Forecasting of COVID19 per regions using ARIMA models and polynomial functions

COVID-2019 is a global threat, for this reason around the world, researches have been focused on topics such as to detect it, prevent it, cure it, and predict it. Different analyses propose models to predict the evolution of this epidemic. These analyses propose models for specific geographical area...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 96; p. 106610
Main Authors Hernandez-Matamoros, Andres, Fujita, Hamido, Hayashi, Toshitaka, Perez-Meana, Hector
Format Journal Article
LanguageEnglish
Published United States Elsevier B.V 01.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract COVID-2019 is a global threat, for this reason around the world, researches have been focused on topics such as to detect it, prevent it, cure it, and predict it. Different analyses propose models to predict the evolution of this epidemic. These analyses propose models for specific geographical areas, specific countries, or create a global model. The models give us the possibility to predict the virus behavior, it could be used to make future response plans. This work presents an analysis of COVID-19 spread that shows a different angle for the whole world, through 6 geographic regions (continents). We propose to create a relationship between the countries, which are in the same geographical area to predict the advance of the virus. The countries in the same geographic region have variables with similar values (quantifiable and non-quantifiable), which affect the spread of the virus. We propose an algorithm to performed and evaluated the ARIMA model for 145 countries, which are distributed into 6 regions. Then, we construct a model for these regions using the ARIMA parameters, the population per 1M people, the number of cases, and polynomial functions. The proposal is able to predict the COVID-19 cases with a RMSE average of 144.81. The main outcome of this paper is showing a relation between COVID-19 behavior and population in a region, these results show us the opportunity to create more models to predict the COVID-19 behavior using variables as humidity, climate, culture, among others.
AbstractList COVID-2019 is a global threat, for this reason around the world, researches have been focused on topics such as to detect it, prevent it, cure it, and predict it. Different analyses propose models to predict the evolution of this epidemic. These analyses propose models for specific geographical areas, specific countries, or create a global model. The models give us the possibility to predict the virus behavior, it could be used to make future response plans. This work presents an analysis of COVID-19 spread that shows a different angle for the whole world, through 6 geographic regions (continents). We propose to create a relationship between the countries, which are in the same geographical area to predict the advance of the virus. The countries in the same geographic region have variables with similar values (quantifiable and non-quantifiable), which affect the spread of the virus. We propose an algorithm to performed and evaluated the ARIMA model for 145 countries, which are distributed into 6 regions. Then, we construct a model for these regions using the ARIMA parameters, the population per 1M people, the number of cases, and polynomial functions. The proposal is able to predict the COVID-19 cases with a RMSE average of 144.81. The main outcome of this paper is showing a relation between COVID-19 behavior and population in a region, these results show us the opportunity to create more models to predict the COVID-19 behavior using variables as humidity, climate, culture, among others.
COVID-2019 is a global threat, for this reason around the world, researches have been focused on topics such as to detect it, prevent it, cure it, and predict it. Different analyses propose models to predict the evolution of this epidemic. These analyses propose models for specific geographical areas, specific countries, or create a global model. The models give us the possibility to predict the virus behavior, it could be used to make future response plans. This work presents an analysis of COVID-19 spread that shows a different angle for the whole world, through 6 geographic regions (continents). We propose to create a relationship between the countries, which are in the same geographical area to predict the advance of the virus. The countries in the same geographic region have variables with similar values (quantifiable and non-quantifiable), which affect the spread of the virus. We propose an algorithm to performed and evaluated the ARIMA model for 145 countries, which are distributed into 6 regions. Then, we construct a model for these regions using the ARIMA parameters, the population per 1M people, the number of cases, and polynomial functions. The proposal is able to predict the COVID-19 cases with a RMSE average of 144.81. The main outcome of this paper is showing a relation between COVID-19 behavior and population in a region, these results show us the opportunity to create more models to predict the COVID-19 behavior using variables as humidity, climate, culture, among others.COVID-2019 is a global threat, for this reason around the world, researches have been focused on topics such as to detect it, prevent it, cure it, and predict it. Different analyses propose models to predict the evolution of this epidemic. These analyses propose models for specific geographical areas, specific countries, or create a global model. The models give us the possibility to predict the virus behavior, it could be used to make future response plans. This work presents an analysis of COVID-19 spread that shows a different angle for the whole world, through 6 geographic regions (continents). We propose to create a relationship between the countries, which are in the same geographical area to predict the advance of the virus. The countries in the same geographic region have variables with similar values (quantifiable and non-quantifiable), which affect the spread of the virus. We propose an algorithm to performed and evaluated the ARIMA model for 145 countries, which are distributed into 6 regions. Then, we construct a model for these regions using the ARIMA parameters, the population per 1M people, the number of cases, and polynomial functions. The proposal is able to predict the COVID-19 cases with a RMSE average of 144.81. The main outcome of this paper is showing a relation between COVID-19 behavior and population in a region, these results show us the opportunity to create more models to predict the COVID-19 behavior using variables as humidity, climate, culture, among others.
ArticleNumber 106610
Author Hernandez-Matamoros, Andres
Perez-Meana, Hector
Hayashi, Toshitaka
Fujita, Hamido
Author_xml – sequence: 1
  givenname: Andres
  orcidid: 0000-0002-4896-2909
  surname: Hernandez-Matamoros
  fullname: Hernandez-Matamoros, Andres
  email: phd.matamoros@gmail.com
  organization: Iwate Prefectural University (IPU), Faculty of Software and Information Science, Iwate, 020-0693, Japan
– sequence: 2
  givenname: Hamido
  orcidid: 0000-0001-5256-210X
  surname: Fujita
  fullname: Fujita, Hamido
  email: h.fujita@hutech.edu.vn, HFujita-799@acm.org
  organization: Faculty of Information Technology, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Viet Nam
– sequence: 3
  givenname: Toshitaka
  orcidid: 0000-0002-7599-4404
  surname: Hayashi
  fullname: Hayashi, Toshitaka
  email: g236r002@s.iwate-pu.ac.jp
  organization: Iwate Prefectural University (IPU), Faculty of Software and Information Science, Iwate, 020-0693, Japan
– sequence: 4
  givenname: Hector
  surname: Perez-Meana
  fullname: Perez-Meana, Hector
  email: hmperezm@ipn.mx
  organization: Instituto Politecnico Nacional, Av. Santa Ana 1000 Mexico D. F., 04430, Mexico
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32834798$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1r3DAQhkVJaT7aP9BD8bEXbzSy1pagFJZtkyykDZS2VyFLo60WW9pKdiD_PjabhqSHnCQ07zMj5jklRyEGJOQ90AVQqM93C52jWTDK5oe6BvqKnIBoWClrAUfTfVmLkkteH5PTnHd0giQTb8hxxUTFGylOyPeLmNDoPPiwLaIr1je_N19AFntMRcKtjyEXY56Lqx-bb6uijxa7XOhgi33s7kLsve4KNwYzzNm35LXTXcZ3D-cZ-XXx9ef6qry-udysV9elWTIYSuZo1dbatYi85VZw54AbJiRdAoPG0Zq3EhusLFTGUWlZDUwYC9C0bYttdUY-H_rux7ZHazAMSXdqn3yv052K2qvnleD_qG28VQ2nUlTN1ODjQ4MU_46YB9X7bLDrdMA4ZsV41QCrAOQU_fB01uOQf0ucAuwQMCnmnNA9RoCq2ZTaqdmUmk2pg6kJEv9Bxg96XuL0X9-9jH46oJMJvPWYVDYeg0HrJ5eDstG_hN8DZ-6utw
CitedBy_id crossref_primary_10_1371_journal_pone_0267440
crossref_primary_10_1007_s10489_020_01948_1
crossref_primary_10_1016_j_asoc_2022_109603
crossref_primary_10_3390_ijerph17197080
crossref_primary_10_1186_s12874_022_01755_x
crossref_primary_10_3390_e24070929
crossref_primary_10_1016_j_asoc_2021_107155
crossref_primary_10_3390_e23121601
crossref_primary_10_1016_j_eswa_2023_121673
crossref_primary_10_1007_s00500_022_07800_7
crossref_primary_10_1007_s10489_021_02615_9
crossref_primary_10_3389_fpubh_2024_1474855
crossref_primary_10_3390_biology9120477
crossref_primary_10_4236_jcc_2022_104004
crossref_primary_10_3389_fpubh_2021_741030
crossref_primary_10_1007_s10489_020_01997_6
crossref_primary_10_1016_j_imu_2021_100834
crossref_primary_10_12677_HJDM_2023_131005
crossref_primary_10_1007_s10489_022_03825_5
crossref_primary_10_1007_s41060_024_00558_1
crossref_primary_10_1109_JSEN_2024_3485759
crossref_primary_10_3390_a16090423
crossref_primary_10_1109_ACCESS_2021_3114809
crossref_primary_10_3390_s23198270
crossref_primary_10_3390_stats5040068
crossref_primary_10_1016_j_eswa_2024_125062
crossref_primary_10_1007_s41810_024_00224_w
crossref_primary_10_1016_j_knosys_2022_109806
crossref_primary_10_33492_JRS_D_24_4_2400749
crossref_primary_10_1109_TFUZZ_2023_3309811
crossref_primary_10_1016_j_asoc_2021_107289
crossref_primary_10_3390_e23101267
crossref_primary_10_1016_j_cie_2022_108975
crossref_primary_10_24818_EA_2023_62_147
crossref_primary_10_1016_j_apm_2024_115830
crossref_primary_10_3390_su14010510
crossref_primary_10_1051_sands_2023017
crossref_primary_10_1007_s10489_024_05701_w
crossref_primary_10_1007_s00354_022_00183_1
crossref_primary_10_3390_electronics10243157
crossref_primary_10_1007_s10489_021_02379_2
crossref_primary_10_7498_aps_72_20222435
crossref_primary_10_3390_healthcare13020102
crossref_primary_10_3390_math10162915
crossref_primary_10_1007_s10489_020_02102_7
crossref_primary_10_1016_j_asoc_2021_107490
crossref_primary_10_5812_tms_129560
crossref_primary_10_1109_OJEMB_2021_3096135
crossref_primary_10_1016_j_asoc_2022_109750
crossref_primary_10_1109_TSC_2021_3091281
crossref_primary_10_7717_peerj_cs_2062
crossref_primary_10_1155_2022_4168619
crossref_primary_10_1016_j_asoc_2022_108806
crossref_primary_10_1016_j_engappai_2023_106754
crossref_primary_10_2174_1574893618666230727160507
crossref_primary_10_1007_s10489_021_02311_8
crossref_primary_10_1016_j_eswa_2022_119043
crossref_primary_10_3390_ijerph19042039
crossref_primary_10_1155_2022_1556025
crossref_primary_10_3390_app12199730
crossref_primary_10_1016_j_cities_2024_105397
crossref_primary_10_1007_s40840_022_01332_x
crossref_primary_10_24171_j_phrp_2021_0100
crossref_primary_10_1016_j_neucom_2022_09_005
crossref_primary_10_1016_j_eswa_2021_115190
crossref_primary_10_3390_ijerph20115943
crossref_primary_10_1016_j_chaos_2021_111789
crossref_primary_10_1007_s40808_024_02142_9
crossref_primary_10_1007_s10489_021_02478_0
crossref_primary_10_1371_journal_pgph_0000495
crossref_primary_10_1109_ACCESS_2022_3142522
crossref_primary_10_1016_j_asoc_2020_106779
crossref_primary_10_1007_s12061_024_09588_5
crossref_primary_10_1016_j_asoc_2020_106932
crossref_primary_10_1007_s10489_020_02019_1
crossref_primary_10_37394_232025_2024_6_1
crossref_primary_10_3390_s24123962
crossref_primary_10_1007_s10163_022_01523_5
crossref_primary_10_1007_s10489_021_02662_2
crossref_primary_10_1038_s41598_024_51610_w
crossref_primary_10_1371_journal_pone_0252394
crossref_primary_10_1016_j_idm_2020_11_007
crossref_primary_10_3390_app13031816
crossref_primary_10_2139_ssrn_5001012
crossref_primary_10_1016_j_knosys_2024_111952
crossref_primary_10_1016_j_asoc_2023_110878
crossref_primary_10_1080_23311932_2024_2340155
crossref_primary_10_1007_s10489_021_02448_6
crossref_primary_10_1016_j_artmed_2022_102422
crossref_primary_10_1007_s10489_021_02391_6
crossref_primary_10_1145_3530999
crossref_primary_10_1016_j_eswa_2024_125277
crossref_primary_10_1007_s42979_025_03658_2
crossref_primary_10_1038_s41598_024_69325_3
crossref_primary_10_1007_s10489_020_01938_3
crossref_primary_10_1186_s12889_023_16419_8
crossref_primary_10_1016_j_jclepro_2021_127897
crossref_primary_10_1080_17543266_2023_2201508
crossref_primary_10_1007_s10489_021_02199_4
crossref_primary_10_1038_s41598_021_94696_2
crossref_primary_10_32604_csse_2023_034697
crossref_primary_10_3390_atmos12010074
crossref_primary_10_1371_journal_pone_0298684
crossref_primary_10_1007_s10489_020_02173_6
crossref_primary_10_11144_Javeriana_rgps20_ctcc
crossref_primary_10_33326_26176033_2022_1_1237
crossref_primary_10_3390_horticulturae9050549
crossref_primary_10_1016_j_scs_2021_103219
crossref_primary_10_1007_s10489_020_02055_x
crossref_primary_10_1007_s00530_024_01546_y
crossref_primary_10_3390_su141912189
crossref_primary_10_3390_diagnostics13061121
crossref_primary_10_1016_j_engappai_2024_108007
crossref_primary_10_1109_TII_2024_3354338
crossref_primary_10_1109_ACCESS_2023_3275534
crossref_primary_10_1109_TFUZZ_2024_3393622
crossref_primary_10_1371_journal_pone_0285407
crossref_primary_10_1007_s10489_020_02169_2
crossref_primary_10_1007_s10489_021_02926_x
crossref_primary_10_3390_ijerph19031504
crossref_primary_10_1080_15567036_2022_2143948
crossref_primary_10_1007_s10489_021_02442_y
crossref_primary_10_3389_fpubh_2023_1333178
crossref_primary_10_1007_s10489_021_02239_z
crossref_primary_10_1007_s10489_021_02616_8
crossref_primary_10_1016_j_artmed_2022_102286
crossref_primary_10_1186_s12879_024_09301_4
crossref_primary_10_1007_s13042_025_02585_1
crossref_primary_10_3390_math10203804
crossref_primary_10_1007_s10489_021_02193_w
crossref_primary_10_1007_s10489_020_02002_w
crossref_primary_10_1016_j_compbiomed_2022_105915
crossref_primary_10_1155_2021_1623441
crossref_primary_10_1016_j_bdr_2021_100286
crossref_primary_10_1007_s42979_024_02724_5
crossref_primary_10_1038_s41598_022_25885_w
crossref_primary_10_1111_exsy_13086
crossref_primary_10_1016_j_apm_2023_09_004
crossref_primary_10_1007_s10489_021_02381_8
crossref_primary_10_1109_TAI_2022_3142241
Cites_doi 10.1016/j.clinimag.2020.02.008
10.1101/2020.04.08.20058636
10.1016/S0360-8352(98)00066-7
10.1101/2020.04.17.20069237
10.1016/j.knosys.2014.04.035
10.1177/1847979018808673
10.1016/j.idm.2020.02.003
10.1016/j.asoc.2020.106282
10.1073/pnas.2006520117
10.1016/j.idm.2020.03.002
ContentType Journal Article
Copyright 2020 Elsevier B.V.
2020 Elsevier B.V. All rights reserved.
2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: 2020 Elsevier B.V. All rights reserved.
– notice: 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1016/j.asoc.2020.106610
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 106610
ExternalDocumentID PMC7409837
32834798
10_1016_j_asoc_2020_106610
S1568494620305482
Genre Journal Article
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-2f03b6afbee4b4d84ff14c289051217f064b9e7e3d13cf09d26128cd117bbbeb3
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Aug 21 14:11:16 EDT 2025
Tue Aug 05 10:10:16 EDT 2025
Mon Jul 21 05:56:15 EDT 2025
Thu Apr 24 22:55:23 EDT 2025
Tue Jul 01 01:50:06 EDT 2025
Fri Feb 23 02:43:24 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Covid-19 epidemic
ARIMA model
Forecast
Geographic region
Language English
License 2020 Elsevier B.V. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-2f03b6afbee4b4d84ff14c289051217f064b9e7e3d13cf09d26128cd117bbbeb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5256-210X
0000-0002-4896-2909
0000-0002-7599-4404
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7409837
PMID 32834798
PQID 2437123119
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7409837
proquest_miscellaneous_2437123119
pubmed_primary_32834798
crossref_primary_10_1016_j_asoc_2020_106610
crossref_citationtrail_10_1016_j_asoc_2020_106610
elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106610
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Applied soft computing
PublicationTitleAlternate Appl Soft Comput
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Singh, Rani, Bhagavathula, Sah, Rodriguez-Morales, Kalita, Nanda, Sharma, Sharma, Rabaan, Rahmani, Kumar (b12) 2020; 6
Fong, Li, Dey, Crespo, Herrera-Viedma (b11) 2020; 93
United Nations, Department of Economic and Social Affairs, Population Dynamics, Retreived from
Ho, Xie (b21) 1998; 35
Max Roser, Ritchie, Ortiz-Ospina, Hasell (b18) 2020
BioSpace, Quotient Sciences and CytoAgents Accelerate Potential Treatment for COVID-19 Cytokine Storm, retrieved from
.
Simon, Li, Dey, Gonzalez Crespo, Herrera-Viedma (b6) 2020; 6
Lin, Ding, Xie, Sun, Li, Chen, Niu (b3) 2020; 63
Mizumoto, Chowell (b16) 2020; 5
Bertozzi, Franco, Mohler, Short, Sledge (b14) 2020; 117
Fattah, Ezzine, Aman, El Moussami, Lachhab (b20) 2018; 10
Serrà, Arcos (b22) 2014; 67
Lutfi Bayyurt, Burcu Bayyurt, Forecasting of COVID-19 Cases and Deaths Using ARIMA Models, medRxiv 2020.04.17.20069237.
Li, Yang, Dang, Meng, Huang, Meng, Wang, Chen, Zhang, Peng, Shao (b15) 2020; 5
Perone (b7) 2020
Guorong Ding, Xinru Li, Yang Shen, Brief Analysis of the ARIMA model on the COVID-19 in Italy, medRxiv 2020.04.08.20058636.
Box, Jenkins (b17) 1976
Benvenuto, Giovanetti, Vassallo, Angeletti, Ciccozzi (b5) 2020
Tandon, Ranjan, Chakraborty, Suhag (b9) 2020
Narin, Kaya, Pamuk (b2) 2020
World Health Organization, Coronavirus disease (COVID-19) outbreak situation retrieved from
Duan, Zhang (b13) 2020
Li (10.1016/j.asoc.2020.106610_b15) 2020; 5
Max Roser (10.1016/j.asoc.2020.106610_b18) 2020
Tandon (10.1016/j.asoc.2020.106610_b9) 2020
Ho (10.1016/j.asoc.2020.106610_b21) 1998; 35
Narin (10.1016/j.asoc.2020.106610_b2) 2020
Simon (10.1016/j.asoc.2020.106610_b6) 2020; 6
Singh (10.1016/j.asoc.2020.106610_b12) 2020; 6
Mizumoto (10.1016/j.asoc.2020.106610_b16) 2020; 5
10.1016/j.asoc.2020.106610_b19
Fattah (10.1016/j.asoc.2020.106610_b20) 2018; 10
Lin (10.1016/j.asoc.2020.106610_b3) 2020; 63
10.1016/j.asoc.2020.106610_b8
Serrà (10.1016/j.asoc.2020.106610_b22) 2014; 67
Benvenuto (10.1016/j.asoc.2020.106610_b5) 2020
Box (10.1016/j.asoc.2020.106610_b17) 1976
10.1016/j.asoc.2020.106610_b10
10.1016/j.asoc.2020.106610_b4
Bertozzi (10.1016/j.asoc.2020.106610_b14) 2020; 117
Perone (10.1016/j.asoc.2020.106610_b7) 2020
Fong (10.1016/j.asoc.2020.106610_b11) 2020; 93
10.1016/j.asoc.2020.106610_b1
Duan (10.1016/j.asoc.2020.106610_b13) 2020
References_xml – volume: 6
  year: 2020
  ident: b12
  article-title: Prediction of the COVID-19 pandemic for the top 15 affected countries: Advanced autoregressive integrated moving average (ARIMA) model
  publication-title: JMIR Public Health Surv.
– volume: 35
  start-page: 213
  year: 1998
  end-page: 216
  ident: b21
  article-title: The use of ARIMA models for reliability forecasting and analysis
  publication-title: Comput. Ind. Eng.
– year: 2020
  ident: b9
  article-title: Coronavirus (COVID-19): ARIMA based time-series analysis to forecast near future
– year: 2020
  ident: b18
  article-title: Coronavirus pandemic (COVID-19)
– volume: 67
  start-page: 305
  year: 2014
  end-page: 314
  ident: b22
  article-title: An empirical evaluation of similarity measures for time series classification
  publication-title: Knowl. Based Syst.
– year: 2020
  ident: b5
  article-title: Application of the ARIMA model on the COVID-2019 epidemic dataset
  publication-title: Data in Brief, Vol. 29
– reference: Lutfi Bayyurt, Burcu Bayyurt, Forecasting of COVID-19 Cases and Deaths Using ARIMA Models, medRxiv 2020.04.17.20069237.
– volume: 10
  year: 2018
  ident: b20
  article-title: Forecasting of demand using ARIMA model
  publication-title: Int. J. Eng. Bus. Manag.
– volume: 6
  start-page: 132
  year: 2020
  end-page: 140
  ident: b6
  article-title: Finding an accurate early forecasting model from small dataset: A case of 2019-nCoV novel coronavirus outbreak
  publication-title: Int. J. Interact. Multimed. Artif. Intell.
– year: 2020
  ident: b13
  publication-title: ARIMA modelling and forecasting of irregularly patterned COVID-19 outbreaks using Japanese and South Korean data
– reference: United Nations, Department of Economic and Social Affairs, Population Dynamics, Retreived from:
– reference: .
– reference: . BioSpace, Quotient Sciences and CytoAgents Accelerate Potential Treatment for COVID-19 Cytokine Storm, retrieved from:
– volume: 5
  start-page: 282
  year: 2020
  end-page: 292
  ident: b15
  article-title: Propagation analysis and prediction of the COVID-19
  publication-title: Infect. Dis. Model.
– volume: 93
  year: 2020
  ident: b11
  article-title: Composite Monte Carlo decision making under high uncertainty of novel coronavirus epidemic using hybridized deep learning and fuzzy rule induction
  publication-title: Appl. Soft Comput.
– reference: Guorong Ding, Xinru Li, Yang Shen, Brief Analysis of the ARIMA model on the COVID-19 in Italy, medRxiv 2020.04.08.20058636.
– volume: 63
  start-page: 7
  year: 2020
  end-page: 9
  ident: b3
  article-title: Asymptomatic novel coronavirus pneumonia patient outside Wuhan: The value of CT images in the course of the disease
  publication-title: Clin. Imaging
– year: 1976
  ident: b17
  article-title: Time series analysis
  publication-title: Forecasting and Control
– year: 2020
  ident: b2
  article-title: Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks
– year: 2020
  ident: b7
  article-title: An ARIMA model to forecast the spread and the final size of COVID-2019 epidemic in Italy
– reference: World Health Organization, Coronavirus disease (COVID-19) outbreak situation retrieved from:
– volume: 117
  start-page: 16732
  year: 2020
  end-page: 16738
  ident: b14
  article-title: The challenges of modeling and forecasting the spread of COVID-19
  publication-title: Proc. Natl. Acad. Sci.
– volume: 5
  start-page: 264
  year: 2020
  end-page: 270
  ident: b16
  article-title: Transmission potential of the novel coronavirus (COVID-19) onboard the diamond Princess Cruises Ship
  publication-title: Infect. Dis. Model.
– ident: 10.1016/j.asoc.2020.106610_b19
– year: 2020
  ident: 10.1016/j.asoc.2020.106610_b5
  article-title: Application of the ARIMA model on the COVID-2019 epidemic dataset
– volume: 63
  start-page: 7
  issn: 0899-7071
  year: 2020
  ident: 10.1016/j.asoc.2020.106610_b3
  article-title: Asymptomatic novel coronavirus pneumonia patient outside Wuhan: The value of CT images in the course of the disease
  publication-title: Clin. Imaging
  doi: 10.1016/j.clinimag.2020.02.008
– year: 2020
  ident: 10.1016/j.asoc.2020.106610_b9
– ident: 10.1016/j.asoc.2020.106610_b8
  doi: 10.1101/2020.04.08.20058636
– volume: 6
  start-page: 132
  year: 2020
  ident: 10.1016/j.asoc.2020.106610_b6
  article-title: Finding an accurate early forecasting model from small dataset: A case of 2019-nCoV novel coronavirus outbreak
  publication-title: Int. J. Interact. Multimed. Artif. Intell.
– volume: 35
  start-page: 213
  issn: 0360-8352
  issue: 1–2
  year: 1998
  ident: 10.1016/j.asoc.2020.106610_b21
  article-title: The use of ARIMA models for reliability forecasting and analysis
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/S0360-8352(98)00066-7
– ident: 10.1016/j.asoc.2020.106610_b10
  doi: 10.1101/2020.04.17.20069237
– volume: 67
  start-page: 305
  year: 2014
  ident: 10.1016/j.asoc.2020.106610_b22
  article-title: An empirical evaluation of similarity measures for time series classification
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2014.04.035
– volume: 10
  year: 2018
  ident: 10.1016/j.asoc.2020.106610_b20
  article-title: Forecasting of demand using ARIMA model
  publication-title: Int. J. Eng. Bus. Manag.
  doi: 10.1177/1847979018808673
– ident: 10.1016/j.asoc.2020.106610_b1
– ident: 10.1016/j.asoc.2020.106610_b4
– year: 2020
  ident: 10.1016/j.asoc.2020.106610_b7
– volume: 5
  start-page: 264
  issn: 2468-0427
  year: 2020
  ident: 10.1016/j.asoc.2020.106610_b16
  article-title: Transmission potential of the novel coronavirus (COVID-19) onboard the diamond Princess Cruises Ship
  publication-title: Infect. Dis. Model.
  doi: 10.1016/j.idm.2020.02.003
– year: 2020
  ident: 10.1016/j.asoc.2020.106610_b2
– volume: 93
  issn: 1568-4946
  year: 2020
  ident: 10.1016/j.asoc.2020.106610_b11
  article-title: Composite Monte Carlo decision making under high uncertainty of novel coronavirus epidemic using hybridized deep learning and fuzzy rule induction
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106282
– volume: 6
  issue: 2
  year: 2020
  ident: 10.1016/j.asoc.2020.106610_b12
  article-title: Prediction of the COVID-19 pandemic for the top 15 affected countries: Advanced autoregressive integrated moving average (ARIMA) model
  publication-title: JMIR Public Health Surv.
– year: 1976
  ident: 10.1016/j.asoc.2020.106610_b17
  article-title: Time series analysis
– volume: 117
  start-page: 16732
  issue: 29
  year: 2020
  ident: 10.1016/j.asoc.2020.106610_b14
  article-title: The challenges of modeling and forecasting the spread of COVID-19
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.2006520117
– year: 2020
  ident: 10.1016/j.asoc.2020.106610_b18
– year: 2020
  ident: 10.1016/j.asoc.2020.106610_b13
– volume: 5
  start-page: 282
  issn: 2468-0427
  year: 2020
  ident: 10.1016/j.asoc.2020.106610_b15
  article-title: Propagation analysis and prediction of the COVID-19
  publication-title: Infect. Dis. Model.
  doi: 10.1016/j.idm.2020.03.002
SSID ssj0016928
Score 2.6183314
Snippet COVID-2019 is a global threat, for this reason around the world, researches have been focused on topics such as to detect it, prevent it, cure it, and predict...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 106610
SubjectTerms ARIMA model
Covid-19 epidemic
Forecast
Geographic region
Title Forecasting of COVID19 per regions using ARIMA models and polynomial functions
URI https://dx.doi.org/10.1016/j.asoc.2020.106610
https://www.ncbi.nlm.nih.gov/pubmed/32834798
https://www.proquest.com/docview/2437123119
https://pubmed.ncbi.nlm.nih.gov/PMC7409837
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4huPRCoS00vLSVekMmWXvt9R6jUJT0ESpaELeV90VTIScicODCb2fGj4hQwaEny-tZeTU7Ow_tzHwAn21ceBQDGblgfSSkV5EJmY-CyAVaS2eNq7p9jrPhufh6mV6uwKCthaG0ykb31zq90tbNSLfhZnc2mXR_YeSRCyWymGRW5KSHhZAk5UcPizQPnqkKX5WII6JuCmfqHK8COYAxYkwDaKh6Lxmnf53P5zmUT4zSyQasN94k69cL3oQVX76Dty1SA2sO7nsYEwKnLeaU48ymgQ1OL0bHXLEZEhE0A4oeowz4K9Y_G_3oswofZ86K0rHZ9PqeSpfxN2QDKzH9AOcnX34PhlGDpBBZAiyI4tBLTFYE470wwuUiBC4s3TGivecyoF9ilJc-cTyxoaccNRbLreNcGmMw3t6C1XJa-o_AXMhji05PSiW1KiQqVQ5DvBQVuJGJTzrAWxZq27QZJ7SLa93mk_3VxHZNbNc12ztwuJgzq5tsvEqdtjujl0RFoxV4dd6ndhs1niG6GClKP72ba2rKiBacc9WB7XpbF-tI0P8SUuUdkEsbviCg_tzLX8rJn6pPt8TYGeP_nf9c7y68obe68HEPVm9v7vw-ekC35qAS8QNY6w_Ovv-k5-jbcPwIwCIHQw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcoAL5d2U1yLBCZlk7bXXe-AQtVQJbYMELept8b5KUOVEpBXqhT_FH2TGXkcERA9Ive7DXs3MzjejnQfAC5tWHsVAJi5YnwjpVWJC4ZMgSoFo6axxTbXPSTE6Eu-O8-M1-NnlwlBYZdT9rU5vtHUc6Udq9ufTaf8jeh6lUKJISWZFmcbIyj1_8R39tsWb8Q4y-WWa7r493B4lsbVAYqmCf5KGQWaKKhjvhRGuFCFwYenRDQGQy4BAbZSXPnM8s2GgHFXaKq3jXBpj0AHF716D6wLVBbVNeP1jGVfCC9U0dKXTJXS8mKnTBpVVSHJ0SlMaQGQc_AsN_7Z2_wza_A0Fd2_DrWi-smFLoTuw5uu7sNG1hmBRU9yDCbX8tNWCgqrZLLDt95_GO1yxOS6iXhAo64xC7k_Y8MP4YMiahjwLVtWOzWenF5Qrjb8h0G3uxX04uhL6PoD1elb7TWAulKlFKyunHF4VMpUrhz5ljohhZOazHvCOhNrGuubUXuNUdwFsXzWRXRPZdUv2Hrxa7pm3VT0uXZ13nNErsqkRdi7d97xjo8ZLSy8xVe1n5wtNVSDRZOBc9eBhy9blOTI0-IRUZQ_kCsOXC6gg-OpMPf3SFAaX6KyXmdz6z_M-gxujw4N9vT-e7D2CmzTTZl0-hvWzb-f-CZpfZ-ZpI-4MPl_1_foFe4pCCg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+of+COVID19+per+regions+using+ARIMA+models+and+polynomial+functions&rft.jtitle=Applied+soft+computing&rft.au=Hernandez-Matamoros%2C+Andres&rft.au=Fujita%2C+Hamido&rft.au=Hayashi%2C+Toshitaka&rft.au=Perez-Meana%2C+Hector&rft.date=2020-11-01&rft.issn=1568-4946&rft.volume=96&rft.spage=106610&rft_id=info:doi/10.1016%2Fj.asoc.2020.106610&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon