The Immunomodulatory Metabolite Itaconate Modifies NLRP3 and Inhibits Inflammasome Activation

The Krebs cycle-derived metabolite itaconate is highly upregulated in inflammatory macrophages and exerts immunomodulatory effects through cysteine modifications on target proteins. The NLRP3 inflammasome, which cleaves IL-1β, IL-18, and gasdermin D, must be tightly regulated to avoid excessive infl...

Full description

Saved in:
Bibliographic Details
Published inCell metabolism Vol. 32; no. 3; pp. 468 - 478.e7
Main Authors Hooftman, Alexander, Angiari, Stefano, Hester, Svenja, Corcoran, Sarah E., Runtsch, Marah C., Ling, Chris, Ruzek, Melanie C., Slivka, Peter F., McGettrick, Anne F., Banahan, Kathy, Hughes, Mark M., Irvine, Alan D., Fischer, Roman, O’Neill, Luke A.J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Krebs cycle-derived metabolite itaconate is highly upregulated in inflammatory macrophages and exerts immunomodulatory effects through cysteine modifications on target proteins. The NLRP3 inflammasome, which cleaves IL-1β, IL-18, and gasdermin D, must be tightly regulated to avoid excessive inflammation. Here we provide evidence that itaconate modifies NLRP3 and inhibits inflammasome activation. Itaconate and its derivative, 4-octyl itaconate (4-OI), inhibited NLRP3 inflammasome activation, but not AIM2 or NLRC4. Conversely, NLRP3 activation was increased in itaconate-depleted Irg1−/− macrophages. 4-OI inhibited the interaction between NLRP3 and NEK7, a key step in the activation process, and “dicarboxypropylated” C548 on NLRP3. Furthermore, 4-OI inhibited NLRP3-dependent IL-1β release from PBMCs isolated from cryopyrin-associated periodic syndrome (CAPS) patients, and reduced inflammation in an in vivo model of urate-induced peritonitis. Our results identify itaconate as an endogenous metabolic regulator of the NLRP3 inflammasome and describe a process that may be exploited therapeutically to alleviate inflammation in NLRP3-driven disorders. [Display omitted] •Itaconate and its derivative 4-OI (which generates itaconate) block NLRP3 activation•Itaconate-depleted Irg1−/− BMDMs exhibit increased NLRP3 inflammasome activation•4-OI “dicarboxypropylates” C548 on NLRP3 and blocks the NLRP3-NEK7 interaction•4-OI reduces peritonitis in vivo and blocks IL-1β release from CAPS patient PBMCs Hooftman et al. reveal a role for the Krebs cycle-derived metabolite itaconate in regulating the NLRP3 inflammasome. Itaconate specifically blocks NLRP3 inflammasome activation by reducing the NLRP3-NEK7 interaction, likely due to modification of C548 on NLRP3. Furthermore, itaconate inhibits IL-1β release from cells isolated from patients with the NLRP3-mediated disease CAPS.
AbstractList The Krebs cycle-derived metabolite itaconate is highly upregulated in inflammatory macrophages and exerts immunomodulatory effects through cysteine modifications on target proteins. The NLRP3 inflammasome, which cleaves IL-1β, IL-18, and gasdermin D, must be tightly regulated to avoid excessive inflammation. Here we provide evidence that itaconate modifies NLRP3 and inhibits inflammasome activation. Itaconate and its derivative, 4-octyl itaconate (4-OI), inhibited NLRP3 inflammasome activation, but not AIM2 or NLRC4. Conversely, NLRP3 activation was increased in itaconate-depleted Irg1 −/− macrophages. 4-OI inhibited the interaction between NLRP3 and NEK7, a key step in the activation process, and “dicarboxypropylated” C548 on NLRP3. Furthermore, 4-OI inhibited NLRP3-dependent IL-1β release from PBMCs isolated from cryopyrin-associated periodic syndrome (CAPS) patients, and reduced inflammation in an in vivo model of urate-induced peritonitis. Our results identify itaconate as an endogenous metabolic regulator of the NLRP3 inflammasome and describe a process that may be exploited therapeutically to alleviate inflammation in NLRP3-driven disorders. • Itaconate and its derivative 4-OI (which generates itaconate) block NLRP3 activation • Itaconate-depleted Irg1 −/− BMDMs exhibit increased NLRP3 inflammasome activation • 4-OI “dicarboxypropylates” C548 on NLRP3 and blocks the NLRP3-NEK7 interaction • 4-OI reduces peritonitis in vivo and blocks IL-1β release from CAPS patient PBMCs Hooftman et al. reveal a role for the Krebs cycle-derived metabolite itaconate in regulating the NLRP3 inflammasome. Itaconate specifically blocks NLRP3 inflammasome activation by reducing the NLRP3-NEK7 interaction, likely due to modification of C548 on NLRP3. Furthermore, itaconate inhibits IL-1β release from cells isolated from patients with the NLRP3-mediated disease CAPS.
The Krebs cycle-derived metabolite itaconate is highly upregulated in inflammatory macrophages and exerts immunomodulatory effects through cysteine modifications on target proteins. The NLRP3 inflammasome, which cleaves IL-1β, IL-18, and gasdermin D, must be tightly regulated to avoid excessive inflammation. Here we provide evidence that itaconate modifies NLRP3 and inhibits inflammasome activation. Itaconate and its derivative, 4-octyl itaconate (4-OI), inhibited NLRP3 inflammasome activation, but not AIM2 or NLRC4. Conversely, NLRP3 activation was increased in itaconate-depleted Irg1-/- macrophages. 4-OI inhibited the interaction between NLRP3 and NEK7, a key step in the activation process, and "dicarboxypropylated" C548 on NLRP3. Furthermore, 4-OI inhibited NLRP3-dependent IL-1β release from PBMCs isolated from cryopyrin-associated periodic syndrome (CAPS) patients, and reduced inflammation in an in vivo model of urate-induced peritonitis. Our results identify itaconate as an endogenous metabolic regulator of the NLRP3 inflammasome and describe a process that may be exploited therapeutically to alleviate inflammation in NLRP3-driven disorders.The Krebs cycle-derived metabolite itaconate is highly upregulated in inflammatory macrophages and exerts immunomodulatory effects through cysteine modifications on target proteins. The NLRP3 inflammasome, which cleaves IL-1β, IL-18, and gasdermin D, must be tightly regulated to avoid excessive inflammation. Here we provide evidence that itaconate modifies NLRP3 and inhibits inflammasome activation. Itaconate and its derivative, 4-octyl itaconate (4-OI), inhibited NLRP3 inflammasome activation, but not AIM2 or NLRC4. Conversely, NLRP3 activation was increased in itaconate-depleted Irg1-/- macrophages. 4-OI inhibited the interaction between NLRP3 and NEK7, a key step in the activation process, and "dicarboxypropylated" C548 on NLRP3. Furthermore, 4-OI inhibited NLRP3-dependent IL-1β release from PBMCs isolated from cryopyrin-associated periodic syndrome (CAPS) patients, and reduced inflammation in an in vivo model of urate-induced peritonitis. Our results identify itaconate as an endogenous metabolic regulator of the NLRP3 inflammasome and describe a process that may be exploited therapeutically to alleviate inflammation in NLRP3-driven disorders.
The Krebs cycle-derived metabolite itaconate is highly upregulated in inflammatory macrophages and exerts immunomodulatory effects through cysteine modifications on target proteins. The NLRP3 inflammasome, which cleaves IL-1β, IL-18, and gasdermin D, must be tightly regulated to avoid excessive inflammation. Here we provide evidence that itaconate modifies NLRP3 and inhibits inflammasome activation. Itaconate and its derivative, 4-octyl itaconate (4-OI), inhibited NLRP3 inflammasome activation, but not AIM2 or NLRC4. Conversely, NLRP3 activation was increased in itaconate-depleted Irg1−/− macrophages. 4-OI inhibited the interaction between NLRP3 and NEK7, a key step in the activation process, and “dicarboxypropylated” C548 on NLRP3. Furthermore, 4-OI inhibited NLRP3-dependent IL-1β release from PBMCs isolated from cryopyrin-associated periodic syndrome (CAPS) patients, and reduced inflammation in an in vivo model of urate-induced peritonitis. Our results identify itaconate as an endogenous metabolic regulator of the NLRP3 inflammasome and describe a process that may be exploited therapeutically to alleviate inflammation in NLRP3-driven disorders. [Display omitted] •Itaconate and its derivative 4-OI (which generates itaconate) block NLRP3 activation•Itaconate-depleted Irg1−/− BMDMs exhibit increased NLRP3 inflammasome activation•4-OI “dicarboxypropylates” C548 on NLRP3 and blocks the NLRP3-NEK7 interaction•4-OI reduces peritonitis in vivo and blocks IL-1β release from CAPS patient PBMCs Hooftman et al. reveal a role for the Krebs cycle-derived metabolite itaconate in regulating the NLRP3 inflammasome. Itaconate specifically blocks NLRP3 inflammasome activation by reducing the NLRP3-NEK7 interaction, likely due to modification of C548 on NLRP3. Furthermore, itaconate inhibits IL-1β release from cells isolated from patients with the NLRP3-mediated disease CAPS.
The Krebs cycle-derived metabolite itaconate is highly upregulated in inflammatory macrophages and exerts immunomodulatory effects through cysteine modifications on target proteins. The NLRP3 inflammasome, which cleaves IL-1β, IL-18, and gasdermin D, must be tightly regulated to avoid excessive inflammation. Here we provide evidence that itaconate modifies NLRP3 and inhibits inflammasome activation. Itaconate and its derivative, 4-octyl itaconate (4-OI), inhibited NLRP3 inflammasome activation, but not AIM2 or NLRC4. Conversely, NLRP3 activation was increased in itaconate-depleted Irg1 macrophages. 4-OI inhibited the interaction between NLRP3 and NEK7, a key step in the activation process, and "dicarboxypropylated" C548 on NLRP3. Furthermore, 4-OI inhibited NLRP3-dependent IL-1β release from PBMCs isolated from cryopyrin-associated periodic syndrome (CAPS) patients, and reduced inflammation in an in vivo model of urate-induced peritonitis. Our results identify itaconate as an endogenous metabolic regulator of the NLRP3 inflammasome and describe a process that may be exploited therapeutically to alleviate inflammation in NLRP3-driven disorders.
Author Fischer, Roman
Hooftman, Alexander
Corcoran, Sarah E.
Banahan, Kathy
O’Neill, Luke A.J.
Runtsch, Marah C.
Irvine, Alan D.
Hughes, Mark M.
Angiari, Stefano
Slivka, Peter F.
Ruzek, Melanie C.
McGettrick, Anne F.
Hester, Svenja
Ling, Chris
Author_xml – sequence: 1
  givenname: Alexander
  surname: Hooftman
  fullname: Hooftman, Alexander
  organization: School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
– sequence: 2
  givenname: Stefano
  surname: Angiari
  fullname: Angiari, Stefano
  organization: School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
– sequence: 3
  givenname: Svenja
  surname: Hester
  fullname: Hester, Svenja
  organization: Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK
– sequence: 4
  givenname: Sarah E.
  surname: Corcoran
  fullname: Corcoran, Sarah E.
  organization: School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
– sequence: 5
  givenname: Marah C.
  surname: Runtsch
  fullname: Runtsch, Marah C.
  organization: School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
– sequence: 6
  givenname: Chris
  surname: Ling
  fullname: Ling, Chris
  organization: Mass Spectrometry, Analytical Research Technologies, Abbvie, North Chicago, IL 60064, USA
– sequence: 7
  givenname: Melanie C.
  surname: Ruzek
  fullname: Ruzek, Melanie C.
  organization: Immunology Discovery, Abbvie, Worcester, MA 01605, USA
– sequence: 8
  givenname: Peter F.
  surname: Slivka
  fullname: Slivka, Peter F.
  organization: Immunology Discovery, Abbvie, Worcester, MA 01605, USA
– sequence: 9
  givenname: Anne F.
  surname: McGettrick
  fullname: McGettrick, Anne F.
  organization: School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
– sequence: 10
  givenname: Kathy
  surname: Banahan
  fullname: Banahan, Kathy
  organization: School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
– sequence: 11
  givenname: Mark M.
  surname: Hughes
  fullname: Hughes, Mark M.
  organization: School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
– sequence: 12
  givenname: Alan D.
  surname: Irvine
  fullname: Irvine, Alan D.
  organization: Pediatric Dermatology, Children’s Health Ireland, Crumlin, Dublin 12, Ireland
– sequence: 13
  givenname: Roman
  surname: Fischer
  fullname: Fischer, Roman
  organization: Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK
– sequence: 14
  givenname: Luke A.J.
  surname: O’Neill
  fullname: O’Neill, Luke A.J.
  email: laoneill@tcd.ie
  organization: School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32791101$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1v1DAUtFAR_YA_wAHlyCXBX0kcCSFVVWlX2gJC5Ygsx35hvYrtYjsr9d_jZUsFHHry6L2ZedbMKTrywQNCrwluCCbdu22jHeSGYoob3Ddl9AydkIHRuucUHxXctrjmhJFjdJrSFmPWsYG9QMeM9gMpHifo--0GqpVziw8umGVWOcT76gayGsNsc9llpYNXBd0EYycLqfq0_vqFVcqbauU3drQ5FTDNyjmVgoPqXGe7U9kG_xI9n9Sc4NXDe4a-fby8vbiu15-vVhfn61q3lOSa4QGMaAWhdOICMzUJwVosjKGGUIG1EEb3oyEd7tqxE8CmoWOKEQ6c9FyzM_Th4Hu3jA6MBp-jmuVdtE7FexmUlf9uvN3IH2EnS1AlClEM3j4YxPBzgZSls0nDPCsPYUmScsZ5jwdOC_XN37cej_zJtBDogaBjSCnC9EghWO6Lk1u5L07ui5O4l2VUROI_kbb5d4blv3Z-Wvr-IIWS8M5ClElb8BqMjaCzNME-Jf8FJp60Pw
CitedBy_id crossref_primary_10_1111_cns_14408
crossref_primary_10_3390_antiox12111944
crossref_primary_10_3390_ijms24076126
crossref_primary_10_1159_000536649
crossref_primary_10_1016_j_cmet_2024_10_002
crossref_primary_10_1016_j_isci_2024_109544
crossref_primary_10_1016_j_earlhumdev_2024_105950
crossref_primary_10_1172_JCI148548
crossref_primary_10_3390_cells10082053
crossref_primary_10_1016_j_phymed_2022_154163
crossref_primary_10_1016_j_compbiomed_2022_105825
crossref_primary_10_1016_j_str_2024_04_004
crossref_primary_10_1038_s41418_025_01468_w
crossref_primary_10_1016_j_cmet_2022_02_002
crossref_primary_10_3389_fimmu_2025_1462508
crossref_primary_10_1038_s41392_024_01801_8
crossref_primary_10_7554_eLife_92420
crossref_primary_10_1038_s41423_025_01275_w
crossref_primary_10_1016_j_bcp_2023_115614
crossref_primary_10_1097_IN9_0000000000000036
crossref_primary_10_1002_oby_23509
crossref_primary_10_3389_fendo_2024_1397301
crossref_primary_10_3389_fimmu_2023_1203389
crossref_primary_10_3390_antiox12020489
crossref_primary_10_1038_s42255_021_00402_x
crossref_primary_10_1002_advs_202307233
crossref_primary_10_1016_j_celrep_2023_112145
crossref_primary_10_1371_journal_ppat_1010219
crossref_primary_10_1016_j_jff_2023_105450
crossref_primary_10_1186_s13020_023_00722_y
crossref_primary_10_1186_s40779_022_00404_0
crossref_primary_10_1016_j_devcel_2024_07_011
crossref_primary_10_1186_s10020_023_00631_8
crossref_primary_10_3390_ijms241512196
crossref_primary_10_3390_biom12071005
crossref_primary_10_1080_15548627_2021_1933742
crossref_primary_10_1152_ajpendo_00354_2023
crossref_primary_10_1126_scitranslmed_abe1714
crossref_primary_10_1007_s12013_024_01231_x
crossref_primary_10_1038_s41598_023_42813_8
crossref_primary_10_1016_j_abb_2023_109853
crossref_primary_10_1113_JP285200
crossref_primary_10_2174_0929867330666230509110108
crossref_primary_10_1093_immadv_ltab013
crossref_primary_10_1126_sciadv_abf0466
crossref_primary_10_3389_fchem_2021_669308
crossref_primary_10_4049_jimmunol_2200848
crossref_primary_10_1097_IN9_0000000000000028
crossref_primary_10_1002_advs_202307224
crossref_primary_10_1007_s10753_023_01950_y
crossref_primary_10_1016_j_cell_2021_06_028
crossref_primary_10_1038_s41419_022_04592_4
crossref_primary_10_1073_pnas_2400675121
crossref_primary_10_1016_j_molimm_2023_06_013
crossref_primary_10_1128_spectrum_01717_22
crossref_primary_10_3389_fcimb_2022_1060810
crossref_primary_10_1155_2020_8868839
crossref_primary_10_1016_j_heliyon_2023_e23001
crossref_primary_10_1007_s10753_023_01909_z
crossref_primary_10_3389_fcvm_2023_1217985
crossref_primary_10_7554_eLife_96962_3
crossref_primary_10_1002_ctm2_70098
crossref_primary_10_3389_fgene_2022_1056405
crossref_primary_10_1096_fj_202302453RRR
crossref_primary_10_1038_s44318_024_00217_y
crossref_primary_10_1016_j_clim_2023_109289
crossref_primary_10_1016_j_semarthrit_2025_152688
crossref_primary_10_3389_fimmu_2022_1012442
crossref_primary_10_1016_j_coi_2022_102268
crossref_primary_10_1126_scitranslmed_abf7601
crossref_primary_10_1136_ard_2023_224898
crossref_primary_10_1038_s41564_024_01862_z
crossref_primary_10_1002_pros_24652
crossref_primary_10_1155_2022_7420330
crossref_primary_10_1016_j_intimp_2024_113945
crossref_primary_10_1134_S0006297924050043
crossref_primary_10_1186_s12964_025_02075_5
crossref_primary_10_1016_j_cytogfr_2024_07_001
crossref_primary_10_12677_ACM_2024_142322
crossref_primary_10_3389_fimmu_2023_1052756
crossref_primary_10_15789_1563_0625_IMI_2841
crossref_primary_10_3389_fimmu_2021_767508
crossref_primary_10_1016_j_joca_2022_10_008
crossref_primary_10_1016_j_intimp_2025_114099
crossref_primary_10_1080_08830185_2020_1840567
crossref_primary_10_1126_sciadv_adq4266
crossref_primary_10_7554_eLife_92420_2
crossref_primary_10_1002_advs_202414740
crossref_primary_10_3389_fimmu_2021_790574
crossref_primary_10_1016_j_celrep_2022_110719
crossref_primary_10_1038_s41467_024_48422_x
crossref_primary_10_3390_v16010035
crossref_primary_10_1016_j_rvsc_2022_07_024
crossref_primary_10_1097_MD_0000000000038356
crossref_primary_10_1016_j_cmet_2023_12_015
crossref_primary_10_3389_fgene_2023_1159167
crossref_primary_10_3390_antiox12081551
crossref_primary_10_1016_j_cmet_2021_07_017
crossref_primary_10_1016_j_chembiol_2024_04_006
crossref_primary_10_1186_s13045_023_01478_6
crossref_primary_10_1016_j_biopha_2023_116092
crossref_primary_10_1038_s41423_022_00922_w
crossref_primary_10_1080_0886022X_2024_2403653
crossref_primary_10_1016_j_cmet_2022_03_009
crossref_primary_10_1093_jas_skad356
crossref_primary_10_3389_fimmu_2022_880286
crossref_primary_10_3389_fimmu_2023_1114917
crossref_primary_10_1096_fj_202100909RR
crossref_primary_10_1186_s12931_024_03028_1
crossref_primary_10_1007_s10522_024_10152_4
crossref_primary_10_1002_acn3_52080
crossref_primary_10_1038_s41401_021_00613_8
crossref_primary_10_1016_j_coi_2022_102247
crossref_primary_10_1007_s10787_022_01026_7
crossref_primary_10_1016_j_isci_2022_104561
crossref_primary_10_1016_j_metabol_2025_156152
crossref_primary_10_3389_fphar_2022_938979
crossref_primary_10_1016_j_celrep_2023_112064
crossref_primary_10_1089_wound_2023_0149
crossref_primary_10_1002_art_42990
crossref_primary_10_3389_fmicb_2021_766591
crossref_primary_10_1111_imm_13454
crossref_primary_10_1007_s10753_023_01819_0
crossref_primary_10_1038_s41392_024_02077_8
crossref_primary_10_1128_jvi_01325_23
crossref_primary_10_3389_fmed_2022_1085339
crossref_primary_10_1016_j_jep_2023_117063
crossref_primary_10_1261_rna_079016_121
crossref_primary_10_1016_j_celrep_2021_108756
crossref_primary_10_3389_fimmu_2022_923024
crossref_primary_10_1111_jcmm_16013
crossref_primary_10_1016_j_mucimm_2024_08_001
crossref_primary_10_3389_fendo_2021_626842
crossref_primary_10_1016_j_cmet_2024_01_008
crossref_primary_10_3389_fimmu_2022_783254
crossref_primary_10_1002_mco2_255
crossref_primary_10_1161_CIRCRESAHA_123_321637
crossref_primary_10_3390_biology12060776
crossref_primary_10_1038_s41467_023_41470_9
crossref_primary_10_1007_s12033_024_01156_z
crossref_primary_10_7554_eLife_96962
crossref_primary_10_1002_adhm_202102791
crossref_primary_10_1016_j_seminoncol_2025_152337
crossref_primary_10_3390_biom12050634
crossref_primary_10_1016_j_npep_2025_102501
crossref_primary_10_1021_acs_jmedchem_3c01370
crossref_primary_10_1007_s10753_025_02268_7
crossref_primary_10_1016_j_bbadis_2023_166946
crossref_primary_10_3389_fimmu_2023_1200259
crossref_primary_10_1016_j_tibs_2022_10_002
crossref_primary_10_3390_cells12121584
crossref_primary_10_1007_s10753_021_01587_9
crossref_primary_10_1016_j_jacbts_2022_12_010
crossref_primary_10_1016_j_vetmic_2022_109430
crossref_primary_10_1007_s10787_023_01278_x
crossref_primary_10_1016_j_intimp_2022_109456
crossref_primary_10_1073_pnas_2423114122
crossref_primary_10_1097_HEP_0000000000000549
crossref_primary_10_1152_ajpcell_00130_2023
crossref_primary_10_1038_s41579_023_00852_y
crossref_primary_10_1016_j_neulet_2024_137741
crossref_primary_10_1042_BCJ20220364
crossref_primary_10_3389_fimmu_2021_665782
crossref_primary_10_3390_antiox13010131
crossref_primary_10_1360_SSV_2024_0115
crossref_primary_10_1016_j_jep_2023_117045
crossref_primary_10_1038_s41467_022_34306_5
crossref_primary_10_1016_j_mucimm_2024_10_002
crossref_primary_10_3389_fimmu_2024_1436557
crossref_primary_10_1016_j_heliyon_2024_e35445
crossref_primary_10_1016_j_copbio_2020_09_013
crossref_primary_10_3389_fimmu_2022_967193
crossref_primary_10_1016_j_cmet_2023_09_004
crossref_primary_10_1016_j_mcn_2022_103758
crossref_primary_10_1016_j_phrs_2023_107016
crossref_primary_10_1038_s41423_022_00905_x
crossref_primary_10_1039_D1MD00163A
crossref_primary_10_3389_fmicb_2024_1450085
crossref_primary_10_1016_j_bcp_2022_114935
crossref_primary_10_1039_D3BM00060E
crossref_primary_10_1152_ajpcell_00126_2021
crossref_primary_10_1016_j_copbio_2021_01_020
crossref_primary_10_1016_j_intimp_2023_110104
crossref_primary_10_1042_BCJ20210522
crossref_primary_10_3390_pharmaceutics15030724
crossref_primary_10_1002_cti2_1404
crossref_primary_10_3390_brainsci12091255
crossref_primary_10_1016_j_cellin_2024_100224
crossref_primary_10_1016_j_neuint_2022_105296
crossref_primary_10_1186_s13062_024_00521_x
crossref_primary_10_1002_eji_202149410
crossref_primary_10_1038_s41423_021_00780_y
crossref_primary_10_4049_jimmunol_2300155
crossref_primary_10_1016_j_celrep_2024_114688
crossref_primary_10_1038_s42255_022_00652_3
crossref_primary_10_1039_D1SC00660F
crossref_primary_10_3389_fonc_2021_680758
crossref_primary_10_1016_j_biopha_2024_116690
crossref_primary_10_3390_biom12091236
crossref_primary_10_1096_fj_202400508RR
crossref_primary_10_1038_s42255_022_00676_9
crossref_primary_10_1038_s42255_024_01145_1
crossref_primary_10_1042_BST20230549
crossref_primary_10_1155_2021_8581746
crossref_primary_10_1007_s00018_025_05575_2
crossref_primary_10_1038_s41423_022_00962_2
crossref_primary_10_1038_s41422_024_01060_w
crossref_primary_10_1016_j_celrep_2024_114570
crossref_primary_10_15252_embr_202154226
crossref_primary_10_3389_fcvm_2023_1116509
crossref_primary_10_1016_j_addr_2023_115120
crossref_primary_10_1016_j_apsb_2024_11_019
crossref_primary_10_1016_j_it_2022_10_003
crossref_primary_10_1093_jleuko_qiae045
crossref_primary_10_1016_j_jff_2025_106704
crossref_primary_10_1172_JCI171953
crossref_primary_10_15252_embr_202153251
crossref_primary_10_3390_metabo10110453
crossref_primary_10_1016_j_cellimm_2022_104485
crossref_primary_10_1111_jnc_15959
crossref_primary_10_1016_j_freeradbiomed_2024_04_218
crossref_primary_10_1016_j_clim_2024_110167
crossref_primary_10_1093_pnasnexus_pgac297
crossref_primary_10_3389_fendo_2023_1272646
crossref_primary_10_1038_s42255_022_00565_1
crossref_primary_10_1016_j_jtha_2022_12_002
crossref_primary_10_1016_j_molcel_2022_05_009
crossref_primary_10_1038_s42255_022_00578_w
crossref_primary_10_1016_j_intimp_2025_114361
crossref_primary_10_1186_s11658_023_00503_3
crossref_primary_10_1080_19490976_2021_1946369
crossref_primary_10_1007_s11626_023_00760_8
crossref_primary_10_1080_08916934_2024_2319202
crossref_primary_10_1126_sciadv_adq1047
crossref_primary_10_1038_s41423_021_00670_3
crossref_primary_10_3390_cells10112962
crossref_primary_10_3389_fimmu_2024_1352165
crossref_primary_10_1016_j_coi_2023_102387
crossref_primary_10_1016_j_ebiom_2024_104993
crossref_primary_10_1111_imm_13875
crossref_primary_10_1186_s12974_024_03121_8
crossref_primary_10_1002_adfm_202316496
crossref_primary_10_1016_j_xcrm_2023_101132
crossref_primary_10_3389_fcimb_2022_925746
crossref_primary_10_1007_s44178_024_00096_7
crossref_primary_10_1016_j_isci_2023_107473
crossref_primary_10_3390_ijms25095001
crossref_primary_10_1111_cpr_13711
crossref_primary_10_1186_s12576_024_00926_3
crossref_primary_10_1016_j_tem_2024_02_004
crossref_primary_10_1007_s12013_024_01585_2
crossref_primary_10_1016_j_celrep_2021_108855
crossref_primary_10_31083_j_fbl2901042
crossref_primary_10_1016_j_aquaculture_2023_739376
crossref_primary_10_1016_j_freeradbiomed_2022_02_030
crossref_primary_10_1021_acs_jmedchem_4c02646
crossref_primary_10_1016_j_celrep_2023_113040
crossref_primary_10_3389_fimmu_2023_1296687
crossref_primary_10_1021_acschembio_3c00330
crossref_primary_10_1016_j_celrep_2022_110433
crossref_primary_10_1016_j_autrev_2024_103714
crossref_primary_10_1186_s10020_024_00926_4
crossref_primary_10_3892_mmr_2023_13098
crossref_primary_10_3389_falgy_2022_825931
crossref_primary_10_3389_fimmu_2022_1043572
crossref_primary_10_1016_j_jep_2023_116365
crossref_primary_10_1007_s00281_024_01015_8
crossref_primary_10_31857_S0320972524050047
crossref_primary_10_3389_fcimb_2021_694298
crossref_primary_10_1016_j_brainresbull_2024_111066
crossref_primary_10_1016_j_intimp_2024_113019
crossref_primary_10_1016_j_tem_2021_05_003
crossref_primary_10_1053_j_gastro_2021_08_030
crossref_primary_10_1159_000539278
crossref_primary_10_3389_fimmu_2022_1035709
crossref_primary_10_3390_ijms241713528
crossref_primary_10_1016_j_jointm_2022_01_001
crossref_primary_10_1038_s41418_023_01252_8
crossref_primary_10_3389_fimmu_2024_1434688
crossref_primary_10_1016_j_mucimm_2024_06_004
crossref_primary_10_1039_D2OB00047D
crossref_primary_10_1002_mco2_789
crossref_primary_10_1038_s41590_023_01526_w
crossref_primary_10_1038_s42255_024_01092_x
crossref_primary_10_1126_scitranslmed_adh1469
crossref_primary_10_3389_fimmu_2022_936167
crossref_primary_10_1016_j_freeradbiomed_2022_06_246
crossref_primary_10_1016_j_imlet_2024_106923
crossref_primary_10_1016_j_bbrc_2022_03_110
crossref_primary_10_1371_journal_ppat_1009941
crossref_primary_10_1007_s11427_021_2070_y
crossref_primary_10_1016_j_intimp_2024_112277
crossref_primary_10_1016_j_cmet_2024_11_012
crossref_primary_10_1016_j_copbio_2021_03_009
crossref_primary_10_1016_j_biopha_2024_116933
crossref_primary_10_1016_j_ejphar_2022_174951
crossref_primary_10_1038_s41467_023_39174_1
crossref_primary_10_1159_000516780
crossref_primary_10_1038_s44324_024_00008_3
crossref_primary_10_1097_MD_0000000000037089
crossref_primary_10_1093_infdis_jiae583
crossref_primary_10_3390_vaccines11050993
crossref_primary_10_1016_j_ejphar_2022_175361
crossref_primary_10_1007_s00360_024_01549_1
crossref_primary_10_3389_fddsv_2023_1294454
crossref_primary_10_4049_jimmunol_2300101
crossref_primary_10_1186_s11658_024_00642_1
crossref_primary_10_1038_s41385_021_00462_y
crossref_primary_10_1096_fj_202101161R
crossref_primary_10_1016_j_celrep_2022_111941
crossref_primary_10_3390_pathogens10080957
crossref_primary_10_1002_ijch_202300125
crossref_primary_10_1038_s41419_023_06001_w
crossref_primary_10_1016_j_ejphar_2024_177122
crossref_primary_10_1007_s10787_024_01490_3
crossref_primary_10_1016_j_gendis_2023_01_009
crossref_primary_10_1007_s13238_021_00846_7
crossref_primary_10_1080_08830185_2022_2067153
crossref_primary_10_3892_mmr_2021_12311
crossref_primary_10_1016_j_tube_2023_102462
crossref_primary_10_1016_j_it_2022_07_004
crossref_primary_10_1002_jmv_29807
crossref_primary_10_1002_ptr_8443
crossref_primary_10_3389_fimmu_2022_914639
crossref_primary_10_3389_fcimb_2022_910864
crossref_primary_10_1016_j_freeradbiomed_2023_09_031
crossref_primary_10_1128_mBio_02121_21
crossref_primary_10_3390_pharmaceutics16080985
crossref_primary_10_1038_s41467_023_43988_4
crossref_primary_10_1016_j_tcb_2023_10_005
crossref_primary_10_1016_j_aquaculture_2024_741281
crossref_primary_10_4049_jimmunol_2100488
crossref_primary_10_3389_fendo_2023_1077315
crossref_primary_10_3389_fimmu_2022_930882
crossref_primary_10_15252_embr_202357101
crossref_primary_10_3389_fimmu_2023_1082050
crossref_primary_10_1016_j_celrep_2024_114911
crossref_primary_10_1016_j_intimp_2024_112935
crossref_primary_10_5483_BMBRep_2022_55_11_128
crossref_primary_10_1016_j_gendis_2022_05_039
crossref_primary_10_1038_s41577_020_00478_8
crossref_primary_10_1007_s00018_023_04971_w
crossref_primary_10_1016_j_bbadis_2023_166656
crossref_primary_10_1016_j_biopha_2023_115521
crossref_primary_10_1016_j_actatropica_2022_106698
crossref_primary_10_1111_os_13993
crossref_primary_10_1038_s41419_023_06155_7
crossref_primary_10_1172_JCI173034
crossref_primary_10_1016_j_tem_2022_02_005
crossref_primary_10_1016_j_xcrm_2021_100277
crossref_primary_10_1186_s12931_020_01591_x
crossref_primary_10_1007_s13105_024_01012_3
crossref_primary_10_2147_JIR_S503033
Cites_doi 10.1016/j.immuni.2016.01.012
10.1038/nature10558
10.1016/j.it.2019.05.007
10.1074/jbc.M109.082305
10.1038/nature04516
10.1038/386619a0
10.1007/BF00172150
10.1038/nature25986
10.1038/nrd.2018.149
10.1038/s41590-019-0368-3
10.1038/s41577-019-0165-0
10.1074/jbc.M114.563114
10.1021/jacs.9b11962
10.1074/jbc.M117.797126
10.3390/metabo10060241
10.1038/nature16959
10.1038/s41467-018-04947-6
10.1038/nm.3806
10.1016/j.cmet.2020.01.009
10.1038/s41577-019-0128-5
10.1016/j.cell.2014.02.008
10.1016/j.celrep.2019.08.072
10.1016/j.immuni.2013.08.001
10.1038/ng756
10.1016/j.cmet.2016.06.004
10.1016/j.immuni.2012.01.009
10.1038/s41586-018-0761-3
10.1016/j.immuni.2016.08.010
10.1038/ni.1935
10.1002/elps.201200601
10.1038/nature11729
10.1074/jbc.M112.407130
10.1016/j.tca.2015.10.015
10.1038/ni.3333
10.1038/nm.2279
10.1038/nature13683
10.1038/s42255-020-0210-0
10.1038/s41467-019-13078-5
10.1073/pnas.1218599110
10.1002/eji.201646665
10.1038/s41589-019-0323-5
10.1074/jbc.C115.700492
10.1038/nature07725
10.1038/nm.3804
10.21769/BioProtoc.1986
10.1074/jbc.M115.685792
10.1038/s41586-019-1295-z
10.1016/j.isci.2018.10.029
10.1126/science.1236381
10.1084/jem.20160933
10.1038/s41467-017-00227-x
10.1038/ni.1631
10.1038/nature13322
10.1016/j.cmet.2020.06.016
10.1038/nature15514
10.1016/j.immuni.2013.05.016
10.1016/j.cell.2014.04.007
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
2020 Elsevier Inc. 2020 Elsevier Inc.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
– notice: 2020 Elsevier Inc. 2020 Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.cmet.2020.07.016
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1932-7420
EndPage 478.e7
ExternalDocumentID PMC7422798
32791101
10_1016_j_cmet_2020_07_016
S1550413120304113
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 109443/Z/15/Z
– fundername: Wellcome Trust
  grantid: 205455
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6J9
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IHE
IXB
J1W
JIG
M3Z
M41
O-L
O9-
OK1
P2P
RCE
ROL
RPZ
SES
SSZ
TR2
UNMZH
WQ6
ZA5
AAEDT
AAIKJ
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
EJD
HZ~
OZT
RIG
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-309ed858122f4803af883508dd2d1280c88dc7bd16065b68e3f963a314e4174c3
IEDL.DBID IXB
ISSN 1550-4131
1932-7420
IngestDate Thu Aug 21 14:26:57 EDT 2025
Thu Jul 10 18:09:33 EDT 2025
Mon Jul 21 06:04:52 EDT 2025
Tue Jul 01 03:58:19 EDT 2025
Thu Apr 24 23:09:02 EDT 2025
Fri Feb 23 02:49:27 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords pyroptosis
itaconate
metabolite
immunometabolism
inflammasome
NEK7
cysteine modification
NLRP3
macrophage
IL-1β
Language English
License Copyright © 2020 Elsevier Inc. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-309ed858122f4803af883508dd2d1280c88dc7bd16065b68e3f963a314e4174c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7422798
PMID 32791101
PQID 2434470942
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7422798
proquest_miscellaneous_2434470942
pubmed_primary_32791101
crossref_primary_10_1016_j_cmet_2020_07_016
crossref_citationtrail_10_1016_j_cmet_2020_07_016
elsevier_sciencedirect_doi_10_1016_j_cmet_2020_07_016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell metabolism
PublicationTitleAlternate Cell Metab
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References He, Chiang, Luo, Zheng, Qiao, Wang, Tan, Ohkubo, Mu, Zhao (bib13) 2020; 31
Heneka, Kummer, Stutz, Delekate, Schwartz, Vieira-Saecker, Griep, Axt, Remus, Tzeng (bib14) 2013; 493
Swanson, Deng, Ting (bib51) 2019; 19
Chen, Chen (bib1) 2018; 564
Groß, Mishra, Schneider, Médard, Wettmarshausen, Dittlein, Shi, Gorka, Koenig, Fromm (bib9) 2016; 45
Puchalska, Huang, Martin, Han, Patti, Crawford (bib36) 2018; 9
Hu, Yan, Liu, Huang, Ma, Zhang, Wang, Zhang, Martinon, Miao (bib18) 2013; 341
Shi, Zhao, Wang, Shi, Wang, Huang, Zhuang, Cai, Wang, Shao (bib44) 2015; 526
Vande Walle, Van Opdenbosch, Jacques, Fossoul, Verheugen, Vogel, Beyaert, Elewaut, Kanneganti, van Loo, Lamkanfi (bib54) 2014; 512
Iyer, He, Janczy, Elliott, Zhong, Olivier, Sadler, Knepper-Adrian, Han, Qiao (bib20) 2013; 39
Hooftman, O’Neill (bib16) 2019; 40
Tang, Lang, Xu, Wang, Gong, Yang, Cui, Bai, Wang, Jiang, Zhou (bib52) 2017; 8
Qin, Zhang, Tang, Liu, Chen, Liu, Wang (bib38) 2020; 142
Rathinam, Zhao, Shao (bib39) 2019; 20
Sharif, Wang, Wang, Magupalli, Andreeva, Qiao, Hauenstein, Wu, Núñez, Mao, Wu (bib42) 2019; 570
Shi, Wang, Li, Zhan, Tang, Fina, Su, Pratt, Bu, Hildebrand (bib46) 2016; 17
Juliana, Fernandes-Alnemri, Kang, Farias, Qin, Alnemri (bib22) 2012; 287
Gaidt, Ebert, Chauhan, Schmidt, Schmid-Burgk, Rapino, Robertson, Cooper, Graf, Hornung (bib6) 2016; 44
Liao, Han, Xu, Fu, Wang, Kong (bib27) 2019; 10
Hornung, Bauernfeind, Halle, Samstad, Kono, Rock, Fitzgerald, Latz (bib17) 2008; 9
Stutz, Kolbe, Stahl, Horvath, Franklin, van Ray, Brinkschulte, Geyer, Meissner, Latz (bib49) 2017; 214
Hornung, Ablasser, Charrel-Dennis, Bauernfeind, Horvath, Caffrey, Latz, Fitzgerald (bib57) 2009; 458
Lu, Magupalli, Ruan, Yin, Atianand, Vos, Schröder, Fitzgerald, Wu, Egelman (bib28) 2014; 156
Michelucci, Cordes, Ghelfi, Pailot, Reiling, Goldmann, Binz, Wegner, Tallam, Rausell (bib32) 2013; 110
Vandanmagsar, Youm, Ravussin, Galgani, Stadler, Mynatt, Ravussin, Stephens, Dixit (bib53) 2011; 17
Mangan, Olhava, Roush, Seidel, Glick, Latz (bib29) 2018; 17
Zhao, Gillette, Li, Zhang, Wen (bib56) 2014; 289
He, Zeng, Yang, Motro, Núñez (bib11) 2016; 530
Han, Gagnon, Eckle, Borchers (bib10) 2013; 34
Richard, Delaite, Riess, Schuller (bib40) 2016; 623
Hoffman, Mueller, Broide, Wanderer, Kolodner (bib15) 2001; 29
Mills, Ryan, Prag, Dikovskaya, Menon, Zaslona, Jedrychowski, Costa, Higgins, Hams (bib33) 2018; 556
Coll, Robertson, Chae, Higgins, Muñoz-Planillo, Inserra, Vetter, Dungan, Monks, Stutz (bib2) 2015; 21
Shimada, Crother, Karlin, Dagvadorj, Chiba, Chen, Ramanujan, Wolf, Vergnes, Ojcius (bib47) 2012; 36
Martinon, Pétrilli, Mayor, Tardivel, Tschopp (bib30) 2006; 440
Garstkiewicz, Strittmatter, Grossi, Sand, Fenini, Werner, French, Beer (bib7) 2017; 47
Song, Lam, Fan, Cao, Wang, Tian, Chua, Zhang, Meng, Xu (bib48) 2020; 32
Ghayur, Banerjee, Hugunin, Butler, Herzog, Carter, Quintal, Sekut, Talanian, Paskind (bib8) 1997; 386
Qin, Qin, Zhang, Jia, Chen, Cheng, Peng, Chen, Liu, Zhou (bib37) 2019; 15
He, Jiang, Chen, Ye, Wang, Wang, Liu, Liang, Deng, Jiang, Zhou (bib12) 2018; 9
Cordes, Wallace, Michelucci, Divakaruni, Sapcariu, Sousa, Koseki, Cabrales, Murphy, Hiller, Metallo (bib3) 2016; 291
Shi, Murray, Beutler (bib45) 2016; 6
Schmid-Burgk, Chauhan, Schmidt, Ebert, Reinhardt, Endl, Hornung (bib41) 2016; 291
Lee, Jenkins, Gilbert, Copeland, O’Brien (bib26) 1995; 41
Lampropoulou, Sergushichev, Bambouskova, Nair, Vincent, Loginicheva, Cervantes-Barragan, Ma, Huang, Griss (bib25) 2016; 24
O’Neill, Artyomov (bib35) 2019; 19
Daly, Blackburn, Best, Goodyear, Mudaliar, Burgess, Stirling, Porter, McInnes, Barrett, Dale (bib4) 2020; 10
Youm, Nguyen, Grant, Goldberg, Bodogai, Kim, D’Agostino, Planavsky, Lupfer, Kanneganti (bib55) 2015; 21
Masters, Dunne, Subramanian, Hull, Tannahill, Sharp, Becker, Franchi, Yoshihara, Chen (bib31) 2010; 11
Juliana, Fernandes-Alnemri, Wu, Datta, Solorzano, Yu, Meng, Quong, Latz, Scott, Alnemri (bib21) 2010; 285
Lamkanfi, Dixit (bib24) 2014; 157
Hughes, Hooftman, Angiari, Tummala, Zaslona, Runtsch, McGettrick, Sutton, Diskin, Rooke (bib19) 2019; 29
Shi, Zhao, Wang, Gao, Ding, Li, Hu, Shao (bib43) 2014; 514
Swain, Bambouskova, Kim, Andhey, Duncan, Auclair, Chubukov, Simons, Roddy, Stewart, Artyomov (bib50) 2020; 2
Domingo-Fernández, Coll, Kearney, Breit, O’Neill (bib5) 2017; 292
Kayagaki, Warming, Lamkanfi, Vande Walle, Louie, Dong, Newton, Qu, Liu, Heldens (bib23) 2011; 479
Muñoz-Planillo, Kuffa, Martínez-Colón, Smith, Rajendiran, Núñez (bib34) 2013; 38
He (10.1016/j.cmet.2020.07.016_bib13) 2020; 31
Hornung (10.1016/j.cmet.2020.07.016_bib17) 2008; 9
Martinon (10.1016/j.cmet.2020.07.016_bib30) 2006; 440
Garstkiewicz (10.1016/j.cmet.2020.07.016_bib7) 2017; 47
He (10.1016/j.cmet.2020.07.016_bib11) 2016; 530
O’Neill (10.1016/j.cmet.2020.07.016_bib35) 2019; 19
Mills (10.1016/j.cmet.2020.07.016_bib33) 2018; 556
Hooftman (10.1016/j.cmet.2020.07.016_bib16) 2019; 40
Swain (10.1016/j.cmet.2020.07.016_bib50) 2020; 2
Coll (10.1016/j.cmet.2020.07.016_bib2) 2015; 21
Kayagaki (10.1016/j.cmet.2020.07.016_bib23) 2011; 479
Puchalska (10.1016/j.cmet.2020.07.016_bib36) 2018; 9
Shi (10.1016/j.cmet.2020.07.016_bib44) 2015; 526
Groß (10.1016/j.cmet.2020.07.016_bib9) 2016; 45
Hoffman (10.1016/j.cmet.2020.07.016_bib15) 2001; 29
Vandanmagsar (10.1016/j.cmet.2020.07.016_bib53) 2011; 17
Youm (10.1016/j.cmet.2020.07.016_bib55) 2015; 21
Lampropoulou (10.1016/j.cmet.2020.07.016_bib25) 2016; 24
Swanson (10.1016/j.cmet.2020.07.016_bib51) 2019; 19
Michelucci (10.1016/j.cmet.2020.07.016_bib32) 2013; 110
Gaidt (10.1016/j.cmet.2020.07.016_bib6) 2016; 44
Qin (10.1016/j.cmet.2020.07.016_bib37) 2019; 15
Juliana (10.1016/j.cmet.2020.07.016_bib22) 2012; 287
Han (10.1016/j.cmet.2020.07.016_bib10) 2013; 34
Shi (10.1016/j.cmet.2020.07.016_bib46) 2016; 17
Hughes (10.1016/j.cmet.2020.07.016_bib19) 2019; 29
Lee (10.1016/j.cmet.2020.07.016_bib26) 1995; 41
Cordes (10.1016/j.cmet.2020.07.016_bib3) 2016; 291
Song (10.1016/j.cmet.2020.07.016_bib48) 2020; 32
He (10.1016/j.cmet.2020.07.016_bib12) 2018; 9
Liao (10.1016/j.cmet.2020.07.016_bib27) 2019; 10
Shi (10.1016/j.cmet.2020.07.016_bib45) 2016; 6
Tang (10.1016/j.cmet.2020.07.016_bib52) 2017; 8
Lu (10.1016/j.cmet.2020.07.016_bib28) 2014; 156
Qin (10.1016/j.cmet.2020.07.016_bib38) 2020; 142
Mangan (10.1016/j.cmet.2020.07.016_bib29) 2018; 17
Vande Walle (10.1016/j.cmet.2020.07.016_bib54) 2014; 512
Lamkanfi (10.1016/j.cmet.2020.07.016_bib24) 2014; 157
Stutz (10.1016/j.cmet.2020.07.016_bib49) 2017; 214
Daly (10.1016/j.cmet.2020.07.016_bib4) 2020; 10
Ghayur (10.1016/j.cmet.2020.07.016_bib8) 1997; 386
Iyer (10.1016/j.cmet.2020.07.016_bib20) 2013; 39
Hornung (10.1016/j.cmet.2020.07.016_bib57) 2009; 458
Schmid-Burgk (10.1016/j.cmet.2020.07.016_bib41) 2016; 291
Shi (10.1016/j.cmet.2020.07.016_bib43) 2014; 514
Chen (10.1016/j.cmet.2020.07.016_bib1) 2018; 564
Hu (10.1016/j.cmet.2020.07.016_bib18) 2013; 341
Sharif (10.1016/j.cmet.2020.07.016_bib42) 2019; 570
Zhao (10.1016/j.cmet.2020.07.016_bib56) 2014; 289
Richard (10.1016/j.cmet.2020.07.016_bib40) 2016; 623
Domingo-Fernández (10.1016/j.cmet.2020.07.016_bib5) 2017; 292
Rathinam (10.1016/j.cmet.2020.07.016_bib39) 2019; 20
Masters (10.1016/j.cmet.2020.07.016_bib31) 2010; 11
Heneka (10.1016/j.cmet.2020.07.016_bib14) 2013; 493
Muñoz-Planillo (10.1016/j.cmet.2020.07.016_bib34) 2013; 38
Juliana (10.1016/j.cmet.2020.07.016_bib21) 2010; 285
Shimada (10.1016/j.cmet.2020.07.016_bib47) 2012; 36
References_xml – volume: 17
  start-page: 250
  year: 2016
  end-page: 258
  ident: bib46
  article-title: NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component
  publication-title: Nat. Immunol.
– volume: 17
  start-page: 688
  year: 2018
  ident: bib29
  article-title: Targeting the NLRP3 inflammasome in inflammatory diseases
  publication-title: Nat. Rev. Drug Discov.
– volume: 292
  start-page: 12077
  year: 2017
  end-page: 12087
  ident: bib5
  article-title: The intracellular chloride channel proteins CLIC1 and CLIC4 induce IL-1β transcription and activate the NLRP3 inflammasome
  publication-title: J. Biol. Chem.
– volume: 9
  start-page: 2550
  year: 2018
  ident: bib12
  article-title: Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity
  publication-title: Nat. Commun.
– volume: 564
  start-page: 71
  year: 2018
  end-page: 76
  ident: bib1
  article-title: PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation
  publication-title: Nature
– volume: 29
  start-page: 301
  year: 2001
  end-page: 305
  ident: bib15
  article-title: Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome
  publication-title: Nat. Genet.
– volume: 10
  start-page: 5091
  year: 2019
  ident: bib27
  article-title: 4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to exert anti-inflammatory effects
  publication-title: Nat. Commun.
– volume: 214
  start-page: 1725
  year: 2017
  end-page: 1736
  ident: bib49
  article-title: NLRP3 inflammasome assembly is regulated by phosphorylation of the pyrin domain
  publication-title: J. Exp. Med.
– volume: 32
  start-page: 188
  year: 2020
  end-page: 202
  ident: bib48
  article-title: Omics-driven systems interrogation of metabolic dysregulation in COVID-19 pathogenesis
  publication-title: Cell Metab.
– volume: 623
  start-page: 136
  year: 2016
  end-page: 143
  ident: bib40
  article-title: A comparative study of the thermal properties of homologous series of crystallisable n-alkyl maleate and itaconate monoesters
  publication-title: Thermochim. Acta
– volume: 110
  start-page: 7820
  year: 2013
  end-page: 7825
  ident: bib32
  article-title: Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 41
  start-page: 263
  year: 1995
  end-page: 270
  ident: bib26
  article-title: Cloning and analysis of gene regulation of a novel LPS-inducible cDNA
  publication-title: Immunogenetics
– volume: 479
  start-page: 117
  year: 2011
  end-page: 121
  ident: bib23
  article-title: Non-canonical inflammasome activation targets caspase-11
  publication-title: Nature
– volume: 19
  start-page: 477
  year: 2019
  end-page: 489
  ident: bib51
  article-title: The NLRP3 inflammasome: molecular activation and regulation to therapeutics
  publication-title: Nat. Rev. Immunol.
– volume: 2
  start-page: 594
  year: 2020
  end-page: 602
  ident: bib50
  article-title: Comparative evaluation of itaconate and its derivatives reveals divergent inflammasome and type I interferon regulation in macrophages
  publication-title: Nat Metab
– volume: 386
  start-page: 619
  year: 1997
  end-page: 623
  ident: bib8
  article-title: Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production
  publication-title: Nature
– volume: 19
  start-page: 273
  year: 2019
  end-page: 281
  ident: bib35
  article-title: Itaconate: the poster child of metabolic reprogramming in macrophage function
  publication-title: Nat. Rev. Immunol.
– volume: 6
  start-page: 1
  year: 2016
  end-page: 10
  ident: bib45
  article-title: Reconstruction of the mouse inflammasome system in HEK293T cells
  publication-title: Bio Protoc.
– volume: 8
  start-page: 202
  year: 2017
  ident: bib52
  article-title: CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation
  publication-title: Nat. Commun.
– volume: 20
  start-page: 527
  year: 2019
  end-page: 533
  ident: bib39
  article-title: Innate immunity to intracellular LPS
  publication-title: Nat. Immunol.
– volume: 530
  start-page: 354
  year: 2016
  end-page: 357
  ident: bib11
  article-title: NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux
  publication-title: Nature
– volume: 526
  start-page: 660
  year: 2015
  end-page: 665
  ident: bib44
  article-title: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death
  publication-title: Nature
– volume: 47
  start-page: 806
  year: 2017
  end-page: 817
  ident: bib7
  article-title: Opposing effects of Nrf2 and Nrf2-activating compounds on the NLRP3 inflammasome independent of Nrf2-mediated gene expression
  publication-title: Eur. J. Immunol.
– volume: 44
  start-page: 833
  year: 2016
  end-page: 846
  ident: bib6
  article-title: Human monocytes engage an alternative inflammasome pathway
  publication-title: Immunity
– volume: 570
  start-page: 338
  year: 2019
  end-page: 343
  ident: bib42
  article-title: Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome
  publication-title: Nature
– volume: 289
  start-page: 17020
  year: 2014
  end-page: 17029
  ident: bib56
  article-title: Nuclear factor E2-related factor-2 (Nrf2) is required for NLRP3 and AIM2 inflammasome activation
  publication-title: J. Biol. Chem.
– volume: 493
  start-page: 674
  year: 2013
  end-page: 678
  ident: bib14
  article-title: NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice
  publication-title: Nature
– volume: 21
  start-page: 263
  year: 2015
  end-page: 269
  ident: bib55
  article-title: The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease
  publication-title: Nat. Med.
– volume: 24
  start-page: 158
  year: 2016
  end-page: 166
  ident: bib25
  article-title: Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation
  publication-title: Cell Metab.
– volume: 512
  start-page: 69
  year: 2014
  end-page: 73
  ident: bib54
  article-title: Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis
  publication-title: Nature
– volume: 17
  start-page: 179
  year: 2011
  end-page: 188
  ident: bib53
  article-title: The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance
  publication-title: Nat. Med.
– volume: 156
  start-page: 1193
  year: 2014
  end-page: 1206
  ident: bib28
  article-title: Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes
  publication-title: Cell
– volume: 9
  start-page: 847
  year: 2008
  end-page: 856
  ident: bib17
  article-title: Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization
  publication-title: Nat. Immunol.
– volume: 11
  start-page: 897
  year: 2010
  end-page: 904
  ident: bib31
  article-title: Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes
  publication-title: Nat. Immunol.
– volume: 10
  start-page: 241
  year: 2020
  ident: bib4
  article-title: Changes in plasma itaconate elevation in early rheumatoid arthritis patients elucidates disease activity associated macrophage activation
  publication-title: Metabolites
– volume: 285
  start-page: 9792
  year: 2010
  end-page: 9802
  ident: bib21
  article-title: Anti-inflammatory compounds parthenolide and Bay 11-7082 are direct inhibitors of the inflammasome
  publication-title: J. Biol. Chem.
– volume: 556
  start-page: 113
  year: 2018
  end-page: 117
  ident: bib33
  article-title: Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1
  publication-title: Nature
– volume: 36
  start-page: 401
  year: 2012
  end-page: 414
  ident: bib47
  article-title: Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis
  publication-title: Immunity
– volume: 291
  start-page: 14274
  year: 2016
  end-page: 14284
  ident: bib3
  article-title: Immunoresponsive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels
  publication-title: J. Biol. Chem.
– volume: 287
  start-page: 36617
  year: 2012
  end-page: 36622
  ident: bib22
  article-title: Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation
  publication-title: J. Biol. Chem.
– volume: 157
  start-page: 1013
  year: 2014
  end-page: 1022
  ident: bib24
  article-title: Mechanisms and functions of inflammasomes
  publication-title: Cell
– volume: 142
  start-page: 10894
  year: 2020
  end-page: 10898
  ident: bib38
  article-title: Chemoproteomic profiling of itaconation by bioorthogonal probes in inflammatory macrophages
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 151
  year: 2019
  end-page: 161.e5
  ident: bib19
  article-title: Glutathione transferase omega-1 regulates NLRP3 inflammasome activation through NEK7 deglutathionylation
  publication-title: Cell Rep.
– volume: 15
  start-page: 983
  year: 2019
  end-page: 991
  ident: bib37
  article-title: S-glycosylation-based cysteine profiling reveals regulation of glycolysis by itaconate
  publication-title: Nat. Chem. Biol.
– volume: 9
  start-page: 298
  year: 2018
  end-page: 313
  ident: bib36
  article-title: Isotope tracing untargeted metabolomics reveals macrophage polarization-state-specific metabolic coordination across intracellular compartments
  publication-title: iScience
– volume: 39
  start-page: 311
  year: 2013
  end-page: 323
  ident: bib20
  article-title: Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation
  publication-title: Immunity
– volume: 514
  start-page: 187
  year: 2014
  end-page: 192
  ident: bib43
  article-title: Inflammatory caspases are innate immune receptors for intracellular LPS
  publication-title: Nature
– volume: 440
  start-page: 237
  year: 2006
  end-page: 241
  ident: bib30
  article-title: Gout-associated uric acid crystals activate the NALP3 inflammasome
  publication-title: Nature
– volume: 38
  start-page: 1142
  year: 2013
  end-page: 1153
  ident: bib34
  article-title: K
  publication-title: Immunity
– volume: 40
  start-page: 687
  year: 2019
  end-page: 698
  ident: bib16
  article-title: The immunomodulatory potential of the metabolite itaconate
  publication-title: Trends Immunol.
– volume: 458
  start-page: 514
  year: 2009
  end-page: 518
  ident: bib57
  article-title: AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC
  publication-title: Nature
– volume: 291
  start-page: 103
  year: 2016
  end-page: 109
  ident: bib41
  article-title: A genome-wide CRISPR (clustered regularly interspaced short palindromic repeats) screen identifies NEK7 as an essential component of NLRP3 inflammasome activation
  publication-title: J. Biol. Chem.
– volume: 21
  start-page: 248
  year: 2015
  end-page: 255
  ident: bib2
  article-title: A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases
  publication-title: Nat. Med.
– volume: 45
  start-page: 761
  year: 2016
  end-page: 773
  ident: bib9
  article-title: K
  publication-title: Immunity
– volume: 31
  start-page: 580
  year: 2020
  end-page: 591.e5
  ident: bib13
  article-title: An acetylation switch of the NLRP3 inflammasome regulates aging-associated chronic inflammation and insulin resistance
  publication-title: Cell Metab.
– volume: 341
  start-page: 172
  year: 2013
  end-page: 175
  ident: bib18
  article-title: Crystal structure of NLRC4 reveals its autoinhibition mechanism
  publication-title: Science
– volume: 34
  start-page: 2891
  year: 2013
  end-page: 2900
  ident: bib10
  article-title: Metabolomic analysis of key central carbon metabolism carboxylic acids as their 3-nitrophenylhydrazones by UPLC/ESI-MS
  publication-title: Electrophoresis
– volume: 44
  start-page: 833
  year: 2016
  ident: 10.1016/j.cmet.2020.07.016_bib6
  article-title: Human monocytes engage an alternative inflammasome pathway
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.01.012
– volume: 479
  start-page: 117
  year: 2011
  ident: 10.1016/j.cmet.2020.07.016_bib23
  article-title: Non-canonical inflammasome activation targets caspase-11
  publication-title: Nature
  doi: 10.1038/nature10558
– volume: 40
  start-page: 687
  year: 2019
  ident: 10.1016/j.cmet.2020.07.016_bib16
  article-title: The immunomodulatory potential of the metabolite itaconate
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2019.05.007
– volume: 285
  start-page: 9792
  year: 2010
  ident: 10.1016/j.cmet.2020.07.016_bib21
  article-title: Anti-inflammatory compounds parthenolide and Bay 11-7082 are direct inhibitors of the inflammasome
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.082305
– volume: 440
  start-page: 237
  year: 2006
  ident: 10.1016/j.cmet.2020.07.016_bib30
  article-title: Gout-associated uric acid crystals activate the NALP3 inflammasome
  publication-title: Nature
  doi: 10.1038/nature04516
– volume: 386
  start-page: 619
  year: 1997
  ident: 10.1016/j.cmet.2020.07.016_bib8
  article-title: Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production
  publication-title: Nature
  doi: 10.1038/386619a0
– volume: 41
  start-page: 263
  year: 1995
  ident: 10.1016/j.cmet.2020.07.016_bib26
  article-title: Cloning and analysis of gene regulation of a novel LPS-inducible cDNA
  publication-title: Immunogenetics
  doi: 10.1007/BF00172150
– volume: 556
  start-page: 113
  year: 2018
  ident: 10.1016/j.cmet.2020.07.016_bib33
  article-title: Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1
  publication-title: Nature
  doi: 10.1038/nature25986
– volume: 17
  start-page: 688
  year: 2018
  ident: 10.1016/j.cmet.2020.07.016_bib29
  article-title: Targeting the NLRP3 inflammasome in inflammatory diseases
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd.2018.149
– volume: 20
  start-page: 527
  year: 2019
  ident: 10.1016/j.cmet.2020.07.016_bib39
  article-title: Innate immunity to intracellular LPS
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-019-0368-3
– volume: 19
  start-page: 477
  year: 2019
  ident: 10.1016/j.cmet.2020.07.016_bib51
  article-title: The NLRP3 inflammasome: molecular activation and regulation to therapeutics
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-019-0165-0
– volume: 289
  start-page: 17020
  year: 2014
  ident: 10.1016/j.cmet.2020.07.016_bib56
  article-title: Nuclear factor E2-related factor-2 (Nrf2) is required for NLRP3 and AIM2 inflammasome activation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.563114
– volume: 142
  start-page: 10894
  year: 2020
  ident: 10.1016/j.cmet.2020.07.016_bib38
  article-title: Chemoproteomic profiling of itaconation by bioorthogonal probes in inflammatory macrophages
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b11962
– volume: 292
  start-page: 12077
  year: 2017
  ident: 10.1016/j.cmet.2020.07.016_bib5
  article-title: The intracellular chloride channel proteins CLIC1 and CLIC4 induce IL-1β transcription and activate the NLRP3 inflammasome
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M117.797126
– volume: 10
  start-page: 241
  year: 2020
  ident: 10.1016/j.cmet.2020.07.016_bib4
  article-title: Changes in plasma itaconate elevation in early rheumatoid arthritis patients elucidates disease activity associated macrophage activation
  publication-title: Metabolites
  doi: 10.3390/metabo10060241
– volume: 530
  start-page: 354
  year: 2016
  ident: 10.1016/j.cmet.2020.07.016_bib11
  article-title: NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux
  publication-title: Nature
  doi: 10.1038/nature16959
– volume: 9
  start-page: 2550
  year: 2018
  ident: 10.1016/j.cmet.2020.07.016_bib12
  article-title: Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04947-6
– volume: 21
  start-page: 248
  year: 2015
  ident: 10.1016/j.cmet.2020.07.016_bib2
  article-title: A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases
  publication-title: Nat. Med.
  doi: 10.1038/nm.3806
– volume: 31
  start-page: 580
  year: 2020
  ident: 10.1016/j.cmet.2020.07.016_bib13
  article-title: An acetylation switch of the NLRP3 inflammasome regulates aging-associated chronic inflammation and insulin resistance
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2020.01.009
– volume: 19
  start-page: 273
  year: 2019
  ident: 10.1016/j.cmet.2020.07.016_bib35
  article-title: Itaconate: the poster child of metabolic reprogramming in macrophage function
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-019-0128-5
– volume: 156
  start-page: 1193
  year: 2014
  ident: 10.1016/j.cmet.2020.07.016_bib28
  article-title: Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes
  publication-title: Cell
  doi: 10.1016/j.cell.2014.02.008
– volume: 29
  start-page: 151
  year: 2019
  ident: 10.1016/j.cmet.2020.07.016_bib19
  article-title: Glutathione transferase omega-1 regulates NLRP3 inflammasome activation through NEK7 deglutathionylation
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.08.072
– volume: 39
  start-page: 311
  year: 2013
  ident: 10.1016/j.cmet.2020.07.016_bib20
  article-title: Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.08.001
– volume: 29
  start-page: 301
  year: 2001
  ident: 10.1016/j.cmet.2020.07.016_bib15
  article-title: Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome
  publication-title: Nat. Genet.
  doi: 10.1038/ng756
– volume: 24
  start-page: 158
  year: 2016
  ident: 10.1016/j.cmet.2020.07.016_bib25
  article-title: Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.06.004
– volume: 36
  start-page: 401
  year: 2012
  ident: 10.1016/j.cmet.2020.07.016_bib47
  article-title: Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.01.009
– volume: 564
  start-page: 71
  year: 2018
  ident: 10.1016/j.cmet.2020.07.016_bib1
  article-title: PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation
  publication-title: Nature
  doi: 10.1038/s41586-018-0761-3
– volume: 45
  start-page: 761
  year: 2016
  ident: 10.1016/j.cmet.2020.07.016_bib9
  article-title: K+ efflux-independent NLRP3 inflammasome activation by small molecules targeting mitochondria
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.08.010
– volume: 11
  start-page: 897
  year: 2010
  ident: 10.1016/j.cmet.2020.07.016_bib31
  article-title: Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1935
– volume: 34
  start-page: 2891
  year: 2013
  ident: 10.1016/j.cmet.2020.07.016_bib10
  article-title: Metabolomic analysis of key central carbon metabolism carboxylic acids as their 3-nitrophenylhydrazones by UPLC/ESI-MS
  publication-title: Electrophoresis
  doi: 10.1002/elps.201200601
– volume: 493
  start-page: 674
  year: 2013
  ident: 10.1016/j.cmet.2020.07.016_bib14
  article-title: NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice
  publication-title: Nature
  doi: 10.1038/nature11729
– volume: 287
  start-page: 36617
  year: 2012
  ident: 10.1016/j.cmet.2020.07.016_bib22
  article-title: Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.407130
– volume: 623
  start-page: 136
  year: 2016
  ident: 10.1016/j.cmet.2020.07.016_bib40
  article-title: A comparative study of the thermal properties of homologous series of crystallisable n-alkyl maleate and itaconate monoesters
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2015.10.015
– volume: 17
  start-page: 250
  year: 2016
  ident: 10.1016/j.cmet.2020.07.016_bib46
  article-title: NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3333
– volume: 17
  start-page: 179
  year: 2011
  ident: 10.1016/j.cmet.2020.07.016_bib53
  article-title: The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance
  publication-title: Nat. Med.
  doi: 10.1038/nm.2279
– volume: 514
  start-page: 187
  year: 2014
  ident: 10.1016/j.cmet.2020.07.016_bib43
  article-title: Inflammatory caspases are innate immune receptors for intracellular LPS
  publication-title: Nature
  doi: 10.1038/nature13683
– volume: 2
  start-page: 594
  year: 2020
  ident: 10.1016/j.cmet.2020.07.016_bib50
  article-title: Comparative evaluation of itaconate and its derivatives reveals divergent inflammasome and type I interferon regulation in macrophages
  publication-title: Nat Metab
  doi: 10.1038/s42255-020-0210-0
– volume: 10
  start-page: 5091
  year: 2019
  ident: 10.1016/j.cmet.2020.07.016_bib27
  article-title: 4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to exert anti-inflammatory effects
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13078-5
– volume: 110
  start-page: 7820
  year: 2013
  ident: 10.1016/j.cmet.2020.07.016_bib32
  article-title: Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1218599110
– volume: 47
  start-page: 806
  year: 2017
  ident: 10.1016/j.cmet.2020.07.016_bib7
  article-title: Opposing effects of Nrf2 and Nrf2-activating compounds on the NLRP3 inflammasome independent of Nrf2-mediated gene expression
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201646665
– volume: 15
  start-page: 983
  year: 2019
  ident: 10.1016/j.cmet.2020.07.016_bib37
  article-title: S-glycosylation-based cysteine profiling reveals regulation of glycolysis by itaconate
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-019-0323-5
– volume: 291
  start-page: 103
  year: 2016
  ident: 10.1016/j.cmet.2020.07.016_bib41
  article-title: A genome-wide CRISPR (clustered regularly interspaced short palindromic repeats) screen identifies NEK7 as an essential component of NLRP3 inflammasome activation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C115.700492
– volume: 458
  start-page: 514
  year: 2009
  ident: 10.1016/j.cmet.2020.07.016_bib57
  article-title: AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC
  publication-title: Nature
  doi: 10.1038/nature07725
– volume: 21
  start-page: 263
  year: 2015
  ident: 10.1016/j.cmet.2020.07.016_bib55
  article-title: The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease
  publication-title: Nat. Med.
  doi: 10.1038/nm.3804
– volume: 6
  start-page: 1
  year: 2016
  ident: 10.1016/j.cmet.2020.07.016_bib45
  article-title: Reconstruction of the mouse inflammasome system in HEK293T cells
  publication-title: Bio Protoc.
  doi: 10.21769/BioProtoc.1986
– volume: 291
  start-page: 14274
  year: 2016
  ident: 10.1016/j.cmet.2020.07.016_bib3
  article-title: Immunoresponsive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.685792
– volume: 570
  start-page: 338
  year: 2019
  ident: 10.1016/j.cmet.2020.07.016_bib42
  article-title: Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome
  publication-title: Nature
  doi: 10.1038/s41586-019-1295-z
– volume: 9
  start-page: 298
  year: 2018
  ident: 10.1016/j.cmet.2020.07.016_bib36
  article-title: Isotope tracing untargeted metabolomics reveals macrophage polarization-state-specific metabolic coordination across intracellular compartments
  publication-title: iScience
  doi: 10.1016/j.isci.2018.10.029
– volume: 341
  start-page: 172
  year: 2013
  ident: 10.1016/j.cmet.2020.07.016_bib18
  article-title: Crystal structure of NLRC4 reveals its autoinhibition mechanism
  publication-title: Science
  doi: 10.1126/science.1236381
– volume: 214
  start-page: 1725
  year: 2017
  ident: 10.1016/j.cmet.2020.07.016_bib49
  article-title: NLRP3 inflammasome assembly is regulated by phosphorylation of the pyrin domain
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20160933
– volume: 8
  start-page: 202
  year: 2017
  ident: 10.1016/j.cmet.2020.07.016_bib52
  article-title: CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00227-x
– volume: 9
  start-page: 847
  year: 2008
  ident: 10.1016/j.cmet.2020.07.016_bib17
  article-title: Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1631
– volume: 512
  start-page: 69
  year: 2014
  ident: 10.1016/j.cmet.2020.07.016_bib54
  article-title: Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis
  publication-title: Nature
  doi: 10.1038/nature13322
– volume: 32
  start-page: 188
  year: 2020
  ident: 10.1016/j.cmet.2020.07.016_bib48
  article-title: Omics-driven systems interrogation of metabolic dysregulation in COVID-19 pathogenesis
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2020.06.016
– volume: 526
  start-page: 660
  year: 2015
  ident: 10.1016/j.cmet.2020.07.016_bib44
  article-title: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death
  publication-title: Nature
  doi: 10.1038/nature15514
– volume: 38
  start-page: 1142
  year: 2013
  ident: 10.1016/j.cmet.2020.07.016_bib34
  article-title: K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.05.016
– volume: 157
  start-page: 1013
  year: 2014
  ident: 10.1016/j.cmet.2020.07.016_bib24
  article-title: Mechanisms and functions of inflammasomes
  publication-title: Cell
  doi: 10.1016/j.cell.2014.04.007
SSID ssj0036393
Score 2.6993158
Snippet The Krebs cycle-derived metabolite itaconate is highly upregulated in inflammatory macrophages and exerts immunomodulatory effects through cysteine...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 468
SubjectTerms Animals
cysteine modification
IL-1β
Immunologic Factors - pharmacology
immunometabolism
inflammasome
Inflammasomes - antagonists & inhibitors
Inflammasomes - metabolism
itaconate
macrophage
metabolite
Mice
Mice, Inbred C57BL
Mice, Knockout
NEK7
NLR Family, Pyrin Domain-Containing 3 Protein - deficiency
NLR Family, Pyrin Domain-Containing 3 Protein - metabolism
NLRP3
pyroptosis
Short
Succinates - pharmacology
Title The Immunomodulatory Metabolite Itaconate Modifies NLRP3 and Inhibits Inflammasome Activation
URI https://dx.doi.org/10.1016/j.cmet.2020.07.016
https://www.ncbi.nlm.nih.gov/pubmed/32791101
https://www.proquest.com/docview/2434470942
https://pubmed.ncbi.nlm.nih.gov/PMC7422798
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9DEHwRv51fRPBNytombbPHKcomKuIH7EVCmqRYce3Yuof99971YzgVH3xr0wuEu8vdpbm7HyFnbmgiYZRxjJdo_HUTO0KryNFdTwgFPg72FGZb3If9F34zDIYtctnUwmBaZW37K5teWut6pFNzszNO084TBtdggj0fb_e8ErmWcVEW8Q0vGmvMwAOXSfZA7CB1XThT5XjpkcV8St8tG3gi5vnvzuln8Pk9h_KLU7reIOt1NEl71YI3SctmW2S1wpecb5NXUAI6wAqQfJQbBOrKJ3N6ZwuQPNYe00EBBjGDcJPe5SZN4NRM728fHxhVmaGD7C2N02IKDwnozUhN85GlPd0Aou2Ql-ur58u-U-MpOBphCxzmdq0RAbh0P-HCZSoREH-5whjfgJtytRBGR7Hx4FATxKGwLIHtqZjHLYeDi2a7ZCXLM7tPKEpWdXWidGC5CMMY8TqU5kHZjkapNvEaRkpdNxtHzIsP2WSVvUtkvkTmSzeSMNQm54s546rVxp_UQSMfuaQwEnzBn_NOG2FK2El4PaIym8-m0ufY_RCOu36b7FXCXayD-RF4Bddrk2hJ7AsC7NK9_CVL38pu3RHHJo3i4J_rPSRr-FaltR2RlWIys8cQBxXxSanon1yVBvI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXVN4LBYwEJxRt7Ly8Bw5todrQ3RWCVtoLch3bUYPYpOqmQvu7-IPM5LFiAfWA1Fvk2JE1M575HI-_AXjtxzaRVlvP8tzQr5vMk0YnnhlxKTXGOFxTlG0xi8cn4cd5NN-Cn_1dGEqr7Hx_69Mbb921DDtpDs-LYviFwDW6YC7odI_zvoL1kVv9wH3b8l36HpX8RojDD8cHY68rLeAZYvD3An_krIwwuok8lH6gc4lQxJfWCose2zdSWpNkliO-j7JYuiBHS9UBD12IGN4E-N0bcBPRR0LeIJ3v9-4_wJDfZPXj7DyaXndTp00qMwtHCZzCbxhDqcj6v6Ph32j3z6TN36Lg4Q7c7eAr22sldA-2XHkfbrUFLVcP4CtaHUvpykm1qCxVBqsuVmzqajQ1uuzM0ho9cIn4lk0rW-S4TWezyedPAdOlZWl5VmRFvcSHHA11oZfVwrE901dgewgn1yLlR7BdVqV7AoxMSY9Mrk3kQhnHGRUI0SaMGv4brQfAe0Eq07GbU5GN76pPY_umSPiKhK_8RGHTAN6ux5y33B5X9o56_agNC1UYfK4c96pXpsKlS-cxunTV5VKJkOgWcX8tBvC4Ve56HoFIMAz5fADJhtrXHYgWfPNNWZw19OBJSKyQ8ul_zvcl3B4fTydqks6OnsEdetPm1O3Cdn1x6Z4jCKuzF43RMzi97lX2CycLQhQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Immunomodulatory+Metabolite+Itaconate+Modifies+NLRP3+and+Inhibits+Inflammasome+Activation&rft.jtitle=Cell+metabolism&rft.au=Hooftman%2C+Alexander&rft.au=Angiari%2C+Stefano&rft.au=Hester%2C+Svenja&rft.au=Corcoran%2C+Sarah+E.&rft.date=2020-09-01&rft.pub=Elsevier+Inc&rft.issn=1550-4131&rft.eissn=1932-7420&rft.volume=32&rft.issue=3&rft.spage=468&rft.epage=478.e7&rft_id=info:doi/10.1016%2Fj.cmet.2020.07.016&rft_id=info%3Apmid%2F32791101&rft.externalDocID=PMC7422798
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon