The Immunomodulatory Metabolite Itaconate Modifies NLRP3 and Inhibits Inflammasome Activation
The Krebs cycle-derived metabolite itaconate is highly upregulated in inflammatory macrophages and exerts immunomodulatory effects through cysteine modifications on target proteins. The NLRP3 inflammasome, which cleaves IL-1β, IL-18, and gasdermin D, must be tightly regulated to avoid excessive infl...
Saved in:
Published in | Cell metabolism Vol. 32; no. 3; pp. 468 - 478.e7 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Krebs cycle-derived metabolite itaconate is highly upregulated in inflammatory macrophages and exerts immunomodulatory effects through cysteine modifications on target proteins. The NLRP3 inflammasome, which cleaves IL-1β, IL-18, and gasdermin D, must be tightly regulated to avoid excessive inflammation. Here we provide evidence that itaconate modifies NLRP3 and inhibits inflammasome activation. Itaconate and its derivative, 4-octyl itaconate (4-OI), inhibited NLRP3 inflammasome activation, but not AIM2 or NLRC4. Conversely, NLRP3 activation was increased in itaconate-depleted Irg1−/− macrophages. 4-OI inhibited the interaction between NLRP3 and NEK7, a key step in the activation process, and “dicarboxypropylated” C548 on NLRP3. Furthermore, 4-OI inhibited NLRP3-dependent IL-1β release from PBMCs isolated from cryopyrin-associated periodic syndrome (CAPS) patients, and reduced inflammation in an in vivo model of urate-induced peritonitis. Our results identify itaconate as an endogenous metabolic regulator of the NLRP3 inflammasome and describe a process that may be exploited therapeutically to alleviate inflammation in NLRP3-driven disorders.
[Display omitted]
•Itaconate and its derivative 4-OI (which generates itaconate) block NLRP3 activation•Itaconate-depleted Irg1−/− BMDMs exhibit increased NLRP3 inflammasome activation•4-OI “dicarboxypropylates” C548 on NLRP3 and blocks the NLRP3-NEK7 interaction•4-OI reduces peritonitis in vivo and blocks IL-1β release from CAPS patient PBMCs
Hooftman et al. reveal a role for the Krebs cycle-derived metabolite itaconate in regulating the NLRP3 inflammasome. Itaconate specifically blocks NLRP3 inflammasome activation by reducing the NLRP3-NEK7 interaction, likely due to modification of C548 on NLRP3. Furthermore, itaconate inhibits IL-1β release from cells isolated from patients with the NLRP3-mediated disease CAPS. |
---|---|
AbstractList | The Krebs cycle-derived metabolite itaconate is highly upregulated in inflammatory macrophages and exerts immunomodulatory effects through cysteine modifications on target proteins. The NLRP3 inflammasome, which cleaves IL-1β, IL-18, and gasdermin D, must be tightly regulated to avoid excessive inflammation. Here we provide evidence that itaconate modifies NLRP3 and inhibits inflammasome activation. Itaconate and its derivative, 4-octyl itaconate (4-OI), inhibited NLRP3 inflammasome activation, but not AIM2 or NLRC4. Conversely, NLRP3 activation was increased in itaconate-depleted
Irg1
−/−
macrophages. 4-OI inhibited the interaction between NLRP3 and NEK7, a key step in the activation process, and “dicarboxypropylated” C548 on NLRP3. Furthermore, 4-OI inhibited NLRP3-dependent IL-1β release from PBMCs isolated from cryopyrin-associated periodic syndrome (CAPS) patients, and reduced inflammation in an
in vivo
model of urate-induced peritonitis. Our results identify itaconate as an endogenous metabolic regulator of the NLRP3 inflammasome and describe a process that may be exploited therapeutically to alleviate inflammation in NLRP3-driven disorders.
•
Itaconate and its derivative 4-OI (which generates itaconate) block NLRP3 activation
•
Itaconate-depleted
Irg1
−/−
BMDMs exhibit increased NLRP3 inflammasome activation
•
4-OI “dicarboxypropylates” C548 on NLRP3 and blocks the NLRP3-NEK7 interaction
•
4-OI reduces peritonitis
in vivo
and blocks IL-1β release from CAPS patient PBMCs
Hooftman et al. reveal a role for the Krebs cycle-derived metabolite itaconate in regulating the NLRP3 inflammasome. Itaconate specifically blocks NLRP3 inflammasome activation by reducing the NLRP3-NEK7 interaction, likely due to modification of C548 on NLRP3. Furthermore, itaconate inhibits IL-1β release from cells isolated from patients with the NLRP3-mediated disease CAPS. The Krebs cycle-derived metabolite itaconate is highly upregulated in inflammatory macrophages and exerts immunomodulatory effects through cysteine modifications on target proteins. The NLRP3 inflammasome, which cleaves IL-1β, IL-18, and gasdermin D, must be tightly regulated to avoid excessive inflammation. Here we provide evidence that itaconate modifies NLRP3 and inhibits inflammasome activation. Itaconate and its derivative, 4-octyl itaconate (4-OI), inhibited NLRP3 inflammasome activation, but not AIM2 or NLRC4. Conversely, NLRP3 activation was increased in itaconate-depleted Irg1-/- macrophages. 4-OI inhibited the interaction between NLRP3 and NEK7, a key step in the activation process, and "dicarboxypropylated" C548 on NLRP3. Furthermore, 4-OI inhibited NLRP3-dependent IL-1β release from PBMCs isolated from cryopyrin-associated periodic syndrome (CAPS) patients, and reduced inflammation in an in vivo model of urate-induced peritonitis. Our results identify itaconate as an endogenous metabolic regulator of the NLRP3 inflammasome and describe a process that may be exploited therapeutically to alleviate inflammation in NLRP3-driven disorders.The Krebs cycle-derived metabolite itaconate is highly upregulated in inflammatory macrophages and exerts immunomodulatory effects through cysteine modifications on target proteins. The NLRP3 inflammasome, which cleaves IL-1β, IL-18, and gasdermin D, must be tightly regulated to avoid excessive inflammation. Here we provide evidence that itaconate modifies NLRP3 and inhibits inflammasome activation. Itaconate and its derivative, 4-octyl itaconate (4-OI), inhibited NLRP3 inflammasome activation, but not AIM2 or NLRC4. Conversely, NLRP3 activation was increased in itaconate-depleted Irg1-/- macrophages. 4-OI inhibited the interaction between NLRP3 and NEK7, a key step in the activation process, and "dicarboxypropylated" C548 on NLRP3. Furthermore, 4-OI inhibited NLRP3-dependent IL-1β release from PBMCs isolated from cryopyrin-associated periodic syndrome (CAPS) patients, and reduced inflammation in an in vivo model of urate-induced peritonitis. Our results identify itaconate as an endogenous metabolic regulator of the NLRP3 inflammasome and describe a process that may be exploited therapeutically to alleviate inflammation in NLRP3-driven disorders. The Krebs cycle-derived metabolite itaconate is highly upregulated in inflammatory macrophages and exerts immunomodulatory effects through cysteine modifications on target proteins. The NLRP3 inflammasome, which cleaves IL-1β, IL-18, and gasdermin D, must be tightly regulated to avoid excessive inflammation. Here we provide evidence that itaconate modifies NLRP3 and inhibits inflammasome activation. Itaconate and its derivative, 4-octyl itaconate (4-OI), inhibited NLRP3 inflammasome activation, but not AIM2 or NLRC4. Conversely, NLRP3 activation was increased in itaconate-depleted Irg1−/− macrophages. 