End-to-End Differentiable Learning of Protein Structure
Predicting protein structure from sequence is a central challenge of biochemistry. Co-evolution methods show promise, but an explicit sequence-to-structure map remains elusive. Advances in deep learning that replace complex, human-designed pipelines with differentiable models optimized end to end su...
Saved in:
Published in | Cell systems Vol. 8; no. 4; pp. 292 - 301.e3 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
24.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Predicting protein structure from sequence is a central challenge of biochemistry. Co-evolution methods show promise, but an explicit sequence-to-structure map remains elusive. Advances in deep learning that replace complex, human-designed pipelines with differentiable models optimized end to end suggest the potential benefits of similarly reformulating structure prediction. Here, we introduce an end-to-end differentiable model for protein structure learning. The model couples local and global protein structure via geometric units that optimize global geometry without violating local covalent chemistry. We test our model using two challenging tasks: predicting novel folds without co-evolutionary data and predicting known folds without structural templates. In the first task, the model achieves state-of-the-art accuracy, and in the second, it comes within 1–2 Å; competing methods using co-evolution and experimental templates have been refined over many years, and it is likely that the differentiable approach has substantial room for further improvement, with applications ranging from drug discovery to protein design.
[Display omitted]
•Neural network predicts protein structure from sequence without using co-evolution•Model replaces structure prediction pipelines with one mathematical function•Achieves state-of-the-art performance on novel protein folds•Learns a low-dimensional representation of protein sequence space
Prediction of protein structure from sequence is important for understanding protein function, but it remains very challenging, especially for proteins with few homologs. Existing prediction methods are human engineered, with many complex parts developed over decades. We introduce a new approach based entirely on machine learning that predicts protein structure from sequence using a single neural network. The model achieves state-of-the-art accuracy and does not require co-evolution information or structural homologs. It is also much faster, making predictions in milliseconds versus hours or days, which enables new applications in drug discovery and protein design. |
---|---|
AbstractList | Predicting protein structure from sequence is a central challenge of biochemistry. Co-evolution methods show promise, but an explicit sequence-to-structure map remains elusive. Advances in deep learning that replace complex, human-designed pipelines with differentiable models optimized end-to-end suggest the potential benefits of similarly reformulating structure prediction. Here we introduce an end-to-end differentiable model for protein structure learning. The model couples local and global protein structure via geometric units that optimize global geometry without violating local covalent chemistry. We test our model using two challenging tasks: predicting novel folds without co-evolutionary data and predicting known folds without structural templates. In the first task the model achieves state-of-the-art accuracy and in the second it comes within 1–2Å; competing methods using co-evolution and experimental templates have been refined over many years and it is likely that the differentiable approach has substantial room for further improvement, with applications ranging from drug discovery to protein design.
Prediction of protein structure from sequence is important for understanding protein function, but it remains very challenging, especially for proteins with few homologs. Existing prediction methods are human-engineered, with many complex parts developed over decades. We introduce a new approach based entirely on machine learning that predicts protein structure from sequence using a single neural network. The model achieves state of the art accuracy, and does not require co-evolution information or structural homologs. It is also much faster, making predictions in milliseconds vs. hours or days, which enables new applications in drug discovery and protein design. Predicting protein structure from sequence is a central challenge of biochemistry. Co-evolution methods show promise, but an explicit sequence-to-structure map remains elusive. Advances in deep learning that replace complex, human-designed pipelines with differentiable models optimized end to end suggest the potential benefits of similarly reformulating structure prediction. Here, we introduce an end-to-end differentiable model for protein structure learning. The model couples local and global protein structure via geometric units that optimize global geometry without violating local covalent chemistry. We test our model using two challenging tasks: predicting novel folds without co-evolutionary data and predicting known folds without structural templates. In the first task, the model achieves state-of-the-art accuracy, and in the second, it comes within 1–2 Å; competing methods using co-evolution and experimental templates have been refined over many years, and it is likely that the differentiable approach has substantial room for further improvement, with applications ranging from drug discovery to protein design. [Display omitted] •Neural network predicts protein structure from sequence without using co-evolution•Model replaces structure prediction pipelines with one mathematical function•Achieves state-of-the-art performance on novel protein folds•Learns a low-dimensional representation of protein sequence space Prediction of protein structure from sequence is important for understanding protein function, but it remains very challenging, especially for proteins with few homologs. Existing prediction methods are human engineered, with many complex parts developed over decades. We introduce a new approach based entirely on machine learning that predicts protein structure from sequence using a single neural network. The model achieves state-of-the-art accuracy and does not require co-evolution information or structural homologs. It is also much faster, making predictions in milliseconds versus hours or days, which enables new applications in drug discovery and protein design. Predicting protein structure from sequence is a central challenge of biochemistry. Co-evolution methods show promise, but an explicit sequence-to-structure map remains elusive. Advances in deep learning that replace complex, human-designed pipelines with differentiable models optimized end to end suggest the potential benefits of similarly reformulating structure prediction. Here, we introduce an end-to-end differentiable model for protein structure learning. The model couples local and global protein structure via geometric units that optimize global geometry without violating local covalent chemistry. We test our model using two challenging tasks: predicting novel folds without co-evolutionary data and predicting known folds without structural templates. In the first task, the model achieves state-of-the-art accuracy, and in the second, it comes within 1-2 Å; competing methods using co-evolution and experimental templates have been refined over many years, and it is likely that the differentiable approach has substantial room for further improvement, with applications ranging from drug discovery to protein design. Predicting protein structure from sequence is a central challenge of biochemistry. Co-evolution methods show promise, but an explicit sequence-to-structure map remains elusive. Advances in deep learning that replace complex, human-designed pipelines with differentiable models optimized end to end suggest the potential benefits of similarly reformulating structure prediction. Here, we introduce an end-to-end differentiable model for protein structure learning. The model couples local and global protein structure via geometric units that optimize global geometry without violating local covalent chemistry. We test our model using two challenging tasks: predicting novel folds without co-evolutionary data and predicting known folds without structural templates. In the first task, the model achieves state-of-the-art accuracy, and in the second, it comes within 1-2 Å; competing methods using co-evolution and experimental templates have been refined over many years, and it is likely that the differentiable approach has substantial room for further improvement, with applications ranging from drug discovery to protein design.Predicting protein structure from sequence is a central challenge of biochemistry. Co-evolution methods show promise, but an explicit sequence-to-structure map remains elusive. Advances in deep learning that replace complex, human-designed pipelines with differentiable models optimized end to end suggest the potential benefits of similarly reformulating structure prediction. Here, we introduce an end-to-end differentiable model for protein structure learning. The model couples local and global protein structure via geometric units that optimize global geometry without violating local covalent chemistry. We test our model using two challenging tasks: predicting novel folds without co-evolutionary data and predicting known folds without structural templates. In the first task, the model achieves state-of-the-art accuracy, and in the second, it comes within 1-2 Å; competing methods using co-evolution and experimental templates have been refined over many years, and it is likely that the differentiable approach has substantial room for further improvement, with applications ranging from drug discovery to protein design. |
Author | AlQuraishi, Mohammed |
AuthorAffiliation | 1 Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115 2 Department of Systems Biology, Harvard Medical School, Boston, MA 02115 |
AuthorAffiliation_xml | – name: 1 Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115 – name: 2 Department of Systems Biology, Harvard Medical School, Boston, MA 02115 |
Author_xml | – sequence: 1 givenname: Mohammed surname: AlQuraishi fullname: AlQuraishi, Mohammed email: alquraishi@hms.harvard.edu organization: Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31005579$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UUtrFTEUDlKxD_sHXMgs3cx4ksxkJiCC1FaFCwrq-pDJnKm5zE1qkin035vLbYu66OqEnO_F-U7ZkQ-eGHvFoeHA1dttY2lJjQCuG5ANgHrGTkQLXd32Ao4e31wcs_OUtgDAW10-xQt2LDlA1_X6hPWXfqpzqMuoPrp5pkg-OzMuVG3IRO_8dRXm6lsMmZyvvue42rxGesmez2ZJdH4_z9jPq8sfF5_rzddPXy4-bGrbCZ5rCXKUMx_U2M9CDbynyZAsObiQquW2pCdpwQDvW1Kz1nrQHVddSzTKQQt5xt4fdG_WcUeTLemiWfAmup2JdxiMw3833v3C63CLquNSCigCb-4FYvi9Usq4c6mcbjGewppQlCjlYFLpAn39t9ejycO1CmA4AGwMKUWa0bpssgt7a7cgB9x3g1vcd4P7bhAklm4KVfxHfVB_kvTuQCoLunUUMVlH3tLkItmMU3BP0f8At7umAg |
CitedBy_id | crossref_primary_10_1073_pnas_2113348119 crossref_primary_10_1080_10408398_2020_1850415 crossref_primary_10_3389_fbinf_2022_715006 crossref_primary_10_1016_j_tifs_2024_104607 crossref_primary_10_1093_bib_bbac102 crossref_primary_10_1093_bib_bbab493 crossref_primary_10_1038_s41592_019_0598_1 crossref_primary_10_3390_app12178465 crossref_primary_10_1080_00423114_2021_2011929 crossref_primary_10_1021_acsaelm_9b00702 crossref_primary_10_1038_s41598_020_70181_0 crossref_primary_10_1021_acs_jctc_9b01054 crossref_primary_10_1021_acs_jctc_2c01270 crossref_primary_10_17798_bitlisfen_1146682 crossref_primary_10_1038_s41467_022_28526_y crossref_primary_10_3389_fmolb_2022_848444 crossref_primary_10_1007_s40199_024_00548_5 crossref_primary_10_1016_j_ntt_2024_107336 crossref_primary_10_1007_s11030_021_10217_3 crossref_primary_10_1016_j_mlwa_2022_100401 crossref_primary_10_1098_rsta_2019_0394 crossref_primary_10_1002_prot_26235 crossref_primary_10_1186_s12859_019_2932_0 crossref_primary_10_1002_prot_25824 crossref_primary_10_7554_eLife_54489 crossref_primary_10_1038_s43588_022_00372_4 crossref_primary_10_1038_s42003_023_05244_9 crossref_primary_10_1016_j_mec_2022_e00209 crossref_primary_10_1002_prot_26478 crossref_primary_10_1093_bib_bbad456 crossref_primary_10_1021_acs_jcim_3c01324 crossref_primary_10_1016_j_sbi_2023_102594 crossref_primary_10_1016_j_jmb_2021_167127 crossref_primary_10_1038_s41467_019_11994_0 crossref_primary_10_1021_acs_jcim_1c00099 crossref_primary_10_1038_s42256_021_00348_5 crossref_primary_10_1038_s41598_019_53202_5 crossref_primary_10_1177_25152459211026864 crossref_primary_10_1038_s41467_024_45051_2 crossref_primary_10_1002_prot_25834 crossref_primary_10_1016_j_matt_2020_04_019 crossref_primary_10_1016_j_sbi_2021_07_010 crossref_primary_10_1016_j_addr_2021_113922 crossref_primary_10_1371_journal_pone_0242072 crossref_primary_10_1016_j_csbj_2021_11_015 crossref_primary_10_2174_0113892010275850240102105033 crossref_primary_10_1016_j_tips_2020_12_004 crossref_primary_10_1002_bies_202400155 crossref_primary_10_1126_science_abe5650 crossref_primary_10_1038_s41594_022_00849_w crossref_primary_10_1101_cshperspect_a037812 crossref_primary_10_3390_antib9020012 crossref_primary_10_1016_j_cels_2020_05_007 crossref_primary_10_1002_ange_201909987 crossref_primary_10_1016_j_eml_2024_102236 crossref_primary_10_3390_molecules24183383 crossref_primary_10_1038_s44320_024_00016_x crossref_primary_10_3390_vaccines11081304 crossref_primary_10_1016_j_ejmech_2024_117164 crossref_primary_10_1557_s43577_023_00610_8 crossref_primary_10_1038_s41580_021_00407_0 crossref_primary_10_1038_s41524_020_0318_5 crossref_primary_10_1016_j_sbi_2022_102329 crossref_primary_10_1038_s41467_022_29268_7 crossref_primary_10_3389_fncom_2023_1323182 crossref_primary_10_1016_j_gexplo_2020_106662 crossref_primary_10_1021_acs_jctc_0c00186 crossref_primary_10_1002_advs_202001314 crossref_primary_10_1016_j_tips_2024_01_004 crossref_primary_10_1093_bioinformatics_btae002 crossref_primary_10_1109_JBHI_2021_3137840 crossref_primary_10_1002_biot_201900343 crossref_primary_10_1016_j_agrcom_2023_100014 crossref_primary_10_3389_fimmu_2022_958584 crossref_primary_10_1002_wcms_1690 crossref_primary_10_1016_j_jddst_2023_105157 crossref_primary_10_1038_s41597_022_01288_4 crossref_primary_10_3390_ijms24076148 crossref_primary_10_1107_S2059798321007531 crossref_primary_10_1093_nar_gkab1144 crossref_primary_10_1016_j_copbio_2019_08_010 crossref_primary_10_1186_s12859_019_3199_1 crossref_primary_10_1073_pnas_1821309116 crossref_primary_10_1021_acsnano_2c07681 crossref_primary_10_1038_s41592_019_0687_1 crossref_primary_10_1021_acs_jctc_0c00524 crossref_primary_10_1021_acs_cgd_9b01328 crossref_primary_10_1021_jacsau_2c00344 crossref_primary_10_1016_j_jcmds_2022_100044 crossref_primary_10_7554_eLife_80942 crossref_primary_10_1016_j_compbiomed_2024_108810 crossref_primary_10_1016_j_compbiomed_2024_108815 crossref_primary_10_1016_j_chempr_2020_05_014 crossref_primary_10_1089_cmb_2019_0193 crossref_primary_10_1007_s10930_021_10016_7 crossref_primary_10_1109_ACCESS_2021_3110269 crossref_primary_10_3390_ijms24032026 crossref_primary_10_1016_j_xphs_2020_11_034 crossref_primary_10_1016_j_jhydrol_2020_125206 crossref_primary_10_1016_j_gpb_2022_11_014 crossref_primary_10_1371_journal_pone_0265020 crossref_primary_10_1002_pmic_201900335 crossref_primary_10_1038_s42256_021_00310_5 crossref_primary_10_1038_s43588_024_00642_3 crossref_primary_10_1007_s10441_023_09468_4 crossref_primary_10_1016_j_fmre_2024_04_021 crossref_primary_10_1038_s41586_021_03819_2 crossref_primary_10_1021_acs_jctc_1c00492 crossref_primary_10_1016_j_ebiom_2021_103360 crossref_primary_10_1093_bioadv_vbad042 crossref_primary_10_1021_acs_chemrev_1c00757 crossref_primary_10_1007_s12539_024_00626_x crossref_primary_10_1016_j_cbpa_2021_08_004 crossref_primary_10_1016_j_jmgm_2021_108053 crossref_primary_10_1016_j_jfutfo_2022_06_002 crossref_primary_10_1063_5_0134317 crossref_primary_10_1371_journal_pcbi_1011330 crossref_primary_10_1016_j_biochi_2020_04_026 crossref_primary_10_1038_s41467_020_19612_0 crossref_primary_10_1093_nar_gkab354 crossref_primary_10_1002_jcc_26768 crossref_primary_10_1021_acs_jctc_3c00528 crossref_primary_10_1016_j_csbj_2022_08_070 crossref_primary_10_1073_pnas_2311807121 crossref_primary_10_1016_j_csbj_2024_06_021 crossref_primary_10_1021_acs_jcim_4c00961 crossref_primary_10_1029_2019WR026065 crossref_primary_10_1093_bib_bbac086 crossref_primary_10_3390_genes10121017 crossref_primary_10_1002_pmic_201900352 crossref_primary_10_1016_j_patter_2020_100142 crossref_primary_10_1038_s41467_022_28327_3 crossref_primary_10_1002_chem_202100458 crossref_primary_10_1186_s43042_021_00173_w crossref_primary_10_1073_pnas_2319249121 crossref_primary_10_1038_s41598_022_11684_w crossref_primary_10_1016_j_celrep_2022_111512 crossref_primary_10_1002_anie_201909987 crossref_primary_10_1093_bioinformatics_btaa944 crossref_primary_10_1109_TPAMI_2021_3095381 crossref_primary_10_1073_pnas_2300838121 crossref_primary_10_1016_j_jmb_2021_167196 crossref_primary_10_1016_j_eml_2020_100652 crossref_primary_10_1039_D0CP04670A crossref_primary_10_1109_ACCESS_2022_3156888 crossref_primary_10_1021_acs_jpclett_9b02971 crossref_primary_10_1002_cpz1_113 crossref_primary_10_1002_pro_4739 crossref_primary_10_1109_ACCESS_2023_3282702 crossref_primary_10_1016_j_drudis_2020_10_010 crossref_primary_10_1080_17460441_2021_1918096 crossref_primary_10_1080_17460441_2021_1918097 crossref_primary_10_1088_1742_5468_ac3ae9 crossref_primary_10_1042_BCJ20200963 crossref_primary_10_1109_TCBB_2020_3005972 crossref_primary_10_1021_acs_jproteome_1c00410 crossref_primary_10_1557_s43577_023_00478_8 crossref_primary_10_1038_s41587_022_01432_w crossref_primary_10_1093_nutrit_nuac033 crossref_primary_10_1021_acs_jcim_9b00675 crossref_primary_10_3390_ijms22115553 crossref_primary_10_1038_s43588_021_00104_0 crossref_primary_10_1093_bioinformatics_btaa714 crossref_primary_10_1038_s41699_021_00228_x crossref_primary_10_1007_s10930_021_10003_y crossref_primary_10_3390_ijms21030847 crossref_primary_10_1016_j_jbc_2021_100870 crossref_primary_10_1039_D0CS01575J crossref_primary_10_1371_journal_pone_0256990 crossref_primary_10_1002_pro_3758 crossref_primary_10_1021_acs_chemrev_3c00070 crossref_primary_10_1002_1873_3468_13844 crossref_primary_10_1063_5_0141474 crossref_primary_10_1038_d41586_019_03951_0 crossref_primary_10_1002_smll_201903093 crossref_primary_10_1021_acs_jpcb_0c09251 crossref_primary_10_1186_s12859_021_04437_5 crossref_primary_10_1038_d41586_019_01357_6 crossref_primary_10_1016_j_it_2023_03_002 crossref_primary_10_1093_bib_bbac373 crossref_primary_10_1016_j_eml_2022_101710 crossref_primary_10_1093_bib_bbad217 crossref_primary_10_1016_j_physrep_2021_08_002 crossref_primary_10_1038_s41467_023_39856_w crossref_primary_10_1016_j_biosystems_2020_104315 crossref_primary_10_1021_acs_biomac_1c01436 crossref_primary_10_3390_biomedinformatics4010007 crossref_primary_10_1021_acs_jpcb_0c03985 crossref_primary_10_1093_bioinformatics_btz593 crossref_primary_10_1155_2022_1144387 crossref_primary_10_1080_07391102_2021_1915181 crossref_primary_10_1021_acs_jcim_2c00026 crossref_primary_10_1002_prot_26169 crossref_primary_10_1088_2399_1984_ab36f0 crossref_primary_10_1038_s41592_021_01283_4 crossref_primary_10_1177_10943420221113513 crossref_primary_10_1016_j_cels_2021_05_017 crossref_primary_10_1109_TCBB_2020_3012732 crossref_primary_10_1007_s10462_022_10350_x crossref_primary_10_1002_pep2_24307 crossref_primary_10_1155_2022_2153996 crossref_primary_10_1038_s42003_022_03261_8 crossref_primary_10_1016_j_sbi_2022_102495 crossref_primary_10_3389_frai_2022_875587 crossref_primary_10_1109_TCBB_2021_3108718 crossref_primary_10_1063_5_0037793 crossref_primary_10_1021_acs_jctc_0c00355 crossref_primary_10_1093_bioinformatics_btaa629 crossref_primary_10_1016_j_drudis_2019_12_009 crossref_primary_10_1021_acs_accounts_2c00330 |
Cites_doi | 10.1162/neco.1997.9.8.1735 10.1002/jcc.25772 10.1002/prot.24974 10.7554/eLife.03430 10.1093/bioinformatics/btq066 10.1002/prot.340230303 10.1002/prot.25425 10.1002/prot.24829 10.1002/prot.25415 10.1002/jcc.20237 10.1126/science.1219021 10.1146/annurev.biophys.31.082901.134314 10.1038/nature14539 10.1111/j.1432-1033.1977.tb11885.x 10.1016/B978-0-12-381270-4.00019-6 10.1371/journal.pone.0028766 10.1186/s12859-017-1834-2 10.1002/prot.25414 10.1093/bioinformatics/btq193 10.1007/s00214-010-0799-2 10.1002/prot.25396 10.1016/S0022-2836(63)80023-6 10.1093/nar/gkw1098 10.1002/prot.20264 10.1371/journal.pcbi.1005324 10.1021/bi00483a001 10.1016/j.cels.2017.11.014 10.1038/nrg3414 10.1038/nmeth.3213 10.1002/prot.25005 10.1002/prot.24065 10.7554/eLife.09410 10.1002/jcc.23718 10.1038/nbt.3769 10.1126/science.aah4043 10.1126/sciadv.1601274 10.1016/j.febslet.2005.01.014 10.1002/prot.25407 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1016/j.cels.2019.03.006 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2405-4720 |
EndPage | 301.e3 |
ExternalDocumentID | PMC6513320 31005579 10_1016_j_cels_2019_03_006 S2405471219300766 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: U54 CA225088 – fundername: NIGMS NIH HHS grantid: P50 GM107618 |
GroupedDBID | 0R~ 457 AACTN AAEDW AAIAV AAIKJ AALRI AAVLU AAXUO ABJNI ABMAC ABVKL ACGFS ADBBV ADJPV AFTJW AHDRD ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS EJD FDB JIG M41 O9- OK1 RCE AAMRU AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AIGII AITUG AKAPO AKBMS AKRWK AKYEP APXCP CITATION ROL SSZ NPM 7X8 EFKBS 5PM |
ID | FETCH-LOGICAL-c521t-303b3f186b7f26817edae3492123641c019e3c0a0174e6f9998951654eeb38923 |
ISSN | 2405-4712 2405-4720 |
IngestDate | Thu Aug 21 18:20:40 EDT 2025 Mon Jul 21 10:28:37 EDT 2025 Thu Apr 03 06:59:07 EDT 2025 Tue Jul 01 04:22:57 EDT 2025 Thu Apr 24 23:09:52 EDT 2025 Fri Feb 23 02:33:22 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | deep learning homology modeling geometric deep learning protein folding structural biology machine learning protein structure prediction biophysics protein design co-evolution |
Language | English |
License | Copyright © 2019 Elsevier Inc. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c521t-303b3f186b7f26817edae3492123641c019e3c0a0174e6f9998951654eeb38923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 M.A. conceived the model, conducted the experiments, and wrote the paper. Author Contributions |
OpenAccessLink | http://www.cell.com/article/S2405471219300766/pdf |
PMID | 31005579 |
PQID | 2212720369 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6513320 proquest_miscellaneous_2212720369 pubmed_primary_31005579 crossref_citationtrail_10_1016_j_cels_2019_03_006 crossref_primary_10_1016_j_cels_2019_03_006 elsevier_sciencedirect_doi_10_1016_j_cels_2019_03_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-24 |
PublicationDateYYYYMMDD | 2019-04-24 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell systems |
PublicationTitleAlternate | Cell Syst |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Zhou, Duan, Yang, Faraggi, Lei (bib52) 2011; 128 Ramachandran, Ramakrishnan, Sasisekharan (bib41) 1963; 7 Zhao, Peng, Xu (bib51) 2010; 26 Aydin, Z., Thompson, J., Bilmes, J., Baker, D., and Noble, W.S. (2012). Protein torsion angle class prediction by a hybrid architecture of Bayesian and neural networks. In 13th International Conference on Bioinformatics and Computational Biology, pp 2012–2018. Kryshtafovych, Monastyrskyy, Fidelis, Moult, Schwede, Tramontano (bib24) 2018; 86 Hopf, Schärfe, Rodrigues, Green, Kohlbacher, Sander, Bonvin, Marks (bib19) 2014; 3 Marks, Colwell, Sheridan, Hopf, Pagnani, Zecchina, Sander (bib31) 2011; 6 Contreras-Moreira, Ezkurdia, Tress, Valencia (bib10) 2005; 579 Ovchinnikov, Park, Varghese, Huang, Pavlopoulos, Kim, Kamisetty, Kyrpides, Baker (bib37) 2017; 355 Perez, Morrone, Brini, MacCallum, Dill (bib39) 2016; 2 Ovchinnikov, Kim, Wang, Liu, DiMaio, Baker (bib36) 2016; 84 Moult, Fidelis, Kryshtafovych, Schwede, Tramontano (bib34) 2018; 86 Gajda, Pawlowski, Bujnicki (bib14) 2011 Xu, Zhang (bib46) 2012; 80 Leaver-Fay, Tyka, Lewis, Lange, Thompson, Jacak, Kaufman, Renfrew, Smith, Sheffler (bib25) 2011; 487 LeCun, Bengio, Hinton (bib26) 2015; 521 Nguyen, Yosinski, Clune (bib35) 2016 Dawson, Lewis, Das, Lees, Lee, Ashford, Orengo, Sillitoe (bib11) 2017; 45 Ponting, Russell (bib40) 2002; 31 Goodfellow, Bengio, Courville (bib17) 2016 Simonyan, Vedaldi, Zisserman (bib44) 2013 Dill (bib12) 1990; 29 Li, Hou, Adhikari, Lyu, Cheng (bib27) 2017; 18 Koh, Liang (bib22) 2017 Liu, Palmedo, Ye, Berger, Peng (bib29) 2018; 6 Lyons, Dehzangi, Heffernan, Sharma, Paliwal, Sattar, Zhou, Yang (bib30) 2014; 35 Gajda, Pawlowski, Bujnicki (bib15) 2011 Marx, Hutter (bib32) 2012 Zhang, Mortuza, He, Wang, Zhang (bib50) 2018; 86 AlQuraishi (bib4) 2019; 40 Alva, Söding, Lupas (bib6) 2015; 4 Moult, Pedersen, Judson, Fidelis (bib33) 1995; 23 Hopf, Ingraham, Poelwijk, Schärfe, Springer, Sander, Marks (bib20) 2017; 35 Yang, Yan, Roy, Xu, Poisson, Zhang (bib48) 2015; 12 Kryshtafovych, Monastyrskyy, Fidelis (bib23) 2016; 84 Branden, Tooze (bib9) 1999 Juan, de Pazos, Valencia (bib21) 2013; 14 Liu, Ish-Shalom, Torng, Lafita, Bock, Mort, Cooper, Bliven, Capitani, Mooney (bib28) 2018; 86 Schaarschmidt, Monastyrskyy, Kryshtafovych, Bonvin (bib42) 2018; 86 Gao, Wang, Deng, Xu (bib16) 2017 AlQuraishi (bib5) 2019 Bernstein, Koetzle, Williams, Meyer, Brice, Rodgers, Kennard, Shimanouchi, Tasumi (bib8) 1977; 80 Shrikumar, A., Greenside, P., and Kundaje, A. (2017). Learning important features through propagating activation differences. In ICML'17 Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 3145–3153. Xu, Zhang (bib47) 2010; 26 Adhikari, Bhattacharya, Cao, Cheng (bib2) 2015; 83 Alain, Bengio (bib3) 2016 Zhang, Skolnick (bib49) 2004; 57 Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al. (2016). TensorFlow: a system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pp. 265–283. Dill, MacCallum (bib13) 2012; 338 Hochreiter, Schmidhuber (bib18) 1997; 9 Parsons, Holmes, Rojas, Tsai, Strauss (bib38) 2005; 26 Wang, Sun, Li, Zhang, Xu (bib45) 2017; 13 Ovchinnikov (10.1016/j.cels.2019.03.006_bib37) 2017; 355 Zhao (10.1016/j.cels.2019.03.006_bib51) 2010; 26 Dill (10.1016/j.cels.2019.03.006_bib13) 2012; 338 Ramachandran (10.1016/j.cels.2019.03.006_bib41) 1963; 7 Bernstein (10.1016/j.cels.2019.03.006_bib8) 1977; 80 AlQuraishi (10.1016/j.cels.2019.03.006_bib5) 2019 LeCun (10.1016/j.cels.2019.03.006_bib26) 2015; 521 Hochreiter (10.1016/j.cels.2019.03.006_bib18) 1997; 9 Ponting (10.1016/j.cels.2019.03.006_bib40) 2002; 31 Alain (10.1016/j.cels.2019.03.006_bib3) 2016 Wang (10.1016/j.cels.2019.03.006_bib45) 2017; 13 Lyons (10.1016/j.cels.2019.03.006_bib30) 2014; 35 Zhou (10.1016/j.cels.2019.03.006_bib52) 2011; 128 Perez (10.1016/j.cels.2019.03.006_bib39) 2016; 2 Xu (10.1016/j.cels.2019.03.006_bib47) 2010; 26 Parsons (10.1016/j.cels.2019.03.006_bib38) 2005; 26 Gajda (10.1016/j.cels.2019.03.006_bib15) 2011 Kryshtafovych (10.1016/j.cels.2019.03.006_bib23) 2016; 84 Liu (10.1016/j.cels.2019.03.006_bib29) 2018; 6 Juan (10.1016/j.cels.2019.03.006_bib21) 2013; 14 Branden (10.1016/j.cels.2019.03.006_bib9) 1999 Ovchinnikov (10.1016/j.cels.2019.03.006_bib36) 2016; 84 10.1016/j.cels.2019.03.006_bib43 Marx (10.1016/j.cels.2019.03.006_bib32) 2012 Li (10.1016/j.cels.2019.03.006_bib27) 2017; 18 Goodfellow (10.1016/j.cels.2019.03.006_bib17) 2016 Hopf (10.1016/j.cels.2019.03.006_bib19) 2014; 3 Nguyen (10.1016/j.cels.2019.03.006_bib35) 2016 Schaarschmidt (10.1016/j.cels.2019.03.006_bib42) 2018; 86 10.1016/j.cels.2019.03.006_bib1 Hopf (10.1016/j.cels.2019.03.006_bib20) 2017; 35 Dill (10.1016/j.cels.2019.03.006_bib12) 1990; 29 10.1016/j.cels.2019.03.006_bib7 Moult (10.1016/j.cels.2019.03.006_bib34) 2018; 86 Simonyan (10.1016/j.cels.2019.03.006_bib44) 2013 AlQuraishi (10.1016/j.cels.2019.03.006_bib4) 2019; 40 Gajda (10.1016/j.cels.2019.03.006_bib14) 2011 Xu (10.1016/j.cels.2019.03.006_bib46) 2012; 80 Dawson (10.1016/j.cels.2019.03.006_bib11) 2017; 45 Liu (10.1016/j.cels.2019.03.006_bib28) 2018; 86 Adhikari (10.1016/j.cels.2019.03.006_bib2) 2015; 83 Marks (10.1016/j.cels.2019.03.006_bib31) 2011; 6 Kryshtafovych (10.1016/j.cels.2019.03.006_bib24) 2018; 86 Zhang (10.1016/j.cels.2019.03.006_bib50) 2018; 86 Alva (10.1016/j.cels.2019.03.006_bib6) 2015; 4 Zhang (10.1016/j.cels.2019.03.006_bib49) 2004; 57 Contreras-Moreira (10.1016/j.cels.2019.03.006_bib10) 2005; 579 Koh (10.1016/j.cels.2019.03.006_bib22) 2017 Leaver-Fay (10.1016/j.cels.2019.03.006_bib25) 2011; 487 Gao (10.1016/j.cels.2019.03.006_bib16) 2017 Moult (10.1016/j.cels.2019.03.006_bib33) 1995; 23 Yang (10.1016/j.cels.2019.03.006_bib48) 2015; 12 |
References_xml | – volume: 35 start-page: 2040 year: 2014 end-page: 2046 ident: bib30 article-title: Predicting backbone Cα angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network publication-title: J. Comput. Chem. – year: 2016 ident: bib17 article-title: Deep Learning – volume: 84 start-page: 15 year: 2016 end-page: 19 ident: bib23 article-title: CASP11 statistics and the prediction center evaluation system publication-title: Proteins – volume: 12 start-page: 7 year: 2015 end-page: 8 ident: bib48 article-title: The I-TASSER suite: protein structure and function prediction publication-title: Nat. Methods – volume: 80 start-page: 1715 year: 2012 end-page: 1735 ident: bib46 article-title: Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field publication-title: Proteins – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: bib18 article-title: Long short-term memory publication-title: Neural Comput. – volume: 86 start-page: 136 year: 2018 end-page: 151 ident: bib50 article-title: Template-based and free modeling of I-TASSER and Quark pipelines using predicted contact maps in CASP12 publication-title: Proteins – volume: 45 start-page: D289 year: 2017 end-page: D295 ident: bib11 article-title: CATH: an expanded resource to predict protein function through structure and sequence publication-title: Nucleic Acids Res. – year: 2019 ident: bib5 article-title: ProteinNet: a standardized data set for machine learning of protein structure publication-title: Arxiv – year: 2016 ident: bib35 article-title: Multifaceted feature visualization: uncovering the different types of features learned by each neuron in deep neural networks publication-title: Arxiv – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib26 article-title: Deep learning publication-title: Nature – volume: 86 start-page: 51 year: 2018 end-page: 66 ident: bib42 article-title: Assessment of contact predictions in CASP12: co-evolution and deep learning coming of age publication-title: Proteins – year: 2011 ident: bib15 article-title: Multiscale Approaches to Protein Modeling – volume: 80 start-page: 319 year: 1977 end-page: 324 ident: bib8 article-title: The Protein Data Bank. A computer-based archival file for macromolecular structures publication-title: Eur. J. Biochem – year: 2016 ident: bib3 article-title: Understanding intermediate layers using linear classifier probes publication-title: Arxiv – volume: 7 start-page: 95 year: 1963 end-page: 99 ident: bib41 article-title: Stereochemistry of polypeptide chain configurations publication-title: J. Mol. Biol. – volume: 355 start-page: 294 year: 2017 end-page: 298 ident: bib37 article-title: Protein structure determination using metagenome sequence data publication-title: Science – volume: 26 start-page: 889 year: 2010 end-page: 895 ident: bib47 article-title: How significant is a protein structure similarity with TM-score = 0.5? publication-title: Bioinformatics – volume: 86 start-page: 374 year: 2018 end-page: 386 ident: bib28 article-title: .Biological and functional relevance of CASP predictions publication-title: Proteins – volume: 31 start-page: 45 year: 2002 end-page: 71 ident: bib40 article-title: The natural history of protein domains publication-title: Annu. Rev. Biophys. Biomol. Struct – volume: 3 year: 2014 ident: bib19 article-title: Sequence co-evolution gives 3D contacts and structures of protein complexes publication-title: Elife – volume: 83 start-page: 1436 year: 2015 end-page: 1449 ident: bib2 article-title: CONFOLD: residue-residue contact-guided ab initio protein folding publication-title: Proteins – volume: 40 start-page: 885 year: 2019 end-page: 892 ident: bib4 article-title: Parallelized natural extension reference frame: parallelized conversion from internal to Cartesian coordinates publication-title: J. Comp. Chem. – volume: 487 start-page: 545 year: 2011 end-page: 574 ident: bib25 article-title: ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules publication-title: Meth. Enzymol – volume: 2 start-page: e1601274 year: 2016 ident: bib39 article-title: Blind protein structure prediction using accelerated free-energy simulations publication-title: Sci. Adv – year: 2017 ident: bib16 article-title: Real-value and confidence prediction of protein backbone dihedral angles through a hybrid method of clustering and deep learning publication-title: Arxiv – volume: 84 start-page: 67 year: 2016 end-page: 75 ident: bib36 article-title: Improved de novo structure prediction in CASP11 by incorporating coevolution information into Rosetta publication-title: Proteins – volume: 26 start-page: i310 year: 2010 end-page: i317 ident: bib51 article-title: Fragment-free approach to protein folding using conditional neural fields publication-title: Bioinformatics – volume: 14 start-page: 249 year: 2013 end-page: 261 ident: bib21 article-title: Emerging methods in protein co-evolution publication-title: Nat. Rev. Genet. – volume: 338 start-page: 1042 year: 2012 end-page: 1046 ident: bib13 article-title: The protein-folding problem, 50 years on publication-title: Science – volume: 23 year: 1995 ident: bib33 article-title: A large-scale experiment to assess protein structure prediction methods publication-title: Proteins – volume: 128 start-page: 3 year: 2011 end-page: 16 ident: bib52 article-title: Trends in template/fragment-free protein structure prediction publication-title: Theor. Chem. Acc – volume: 86 start-page: 7 year: 2018 end-page: 15 ident: bib34 article-title: Critical assessment of methods of protein structure prediction (CASP)-round XII publication-title: Proteins – volume: 4 start-page: e09410 year: 2015 ident: bib6 article-title: A vocabulary of ancient peptides at the origin of folded proteins publication-title: Elife – start-page: 231 year: 2011 end-page: 254 ident: bib14 article-title: Protein structure prediction: from recognition of matches with known structures to recombination of fragments publication-title: Multiscale Approaches to Protein Modeling – volume: 18 start-page: 417 year: 2017 ident: bib27 article-title: Deep learning methods for protein torsion angle prediction publication-title: BMC Bioinformatics – reference: Shrikumar, A., Greenside, P., and Kundaje, A. (2017). Learning important features through propagating activation differences. In ICML'17 Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 3145–3153. – volume: 35 start-page: 128 year: 2017 end-page: 135 ident: bib20 article-title: Mutation effects predicted from sequence co-variation publication-title: Nat. Biotech – volume: 86 start-page: 321 year: 2018 end-page: 334 ident: bib24 article-title: Evaluation of the template-based modeling in CASP12 publication-title: Proteins – volume: 57 start-page: 702 year: 2004 end-page: 710 ident: bib49 article-title: Scoring function for automated assessment of protein structure template quality publication-title: Proteins – reference: Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al. (2016). TensorFlow: a system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pp. 265–283. – volume: 579 start-page: 1203 year: 2005 end-page: 1207 ident: bib10 article-title: Empirical limits for template-based protein structure prediction: the CASP5 example publication-title: FEBS Lett. – year: 2017 ident: bib22 article-title: Understanding Black-box predictions via influence functions publication-title: Arxiv – year: 1999 ident: bib9 article-title: Introduction to Protein Structure – volume: 6 start-page: 65 year: 2018 end-page: 74 ident: bib29 article-title: Enhancing evolutionary couplings with deep convolutional neural networks publication-title: Cell Syst – volume: 6 start-page: e28766 year: 2011 ident: bib31 article-title: Protein 3D structure computed from evolutionary sequence variation publication-title: PLoS One – volume: 26 start-page: 1063 year: 2005 end-page: 1068 ident: bib38 article-title: Practical conversion from torsion space to Cartesian space for in silico protein synthesis publication-title: J. Comput. Chem. – year: 2012 ident: bib32 article-title: Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods – year: 2013 ident: bib44 article-title: Deep inside convolutional networks: visualising image classification models and saliency maps publication-title: Arxiv – volume: 13 start-page: e1005324 year: 2017 ident: bib45 article-title: Accurate de novo prediction of protein contact map by ultra-deep learning model publication-title: PLoS Comput. Biol. – volume: 29 start-page: 7133 year: 1990 end-page: 7155 ident: bib12 article-title: Dominant forces in protein folding publication-title: Biochemistry – reference: Aydin, Z., Thompson, J., Bilmes, J., Baker, D., and Noble, W.S. (2012). Protein torsion angle class prediction by a hybrid architecture of Bayesian and neural networks. In 13th International Conference on Bioinformatics and Computational Biology, pp 2012–2018. – volume: 9 start-page: 1735 year: 1997 ident: 10.1016/j.cels.2019.03.006_bib18 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 40 start-page: 885 year: 2019 ident: 10.1016/j.cels.2019.03.006_bib4 article-title: Parallelized natural extension reference frame: parallelized conversion from internal to Cartesian coordinates publication-title: J. Comp. Chem. doi: 10.1002/jcc.25772 – volume: 84 start-page: 67 year: 2016 ident: 10.1016/j.cels.2019.03.006_bib36 article-title: Improved de novo structure prediction in CASP11 by incorporating coevolution information into Rosetta publication-title: Proteins doi: 10.1002/prot.24974 – volume: 3 year: 2014 ident: 10.1016/j.cels.2019.03.006_bib19 article-title: Sequence co-evolution gives 3D contacts and structures of protein complexes publication-title: Elife doi: 10.7554/eLife.03430 – volume: 26 start-page: 889 year: 2010 ident: 10.1016/j.cels.2019.03.006_bib47 article-title: How significant is a protein structure similarity with TM-score = 0.5? publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq066 – volume: 23 year: 1995 ident: 10.1016/j.cels.2019.03.006_bib33 article-title: A large-scale experiment to assess protein structure prediction methods publication-title: Proteins doi: 10.1002/prot.340230303 – year: 2016 ident: 10.1016/j.cels.2019.03.006_bib3 article-title: Understanding intermediate layers using linear classifier probes publication-title: Arxiv – volume: 86 start-page: 321 year: 2018 ident: 10.1016/j.cels.2019.03.006_bib24 article-title: Evaluation of the template-based modeling in CASP12 publication-title: Proteins doi: 10.1002/prot.25425 – volume: 83 start-page: 1436 year: 2015 ident: 10.1016/j.cels.2019.03.006_bib2 article-title: CONFOLD: residue-residue contact-guided ab initio protein folding publication-title: Proteins doi: 10.1002/prot.24829 – volume: 86 start-page: 7 year: 2018 ident: 10.1016/j.cels.2019.03.006_bib34 article-title: Critical assessment of methods of protein structure prediction (CASP)-round XII publication-title: Proteins doi: 10.1002/prot.25415 – ident: 10.1016/j.cels.2019.03.006_bib7 – year: 2016 ident: 10.1016/j.cels.2019.03.006_bib17 – volume: 26 start-page: 1063 year: 2005 ident: 10.1016/j.cels.2019.03.006_bib38 article-title: Practical conversion from torsion space to Cartesian space for in silico protein synthesis publication-title: J. Comput. Chem. doi: 10.1002/jcc.20237 – volume: 338 start-page: 1042 year: 2012 ident: 10.1016/j.cels.2019.03.006_bib13 article-title: The protein-folding problem, 50 years on publication-title: Science doi: 10.1126/science.1219021 – volume: 31 start-page: 45 year: 2002 ident: 10.1016/j.cels.2019.03.006_bib40 article-title: The natural history of protein domains publication-title: Annu. Rev. Biophys. Biomol. Struct doi: 10.1146/annurev.biophys.31.082901.134314 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.cels.2019.03.006_bib26 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – year: 2016 ident: 10.1016/j.cels.2019.03.006_bib35 article-title: Multifaceted feature visualization: uncovering the different types of features learned by each neuron in deep neural networks publication-title: Arxiv – volume: 80 start-page: 319 year: 1977 ident: 10.1016/j.cels.2019.03.006_bib8 article-title: The Protein Data Bank. A computer-based archival file for macromolecular structures publication-title: Eur. J. Biochem doi: 10.1111/j.1432-1033.1977.tb11885.x – volume: 487 start-page: 545 year: 2011 ident: 10.1016/j.cels.2019.03.006_bib25 article-title: ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules publication-title: Meth. Enzymol doi: 10.1016/B978-0-12-381270-4.00019-6 – year: 1999 ident: 10.1016/j.cels.2019.03.006_bib9 – volume: 6 start-page: e28766 year: 2011 ident: 10.1016/j.cels.2019.03.006_bib31 article-title: Protein 3D structure computed from evolutionary sequence variation publication-title: PLoS One doi: 10.1371/journal.pone.0028766 – volume: 18 start-page: 417 year: 2017 ident: 10.1016/j.cels.2019.03.006_bib27 article-title: Deep learning methods for protein torsion angle prediction publication-title: BMC Bioinformatics doi: 10.1186/s12859-017-1834-2 – volume: 86 start-page: 136 year: 2018 ident: 10.1016/j.cels.2019.03.006_bib50 article-title: Template-based and free modeling of I-TASSER and Quark pipelines using predicted contact maps in CASP12 publication-title: Proteins doi: 10.1002/prot.25414 – volume: 26 start-page: i310 year: 2010 ident: 10.1016/j.cels.2019.03.006_bib51 article-title: Fragment-free approach to protein folding using conditional neural fields publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq193 – year: 2013 ident: 10.1016/j.cels.2019.03.006_bib44 article-title: Deep inside convolutional networks: visualising image classification models and saliency maps publication-title: Arxiv – volume: 128 start-page: 3 year: 2011 ident: 10.1016/j.cels.2019.03.006_bib52 article-title: Trends in template/fragment-free protein structure prediction publication-title: Theor. Chem. Acc doi: 10.1007/s00214-010-0799-2 – volume: 86 start-page: 374 year: 2018 ident: 10.1016/j.cels.2019.03.006_bib28 article-title: .Biological and functional relevance of CASP predictions publication-title: Proteins doi: 10.1002/prot.25396 – volume: 7 start-page: 95 year: 1963 ident: 10.1016/j.cels.2019.03.006_bib41 article-title: Stereochemistry of polypeptide chain configurations publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(63)80023-6 – volume: 45 start-page: D289 year: 2017 ident: 10.1016/j.cels.2019.03.006_bib11 article-title: CATH: an expanded resource to predict protein function through structure and sequence publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw1098 – year: 2011 ident: 10.1016/j.cels.2019.03.006_bib15 – volume: 57 start-page: 702 year: 2004 ident: 10.1016/j.cels.2019.03.006_bib49 article-title: Scoring function for automated assessment of protein structure template quality publication-title: Proteins doi: 10.1002/prot.20264 – start-page: 231 year: 2011 ident: 10.1016/j.cels.2019.03.006_bib14 article-title: Protein structure prediction: from recognition of matches with known structures to recombination of fragments – volume: 13 start-page: e1005324 year: 2017 ident: 10.1016/j.cels.2019.03.006_bib45 article-title: Accurate de novo prediction of protein contact map by ultra-deep learning model publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005324 – volume: 29 start-page: 7133 year: 1990 ident: 10.1016/j.cels.2019.03.006_bib12 article-title: Dominant forces in protein folding publication-title: Biochemistry doi: 10.1021/bi00483a001 – year: 2012 ident: 10.1016/j.cels.2019.03.006_bib32 – volume: 6 start-page: 65 year: 2018 ident: 10.1016/j.cels.2019.03.006_bib29 article-title: Enhancing evolutionary couplings with deep convolutional neural networks publication-title: Cell Syst doi: 10.1016/j.cels.2017.11.014 – volume: 14 start-page: 249 year: 2013 ident: 10.1016/j.cels.2019.03.006_bib21 article-title: Emerging methods in protein co-evolution publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3414 – volume: 12 start-page: 7 year: 2015 ident: 10.1016/j.cels.2019.03.006_bib48 article-title: The I-TASSER suite: protein structure and function prediction publication-title: Nat. Methods doi: 10.1038/nmeth.3213 – volume: 84 start-page: 15 year: 2016 ident: 10.1016/j.cels.2019.03.006_bib23 article-title: CASP11 statistics and the prediction center evaluation system publication-title: Proteins doi: 10.1002/prot.25005 – volume: 80 start-page: 1715 year: 2012 ident: 10.1016/j.cels.2019.03.006_bib46 article-title: Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field publication-title: Proteins doi: 10.1002/prot.24065 – volume: 4 start-page: e09410 year: 2015 ident: 10.1016/j.cels.2019.03.006_bib6 article-title: A vocabulary of ancient peptides at the origin of folded proteins publication-title: Elife doi: 10.7554/eLife.09410 – volume: 35 start-page: 2040 year: 2014 ident: 10.1016/j.cels.2019.03.006_bib30 article-title: Predicting backbone Cα angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network publication-title: J. Comput. Chem. doi: 10.1002/jcc.23718 – volume: 35 start-page: 128 year: 2017 ident: 10.1016/j.cels.2019.03.006_bib20 article-title: Mutation effects predicted from sequence co-variation publication-title: Nat. Biotech doi: 10.1038/nbt.3769 – volume: 355 start-page: 294 year: 2017 ident: 10.1016/j.cels.2019.03.006_bib37 article-title: Protein structure determination using metagenome sequence data publication-title: Science doi: 10.1126/science.aah4043 – year: 2017 ident: 10.1016/j.cels.2019.03.006_bib22 article-title: Understanding Black-box predictions via influence functions publication-title: Arxiv – ident: 10.1016/j.cels.2019.03.006_bib1 – volume: 2 start-page: e1601274 year: 2016 ident: 10.1016/j.cels.2019.03.006_bib39 article-title: Blind protein structure prediction using accelerated free-energy simulations publication-title: Sci. Adv doi: 10.1126/sciadv.1601274 – ident: 10.1016/j.cels.2019.03.006_bib43 – volume: 579 start-page: 1203 year: 2005 ident: 10.1016/j.cels.2019.03.006_bib10 article-title: Empirical limits for template-based protein structure prediction: the CASP5 example publication-title: FEBS Lett. doi: 10.1016/j.febslet.2005.01.014 – year: 2017 ident: 10.1016/j.cels.2019.03.006_bib16 article-title: Real-value and confidence prediction of protein backbone dihedral angles through a hybrid method of clustering and deep learning publication-title: Arxiv – volume: 86 start-page: 51 year: 2018 ident: 10.1016/j.cels.2019.03.006_bib42 article-title: Assessment of contact predictions in CASP12: co-evolution and deep learning coming of age publication-title: Proteins doi: 10.1002/prot.25407 – year: 2019 ident: 10.1016/j.cels.2019.03.006_bib5 article-title: ProteinNet: a standardized data set for machine learning of protein structure publication-title: Arxiv |
SSID | ssj0001492402 |
Score | 2.5748768 |
Snippet | Predicting protein structure from sequence is a central challenge of biochemistry. Co-evolution methods show promise, but an explicit sequence-to-structure map... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 292 |
SubjectTerms | biophysics co-evolution deep learning geometric deep learning homology modeling machine learning protein design protein folding protein structure prediction structural biology |
Title | End-to-End Differentiable Learning of Protein Structure |
URI | https://dx.doi.org/10.1016/j.cels.2019.03.006 https://www.ncbi.nlm.nih.gov/pubmed/31005579 https://www.proquest.com/docview/2212720369 https://pubmed.ncbi.nlm.nih.gov/PMC6513320 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZakBCXqlUL3T5QKvWGvMrDceIjQlQIBKIVCG5WHNsCtE1Qu1z66zsT21nvlqKWS7Ty2rvJfPZ4MuP5hpDPXKnKaM2pLnhLmVCWNlUqqG55VZVc5FYNbJ-n_PCCHV2VV4tqb0N2yVxN218P5pU8BVVoA1wxS_Y_kB1_FBrgM-ALV0AYrv-E8UGn6bynptNjoRNYsJgLNQseDzzQjFQMN92uo4r1DCIjOwH67n5GtOUI_uzr_Q8syzxE-k_6a_Ru69g_kA2hDpeW7NQIbNklhS3I6TwTt-VprAfrCG4W6zSRR9sjKISpKR5Uvs4PcDttYVfHQ3OePpbHnUGAd98HODCyUJaukswK5fXZyT7HujN5-pys52D_gwJb3zv-dnm8cJ8xgXEhLB0Yns-nRLnTe6v3sEk2wh_-zQL58w1j9aBsZHmcvyQv_CtDsufwf0Weme41qRbYJ8vYJwH7pLeJxz4ZsX9DLr4cnO8fUl8Eg7ZYa4KCiaEKm9VcVTbndQYrqzFIKYm0OSxr4RFN0aYNaFZmuAV7vwajmZfMGAXGaF5skbWu78xbkghhWAM2rs1szQptBGsEz4xWTdpkqTUTkgXByNYzxGOhkpkMRwFvJcpVolxlWkiQ64TsjmPuHD_Ko73LIG_pLTxnuUmYQ4-O-xTAkaD-MKbVdKa_h05YoQCD6WJCth1Y430EwCekWoJx7IDU6svfdDfXA8W6n37vnjzyPdlcLMYPZA1QNh_BfJ2rHT-VfwO6XJlw |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=End-to-end+differentiable+learning+of+protein+structure&rft.jtitle=Cell+systems&rft.au=AlQuraishi%2C+Mohammed&rft.date=2019-04-24&rft.issn=2405-4712&rft.eissn=2405-4720&rft.volume=8&rft.issue=4&rft.spage=292&rft.epage=301.e3&rft_id=info:doi/10.1016%2Fj.cels.2019.03.006&rft_id=info%3Apmid%2F31005579&rft.externalDocID=PMC6513320 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-4712&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-4712&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-4712&client=summon |