Does an Index Composed of Clinical Data Reflect Effects of Inflammation, Coagulation, and Monocyte Activation on Mortality Among Those Aging With HIV?

Background. When added to age, CD4 count and human immunodeficiency virus type 1 (HIV-1) RNA alone (Restricted Index), hemoglobin, FIB-4 Index, hepatitis C virus (HCV), and estimated glomerular filtration rate improve prediction of mortality. Weighted and combined, these 7 routine clinical variables...

Full description

Saved in:
Bibliographic Details
Published inClinical infectious diseases Vol. 54; no. 7; pp. 984 - 994
Main Authors Justice, Amy C., Freiberg, Matthew S., Tracy, Russ, Kuller, Lew, Tate, Janet P., Goetz, Matthew Bidwell, Fiellin, David A., Vanasse, Gary J., Butt, Adeel A., Rodriguez-Barradas, Maria C., Gibert, Cynthia, Oursler, Kris Ann, Deeks, Steven G., Bryant, Kendall
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.04.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background. When added to age, CD4 count and human immunodeficiency virus type 1 (HIV-1) RNA alone (Restricted Index), hemoglobin, FIB-4 Index, hepatitis C virus (HCV), and estimated glomerular filtration rate improve prediction of mortality. Weighted and combined, these 7 routine clinical variables constitute the Veterans Aging Cohort Study (VACS) Index. Because nonroutine biomarkers of inflammation (interleukin 6 [IL-6]), coagulation (D-dimer), and monocyte activation (sCD14) also predict mortality, we test the association of these indices and biomarkers with each other and with mortality. Methods. Samples from 1302 HIV-infected veterans on antiretroviral therapy were analyzed. Indices were calculated closest to date of collection. We calculated Spearman correlations stratified by HIV-1 RNA and HCV status and measured association with mortality using C statistics and net reclassification improvement (NRI). Results. Of 1302 subjects, 915 had HIV-1 RNA <500 copies/mL and 154 died. The VACS Index was more correlated with IL-6, D-dimer, and sCD14 than the Restricted Index (P < .001). It was also more predictive of mortality (C statistic, 0.76; 95% confidence interval [CI], .72-.80) than any biomarker (C statistic, 0.66-0.70) or the Restricted Index (C statistic, 0.71; 95% CI, .67-.75). Compared to the Restricted Index alone, NRI resulted from incremental addition of VACS Index components (10%), D-dimer (7%), and sCD14 (4%), but not from IL-6 (0%). Conclusions. Among HIV-infected individuals, independent of CD4, HIV-1 RNA, and age, hemoglobin and markers of liver and renal injury are associated with inflammation. Addition of D-dimer and sCD14, but not IL-6, improves the predictive accuracy of the VACS Index for mortality.
AbstractList When added to age, CD4 count and human immunodeficiency virus type 1 (HIV-1) RNA alone (Restricted Index), hemoglobin, FIB-4 Index, hepatitis C virus (HCV), and estimated glomerular filtration rate improve prediction of mortality. Weighted and combined, these 7 routine clinical variables constitute the Veterans Aging Cohort Study (VACS) Index. Because nonroutine biomarkers of inflammation (interleukin 6 [IL-6]), coagulation (D-dimer), and monocyte activation (sCD14) also predict mortality, we test the association of these indices and biomarkers with each other and with mortality.BACKGROUNDWhen added to age, CD4 count and human immunodeficiency virus type 1 (HIV-1) RNA alone (Restricted Index), hemoglobin, FIB-4 Index, hepatitis C virus (HCV), and estimated glomerular filtration rate improve prediction of mortality. Weighted and combined, these 7 routine clinical variables constitute the Veterans Aging Cohort Study (VACS) Index. Because nonroutine biomarkers of inflammation (interleukin 6 [IL-6]), coagulation (D-dimer), and monocyte activation (sCD14) also predict mortality, we test the association of these indices and biomarkers with each other and with mortality.Samples from 1302 HIV-infected veterans on antiretroviral therapy were analyzed. Indices were calculated closest to date of collection. We calculated Spearman correlations stratified by HIV-1 RNA and HCV status and measured association with mortality using C statistics and net reclassification improvement (NRI).METHODSSamples from 1302 HIV-infected veterans on antiretroviral therapy were analyzed. Indices were calculated closest to date of collection. We calculated Spearman correlations stratified by HIV-1 RNA and HCV status and measured association with mortality using C statistics and net reclassification improvement (NRI).Of 1302 subjects, 915 had HIV-1 RNA <500 copies/mL and 154 died. The VACS Index was more correlated with IL-6, D-dimer, and sCD14 than the Restricted Index (P < .001). It was also more predictive of mortality (C statistic, 0.76; 95% confidence interval [CI], .72-.80) than any biomarker (C statistic, 0.66-0.70) or the Restricted Index (C statistic, 0.71; 95% CI, .67-.75). Compared to the Restricted Index alone, NRI resulted from incremental addition of VACS Index components (10%), D-dimer (7%), and sCD14 (4%), but not from IL-6 (0%).RESULTSOf 1302 subjects, 915 had HIV-1 RNA <500 copies/mL and 154 died. The VACS Index was more correlated with IL-6, D-dimer, and sCD14 than the Restricted Index (P < .001). It was also more predictive of mortality (C statistic, 0.76; 95% confidence interval [CI], .72-.80) than any biomarker (C statistic, 0.66-0.70) or the Restricted Index (C statistic, 0.71; 95% CI, .67-.75). Compared to the Restricted Index alone, NRI resulted from incremental addition of VACS Index components (10%), D-dimer (7%), and sCD14 (4%), but not from IL-6 (0%).Among HIV-infected individuals, independent of CD4, HIV-1 RNA, and age, hemoglobin and markers of liver and renal injury are associated with inflammation. Addition of D-dimer and sCD14, but not IL-6, improves the predictive accuracy of the VACS Index for mortality.CONCLUSIONSAmong HIV-infected individuals, independent of CD4, HIV-1 RNA, and age, hemoglobin and markers of liver and renal injury are associated with inflammation. Addition of D-dimer and sCD14, but not IL-6, improves the predictive accuracy of the VACS Index for mortality.
When added to age, CD4 count and human immunodeficiency virus type 1 (HIV-1) RNA alone (Restricted Index), hemoglobin, FIB-4 Index, hepatitis C virus (HCV), and estimated glomerular filtration rate improve prediction of mortality. Weighted and combined, these 7 routine clinical variables constitute the Veterans Aging Cohort Study (VACS) Index. Because nonroutine biomarkers of inflammation (interleukin 6 [IL-6]), coagulation (D-dimer), and monocyte activation (sCD14) also predict mortality, we test the association of these indices and biomarkers with each other and with mortality. Samples from 1302 HIV-infected veterans on antiretroviral therapy were analyzed. Indices were calculated closest to date of collection. We calculated Spearman correlations stratified by HIV-1 RNA and HCV status and measured association with mortality using C statistics and net reclassification improvement (NRI). Of 1302 subjects, 915 had HIV-1 RNA <500 copies/mL and 154 died. The VACS Index was more correlated with IL-6, D-dimer, and sCD14 than the Restricted Index (P < .001). It was also more predictive of mortality (C statistic, 0.76; 95% confidence interval [CI], .72-.80) than any biomarker (C statistic, 0.66-0.70) or the Restricted Index (C statistic, 0.71; 95% CI, .67-.75). Compared to the Restricted Index alone, NRI resulted from incremental addition of VACS Index components (10%), D-dimer (7%), and sCD14 (4%), but not from IL-6 (0%). Among HIV-infected individuals, independent of CD4, HIV-1 RNA, and age, hemoglobin and markers of liver and renal injury are associated with inflammation. Addition of D-dimer and sCD14, but not IL-6, improves the predictive accuracy of the VACS Index for mortality.
The Veterans Aging Cohort Study (VACS) Index, based on age and 8 routine clinical tests, is strongly correlated with 3 biomarkers of inflammation: interleukin 6 (IL-6), D-dimer, and soluble CD14 (sCD14). After adjustment for the VACS Index, D-dimer and sCD14, but not IL-6, remain independently associated with mortality. Background.  When added to age, CD4 count and human immunodeficiency virus type 1 (HIV-1) RNA alone (Restricted Index), hemoglobin, FIB-4 Index, hepatitis C virus (HCV), and estimated glomerular filtration rate improve prediction of mortality. Weighted and combined, these 7 routine clinical variables constitute the Veterans Aging Cohort Study (VACS) Index. Because nonroutine biomarkers of inflammation (interleukin 6 [IL-6]), coagulation (D-dimer), and monocyte activation (sCD14) also predict mortality, we test the association of these indices and biomarkers with each other and with mortality. Methods.  Samples from 1302 HIV-infected veterans on antiretroviral therapy were analyzed. Indices were calculated closest to date of collection. We calculated Spearman correlations stratified by HIV-1 RNA and HCV status and measured association with mortality using C statistics and net reclassification improvement (NRI). Results.  Of 1302 subjects, 915 had HIV-1 RNA <500 copies/mL and 154 died. The VACS Index was more correlated with IL-6, D-dimer, and sCD14 than the Restricted Index (P < .001). It was also more predictive of mortality (C statistic, 0.76; 95% confidence interval [CI], .72-.80) than any biomarker (C statistic, 0.66-0.70) or the Restricted Index (C statistic, 0.71; 95% CI, .67-.75). Compared to the Restricted Index alone, NRI resulted from incremental addition of VACS Index components (10%), D-dimer (7%), and sCD14 (4%), but not from IL-6 (0%). Conclusions.  Among HIV-infected individuals, independent of CD4, HIV-1 RNA, and age, hemoglobin and markers of liver and renal injury are associated with inflammation. Addition of D-dimer and sCD14, but not IL-6, improves the predictive accuracy of the VACS Index for mortality.
When added to age, CD4 count and human immunodeficiency virus type 1 (HIV-1) RNA alone (Restricted Index), hemoglobin, FIB-4 Index, hepatitis C virus (HCV), and estimated glomerular filtration rate improve prediction of mortality. Weighted and combined, these 7 routine clinical variables constitute the Veterans Aging Cohort Study (VACS) Index. Because nonroutine biomarkers of inflammation (interleukin 6 [IL-6]), coagulation (D-dimer), and monocyte activation (sCD14) also predict mortality, we test the association of these indices and biomarkers with each other and with mortality. Samples from 1302 HIV-infected veterans on antiretroviral therapy were analyzed. Indices were calculated closest to date of collection. We calculated Spearman correlations stratified by HIV-1 RNA and HCV status and measured association with mortality using C statistics and net reclassification improvement (NRI). Of 1302 subjects, 915 had HIV-1 RNA <500 copies/mL and 154 died. The VACS Index was more correlated with IL-6, D-dimer, and sCD14 than the Restricted Index (P < .001). It was also more predictive of mortality (C statistic, 0.76; 95% confidence interval [CI], .72-.80) than any biomarker (C statistic, 0.66-0.70) or the Restricted Index (C statistic, 0.71; 95% CI, .67-.75). Compared to the Restricted Index alone, NRI resulted from incremental addition of VACS Index components (10%), D-dimer (7%), and sCD14 (4%), but not from IL-6 (0%). Among HIV-infected individuals, independent of CD4, HIV-1 RNA, and age, hemoglobin and markers of liver and renal injury are associated with inflammation. Addition of D-dimer and sCD14, but not IL-6, improves the predictive accuracy of the VACS Index for mortality.
Background. When added to age, CD4 count and human immunodeficiency virus type 1 (HIV-1) RNA alone (Restricted Index), hemoglobin, FIB-4 Index, hepatitis C virus (HCV), and estimated glomerular filtration rate improve prediction of mortality. Weighted and combined, these 7 routine clinical variables constitute the Veterans Aging Cohort Study (VACS) Index. Because nonroutine biomarkers of inflammation (interleukin 6 [IL-6]), coagulation (D-dimer), and monocyte activation (sCD14) also predict mortality, we test the association of these indices and biomarkers with each other and with mortality. Methods. Samples from 1302 HIV-infected veterans on antiretroviral therapy were analyzed. Indices were calculated closest to date of collection. We calculated Spearman correlations stratified by HIV-1 RNA and HCV status and measured association with mortality using C statistics and net reclassification improvement (NRI). Results. Of 1302 subjects, 915 had HIV-1 RNA <500 copies/mL and 154 died. The VACS Index was more correlated with IL-6, D-dimer, and sCD14 than the Restricted Index (P < .001). It was also more predictive of mortality (C statistic, 0.76; 95% confidence interval [CI], .72-.80) than any biomarker (C statistic, 0.66-0.70) or the Restricted Index (C statistic, 0.71; 95% CI, .67-.75). Compared to the Restricted Index alone, NRI resulted from incremental addition of VACS Index components (10%), D-dimer (7%), and sCD14 (4%), but not from IL-6 (0%). Conclusions. Among HIV-infected individuals, independent of CD4, HIV-1 RNA, and age, hemoglobin and markers of liver and renal injury are associated with inflammation. Addition of D-dimer and sCD14, but not IL-6, improves the predictive accuracy of the VACS Index for mortality.
The Veterans Aging Cohort Study (VACS) Index, based on age and 8 routine clinical tests, is strongly correlated with 3 biomarkers of inflammation: interleukin 6 (IL-6), D -dimer, and soluble CD14 (sCD14). After adjustment for the VACS Index, D -dimer and sCD14, but not IL-6, remain independently associated with mortality. Background.  When added to age, CD4 count and human immunodeficiency virus type 1 (HIV-1) RNA alone (Restricted Index), hemoglobin, FIB-4 Index, hepatitis C virus (HCV), and estimated glomerular filtration rate improve prediction of mortality. Weighted and combined, these 7 routine clinical variables constitute the Veterans Aging Cohort Study (VACS) Index. Because nonroutine biomarkers of inflammation (interleukin 6 [IL-6]), coagulation ( D -dimer), and monocyte activation (sCD14) also predict mortality, we test the association of these indices and biomarkers with each other and with mortality. Methods.  Samples from 1302 HIV-infected veterans on antiretroviral therapy were analyzed. Indices were calculated closest to date of collection. We calculated Spearman correlations stratified by HIV-1 RNA and HCV status and measured association with mortality using C statistics and net reclassification improvement (NRI). Results.  Of 1302 subjects, 915 had HIV-1 RNA <500 copies/mL and 154 died. The VACS Index was more correlated with IL-6, D -dimer, and sCD14 than the Restricted Index ( P < .001). It was also more predictive of mortality (C statistic, 0.76; 95% confidence interval [CI], .72–.80) than any biomarker (C statistic, 0.66–0.70) or the Restricted Index (C statistic, 0.71; 95% CI, .67–.75). Compared to the Restricted Index alone, NRI resulted from incremental addition of VACS Index components (10%), D -dimer (7%), and sCD14 (4%), but not from IL-6 (0%). Conclusions.  Among HIV-infected individuals, independent of CD4, HIV-1 RNA, and age, hemoglobin and markers of liver and renal injury are associated with inflammation. Addition of D -dimer and sCD14, but not IL-6, improves the predictive accuracy of the VACS Index for mortality.
Author Tracy, Russ
Rodriguez-Barradas, Maria C.
Deeks, Steven G.
Oursler, Kris Ann
Justice, Amy C.
Fiellin, David A.
Vanasse, Gary J.
Freiberg, Matthew S.
Bryant, Kendall
Gibert, Cynthia
Goetz, Matthew Bidwell
Tate, Janet P.
Butt, Adeel A.
Kuller, Lew
AuthorAffiliation 2 Section of General Internal Medicine
4 University of Pittsburgh School of Medicine
8 David Geffen School of Medicine, University of California, Los Angeles
16 Department of Medicine, University of California, San Francisco
5 University of Pittsburgh Graduate School of Public Health, Pennsylvania
9 Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
3 Department of Medicine, Yale University, New Haven, Connecticut
15 University of Maryland School of Medicine, Baltimore
11 Infectious Disease Section, Baylor College of Medicine, Houston, Texas
7 Veteran Affairs Greater Los Angeles Health Care System
1 Veterans Affairs Connecticut Healthcare System, West Haven
13 George Washington University School of Medicine, Washington, DC
12 Washington DC Veteran Affairs Medical Center
14 Baltimore Veteran Affairs Health Care System, and
17 National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
10 Michael E. DeBakey Veteran Affairs Medical Center
6 Univ
AuthorAffiliation_xml – name: 16 Department of Medicine, University of California, San Francisco
– name: 9 Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
– name: 7 Veteran Affairs Greater Los Angeles Health Care System
– name: 4 University of Pittsburgh School of Medicine
– name: 10 Michael E. DeBakey Veteran Affairs Medical Center
– name: 11 Infectious Disease Section, Baylor College of Medicine, Houston, Texas
– name: 14 Baltimore Veteran Affairs Health Care System, and
– name: 1 Veterans Affairs Connecticut Healthcare System, West Haven
– name: 2 Section of General Internal Medicine
– name: 17 National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
– name: 5 University of Pittsburgh Graduate School of Public Health, Pennsylvania
– name: 12 Washington DC Veteran Affairs Medical Center
– name: 3 Department of Medicine, Yale University, New Haven, Connecticut
– name: 6 University of Vermont College of Medicine, Burlington
– name: 13 George Washington University School of Medicine, Washington, DC
– name: 15 University of Maryland School of Medicine, Baltimore
– name: 8 David Geffen School of Medicine, University of California, Los Angeles
Author_xml – sequence: 1
  givenname: Amy C.
  surname: Justice
  fullname: Justice, Amy C.
– sequence: 2
  givenname: Matthew S.
  surname: Freiberg
  fullname: Freiberg, Matthew S.
– sequence: 3
  givenname: Russ
  surname: Tracy
  fullname: Tracy, Russ
– sequence: 4
  givenname: Lew
  surname: Kuller
  fullname: Kuller, Lew
– sequence: 5
  givenname: Janet P.
  surname: Tate
  fullname: Tate, Janet P.
– sequence: 6
  givenname: Matthew Bidwell
  surname: Goetz
  fullname: Goetz, Matthew Bidwell
– sequence: 7
  givenname: David A.
  surname: Fiellin
  fullname: Fiellin, David A.
– sequence: 8
  givenname: Gary J.
  surname: Vanasse
  fullname: Vanasse, Gary J.
– sequence: 9
  givenname: Adeel A.
  surname: Butt
  fullname: Butt, Adeel A.
– sequence: 10
  givenname: Maria C.
  surname: Rodriguez-Barradas
  fullname: Rodriguez-Barradas, Maria C.
– sequence: 11
  givenname: Cynthia
  surname: Gibert
  fullname: Gibert, Cynthia
– sequence: 12
  givenname: Kris Ann
  surname: Oursler
  fullname: Oursler, Kris Ann
– sequence: 13
  givenname: Steven G.
  surname: Deeks
  fullname: Deeks, Steven G.
– sequence: 14
  givenname: Kendall
  surname: Bryant
  fullname: Bryant, Kendall
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25704100$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22337823$$D View this record in MEDLINE/PubMed
BookMark eNqFkm1rFDEQx4NUbHv6xvdKQAQRT_Nw2d28UY5rtQctglR9ueSyyV1KNjmTbPG-iJ_Xae9qtYhCwuThN_-ZzOQQ7YUYDEKPKXlNieRvtOtgJtnIe-iACl6PKyHpHqyJaMaThjf76DDnC0IobYh4gPYZ47xuGD9AP46iyVgFPA-d-Y5nsV_HbDocLZ55F5xWHh-povAnY73RBR9bCyZfAfNgvep7VVwMr8BVLQe_26jQ4bMYot4Ug6e6uMvrCwzjLKaivCsbPO1jWOLzFQTE06WD9VdXVvhk_uXdQ3TfKp_No50doc_vj89nJ-PTjx_ms-npWAtGy5gTtTCNNoJrw7mypqKcMtV1FdNKCGFqWxNBiOykkV2jidUTUzVSc10vRM34CL3d6q6HRW86bUJJyrfr5HqVNm1Urv3zJrhVu4yXLWeyrgQHgRc7gRS_DSaXtndZG-9VMHHILaWUM8aErP-PEkImpGKSAPrsDnoRhxSgEkCxSjIxAd0Revp78r-yvukuAM93gMrQSJtU0C7fcqImE4gKHNlyOsWck7GtduW6YfBm5yFme_XR4LRrtx8NXF7ecblR_Su8yyMO639zT7bcRS4x3ebJGRRR1PwnrMPrbQ
CODEN CIDIEL
CitedBy_id crossref_primary_10_1007_s13365_018_0643_3
crossref_primary_10_1080_15284336_2018_1459344
crossref_primary_10_1097_QAD_0000000000001092
crossref_primary_10_1093_cid_ciw328
crossref_primary_10_1111_hiv_12244
crossref_primary_10_1016_j_cct_2019_105833
crossref_primary_10_1093_cid_cit056
crossref_primary_10_1093_cid_ciw564
crossref_primary_10_1093_infdis_jix463
crossref_primary_10_4236_jbm_2016_410001
crossref_primary_10_1097_QAI_0000000000002922
crossref_primary_10_1097_MNH_0000000000000400
crossref_primary_10_1007_s13365_022_01076_1
crossref_primary_10_1111_jgs_14902
crossref_primary_10_1097_QAD_0000000000003279
crossref_primary_10_1097_COH_0000000000000677
crossref_primary_10_1089_apc_2012_0044
crossref_primary_10_1097_QAD_0b013e32836191b1
crossref_primary_10_1089_aid_2019_0136
crossref_primary_10_1093_cid_ciw219
crossref_primary_10_1007_s11904_014_0245_5
crossref_primary_10_1096_fj_201800923R
crossref_primary_10_1111_ajad_12177
crossref_primary_10_1128_JVI_01186_18
crossref_primary_10_1186_s12981_021_00368_6
crossref_primary_10_3389_fimmu_2020_01321
crossref_primary_10_1007_s10461_017_1905_4
crossref_primary_10_1093_cid_cis539
crossref_primary_10_1111_cei_12814
crossref_primary_10_1093_cid_cis537
crossref_primary_10_3389_fpsyt_2024_1336233
crossref_primary_10_1089_aid_2014_0225
crossref_primary_10_1182_asheducation_2013_1_377
crossref_primary_10_1186_1741_7015_11_147
crossref_primary_10_1016_S2352_3018_15_00006_5
crossref_primary_10_1007_s11904_020_00494_2
crossref_primary_10_1093_infdis_jiu238
crossref_primary_10_1007_s10461_022_03648_y
crossref_primary_10_1097_JNC_0000000000000235
crossref_primary_10_1007_s10461_016_1474_y
crossref_primary_10_1097_PSY_0000000000000808
crossref_primary_10_1111_acer_13373
crossref_primary_10_1016_j_thromres_2014_03_012
crossref_primary_10_1007_s11904_018_0372_5
crossref_primary_10_2147_PROM_S391113
crossref_primary_10_1371_journal_pone_0116306
crossref_primary_10_1007_s11606_013_2346_z
crossref_primary_10_1016_j_cct_2021_106486
crossref_primary_10_1097_INF_0000000000001326
crossref_primary_10_1016_S2055_6640_20_30303_4
crossref_primary_10_1016_j_ccl_2015_01_003
crossref_primary_10_1093_cid_cix1121
crossref_primary_10_1080_00952990_2016_1211667
crossref_primary_10_1080_10543406_2015_1008516
crossref_primary_10_1093_infdis_jiw275
crossref_primary_10_14283_jfa_2018_42
crossref_primary_10_1371_journal_pone_0092606
crossref_primary_10_3390_microorganisms9071389
crossref_primary_10_1007_s10461_018_2241_z
crossref_primary_10_1097_QAD_0000000000000344
crossref_primary_10_1097_QAI_0000000000001133
crossref_primary_10_1016_j_ecl_2015_09_010
crossref_primary_10_1128_JVI_01622_19
crossref_primary_10_1111_hiv_12377
crossref_primary_10_1093_gerona_glt168
crossref_primary_10_1097_QAD_0000000000000184
crossref_primary_10_1080_13854046_2021_1967449
crossref_primary_10_1371_journal_pone_0115226
crossref_primary_10_1080_13854046_2019_1701084
crossref_primary_10_1016_j_cct_2021_106379
crossref_primary_10_1016_j_idc_2017_07_007
crossref_primary_10_1089_aid_2021_0231
crossref_primary_10_1111_acer_12908
crossref_primary_10_1007_s11904_012_0118_8
crossref_primary_10_1001_jamanetworkopen_2020_4330
crossref_primary_10_1093_infdis_jiu258
crossref_primary_10_1097_QAI_0000000000001009
crossref_primary_10_1186_s13148_018_0591_z
crossref_primary_10_1007_s40271_015_0129_9
crossref_primary_10_1093_cid_cis708
crossref_primary_10_1371_journal_pone_0144312
crossref_primary_10_3390_v14020409
crossref_primary_10_1111_hiv_12128
crossref_primary_10_1111_odi_12473
crossref_primary_10_1097_QAI_0000000000001881
crossref_primary_10_1016_S0140_6736_13_61809_7
crossref_primary_10_1097_COH_0000000000000305
crossref_primary_10_1097_QAD_0000000000001162
crossref_primary_10_1089_aid_2019_0155
crossref_primary_10_1097_QAD_0000000000002493
crossref_primary_10_3851_IMP3100
crossref_primary_10_1007_s10461_015_1053_7
crossref_primary_10_1111_acel_14174
crossref_primary_10_1007_s13365_015_0411_6
crossref_primary_10_1111_add_12367
crossref_primary_10_1007_s10461_021_03524_1
crossref_primary_10_1080_13854046_2024_2319900
crossref_primary_10_1016_j_immuni_2013_10_001
crossref_primary_10_1007_s13365_019_00806_2
crossref_primary_10_1016_j_drugalcdep_2019_06_014
crossref_primary_10_1097_QAI_0000000000002049
crossref_primary_10_1097_QAD_0000000000002140
crossref_primary_10_1371_journal_pone_0221653
crossref_primary_10_1097_QAD_0b013e3283558500
crossref_primary_10_1186_s12979_024_00416_5
crossref_primary_10_1007_s11904_014_0247_3
crossref_primary_10_1172_jci_insight_146162
crossref_primary_10_1089_aid_2015_0369
crossref_primary_10_7448_IAS_15_6_18277
crossref_primary_10_1016_j_cct_2016_11_008
crossref_primary_10_1007_s12529_022_10096_4
crossref_primary_10_1182_blood_2012_06_436345
crossref_primary_10_1002_jcph_473
crossref_primary_10_1016_S2352_3018_14_00062_9
crossref_primary_10_1089_jwh_2019_8284
crossref_primary_10_1111_hiv_12665
crossref_primary_10_3389_fepid_2022_992718
crossref_primary_10_1089_aid_2023_0113
crossref_primary_10_1093_cid_ciu527
crossref_primary_10_1097_PSY_0000000000001119
crossref_primary_10_1111_hiv_13311
crossref_primary_10_1111_jgs_16034
crossref_primary_10_1371_journal_pone_0230339
crossref_primary_10_1097_QAD_0000000000001628
crossref_primary_10_1097_QAD_0000000000003805
crossref_primary_10_1097_QAD_0000000000002846
crossref_primary_10_1097_QAD_0000000000000544
crossref_primary_10_3390_microorganisms5040064
crossref_primary_10_1089_aid_2012_0388
crossref_primary_10_1161_JAHA_121_021268
crossref_primary_10_1007_s40266_013_0093_9
crossref_primary_10_1016_j_drugalcdep_2018_04_022
crossref_primary_10_1016_j_jacl_2015_09_002
crossref_primary_10_1097_QAD_0000000000000384
crossref_primary_10_1097_QAD_0000000000001473
crossref_primary_10_1111_adb_12670
crossref_primary_10_1186_1471_2334_13_399
crossref_primary_10_1007_s11883_017_0685_7
crossref_primary_10_1017_S1355617717000832
crossref_primary_10_4161_viru_25221
crossref_primary_10_1016_j_bbih_2021_100342
crossref_primary_10_1097_QAD_0b013e328355d659
crossref_primary_10_1089_apc_2024_0043
crossref_primary_10_1007_s10461_019_02638_x
crossref_primary_10_1097_QAI_0000000000002812
crossref_primary_10_1097_QAD_0000000000000158
crossref_primary_10_1097_QAD_0b013e32835b8c7f
crossref_primary_10_3748_wjg_v27_i23_3223
crossref_primary_10_1097_QAD_0000000000003301
crossref_primary_10_1371_journal_ppat_1004078
crossref_primary_10_1097_QAI_0000000000001287
crossref_primary_10_1080_21505594_2016_1245269
crossref_primary_10_1371_journal_pone_0161594
crossref_primary_10_3390_epigenomes8040046
crossref_primary_10_3390_v14010135
crossref_primary_10_1016_j_mad_2013_08_002
crossref_primary_10_1097_QAD_0b013e328363bf7f
crossref_primary_10_1097_QAI_0000000000003107
Cites_doi 10.1371/journal.pmed.0050203
10.1093/infdis/jiq118
10.1097/01.mlr.0000223670.00890.74
10.1016/S0140-6736(09)60612-7
10.1002/hep.21178
10.1200/JCO.2006.05.7984
10.1097/QAI.0b013e318030ff8e
10.1001/archinte.165.4.416
10.1007/s11904-010-0041-9
10.1161/CIRCULATIONAHA.106.672402
10.1001/archinte.166.15.1632
10.1097/01.mlr.0000223741.02074.66
10.1086/652749
10.1016/S0889-8561(02)00056-5
10.1002/hep.20384
10.1086/597468
10.1056/NEJMoa0807252
10.1002/hep.21669
10.1159/000178978
10.1038/nm1511
10.1111/j.1468-1293.2008.00673.x
10.7326/0003-4819-150-11-200906020-00007
10.1177/135965350801300802
10.1097/00042560-200201010-00007
10.1136/bmj.a3172
ContentType Journal Article
Copyright Copyright © 2012 Oxford University Press on behalf of the Infectious Diseases Society of America
Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2012. 2012
2015 INIST-CNRS
Copyright University of Chicago, acting through its Press Apr 1, 2012
Copyright_xml – notice: Copyright © 2012 Oxford University Press on behalf of the Infectious Diseases Society of America
– notice: Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2012. 2012
– notice: 2015 INIST-CNRS
– notice: Copyright University of Chicago, acting through its Press Apr 1, 2012
CorporateAuthor VACS Project Team
the VACS Project Team
CorporateAuthor_xml – name: VACS Project Team
– name: the VACS Project Team
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T2
7T7
7U7
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
7X8
5PM
DOI 10.1093/cid/cir989
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Health and Safety Science Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Toxicology Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Health & Safety Science Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Virology and AIDS Abstracts

MEDLINE
Health & Safety Science Abstracts


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1537-6591
EndPage 994
ExternalDocumentID PMC3297653
2715065111
22337823
25704100
10_1093_cid_cir989
10.1093/cid/cir989
23213257
Genre Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIAAA NIH HHS
  grantid: U24 AA022001
– fundername: NIEHS NIH HHS
  grantid: T32 ES07069
– fundername: NIAID NIH HHS
  grantid: P30 AI027763
– fundername: NIEHS NIH HHS
  grantid: T32 ES007069
– fundername: NIAAA NIH HHS
  grantid: U10-AA13566
– fundername: NHLBI NIH HHS
  grantid: R01 HL095136
– fundername: NHLBI NIH HHS
  grantid: R01-HL095136
– fundername: NIA NIH HHS
  grantid: R01 AG029154
– fundername: NHLBI NIH HHS
  grantid: R01 HL090342
– fundername: NHLBI NIH HHS
  grantid: RCI-HL100347
GroupedDBID ---
..I
.2P
.I3
.ZR
08P
0R~
1KJ
1TH
29B
2AX
2WC
36B
4.4
48X
53G
5GY
5RE
5VS
5WD
6J9
70D
AABZA
AACGO
AACZT
AAJKP
AAJQQ
AAMVS
AANCE
AAOGV
AAPNW
AAPQZ
AAPXW
AAQQT
AARHZ
AAUAY
AAUQX
AAVAP
ABBHK
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABKDP
ABLJU
ABNHQ
ABNKS
ABOCM
ABPLY
ABPQP
ABPTD
ABQLI
ABQNK
ABTLG
ABVGC
ABWST
ABXSQ
ABXVV
ABZBJ
ACGFO
ACGFS
ACHIC
ACPRK
ACUFI
ACUTJ
ACUTO
ACYHN
ADBBV
ADEYI
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADQXQ
ADRTK
ADULT
ADVEK
ADYVW
ADZXQ
AEGPL
AEGXH
AEJOX
AEKSI
AEMDU
AEMQT
AENEX
AENZO
AEPUE
AETBJ
AEUPB
AEWNT
AEXZC
AFFNX
AFFZL
AFIYH
AFOFC
AFRAH
AFXAL
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AGUTN
AHMBA
AHMMS
AHXPO
AIAGR
AIJHB
AJBYB
AJEEA
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APWMN
AQKUS
AQVQM
ATGXG
AXUDD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BTRTY
BVRKM
C1A
C45
CDBKE
CS3
CZ4
DAKXR
DCCCD
DIK
DILTD
DU5
D~K
E3Z
EBS
EE~
EJD
EMOBN
ENERS
F5P
F9B
FECEO
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HW0
HZ~
IOX
IPSME
J21
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
JXSIZ
KAQDR
KBUDW
KOP
KSI
KSN
L7B
MHKGH
MJL
ML0
N9A
NGC
NOMLY
NOYVH
NU-
NVLIB
O0~
O9-
OAUYM
OAWHX
OCZFY
ODMLO
ODZKP
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
P6G
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QBD
RD5
ROX
ROZ
RUSNO
RW1
RXO
SA0
SJN
TCURE
TEORI
TJX
TMA
TR2
W8F
X7H
YAYTL
YKOAZ
YXANX
~91
~S-
AASNB
ADACV
ADJQC
ADRIX
AFXEN
DOOOF
ESX
JSODD
M49
AAYXX
CITATION
.GJ
3O-
AAPGJ
AAWDT
ABNGD
ABSMQ
ACFRR
ACPQN
ACUKT
ACVCV
ACZBC
ADMTO
AEKPW
AFFQV
AFSHK
AFYAG
AGKRT
AGMDO
AGQPQ
AHGBF
AI.
AJDVS
APJGH
AQDSO
ASPBG
AVNTJ
AVWKF
AZFZN
BZKNY
EIHJH
FEDTE
HQ3
HTVGU
HVGLF
IQODW
J5H
MBLQV
N4W
OBFPC
O~Y
PB-
VH1
Y6R
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T2
7T7
7U7
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
7X8
5PM
ID FETCH-LOGICAL-c521t-30abe8ce53ce33afe61312add62ca555e7f705009d9e9d8c0fc4e689c3c7b5723
ISSN 1058-4838
1537-6591
IngestDate Thu Aug 21 14:03:29 EDT 2025
Fri Jul 11 15:10:15 EDT 2025
Fri Jul 11 16:25:13 EDT 2025
Mon Jun 30 06:01:53 EDT 2025
Mon Jul 21 05:41:39 EDT 2025
Mon Jul 21 09:14:01 EDT 2025
Tue Jul 01 04:19:39 EDT 2025
Thu Apr 24 22:52:34 EDT 2025
Wed Sep 11 04:50:22 EDT 2024
Thu Jun 19 15:34:17 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Immunopathology
Prognosis
Monocyte
Mortality
Coagulation
Retroviridae
AIDS
Inflammation
Immune deficiency
Lentivirus
Infection
Virus
Viral disease
Human immunodeficiency virus
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c521t-30abe8ce53ce33afe61312add62ca555e7f705009d9e9d8c0fc4e689c3c7b5723
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
OpenAccessLink https://academic.oup.com/cid/article-pdf/54/7/984/848686/cir989.pdf
PMID 22337823
PQID 1026925411
PQPubID 48300
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3297653
proquest_miscellaneous_1113222597
proquest_miscellaneous_1000406290
proquest_journals_1026925411
pubmed_primary_22337823
pascalfrancis_primary_25704100
crossref_citationtrail_10_1093_cid_cir989
crossref_primary_10_1093_cid_cir989
oup_primary_10_1093_cid_cir989
jstor_primary_23213257
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-04-01
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: 2012-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: United States
PublicationTitle Clinical infectious diseases
PublicationTitleAlternate Clin Infect Dis
PublicationYear 2012
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References The Data Collection on Adverse Events of Anti-HIV (27_22451829) 2006; 166
Barraclough (31_32811863) 2009; 111
Deeks (9_33673775) 2009; 338
(18_34592132) 2009; 373
(14_38265734) 2009; 48
Justice (11_22399599) 2006; 44
Fultz (12_22399600) 2006; 44
(23_41859477) 2002; 29
Piasecki (26_18323546) 2004; 40
Br    nsgaard (21_17545676) 2003; 23
Brenchley (10_23102431) 2006; 12
Harris (22_33952493) 2008; 13
Cook (15_34931082) 2009; 150
Justice (20_23715209) 2006; 14
Sterling (28_22194469) 2006; 43
The Antiretroviral Therapy Cohort Collaboration (13_18712240) 2005; 165
McGinnis (25_22872660) 2006; 24
(8_38593749) 2010; 201
Justice (1_37188844) 2010; 7
(17_34494204) 2009; 360
Al-Mohri (24_27926434) 2007; 44
(2_41859476) 2009; 11
(7_39018388) 2011; 203
Vallet-Pichard (29_28995535) 2007; 46
Kuller (6_32340803) 2008; 5
Cook (16_23640704) 2007; 115
Ravasi (30_33886252) 2009; 10
22670040 - Clin Infect Dis. 2012 Sep;55(5):750-1; author reply 751-2
References_xml – volume: 5
  start-page: e203
  issn: 1549-1277
  issue: 10
  year: 2008
  ident: 6_32340803
  doi: 10.1371/journal.pmed.0050203
– volume: 203
  start-page: 780
  issn: 0022-1899
  issue: 6
  year: 2011
  ident: 7_39018388
  publication-title: Journal of Infectious Diseases
  doi: 10.1093/infdis/jiq118
– volume: 44
  start-page: S25
  issn: 0025-7079
  issue: 8 Suppl 2
  year: 2006
  ident: 12_22399600
  publication-title: Medical care
  doi: 10.1097/01.mlr.0000223670.00890.74
– volume: 373
  start-page: 1352
  issn: 0140-6736
  issue: 9672
  year: 2009
  ident: 18_34592132
  publication-title: Lancet
  doi: 10.1016/S0140-6736(09)60612-7
– volume: 43
  start-page: 1317
  issn: 0270-9139
  issue: 6
  year: 2006
  ident: 28_22194469
  publication-title: Hepatology (Baltimore, Md.)
  doi: 10.1002/hep.21178
– volume: 24
  start-page: 5005
  issn: 0732-183X
  issue: 31
  year: 2006
  ident: 25_22872660
  publication-title: Journal of Clinical Oncology
  doi: 10.1200/JCO.2006.05.7984
– volume: 44
  start-page: 463
  issn: 0894-9255
  issue: 4
  year: 2007
  ident: 24_27926434
  publication-title: Journal of acquired immune deficiency syndromes
  doi: 10.1097/QAI.0b013e318030ff8e
– volume: 165
  start-page: 416
  issn: 0003-9926
  issue: 4
  year: 2005
  ident: 13_18712240
  publication-title: Archives of Internal Medicine
  doi: 10.1001/archinte.165.4.416
– volume: 7
  start-page: 69
  issn: 1548-3568
  issue: 2
  year: 2010
  ident: 1_37188844
  doi: 10.1007/s11904-010-0041-9
– volume: 115
  start-page: 928
  issn: 0009-7322
  issue: 7
  year: 2007
  ident: 16_23640704
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.106.672402
– volume: 11
  start-page: 143
  issn: 1464-2662
  year: 2009
  ident: 2_41859476
  publication-title: HIV medicine
– volume: 166
  start-page: 1632
  issn: 0003-9926
  issue: 15
  year: 2006
  ident: 27_22451829
  publication-title: Archives of Internal Medicine
  doi: 10.1001/archinte.166.15.1632
– volume: 44
  start-page: S13
  issn: 0025-7079
  issue: 8 Suppl 2
  year: 2006
  ident: 11_22399599
  publication-title: Medical care
  doi: 10.1097/01.mlr.0000223741.02074.66
– volume: 201
  start-page: 1788
  issn: 0022-1899
  issue: 12
  year: 2010
  ident: 8_38593749
  publication-title: Journal of Infectious Diseases
  doi: 10.1086/652749
– volume: 23
  start-page: 15
  issn: 0889-8561
  issue: 1
  year: 2003
  ident: 21_17545676
  publication-title: Immunology and allergy clinics of North America
  doi: 10.1016/S0889-8561(02)00056-5
– volume: 40
  start-page: 892
  issn: 0270-9139
  issue: 4
  year: 2004
  ident: 26_18323546
  publication-title: Hepatology (Baltimore, Md.)
  doi: 10.1002/hep.20384
– volume: 48
  start-page: 1138
  issn: 1058-4838
  issue: 8
  year: 2009
  ident: 14_38265734
  publication-title: Clinical Infectious Diseases
  doi: 10.1086/597468
– volume: 360
  start-page: 1815
  issn: 0028-4793
  issue: 18
  year: 2009
  ident: 17_34494204
  publication-title: New England Journal of Medicine
  doi: 10.1056/NEJMoa0807252
– volume: 46
  start-page: 32
  issn: 0270-9139
  issue: 1
  year: 2007
  ident: 29_28995535
  publication-title: Hepatology (Baltimore, Md.)
  doi: 10.1002/hep.21669
– volume: 111
  start-page: c39
  issn: 1660-2129
  issue: 1
  year: 2009
  ident: 31_32811863
  publication-title: Nephron. Clinical practice [electronic resource]
  doi: 10.1159/000178978
– volume: 12
  start-page: 1365
  issn: 1078-8956
  issue: 12
  year: 2006
  ident: 10_23102431
  publication-title: Nature medicine
  doi: 10.1038/nm1511
– volume: 10
  start-page: 219
  issn: 1464-2662
  issue: 4
  year: 2009
  ident: 30_33886252
  publication-title: HIV medicine
  doi: 10.1111/j.1468-1293.2008.00673.x
– volume: 150
  start-page: 795
  issn: 0003-4819
  issue: 11
  year: 2009
  ident: 15_34931082
  publication-title: Annals of Internal Medicine
  doi: 10.7326/0003-4819-150-11-200906020-00007
– volume: 13
  start-page: 959
  issn: 1359-6535
  issue: 8
  year: 2008
  ident: 22_33952493
  publication-title: Antiviral therapy
  doi: 10.1177/135965350801300802
– volume: 29
  start-page: 54
  year: 2002
  ident: 23_41859477
  publication-title: JOURNAL OF ACQUIRED IMMUNE DEFICIENCY SYNDROMES
  doi: 10.1097/00042560-200201010-00007
– volume: 14
  start-page: 159
  issn: 1542-8826
  issue: 5
  year: 2006
  ident: 20_23715209
  publication-title: Topics in HIV medicine : a publication of the International AIDS Society, USA
– volume: 338
  start-page: a3172
  issn: 0959-8138
  issue: jan26_2
  year: 2009
  ident: 9_33673775
  publication-title: BMJ
  doi: 10.1136/bmj.a3172
– reference: 22670040 - Clin Infect Dis. 2012 Sep;55(5):750-1; author reply 751-2
SSID ssj0011805
Score 2.4781966
Snippet Background. When added to age, CD4 count and human immunodeficiency virus type 1 (HIV-1) RNA alone (Restricted Index), hemoglobin, FIB-4 Index, hepatitis C...
The Veterans Aging Cohort Study (VACS) Index, based on age and 8 routine clinical tests, is strongly correlated with 3 biomarkers of inflammation: interleukin...
When added to age, CD4 count and human immunodeficiency virus type 1 (HIV-1) RNA alone (Restricted Index), hemoglobin, FIB-4 Index, hepatitis C virus (HCV),...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
oup
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 984
SubjectTerms Adult
Aged
Aged, 80 and over
Aging
Antiretrovirals
Biological and medical sciences
Biological markers
Biomarkers
Biomarkers - blood
Coagulation
Cohort studies
Female
Fibrin Fibrinogen Degradation Products - analysis
Hemoglobin
Hepatitis C virus
HIV
HIV 1
HIV infections
HIV Infections - diagnosis
HIV Infections - mortality
HIV Infections - pathology
HIV-1 - immunology
HIV-1 - pathogenicity
HIV/AIDS
Human immunodeficiency virus
Human immunodeficiency virus 1
Human viral diseases
Humans
Immunodeficiencies
Immunodeficiencies. Immunoglobulinopathies
Immunopathology
Infections
Infectious diseases
Inflammation
Interleukin-6 - blood
Lipopolysaccharide Receptors - blood
Male
Medical sciences
Middle Aged
Mortality
Prognosis
Ribonucleic acid
RNA
Survival Analysis
Viral diseases
Viral diseases of the lymphoid tissue and the blood. Aids
Title Does an Index Composed of Clinical Data Reflect Effects of Inflammation, Coagulation, and Monocyte Activation on Mortality Among Those Aging With HIV?
URI https://www.jstor.org/stable/23213257
https://www.ncbi.nlm.nih.gov/pubmed/22337823
https://www.proquest.com/docview/1026925411
https://www.proquest.com/docview/1000406290
https://www.proquest.com/docview/1113222597
https://pubmed.ncbi.nlm.nih.gov/PMC3297653
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELbKkBASQrwNAqMygi9oC0vsvH5CZevWAgVpa2HfKsdxaCVIpzWVKD-E_8U_4mzHSVrKeJGqqIodx-099vnOj-8QeuYQznnGqO04wrO9jLt2QiJuM-Y53CM84iqQ9uBd0Bt5r8_8s1brR4O1tCiSF_zbxnMl_yNVuAdyladk_0GyVaNwA76DfOEKEobrX8n4cCZkiGUY5Kn4qob2bA4LSMmwMAceD1nB4D_MpHd-t1uTN_p5BljQ5xaVs3TGPpWZvAyhE4b7jC8LsdvhJgea3FoYqAW7XLx3VKKi4URS3jsq2dFH6dXt9T-s0QWr3hjq12JudoZqBuPodNg_UNzMzpdl7bw9Oun2X3VPjvXBIpWcvHbXHsuioer_Mi8m00rHvB-dnL7VJA85jbE8b7o3JE_Ea7o3fnNssjFjO77yiEbNKV3HpS6hGzbm51jnoytVfazzK_-iRXSELa5Qw6cXsU5ytBqse02JVtRGmRXQcx3nCrpKwHJRVn7_TbWx5UaKVVv12kTMjek-vG9fv21ljaRpsub85Y1zNgd5ZTrryiazaJ3d21guDW-hm6WdgzsatLdRS-R30LVByeS4i75L7GKWY4VdbLCLZxk2aMESu7jELi6xKys0sbuHG8jdgwZTbHCLa9xi-FS4xQq3WOEWK9xiiVsMuH15D42OusODnl3mCLG5TMVhU4clIuLCp1xQyjIBy1OXgNIOCGe-74swCx0fDIk0FnEacSfjngiimFMeJj7IZxtt5bNcPEAYnslckaQcrHwvSOIkoWmUhmEqo2QSyiz03EhlzMsA-jKPy-exJnLQscyCrSVooadV3XMdNmZjrW0l3KoKmDcuBQRZqA3SvvTJ9goQ6hZK-FloxyBjXM5Yc2iEBDHxPde10JOqGPSJ3CRkuYDRL2OYg14PSOxcUsdVG7R-DB29r8FWd4BQClYHtVC4AsOqgoxnv1qSTycqrj0lYBv59OGfftsjdL2eKXbQVnGxEI_BNCiSthpsPwFjcxUU
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Does+an+Index+Composed+of+Clinical+Data+Reflect+Effects+of+Inflammation%2C+Coagulation%2C+and+Monocyte+Activation+on+Mortality+Among+Those+Aging+With+HIV%3F&rft.jtitle=Clinical+infectious+diseases&rft.au=JUSTICE%2C+Amy+C&rft.au=FREIBERG%2C+Matthew+S&rft.au=GIBERT%2C+Cynthia&rft.au=OURSLER%2C+Krisann&rft.date=2012-04-01&rft.pub=Oxford+University+Press&rft.issn=1058-4838&rft.volume=54&rft.issue=7&rft.spage=984&rft.epage=994&rft_id=info:doi/10.1093%2Fcid%2Fcir989&rft.externalDBID=n%2Fa&rft.externalDocID=25704100
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1058-4838&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1058-4838&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1058-4838&client=summon