:39 EDT 2025 Mon Jul 21 09:14:01 EDT 2025 Tue Jul 01 04:19:39 EDT 2025 Thu Apr 24 22:52:34 EDT 2025 Wed Sep 11 04:50:22 EDT 2024 Thu Jun 19 15:34:17 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Immunopathology Prognosis Monocyte Mortality Coagulation Retroviridae AIDS Inflammation Immune deficiency Lentivirus Infection Virus Viral disease Human immunodeficiency virus |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c521t-30abe8ce53ce33afe61312add62ca555e7f705009d9e9d8c0fc4e689c3c7b5723 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 |
OpenAccessLink | https://academic.oup.com/cid/article-pdf/54/7/984/848686/cir989.pdf |
PMID | 22337823 |
PQID | 1026925411 |
PQPubID | 48300 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3297653 proquest_miscellaneous_1113222597 proquest_miscellaneous_1000406290 proquest_journals_1026925411 pubmed_primary_22337823 pascalfrancis_primary_25704100 crossref_citationtrail_10_1093_cid_cir989 crossref_primary_10_1093_cid_cir989 oup_primary_10_1093_cid_cir989 jstor_primary_23213257 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-04-01 |
PublicationDateYYYYMMDD | 2012-04-01 |
PublicationDate_xml | – month: 04 year: 2012 text: 2012-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: United States |
PublicationTitle | Clinical infectious diseases |
PublicationTitleAlternate | Clin Infect Dis |
PublicationYear | 2012 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | The Data Collection on Adverse Events of Anti-HIV (27_22451829) 2006; 166 Barraclough (31_32811863) 2009; 111 Deeks (9_33673775) 2009; 338 (18_34592132) 2009; 373 (14_38265734) 2009; 48 Justice (11_22399599) 2006; 44 Fultz (12_22399600) 2006; 44 (23_41859477) 2002; 29 Piasecki (26_18323546) 2004; 40 Br nsgaard (21_17545676) 2003; 23 Brenchley (10_23102431) 2006; 12 Harris (22_33952493) 2008; 13 Cook (15_34931082) 2009; 150 Justice (20_23715209) 2006; 14 Sterling (28_22194469) 2006; 43 The Antiretroviral Therapy Cohort Collaboration (13_18712240) 2005; 165 McGinnis (25_22872660) 2006; 24 (8_38593749) 2010; 201 Justice (1_37188844) 2010; 7 (17_34494204) 2009; 360 Al-Mohri (24_27926434) 2007; 44 (2_41859476) 2009; 11 (7_39018388) 2011; 203 Vallet-Pichard (29_28995535) 2007; 46 Kuller (6_32340803) 2008; 5 Cook (16_23640704) 2007; 115 Ravasi (30_33886252) 2009; 10 22670040 - Clin Infect Dis. 2012 Sep;55(5):750-1; author reply 751-2 |
References_xml | – volume: 5 start-page: e203 issn: 1549-1277 issue: 10 year: 2008 ident: 6_32340803 doi: 10.1371/journal.pmed.0050203 – volume: 203 start-page: 780 issn: 0022-1899 issue: 6 year: 2011 ident: 7_39018388 publication-title: Journal of Infectious Diseases doi: 10.1093/infdis/jiq118 – volume: 44 start-page: S25 issn: 0025-7079 issue: 8 Suppl 2 year: 2006 ident: 12_22399600 publication-title: Medical care doi: 10.1097/01.mlr.0000223670.00890.74 – volume: 373 start-page: 1352 issn: 0140-6736 issue: 9672 year: 2009 ident: 18_34592132 publication-title: Lancet doi: 10.1016/S0140-6736(09)60612-7 – volume: 43 start-page: 1317 issn: 0270-9139 issue: 6 year: 2006 ident: 28_22194469 publication-title: Hepatology (Baltimore, Md.) doi: 10.1002/hep.21178 – volume: 24 start-page: 5005 issn: 0732-183X issue: 31 year: 2006 ident: 25_22872660 publication-title: Journal of Clinical Oncology doi: 10.1200/JCO.2006.05.7984 – volume: 44 start-page: 463 issn: 0894-9255 issue: 4 year: 2007 ident: 24_27926434 publication-title: Journal of acquired immune deficiency syndromes doi: 10.1097/QAI.0b013e318030ff8e – volume: 165 start-page: 416 issn: 0003-9926 issue: 4 year: 2005 ident: 13_18712240 publication-title: Archives of Internal Medicine doi: 10.1001/archinte.165.4.416 – volume: 7 start-page: 69 issn: 1548-3568 issue: 2 year: 2010 ident: 1_37188844 doi: 10.1007/s11904-010-0041-9 – volume: 115 start-page: 928 issn: 0009-7322 issue: 7 year: 2007 ident: 16_23640704 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.106.672402 – volume: 11 start-page: 143 issn: 1464-2662 year: 2009 ident: 2_41859476 publication-title: HIV medicine – volume: 166 start-page: 1632 issn: 0003-9926 issue: 15 year: 2006 ident: 27_22451829 publication-title: Archives of Internal Medicine doi: 10.1001/archinte.166.15.1632 – volume: 44 start-page: S13 issn: 0025-7079 issue: 8 Suppl 2 year: 2006 ident: 11_22399599 publication-title: Medical care doi: 10.1097/01.mlr.0000223741.02074.66 – volume: 201 start-page: 1788 issn: 0022-1899 issue: 12 year: 2010 ident: 8_38593749 publication-title: Journal of Infectious Diseases doi: 10.1086/652749 – volume: 23 start-page: 15 issn: 0889-8561 issue: 1 year: 2003 ident: 21_17545676 publication-title: Immunology and allergy clinics of North America doi: 10.1016/S0889-8561(02)00056-5 – volume: 40 start-page: 892 issn: 0270-9139 issue: 4 year: 2004 ident: 26_18323546 publication-title: Hepatology (Baltimore, Md.) doi: 10.1002/hep.20384 – volume: 48 start-page: 1138 issn: 1058-4838 issue: 8 year: 2009 ident: 14_38265734 publication-title: Clinical Infectious Diseases doi: 10.1086/597468 – volume: 360 start-page: 1815 issn: 0028-4793 issue: 18 year: 2009 ident: 17_34494204 publication-title: New England Journal of Medicine doi: 10.1056/NEJMoa0807252 – volume: 46 start-page: 32 issn: 0270-9139 issue: 1 year: 2007 ident: 29_28995535 publication-title: Hepatology (Baltimore, Md.) doi: 10.1002/hep.21669 – volume: 111 start-page: c39 issn: 1660-2129 issue: 1 year: 2009 ident: 31_32811863 publication-title: Nephron. Clinical practice [electronic resource] doi: 10.1159/000178978 – volume: 12 start-page: 1365 issn: 1078-8956 issue: 12 year: 2006 ident: 10_23102431 publication-title: Nature medicine doi: 10.1038/nm1511 – volume: 10 start-page: 219 issn: 1464-2662 issue: 4 year: 2009 ident: 30_33886252 publication-title: HIV medicine doi: 10.1111/j.1468-1293.2008.00673.x – volume: 150 start-page: 795 issn: 0003-4819 issue: 11 year: 2009 ident: 15_34931082 publication-title: Annals of Internal Medicine doi: 10.7326/0003-4819-150-11-200906020-00007 – volume: 13 start-page: 959 issn: 1359-6535 issue: 8 year: 2008 ident: 22_33952493 publication-title: Antiviral therapy doi: 10.1177/135965350801300802 – volume: 29 start-page: 54 year: 2002 ident: 23_41859477 publication-title: JOURNAL OF ACQUIRED IMMUNE DEFICIENCY SYNDROMES doi: 10.1097/00042560-200201010-00007 – volume: 14 start-page: 159 issn: 1542-8826 issue: 5 year: 2006 ident: 20_23715209 publication-title: Topics in HIV medicine : a publication of the International AIDS Society, USA – volume: 338 start-page: a3172 issn: 0959-8138 issue: jan26_2 year: 2009 ident: 9_33673775 publication-title: BMJ doi: 10.1136/bmj.a3172 – reference: 22670040 - Clin Infect Dis. 2012 Sep;55(5):750-1; author reply 751-2 |
SSID | ssj0011805 |
Score | 2.4781966 |
Snippet | Background. When added to age, CD4 count and human immunodeficiency virus type 1 (HIV-1) RNA alone (Restricted Index), hemoglobin, FIB-4 Index, hepatitis C... The Veterans Aging Cohort Study (VACS) Index, based on age and 8 routine clinical tests, is strongly correlated with 3 biomarkers of inflammation: interleukin... When added to age, CD4 count and human immunodeficiency virus type 1 (HIV-1) RNA alone (Restricted Index), hemoglobin, FIB-4 Index, hepatitis C virus (HCV),... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref oup jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 984 |
SubjectTerms | Adult Aged Aged, 80 and over Aging Antiretrovirals Biological and medical sciences Biological markers Biomarkers Biomarkers - blood Coagulation Cohort studies Female Fibrin Fibrinogen Degradation Products - analysis Hemoglobin Hepatitis C virus HIV HIV 1 HIV infections HIV Infections - diagnosis HIV Infections - mortality HIV Infections - pathology HIV-1 - immunology HIV-1 - pathogenicity HIV/AIDS Human immunodeficiency virus Human immunodeficiency virus 1 Human viral diseases Humans Immunodeficiencies Immunodeficiencies. Immunoglobulinopathies Immunopathology Infections Infectious diseases Inflammation Interleukin-6 - blood Lipopolysaccharide Receptors - blood Male Medical sciences Middle Aged Mortality Prognosis Ribonucleic acid RNA Survival Analysis Viral diseases Viral diseases of the lymphoid tissue and the blood. Aids |
Title | Does an Index Composed of Clinical Data Reflect Effects of Inflammation, Coagulation, and Monocyte Activation on Mortality Among Those Aging With HIV? |
URI | https://www.jstor.org/stable/23213257 https://www.ncbi.nlm.nih.gov/pubmed/22337823 https://www.proquest.com/docview/1026925411 https://www.proquest.com/docview/1000406290 https://www.proquest.com/docview/1113222597 https://pubmed.ncbi.nlm.nih.gov/PMC3297653 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELbKkBASQrwNAqMygi9oC0vsvH5CZevWAgVpa2HfKsdxaCVIpzWVKD-E_8U_4mzHSVrKeJGqqIodx-099vnOj-8QeuYQznnGqO04wrO9jLt2QiJuM-Y53CM84iqQ9uBd0Bt5r8_8s1brR4O1tCiSF_zbxnMl_yNVuAdyladk_0GyVaNwA76DfOEKEobrX8n4cCZkiGUY5Kn4qob2bA4LSMmwMAceD1nB4D_MpHd-t1uTN_p5BljQ5xaVs3TGPpWZvAyhE4b7jC8LsdvhJgea3FoYqAW7XLx3VKKi4URS3jsq2dFH6dXt9T-s0QWr3hjq12JudoZqBuPodNg_UNzMzpdl7bw9Oun2X3VPjvXBIpWcvHbXHsuioer_Mi8m00rHvB-dnL7VJA85jbE8b7o3JE_Ea7o3fnNssjFjO77yiEbNKV3HpS6hGzbm51jnoytVfazzK_-iRXSELa5Qw6cXsU5ytBqse02JVtRGmRXQcx3nCrpKwHJRVn7_TbWx5UaKVVv12kTMjek-vG9fv21ljaRpsub85Y1zNgd5ZTrryiazaJ3d21guDW-hm6WdgzsatLdRS-R30LVByeS4i75L7GKWY4VdbLCLZxk2aMESu7jELi6xKys0sbuHG8jdgwZTbHCLa9xi-FS4xQq3WOEWK9xiiVsMuH15D42OusODnl3mCLG5TMVhU4clIuLCp1xQyjIBy1OXgNIOCGe-74swCx0fDIk0FnEacSfjngiimFMeJj7IZxtt5bNcPEAYnslckaQcrHwvSOIkoWmUhmEqo2QSyiz03EhlzMsA-jKPy-exJnLQscyCrSVooadV3XMdNmZjrW0l3KoKmDcuBQRZqA3SvvTJ9goQ6hZK-FloxyBjXM5Yc2iEBDHxPde10JOqGPSJ3CRkuYDRL2OYg14PSOxcUsdVG7R-DB29r8FWd4BQClYHtVC4AsOqgoxnv1qSTycqrj0lYBv59OGfftsjdL2eKXbQVnGxEI_BNCiSthpsPwFjcxUU |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Does+an+Index+Composed+of+Clinical+Data+Reflect+Effects+of+Inflammation%2C+Coagulation%2C+and+Monocyte+Activation+on+Mortality+Among+Those+Aging+With+HIV%3F&rft.jtitle=Clinical+infectious+diseases&rft.au=JUSTICE%2C+Amy+C&rft.au=FREIBERG%2C+Matthew+S&rft.au=GIBERT%2C+Cynthia&rft.au=OURSLER%2C+Krisann&rft.date=2012-04-01&rft.pub=Oxford+University+Press&rft.issn=1058-4838&rft.volume=54&rft.issue=7&rft.spage=984&rft.epage=994&rft_id=info:doi/10.1093%2Fcid%2Fcir989&rft.externalDBID=n%2Fa&rft.externalDocID=25704100 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1058-4838&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1058-4838&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1058-4838&client=summon |