4-OI inhibited the interaction between NLRP3 and NEK7, a key step in the activation process, and “dicarboxypropylated” C548 on NLRP3. Furthermore, 4-OI inhibited NLRP3-dependent IL-1β release from PBMCs isolated from cryopyrin-associated periodic syndrome (CAPS) patients, and reduced inflammation in an in vivo model of urate-induced peritonitis. Our results identify itaconate as an endogenous metabolic regulator of the NLRP3 inflammasome and describe a process that may be exploited therapeutically to alleviate inflammation in NLRP3-driven disorders. [Display omitted] •Itaconate and its derivative 4-OI (which generates itaconate) block NLRP3 activation•Itaconate-depleted Irg1−/− BMDMs exhibit increased NLRP3 inflammasome activation•4-OI “dicarboxypropylates” C548 on NLRP3 and blocks the NLRP3-NEK7 interaction•4-OI reduces peritonitis in vivo and blocks IL-1β release from CAPS patient PBMCs Hooftman et al. reveal a role for the Krebs cycle-derived metabolite itaconate in regulating the NLRP3 inflammasome. Itaconate specifically blocks NLRP3 inflammasome activation by reducing the NLRP3-NEK7 interaction, likely due to modification of C548 on NLRP3. Furthermore, itaconate inhibits IL-1β release from cells isolated from patients with the NLRP3-mediated disease CAPS. The Krebs cycle-derived metabolite itaconate is highly upregulated in inflammatory macrophages and exerts immunomodulatory effects through cysteine modifications on target proteins. The NLRP3 inflammasome, which cleaves IL-1β, IL-18, and gasdermin D, must be tightly regulated to avoid excessive inflammation. Here we provide evidence that itaconate modifies NLRP3 and inhibits inflammasome activation. Itaconate and its derivative, 4-octyl itaconate (4-OI), inhibited NLRP3 inflammasome activation, but not AIM2 or NLRC4. Conversely, NLRP3 activation was increased in itaconate-depleted Irg1 macrophages. 4-OI inhibited the interaction between NLRP3 and NEK7, a key step in the activation process, and "dicarboxypropylated" C548 on NLRP3. Furthermore, 4-OI inhibited NLRP3-dependent IL-1β release from PBMCs isolated from cryopyrin-associated periodic syndrome (CAPS) patients, and reduced inflammation in an in vivo model of urate-induced peritonitis. Our results identify itaconate as an endogenous metabolic regulator of the NLRP3 inflammasome and describe a process that may be exploited therapeutically to alleviate inflammation in NLRP3-driven disorders. |
Author | Fischer, Roman Hooftman, Alexander Corcoran, Sarah E. Banahan, Kathy O’Neill, Luke A.J. Runtsch, Marah C. Irvine, Alan D. Hughes, Mark M. Angiari, Stefano Slivka, Peter F. Ruzek, Melanie C. McGettrick, Anne F. Hester, Svenja Ling, Chris |
Author_xml | – sequence: 1 givenname: Alexander surname: Hooftman fullname: Hooftman, Alexander organization: School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland – sequence: 2 givenname: Stefano surname: Angiari fullname: Angiari, Stefano organization: School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland – sequence: 3 givenname: Svenja surname: Hester fullname: Hester, Svenja organization: Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK – sequence: 4 givenname: Sarah E. surname: Corcoran fullname: Corcoran, Sarah E. organization: School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland – sequence: 5 givenname: Marah C. surname: Runtsch fullname: Runtsch, Marah C. organization: School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland – sequence: 6 givenname: Chris surname: Ling fullname: Ling, Chris organization: Mass Spectrometry, Analytical Research Technologies, Abbvie, North Chicago, IL 60064, USA – sequence: 7 givenname: Melanie C. surname: Ruzek fullname: Ruzek, Melanie C. organization: Immunology Discovery, Abbvie, Worcester, MA 01605, USA – sequence: 8 givenname: Peter F. surname: Slivka fullname: Slivka, Peter F. organization: Immunology Discovery, Abbvie, Worcester, MA 01605, USA – sequence: 9 givenname: Anne F. surname: McGettrick fullname: McGettrick, Anne F. organization: School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland – sequence: 10 givenname: Kathy surname: Banahan fullname: Banahan, Kathy organization: School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland – sequence: 11 givenname: Mark M. surname: Hughes fullname: Hughes, Mark M. organization: School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland – sequence: 12 givenname: Alan D. surname: Irvine fullname: Irvine, Alan D. organization: Pediatric Dermatology, Children’s Health Ireland, Crumlin, Dublin 12, Ireland – sequence: 13 givenname: Roman surname: Fischer fullname: Fischer, Roman organization: Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK – sequence: 14 givenname: Luke A.J. surname: O’Neill fullname: O’Neill, Luke A.J. email: laoneill@tcd.ie organization: School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32791101$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UU1v1DAUtFAR_YA_wAHlyCXBX0kcCSFVVWlX2gJC5Ygsx35hvYrtYjsr9d_jZUsFHHry6L2ZedbMKTrywQNCrwluCCbdu22jHeSGYoob3Ddl9AydkIHRuucUHxXctrjmhJFjdJrSFmPWsYG9QMeM9gMpHifo--0GqpVziw8umGVWOcT76gayGsNsc9llpYNXBd0EYycLqfq0_vqFVcqbauU3drQ5FTDNyjmVgoPqXGe7U9kG_xI9n9Sc4NXDe4a-fby8vbiu15-vVhfn61q3lOSa4QGMaAWhdOICMzUJwVosjKGGUIG1EEb3oyEd7tqxE8CmoWOKEQ6c9FyzM_Th4Hu3jA6MBp-jmuVdtE7FexmUlf9uvN3IH2EnS1AlClEM3j4YxPBzgZSls0nDPCsPYUmScsZ5jwdOC_XN37cej_zJtBDogaBjSCnC9EghWO6Lk1u5L07ui5O4l2VUROI_kbb5d4blv3Z-Wvr-IIWS8M5ClElb8BqMjaCzNME-Jf8FJp60Pw |
CitedBy_id | crossref_primary_10_1111_cns_14408 crossref_primary_10_3390_antiox12111944 crossref_primary_10_3390_ijms24076126 crossref_primary_10_1159_000536649 crossref_primary_10_1016_j_cmet_2024_10_002 crossref_primary_10_1016_j_isci_2024_109544 crossref_primary_10_1016_j_earlhumdev_2024_105950 crossref_primary_10_1172_JCI148548 crossref_primary_10_3390_cells10082053 crossref_primary_10_1016_j_phymed_2022_154163 crossref_primary_10_1016_j_compbiomed_2022_105825 crossref_primary_10_1016_j_str_2024_04_004 crossref_primary_10_1038_s41418_025_01468_w crossref_primary_10_1016_j_cmet_2022_02_002 crossref_primary_10_3389_fimmu_2025_1462508 crossref_primary_10_1038_s41392_024_01801_8 crossref_primary_10_7554_eLife_92420 crossref_primary_10_1038_s41423_025_01275_w crossref_primary_10_1016_j_bcp_2023_115614 crossref_primary_10_1097_IN9_0000000000000036 crossref_primary_10_1002_oby_23509 crossref_primary_10_3389_fendo_2024_1397301 crossref_primary_10_3389_fimmu_2023_1203389 crossref_primary_10_3390_antiox12020489 crossref_primary_10_1038_s42255_021_00402_x crossref_primary_10_1002_advs_202307233 crossref_primary_10_1016_j_celrep_2023_112145 crossref_primary_10_1371_journal_ppat_1010219 crossref_primary_10_1016_j_jff_2023_105450 crossref_primary_10_1186_s13020_023_00722_y crossref_primary_10_1186_s40779_022_00404_0 crossref_primary_10_1016_j_devcel_2024_07_011 crossref_primary_10_1186_s10020_023_00631_8 crossref_primary_10_3390_ijms241512196 crossref_primary_10_3390_biom12071005 crossref_primary_10_1080_15548627_2021_1933742 crossref_primary_10_1152_ajpendo_00354_2023 crossref_primary_10_1126_scitranslmed_abe1714 crossref_primary_10_1007_s12013_024_01231_x crossref_primary_10_1038_s41598_023_42813_8 crossref_primary_10_1016_j_abb_2023_109853 crossref_primary_10_1113_JP285200 crossref_primary_10_2174_0929867330666230509110108 crossref_primary_10_1093_immadv_ltab013 crossref_primary_10_1126_sciadv_abf0466 crossref_primary_10_3389_fchem_2021_669308 crossref_primary_10_4049_jimmunol_2200848 crossref_primary_10_1097_IN9_0000000000000028 crossref_primary_10_1002_advs_202307224 crossref_primary_10_1007_s10753_023_01950_y crossref_primary_10_1016_j_cell_2021_06_028 crossref_primary_10_1038_s41419_022_04592_4 crossref_primary_10_1073_pnas_2400675121 crossref_primary_10_1016_j_molimm_2023_06_013 crossref_primary_10_1128_spectrum_01717_22 crossref_primary_10_3389_fcimb_2022_1060810 crossref_primary_10_1155_2020_8868839 crossref_primary_10_1016_j_heliyon_2023_e23001 crossref_primary_10_1007_s10753_023_01909_z crossref_primary_10_3389_fcvm_2023_1217985 crossref_primary_10_7554_eLife_96962_3 crossref_primary_10_1002_ctm2_70098 crossref_primary_10_3389_fgene_2022_1056405 crossref_primary_10_1096_fj_202302453RRR crossref_primary_10_1038_s44318_024_00217_y crossref_primary_10_1016_j_clim_2023_109289 crossref_primary_10_1016_j_semarthrit_2025_152688 crossref_primary_10_3389_fimmu_2022_1012442 crossref_primary_10_1016_j_coi_2022_102268 crossref_primary_10_1126_scitranslmed_abf7601 crossref_primary_10_1136_ard_2023_224898 crossref_primary_10_1038_s41564_024_01862_z crossref_primary_10_1002_pros_24652 crossref_primary_10_1155_2022_7420330 crossref_primary_10_1016_j_intimp_2024_113945 crossref_primary_10_1134_S0006297924050043 crossref_primary_10_1186_s12964_025_02075_5 crossref_primary_10_1016_j_cytogfr_2024_07_001 crossref_primary_10_12677_ACM_2024_142322 crossref_primary_10_3389_fimmu_2023_1052756 crossref_primary_10_15789_1563_0625_IMI_2841 crossref_primary_10_3389_fimmu_2021_767508 crossref_primary_10_1016_j_joca_2022_10_008 crossref_primary_10_1016_j_intimp_2025_114099 crossref_primary_10_1080_08830185_2020_1840567 crossref_primary_10_1126_sciadv_adq4266 crossref_primary_10_7554_eLife_92420_2 crossref_primary_10_1002_advs_202414740 crossref_primary_10_3389_fimmu_2021_790574 crossref_primary_10_1016_j_celrep_2022_110719 crossref_primary_10_1038_s41467_024_48422_x crossref_primary_10_3390_v16010035 crossref_primary_10_1016_j_rvsc_2022_07_024 crossref_primary_10_1097_MD_0000000000038356 crossref_primary_10_1016_j_cmet_2023_12_015 crossref_primary_10_3389_fgene_2023_1159167 crossref_primary_10_3390_antiox12081551 crossref_primary_10_1016_j_cmet_2021_07_017 crossref_primary_10_1016_j_chembiol_2024_04_006 crossref_primary_10_1186_s13045_023_01478_6 crossref_primary_10_1016_j_biopha_2023_116092 crossref_primary_10_1038_s41423_022_00922_w crossref_primary_10_1080_0886022X_2024_2403653 crossref_primary_10_1016_j_cmet_2022_03_009 crossref_primary_10_1093_jas_skad356 crossref_primary_10_3389_fimmu_2022_880286 crossref_primary_10_3389_fimmu_2023_1114917 crossref_primary_10_1096_fj_202100909RR crossref_primary_10_1186_s12931_024_03028_1 crossref_primary_10_1007_s10522_024_10152_4 crossref_primary_10_1002_acn3_52080 crossref_primary_10_1038_s41401_021_00613_8 crossref_primary_10_1016_j_coi_2022_102247 crossref_primary_10_1007_s10787_022_01026_7 crossref_primary_10_1016_j_isci_2022_104561 crossref_primary_10_1016_j_metabol_2025_156152 crossref_primary_10_3389_fphar_2022_938979 crossref_primary_10_1016_j_celrep_2023_112064 crossref_primary_10_1089_wound_2023_0149 crossref_primary_10_1002_art_42990 crossref_primary_10_3389_fmicb_2021_766591 crossref_primary_10_1111_imm_13454 crossref_primary_10_1007_s10753_023_01819_0 crossref_primary_10_1038_s41392_024_02077_8 crossref_primary_10_1128_jvi_01325_23 crossref_primary_10_3389_fmed_2022_1085339 crossref_primary_10_1016_j_jep_2023_117063 crossref_primary_10_1261_rna_079016_121 crossref_primary_10_1016_j_celrep_2021_108756 crossref_primary_10_3389_fimmu_2022_923024 crossref_primary_10_1111_jcmm_16013 crossref_primary_10_1016_j_mucimm_2024_08_001 crossref_primary_10_3389_fendo_2021_626842 crossref_primary_10_1016_j_cmet_2024_01_008 crossref_primary_10_3389_fimmu_2022_783254 crossref_primary_10_1002_mco2_255 crossref_primary_10_1161_CIRCRESAHA_123_321637 crossref_primary_10_3390_biology12060776 crossref_primary_10_1038_s41467_023_41470_9 crossref_primary_10_1007_s12033_024_01156_z crossref_primary_10_7554_eLife_96962 crossref_primary_10_1002_adhm_202102791 crossref_primary_10_1016_j_seminoncol_2025_152337 crossref_primary_10_3390_biom12050634 crossref_primary_10_1016_j_npep_2025_102501 crossref_primary_10_1021_acs_jmedchem_3c01370 crossref_primary_10_1007_s10753_025_02268_7 crossref_primary_10_1016_j_bbadis_2023_166946 crossref_primary_10_3389_fimmu_2023_1200259 crossref_primary_10_1016_j_tibs_2022_10_002 crossref_primary_10_3390_cells12121584 crossref_primary_10_1007_s10753_021_01587_9 crossref_primary_10_1016_j_jacbts_2022_12_010 crossref_primary_10_1016_j_vetmic_2022_109430 crossref_primary_10_1007_s10787_023_01278_x crossref_primary_10_1016_j_intimp_2022_109456 crossref_primary_10_1073_pnas_2423114122 crossref_primary_10_1097_HEP_0000000000000549 crossref_primary_10_1152_ajpcell_00130_2023 crossref_primary_10_1038_s41579_023_00852_y crossref_primary_10_1016_j_neulet_2024_137741 crossref_primary_10_1042_BCJ20220364 crossref_primary_10_3389_fimmu_2021_665782 crossref_primary_10_3390_antiox13010131 crossref_primary_10_1360_SSV_2024_0115 crossref_primary_10_1016_j_jep_2023_117045 crossref_primary_10_1038_s41467_022_34306_5 crossref_primary_10_1016_j_mucimm_2024_10_002 crossref_primary_10_3389_fimmu_2024_1436557 crossref_primary_10_1016_j_heliyon_2024_e35445 crossref_primary_10_1016_j_copbio_2020_09_013 crossref_primary_10_3389_fimmu_2022_967193 crossref_primary_10_1016_j_cmet_2023_09_004 crossref_primary_10_1016_j_mcn_2022_103758 crossref_primary_10_1016_j_phrs_2023_107016 crossref_primary_10_1038_s41423_022_00905_x crossref_primary_10_1039_D1MD00163A crossref_primary_10_3389_fmicb_2024_1450085 crossref_primary_10_1016_j_bcp_2022_114935 crossref_primary_10_1039_D3BM00060E crossref_primary_10_1152_ajpcell_00126_2021 crossref_primary_10_1016_j_copbio_2021_01_020 crossref_primary_10_1016_j_intimp_2023_110104 crossref_primary_10_1042_BCJ20210522 crossref_primary_10_3390_pharmaceutics15030724 crossref_primary_10_1002_cti2_1404 crossref_primary_10_3390_brainsci12091255 crossref_primary_10_1016_j_cellin_2024_100224 crossref_primary_10_1016_j_neuint_2022_105296 crossref_primary_10_1186_s13062_024_00521_x crossref_primary_10_1002_eji_202149410 crossref_primary_10_1038_s41423_021_00780_y crossref_primary_10_4049_jimmunol_2300155 crossref_primary_10_1016_j_celrep_2024_114688 crossref_primary_10_1038_s42255_022_00652_3 crossref_primary_10_1039_D1SC00660F crossref_primary_10_3389_fonc_2021_680758 crossref_primary_10_1016_j_biopha_2024_116690 crossref_primary_10_3390_biom12091236 crossref_primary_10_1096_fj_202400508RR crossref_primary_10_1038_s42255_022_00676_9 crossref_primary_10_1038_s42255_024_01145_1 crossref_primary_10_1042_BST20230549 crossref_primary_10_1155_2021_8581746 crossref_primary_10_1007_s00018_025_05575_2 crossref_primary_10_1038_s41423_022_00962_2 crossref_primary_10_1038_s41422_024_01060_w crossref_primary_10_1016_j_celrep_2024_114570 crossref_primary_10_15252_embr_202154226 crossref_primary_10_3389_fcvm_2023_1116509 crossref_primary_10_1016_j_addr_2023_115120 crossref_primary_10_1016_j_apsb_2024_11_019 crossref_primary_10_1016_j_it_2022_10_003 crossref_primary_10_1093_jleuko_qiae045 crossref_primary_10_1016_j_jff_2025_106704 crossref_primary_10_1172_JCI171953 crossref_primary_10_15252_embr_202153251 crossref_primary_10_3390_metabo10110453 crossref_primary_10_1016_j_cellimm_2022_104485 crossref_primary_10_1111_jnc_15959 crossref_primary_10_1016_j_freeradbiomed_2024_04_218 crossref_primary_10_1016_j_clim_2024_110167 crossref_primary_10_1093_pnasnexus_pgac297 crossref_primary_10_3389_fendo_2023_1272646 crossref_primary_10_1038_s42255_022_00565_1 crossref_primary_10_1016_j_jtha_2022_12_002 crossref_primary_10_1016_j_molcel_2022_05_009 crossref_primary_10_1038_s42255_022_00578_w crossref_primary_10_1016_j_intimp_2025_114361 crossref_primary_10_1186_s11658_023_00503_3 crossref_primary_10_1080_19490976_2021_1946369 crossref_primary_10_1007_s11626_023_00760_8 crossref_primary_10_1080_08916934_2024_2319202 crossref_primary_10_1126_sciadv_adq1047 crossref_primary_10_1038_s41423_021_00670_3 crossref_primary_10_3390_cells10112962 crossref_primary_10_3389_fimmu_2024_1352165 crossref_primary_10_1016_j_coi_2023_102387 crossref_primary_10_1016_j_ebiom_2024_104993 crossref_primary_10_1111_imm_13875 crossref_primary_10_1186_s12974_024_03121_8 crossref_primary_10_1002_adfm_202316496 crossref_primary_10_1016_j_xcrm_2023_101132 crossref_primary_10_3389_fcimb_2022_925746 crossref_primary_10_1007_s44178_024_00096_7 crossref_primary_10_1016_j_isci_2023_107473 crossref_primary_10_3390_ijms25095001 crossref_primary_10_1111_cpr_13711 crossref_primary_10_1186_s12576_024_00926_3 crossref_primary_10_1016_j_tem_2024_02_004 crossref_primary_10_1007_s12013_024_01585_2 crossref_primary_10_1016_j_celrep_2021_108855 crossref_primary_10_31083_j_fbl2901042 crossref_primary_10_1016_j_aquaculture_2023_739376 crossref_primary_10_1016_j_freeradbiomed_2022_02_030 crossref_primary_10_1021_acs_jmedchem_4c02646 crossref_primary_10_1016_j_celrep_2023_113040 crossref_primary_10_3389_fimmu_2023_1296687 crossref_primary_10_1021_acschembio_3c00330 crossref_primary_10_1016_j_celrep_2022_110433 crossref_primary_10_1016_j_autrev_2024_103714 crossref_primary_10_1186_s10020_024_00926_4 crossref_primary_10_3892_mmr_2023_13098 crossref_primary_10_3389_falgy_2022_825931 crossref_primary_10_3389_fimmu_2022_1043572 crossref_primary_10_1016_j_jep_2023_116365 crossref_primary_10_1007_s00281_024_01015_8 crossref_primary_10_31857_S0320972524050047 crossref_primary_10_3389_fcimb_2021_694298 crossref_primary_10_1016_j_brainresbull_2024_111066 crossref_primary_10_1016_j_intimp_2024_113019 crossref_primary_10_1016_j_tem_2021_05_003 crossref_primary_10_1053_j_gastro_2021_08_030 crossref_primary_10_1159_000539278 crossref_primary_10_3389_fimmu_2022_1035709 crossref_primary_10_3390_ijms241713528 crossref_primary_10_1016_j_jointm_2022_01_001 crossref_primary_10_1038_s41418_023_01252_8 crossref_primary_10_3389_fimmu_2024_1434688 crossref_primary_10_1016_j_mucimm_2024_06_004 crossref_primary_10_1039_D2OB00047D crossref_primary_10_1002_mco2_789 crossref_primary_10_1038_s41590_023_01526_w crossref_primary_10_1038_s42255_024_01092_x crossref_primary_10_1126_scitranslmed_adh1469 crossref_primary_10_3389_fimmu_2022_936167 crossref_primary_10_1016_j_freeradbiomed_2022_06_246 crossref_primary_10_1016_j_imlet_2024_106923 crossref_primary_10_1016_j_bbrc_2022_03_110 crossref_primary_10_1371_journal_ppat_1009941 crossref_primary_10_1007_s11427_021_2070_y crossref_primary_10_1016_j_intimp_2024_112277 crossref_primary_10_1016_j_cmet_2024_11_012 crossref_primary_10_1016_j_copbio_2021_03_009 crossref_primary_10_1016_j_biopha_2024_116933 crossref_primary_10_1016_j_ejphar_2022_174951 crossref_primary_10_1038_s41467_023_39174_1 crossref_primary_10_1159_000516780 crossref_primary_10_1038_s44324_024_00008_3 crossref_primary_10_1097_MD_0000000000037089 crossref_primary_10_1093_infdis_jiae583 crossref_primary_10_3390_vaccines11050993 crossref_primary_10_1016_j_ejphar_2022_175361 crossref_primary_10_1007_s00360_024_01549_1 crossref_primary_10_3389_fddsv_2023_1294454 crossref_primary_10_4049_jimmunol_2300101 crossref_primary_10_1186_s11658_024_00642_1 crossref_primary_10_1038_s41385_021_00462_y crossref_primary_10_1096_fj_202101161R crossref_primary_10_1016_j_celrep_2022_111941 crossref_primary_10_3390_pathogens10080957 crossref_primary_10_1002_ijch_202300125 crossref_primary_10_1038_s41419_023_06001_w crossref_primary_10_1016_j_ejphar_2024_177122 crossref_primary_10_1007_s10787_024_01490_3 crossref_primary_10_1016_j_gendis_2023_01_009 crossref_primary_10_1007_s13238_021_00846_7 crossref_primary_10_1080_08830185_2022_2067153 crossref_primary_10_3892_mmr_2021_12311 crossref_primary_10_1016_j_tube_2023_102462 crossref_primary_10_1016_j_it_2022_07_004 crossref_primary_10_1002_jmv_29807 crossref_primary_10_1002_ptr_8443 crossref_primary_10_3389_fimmu_2022_914639 crossref_primary_10_3389_fcimb_2022_910864 crossref_primary_10_1016_j_freeradbiomed_2023_09_031 crossref_primary_10_1128_mBio_02121_21 crossref_primary_10_3390_pharmaceutics16080985 crossref_primary_10_1038_s41467_023_43988_4 crossref_primary_10_1016_j_tcb_2023_10_005 crossref_primary_10_1016_j_aquaculture_2024_741281 crossref_primary_10_4049_jimmunol_2100488 crossref_primary_10_3389_fendo_2023_1077315 crossref_primary_10_3389_fimmu_2022_930882 crossref_primary_10_15252_embr_202357101 crossref_primary_10_3389_fimmu_2023_1082050 crossref_primary_10_1016_j_celrep_2024_114911 crossref_primary_10_1016_j_intimp_2024_112935 crossref_primary_10_5483_BMBRep_2022_55_11_128 crossref_primary_10_1016_j_gendis_2022_05_039 crossref_primary_10_1038_s41577_020_00478_8 crossref_primary_10_1007_s00018_023_04971_w crossref_primary_10_1016_j_bbadis_2023_166656 crossref_primary_10_1016_j_biopha_2023_115521 crossref_primary_10_1016_j_actatropica_2022_106698 crossref_primary_10_1111_os_13993 crossref_primary_10_1038_s41419_023_06155_7 crossref_primary_10_1172_JCI173034 crossref_primary_10_1016_j_tem_2022_02_005 crossref_primary_10_1016_j_xcrm_2021_100277 crossref_primary_10_1186_s12931_020_01591_x crossref_primary_10_1007_s13105_024_01012_3 crossref_primary_10_2147_JIR_S503033 |
Cites_doi | 10.1016/j.immuni.2016.01.012 10.1038/nature10558 10.1016/j.it.2019.05.007 10.1074/jbc.M109.082305 10.1038/nature04516 10.1038/386619a0 10.1007/BF00172150 10.1038/nature25986 10.1038/nrd.2018.149 10.1038/s41590-019-0368-3 10.1038/s41577-019-0165-0 10.1074/jbc.M114.563114 10.1021/jacs.9b11962 10.1074/jbc.M117.797126 10.3390/metabo10060241 10.1038/nature16959 10.1038/s41467-018-04947-6 10.1038/nm.3806 10.1016/j.cmet.2020.01.009 10.1038/s41577-019-0128-5 10.1016/j.cell.2014.02.008 10.1016/j.celrep.2019.08.072 10.1016/j.immuni.2013.08.001 10.1038/ng756 10.1016/j.cmet.2016.06.004 10.1016/j.immuni.2012.01.009 10.1038/s41586-018-0761-3 10.1016/j.immuni.2016.08.010 10.1038/ni.1935 10.1002/elps.201200601 10.1038/nature11729 10.1074/jbc.M112.407130 10.1016/j.tca.2015.10.015 10.1038/ni.3333 10.1038/nm.2279 10.1038/nature13683 10.1038/s42255-020-0210-0 10.1038/s41467-019-13078-5 10.1073/pnas.1218599110 10.1002/eji.201646665 10.1038/s41589-019-0323-5 10.1074/jbc.C115.700492 10.1038/nature07725 10.1038/nm.3804 10.21769/BioProtoc.1986 10.1074/jbc.M115.685792 10.1038/s41586-019-1295-z 10.1016/j.isci.2018.10.029 10.1126/science.1236381 10.1084/jem.20160933 10.1038/s41467-017-00227-x 10.1038/ni.1631 10.1038/nature13322 10.1016/j.cmet.2020.06.016 10.1038/nature15514 10.1016/j.immuni.2013.05.016 10.1016/j.cell.2014.04.007 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. 2020 Elsevier Inc. 2020 Elsevier Inc. |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. – notice: 2020 Elsevier Inc. 2020 Elsevier Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.cmet.2020.07.016 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1932-7420 |
EndPage | 478.e7 |
ExternalDocumentID | PMC7422798 32791101 10_1016_j_cmet_2020_07_016 S1550413120304113 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust grantid: 109443/Z/15/Z – fundername: Wellcome Trust grantid: 205455 |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 53G 5GY 62- 6J9 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS F5P FCP FDB FEDTE FIRID HVGLF IHE IXB J1W JIG M3Z M41 O-L O9- OK1 P2P RCE ROL RPZ SES SSZ TR2 UNMZH WQ6 ZA5 AAEDT AAIKJ AAMRU AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AGHFR AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION EJD HZ~ OZT RIG CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-309ed858122f4803af883508dd2d1280c88dc7bd16065b68e3f963a314e4174c3 |
IEDL.DBID | IXB |
ISSN | 1550-4131 1932-7420 |
IngestDate | Thu Aug 21 14:26:57 EDT 2025 Thu Jul 10 18:09:33 EDT 2025 Mon Jul 21 06:04:52 EDT 2025 Tue Jul 01 03:58:19 EDT 2025 Thu Apr 24 23:09:02 EDT 2025 Fri Feb 23 02:49:27 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | pyroptosis itaconate metabolite immunometabolism inflammasome NEK7 cysteine modification NLRP3 macrophage IL-1β |
Language | English |
License | Copyright © 2020 Elsevier Inc. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-309ed858122f4803af883508dd2d1280c88dc7bd16065b68e3f963a314e4174c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7422798 |
PMID | 32791101 |
PQID | 2434470942 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7422798 proquest_miscellaneous_2434470942 pubmed_primary_32791101 crossref_primary_10_1016_j_cmet_2020_07_016 crossref_citationtrail_10_1016_j_cmet_2020_07_016 elsevier_sciencedirect_doi_10_1016_j_cmet_2020_07_016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell metabolism |
PublicationTitleAlternate | Cell Metab |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | He, Chiang, Luo, Zheng, Qiao, Wang, Tan, Ohkubo, Mu, Zhao (bib13) 2020; 31 Heneka, Kummer, Stutz, Delekate, Schwartz, Vieira-Saecker, Griep, Axt, Remus, Tzeng (bib14) 2013; 493 Swanson, Deng, Ting (bib51) 2019; 19 Chen, Chen (bib1) 2018; 564 Groß, Mishra, Schneider, Médard, Wettmarshausen, Dittlein, Shi, Gorka, Koenig, Fromm (bib9) 2016; 45 Puchalska, Huang, Martin, Han, Patti, Crawford (bib36) 2018; 9 Hu, Yan, Liu, Huang, Ma, Zhang, Wang, Zhang, Martinon, Miao (bib18) 2013; 341 Shi, Zhao, Wang, Shi, Wang, Huang, Zhuang, Cai, Wang, Shao (bib44) 2015; 526 Vande Walle, Van Opdenbosch, Jacques, Fossoul, Verheugen, Vogel, Beyaert, Elewaut, Kanneganti, van Loo, Lamkanfi (bib54) 2014; 512 Iyer, He, Janczy, Elliott, Zhong, Olivier, Sadler, Knepper-Adrian, Han, Qiao (bib20) 2013; 39 Hooftman, O’Neill (bib16) 2019; 40 Tang, Lang, Xu, Wang, Gong, Yang, Cui, Bai, Wang, Jiang, Zhou (bib52) 2017; 8 Qin, Zhang, Tang, Liu, Chen, Liu, Wang (bib38) 2020; 142 Rathinam, Zhao, Shao (bib39) 2019; 20 Sharif, Wang, Wang, Magupalli, Andreeva, Qiao, Hauenstein, Wu, Núñez, Mao, Wu (bib42) 2019; 570 Shi, Wang, Li, Zhan, Tang, Fina, Su, Pratt, Bu, Hildebrand (bib46) 2016; 17 Juliana, Fernandes-Alnemri, Kang, Farias, Qin, Alnemri (bib22) 2012; 287 Gaidt, Ebert, Chauhan, Schmidt, Schmid-Burgk, Rapino, Robertson, Cooper, Graf, Hornung (bib6) 2016; 44 Liao, Han, Xu, Fu, Wang, Kong (bib27) 2019; 10 Hornung, Bauernfeind, Halle, Samstad, Kono, Rock, Fitzgerald, Latz (bib17) 2008; 9 Stutz, Kolbe, Stahl, Horvath, Franklin, van Ray, Brinkschulte, Geyer, Meissner, Latz (bib49) 2017; 214 Hornung, Ablasser, Charrel-Dennis, Bauernfeind, Horvath, Caffrey, Latz, Fitzgerald (bib57) 2009; 458 Lu, Magupalli, Ruan, Yin, Atianand, Vos, Schröder, Fitzgerald, Wu, Egelman (bib28) 2014; 156 Michelucci, Cordes, Ghelfi, Pailot, Reiling, Goldmann, Binz, Wegner, Tallam, Rausell (bib32) 2013; 110 Vandanmagsar, Youm, Ravussin, Galgani, Stadler, Mynatt, Ravussin, Stephens, Dixit (bib53) 2011; 17 Mangan, Olhava, Roush, Seidel, Glick, Latz (bib29) 2018; 17 Zhao, Gillette, Li, Zhang, Wen (bib56) 2014; 289 He, Zeng, Yang, Motro, Núñez (bib11) 2016; 530 Han, Gagnon, Eckle, Borchers (bib10) 2013; 34 Richard, Delaite, Riess, Schuller (bib40) 2016; 623 Hoffman, Mueller, Broide, Wanderer, Kolodner (bib15) 2001; 29 Mills, Ryan, Prag, Dikovskaya, Menon, Zaslona, Jedrychowski, Costa, Higgins, Hams (bib33) 2018; 556 Coll, Robertson, Chae, Higgins, Muñoz-Planillo, Inserra, Vetter, Dungan, Monks, Stutz (bib2) 2015; 21 Shimada, Crother, Karlin, Dagvadorj, Chiba, Chen, Ramanujan, Wolf, Vergnes, Ojcius (bib47) 2012; 36 Martinon, Pétrilli, Mayor, Tardivel, Tschopp (bib30) 2006; 440 Garstkiewicz, Strittmatter, Grossi, Sand, Fenini, Werner, French, Beer (bib7) 2017; 47 Song, Lam, Fan, Cao, Wang, Tian, Chua, Zhang, Meng, Xu (bib48) 2020; 32 Ghayur, Banerjee, Hugunin, Butler, Herzog, Carter, Quintal, Sekut, Talanian, Paskind (bib8) 1997; 386 Qin, Qin, Zhang, Jia, Chen, Cheng, Peng, Chen, Liu, Zhou (bib37) 2019; 15 He, Jiang, Chen, Ye, Wang, Wang, Liu, Liang, Deng, Jiang, Zhou (bib12) 2018; 9 Cordes, Wallace, Michelucci, Divakaruni, Sapcariu, Sousa, Koseki, Cabrales, Murphy, Hiller, Metallo (bib3) 2016; 291 Shi, Murray, Beutler (bib45) 2016; 6 Schmid-Burgk, Chauhan, Schmidt, Ebert, Reinhardt, Endl, Hornung (bib41) 2016; 291 Lee, Jenkins, Gilbert, Copeland, O’Brien (bib26) 1995; 41 Lampropoulou, Sergushichev, Bambouskova, Nair, Vincent, Loginicheva, Cervantes-Barragan, Ma, Huang, Griss (bib25) 2016; 24 O’Neill, Artyomov (bib35) 2019; 19 Daly, Blackburn, Best, Goodyear, Mudaliar, Burgess, Stirling, Porter, McInnes, Barrett, Dale (bib4) 2020; 10 Youm, Nguyen, Grant, Goldberg, Bodogai, Kim, D’Agostino, Planavsky, Lupfer, Kanneganti (bib55) 2015; 21 Masters, Dunne, Subramanian, Hull, Tannahill, Sharp, Becker, Franchi, Yoshihara, Chen (bib31) 2010; 11 Juliana, Fernandes-Alnemri, Wu, Datta, Solorzano, Yu, Meng, Quong, Latz, Scott, Alnemri (bib21) 2010; 285 Lamkanfi, Dixit (bib24) 2014; 157 Hughes, Hooftman, Angiari, Tummala, Zaslona, Runtsch, McGettrick, Sutton, Diskin, Rooke (bib19) 2019; 29 Shi, Zhao, Wang, Gao, Ding, Li, Hu, Shao (bib43) 2014; 514 Swain, Bambouskova, Kim, Andhey, Duncan, Auclair, Chubukov, Simons, Roddy, Stewart, Artyomov (bib50) 2020; 2 Domingo-Fernández, Coll, Kearney, Breit, O’Neill (bib5) 2017; 292 Kayagaki, Warming, Lamkanfi, Vande Walle, Louie, Dong, Newton, Qu, Liu, Heldens (bib23) 2011; 479 Muñoz-Planillo, Kuffa, Martínez-Colón, Smith, Rajendiran, Núñez (bib34) 2013; 38 He (10.1016/j.cmet.2020.07.016_bib13) 2020; 31 Hornung (10.1016/j.cmet.2020.07.016_bib17) 2008; 9 Martinon (10.1016/j.cmet.2020.07.016_bib30) 2006; 440 Garstkiewicz (10.1016/j.cmet.2020.07.016_bib7) 2017; 47 He (10.1016/j.cmet.2020.07.016_bib11) 2016; 530 O’Neill (10.1016/j.cmet.2020.07.016_bib35) 2019; 19 Mills (10.1016/j.cmet.2020.07.016_bib33) 2018; 556 Hooftman (10.1016/j.cmet.2020.07.016_bib16) 2019; 40 Swain (10.1016/j.cmet.2020.07.016_bib50) 2020; 2 Coll (10.1016/j.cmet.2020.07.016_bib2) 2015; 21 Kayagaki (10.1016/j.cmet.2020.07.016_bib23) 2011; 479 Puchalska (10.1016/j.cmet.2020.07.016_bib36) 2018; 9 Shi (10.1016/j.cmet.2020.07.016_bib44) 2015; 526 Groß (10.1016/j.cmet.2020.07.016_bib9) 2016; 45 Hoffman (10.1016/j.cmet.2020.07.016_bib15) 2001; 29 Vandanmagsar (10.1016/j.cmet.2020.07.016_bib53) 2011; 17 Youm (10.1016/j.cmet.2020.07.016_bib55) 2015; 21 Lampropoulou (10.1016/j.cmet.2020.07.016_bib25) 2016; 24 Swanson (10.1016/j.cmet.2020.07.016_bib51) 2019; 19 Michelucci (10.1016/j.cmet.2020.07.016_bib32) 2013; 110 Gaidt (10.1016/j.cmet.2020.07.016_bib6) 2016; 44 Qin (10.1016/j.cmet.2020.07.016_bib37) 2019; 15 Juliana (10.1016/j.cmet.2020.07.016_bib22) 2012; 287 Han (10.1016/j.cmet.2020.07.016_bib10) 2013; 34 Shi (10.1016/j.cmet.2020.07.016_bib46) 2016; 17 Hughes (10.1016/j.cmet.2020.07.016_bib19) 2019; 29 Lee (10.1016/j.cmet.2020.07.016_bib26) 1995; 41 Cordes (10.1016/j.cmet.2020.07.016_bib3) 2016; 291 Song (10.1016/j.cmet.2020.07.016_bib48) 2020; 32 He (10.1016/j.cmet.2020.07.016_bib12) 2018; 9 Liao (10.1016/j.cmet.2020.07.016_bib27) 2019; 10 Shi (10.1016/j.cmet.2020.07.016_bib45) 2016; 6 Tang (10.1016/j.cmet.2020.07.016_bib52) 2017; 8 Lu (10.1016/j.cmet.2020.07.016_bib28) 2014; 156 Qin (10.1016/j.cmet.2020.07.016_bib38) 2020; 142 Mangan (10.1016/j.cmet.2020.07.016_bib29) 2018; 17 Vande Walle (10.1016/j.cmet.2020.07.016_bib54) 2014; 512 Lamkanfi (10.1016/j.cmet.2020.07.016_bib24) 2014; 157 Stutz (10.1016/j.cmet.2020.07.016_bib49) 2017; 214 Daly (10.1016/j.cmet.2020.07.016_bib4) 2020; 10 Ghayur (10.1016/j.cmet.2020.07.016_bib8) 1997; 386 Iyer (10.1016/j.cmet.2020.07.016_bib20) 2013; 39 Hornung (10.1016/j.cmet.2020.07.016_bib57) 2009; 458 Schmid-Burgk (10.1016/j.cmet.2020.07.016_bib41) 2016; 291 Shi (10.1016/j.cmet.2020.07.016_bib43) 2014; 514 Chen (10.1016/j.cmet.2020.07.016_bib1) 2018; 564 Hu (10.1016/j.cmet.2020.07.016_bib18) 2013; 341 Sharif (10.1016/j.cmet.2020.07.016_bib42) 2019; 570 Zhao (10.1016/j.cmet.2020.07.016_bib56) 2014; 289 Richard (10.1016/j.cmet.2020.07.016_bib40) 2016; 623 Domingo-Fernández (10.1016/j.cmet.2020.07.016_bib5) 2017; 292 Rathinam (10.1016/j.cmet.2020.07.016_bib39) 2019; 20 Masters (10.1016/j.cmet.2020.07.016_bib31) 2010; 11 Heneka (10.1016/j.cmet.2020.07.016_bib14) 2013; 493 Muñoz-Planillo (10.1016/j.cmet.2020.07.016_bib34) 2013; 38 Juliana (10.1016/j.cmet.2020.07.016_bib21) 2010; 285 Shimada (10.1016/j.cmet.2020.07.016_bib47) 2012; 36 |
References_xml | – volume: 17 start-page: 250 year: 2016 end-page: 258 ident: bib46 article-title: NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component publication-title: Nat. Immunol. – volume: 17 start-page: 688 year: 2018 ident: bib29 article-title: Targeting the NLRP3 inflammasome in inflammatory diseases publication-title: Nat. Rev. Drug Discov. – volume: 292 start-page: 12077 year: 2017 end-page: 12087 ident: bib5 article-title: The intracellular chloride channel proteins CLIC1 and CLIC4 induce IL-1β transcription and activate the NLRP3 inflammasome publication-title: J. Biol. Chem. – volume: 9 start-page: 2550 year: 2018 ident: bib12 article-title: Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity publication-title: Nat. Commun. – volume: 564 start-page: 71 year: 2018 end-page: 76 ident: bib1 article-title: PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation publication-title: Nature – volume: 29 start-page: 301 year: 2001 end-page: 305 ident: bib15 article-title: Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome publication-title: Nat. Genet. – volume: 10 start-page: 5091 year: 2019 ident: bib27 article-title: 4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to exert anti-inflammatory effects publication-title: Nat. Commun. – volume: 214 start-page: 1725 year: 2017 end-page: 1736 ident: bib49 article-title: NLRP3 inflammasome assembly is regulated by phosphorylation of the pyrin domain publication-title: J. Exp. Med. – volume: 32 start-page: 188 year: 2020 end-page: 202 ident: bib48 article-title: Omics-driven systems interrogation of metabolic dysregulation in COVID-19 pathogenesis publication-title: Cell Metab. – volume: 623 start-page: 136 year: 2016 end-page: 143 ident: bib40 article-title: A comparative study of the thermal properties of homologous series of crystallisable n-alkyl maleate and itaconate monoesters publication-title: Thermochim. Acta – volume: 110 start-page: 7820 year: 2013 end-page: 7825 ident: bib32 article-title: Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production publication-title: Proc. Natl. Acad. Sci. USA – volume: 41 start-page: 263 year: 1995 end-page: 270 ident: bib26 article-title: Cloning and analysis of gene regulation of a novel LPS-inducible cDNA publication-title: Immunogenetics – volume: 479 start-page: 117 year: 2011 end-page: 121 ident: bib23 article-title: Non-canonical inflammasome activation targets caspase-11 publication-title: Nature – volume: 19 start-page: 477 year: 2019 end-page: 489 ident: bib51 article-title: The NLRP3 inflammasome: molecular activation and regulation to therapeutics publication-title: Nat. Rev. Immunol. – volume: 2 start-page: 594 year: 2020 end-page: 602 ident: bib50 article-title: Comparative evaluation of itaconate and its derivatives reveals divergent inflammasome and type I interferon regulation in macrophages publication-title: Nat Metab – volume: 386 start-page: 619 year: 1997 end-page: 623 ident: bib8 article-title: Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production publication-title: Nature – volume: 19 start-page: 273 year: 2019 end-page: 281 ident: bib35 article-title: Itaconate: the poster child of metabolic reprogramming in macrophage function publication-title: Nat. Rev. Immunol. – volume: 6 start-page: 1 year: 2016 end-page: 10 ident: bib45 article-title: Reconstruction of the mouse inflammasome system in HEK293T cells publication-title: Bio Protoc. – volume: 8 start-page: 202 year: 2017 ident: bib52 article-title: CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation publication-title: Nat. Commun. – volume: 20 start-page: 527 year: 2019 end-page: 533 ident: bib39 article-title: Innate immunity to intracellular LPS publication-title: Nat. Immunol. – volume: 530 start-page: 354 year: 2016 end-page: 357 ident: bib11 article-title: NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux publication-title: Nature – volume: 526 start-page: 660 year: 2015 end-page: 665 ident: bib44 article-title: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death publication-title: Nature – volume: 47 start-page: 806 year: 2017 end-page: 817 ident: bib7 article-title: Opposing effects of Nrf2 and Nrf2-activating compounds on the NLRP3 inflammasome independent of Nrf2-mediated gene expression publication-title: Eur. J. Immunol. – volume: 44 start-page: 833 year: 2016 end-page: 846 ident: bib6 article-title: Human monocytes engage an alternative inflammasome pathway publication-title: Immunity – volume: 570 start-page: 338 year: 2019 end-page: 343 ident: bib42 article-title: Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome publication-title: Nature – volume: 289 start-page: 17020 year: 2014 end-page: 17029 ident: bib56 article-title: Nuclear factor E2-related factor-2 (Nrf2) is required for NLRP3 and AIM2 inflammasome activation publication-title: J. Biol. Chem. – volume: 493 start-page: 674 year: 2013 end-page: 678 ident: bib14 article-title: NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice publication-title: Nature – volume: 21 start-page: 263 year: 2015 end-page: 269 ident: bib55 article-title: The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease publication-title: Nat. Med. – volume: 24 start-page: 158 year: 2016 end-page: 166 ident: bib25 article-title: Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation publication-title: Cell Metab. – volume: 512 start-page: 69 year: 2014 end-page: 73 ident: bib54 article-title: Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis publication-title: Nature – volume: 17 start-page: 179 year: 2011 end-page: 188 ident: bib53 article-title: The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance publication-title: Nat. Med. – volume: 156 start-page: 1193 year: 2014 end-page: 1206 ident: bib28 article-title: Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes publication-title: Cell – volume: 9 start-page: 847 year: 2008 end-page: 856 ident: bib17 article-title: Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization publication-title: Nat. Immunol. – volume: 11 start-page: 897 year: 2010 end-page: 904 ident: bib31 article-title: Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes publication-title: Nat. Immunol. – volume: 10 start-page: 241 year: 2020 ident: bib4 article-title: Changes in plasma itaconate elevation in early rheumatoid arthritis patients elucidates disease activity associated macrophage activation publication-title: Metabolites – volume: 285 start-page: 9792 year: 2010 end-page: 9802 ident: bib21 article-title: Anti-inflammatory compounds parthenolide and Bay 11-7082 are direct inhibitors of the inflammasome publication-title: J. Biol. Chem. – volume: 556 start-page: 113 year: 2018 end-page: 117 ident: bib33 article-title: Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1 publication-title: Nature – volume: 36 start-page: 401 year: 2012 end-page: 414 ident: bib47 article-title: Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis publication-title: Immunity – volume: 291 start-page: 14274 year: 2016 end-page: 14284 ident: bib3 article-title: Immunoresponsive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels publication-title: J. Biol. Chem. – volume: 287 start-page: 36617 year: 2012 end-page: 36622 ident: bib22 article-title: Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation publication-title: J. Biol. Chem. – volume: 157 start-page: 1013 year: 2014 end-page: 1022 ident: bib24 article-title: Mechanisms and functions of inflammasomes publication-title: Cell – volume: 142 start-page: 10894 year: 2020 end-page: 10898 ident: bib38 article-title: Chemoproteomic profiling of itaconation by bioorthogonal probes in inflammatory macrophages publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 151 year: 2019 end-page: 161.e5 ident: bib19 article-title: Glutathione transferase omega-1 regulates NLRP3 inflammasome activation through NEK7 deglutathionylation publication-title: Cell Rep. – volume: 15 start-page: 983 year: 2019 end-page: 991 ident: bib37 article-title: S-glycosylation-based cysteine profiling reveals regulation of glycolysis by itaconate publication-title: Nat. Chem. Biol. – volume: 9 start-page: 298 year: 2018 end-page: 313 ident: bib36 article-title: Isotope tracing untargeted metabolomics reveals macrophage polarization-state-specific metabolic coordination across intracellular compartments publication-title: iScience – volume: 39 start-page: 311 year: 2013 end-page: 323 ident: bib20 article-title: Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation publication-title: Immunity – volume: 514 start-page: 187 year: 2014 end-page: 192 ident: bib43 article-title: Inflammatory caspases are innate immune receptors for intracellular LPS publication-title: Nature – volume: 440 start-page: 237 year: 2006 end-page: 241 ident: bib30 article-title: Gout-associated uric acid crystals activate the NALP3 inflammasome publication-title: Nature – volume: 38 start-page: 1142 year: 2013 end-page: 1153 ident: bib34 article-title: K publication-title: Immunity – volume: 40 start-page: 687 year: 2019 end-page: 698 ident: bib16 article-title: The immunomodulatory potential of the metabolite itaconate publication-title: Trends Immunol. – volume: 458 start-page: 514 year: 2009 end-page: 518 ident: bib57 article-title: AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC publication-title: Nature – volume: 291 start-page: 103 year: 2016 end-page: 109 ident: bib41 article-title: A genome-wide CRISPR (clustered regularly interspaced short palindromic repeats) screen identifies NEK7 as an essential component of NLRP3 inflammasome activation publication-title: J. Biol. Chem. – volume: 21 start-page: 248 year: 2015 end-page: 255 ident: bib2 article-title: A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases publication-title: Nat. Med. – volume: 45 start-page: 761 year: 2016 end-page: 773 ident: bib9 article-title: K publication-title: Immunity – volume: 31 start-page: 580 year: 2020 end-page: 591.e5 ident: bib13 article-title: An acetylation switch of the NLRP3 inflammasome regulates aging-associated chronic inflammation and insulin resistance publication-title: Cell Metab. – volume: 341 start-page: 172 year: 2013 end-page: 175 ident: bib18 article-title: Crystal structure of NLRC4 reveals its autoinhibition mechanism publication-title: Science – volume: 34 start-page: 2891 year: 2013 end-page: 2900 ident: bib10 article-title: Metabolomic analysis of key central carbon metabolism carboxylic acids as their 3-nitrophenylhydrazones by UPLC/ESI-MS publication-title: Electrophoresis – volume: 44 start-page: 833 year: 2016 ident: 10.1016/j.cmet.2020.07.016_bib6 article-title: Human monocytes engage an alternative inflammasome pathway publication-title: Immunity doi: 10.1016/j.immuni.2016.01.012 – volume: 479 start-page: 117 year: 2011 ident: 10.1016/j.cmet.2020.07.016_bib23 article-title: Non-canonical inflammasome activation targets caspase-11 publication-title: Nature doi: 10.1038/nature10558 – volume: 40 start-page: 687 year: 2019 ident: 10.1016/j.cmet.2020.07.016_bib16 article-title: The immunomodulatory potential of the metabolite itaconate publication-title: Trends Immunol. doi: 10.1016/j.it.2019.05.007 – volume: 285 start-page: 9792 year: 2010 ident: 10.1016/j.cmet.2020.07.016_bib21 article-title: Anti-inflammatory compounds parthenolide and Bay 11-7082 are direct inhibitors of the inflammasome publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.082305 – volume: 440 start-page: 237 year: 2006 ident: 10.1016/j.cmet.2020.07.016_bib30 article-title: Gout-associated uric acid crystals activate the NALP3 inflammasome publication-title: Nature doi: 10.1038/nature04516 – volume: 386 start-page: 619 year: 1997 ident: 10.1016/j.cmet.2020.07.016_bib8 article-title: Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production publication-title: Nature doi: 10.1038/386619a0 – volume: 41 start-page: 263 year: 1995 ident: 10.1016/j.cmet.2020.07.016_bib26 article-title: Cloning and analysis of gene regulation of a novel LPS-inducible cDNA publication-title: Immunogenetics doi: 10.1007/BF00172150 – volume: 556 start-page: 113 year: 2018 ident: 10.1016/j.cmet.2020.07.016_bib33 article-title: Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1 publication-title: Nature doi: 10.1038/nature25986 – volume: 17 start-page: 688 year: 2018 ident: 10.1016/j.cmet.2020.07.016_bib29 article-title: Targeting the NLRP3 inflammasome in inflammatory diseases publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2018.149 – volume: 20 start-page: 527 year: 2019 ident: 10.1016/j.cmet.2020.07.016_bib39 article-title: Innate immunity to intracellular LPS publication-title: Nat. Immunol. doi: 10.1038/s41590-019-0368-3 – volume: 19 start-page: 477 year: 2019 ident: 10.1016/j.cmet.2020.07.016_bib51 article-title: The NLRP3 inflammasome: molecular activation and regulation to therapeutics publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-019-0165-0 – volume: 289 start-page: 17020 year: 2014 ident: 10.1016/j.cmet.2020.07.016_bib56 article-title: Nuclear factor E2-related factor-2 (Nrf2) is required for NLRP3 and AIM2 inflammasome activation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.563114 – volume: 142 start-page: 10894 year: 2020 ident: 10.1016/j.cmet.2020.07.016_bib38 article-title: Chemoproteomic profiling of itaconation by bioorthogonal probes in inflammatory macrophages publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b11962 – volume: 292 start-page: 12077 year: 2017 ident: 10.1016/j.cmet.2020.07.016_bib5 article-title: The intracellular chloride channel proteins CLIC1 and CLIC4 induce IL-1β transcription and activate the NLRP3 inflammasome publication-title: J. Biol. Chem. doi: 10.1074/jbc.M117.797126 – volume: 10 start-page: 241 year: 2020 ident: 10.1016/j.cmet.2020.07.016_bib4 article-title: Changes in plasma itaconate elevation in early rheumatoid arthritis patients elucidates disease activity associated macrophage activation publication-title: Metabolites doi: 10.3390/metabo10060241 – volume: 530 start-page: 354 year: 2016 ident: 10.1016/j.cmet.2020.07.016_bib11 article-title: NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux publication-title: Nature doi: 10.1038/nature16959 – volume: 9 start-page: 2550 year: 2018 ident: 10.1016/j.cmet.2020.07.016_bib12 article-title: Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity publication-title: Nat. Commun. doi: 10.1038/s41467-018-04947-6 – volume: 21 start-page: 248 year: 2015 ident: 10.1016/j.cmet.2020.07.016_bib2 article-title: A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases publication-title: Nat. Med. doi: 10.1038/nm.3806 – volume: 31 start-page: 580 year: 2020 ident: 10.1016/j.cmet.2020.07.016_bib13 article-title: An acetylation switch of the NLRP3 inflammasome regulates aging-associated chronic inflammation and insulin resistance publication-title: Cell Metab. doi: 10.1016/j.cmet.2020.01.009 – volume: 19 start-page: 273 year: 2019 ident: 10.1016/j.cmet.2020.07.016_bib35 article-title: Itaconate: the poster child of metabolic reprogramming in macrophage function publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-019-0128-5 – volume: 156 start-page: 1193 year: 2014 ident: 10.1016/j.cmet.2020.07.016_bib28 article-title: Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes publication-title: Cell doi: 10.1016/j.cell.2014.02.008 – volume: 29 start-page: 151 year: 2019 ident: 10.1016/j.cmet.2020.07.016_bib19 article-title: Glutathione transferase omega-1 regulates NLRP3 inflammasome activation through NEK7 deglutathionylation publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.08.072 – volume: 39 start-page: 311 year: 2013 ident: 10.1016/j.cmet.2020.07.016_bib20 article-title: Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation publication-title: Immunity doi: 10.1016/j.immuni.2013.08.001 – volume: 29 start-page: 301 year: 2001 ident: 10.1016/j.cmet.2020.07.016_bib15 article-title: Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome publication-title: Nat. Genet. doi: 10.1038/ng756 – volume: 24 start-page: 158 year: 2016 ident: 10.1016/j.cmet.2020.07.016_bib25 article-title: Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.06.004 – volume: 36 start-page: 401 year: 2012 ident: 10.1016/j.cmet.2020.07.016_bib47 article-title: Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis publication-title: Immunity doi: 10.1016/j.immuni.2012.01.009 – volume: 564 start-page: 71 year: 2018 ident: 10.1016/j.cmet.2020.07.016_bib1 article-title: PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation publication-title: Nature doi: 10.1038/s41586-018-0761-3 – volume: 45 start-page: 761 year: 2016 ident: 10.1016/j.cmet.2020.07.016_bib9 article-title: K+ efflux-independent NLRP3 inflammasome activation by small molecules targeting mitochondria publication-title: Immunity doi: 10.1016/j.immuni.2016.08.010 – volume: 11 start-page: 897 year: 2010 ident: 10.1016/j.cmet.2020.07.016_bib31 article-title: Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes publication-title: Nat. Immunol. doi: 10.1038/ni.1935 – volume: 34 start-page: 2891 year: 2013 ident: 10.1016/j.cmet.2020.07.016_bib10 article-title: Metabolomic analysis of key central carbon metabolism carboxylic acids as their 3-nitrophenylhydrazones by UPLC/ESI-MS publication-title: Electrophoresis doi: 10.1002/elps.201200601 – volume: 493 start-page: 674 year: 2013 ident: 10.1016/j.cmet.2020.07.016_bib14 article-title: NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice publication-title: Nature doi: 10.1038/nature11729 – volume: 287 start-page: 36617 year: 2012 ident: 10.1016/j.cmet.2020.07.016_bib22 article-title: Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.407130 – volume: 623 start-page: 136 year: 2016 ident: 10.1016/j.cmet.2020.07.016_bib40 article-title: A comparative study of the thermal properties of homologous series of crystallisable n-alkyl maleate and itaconate monoesters publication-title: Thermochim. Acta doi: 10.1016/j.tca.2015.10.015 – volume: 17 start-page: 250 year: 2016 ident: 10.1016/j.cmet.2020.07.016_bib46 article-title: NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component publication-title: Nat. Immunol. doi: 10.1038/ni.3333 – volume: 17 start-page: 179 year: 2011 ident: 10.1016/j.cmet.2020.07.016_bib53 article-title: The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance publication-title: Nat. Med. doi: 10.1038/nm.2279 – volume: 514 start-page: 187 year: 2014 ident: 10.1016/j.cmet.2020.07.016_bib43 article-title: Inflammatory caspases are innate immune receptors for intracellular LPS publication-title: Nature doi: 10.1038/nature13683 – volume: 2 start-page: 594 year: 2020 ident: 10.1016/j.cmet.2020.07.016_bib50 article-title: Comparative evaluation of itaconate and its derivatives reveals divergent inflammasome and type I interferon regulation in macrophages publication-title: Nat Metab doi: 10.1038/s42255-020-0210-0 – volume: 10 start-page: 5091 year: 2019 ident: 10.1016/j.cmet.2020.07.016_bib27 article-title: 4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to exert anti-inflammatory effects publication-title: Nat. Commun. doi: 10.1038/s41467-019-13078-5 – volume: 110 start-page: 7820 year: 2013 ident: 10.1016/j.cmet.2020.07.016_bib32 article-title: Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1218599110 – volume: 47 start-page: 806 year: 2017 ident: 10.1016/j.cmet.2020.07.016_bib7 article-title: Opposing effects of Nrf2 and Nrf2-activating compounds on the NLRP3 inflammasome independent of Nrf2-mediated gene expression publication-title: Eur. J. Immunol. doi: 10.1002/eji.201646665 – volume: 15 start-page: 983 year: 2019 ident: 10.1016/j.cmet.2020.07.016_bib37 article-title: S-glycosylation-based cysteine profiling reveals regulation of glycolysis by itaconate publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-019-0323-5 – volume: 291 start-page: 103 year: 2016 ident: 10.1016/j.cmet.2020.07.016_bib41 article-title: A genome-wide CRISPR (clustered regularly interspaced short palindromic repeats) screen identifies NEK7 as an essential component of NLRP3 inflammasome activation publication-title: J. Biol. Chem. doi: 10.1074/jbc.C115.700492 – volume: 458 start-page: 514 year: 2009 ident: 10.1016/j.cmet.2020.07.016_bib57 article-title: AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC publication-title: Nature doi: 10.1038/nature07725 – volume: 21 start-page: 263 year: 2015 ident: 10.1016/j.cmet.2020.07.016_bib55 article-title: The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease publication-title: Nat. Med. doi: 10.1038/nm.3804 – volume: 6 start-page: 1 year: 2016 ident: 10.1016/j.cmet.2020.07.016_bib45 article-title: Reconstruction of the mouse inflammasome system in HEK293T cells publication-title: Bio Protoc. doi: 10.21769/BioProtoc.1986 – volume: 291 start-page: 14274 year: 2016 ident: 10.1016/j.cmet.2020.07.016_bib3 article-title: Immunoresponsive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.685792 – volume: 570 start-page: 338 year: 2019 ident: 10.1016/j.cmet.2020.07.016_bib42 article-title: Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome publication-title: Nature doi: 10.1038/s41586-019-1295-z – volume: 9 start-page: 298 year: 2018 ident: 10.1016/j.cmet.2020.07.016_bib36 article-title: Isotope tracing untargeted metabolomics reveals macrophage polarization-state-specific metabolic coordination across intracellular compartments publication-title: iScience doi: 10.1016/j.isci.2018.10.029 – volume: 341 start-page: 172 year: 2013 ident: 10.1016/j.cmet.2020.07.016_bib18 article-title: Crystal structure of NLRC4 reveals its autoinhibition mechanism publication-title: Science doi: 10.1126/science.1236381 – volume: 214 start-page: 1725 year: 2017 ident: 10.1016/j.cmet.2020.07.016_bib49 article-title: NLRP3 inflammasome assembly is regulated by phosphorylation of the pyrin domain publication-title: J. Exp. Med. doi: 10.1084/jem.20160933 – volume: 8 start-page: 202 year: 2017 ident: 10.1016/j.cmet.2020.07.016_bib52 article-title: CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation publication-title: Nat. Commun. doi: 10.1038/s41467-017-00227-x – volume: 9 start-page: 847 year: 2008 ident: 10.1016/j.cmet.2020.07.016_bib17 article-title: Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization publication-title: Nat. Immunol. doi: 10.1038/ni.1631 – volume: 512 start-page: 69 year: 2014 ident: 10.1016/j.cmet.2020.07.016_bib54 article-title: Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis publication-title: Nature doi: 10.1038/nature13322 – volume: 32 start-page: 188 year: 2020 ident: 10.1016/j.cmet.2020.07.016_bib48 article-title: Omics-driven systems interrogation of metabolic dysregulation in COVID-19 pathogenesis publication-title: Cell Metab. doi: 10.1016/j.cmet.2020.06.016 – volume: 526 start-page: 660 year: 2015 ident: 10.1016/j.cmet.2020.07.016_bib44 article-title: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death publication-title: Nature doi: 10.1038/nature15514 – volume: 38 start-page: 1142 year: 2013 ident: 10.1016/j.cmet.2020.07.016_bib34 article-title: K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter publication-title: Immunity doi: 10.1016/j.immuni.2013.05.016 – volume: 157 start-page: 1013 year: 2014 ident: 10.1016/j.cmet.2020.07.016_bib24 article-title: Mechanisms and functions of inflammasomes publication-title: Cell doi: 10.1016/j.cell.2014.04.007 |
SSID | ssj0036393 |
Score | 2.6993158 |
Snippet | The Krebs cycle-derived metabolite itaconate is highly upregulated in inflammatory macrophages and exerts immunomodulatory effects through cysteine... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 468 |
SubjectTerms | Animals cysteine modification IL-1β Immunologic Factors - pharmacology immunometabolism inflammasome Inflammasomes - antagonists & inhibitors Inflammasomes - metabolism itaconate macrophage metabolite Mice Mice, Inbred C57BL Mice, Knockout NEK7 NLR Family, Pyrin Domain-Containing 3 Protein - deficiency NLR Family, Pyrin Domain-Containing 3 Protein - metabolism NLRP3 pyroptosis Short Succinates - pharmacology |
Title | The Immunomodulatory Metabolite Itaconate Modifies NLRP3 and Inhibits Inflammasome Activation |
URI | https://dx.doi.org/10.1016/j.cmet.2020.07.016 https://www.ncbi.nlm.nih.gov/pubmed/32791101 https://www.proquest.com/docview/2434470942 https://pubmed.ncbi.nlm.nih.gov/PMC7422798 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9DEHwRv51fRPBNytombbPHKcomKuIH7EVCmqRYce3Yuof99971YzgVH3xr0wuEu8vdpbm7HyFnbmgiYZRxjJdo_HUTO0KryNFdTwgFPg72FGZb3If9F34zDIYtctnUwmBaZW37K5teWut6pFNzszNO084TBtdggj0fb_e8ErmWcVEW8Q0vGmvMwAOXSfZA7CB1XThT5XjpkcV8St8tG3gi5vnvzuln8Pk9h_KLU7reIOt1NEl71YI3SctmW2S1wpecb5NXUAI6wAqQfJQbBOrKJ3N6ZwuQPNYe00EBBjGDcJPe5SZN4NRM728fHxhVmaGD7C2N02IKDwnozUhN85GlPd0Aou2Ql-ur58u-U-MpOBphCxzmdq0RAbh0P-HCZSoREH-5whjfgJtytRBGR7Hx4FATxKGwLIHtqZjHLYeDi2a7ZCXLM7tPKEpWdXWidGC5CMMY8TqU5kHZjkapNvEaRkpdNxtHzIsP2WSVvUtkvkTmSzeSMNQm54s546rVxp_UQSMfuaQwEnzBn_NOG2FK2El4PaIym8-m0ufY_RCOu36b7FXCXayD-RF4Bddrk2hJ7AsC7NK9_CVL38pu3RHHJo3i4J_rPSRr-FaltR2RlWIys8cQBxXxSanon1yVBvI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXVN4LBYwEJxRt7Ly8Bw5todrQ3RWCVtoLch3bUYPYpOqmQvu7-IPM5LFiAfWA1Fvk2JE1M575HI-_AXjtxzaRVlvP8tzQr5vMk0YnnhlxKTXGOFxTlG0xi8cn4cd5NN-Cn_1dGEqr7Hx_69Mbb921DDtpDs-LYviFwDW6YC7odI_zvoL1kVv9wH3b8l36HpX8RojDD8cHY68rLeAZYvD3An_krIwwuok8lH6gc4lQxJfWCose2zdSWpNkliO-j7JYuiBHS9UBD12IGN4E-N0bcBPRR0LeIJ3v9-4_wJDfZPXj7DyaXndTp00qMwtHCZzCbxhDqcj6v6Ph32j3z6TN36Lg4Q7c7eAr22sldA-2XHkfbrUFLVcP4CtaHUvpykm1qCxVBqsuVmzqajQ1uuzM0ho9cIn4lk0rW-S4TWezyedPAdOlZWl5VmRFvcSHHA11oZfVwrE901dgewgn1yLlR7BdVqV7AoxMSY9Mrk3kQhnHGRUI0SaMGv4brQfAe0Eq07GbU5GN76pPY_umSPiKhK_8RGHTAN6ux5y33B5X9o56_agNC1UYfK4c96pXpsKlS-cxunTV5VKJkOgWcX8tBvC4Ve56HoFIMAz5fADJhtrXHYgWfPNNWZw19OBJSKyQ8ul_zvcl3B4fTydqks6OnsEdetPm1O3Cdn1x6Z4jCKuzF43RMzi97lX2CycLQhQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Immunomodulatory+Metabolite+Itaconate+Modifies+NLRP3+and+Inhibits+Inflammasome+Activation&rft.jtitle=Cell+metabolism&rft.au=Hooftman%2C+Alexander&rft.au=Angiari%2C+Stefano&rft.au=Hester%2C+Svenja&rft.au=Corcoran%2C+Sarah+E.&rft.date=2020-09-01&rft.pub=Elsevier+Inc&rft.issn=1550-4131&rft.eissn=1932-7420&rft.volume=32&rft.issue=3&rft.spage=468&rft.epage=478.e7&rft_id=info:doi/10.1016%2Fj.cmet.2020.07.016&rft_id=info%3Apmid%2F32791101&rft.externalDocID=PMC7422798 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon |