Forecasting of COVID19 per regions using ARIMA models and polynomial functions
COVID-2019 is a global threat, for this reason around the world, researches have been focused on topics such as to detect it, prevent it, cure it, and predict it. Different analyses propose models to predict the evolution of this epidemic. These analyses propose models for specific geographical area...
Saved in:
Published in | Applied soft computing Vol. 96; p. 106610 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier B.V
01.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | COVID-2019 is a global threat, for this reason around the world, researches have been focused on topics such as to detect it, prevent it, cure it, and predict it. Different analyses propose models to predict the evolution of this epidemic. These analyses propose models for specific geographical areas, specific countries, or create a global model. The models give us the possibility to predict the virus behavior, it could be used to make future response plans. This work presents an analysis of COVID-19 spread that shows a different angle for the whole world, through 6 geographic regions (continents). We propose to create a relationship between the countries, which are in the same geographical area to predict the advance of the virus. The countries in the same geographic region have variables with similar values (quantifiable and non-quantifiable), which affect the spread of the virus. We propose an algorithm to performed and evaluated the ARIMA model for 145 countries, which are distributed into 6 regions. Then, we construct a model for these regions using the ARIMA parameters, the population per 1M people, the number of cases, and polynomial functions. The proposal is able to predict the COVID-19 cases with a RMSE average of 144.81. The main outcome of this paper is showing a relation between COVID-19 behavior and population in a region, these results show us the opportunity to create more models to predict the COVID-19 behavior using variables as humidity, climate, culture, among others. |
---|---|
AbstractList | COVID-2019 is a global threat, for this reason around the world, researches have been focused on topics such as to detect it, prevent it, cure it, and predict it. Different analyses propose models to predict the evolution of this epidemic. These analyses propose models for specific geographical areas, specific countries, or create a global model. The models give us the possibility to predict the virus behavior, it could be used to make future response plans. This work presents an analysis of COVID-19 spread that shows a different angle for the whole world, through 6 geographic regions (continents). We propose to create a relationship between the countries, which are in the same geographical area to predict the advance of the virus. The countries in the same geographic region have variables with similar values (quantifiable and non-quantifiable), which affect the spread of the virus. We propose an algorithm to performed and evaluated the ARIMA model for 145 countries, which are distributed into 6 regions. Then, we construct a model for these regions using the ARIMA parameters, the population per 1M people, the number of cases, and polynomial functions. The proposal is able to predict the COVID-19 cases with a RMSE average of 144.81. The main outcome of this paper is showing a relation between COVID-19 behavior and population in a region, these results show us the opportunity to create more models to predict the COVID-19 behavior using variables as humidity, climate, culture, among others. COVID-2019 is a global threat, for this reason around the world, researches have been focused on topics such as to detect it, prevent it, cure it, and predict it. Different analyses propose models to predict the evolution of this epidemic. These analyses propose models for specific geographical areas, specific countries, or create a global model. The models give us the possibility to predict the virus behavior, it could be used to make future response plans. This work presents an analysis of COVID-19 spread that shows a different angle for the whole world, through 6 geographic regions (continents). We propose to create a relationship between the countries, which are in the same geographical area to predict the advance of the virus. The countries in the same geographic region have variables with similar values (quantifiable and non-quantifiable), which affect the spread of the virus. We propose an algorithm to performed and evaluated the ARIMA model for 145 countries, which are distributed into 6 regions. Then, we construct a model for these regions using the ARIMA parameters, the population per 1M people, the number of cases, and polynomial functions. The proposal is able to predict the COVID-19 cases with a RMSE average of 144.81. The main outcome of this paper is showing a relation between COVID-19 behavior and population in a region, these results show us the opportunity to create more models to predict the COVID-19 behavior using variables as humidity, climate, culture, among others.COVID-2019 is a global threat, for this reason around the world, researches have been focused on topics such as to detect it, prevent it, cure it, and predict it. Different analyses propose models to predict the evolution of this epidemic. These analyses propose models for specific geographical areas, specific countries, or create a global model. The models give us the possibility to predict the virus behavior, it could be used to make future response plans. This work presents an analysis of COVID-19 spread that shows a different angle for the whole world, through 6 geographic regions (continents). We propose to create a relationship between the countries, which are in the same geographical area to predict the advance of the virus. The countries in the same geographic region have variables with similar values (quantifiable and non-quantifiable), which affect the spread of the virus. We propose an algorithm to performed and evaluated the ARIMA model for 145 countries, which are distributed into 6 regions. Then, we construct a model for these regions using the ARIMA parameters, the population per 1M people, the number of cases, and polynomial functions. The proposal is able to predict the COVID-19 cases with a RMSE average of 144.81. The main outcome of this paper is showing a relation between COVID-19 behavior and population in a region, these results show us the opportunity to create more models to predict the COVID-19 behavior using variables as humidity, climate, culture, among others. |
ArticleNumber | 106610 |
Author | Hernandez-Matamoros, Andres Perez-Meana, Hector Hayashi, Toshitaka Fujita, Hamido |
Author_xml | – sequence: 1 givenname: Andres orcidid: 0000-0002-4896-2909 surname: Hernandez-Matamoros fullname: Hernandez-Matamoros, Andres email: phd.matamoros@gmail.com organization: Iwate Prefectural University (IPU), Faculty of Software and Information Science, Iwate, 020-0693, Japan – sequence: 2 givenname: Hamido orcidid: 0000-0001-5256-210X surname: Fujita fullname: Fujita, Hamido email: h.fujita@hutech.edu.vn, HFujita-799@acm.org organization: Faculty of Information Technology, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Viet Nam – sequence: 3 givenname: Toshitaka orcidid: 0000-0002-7599-4404 surname: Hayashi fullname: Hayashi, Toshitaka email: g236r002@s.iwate-pu.ac.jp organization: Iwate Prefectural University (IPU), Faculty of Software and Information Science, Iwate, 020-0693, Japan – sequence: 4 givenname: Hector surname: Perez-Meana fullname: Perez-Meana, Hector email: hmperezm@ipn.mx organization: Instituto Politecnico Nacional, Av. Santa Ana 1000 Mexico D. F., 04430, Mexico |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32834798$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1r3DAQhkVJaT7aP9BD8bEXbzSy1pagFJZtkyykDZS2VyFLo60WW9pKdiD_PjabhqSHnCQ07zMj5jklRyEGJOQ90AVQqM93C52jWTDK5oe6BvqKnIBoWClrAUfTfVmLkkteH5PTnHd0giQTb8hxxUTFGylOyPeLmNDoPPiwLaIr1je_N19AFntMRcKtjyEXY56Lqx-bb6uijxa7XOhgi33s7kLsve4KNwYzzNm35LXTXcZ3D-cZ-XXx9ef6qry-udysV9elWTIYSuZo1dbatYi85VZw54AbJiRdAoPG0Zq3EhusLFTGUWlZDUwYC9C0bYttdUY-H_rux7ZHazAMSXdqn3yv052K2qvnleD_qG28VQ2nUlTN1ODjQ4MU_46YB9X7bLDrdMA4ZsV41QCrAOQU_fB01uOQf0ucAuwQMCnmnNA9RoCq2ZTaqdmUmk2pg6kJEv9Bxg96XuL0X9-9jH46oJMJvPWYVDYeg0HrJ5eDstG_hN8DZ-6utw |
CitedBy_id | crossref_primary_10_1371_journal_pone_0267440 crossref_primary_10_1007_s10489_020_01948_1 crossref_primary_10_1016_j_asoc_2022_109603 crossref_primary_10_3390_ijerph17197080 crossref_primary_10_1186_s12874_022_01755_x crossref_primary_10_3390_e24070929 crossref_primary_10_1016_j_asoc_2021_107155 crossref_primary_10_3390_e23121601 crossref_primary_10_1016_j_eswa_2023_121673 crossref_primary_10_1007_s00500_022_07800_7 crossref_primary_10_1007_s10489_021_02615_9 crossref_primary_10_3389_fpubh_2024_1474855 crossref_primary_10_3390_biology9120477 crossref_primary_10_4236_jcc_2022_104004 crossref_primary_10_3389_fpubh_2021_741030 crossref_primary_10_1007_s10489_020_01997_6 crossref_primary_10_1016_j_imu_2021_100834 crossref_primary_10_12677_HJDM_2023_131005 crossref_primary_10_1007_s10489_022_03825_5 crossref_primary_10_1007_s41060_024_00558_1 crossref_primary_10_1109_JSEN_2024_3485759 crossref_primary_10_3390_a16090423 crossref_primary_10_1109_ACCESS_2021_3114809 crossref_primary_10_3390_s23198270 crossref_primary_10_3390_stats5040068 crossref_primary_10_1016_j_eswa_2024_125062 crossref_primary_10_1007_s41810_024_00224_w crossref_primary_10_1016_j_knosys_2022_109806 crossref_primary_10_33492_JRS_D_24_4_2400749 crossref_primary_10_1109_TFUZZ_2023_3309811 crossref_primary_10_1016_j_asoc_2021_107289 crossref_primary_10_3390_e23101267 crossref_primary_10_1016_j_cie_2022_108975 crossref_primary_10_24818_EA_2023_62_147 crossref_primary_10_1016_j_apm_2024_115830 crossref_primary_10_3390_su14010510 crossref_primary_10_1051_sands_2023017 crossref_primary_10_1007_s10489_024_05701_w crossref_primary_10_1007_s00354_022_00183_1 crossref_primary_10_3390_electronics10243157 crossref_primary_10_1007_s10489_021_02379_2 crossref_primary_10_7498_aps_72_20222435 crossref_primary_10_3390_healthcare13020102 crossref_primary_10_3390_math10162915 crossref_primary_10_1007_s10489_020_02102_7 crossref_primary_10_1016_j_asoc_2021_107490 crossref_primary_10_5812_tms_129560 crossref_primary_10_1109_OJEMB_2021_3096135 crossref_primary_10_1016_j_asoc_2022_109750 crossref_primary_10_1109_TSC_2021_3091281 crossref_primary_10_7717_peerj_cs_2062 crossref_primary_10_1155_2022_4168619 crossref_primary_10_1016_j_asoc_2022_108806 crossref_primary_10_1016_j_engappai_2023_106754 crossref_primary_10_2174_1574893618666230727160507 crossref_primary_10_1007_s10489_021_02311_8 crossref_primary_10_1016_j_eswa_2022_119043 crossref_primary_10_3390_ijerph19042039 crossref_primary_10_1155_2022_1556025 crossref_primary_10_3390_app12199730 crossref_primary_10_1016_j_cities_2024_105397 crossref_primary_10_1007_s40840_022_01332_x crossref_primary_10_24171_j_phrp_2021_0100 crossref_primary_10_1016_j_neucom_2022_09_005 crossref_primary_10_1016_j_eswa_2021_115190 crossref_primary_10_3390_ijerph20115943 crossref_primary_10_1016_j_chaos_2021_111789 crossref_primary_10_1007_s40808_024_02142_9 crossref_primary_10_1007_s10489_021_02478_0 crossref_primary_10_1371_journal_pgph_0000495 crossref_primary_10_1109_ACCESS_2022_3142522 crossref_primary_10_1016_j_asoc_2020_106779 crossref_primary_10_1007_s12061_024_09588_5 crossref_primary_10_1016_j_asoc_2020_106932 crossref_primary_10_1007_s10489_020_02019_1 crossref_primary_10_37394_232025_2024_6_1 crossref_primary_10_3390_s24123962 crossref_primary_10_1007_s10163_022_01523_5 crossref_primary_10_1007_s10489_021_02662_2 crossref_primary_10_1038_s41598_024_51610_w crossref_primary_10_1371_journal_pone_0252394 crossref_primary_10_1016_j_idm_2020_11_007 crossref_primary_10_3390_app13031816 crossref_primary_10_2139_ssrn_5001012 crossref_primary_10_1016_j_knosys_2024_111952 crossref_primary_10_1016_j_asoc_2023_110878 crossref_primary_10_1080_23311932_2024_2340155 crossref_primary_10_1007_s10489_021_02448_6 crossref_primary_10_1016_j_artmed_2022_102422 crossref_primary_10_1007_s10489_021_02391_6 crossref_primary_10_1145_3530999 crossref_primary_10_1016_j_eswa_2024_125277 crossref_primary_10_1007_s42979_025_03658_2 crossref_primary_10_1038_s41598_024_69325_3 crossref_primary_10_1007_s10489_020_01938_3 crossref_primary_10_1186_s12889_023_16419_8 crossref_primary_10_1016_j_jclepro_2021_127897 crossref_primary_10_1080_17543266_2023_2201508 crossref_primary_10_1007_s10489_021_02199_4 crossref_primary_10_1038_s41598_021_94696_2 crossref_primary_10_32604_csse_2023_034697 crossref_primary_10_3390_atmos12010074 crossref_primary_10_1371_journal_pone_0298684 crossref_primary_10_1007_s10489_020_02173_6 crossref_primary_10_11144_Javeriana_rgps20_ctcc crossref_primary_10_33326_26176033_2022_1_1237 crossref_primary_10_3390_horticulturae9050549 crossref_primary_10_1016_j_scs_2021_103219 crossref_primary_10_1007_s10489_020_02055_x crossref_primary_10_1007_s00530_024_01546_y crossref_primary_10_3390_su141912189 crossref_primary_10_3390_diagnostics13061121 crossref_primary_10_1016_j_engappai_2024_108007 crossref_primary_10_1109_TII_2024_3354338 crossref_primary_10_1109_ACCESS_2023_3275534 crossref_primary_10_1109_TFUZZ_2024_3393622 crossref_primary_10_1371_journal_pone_0285407 crossref_primary_10_1007_s10489_020_02169_2 crossref_primary_10_1007_s10489_021_02926_x crossref_primary_10_3390_ijerph19031504 crossref_primary_10_1080_15567036_2022_2143948 crossref_primary_10_1007_s10489_021_02442_y crossref_primary_10_3389_fpubh_2023_1333178 crossref_primary_10_1007_s10489_021_02239_z crossref_primary_10_1007_s10489_021_02616_8 crossref_primary_10_1016_j_artmed_2022_102286 crossref_primary_10_1186_s12879_024_09301_4 crossref_primary_10_1007_s13042_025_02585_1 crossref_primary_10_3390_math10203804 crossref_primary_10_1007_s10489_021_02193_w crossref_primary_10_1007_s10489_020_02002_w crossref_primary_10_1016_j_compbiomed_2022_105915 crossref_primary_10_1155_2021_1623441 crossref_primary_10_1016_j_bdr_2021_100286 crossref_primary_10_1007_s42979_024_02724_5 crossref_primary_10_1038_s41598_022_25885_w crossref_primary_10_1111_exsy_13086 crossref_primary_10_1016_j_apm_2023_09_004 crossref_primary_10_1007_s10489_021_02381_8 crossref_primary_10_1109_TAI_2022_3142241 |
Cites_doi | 10.1016/j.clinimag.2020.02.008 10.1101/2020.04.08.20058636 10.1016/S0360-8352(98)00066-7 10.1101/2020.04.17.20069237 10.1016/j.knosys.2014.04.035 10.1177/1847979018808673 10.1016/j.idm.2020.02.003 10.1016/j.asoc.2020.106282 10.1073/pnas.2006520117 10.1016/j.idm.2020.03.002 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: 2020 Elsevier B.V. All rights reserved. – notice: 2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V. |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1016/j.asoc.2020.106610 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1872-9681 |
EndPage | 106610 |
ExternalDocumentID | PMC7409837 32834798 10_1016_j_asoc_2020_106610 S1568494620305482 |
Genre | Journal Article |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-2f03b6afbee4b4d84ff14c289051217f064b9e7e3d13cf09d26128cd117bbbeb3 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Thu Aug 21 14:11:16 EDT 2025 Tue Aug 05 10:10:16 EDT 2025 Mon Jul 21 05:56:15 EDT 2025 Thu Apr 24 22:55:23 EDT 2025 Tue Jul 01 01:50:06 EDT 2025 Fri Feb 23 02:43:24 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Covid-19 epidemic ARIMA model Forecast Geographic region |
Language | English |
License | 2020 Elsevier B.V. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-2f03b6afbee4b4d84ff14c289051217f064b9e7e3d13cf09d26128cd117bbbeb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5256-210X 0000-0002-4896-2909 0000-0002-7599-4404 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7409837 |
PMID | 32834798 |
PQID | 2437123119 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7409837 proquest_miscellaneous_2437123119 pubmed_primary_32834798 crossref_primary_10_1016_j_asoc_2020_106610 crossref_citationtrail_10_1016_j_asoc_2020_106610 elsevier_sciencedirect_doi_10_1016_j_asoc_2020_106610 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Applied soft computing |
PublicationTitleAlternate | Appl Soft Comput |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Singh, Rani, Bhagavathula, Sah, Rodriguez-Morales, Kalita, Nanda, Sharma, Sharma, Rabaan, Rahmani, Kumar (b12) 2020; 6 Fong, Li, Dey, Crespo, Herrera-Viedma (b11) 2020; 93 United Nations, Department of Economic and Social Affairs, Population Dynamics, Retreived from Ho, Xie (b21) 1998; 35 Max Roser, Ritchie, Ortiz-Ospina, Hasell (b18) 2020 BioSpace, Quotient Sciences and CytoAgents Accelerate Potential Treatment for COVID-19 Cytokine Storm, retrieved from . Simon, Li, Dey, Gonzalez Crespo, Herrera-Viedma (b6) 2020; 6 Lin, Ding, Xie, Sun, Li, Chen, Niu (b3) 2020; 63 Mizumoto, Chowell (b16) 2020; 5 Bertozzi, Franco, Mohler, Short, Sledge (b14) 2020; 117 Fattah, Ezzine, Aman, El Moussami, Lachhab (b20) 2018; 10 Serrà, Arcos (b22) 2014; 67 Lutfi Bayyurt, Burcu Bayyurt, Forecasting of COVID-19 Cases and Deaths Using ARIMA Models, medRxiv 2020.04.17.20069237. Li, Yang, Dang, Meng, Huang, Meng, Wang, Chen, Zhang, Peng, Shao (b15) 2020; 5 Perone (b7) 2020 Guorong Ding, Xinru Li, Yang Shen, Brief Analysis of the ARIMA model on the COVID-19 in Italy, medRxiv 2020.04.08.20058636. Box, Jenkins (b17) 1976 Benvenuto, Giovanetti, Vassallo, Angeletti, Ciccozzi (b5) 2020 Tandon, Ranjan, Chakraborty, Suhag (b9) 2020 Narin, Kaya, Pamuk (b2) 2020 World Health Organization, Coronavirus disease (COVID-19) outbreak situation retrieved from Duan, Zhang (b13) 2020 Li (10.1016/j.asoc.2020.106610_b15) 2020; 5 Max Roser (10.1016/j.asoc.2020.106610_b18) 2020 Tandon (10.1016/j.asoc.2020.106610_b9) 2020 Ho (10.1016/j.asoc.2020.106610_b21) 1998; 35 Narin (10.1016/j.asoc.2020.106610_b2) 2020 Simon (10.1016/j.asoc.2020.106610_b6) 2020; 6 Singh (10.1016/j.asoc.2020.106610_b12) 2020; 6 Mizumoto (10.1016/j.asoc.2020.106610_b16) 2020; 5 10.1016/j.asoc.2020.106610_b19 Fattah (10.1016/j.asoc.2020.106610_b20) 2018; 10 Lin (10.1016/j.asoc.2020.106610_b3) 2020; 63 10.1016/j.asoc.2020.106610_b8 Serrà (10.1016/j.asoc.2020.106610_b22) 2014; 67 Benvenuto (10.1016/j.asoc.2020.106610_b5) 2020 Box (10.1016/j.asoc.2020.106610_b17) 1976 10.1016/j.asoc.2020.106610_b10 10.1016/j.asoc.2020.106610_b4 Bertozzi (10.1016/j.asoc.2020.106610_b14) 2020; 117 Perone (10.1016/j.asoc.2020.106610_b7) 2020 Fong (10.1016/j.asoc.2020.106610_b11) 2020; 93 10.1016/j.asoc.2020.106610_b1 Duan (10.1016/j.asoc.2020.106610_b13) 2020 |
References_xml | – volume: 6 year: 2020 ident: b12 article-title: Prediction of the COVID-19 pandemic for the top 15 affected countries: Advanced autoregressive integrated moving average (ARIMA) model publication-title: JMIR Public Health Surv. – volume: 35 start-page: 213 year: 1998 end-page: 216 ident: b21 article-title: The use of ARIMA models for reliability forecasting and analysis publication-title: Comput. Ind. Eng. – year: 2020 ident: b9 article-title: Coronavirus (COVID-19): ARIMA based time-series analysis to forecast near future – year: 2020 ident: b18 article-title: Coronavirus pandemic (COVID-19) – volume: 67 start-page: 305 year: 2014 end-page: 314 ident: b22 article-title: An empirical evaluation of similarity measures for time series classification publication-title: Knowl. Based Syst. – year: 2020 ident: b5 article-title: Application of the ARIMA model on the COVID-2019 epidemic dataset publication-title: Data in Brief, Vol. 29 – reference: Lutfi Bayyurt, Burcu Bayyurt, Forecasting of COVID-19 Cases and Deaths Using ARIMA Models, medRxiv 2020.04.17.20069237. – volume: 10 year: 2018 ident: b20 article-title: Forecasting of demand using ARIMA model publication-title: Int. J. Eng. Bus. Manag. – volume: 6 start-page: 132 year: 2020 end-page: 140 ident: b6 article-title: Finding an accurate early forecasting model from small dataset: A case of 2019-nCoV novel coronavirus outbreak publication-title: Int. J. Interact. Multimed. Artif. Intell. – year: 2020 ident: b13 publication-title: ARIMA modelling and forecasting of irregularly patterned COVID-19 outbreaks using Japanese and South Korean data – reference: United Nations, Department of Economic and Social Affairs, Population Dynamics, Retreived from: – reference: . – reference: . BioSpace, Quotient Sciences and CytoAgents Accelerate Potential Treatment for COVID-19 Cytokine Storm, retrieved from: – volume: 5 start-page: 282 year: 2020 end-page: 292 ident: b15 article-title: Propagation analysis and prediction of the COVID-19 publication-title: Infect. Dis. Model. – volume: 93 year: 2020 ident: b11 article-title: Composite Monte Carlo decision making under high uncertainty of novel coronavirus epidemic using hybridized deep learning and fuzzy rule induction publication-title: Appl. Soft Comput. – reference: Guorong Ding, Xinru Li, Yang Shen, Brief Analysis of the ARIMA model on the COVID-19 in Italy, medRxiv 2020.04.08.20058636. – volume: 63 start-page: 7 year: 2020 end-page: 9 ident: b3 article-title: Asymptomatic novel coronavirus pneumonia patient outside Wuhan: The value of CT images in the course of the disease publication-title: Clin. Imaging – year: 1976 ident: b17 article-title: Time series analysis publication-title: Forecasting and Control – year: 2020 ident: b2 article-title: Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks – year: 2020 ident: b7 article-title: An ARIMA model to forecast the spread and the final size of COVID-2019 epidemic in Italy – reference: World Health Organization, Coronavirus disease (COVID-19) outbreak situation retrieved from: – volume: 117 start-page: 16732 year: 2020 end-page: 16738 ident: b14 article-title: The challenges of modeling and forecasting the spread of COVID-19 publication-title: Proc. Natl. Acad. Sci. – volume: 5 start-page: 264 year: 2020 end-page: 270 ident: b16 article-title: Transmission potential of the novel coronavirus (COVID-19) onboard the diamond Princess Cruises Ship publication-title: Infect. Dis. Model. – ident: 10.1016/j.asoc.2020.106610_b19 – year: 2020 ident: 10.1016/j.asoc.2020.106610_b5 article-title: Application of the ARIMA model on the COVID-2019 epidemic dataset – volume: 63 start-page: 7 issn: 0899-7071 year: 2020 ident: 10.1016/j.asoc.2020.106610_b3 article-title: Asymptomatic novel coronavirus pneumonia patient outside Wuhan: The value of CT images in the course of the disease publication-title: Clin. Imaging doi: 10.1016/j.clinimag.2020.02.008 – year: 2020 ident: 10.1016/j.asoc.2020.106610_b9 – ident: 10.1016/j.asoc.2020.106610_b8 doi: 10.1101/2020.04.08.20058636 – volume: 6 start-page: 132 year: 2020 ident: 10.1016/j.asoc.2020.106610_b6 article-title: Finding an accurate early forecasting model from small dataset: A case of 2019-nCoV novel coronavirus outbreak publication-title: Int. J. Interact. Multimed. Artif. Intell. – volume: 35 start-page: 213 issn: 0360-8352 issue: 1–2 year: 1998 ident: 10.1016/j.asoc.2020.106610_b21 article-title: The use of ARIMA models for reliability forecasting and analysis publication-title: Comput. Ind. Eng. doi: 10.1016/S0360-8352(98)00066-7 – ident: 10.1016/j.asoc.2020.106610_b10 doi: 10.1101/2020.04.17.20069237 – volume: 67 start-page: 305 year: 2014 ident: 10.1016/j.asoc.2020.106610_b22 article-title: An empirical evaluation of similarity measures for time series classification publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2014.04.035 – volume: 10 year: 2018 ident: 10.1016/j.asoc.2020.106610_b20 article-title: Forecasting of demand using ARIMA model publication-title: Int. J. Eng. Bus. Manag. doi: 10.1177/1847979018808673 – ident: 10.1016/j.asoc.2020.106610_b1 – ident: 10.1016/j.asoc.2020.106610_b4 – year: 2020 ident: 10.1016/j.asoc.2020.106610_b7 – volume: 5 start-page: 264 issn: 2468-0427 year: 2020 ident: 10.1016/j.asoc.2020.106610_b16 article-title: Transmission potential of the novel coronavirus (COVID-19) onboard the diamond Princess Cruises Ship publication-title: Infect. Dis. Model. doi: 10.1016/j.idm.2020.02.003 – year: 2020 ident: 10.1016/j.asoc.2020.106610_b2 – volume: 93 issn: 1568-4946 year: 2020 ident: 10.1016/j.asoc.2020.106610_b11 article-title: Composite Monte Carlo decision making under high uncertainty of novel coronavirus epidemic using hybridized deep learning and fuzzy rule induction publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106282 – volume: 6 issue: 2 year: 2020 ident: 10.1016/j.asoc.2020.106610_b12 article-title: Prediction of the COVID-19 pandemic for the top 15 affected countries: Advanced autoregressive integrated moving average (ARIMA) model publication-title: JMIR Public Health Surv. – year: 1976 ident: 10.1016/j.asoc.2020.106610_b17 article-title: Time series analysis – volume: 117 start-page: 16732 issue: 29 year: 2020 ident: 10.1016/j.asoc.2020.106610_b14 article-title: The challenges of modeling and forecasting the spread of COVID-19 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.2006520117 – year: 2020 ident: 10.1016/j.asoc.2020.106610_b18 – year: 2020 ident: 10.1016/j.asoc.2020.106610_b13 – volume: 5 start-page: 282 issn: 2468-0427 year: 2020 ident: 10.1016/j.asoc.2020.106610_b15 article-title: Propagation analysis and prediction of the COVID-19 publication-title: Infect. Dis. Model. doi: 10.1016/j.idm.2020.03.002 |
SSID | ssj0016928 |
Score | 2.6183314 |
Snippet | COVID-2019 is a global threat, for this reason around the world, researches have been focused on topics such as to detect it, prevent it, cure it, and predict... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 106610 |
SubjectTerms | ARIMA model Covid-19 epidemic Forecast Geographic region |
Title | Forecasting of COVID19 per regions using ARIMA models and polynomial functions |
URI | https://dx.doi.org/10.1016/j.asoc.2020.106610 https://www.ncbi.nlm.nih.gov/pubmed/32834798 https://www.proquest.com/docview/2437123119 https://pubmed.ncbi.nlm.nih.gov/PMC7409837 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB4huPRCoS00vLSVekMmWXvt9R6jUJT0ESpaELeV90VTIScicODCb2fGj4hQwaEny-tZeTU7Ow_tzHwAn21ceBQDGblgfSSkV5EJmY-CyAVaS2eNq7p9jrPhufh6mV6uwKCthaG0ykb31zq90tbNSLfhZnc2mXR_YeSRCyWymGRW5KSHhZAk5UcPizQPnqkKX5WII6JuCmfqHK8COYAxYkwDaKh6Lxmnf53P5zmUT4zSyQasN94k69cL3oQVX76Dty1SA2sO7nsYEwKnLeaU48ymgQ1OL0bHXLEZEhE0A4oeowz4K9Y_G_3oswofZ86K0rHZ9PqeSpfxN2QDKzH9AOcnX34PhlGDpBBZAiyI4tBLTFYE470wwuUiBC4s3TGivecyoF9ilJc-cTyxoaccNRbLreNcGmMw3t6C1XJa-o_AXMhji05PSiW1KiQqVQ5DvBQVuJGJTzrAWxZq27QZJ7SLa93mk_3VxHZNbNc12ztwuJgzq5tsvEqdtjujl0RFoxV4dd6ndhs1niG6GClKP72ba2rKiBacc9WB7XpbF-tI0P8SUuUdkEsbviCg_tzLX8rJn6pPt8TYGeP_nf9c7y68obe68HEPVm9v7vw-ekC35qAS8QNY6w_Ovv-k5-jbcPwIwCIHQw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcoAL5d2U1yLBCZlk7bXXe-AQtVQJbYMELept8b5KUOVEpBXqhT_FH2TGXkcERA9Ive7DXs3MzjejnQfAC5tWHsVAJi5YnwjpVWJC4ZMgSoFo6axxTbXPSTE6Eu-O8-M1-NnlwlBYZdT9rU5vtHUc6Udq9ufTaf8jeh6lUKJISWZFmcbIyj1_8R39tsWb8Q4y-WWa7r493B4lsbVAYqmCf5KGQWaKKhjvhRGuFCFwYenRDQGQy4BAbZSXPnM8s2GgHFXaKq3jXBpj0AHF716D6wLVBbVNeP1jGVfCC9U0dKXTJXS8mKnTBpVVSHJ0SlMaQGQc_AsN_7Z2_wza_A0Fd2_DrWi-smFLoTuw5uu7sNG1hmBRU9yDCbX8tNWCgqrZLLDt95_GO1yxOS6iXhAo64xC7k_Y8MP4YMiahjwLVtWOzWenF5Qrjb8h0G3uxX04uhL6PoD1elb7TWAulKlFKyunHF4VMpUrhz5ljohhZOazHvCOhNrGuubUXuNUdwFsXzWRXRPZdUv2Hrxa7pm3VT0uXZ13nNErsqkRdi7d97xjo8ZLSy8xVe1n5wtNVSDRZOBc9eBhy9blOTI0-IRUZQ_kCsOXC6gg-OpMPf3SFAaX6KyXmdz6z_M-gxujw4N9vT-e7D2CmzTTZl0-hvWzb-f-CZpfZ-ZpI-4MPl_1_foFe4pCCg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+of+COVID19+per+regions+using+ARIMA+models+and+polynomial+functions&rft.jtitle=Applied+soft+computing&rft.au=Hernandez-Matamoros%2C+Andres&rft.au=Fujita%2C+Hamido&rft.au=Hayashi%2C+Toshitaka&rft.au=Perez-Meana%2C+Hector&rft.date=2020-11-01&rft.issn=1568-4946&rft.volume=96&rft.spage=106610&rft_id=info:doi/10.1016%2Fj.asoc.2020.106610&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |