End-to-End Differentiable Learning of Protein Structure

Predicting protein structure from sequence is a central challenge of biochemistry. Co-evolution methods show promise, but an explicit sequence-to-structure map remains elusive. Advances in deep learning that replace complex, human-designed pipelines with differentiable models optimized end to end su...

Full description

Saved in:
Bibliographic Details
Published inCell systems Vol. 8; no. 4; pp. 292 - 301.e3
Main Author AlQuraishi, Mohammed
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 24.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Predicting protein structure from sequence is a central challenge of biochemistry. Co-evolution methods show promise, but an explicit sequence-to-structure map remains elusive. Advances in deep learning that replace complex, human-designed pipelines with differentiable models optimized end to end suggest the potential benefits of similarly reformulating structure prediction. Here, we introduce an end-to-end differentiable model for protein structure learning. The model couples local and global protein structure via geometric units that optimize global geometry without violating local covalent chemistry. We test our model using two challenging tasks: predicting novel folds without co-evolutionary data and predicting known folds without structural templates. In the first task, the model achieves state-of-the-art accuracy, and in the second, it comes within 1–2 Å; competing methods using co-evolution and experimental templates have been refined over many years, and it is likely that the differentiable approach has substantial room for further improvement, with applications ranging from drug discovery to protein design. [Display omitted] •Neural network predicts protein structure from sequence without using co-evolution•Model replaces structure prediction pipelines with one mathematical function•Achieves state-of-the-art performance on novel protein folds•Learns a low-dimensional representation of protein sequence space Prediction of protein structure from sequence is important for understanding protein function, but it remains very challenging, especially for proteins with few homologs. Existing prediction methods are human engineered, with many complex parts developed over decades. We introduce a new approach based entirely on machine learning that predicts protein structure from sequence using a single neural network. The model achieves state-of-the-art accuracy and does not require co-evolution information or structural homologs. It is also much faster, making predictions in milliseconds versus hours or days, which enables new applications in drug discovery and protein design.
AbstractList Predicting protein structure from sequence is a central challenge of biochemistry. Co-evolution methods show promise, but an explicit sequence-to-structure map remains elusive. Advances in deep learning that replace complex, human-designed pipelines with differentiable models optimized end-to-end suggest the potential benefits of similarly reformulating structure prediction. Here we introduce an end-to-end differentiable model for protein structure learning. The model couples local and global protein structure via geometric units that optimize global geometry without violating local covalent chemistry. We test our model using two challenging tasks: predicting novel folds without co-evolutionary data and predicting known folds without structural templates. In the first task the model achieves state-of-the-art accuracy and in the second it comes within 1–2Å; competing methods using co-evolution and experimental templates have been refined over many years and it is likely that the differentiable approach has substantial room for further improvement, with applications ranging from drug discovery to protein design. Prediction of protein structure from sequence is important for understanding protein function, but it remains very challenging, especially for proteins with few homologs. Existing prediction methods are human-engineered, with many complex parts developed over decades. We introduce a new approach based entirely on machine learning that predicts protein structure from sequence using a single neural network. The model achieves state of the art accuracy, and does not require co-evolution information or structural homologs. It is also much faster, making predictions in milliseconds vs. hours or days, which enables new applications in drug discovery and protein design.
Predicting protein structure from sequence is a central challenge of biochemistry. Co-evolution methods show promise, but an explicit sequence-to-structure map remains elusive. Advances in deep learning that replace complex, human-designed pipelines with differentiable models optimized end to end suggest the potential benefits of similarly reformulating structure prediction. Here, we introduce an end-to-end differentiable model for protein structure learning. The model couples local and global protein structure via geometric units that optimize global geometry without violating local covalent chemistry. We test our model using two challenging tasks: predicting novel folds without co-evolutionary data and predicting known folds without structural templates. In the first task, the model achieves state-of-the-art accuracy, and in the second, it comes within 1–2 Å; competing methods using co-evolution and experimental templates have been refined over many years, and it is likely that the differentiable approach has substantial room for further improvement, with applications ranging from drug discovery to protein design. [Display omitted] •Neural network predicts protein structure from sequence without using co-evolution•Model replaces structure prediction pipelines with one mathematical function•Achieves state-of-the-art performance on novel protein folds•Learns a low-dimensional representation of protein sequence space Prediction of protein structure from sequence is important for understanding protein function, but it remains very challenging, especially for proteins with few homologs. Existing prediction methods are human engineered, with many complex parts developed over decades. We introduce a new approach based entirely on machine learning that predicts protein structure from sequence using a single neural network. The model achieves state-of-the-art accuracy and does not require co-evolution information or structural homologs. It is also much faster, making predictions in milliseconds versus hours or days, which enables new applications in drug discovery and protein design.
Predicting protein structure from sequence is a central challenge of biochemistry. Co-evolution methods show promise, but an explicit sequence-to-structure map remains elusive. Advances in deep learning that replace complex, human-designed pipelines with differentiable models optimized end to end suggest the potential benefits of similarly reformulating structure prediction. Here, we introduce an end-to-end differentiable model for protein structure learning. The model couples local and global protein structure via geometric units that optimize global geometry without violating local covalent chemistry. We test our model using two challenging tasks: predicting novel folds without co-evolutionary data and predicting known folds without structural templates. In the first task, the model achieves state-of-the-art accuracy, and in the second, it comes within 1-2 Å; competing methods using co-evolution and experimental templates have been refined over many years, and it is likely that the differentiable approach has substantial room for further improvement, with applications ranging from drug discovery to protein design.
Predicting protein structure from sequence is a central challenge of biochemistry. Co-evolution methods show promise, but an explicit sequence-to-structure map remains elusive. Advances in deep learning that replace complex, human-designed pipelines with differentiable models optimized end to end suggest the potential benefits of similarly reformulating structure prediction. Here, we introduce an end-to-end differentiable model for protein structure learning. The model couples local and global protein structure via geometric units that optimize global geometry without violating local covalent chemistry. We test our model using two challenging tasks: predicting novel folds without co-evolutionary data and predicting known folds without structural templates. In the first task, the model achieves state-of-the-art accuracy, and in the second, it comes within 1-2 Å; competing methods using co-evolution and experimental templates have been refined over many years, and it is likely that the differentiable approach has substantial room for further improvement, with applications ranging from drug discovery to protein design.Predicting protein structure from sequence is a central challenge of biochemistry. Co-evolution methods show promise, but an explicit sequence-to-structure map remains elusive. Advances in deep learning that replace complex, human-designed pipelines with differentiable models optimized end to end suggest the potential benefits of similarly reformulating structure prediction. Here, we introduce an end-to-end differentiable model for protein structure learning. The model couples local and global protein structure via geometric units that optimize global geometry without violating local covalent chemistry. We test our model using two challenging tasks: predicting novel folds without co-evolutionary data and predicting known folds without structural templates. In the first task, the model achieves state-of-the-art accuracy, and in the second, it comes within 1-2 Å; competing methods using co-evolution and experimental templates have been refined over many years, and it is likely that the differentiable approach has substantial room for further improvement, with applications ranging from drug discovery to protein design.
Author AlQuraishi, Mohammed
AuthorAffiliation 1 Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115
2 Department of Systems Biology, Harvard Medical School, Boston, MA 02115
AuthorAffiliation_xml – name: 1 Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115
– name: 2 Department of Systems Biology, Harvard Medical School, Boston, MA 02115
Author_xml – sequence: 1
  givenname: Mohammed
  surname: AlQuraishi
  fullname: AlQuraishi, Mohammed
  email: alquraishi@hms.harvard.edu
  organization: Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31005579$$D View this record in MEDLINE/PubMed
BookMark eNp9UUtrFTEUDlKxD_sHXMgs3cx4ksxkJiCC1FaFCwrq-pDJnKm5zE1qkin035vLbYu66OqEnO_F-U7ZkQ-eGHvFoeHA1dttY2lJjQCuG5ANgHrGTkQLXd32Ao4e31wcs_OUtgDAW10-xQt2LDlA1_X6hPWXfqpzqMuoPrp5pkg-OzMuVG3IRO_8dRXm6lsMmZyvvue42rxGesmez2ZJdH4_z9jPq8sfF5_rzddPXy4-bGrbCZ5rCXKUMx_U2M9CDbynyZAsObiQquW2pCdpwQDvW1Kz1nrQHVddSzTKQQt5xt4fdG_WcUeTLemiWfAmup2JdxiMw3833v3C63CLquNSCigCb-4FYvi9Usq4c6mcbjGewppQlCjlYFLpAn39t9ejycO1CmA4AGwMKUWa0bpssgt7a7cgB9x3g1vcd4P7bhAklm4KVfxHfVB_kvTuQCoLunUUMVlH3tLkItmMU3BP0f8At7umAg
CitedBy_id crossref_primary_10_1073_pnas_2113348119
crossref_primary_10_1080_10408398_2020_1850415
crossref_primary_10_3389_fbinf_2022_715006
crossref_primary_10_1016_j_tifs_2024_104607
crossref_primary_10_1093_bib_bbac102
crossref_primary_10_1093_bib_bbab493
crossref_primary_10_1038_s41592_019_0598_1
crossref_primary_10_3390_app12178465
crossref_primary_10_1080_00423114_2021_2011929
crossref_primary_10_1021_acsaelm_9b00702
crossref_primary_10_1038_s41598_020_70181_0
crossref_primary_10_1021_acs_jctc_9b01054
crossref_primary_10_1021_acs_jctc_2c01270
crossref_primary_10_17798_bitlisfen_1146682
crossref_primary_10_1038_s41467_022_28526_y
crossref_primary_10_3389_fmolb_2022_848444
crossref_primary_10_1007_s40199_024_00548_5
crossref_primary_10_1016_j_ntt_2024_107336
crossref_primary_10_1007_s11030_021_10217_3
crossref_primary_10_1016_j_mlwa_2022_100401
crossref_primary_10_1098_rsta_2019_0394
crossref_primary_10_1002_prot_26235
crossref_primary_10_1186_s12859_019_2932_0
crossref_primary_10_1002_prot_25824
crossref_primary_10_7554_eLife_54489
crossref_primary_10_1038_s43588_022_00372_4
crossref_primary_10_1038_s42003_023_05244_9
crossref_primary_10_1016_j_mec_2022_e00209
crossref_primary_10_1002_prot_26478
crossref_primary_10_1093_bib_bbad456
crossref_primary_10_1021_acs_jcim_3c01324
crossref_primary_10_1016_j_sbi_2023_102594
crossref_primary_10_1016_j_jmb_2021_167127
crossref_primary_10_1038_s41467_019_11994_0
crossref_primary_10_1021_acs_jcim_1c00099
crossref_primary_10_1038_s42256_021_00348_5
crossref_primary_10_1038_s41598_019_53202_5
crossref_primary_10_1177_25152459211026864
crossref_primary_10_1038_s41467_024_45051_2
crossref_primary_10_1002_prot_25834
crossref_primary_10_1016_j_matt_2020_04_019
crossref_primary_10_1016_j_sbi_2021_07_010
crossref_primary_10_1016_j_addr_2021_113922
crossref_primary_10_1371_journal_pone_0242072
crossref_primary_10_1016_j_csbj_2021_11_015
crossref_primary_10_2174_0113892010275850240102105033
crossref_primary_10_1016_j_tips_2020_12_004
crossref_primary_10_1002_bies_202400155
crossref_primary_10_1126_science_abe5650
crossref_primary_10_1038_s41594_022_00849_w
crossref_primary_10_1101_cshperspect_a037812
crossref_primary_10_3390_antib9020012
crossref_primary_10_1016_j_cels_2020_05_007
crossref_primary_10_1002_ange_201909987
crossref_primary_10_1016_j_eml_2024_102236
crossref_primary_10_3390_molecules24183383
crossref_primary_10_1038_s44320_024_00016_x
crossref_primary_10_3390_vaccines11081304
crossref_primary_10_1016_j_ejmech_2024_117164
crossref_primary_10_1557_s43577_023_00610_8
crossref_primary_10_1038_s41580_021_00407_0
crossref_primary_10_1038_s41524_020_0318_5
crossref_primary_10_1016_j_sbi_2022_102329
crossref_primary_10_1038_s41467_022_29268_7
crossref_primary_10_3389_fncom_2023_1323182
crossref_primary_10_1016_j_gexplo_2020_106662
crossref_primary_10_1021_acs_jctc_0c00186
crossref_primary_10_1002_advs_202001314
crossref_primary_10_1016_j_tips_2024_01_004
crossref_primary_10_1093_bioinformatics_btae002
crossref_primary_10_1109_JBHI_2021_3137840
crossref_primary_10_1002_biot_201900343
crossref_primary_10_1016_j_agrcom_2023_100014
crossref_primary_10_3389_fimmu_2022_958584
crossref_primary_10_1002_wcms_1690
crossref_primary_10_1016_j_jddst_2023_105157
crossref_primary_10_1038_s41597_022_01288_4
crossref_primary_10_3390_ijms24076148
crossref_primary_10_1107_S2059798321007531
crossref_primary_10_1093_nar_gkab1144
crossref_primary_10_1016_j_copbio_2019_08_010
crossref_primary_10_1186_s12859_019_3199_1
crossref_primary_10_1073_pnas_1821309116
crossref_primary_10_1021_acsnano_2c07681
crossref_primary_10_1038_s41592_019_0687_1
crossref_primary_10_1021_acs_jctc_0c00524
crossref_primary_10_1021_acs_cgd_9b01328
crossref_primary_10_1021_jacsau_2c00344
crossref_primary_10_1016_j_jcmds_2022_100044
crossref_primary_10_7554_eLife_80942
crossref_primary_10_1016_j_compbiomed_2024_108810
crossref_primary_10_1016_j_compbiomed_2024_108815
crossref_primary_10_1016_j_chempr_2020_05_014
crossref_primary_10_1089_cmb_2019_0193
crossref_primary_10_1007_s10930_021_10016_7
crossref_primary_10_1109_ACCESS_2021_3110269
crossref_primary_10_3390_ijms24032026
crossref_primary_10_1016_j_xphs_2020_11_034
crossref_primary_10_1016_j_jhydrol_2020_125206
crossref_primary_10_1016_j_gpb_2022_11_014
crossref_primary_10_1371_journal_pone_0265020
crossref_primary_10_1002_pmic_201900335
crossref_primary_10_1038_s42256_021_00310_5
crossref_primary_10_1038_s43588_024_00642_3
crossref_primary_10_1007_s10441_023_09468_4
crossref_primary_10_1016_j_fmre_2024_04_021
crossref_primary_10_1038_s41586_021_03819_2
crossref_primary_10_1021_acs_jctc_1c00492
crossref_primary_10_1016_j_ebiom_2021_103360
crossref_primary_10_1093_bioadv_vbad042
crossref_primary_10_1021_acs_chemrev_1c00757
crossref_primary_10_1007_s12539_024_00626_x
crossref_primary_10_1016_j_cbpa_2021_08_004
crossref_primary_10_1016_j_jmgm_2021_108053
crossref_primary_10_1016_j_jfutfo_2022_06_002
crossref_primary_10_1063_5_0134317
crossref_primary_10_1371_journal_pcbi_1011330
crossref_primary_10_1016_j_biochi_2020_04_026
crossref_primary_10_1038_s41467_020_19612_0
crossref_primary_10_1093_nar_gkab354
crossref_primary_10_1002_jcc_26768
crossref_primary_10_1021_acs_jctc_3c00528
crossref_primary_10_1016_j_csbj_2022_08_070
crossref_primary_10_1073_pnas_2311807121
crossref_primary_10_1016_j_csbj_2024_06_021
crossref_primary_10_1021_acs_jcim_4c00961
crossref_primary_10_1029_2019WR026065
crossref_primary_10_1093_bib_bbac086
crossref_primary_10_3390_genes10121017
crossref_primary_10_1002_pmic_201900352
crossref_primary_10_1016_j_patter_2020_100142
crossref_primary_10_1038_s41467_022_28327_3
crossref_primary_10_1002_chem_202100458
crossref_primary_10_1186_s43042_021_00173_w
crossref_primary_10_1073_pnas_2319249121
crossref_primary_10_1038_s41598_022_11684_w
crossref_primary_10_1016_j_celrep_2022_111512
crossref_primary_10_1002_anie_201909987
crossref_primary_10_1093_bioinformatics_btaa944
crossref_primary_10_1109_TPAMI_2021_3095381
crossref_primary_10_1073_pnas_2300838121
crossref_primary_10_1016_j_jmb_2021_167196
crossref_primary_10_1016_j_eml_2020_100652
crossref_primary_10_1039_D0CP04670A
crossref_primary_10_1109_ACCESS_2022_3156888
crossref_primary_10_1021_acs_jpclett_9b02971
crossref_primary_10_1002_cpz1_113
crossref_primary_10_1002_pro_4739
crossref_primary_10_1109_ACCESS_2023_3282702
crossref_primary_10_1016_j_drudis_2020_10_010
crossref_primary_10_1080_17460441_2021_1918096
crossref_primary_10_1080_17460441_2021_1918097
crossref_primary_10_1088_1742_5468_ac3ae9
crossref_primary_10_1042_BCJ20200963
crossref_primary_10_1109_TCBB_2020_3005972
crossref_primary_10_1021_acs_jproteome_1c00410
crossref_primary_10_1557_s43577_023_00478_8
crossref_primary_10_1038_s41587_022_01432_w
crossref_primary_10_1093_nutrit_nuac033
crossref_primary_10_1021_acs_jcim_9b00675
crossref_primary_10_3390_ijms22115553
crossref_primary_10_1038_s43588_021_00104_0
crossref_primary_10_1093_bioinformatics_btaa714
crossref_primary_10_1038_s41699_021_00228_x
crossref_primary_10_1007_s10930_021_10003_y
crossref_primary_10_3390_ijms21030847
crossref_primary_10_1016_j_jbc_2021_100870
crossref_primary_10_1039_D0CS01575J
crossref_primary_10_1371_journal_pone_0256990
crossref_primary_10_1002_pro_3758
crossref_primary_10_1021_acs_chemrev_3c00070
crossref_primary_10_1002_1873_3468_13844
crossref_primary_10_1063_5_0141474
crossref_primary_10_1038_d41586_019_03951_0
crossref_primary_10_1002_smll_201903093
crossref_primary_10_1021_acs_jpcb_0c09251
crossref_primary_10_1186_s12859_021_04437_5
crossref_primary_10_1038_d41586_019_01357_6
crossref_primary_10_1016_j_it_2023_03_002
crossref_primary_10_1093_bib_bbac373
crossref_primary_10_1016_j_eml_2022_101710
crossref_primary_10_1093_bib_bbad217
crossref_primary_10_1016_j_physrep_2021_08_002
crossref_primary_10_1038_s41467_023_39856_w
crossref_primary_10_1016_j_biosystems_2020_104315
crossref_primary_10_1021_acs_biomac_1c01436
crossref_primary_10_3390_biomedinformatics4010007
crossref_primary_10_1021_acs_jpcb_0c03985
crossref_primary_10_1093_bioinformatics_btz593
crossref_primary_10_1155_2022_1144387
crossref_primary_10_1080_07391102_2021_1915181
crossref_primary_10_1021_acs_jcim_2c00026
crossref_primary_10_1002_prot_26169
crossref_primary_10_1088_2399_1984_ab36f0
crossref_primary_10_1038_s41592_021_01283_4
crossref_primary_10_1177_10943420221113513
crossref_primary_10_1016_j_cels_2021_05_017
crossref_primary_10_1109_TCBB_2020_3012732
crossref_primary_10_1007_s10462_022_10350_x
crossref_primary_10_1002_pep2_24307
crossref_primary_10_1155_2022_2153996
crossref_primary_10_1038_s42003_022_03261_8
crossref_primary_10_1016_j_sbi_2022_102495
crossref_primary_10_3389_frai_2022_875587
crossref_primary_10_1109_TCBB_2021_3108718
crossref_primary_10_1063_5_0037793
crossref_primary_10_1021_acs_jctc_0c00355
crossref_primary_10_1093_bioinformatics_btaa629
crossref_primary_10_1016_j_drudis_2019_12_009
crossref_primary_10_1021_acs_accounts_2c00330
Cites_doi 10.1162/neco.1997.9.8.1735
10.1002/jcc.25772
10.1002/prot.24974
10.7554/eLife.03430
10.1093/bioinformatics/btq066
10.1002/prot.340230303
10.1002/prot.25425
10.1002/prot.24829
10.1002/prot.25415
10.1002/jcc.20237
10.1126/science.1219021
10.1146/annurev.biophys.31.082901.134314
10.1038/nature14539
10.1111/j.1432-1033.1977.tb11885.x
10.1016/B978-0-12-381270-4.00019-6
10.1371/journal.pone.0028766
10.1186/s12859-017-1834-2
10.1002/prot.25414
10.1093/bioinformatics/btq193
10.1007/s00214-010-0799-2
10.1002/prot.25396
10.1016/S0022-2836(63)80023-6
10.1093/nar/gkw1098
10.1002/prot.20264
10.1371/journal.pcbi.1005324
10.1021/bi00483a001
10.1016/j.cels.2017.11.014
10.1038/nrg3414
10.1038/nmeth.3213
10.1002/prot.25005
10.1002/prot.24065
10.7554/eLife.09410
10.1002/jcc.23718
10.1038/nbt.3769
10.1126/science.aah4043
10.1126/sciadv.1601274
10.1016/j.febslet.2005.01.014
10.1002/prot.25407
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1016/j.cels.2019.03.006
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2405-4720
EndPage 301.e3
ExternalDocumentID PMC6513320
31005579
10_1016_j_cels_2019_03_006
S2405471219300766
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: U54 CA225088
– fundername: NIGMS NIH HHS
  grantid: P50 GM107618
GroupedDBID 0R~
457
AACTN
AAEDW
AAIAV
AAIKJ
AALRI
AAVLU
AAXUO
ABJNI
ABMAC
ABVKL
ACGFS
ADBBV
ADJPV
AFTJW
AHDRD
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
EJD
FDB
JIG
M41
O9-
OK1
RCE
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ROL
SSZ
NPM
7X8
EFKBS
5PM
ID FETCH-LOGICAL-c521t-303b3f186b7f26817edae3492123641c019e3c0a0174e6f9998951654eeb38923
ISSN 2405-4712
2405-4720
IngestDate Thu Aug 21 18:20:40 EDT 2025
Mon Jul 21 10:28:37 EDT 2025
Thu Apr 03 06:59:07 EDT 2025
Tue Jul 01 04:22:57 EDT 2025
Thu Apr 24 23:09:52 EDT 2025
Fri Feb 23 02:33:22 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords deep learning
homology modeling
geometric deep learning
protein folding
structural biology
machine learning
protein structure prediction
biophysics
protein design
co-evolution
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c521t-303b3f186b7f26817edae3492123641c019e3c0a0174e6f9998951654eeb38923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
M.A. conceived the model, conducted the experiments, and wrote the paper.
Author Contributions
OpenAccessLink http://www.cell.com/article/S2405471219300766/pdf
PMID 31005579
PQID 2212720369
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6513320
proquest_miscellaneous_2212720369
pubmed_primary_31005579
crossref_citationtrail_10_1016_j_cels_2019_03_006
crossref_primary_10_1016_j_cels_2019_03_006
elsevier_sciencedirect_doi_10_1016_j_cels_2019_03_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-24
PublicationDateYYYYMMDD 2019-04-24
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-24
  day: 24
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell systems
PublicationTitleAlternate Cell Syst
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Zhou, Duan, Yang, Faraggi, Lei (bib52) 2011; 128
Ramachandran, Ramakrishnan, Sasisekharan (bib41) 1963; 7
Zhao, Peng, Xu (bib51) 2010; 26
Aydin, Z., Thompson, J., Bilmes, J., Baker, D., and Noble, W.S. (2012). Protein torsion angle class prediction by a hybrid architecture of Bayesian and neural networks. In 13th International Conference on Bioinformatics and Computational Biology, pp 2012–2018.
Kryshtafovych, Monastyrskyy, Fidelis, Moult, Schwede, Tramontano (bib24) 2018; 86
Hopf, Schärfe, Rodrigues, Green, Kohlbacher, Sander, Bonvin, Marks (bib19) 2014; 3
Marks, Colwell, Sheridan, Hopf, Pagnani, Zecchina, Sander (bib31) 2011; 6
Contreras-Moreira, Ezkurdia, Tress, Valencia (bib10) 2005; 579
Ovchinnikov, Park, Varghese, Huang, Pavlopoulos, Kim, Kamisetty, Kyrpides, Baker (bib37) 2017; 355
Perez, Morrone, Brini, MacCallum, Dill (bib39) 2016; 2
Ovchinnikov, Kim, Wang, Liu, DiMaio, Baker (bib36) 2016; 84
Moult, Fidelis, Kryshtafovych, Schwede, Tramontano (bib34) 2018; 86
Gajda, Pawlowski, Bujnicki (bib14) 2011
Xu, Zhang (bib46) 2012; 80
Leaver-Fay, Tyka, Lewis, Lange, Thompson, Jacak, Kaufman, Renfrew, Smith, Sheffler (bib25) 2011; 487
LeCun, Bengio, Hinton (bib26) 2015; 521
Nguyen, Yosinski, Clune (bib35) 2016
Dawson, Lewis, Das, Lees, Lee, Ashford, Orengo, Sillitoe (bib11) 2017; 45
Ponting, Russell (bib40) 2002; 31
Goodfellow, Bengio, Courville (bib17) 2016
Simonyan, Vedaldi, Zisserman (bib44) 2013
Dill (bib12) 1990; 29
Li, Hou, Adhikari, Lyu, Cheng (bib27) 2017; 18
Koh, Liang (bib22) 2017
Liu, Palmedo, Ye, Berger, Peng (bib29) 2018; 6
Lyons, Dehzangi, Heffernan, Sharma, Paliwal, Sattar, Zhou, Yang (bib30) 2014; 35
Gajda, Pawlowski, Bujnicki (bib15) 2011
Marx, Hutter (bib32) 2012
Zhang, Mortuza, He, Wang, Zhang (bib50) 2018; 86
AlQuraishi (bib4) 2019; 40
Alva, Söding, Lupas (bib6) 2015; 4
Moult, Pedersen, Judson, Fidelis (bib33) 1995; 23
Hopf, Ingraham, Poelwijk, Schärfe, Springer, Sander, Marks (bib20) 2017; 35
Yang, Yan, Roy, Xu, Poisson, Zhang (bib48) 2015; 12
Kryshtafovych, Monastyrskyy, Fidelis (bib23) 2016; 84
Branden, Tooze (bib9) 1999
Juan, de Pazos, Valencia (bib21) 2013; 14
Liu, Ish-Shalom, Torng, Lafita, Bock, Mort, Cooper, Bliven, Capitani, Mooney (bib28) 2018; 86
Schaarschmidt, Monastyrskyy, Kryshtafovych, Bonvin (bib42) 2018; 86
Gao, Wang, Deng, Xu (bib16) 2017
AlQuraishi (bib5) 2019
Bernstein, Koetzle, Williams, Meyer, Brice, Rodgers, Kennard, Shimanouchi, Tasumi (bib8) 1977; 80
Shrikumar, A., Greenside, P., and Kundaje, A. (2017). Learning important features through propagating activation differences. In ICML'17 Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 3145–3153.
Xu, Zhang (bib47) 2010; 26
Adhikari, Bhattacharya, Cao, Cheng (bib2) 2015; 83
Alain, Bengio (bib3) 2016
Zhang, Skolnick (bib49) 2004; 57
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al. (2016). TensorFlow: a system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pp. 265–283.
Dill, MacCallum (bib13) 2012; 338
Hochreiter, Schmidhuber (bib18) 1997; 9
Parsons, Holmes, Rojas, Tsai, Strauss (bib38) 2005; 26
Wang, Sun, Li, Zhang, Xu (bib45) 2017; 13
Ovchinnikov (10.1016/j.cels.2019.03.006_bib37) 2017; 355
Zhao (10.1016/j.cels.2019.03.006_bib51) 2010; 26
Dill (10.1016/j.cels.2019.03.006_bib13) 2012; 338
Ramachandran (10.1016/j.cels.2019.03.006_bib41) 1963; 7
Bernstein (10.1016/j.cels.2019.03.006_bib8) 1977; 80
AlQuraishi (10.1016/j.cels.2019.03.006_bib5) 2019
LeCun (10.1016/j.cels.2019.03.006_bib26) 2015; 521
Hochreiter (10.1016/j.cels.2019.03.006_bib18) 1997; 9
Ponting (10.1016/j.cels.2019.03.006_bib40) 2002; 31
Alain (10.1016/j.cels.2019.03.006_bib3) 2016
Wang (10.1016/j.cels.2019.03.006_bib45) 2017; 13
Lyons (10.1016/j.cels.2019.03.006_bib30) 2014; 35
Zhou (10.1016/j.cels.2019.03.006_bib52) 2011; 128
Perez (10.1016/j.cels.2019.03.006_bib39) 2016; 2
Xu (10.1016/j.cels.2019.03.006_bib47) 2010; 26
Parsons (10.1016/j.cels.2019.03.006_bib38) 2005; 26
Gajda (10.1016/j.cels.2019.03.006_bib15) 2011
Kryshtafovych (10.1016/j.cels.2019.03.006_bib23) 2016; 84
Liu (10.1016/j.cels.2019.03.006_bib29) 2018; 6
Juan (10.1016/j.cels.2019.03.006_bib21) 2013; 14
Branden (10.1016/j.cels.2019.03.006_bib9) 1999
Ovchinnikov (10.1016/j.cels.2019.03.006_bib36) 2016; 84
10.1016/j.cels.2019.03.006_bib43
Marx (10.1016/j.cels.2019.03.006_bib32) 2012
Li (10.1016/j.cels.2019.03.006_bib27) 2017; 18
Goodfellow (10.1016/j.cels.2019.03.006_bib17) 2016
Hopf (10.1016/j.cels.2019.03.006_bib19) 2014; 3
Nguyen (10.1016/j.cels.2019.03.006_bib35) 2016
Schaarschmidt (10.1016/j.cels.2019.03.006_bib42) 2018; 86
10.1016/j.cels.2019.03.006_bib1
Hopf (10.1016/j.cels.2019.03.006_bib20) 2017; 35
Dill (10.1016/j.cels.2019.03.006_bib12) 1990; 29
10.1016/j.cels.2019.03.006_bib7
Moult (10.1016/j.cels.2019.03.006_bib34) 2018; 86
Simonyan (10.1016/j.cels.2019.03.006_bib44) 2013
AlQuraishi (10.1016/j.cels.2019.03.006_bib4) 2019; 40
Gajda (10.1016/j.cels.2019.03.006_bib14) 2011
Xu (10.1016/j.cels.2019.03.006_bib46) 2012; 80
Dawson (10.1016/j.cels.2019.03.006_bib11) 2017; 45
Liu (10.1016/j.cels.2019.03.006_bib28) 2018; 86
Adhikari (10.1016/j.cels.2019.03.006_bib2) 2015; 83
Marks (10.1016/j.cels.2019.03.006_bib31) 2011; 6
Kryshtafovych (10.1016/j.cels.2019.03.006_bib24) 2018; 86
Zhang (10.1016/j.cels.2019.03.006_bib50) 2018; 86
Alva (10.1016/j.cels.2019.03.006_bib6) 2015; 4
Zhang (10.1016/j.cels.2019.03.006_bib49) 2004; 57
Contreras-Moreira (10.1016/j.cels.2019.03.006_bib10) 2005; 579
Koh (10.1016/j.cels.2019.03.006_bib22) 2017
Leaver-Fay (10.1016/j.cels.2019.03.006_bib25) 2011; 487
Gao (10.1016/j.cels.2019.03.006_bib16) 2017
Moult (10.1016/j.cels.2019.03.006_bib33) 1995; 23
Yang (10.1016/j.cels.2019.03.006_bib48) 2015; 12
References_xml – volume: 35
  start-page: 2040
  year: 2014
  end-page: 2046
  ident: bib30
  article-title: Predicting backbone Cα angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network
  publication-title: J. Comput. Chem.
– year: 2016
  ident: bib17
  article-title: Deep Learning
– volume: 84
  start-page: 15
  year: 2016
  end-page: 19
  ident: bib23
  article-title: CASP11 statistics and the prediction center evaluation system
  publication-title: Proteins
– volume: 12
  start-page: 7
  year: 2015
  end-page: 8
  ident: bib48
  article-title: The I-TASSER suite: protein structure and function prediction
  publication-title: Nat. Methods
– volume: 80
  start-page: 1715
  year: 2012
  end-page: 1735
  ident: bib46
  article-title: Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field
  publication-title: Proteins
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bib18
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 86
  start-page: 136
  year: 2018
  end-page: 151
  ident: bib50
  article-title: Template-based and free modeling of I-TASSER and Quark pipelines using predicted contact maps in CASP12
  publication-title: Proteins
– volume: 45
  start-page: D289
  year: 2017
  end-page: D295
  ident: bib11
  article-title: CATH: an expanded resource to predict protein function through structure and sequence
  publication-title: Nucleic Acids Res.
– year: 2019
  ident: bib5
  article-title: ProteinNet: a standardized data set for machine learning of protein structure
  publication-title: Arxiv
– year: 2016
  ident: bib35
  article-title: Multifaceted feature visualization: uncovering the different types of features learned by each neuron in deep neural networks
  publication-title: Arxiv
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib26
  article-title: Deep learning
  publication-title: Nature
– volume: 86
  start-page: 51
  year: 2018
  end-page: 66
  ident: bib42
  article-title: Assessment of contact predictions in CASP12: co-evolution and deep learning coming of age
  publication-title: Proteins
– year: 2011
  ident: bib15
  article-title: Multiscale Approaches to Protein Modeling
– volume: 80
  start-page: 319
  year: 1977
  end-page: 324
  ident: bib8
  article-title: The Protein Data Bank. A computer-based archival file for macromolecular structures
  publication-title: Eur. J. Biochem
– year: 2016
  ident: bib3
  article-title: Understanding intermediate layers using linear classifier probes
  publication-title: Arxiv
– volume: 7
  start-page: 95
  year: 1963
  end-page: 99
  ident: bib41
  article-title: Stereochemistry of polypeptide chain configurations
  publication-title: J. Mol. Biol.
– volume: 355
  start-page: 294
  year: 2017
  end-page: 298
  ident: bib37
  article-title: Protein structure determination using metagenome sequence data
  publication-title: Science
– volume: 26
  start-page: 889
  year: 2010
  end-page: 895
  ident: bib47
  article-title: How significant is a protein structure similarity with TM-score = 0.5?
  publication-title: Bioinformatics
– volume: 86
  start-page: 374
  year: 2018
  end-page: 386
  ident: bib28
  article-title: .Biological and functional relevance of CASP predictions
  publication-title: Proteins
– volume: 31
  start-page: 45
  year: 2002
  end-page: 71
  ident: bib40
  article-title: The natural history of protein domains
  publication-title: Annu. Rev. Biophys. Biomol. Struct
– volume: 3
  year: 2014
  ident: bib19
  article-title: Sequence co-evolution gives 3D contacts and structures of protein complexes
  publication-title: Elife
– volume: 83
  start-page: 1436
  year: 2015
  end-page: 1449
  ident: bib2
  article-title: CONFOLD: residue-residue contact-guided ab initio protein folding
  publication-title: Proteins
– volume: 40
  start-page: 885
  year: 2019
  end-page: 892
  ident: bib4
  article-title: Parallelized natural extension reference frame: parallelized conversion from internal to Cartesian coordinates
  publication-title: J. Comp. Chem.
– volume: 487
  start-page: 545
  year: 2011
  end-page: 574
  ident: bib25
  article-title: ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules
  publication-title: Meth. Enzymol
– volume: 2
  start-page: e1601274
  year: 2016
  ident: bib39
  article-title: Blind protein structure prediction using accelerated free-energy simulations
  publication-title: Sci. Adv
– year: 2017
  ident: bib16
  article-title: Real-value and confidence prediction of protein backbone dihedral angles through a hybrid method of clustering and deep learning
  publication-title: Arxiv
– volume: 84
  start-page: 67
  year: 2016
  end-page: 75
  ident: bib36
  article-title: Improved de novo structure prediction in CASP11 by incorporating coevolution information into Rosetta
  publication-title: Proteins
– volume: 26
  start-page: i310
  year: 2010
  end-page: i317
  ident: bib51
  article-title: Fragment-free approach to protein folding using conditional neural fields
  publication-title: Bioinformatics
– volume: 14
  start-page: 249
  year: 2013
  end-page: 261
  ident: bib21
  article-title: Emerging methods in protein co-evolution
  publication-title: Nat. Rev. Genet.
– volume: 338
  start-page: 1042
  year: 2012
  end-page: 1046
  ident: bib13
  article-title: The protein-folding problem, 50 years on
  publication-title: Science
– volume: 23
  year: 1995
  ident: bib33
  article-title: A large-scale experiment to assess protein structure prediction methods
  publication-title: Proteins
– volume: 128
  start-page: 3
  year: 2011
  end-page: 16
  ident: bib52
  article-title: Trends in template/fragment-free protein structure prediction
  publication-title: Theor. Chem. Acc
– volume: 86
  start-page: 7
  year: 2018
  end-page: 15
  ident: bib34
  article-title: Critical assessment of methods of protein structure prediction (CASP)-round XII
  publication-title: Proteins
– volume: 4
  start-page: e09410
  year: 2015
  ident: bib6
  article-title: A vocabulary of ancient peptides at the origin of folded proteins
  publication-title: Elife
– start-page: 231
  year: 2011
  end-page: 254
  ident: bib14
  article-title: Protein structure prediction: from recognition of matches with known structures to recombination of fragments
  publication-title: Multiscale Approaches to Protein Modeling
– volume: 18
  start-page: 417
  year: 2017
  ident: bib27
  article-title: Deep learning methods for protein torsion angle prediction
  publication-title: BMC Bioinformatics
– reference: Shrikumar, A., Greenside, P., and Kundaje, A. (2017). Learning important features through propagating activation differences. In ICML'17 Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 3145–3153.
– volume: 35
  start-page: 128
  year: 2017
  end-page: 135
  ident: bib20
  article-title: Mutation effects predicted from sequence co-variation
  publication-title: Nat. Biotech
– volume: 86
  start-page: 321
  year: 2018
  end-page: 334
  ident: bib24
  article-title: Evaluation of the template-based modeling in CASP12
  publication-title: Proteins
– volume: 57
  start-page: 702
  year: 2004
  end-page: 710
  ident: bib49
  article-title: Scoring function for automated assessment of protein structure template quality
  publication-title: Proteins
– reference: Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al. (2016). TensorFlow: a system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pp. 265–283.
– volume: 579
  start-page: 1203
  year: 2005
  end-page: 1207
  ident: bib10
  article-title: Empirical limits for template-based protein structure prediction: the CASP5 example
  publication-title: FEBS Lett.
– year: 2017
  ident: bib22
  article-title: Understanding Black-box predictions via influence functions
  publication-title: Arxiv
– year: 1999
  ident: bib9
  article-title: Introduction to Protein Structure
– volume: 6
  start-page: 65
  year: 2018
  end-page: 74
  ident: bib29
  article-title: Enhancing evolutionary couplings with deep convolutional neural networks
  publication-title: Cell Syst
– volume: 6
  start-page: e28766
  year: 2011
  ident: bib31
  article-title: Protein 3D structure computed from evolutionary sequence variation
  publication-title: PLoS One
– volume: 26
  start-page: 1063
  year: 2005
  end-page: 1068
  ident: bib38
  article-title: Practical conversion from torsion space to Cartesian space for in silico protein synthesis
  publication-title: J. Comput. Chem.
– year: 2012
  ident: bib32
  article-title: Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods
– year: 2013
  ident: bib44
  article-title: Deep inside convolutional networks: visualising image classification models and saliency maps
  publication-title: Arxiv
– volume: 13
  start-page: e1005324
  year: 2017
  ident: bib45
  article-title: Accurate de novo prediction of protein contact map by ultra-deep learning model
  publication-title: PLoS Comput. Biol.
– volume: 29
  start-page: 7133
  year: 1990
  end-page: 7155
  ident: bib12
  article-title: Dominant forces in protein folding
  publication-title: Biochemistry
– reference: Aydin, Z., Thompson, J., Bilmes, J., Baker, D., and Noble, W.S. (2012). Protein torsion angle class prediction by a hybrid architecture of Bayesian and neural networks. In 13th International Conference on Bioinformatics and Computational Biology, pp 2012–2018.
– volume: 9
  start-page: 1735
  year: 1997
  ident: 10.1016/j.cels.2019.03.006_bib18
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 40
  start-page: 885
  year: 2019
  ident: 10.1016/j.cels.2019.03.006_bib4
  article-title: Parallelized natural extension reference frame: parallelized conversion from internal to Cartesian coordinates
  publication-title: J. Comp. Chem.
  doi: 10.1002/jcc.25772
– volume: 84
  start-page: 67
  year: 2016
  ident: 10.1016/j.cels.2019.03.006_bib36
  article-title: Improved de novo structure prediction in CASP11 by incorporating coevolution information into Rosetta
  publication-title: Proteins
  doi: 10.1002/prot.24974
– volume: 3
  year: 2014
  ident: 10.1016/j.cels.2019.03.006_bib19
  article-title: Sequence co-evolution gives 3D contacts and structures of protein complexes
  publication-title: Elife
  doi: 10.7554/eLife.03430
– volume: 26
  start-page: 889
  year: 2010
  ident: 10.1016/j.cels.2019.03.006_bib47
  article-title: How significant is a protein structure similarity with TM-score = 0.5?
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq066
– volume: 23
  year: 1995
  ident: 10.1016/j.cels.2019.03.006_bib33
  article-title: A large-scale experiment to assess protein structure prediction methods
  publication-title: Proteins
  doi: 10.1002/prot.340230303
– year: 2016
  ident: 10.1016/j.cels.2019.03.006_bib3
  article-title: Understanding intermediate layers using linear classifier probes
  publication-title: Arxiv
– volume: 86
  start-page: 321
  year: 2018
  ident: 10.1016/j.cels.2019.03.006_bib24
  article-title: Evaluation of the template-based modeling in CASP12
  publication-title: Proteins
  doi: 10.1002/prot.25425
– volume: 83
  start-page: 1436
  year: 2015
  ident: 10.1016/j.cels.2019.03.006_bib2
  article-title: CONFOLD: residue-residue contact-guided ab initio protein folding
  publication-title: Proteins
  doi: 10.1002/prot.24829
– volume: 86
  start-page: 7
  year: 2018
  ident: 10.1016/j.cels.2019.03.006_bib34
  article-title: Critical assessment of methods of protein structure prediction (CASP)-round XII
  publication-title: Proteins
  doi: 10.1002/prot.25415
– ident: 10.1016/j.cels.2019.03.006_bib7
– year: 2016
  ident: 10.1016/j.cels.2019.03.006_bib17
– volume: 26
  start-page: 1063
  year: 2005
  ident: 10.1016/j.cels.2019.03.006_bib38
  article-title: Practical conversion from torsion space to Cartesian space for in silico protein synthesis
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20237
– volume: 338
  start-page: 1042
  year: 2012
  ident: 10.1016/j.cels.2019.03.006_bib13
  article-title: The protein-folding problem, 50 years on
  publication-title: Science
  doi: 10.1126/science.1219021
– volume: 31
  start-page: 45
  year: 2002
  ident: 10.1016/j.cels.2019.03.006_bib40
  article-title: The natural history of protein domains
  publication-title: Annu. Rev. Biophys. Biomol. Struct
  doi: 10.1146/annurev.biophys.31.082901.134314
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.cels.2019.03.006_bib26
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– year: 2016
  ident: 10.1016/j.cels.2019.03.006_bib35
  article-title: Multifaceted feature visualization: uncovering the different types of features learned by each neuron in deep neural networks
  publication-title: Arxiv
– volume: 80
  start-page: 319
  year: 1977
  ident: 10.1016/j.cels.2019.03.006_bib8
  article-title: The Protein Data Bank. A computer-based archival file for macromolecular structures
  publication-title: Eur. J. Biochem
  doi: 10.1111/j.1432-1033.1977.tb11885.x
– volume: 487
  start-page: 545
  year: 2011
  ident: 10.1016/j.cels.2019.03.006_bib25
  article-title: ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules
  publication-title: Meth. Enzymol
  doi: 10.1016/B978-0-12-381270-4.00019-6
– year: 1999
  ident: 10.1016/j.cels.2019.03.006_bib9
– volume: 6
  start-page: e28766
  year: 2011
  ident: 10.1016/j.cels.2019.03.006_bib31
  article-title: Protein 3D structure computed from evolutionary sequence variation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0028766
– volume: 18
  start-page: 417
  year: 2017
  ident: 10.1016/j.cels.2019.03.006_bib27
  article-title: Deep learning methods for protein torsion angle prediction
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-017-1834-2
– volume: 86
  start-page: 136
  year: 2018
  ident: 10.1016/j.cels.2019.03.006_bib50
  article-title: Template-based and free modeling of I-TASSER and Quark pipelines using predicted contact maps in CASP12
  publication-title: Proteins
  doi: 10.1002/prot.25414
– volume: 26
  start-page: i310
  year: 2010
  ident: 10.1016/j.cels.2019.03.006_bib51
  article-title: Fragment-free approach to protein folding using conditional neural fields
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq193
– year: 2013
  ident: 10.1016/j.cels.2019.03.006_bib44
  article-title: Deep inside convolutional networks: visualising image classification models and saliency maps
  publication-title: Arxiv
– volume: 128
  start-page: 3
  year: 2011
  ident: 10.1016/j.cels.2019.03.006_bib52
  article-title: Trends in template/fragment-free protein structure prediction
  publication-title: Theor. Chem. Acc
  doi: 10.1007/s00214-010-0799-2
– volume: 86
  start-page: 374
  year: 2018
  ident: 10.1016/j.cels.2019.03.006_bib28
  article-title: .Biological and functional relevance of CASP predictions
  publication-title: Proteins
  doi: 10.1002/prot.25396
– volume: 7
  start-page: 95
  year: 1963
  ident: 10.1016/j.cels.2019.03.006_bib41
  article-title: Stereochemistry of polypeptide chain configurations
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(63)80023-6
– volume: 45
  start-page: D289
  year: 2017
  ident: 10.1016/j.cels.2019.03.006_bib11
  article-title: CATH: an expanded resource to predict protein function through structure and sequence
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw1098
– year: 2011
  ident: 10.1016/j.cels.2019.03.006_bib15
– volume: 57
  start-page: 702
  year: 2004
  ident: 10.1016/j.cels.2019.03.006_bib49
  article-title: Scoring function for automated assessment of protein structure template quality
  publication-title: Proteins
  doi: 10.1002/prot.20264
– start-page: 231
  year: 2011
  ident: 10.1016/j.cels.2019.03.006_bib14
  article-title: Protein structure prediction: from recognition of matches with known structures to recombination of fragments
– volume: 13
  start-page: e1005324
  year: 2017
  ident: 10.1016/j.cels.2019.03.006_bib45
  article-title: Accurate de novo prediction of protein contact map by ultra-deep learning model
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005324
– volume: 29
  start-page: 7133
  year: 1990
  ident: 10.1016/j.cels.2019.03.006_bib12
  article-title: Dominant forces in protein folding
  publication-title: Biochemistry
  doi: 10.1021/bi00483a001
– year: 2012
  ident: 10.1016/j.cels.2019.03.006_bib32
– volume: 6
  start-page: 65
  year: 2018
  ident: 10.1016/j.cels.2019.03.006_bib29
  article-title: Enhancing evolutionary couplings with deep convolutional neural networks
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2017.11.014
– volume: 14
  start-page: 249
  year: 2013
  ident: 10.1016/j.cels.2019.03.006_bib21
  article-title: Emerging methods in protein co-evolution
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3414
– volume: 12
  start-page: 7
  year: 2015
  ident: 10.1016/j.cels.2019.03.006_bib48
  article-title: The I-TASSER suite: protein structure and function prediction
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3213
– volume: 84
  start-page: 15
  year: 2016
  ident: 10.1016/j.cels.2019.03.006_bib23
  article-title: CASP11 statistics and the prediction center evaluation system
  publication-title: Proteins
  doi: 10.1002/prot.25005
– volume: 80
  start-page: 1715
  year: 2012
  ident: 10.1016/j.cels.2019.03.006_bib46
  article-title: Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field
  publication-title: Proteins
  doi: 10.1002/prot.24065
– volume: 4
  start-page: e09410
  year: 2015
  ident: 10.1016/j.cels.2019.03.006_bib6
  article-title: A vocabulary of ancient peptides at the origin of folded proteins
  publication-title: Elife
  doi: 10.7554/eLife.09410
– volume: 35
  start-page: 2040
  year: 2014
  ident: 10.1016/j.cels.2019.03.006_bib30
  article-title: Predicting backbone Cα angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.23718
– volume: 35
  start-page: 128
  year: 2017
  ident: 10.1016/j.cels.2019.03.006_bib20
  article-title: Mutation effects predicted from sequence co-variation
  publication-title: Nat. Biotech
  doi: 10.1038/nbt.3769
– volume: 355
  start-page: 294
  year: 2017
  ident: 10.1016/j.cels.2019.03.006_bib37
  article-title: Protein structure determination using metagenome sequence data
  publication-title: Science
  doi: 10.1126/science.aah4043
– year: 2017
  ident: 10.1016/j.cels.2019.03.006_bib22
  article-title: Understanding Black-box predictions via influence functions
  publication-title: Arxiv
– ident: 10.1016/j.cels.2019.03.006_bib1
– volume: 2
  start-page: e1601274
  year: 2016
  ident: 10.1016/j.cels.2019.03.006_bib39
  article-title: Blind protein structure prediction using accelerated free-energy simulations
  publication-title: Sci. Adv
  doi: 10.1126/sciadv.1601274
– ident: 10.1016/j.cels.2019.03.006_bib43
– volume: 579
  start-page: 1203
  year: 2005
  ident: 10.1016/j.cels.2019.03.006_bib10
  article-title: Empirical limits for template-based protein structure prediction: the CASP5 example
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2005.01.014
– year: 2017
  ident: 10.1016/j.cels.2019.03.006_bib16
  article-title: Real-value and confidence prediction of protein backbone dihedral angles through a hybrid method of clustering and deep learning
  publication-title: Arxiv
– volume: 86
  start-page: 51
  year: 2018
  ident: 10.1016/j.cels.2019.03.006_bib42
  article-title: Assessment of contact predictions in CASP12: co-evolution and deep learning coming of age
  publication-title: Proteins
  doi: 10.1002/prot.25407
– year: 2019
  ident: 10.1016/j.cels.2019.03.006_bib5
  article-title: ProteinNet: a standardized data set for machine learning of protein structure
  publication-title: Arxiv
SSID ssj0001492402
Score 2.5748768
Snippet Predicting protein structure from sequence is a central challenge of biochemistry. Co-evolution methods show promise, but an explicit sequence-to-structure map...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 292
SubjectTerms biophysics
co-evolution
deep learning
geometric deep learning
homology modeling
machine learning
protein design
protein folding
protein structure prediction
structural biology
Title End-to-End Differentiable Learning of Protein Structure
URI https://dx.doi.org/10.1016/j.cels.2019.03.006
https://www.ncbi.nlm.nih.gov/pubmed/31005579
https://www.proquest.com/docview/2212720369
https://pubmed.ncbi.nlm.nih.gov/PMC6513320
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZakBCXqlUL3T5QKvWGvMrDceIjQlQIBKIVCG5WHNsCtE1Qu1z66zsT21nvlqKWS7Ty2rvJfPZ4MuP5hpDPXKnKaM2pLnhLmVCWNlUqqG55VZVc5FYNbJ-n_PCCHV2VV4tqb0N2yVxN218P5pU8BVVoA1wxS_Y_kB1_FBrgM-ALV0AYrv-E8UGn6bynptNjoRNYsJgLNQseDzzQjFQMN92uo4r1DCIjOwH67n5GtOUI_uzr_Q8syzxE-k_6a_Ru69g_kA2hDpeW7NQIbNklhS3I6TwTt-VprAfrCG4W6zSRR9sjKISpKR5Uvs4PcDttYVfHQ3OePpbHnUGAd98HODCyUJaukswK5fXZyT7HujN5-pys52D_gwJb3zv-dnm8cJ8xgXEhLB0Yns-nRLnTe6v3sEk2wh_-zQL58w1j9aBsZHmcvyQv_CtDsufwf0Weme41qRbYJ8vYJwH7pLeJxz4ZsX9DLr4cnO8fUl8Eg7ZYa4KCiaEKm9VcVTbndQYrqzFIKYm0OSxr4RFN0aYNaFZmuAV7vwajmZfMGAXGaF5skbWu78xbkghhWAM2rs1szQptBGsEz4xWTdpkqTUTkgXByNYzxGOhkpkMRwFvJcpVolxlWkiQ64TsjmPuHD_Ko73LIG_pLTxnuUmYQ4-O-xTAkaD-MKbVdKa_h05YoQCD6WJCth1Y430EwCekWoJx7IDU6svfdDfXA8W6n37vnjzyPdlcLMYPZA1QNh_BfJ2rHT-VfwO6XJlw
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=End-to-end+differentiable+learning+of+protein+structure&rft.jtitle=Cell+systems&rft.au=AlQuraishi%2C+Mohammed&rft.date=2019-04-24&rft.issn=2405-4712&rft.eissn=2405-4720&rft.volume=8&rft.issue=4&rft.spage=292&rft.epage=301.e3&rft_id=info:doi/10.1016%2Fj.cels.2019.03.006&rft_id=info%3Apmid%2F31005579&rft.externalDocID=PMC6513320
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-4712&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-4712&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-4712&client=summon