Polyamines and eIF5A Hypusination Modulate Mitochondrial Respiration and Macrophage Activation
How cells adapt metabolism to meet demands is an active area of interest across biology. Among a broad range of functions, the polyamine spermidine is needed to hypusinate the translation factor eukaryotic initiation factor 5A (eIF5A). We show here that hypusinated eIF5A (eIF5AH) promotes the effici...
Saved in:
Published in | Cell metabolism Vol. 30; no. 2; pp. 352 - 363.e8 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
06.08.2019
Cell Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | How cells adapt metabolism to meet demands is an active area of interest across biology. Among a broad range of functions, the polyamine spermidine is needed to hypusinate the translation factor eukaryotic initiation factor 5A (eIF5A). We show here that hypusinated eIF5A (eIF5AH) promotes the efficient expression of a subset of mitochondrial proteins involved in the TCA cycle and oxidative phosphorylation (OXPHOS). Several of these proteins have mitochondrial targeting sequences (MTSs) that in part confer an increased dependency on eIF5AH. In macrophages, metabolic switching between OXPHOS and glycolysis supports divergent functional fates stimulated by activation signals. In these cells, hypusination of eIF5A appears to be dynamically regulated after activation. Using in vivo and in vitro models, we show that acute inhibition of this pathway blunts OXPHOS-dependent alternative activation, while leaving aerobic glycolysis-dependent classical activation intact. These results might have implications for therapeutically controlling macrophage activation by targeting the polyamine-eIF5A-hypusine axis.
[Display omitted]
•The polyamine synthesis pathway and hypusinated eIF5A modulate mitochondrial OXPHOS•Hypusinated eIF5A maintains TCA cycle and ETC integrity in macrophages•Some mitochondrial enzymes depend on eIF5AH for efficient expression•Inhibition of hypusinated eIF5A blunts macrophage alternative activation
Puleston et al. show that polyamine biosynthesis modulates mitochondrial metabolism through eIF5A hypusination (eIF5AH). They find that inhibiting the polyamine-eIF5A-hypusine pathway blocks OXPHOS-dependent macrophage alternative activation, while leaving aerobic glycolysis-dependent macrophage classical activation intact. These results might have implications for therapeutically controlling macrophage activation by targeting the polyamine-eIF5A-hypusine axis. |
---|---|
AbstractList | How cells adapt metabolism to meet demands is an active area of interest across biology. Among a broad range of functions, the polyamine spermidine is needed to hypusinate the translation factor eukaryotic initiation factor 5A (eIF5A). We show here that hypusinated eIF5A (eIF5AH) promotes the efficient expression of a subset of mitochondrial proteins involved in the TCA cycle and oxidative phosphorylation (OXPHOS). Several of these proteins have mitochondrial targeting sequences (MTSs) that in part confer an increased dependency on eIF5AH. In macrophages, metabolic switching between OXPHOS and glycolysis supports divergent functional fates stimulated by activation signals. In these cells, hypusination of eIF5A appears to be dynamically regulated after activation. Using in vivo and in vitro models, we show that acute inhibition of this pathway blunts OXPHOS-dependent alternative activation, while leaving aerobic glycolysis-dependent classical activation intact. These results might have implications for therapeutically controlling macrophage activation by targeting the polyamine-eIF5A-hypusine axis.
[Display omitted]
•The polyamine synthesis pathway and hypusinated eIF5A modulate mitochondrial OXPHOS•Hypusinated eIF5A maintains TCA cycle and ETC integrity in macrophages•Some mitochondrial enzymes depend on eIF5AH for efficient expression•Inhibition of hypusinated eIF5A blunts macrophage alternative activation
Puleston et al. show that polyamine biosynthesis modulates mitochondrial metabolism through eIF5A hypusination (eIF5AH). They find that inhibiting the polyamine-eIF5A-hypusine pathway blocks OXPHOS-dependent macrophage alternative activation, while leaving aerobic glycolysis-dependent macrophage classical activation intact. These results might have implications for therapeutically controlling macrophage activation by targeting the polyamine-eIF5A-hypusine axis. How cells adapt metabolism to meet demands is an active area of interest across biology. Among a broad range of functions, the polyamine spermidine is needed to hypusinate the translation factor eukaryotic initiation factor 5A (eIF5A). We show here that hypusinated eIF5A (eIF5A ) promotes the efficient expression of a subset of mitochondrial proteins involved in the TCA cycle and oxidative phosphorylation (OXPHOS). Several of these proteins have mitochondrial targeting sequences (MTSs) that in part confer an increased dependency on eIF5AH. In macrophages, metabolic switching between OXPHOS and glycolysis supports divergent functional fates stimulated by activation signals. In these cells, hypusination of eIF5A appears to be dynamically regulated after activation. Using in vivo and in vitro models, we show that acute inhibition of this pathway blunts OXPHOS-dependent alternative activation, while leaving aerobic glycolysis-dependent classical activation intact. These results might have implications for therapeutically controlling macrophage activation by targeting the polyamine-eIF5A-hypusine axis. How cells adapt metabolism to meet demands is an active area of interest across biology. Among a broad range of functions, the polyamine spermidine is needed to hypusinate the translation factor eukaryotic initiation factor 5A (eIF5A). We show here that hypusinated eIF5A (eIF5A H ) promotes the efficient expression of a subset of mitochondrial proteins involved in the TCA cycle and oxidative phosphorylation (OXPHOS). Several of these proteins have mitochondrial targeting sequences (MTSs) that in part confer an increased dependency on eIF5AH. In macrophages, metabolic switching between OXPHOS and glycolysis supports divergent functional fates stimulated by activation signals. In these cells, hypusination of eIF5A appears to be dynamically regulated after activation. Using in vivo and in vitro models, we show that acute inhibition of this pathway blunts OXPHOS-dependent alternative activation, while leaving aerobic glycolysis-dependent classical activation intact. These results might have implications for therapeutically controlling macrophage activation by targeting the polyamine-eIF5A-hypusine axis. • The polyamine synthesis pathway and hypusinated eIF5A modulate mitochondrial OXPHOS • Hypusinated eIF5A maintains TCA cycle and ETC integrity in macrophages • Some mitochondrial enzymes depend on eIF5A H for efficient expression • Inhibition of hypusinated eIF5A blunts macrophage alternative activation Puleston et al. show that polyamine biosynthesis modulates mitochondrial metabolism through eIF5A hypusination (eIF5A H ). They find that inhibiting the polyamine-eIF5A-hypusine pathway blocks OXPHOS-dependent macrophage alternative activation, while leaving aerobic glycolysis-dependent macrophage classical activation intact. These results might have implications for therapeutically controlling macrophage activation by targeting the polyamine-eIF5A-hypusine axis. How cells adapt metabolism to meet demands is an active area of interest across biology. Among a broad range of functions, the polyamine spermidine is needed to hypusinate the translation factor eukaryotic initiation factor 5A (eIF5A). We show here that hypusinated eIF5A (eIF5AH) promotes the efficient expression of a subset of mitochondrial proteins involved in the TCA cycle and oxidative phosphorylation (OXPHOS). Several of these proteins have mitochondrial targeting sequences (MTSs) that in part confer an increased dependency on eIF5AH. In macrophages, metabolic switching between OXPHOS and glycolysis supports divergent functional fates stimulated by activation signals. In these cells, hypusination of eIF5A appears to be dynamically regulated after activation. Using in vivo and in vitro models, we show that acute inhibition of this pathway blunts OXPHOS-dependent alternative activation, while leaving aerobic glycolysis-dependent classical activation intact. These results might have implications for therapeutically controlling macrophage activation by targeting the polyamine-eIF5A-hypusine axis.How cells adapt metabolism to meet demands is an active area of interest across biology. Among a broad range of functions, the polyamine spermidine is needed to hypusinate the translation factor eukaryotic initiation factor 5A (eIF5A). We show here that hypusinated eIF5A (eIF5AH) promotes the efficient expression of a subset of mitochondrial proteins involved in the TCA cycle and oxidative phosphorylation (OXPHOS). Several of these proteins have mitochondrial targeting sequences (MTSs) that in part confer an increased dependency on eIF5AH. In macrophages, metabolic switching between OXPHOS and glycolysis supports divergent functional fates stimulated by activation signals. In these cells, hypusination of eIF5A appears to be dynamically regulated after activation. Using in vivo and in vitro models, we show that acute inhibition of this pathway blunts OXPHOS-dependent alternative activation, while leaving aerobic glycolysis-dependent classical activation intact. These results might have implications for therapeutically controlling macrophage activation by targeting the polyamine-eIF5A-hypusine axis. |
Author | Paz, Katelyn Austin, S. Kyle Patterson, Annette E. Zehn, Dietmar Sanin, David E. Pällman, Nora Musa, Yaarub Pearce, Erika L. O’Sullivan, David Alfei, Francesca Matsushita, Mai Rospert, Sabine Klein Geltink, Ramon I. Mittler, Gerhard Balabanov, Stefan Pearce, Edward J. Curtis, Jonathan D. Maccari, Maria Elena Buescher, Joerg M. Buck, Michael D. Baixauli, Francesc Field, Cameron S. Caputa, George Kyle, Ryan L. Blazar, Bruce R. Kelly, Beth Castoldi, Angela Cameron, Alanna M. Corrado, Mauro Villa, Matteo Grzes, Katarzyna M. Kabat, Agnieszka M. Zhang, Ying Flachsmann, Lea J. Scherer, Stefanie Puleston, Daniel J. Qiu, Jing |
AuthorAffiliation | 5 Division of Haematology, University Hospital Zurich and University of Zurich, Zurich 8091, Switzerland 8 Faculty of Biology, University of Freiburg, Freiburg 79104, Germany 7 Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Center for Pediatrics, and Faculty of Medicine, Medical Center - University of Freiburg, Freiburg 79106, Germany 2 The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK 3 Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg 79104, Germany 4 Department of Animal Physiology and Immunology, Technical University of Munich, Freising, Germany 6 Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA 1 Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany |
AuthorAffiliation_xml | – name: 8 Faculty of Biology, University of Freiburg, Freiburg 79104, Germany – name: 3 Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg 79104, Germany – name: 7 Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Center for Pediatrics, and Faculty of Medicine, Medical Center - University of Freiburg, Freiburg 79106, Germany – name: 4 Department of Animal Physiology and Immunology, Technical University of Munich, Freising, Germany – name: 6 Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA – name: 5 Division of Haematology, University Hospital Zurich and University of Zurich, Zurich 8091, Switzerland – name: 1 Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany – name: 2 The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK |
Author_xml | – sequence: 1 givenname: Daniel J. surname: Puleston fullname: Puleston, Daniel J. organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany – sequence: 2 givenname: Michael D. surname: Buck fullname: Buck, Michael D. organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany – sequence: 3 givenname: Ramon I. surname: Klein Geltink fullname: Klein Geltink, Ramon I. organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany – sequence: 4 givenname: Ryan L. surname: Kyle fullname: Kyle, Ryan L. organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany – sequence: 5 givenname: George surname: Caputa fullname: Caputa, George organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany – sequence: 6 givenname: David surname: O’Sullivan fullname: O’Sullivan, David organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany – sequence: 7 givenname: Alanna M. surname: Cameron fullname: Cameron, Alanna M. organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany – sequence: 8 givenname: Angela surname: Castoldi fullname: Castoldi, Angela organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany – sequence: 9 givenname: Yaarub surname: Musa fullname: Musa, Yaarub organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany – sequence: 10 givenname: Agnieszka M. surname: Kabat fullname: Kabat, Agnieszka M. organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany – sequence: 11 givenname: Ying surname: Zhang fullname: Zhang, Ying organization: Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg 79104, Germany – sequence: 12 givenname: Lea J. surname: Flachsmann fullname: Flachsmann, Lea J. organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany – sequence: 13 givenname: Cameron S. surname: Field fullname: Field, Cameron S. organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany – sequence: 14 givenname: Annette E. surname: Patterson fullname: Patterson, Annette E. organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany – sequence: 15 givenname: Stefanie surname: Scherer fullname: Scherer, Stefanie organization: Department of Animal Physiology and Immunology, Technical University of Munich, Freising, Germany – sequence: 16 givenname: Francesca surname: Alfei fullname: Alfei, Francesca organization: Department of Animal Physiology and Immunology, Technical University of Munich, Freising, Germany – sequence: 17 givenname: Francesc surname: Baixauli fullname: Baixauli, Francesc organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany – sequence: 18 givenname: S. Kyle surname: Austin fullname: Austin, S. Kyle organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany – sequence: 19 givenname: Beth surname: Kelly fullname: Kelly, Beth organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany – sequence: 20 givenname: Mai surname: Matsushita fullname: Matsushita, Mai organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany – sequence: 21 givenname: Jonathan D. surname: Curtis fullname: Curtis, Jonathan D. organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany – sequence: 22 givenname: Katarzyna M. surname: Grzes fullname: Grzes, Katarzyna M. organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany – sequence: 23 givenname: Matteo surname: Villa fullname: Villa, Matteo organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany – sequence: 24 givenname: Mauro surname: Corrado fullname: Corrado, Mauro organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany – sequence: 25 givenname: David E. surname: Sanin fullname: Sanin, David E. organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany – sequence: 26 givenname: Jing surname: Qiu fullname: Qiu, Jing organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany – sequence: 27 givenname: Nora surname: Pällman fullname: Pällman, Nora organization: Division of Haematology, University Hospital Zurich and University of Zurich, Zurich 8091, Switzerland – sequence: 28 givenname: Katelyn surname: Paz fullname: Paz, Katelyn organization: Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA – sequence: 29 givenname: Maria Elena surname: Maccari fullname: Maccari, Maria Elena organization: Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Center for Pediatrics, and Faculty of Medicine, Medical Center - University of Freiburg, Freiburg 79106, Germany – sequence: 30 givenname: Bruce R. surname: Blazar fullname: Blazar, Bruce R. organization: Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA – sequence: 31 givenname: Gerhard surname: Mittler fullname: Mittler, Gerhard organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany – sequence: 32 givenname: Joerg M. surname: Buescher fullname: Buescher, Joerg M. organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany – sequence: 33 givenname: Dietmar surname: Zehn fullname: Zehn, Dietmar organization: Department of Animal Physiology and Immunology, Technical University of Munich, Freising, Germany – sequence: 34 givenname: Sabine surname: Rospert fullname: Rospert, Sabine organization: Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg 79104, Germany – sequence: 35 givenname: Edward J. surname: Pearce fullname: Pearce, Edward J. organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany – sequence: 36 givenname: Stefan surname: Balabanov fullname: Balabanov, Stefan organization: Division of Haematology, University Hospital Zurich and University of Zurich, Zurich 8091, Switzerland – sequence: 37 givenname: Erika L. surname: Pearce fullname: Pearce, Erika L. email: pearce@ie-freiburg.mpg.de organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31130465$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtr3DAUhUVJaB7tH-iieNmNXT0sW4ZSGELSBDIklHZbIcvXGQ225ErywPz7ypk0tFlkIwnud84V55yhI-ssIPSB4IJgUn3eFnqEWFBMmgLzAmP2Bp2ShtG8Lik-Sm_OcV4SRk7QWQjbBFSsYW_RCSOE4bLip-jXvRv2ajQWQqZsl8HNFV9l1_tpDsaqaJzN1q6bBxUhW5vo9MbZzhs1ZN8hTMYfkEW5Vtq7aaMeIFvpaHaPk3fouFdDgPdP9zn6eXX54-I6v737dnOxus01pyTmtK1BYF41Pa25qkDTtmxETfq27lTXQ0tq2vaU8OVoa9VrDj3rQLSYC1Fjdo6-HnynuR2h02CjV4OcvBmV30unjPx_Ys1GPridrCohBBXJ4NOTgXe_ZwhRjiZoGAZlwc1BUsooobSkLKEf_931vORvqAmgByAFEoKH_hkhWC7Nya1cmpNLcxJzmYpJIvFCpE18zDD91wyvS78cpJAS3hnwMmgDVkNnPOgoO2dek_8BpeC2kA |
CitedBy_id | crossref_primary_10_1302_2046_3758_142_BJR_2024_0288_R1 crossref_primary_10_1016_j_isci_2024_109789 crossref_primary_10_1016_j_cell_2021_06_007 crossref_primary_10_1016_j_cmet_2020_02_005 crossref_primary_10_1152_ajpcell_00074_2024 crossref_primary_10_1111_imr_12858 crossref_primary_10_3389_fimmu_2023_1230772 crossref_primary_10_1016_j_cmet_2020_06_010 crossref_primary_10_1016_j_exer_2025_110360 crossref_primary_10_1038_s41423_021_00783_9 crossref_primary_10_1016_j_intimp_2022_108702 crossref_primary_10_1038_s44318_025_00379_3 crossref_primary_10_1016_j_intimp_2024_111544 crossref_primary_10_1038_s41389_020_00271_1 crossref_primary_10_26508_lsa_202302339 crossref_primary_10_1016_j_abb_2020_108587 crossref_primary_10_1016_j_coi_2020_10_012 crossref_primary_10_1016_j_jff_2020_104064 crossref_primary_10_3389_fimmu_2021_798156 crossref_primary_10_1111_febs_15715 crossref_primary_10_1111_imr_12848 crossref_primary_10_3389_fcimb_2022_960138 crossref_primary_10_1126_science_abj3510 crossref_primary_10_1007_s12013_024_01231_x crossref_primary_10_1016_j_ebiom_2020_102964 crossref_primary_10_1083_jcb_202404094 crossref_primary_10_3390_medsci9020044 crossref_primary_10_3390_ijms22010219 crossref_primary_10_1093_intimm_dxaa019 crossref_primary_10_1038_s41419_023_06109_z crossref_primary_10_1038_s41467_022_33015_3 crossref_primary_10_1126_sciadv_adq0355 crossref_primary_10_1182_blood_2021013244 crossref_primary_10_3389_fphar_2021_794298 crossref_primary_10_3390_cells11050896 crossref_primary_10_1016_j_nfs_2020_06_001 crossref_primary_10_1002_JLB_3MR0422_665R crossref_primary_10_1158_1535_7163_MCT_19_1116 crossref_primary_10_1002_eji_202048784 crossref_primary_10_1016_j_tcb_2020_02_005 crossref_primary_10_1038_s42003_025_07921_3 crossref_primary_10_3389_fimmu_2022_935692 crossref_primary_10_1016_j_isci_2024_111525 crossref_primary_10_1038_s41467_021_22212_1 crossref_primary_10_3390_ani14162438 crossref_primary_10_1038_s41598_021_92332_7 crossref_primary_10_3390_ijms232112972 crossref_primary_10_1016_j_biopha_2023_115440 crossref_primary_10_3390_biomedicines10081800 crossref_primary_10_1002_advs_202205692 crossref_primary_10_1681_ASN_2021121548 crossref_primary_10_3389_fimmu_2023_1344697 crossref_primary_10_1242_bio_059647 crossref_primary_10_1016_j_mam_2020_100922 crossref_primary_10_1016_j_mucimm_2023_08_004 crossref_primary_10_7554_eLife_65487 crossref_primary_10_1016_j_cmet_2021_07_017 crossref_primary_10_1186_s12974_020_01955_6 crossref_primary_10_3390_ijms25020996 crossref_primary_10_1038_s41421_024_00712_w crossref_primary_10_1111_febs_16465 crossref_primary_10_1038_s41467_023_36163_2 crossref_primary_10_1016_j_cmet_2024_07_022 crossref_primary_10_1016_j_jbc_2021_100904 crossref_primary_10_1038_s41467_021_24007_w crossref_primary_10_1016_j_immuni_2023_09_012 crossref_primary_10_1038_s41467_021_21617_2 crossref_primary_10_1038_s41467_022_35252_y crossref_primary_10_1007_s00726_021_03120_6 crossref_primary_10_1016_j_theriogenology_2024_03_002 crossref_primary_10_1038_s41586_024_07840_z crossref_primary_10_1126_sciadv_abc4275 crossref_primary_10_3390_biom10040628 crossref_primary_10_1016_j_chembiol_2024_02_001 crossref_primary_10_1371_journal_pbio_3000808 crossref_primary_10_1038_s43587_022_00322_9 crossref_primary_10_26508_lsa_202201715 crossref_primary_10_1016_j_phrs_2024_107453 crossref_primary_10_1038_s41419_024_06720_8 crossref_primary_10_1002_eji_202350476 crossref_primary_10_3390_ijms22136883 crossref_primary_10_1093_pnasnexus_pgac086 crossref_primary_10_1038_s41586_022_05111_3 crossref_primary_10_1172_JCI141964 crossref_primary_10_1146_annurev_biochem_071322_021330 crossref_primary_10_1021_acsmedchemlett_0c00331 crossref_primary_10_18632_aging_103035 crossref_primary_10_1016_j_fgb_2023_103792 crossref_primary_10_2147_IDR_S262024 crossref_primary_10_3390_ijms25158171 crossref_primary_10_3390_ijms23031284 crossref_primary_10_1038_s41467_022_32788_x crossref_primary_10_1242_jcs_253781 crossref_primary_10_7554_eLife_57950 crossref_primary_10_1007_s00281_024_01035_4 crossref_primary_10_1080_19490976_2023_2203968 crossref_primary_10_1016_j_jmb_2022_167564 crossref_primary_10_1021_acsinfecdis_3c00669 crossref_primary_10_1016_j_molcel_2019_08_005 crossref_primary_10_7554_eLife_69015 crossref_primary_10_3390_nu12010197 crossref_primary_10_1186_s12943_024_02031_w crossref_primary_10_3389_fcimb_2022_990889 crossref_primary_10_3390_ijms242015330 crossref_primary_10_1111_eci_14138 crossref_primary_10_1186_s13395_020_00249_y crossref_primary_10_2337_db24_0501 crossref_primary_10_1007_s11306_020_01755_2 crossref_primary_10_3389_fimmu_2021_665782 crossref_primary_10_1002_advs_202402450 crossref_primary_10_1016_j_nbd_2021_105289 crossref_primary_10_1042_BST20221035 crossref_primary_10_3390_metabo12040344 crossref_primary_10_1016_j_immuni_2020_09_014 crossref_primary_10_1038_s12276_024_01214_1 crossref_primary_10_1016_j_celrep_2023_112424 crossref_primary_10_1371_journal_ppat_1009198 crossref_primary_10_1200_JCO_23_01783 crossref_primary_10_1242_jcs_252767 crossref_primary_10_1016_j_cellsig_2023_110901 crossref_primary_10_1615_CritRevOncog_2024053830 crossref_primary_10_1242_dmm_043208 crossref_primary_10_1007_s11883_024_01229_z crossref_primary_10_1016_j_smim_2021_101526 crossref_primary_10_1016_j_intimp_2023_110583 crossref_primary_10_3390_metabo11010012 crossref_primary_10_1172_JCI177824 crossref_primary_10_3389_fimmu_2022_937331 crossref_primary_10_3389_fimmu_2022_912279 crossref_primary_10_3389_fimmu_2020_00910 crossref_primary_10_1038_s41419_021_03577_z crossref_primary_10_1186_s10020_022_00533_1 crossref_primary_10_1038_s41467_024_54838_2 crossref_primary_10_1016_j_bbamcr_2022_119354 crossref_primary_10_1038_s41423_021_00791_9 crossref_primary_10_1038_s41577_024_01098_2 crossref_primary_10_1016_j_ejphar_2024_176804 crossref_primary_10_1128_aem_02037_21 crossref_primary_10_1007_s00281_022_00965_1 crossref_primary_10_1186_s12935_020_01226_7 crossref_primary_10_1007_s00726_020_02843_2 crossref_primary_10_1021_acs_jmedchem_9b01979 crossref_primary_10_15252_embr_202153251 crossref_primary_10_3390_cells12030409 crossref_primary_10_1016_j_molcel_2019_09_003 crossref_primary_10_1161_CIRCRESAHA_119_315939 crossref_primary_10_1093_hmg_ddaa047 crossref_primary_10_1126_sciadv_abc8929 crossref_primary_10_1158_2767_9764_CRC_22_0061 crossref_primary_10_20900_immunometab20210017 crossref_primary_10_1016_j_tcb_2022_03_006 crossref_primary_10_20900_immunometab20210018 crossref_primary_10_3390_plants10071261 crossref_primary_10_1186_s12915_024_01892_3 crossref_primary_10_1186_s40170_025_00384_4 crossref_primary_10_1016_j_celrep_2021_108985 crossref_primary_10_1038_s41467_021_21053_2 crossref_primary_10_1161_CIRCULATIONAHA_120_052788 crossref_primary_10_12677_acm_2025_151131 crossref_primary_10_1002_1873_3468_14474 crossref_primary_10_1016_j_mam_2019_100838 crossref_primary_10_1186_s13578_021_00733_y crossref_primary_10_1186_s13024_022_00548_6 crossref_primary_10_3390_ijms26062753 crossref_primary_10_3390_ijms222011131 crossref_primary_10_3389_fcell_2021_747377 crossref_primary_10_1016_j_it_2020_09_007 crossref_primary_10_3389_fimmu_2025_1529337 crossref_primary_10_3390_medsci10020031 crossref_primary_10_1007_s11357_020_00310_0 crossref_primary_10_1186_s13048_024_01427_y crossref_primary_10_3390_biom13091329 crossref_primary_10_1177_0271678X20928882 crossref_primary_10_1002_mnfr_202100315 crossref_primary_10_3390_jcdd10020052 crossref_primary_10_4049_immunohorizons_2200097 crossref_primary_10_1002_advs_202306515 crossref_primary_10_1016_j_bbamcr_2024_119849 crossref_primary_10_1002_1873_3468_14366 crossref_primary_10_1002_1878_0261_13691 crossref_primary_10_1038_s41598_024_74728_3 crossref_primary_10_4110_in_2023_23_e6 crossref_primary_10_1159_000533296 crossref_primary_10_1164_rccm_202305_0909OC crossref_primary_10_3389_fimmu_2022_780839 crossref_primary_10_1016_j_molcel_2024_01_002 crossref_primary_10_15252_embj_2021109823 crossref_primary_10_1111_imr_13230 crossref_primary_10_47853_FAS_2023_e11 crossref_primary_10_1080_15257770_2024_2308522 crossref_primary_10_1038_s41467_024_51901_w crossref_primary_10_1172_JCI175445 crossref_primary_10_1016_j_cell_2021_07_012 crossref_primary_10_1007_s11427_023_2305_0 crossref_primary_10_31083_j_fbl2901026 crossref_primary_10_3390_cancers13164054 crossref_primary_10_3389_fmicb_2024_1359188 crossref_primary_10_3934_molsci_2021015 crossref_primary_10_3390_math11081795 crossref_primary_10_1016_j_isci_2019_100807 crossref_primary_10_1002_jcb_29884 crossref_primary_10_1038_s41531_023_00531_y crossref_primary_10_1016_j_celrep_2023_113661 crossref_primary_10_1016_j_tem_2024_05_008 crossref_primary_10_1016_j_immuni_2023_03_007 crossref_primary_10_1038_s41568_021_00380_y crossref_primary_10_3390_ijms24098358 crossref_primary_10_1016_j_cmet_2020_01_001 crossref_primary_10_3389_fphys_2023_1145233 crossref_primary_10_3390_metabo11030160 crossref_primary_10_1016_j_cmet_2021_08_003 crossref_primary_10_1158_2643_3230_BCD_22_0162 crossref_primary_10_1016_j_celrep_2021_108941 crossref_primary_10_1186_s10020_025_01099_4 crossref_primary_10_1016_j_biomaterials_2022_121973 crossref_primary_10_1016_j_cellsig_2024_111580 crossref_primary_10_1016_j_cmet_2021_08_001 crossref_primary_10_1111_imr_13214 crossref_primary_10_1016_j_oor_2023_100123 crossref_primary_10_1016_j_celrep_2021_110222 crossref_primary_10_1016_j_mehy_2022_110841 crossref_primary_10_1111_ajt_15994 crossref_primary_10_1016_j_celrep_2020_108510 crossref_primary_10_1038_s42255_024_01015_w crossref_primary_10_1051_medsci_2021068 crossref_primary_10_1016_j_tcb_2023_08_002 crossref_primary_10_1016_j_ccell_2024_01_002 crossref_primary_10_1016_j_ccell_2024_01_003 crossref_primary_10_1016_j_arr_2023_101993 crossref_primary_10_3390_pharmaceutics14061215 crossref_primary_10_3390_cells9010161 |
Cites_doi | 10.1016/j.cmet.2006.05.011 10.1371/journal.ppat.1000371 10.1074/jbc.270.15.8660 10.1021/pr500218f 10.1038/ni.3421 10.1158/0008-5472.CAN-04-0465 10.1038/nmeth.2834 10.15252/embr.201846072 10.1016/j.bbagrm.2015.05.002 10.1016/S0021-9258(17)41723-6 10.1073/pnas.1518000113 10.1016/j.cell.2017.04.004 10.1073/pnas.1008150108 10.1073/pnas.78.5.2869 10.1016/j.cmet.2018.06.001 10.1038/ni.2956 10.1038/ni.3314 10.1074/jbc.M115.664490 10.1016/j.celrep.2016.09.008 10.1016/j.molcel.2013.04.021 10.1016/j.cub.2018.01.004 10.1016/j.cell.2015.08.016 10.1371/journal.pone.0043468 10.1021/pr3000249 10.1681/ASN.2016010012 10.1016/S0021-9258(18)48472-4 10.1006/geno.2000.6418 10.1128/MCB.00986-10 10.1038/nature08034 10.1038/nmeth.3901 10.1371/journal.pbio.1001508 10.1002/jcp.25370 10.1016/j.cell.2016.01.003 10.1038/nbt.1511 10.1016/j.molcel.2017.03.003 10.1038/nature11986 10.1074/jbc.R116.731661 10.1016/j.immuni.2011.09.021 10.1073/pnas.91.23.10829 10.1038/nrd2243 10.1074/mcp.M113.031591 10.1091/mbc.e07-05-0487 10.1126/science.1204351 10.1080/10409230902882090 10.1002/eji.200838283 10.1093/nar/gkx479 10.1186/1471-2164-16-S10-S5 10.1189/jlb.0213084 10.1016/j.jmb.2015.06.020 10.1186/2193-1801-2-421 10.1007/PL00000852 10.1021/pr101065j 10.1007/s00726-016-2275-3 10.1016/S0021-9258(17)35750-2 10.1038/ncb1975 10.1016/j.copbio.2015.02.003 10.1002/jcp.21655 |
ContentType | Journal Article |
Copyright | 2019 The Authors Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved. 2019 The Authors 2019 |
Copyright_xml | – notice: 2019 The Authors – notice: Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved. – notice: 2019 The Authors 2019 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.cmet.2019.05.003 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1932-7420 |
EndPage | 363.e8 |
ExternalDocumentID | PMC6688828 31130465 10_1016_j_cmet_2019_05_003 S1550413119302438 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI053825 – fundername: NHLBI NIH HHS grantid: R01 HL118979 – fundername: Wellcome Trust grantid: 201330/Z/16/Z – fundername: NHLBI NIH HHS grantid: R01 HL056067 – fundername: NIAID NIH HHS grantid: R01 AI110481 |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 53G 5GY 62- 6I. 6J9 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HVGLF IHE IXB J1W JIG M3Z M41 O-L O9- OK1 P2P RCE RIG ROL RPZ SES SSZ TR2 UNMZH WQ6 ZA5 AAEDT AAIKJ AAMRU AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AGHFR AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION HZ~ OZT CGR CUY CVF ECM EIF NPM 7X8 5PM EFKBS |
ID | FETCH-LOGICAL-c521t-2b7e80569f275a6ec2b49871fb7dadfeb172bf215bf21b7afc5ef3de8b0588703 |
IEDL.DBID | IXB |
ISSN | 1550-4131 1932-7420 |
IngestDate | Thu Aug 21 18:19:32 EDT 2025 Fri Jul 11 00:54:33 EDT 2025 Thu Apr 03 07:08:11 EDT 2025 Tue Jul 01 03:58:18 EDT 2025 Thu Apr 24 22:51:22 EDT 2025 Fri Feb 23 02:48:35 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | hypusination immunometabolism deoxyhypusine hydroxylase metabolism macrophage activation deoxyhypusine synthase polyamines eIF5A |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-2b7e80569f275a6ec2b49871fb7dadfeb172bf215bf21b7afc5ef3de8b0588703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact These authors contributed equally |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1550413119302438 |
PMID | 31130465 |
PQID | 2232122423 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6688828 proquest_miscellaneous_2232122423 pubmed_primary_31130465 crossref_primary_10_1016_j_cmet_2019_05_003 crossref_citationtrail_10_1016_j_cmet_2019_05_003 elsevier_sciencedirect_doi_10_1016_j_cmet_2019_05_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-06 |
PublicationDateYYYYMMDD | 2019-08-06 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell metabolism |
PublicationTitleAlternate | Cell Metab |
PublicationYear | 2019 |
Publisher | Elsevier Inc Cell Press |
Publisher_xml | – name: Elsevier Inc – name: Cell Press |
References | Pegg (bib39) 2016; 291 Poulin, Lu, Ackermann, Bey, Pegg (bib44) 1992; 267 Casero, Marton (bib7) 2007; 6 Hoque, Hanauske-Abel, Palumbo, Saxena, Gandolfi, Pe'ery, Mathews, Park (bib19) 2009 Pereira, Tamborlin, Meneguello, de Proença, Almeida, Lourenço, Luchessi (bib41) 2016; 231 Pelechano, Alepuz (bib40) 2017; 45 Buescher, Antoniewicz, Boros, Burgess, Brunengraber, Clish, DeBerardinis, Feron, Frezza, Ghesquiere (bib6) 2015; 34 Van den Bossche, Baardman, Otto, van der Velden, Neele, van den Berg, Luque-Martin, Chen, Boshuizen, Ahmed (bib54) 2016; 17 Jenkins, Hååg, Johansson (bib24) 2001; 71 Preukschas, Hagel, Schulte, Weber, Lamszus, Sievert, Pällmann, Bokemeyer, Hauber, Braig (bib45) 2012; 7 Nakanishi, Cleveland (bib35) 2016; 48 Park, Cooper, Folk (bib38) 1981; 78 Huang, Everts, Ivanova, O’Sullivan, Nascimento, Smith, Beatty, Love-Gregory, Lam, O'Neil (bib20) 2014; 15 Kelstrup, Young, Lavallee, Nielsen, Olsen (bib27) 2012; 11 Pesce, Ramalingam, Mentink-Kane, Wilson, El Kasmi, Smith, Thompson, Cheever, Murray, Wynn (bib42) 2009; 5 Thomas, Thomas (bib52) 2001; 58 Kelly, Vanslyke, Musil (bib26) 2007; 18 Hukelmann, Anderson, Sinclair, Grzes, Murillo, Hawkins, Stephens, Lamond, Cantrell (bib21) 2016; 17 Miller-Fleming, Olin-Sandoval, Campbell, Ralser (bib33) 2015; 427 Liu, Lu, Martinez, Bi, Lian, Wang, Milasta, Wang, Yang, Liu (bib29) 2016; 113 Bando, Nussbaum, Liang, Locksley (bib3) 2013; 94 Henderson, Hershey (bib17) 2011; 108 Charneski, Hurst (bib9) 2013; 11 Divakaruni, Hsieh, Minarrieta, Duong, Kim, Desousa, Andreyev, Bowman, Caradonna, Dranka (bib13) 2018; 28 Nishiki, Farb, Friedrich, Bokvist, Mirmira, Maier (bib36) 2013; 2 Kang, Hershey (bib25) 1994; 269 Jaiswal, Conz, Otto, Wölfle, Fitzke, Mayer, Rospert (bib22) 2011; 31 Engelke, Riede, Hegermann, Wuerch, Eimer, Dengjel, Mittler (bib15) 2014; 13 Melis, Rubera, Cougnon, Giraud, Mograbi, Belaid, Pisani, Huber, Lacas-Gervais, Fragaki (bib32) 2017; 28 Tyanova, Temu, Sinitcyn, Carlson, Hein, Geiger, Mann, Cox (bib53) 2016; 13 Vats, Mukundan, Odegaard, Zhang, Smith, Morel, Wagner, Greaves, Murray, Chawla (bib56) 2006; 4 Cox, Neuhauser, Michalski, Scheltema, Olsen, Mann (bib12) 2011; 10 Schuller, Wu, Dever, Buskirk, Green (bib49) 2017; 66 Tannahill, Curtis, Adamik, Palsson-McDermott, McGettrick, Goel, Frezza, Bernard, Kelly, Foley (bib51) 2013; 496 Gutierrez, Shin, Woolstenhulme, Kim, Saini, Buskirk, Dever (bib16) 2013; 51 Saini, Eyler, Green, Dever (bib48) 2009; 459 Buck, Sowell, Kaech, Pearce (bib5) 2017; 169 Cox, Hein, Luber, Paron, Nagaraj, Mann (bib10) 2014; 13 Heyer, Moore (bib18) 2016; 164 Monticelli, Buck, Flamar, Saenz, Tait Wojno, Yudanin, Osborne, Hepworth, Tran, Rodewald (bib34) 2016; 17 Pällmann, Braig, Sievert, Preukschas, Hermans-Borgmeyer, Schweizer, Nagel, Neumann, Wild, Haralambieva (bib37) 2015; 290 Sabi, Tuller (bib47) 2015; 16 Eisenberg, Knauer, Schauer, Büttner, Ruckenstuhl, Carmona-Gutierrez, Ring, Schroeder, Magnes, Antonacci (bib14) 2009; 11 Bevec, Klier, Holter, Tschachler, Valent, Lottspeich, Baumruker, Hauber (bib4) 1994; 91 Chang, Qiu, O’Sullivan, Buck, Noguchi, Curtis, Chen, Gindin, Gubin, van der Windt (bib8) 2015; 162 Cox, Mann (bib11) 2008; 26 Kulak, Pichler, Paron, Nagaraj, Mann (bib28) 2014; 11 Mathews, Hershey (bib31) 2015; 1849 Wang, Dillon, Shi, Milasta, Carter, Finkelstein, McCormick, Fitzgerald, Chi, Munger (bib57) 2011; 35 Rodríguez, Quiceno, Zabaleta, Ortiz, Zea, Piazuelo, Delgado, Correa, Brayer, Sotomayor (bib46) 2004; 64 Abbruzzese, Park, Folk (bib1) 1986; 261 Stanić, Facchini, Borzì, Stefanelli, Flamigni (bib50) 2009; 219 Lubas, Harder, Kumsta, Tiessen, Hansen, Andersen, Lund, Frankel (bib30) 2018; 19 Wolff, Lee, Chung, Folk, Park (bib58) 1995; 270 Jenkins, Ruckerl, Cook, Jones, Finkelman, Van Rooijen, MacDonald, Allen (bib23) 2011; 332 Pickles, Vigié, Youle (bib43) 2018; 28 Van Der Kelen, Beyaert, Inzé, De Veylder (bib55) 2009; 44 Arpa, Valledor, Lloberas, Celada (bib2) 2009; 39 Mathews (10.1016/j.cmet.2019.05.003_bib31) 2015; 1849 Heyer (10.1016/j.cmet.2019.05.003_bib18) 2016; 164 Kulak (10.1016/j.cmet.2019.05.003_bib28) 2014; 11 Pickles (10.1016/j.cmet.2019.05.003_bib43) 2018; 28 Van den Bossche (10.1016/j.cmet.2019.05.003_bib54) 2016; 17 Casero (10.1016/j.cmet.2019.05.003_bib7) 2007; 6 Jaiswal (10.1016/j.cmet.2019.05.003_bib22) 2011; 31 Thomas (10.1016/j.cmet.2019.05.003_bib52) 2001; 58 Kelstrup (10.1016/j.cmet.2019.05.003_bib27) 2012; 11 Arpa (10.1016/j.cmet.2019.05.003_bib2) 2009; 39 Tannahill (10.1016/j.cmet.2019.05.003_bib51) 2013; 496 Poulin (10.1016/j.cmet.2019.05.003_bib44) 1992; 267 Saini (10.1016/j.cmet.2019.05.003_bib48) 2009; 459 Buck (10.1016/j.cmet.2019.05.003_bib5) 2017; 169 Melis (10.1016/j.cmet.2019.05.003_bib32) 2017; 28 Pällmann (10.1016/j.cmet.2019.05.003_bib37) 2015; 290 Preukschas (10.1016/j.cmet.2019.05.003_bib45) 2012; 7 Jenkins (10.1016/j.cmet.2019.05.003_bib23) 2011; 332 Sabi (10.1016/j.cmet.2019.05.003_bib47) 2015; 16 Vats (10.1016/j.cmet.2019.05.003_bib56) 2006; 4 Van Der Kelen (10.1016/j.cmet.2019.05.003_bib55) 2009; 44 Pereira (10.1016/j.cmet.2019.05.003_bib41) 2016; 231 Hoque (10.1016/j.cmet.2019.05.003_bib19) 2009 Liu (10.1016/j.cmet.2019.05.003_bib29) 2016; 113 Stanić (10.1016/j.cmet.2019.05.003_bib50) 2009; 219 Jenkins (10.1016/j.cmet.2019.05.003_bib24) 2001; 71 Gutierrez (10.1016/j.cmet.2019.05.003_bib16) 2013; 51 Pesce (10.1016/j.cmet.2019.05.003_bib42) 2009; 5 Cox (10.1016/j.cmet.2019.05.003_bib10) 2014; 13 Nishiki (10.1016/j.cmet.2019.05.003_bib36) 2013; 2 Schuller (10.1016/j.cmet.2019.05.003_bib49) 2017; 66 Engelke (10.1016/j.cmet.2019.05.003_bib15) 2014; 13 Pegg (10.1016/j.cmet.2019.05.003_bib39) 2016; 291 Bevec (10.1016/j.cmet.2019.05.003_bib4) 1994; 91 Eisenberg (10.1016/j.cmet.2019.05.003_bib14) 2009; 11 Buescher (10.1016/j.cmet.2019.05.003_bib6) 2015; 34 Miller-Fleming (10.1016/j.cmet.2019.05.003_bib33) 2015; 427 Tyanova (10.1016/j.cmet.2019.05.003_bib53) 2016; 13 Cox (10.1016/j.cmet.2019.05.003_bib11) 2008; 26 Lubas (10.1016/j.cmet.2019.05.003_bib30) 2018; 19 Kang (10.1016/j.cmet.2019.05.003_bib25) 1994; 269 Cox (10.1016/j.cmet.2019.05.003_bib12) 2011; 10 Chang (10.1016/j.cmet.2019.05.003_bib8) 2015; 162 Charneski (10.1016/j.cmet.2019.05.003_bib9) 2013; 11 Nakanishi (10.1016/j.cmet.2019.05.003_bib35) 2016; 48 Wang (10.1016/j.cmet.2019.05.003_bib57) 2011; 35 Wolff (10.1016/j.cmet.2019.05.003_bib58) 1995; 270 Abbruzzese (10.1016/j.cmet.2019.05.003_bib1) 1986; 261 Divakaruni (10.1016/j.cmet.2019.05.003_bib13) 2018; 28 Henderson (10.1016/j.cmet.2019.05.003_bib17) 2011; 108 Huang (10.1016/j.cmet.2019.05.003_bib20) 2014; 15 Rodríguez (10.1016/j.cmet.2019.05.003_bib46) 2004; 64 Kelly (10.1016/j.cmet.2019.05.003_bib26) 2007; 18 Pelechano (10.1016/j.cmet.2019.05.003_bib40) 2017; 45 Park (10.1016/j.cmet.2019.05.003_bib38) 1981; 78 Bando (10.1016/j.cmet.2019.05.003_bib3) 2013; 94 Monticelli (10.1016/j.cmet.2019.05.003_bib34) 2016; 17 Hukelmann (10.1016/j.cmet.2019.05.003_bib21) 2016; 17 |
References_xml | – volume: 5 start-page: e1000371 year: 2009 ident: bib42 article-title: Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis publication-title: PLoS Pathog. – volume: 290 start-page: 18343 year: 2015 end-page: 18360 ident: bib37 article-title: Biological relevance and therapeutic potential of the hypusine modification system publication-title: J. Biol. Chem. – volume: 219 start-page: 109 year: 2009 end-page: 116 ident: bib50 article-title: The polyamine analogue N1,N11-diethylnorspermine can induce chondrocyte apoptosis independently of its ability to alter metabolism and levels of natural polyamines publication-title: J. Cell. Physiol. – volume: 332 start-page: 1284 year: 2011 end-page: 1288 ident: bib23 article-title: Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation publication-title: Science – volume: 231 start-page: 2682 year: 2016 end-page: 2689 ident: bib41 article-title: Alternative start codon connects eIF5A to mitochondria publication-title: J. Cell. Physiol. – volume: 16 year: 2015 ident: bib47 article-title: A comparative genomics study on the effect of individual amino acids on ribosome stalling publication-title: BMC Genomics – volume: 291 start-page: 14904 year: 2016 end-page: 14912 ident: bib39 article-title: Functions of polyamines in mammals publication-title: J. Biol. Chem. – volume: 459 start-page: 118 year: 2009 end-page: 121 ident: bib48 article-title: Hypusine-containing protein eIF5A promotes translation elongation publication-title: Nature – volume: 4 start-page: 13 year: 2006 end-page: 24 ident: bib56 article-title: Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation publication-title: Cell Metab. – volume: 58 start-page: 244 year: 2001 end-page: 258 ident: bib52 article-title: Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications publication-title: Cell. Mol. Life Sci. – volume: 427 start-page: 3389 year: 2015 end-page: 3406 ident: bib33 article-title: Remaining mysteries of molecular biology: the role of polyamines in the cell publication-title: J. Mol. Biol. – volume: 44 start-page: 143 year: 2009 end-page: 168 ident: bib55 article-title: Translational control of eukaryotic gene expression publication-title: Crit. Rev. Biochem. Mol. Biol. – volume: 18 start-page: 4279 year: 2007 end-page: 4291 ident: bib26 article-title: Regulation of ubiquitin-proteasome system mediated degradation by cytosolic stress publication-title: Mol. Biol. Cell – volume: 34 start-page: 189 year: 2015 end-page: 201 ident: bib6 article-title: A roadmap for interpreting (13) C metabolite labeling patterns from cells publication-title: Curr. Opin. Biotechnol. – volume: 169 start-page: 570 year: 2017 end-page: 586 ident: bib5 article-title: Metabolic instruction of immunity publication-title: Cell – volume: 66 start-page: 194 year: 2017 end-page: 205.e5 ident: bib49 article-title: eIF5A functions globally in translation elongation and termination publication-title: Mol. Cell – volume: 31 start-page: 1160 year: 2011 end-page: 1173 ident: bib22 article-title: The chaperone network connected to human ribosome-associated complex publication-title: Mol. Cell. Biol. – volume: 113 start-page: 1564 year: 2016 end-page: 1569 ident: bib29 article-title: Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1α-dependent publication-title: Proc. Natl. Acad. Sci. USA – volume: 35 start-page: 871 year: 2011 end-page: 882 ident: bib57 article-title: The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation publication-title: Immunity – volume: 17 start-page: 684 year: 2016 end-page: 696 ident: bib54 article-title: Mitochondrial dysfunction prevents repolarization of inflammatory macrophages publication-title: Cell Rep. – volume: 48 start-page: 2353 year: 2016 end-page: 2362 ident: bib35 article-title: Targeting the polyamine-hypusine circuit for the prevention and treatment of cancer publication-title: Amino Acids – volume: 28 start-page: R170 year: 2018 end-page: R185 ident: bib43 article-title: Mitophagy and quality control mechanisms in mitochondrial maintenance publication-title: Curr. Biol. – volume: 45 start-page: 7326 year: 2017 end-page: 7338 ident: bib40 article-title: eIF5A facilitates translation termination globally and promotes the elongation of many non polyproline-specific tripeptide sequences publication-title: Nucleic Acids Res. – volume: 11 start-page: 1305 year: 2009 end-page: 1314 ident: bib14 article-title: Induction of autophagy by spermidine promotes longevity publication-title: Nat. Cell Biol. – volume: 496 start-page: 238 year: 2013 end-page: 242 ident: bib51 article-title: Succinate is an inflammatory signal that induces IL-1β through HIF-1α publication-title: Nature – volume: 10 start-page: 1794 year: 2011 end-page: 1805 ident: bib12 article-title: Andromeda: a peptide search engine integrated into the MaxQuant environment publication-title: J. Proteome Res. – volume: 19 start-page: e46072 year: 2018 ident: bib30 article-title: eIF5A is required for autophagy by mediating ATG3 translation publication-title: EMBO Rep. – volume: 26 start-page: 1367 year: 2008 end-page: 1372 ident: bib11 article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification publication-title: Nat. Biotechnol. – volume: 6 start-page: 373 year: 2007 end-page: 390 ident: bib7 article-title: Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases publication-title: Nat. Rev. Drug Discov. – volume: 11 start-page: 3487 year: 2012 end-page: 3497 ident: bib27 article-title: Optimized fast and sensitive acquisition methods for shotgun proteomics on a quadrupole Orbitrap mass spectrometer publication-title: J. Proteome Res. – volume: 64 start-page: 5839 year: 2004 end-page: 5849 ident: bib46 article-title: Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses publication-title: Cancer Res. – start-page: 6 year: 2009 end-page: 90 ident: bib19 article-title: Inhibition of HIV-1 gene expression by Ciclopirox and Deferiprone, drugs that prevent hypusination of eukaryotic initiation factor 5A publication-title: Retrovirology – volume: 164 start-page: 757 year: 2016 end-page: 769 ident: bib18 article-title: Redefining the translational status of 80S monosomes publication-title: Cell – volume: 78 start-page: 2869 year: 1981 end-page: 2873 ident: bib38 article-title: Identification of hypusine, an unusual amino-acid, in a protein from human-lymphocytes and of spermidine as its biosynthetic precursor publication-title: Proc. Natl. Acad. Sci. USA – volume: 94 start-page: 877 year: 2013 end-page: 884 ident: bib3 article-title: Type 2 innate lymphoid cells constitutively express arginase-I in the naive and inflamed lung publication-title: J. Leukoc. Biol. – volume: 11 start-page: e1001508 year: 2013 ident: bib9 article-title: Positively charged residues are the major determinants of ribosomal velocity publication-title: PLoS Biol. – volume: 108 start-page: 6415 year: 2011 end-page: 6419 ident: bib17 article-title: Eukaryotic translation initiation factor (eIF) 5A stimulates protein synthesis in Saccharomyces cerevisiae publication-title: Proc. Natl. Acad. Sci. USA – volume: 71 start-page: 101 year: 2001 end-page: 109 ident: bib24 article-title: Human EIF5A2 on chromosome 3q25-q27 is a phylogenetically conserved vertebrate variant of eukaryotic translation initiation factor 5A with tissue-specific expression publication-title: Genomics – volume: 28 start-page: 811 year: 2017 end-page: 822 ident: bib32 article-title: Targeting eIF5A hypusination prevents anoxic cell death through mitochondrial silencing and improves kidney transplant outcome publication-title: J. Am. Soc. Nephrol. – volume: 13 start-page: 3940 year: 2014 end-page: 3956 ident: bib15 article-title: The quantitative nuclear matrix proteome as a biochemical snapshot of nuclear organization publication-title: J. Proteome Res. – volume: 51 start-page: 35 year: 2013 end-page: 45 ident: bib16 article-title: eIF5A promotes translation of polyproline motifs publication-title: Mol. Cell – volume: 17 start-page: 104 year: 2016 end-page: 112 ident: bib21 article-title: The cytotoxic T cell proteome and its shaping by the kinase mTOR publication-title: Nat. Immunol. – volume: 15 start-page: 846 year: 2014 end-page: 855 ident: bib20 article-title: Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages publication-title: Nat. Immunol. – volume: 261 start-page: 3085 year: 1986 end-page: 3089 ident: bib1 article-title: Deoxyhypusine hydroxylase from rat testis. Partial purification and characterization publication-title: J. Biol. Chem. – volume: 17 start-page: 656 year: 2016 end-page: 665 ident: bib34 article-title: Arginase 1 is an innate lymphoid-cell-intrinsic metabolic checkpoint controlling type 2 inflammation publication-title: Nat. Immunol. – volume: 270 start-page: 8660 year: 1995 end-page: 8666 ident: bib58 article-title: Deoxyhypusine synthase from rat testis: purification and characterization publication-title: J. Biol. Chem. – volume: 39 start-page: 514 year: 2009 end-page: 526 ident: bib2 article-title: IL-4 blocks M-CSF-dependent macrophage proliferation by inducing p21WAF1 in a STAT6-dependent way publication-title: Eur. J. Immunol. – volume: 2 start-page: 421 year: 2013 ident: bib36 article-title: Characterization of a novel polyclonal anti-hypusine antibody publication-title: SpringerPlus – volume: 162 start-page: 1229 year: 2015 end-page: 1241 ident: bib8 article-title: Metabolic competition in the tumor microenvironment is a driver of cancer progression publication-title: Cell – volume: 91 start-page: 10829 year: 1994 end-page: 10833 ident: bib4 article-title: Induced gene expression of the hypusine-containing protein eukaryotic initiation factor 5A in activated human T lymphocytes publication-title: Proc. Natl. Acad. Sci. USA – volume: 13 start-page: 2513 year: 2014 end-page: 2526 ident: bib10 article-title: Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ publication-title: Mol. Cell Proteomics – volume: 267 start-page: 150 year: 1992 end-page: 158 ident: bib44 article-title: Mechanism of the irreversible inactivation of mouse ornithine decarboxylase by alpha-difluoromethylornithine. Characterization of sequences at the inhibitor and coenzyme binding-sites publication-title: J. Biol. Chem. – volume: 7 start-page: e43468 year: 2012 ident: bib45 article-title: Expression of eukaryotic initiation factor 5A and hypusine forming enzymes in glioblastoma patient samples: implications for new targeted therapies publication-title: PLoS One – volume: 269 start-page: 3934 year: 1994 end-page: 3940 ident: bib25 article-title: Effect of initiation-factor Eif-5a depletion on protein-synthesis and proliferation of Saccharomyces-cerevisiae publication-title: J. Biol. Chem. – volume: 13 start-page: 731 year: 2016 end-page: 740 ident: bib53 article-title: The Perseus computational platform for comprehensive analysis of (prote)omics data publication-title: Nat. Methods – volume: 28 start-page: 490 year: 2018 end-page: 503.e7 ident: bib13 article-title: Etomoxir inhibits macrophage polarization by disrupting CoA homeostasis publication-title: Cell Metab – volume: 11 start-page: 319 year: 2014 end-page: 324 ident: bib28 article-title: Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells publication-title: Nat. Methods – volume: 1849 start-page: 836 year: 2015 end-page: 844 ident: bib31 article-title: The translation factor eIF5A and human cancer publication-title: Biochim. Biophys. Acta – volume: 4 start-page: 13 year: 2006 ident: 10.1016/j.cmet.2019.05.003_bib56 article-title: Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation publication-title: Cell Metab. doi: 10.1016/j.cmet.2006.05.011 – volume: 5 start-page: e1000371 year: 2009 ident: 10.1016/j.cmet.2019.05.003_bib42 article-title: Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1000371 – volume: 270 start-page: 8660 year: 1995 ident: 10.1016/j.cmet.2019.05.003_bib58 article-title: Deoxyhypusine synthase from rat testis: purification and characterization publication-title: J. Biol. Chem. doi: 10.1074/jbc.270.15.8660 – volume: 13 start-page: 3940 year: 2014 ident: 10.1016/j.cmet.2019.05.003_bib15 article-title: The quantitative nuclear matrix proteome as a biochemical snapshot of nuclear organization publication-title: J. Proteome Res. doi: 10.1021/pr500218f – volume: 17 start-page: 656 year: 2016 ident: 10.1016/j.cmet.2019.05.003_bib34 article-title: Arginase 1 is an innate lymphoid-cell-intrinsic metabolic checkpoint controlling type 2 inflammation publication-title: Nat. Immunol. doi: 10.1038/ni.3421 – volume: 64 start-page: 5839 year: 2004 ident: 10.1016/j.cmet.2019.05.003_bib46 article-title: Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-04-0465 – volume: 11 start-page: 319 year: 2014 ident: 10.1016/j.cmet.2019.05.003_bib28 article-title: Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells publication-title: Nat. Methods doi: 10.1038/nmeth.2834 – volume: 19 start-page: e46072 year: 2018 ident: 10.1016/j.cmet.2019.05.003_bib30 article-title: eIF5A is required for autophagy by mediating ATG3 translation publication-title: EMBO Rep. doi: 10.15252/embr.201846072 – volume: 1849 start-page: 836 year: 2015 ident: 10.1016/j.cmet.2019.05.003_bib31 article-title: The translation factor eIF5A and human cancer publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagrm.2015.05.002 – volume: 269 start-page: 3934 year: 1994 ident: 10.1016/j.cmet.2019.05.003_bib25 article-title: Effect of initiation-factor Eif-5a depletion on protein-synthesis and proliferation of Saccharomyces-cerevisiae publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)41723-6 – volume: 113 start-page: 1564 year: 2016 ident: 10.1016/j.cmet.2019.05.003_bib29 article-title: Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1α-dependent publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1518000113 – volume: 169 start-page: 570 year: 2017 ident: 10.1016/j.cmet.2019.05.003_bib5 article-title: Metabolic instruction of immunity publication-title: Cell doi: 10.1016/j.cell.2017.04.004 – volume: 108 start-page: 6415 year: 2011 ident: 10.1016/j.cmet.2019.05.003_bib17 article-title: Eukaryotic translation initiation factor (eIF) 5A stimulates protein synthesis in Saccharomyces cerevisiae publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1008150108 – volume: 78 start-page: 2869 year: 1981 ident: 10.1016/j.cmet.2019.05.003_bib38 article-title: Identification of hypusine, an unusual amino-acid, in a protein from human-lymphocytes and of spermidine as its biosynthetic precursor publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.78.5.2869 – volume: 28 start-page: 490 year: 2018 ident: 10.1016/j.cmet.2019.05.003_bib13 article-title: Etomoxir inhibits macrophage polarization by disrupting CoA homeostasis publication-title: Cell Metab doi: 10.1016/j.cmet.2018.06.001 – volume: 15 start-page: 846 year: 2014 ident: 10.1016/j.cmet.2019.05.003_bib20 article-title: Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages publication-title: Nat. Immunol. doi: 10.1038/ni.2956 – volume: 17 start-page: 104 year: 2016 ident: 10.1016/j.cmet.2019.05.003_bib21 article-title: The cytotoxic T cell proteome and its shaping by the kinase mTOR publication-title: Nat. Immunol. doi: 10.1038/ni.3314 – volume: 290 start-page: 18343 year: 2015 ident: 10.1016/j.cmet.2019.05.003_bib37 article-title: Biological relevance and therapeutic potential of the hypusine modification system publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.664490 – volume: 17 start-page: 684 year: 2016 ident: 10.1016/j.cmet.2019.05.003_bib54 article-title: Mitochondrial dysfunction prevents repolarization of inflammatory macrophages publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.09.008 – volume: 51 start-page: 35 year: 2013 ident: 10.1016/j.cmet.2019.05.003_bib16 article-title: eIF5A promotes translation of polyproline motifs publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.04.021 – volume: 28 start-page: R170 year: 2018 ident: 10.1016/j.cmet.2019.05.003_bib43 article-title: Mitophagy and quality control mechanisms in mitochondrial maintenance publication-title: Curr. Biol. doi: 10.1016/j.cub.2018.01.004 – volume: 162 start-page: 1229 year: 2015 ident: 10.1016/j.cmet.2019.05.003_bib8 article-title: Metabolic competition in the tumor microenvironment is a driver of cancer progression publication-title: Cell doi: 10.1016/j.cell.2015.08.016 – volume: 7 start-page: e43468 year: 2012 ident: 10.1016/j.cmet.2019.05.003_bib45 article-title: Expression of eukaryotic initiation factor 5A and hypusine forming enzymes in glioblastoma patient samples: implications for new targeted therapies publication-title: PLoS One doi: 10.1371/journal.pone.0043468 – volume: 11 start-page: 3487 year: 2012 ident: 10.1016/j.cmet.2019.05.003_bib27 article-title: Optimized fast and sensitive acquisition methods for shotgun proteomics on a quadrupole Orbitrap mass spectrometer publication-title: J. Proteome Res. doi: 10.1021/pr3000249 – volume: 28 start-page: 811 year: 2017 ident: 10.1016/j.cmet.2019.05.003_bib32 article-title: Targeting eIF5A hypusination prevents anoxic cell death through mitochondrial silencing and improves kidney transplant outcome publication-title: J. Am. Soc. Nephrol. doi: 10.1681/ASN.2016010012 – volume: 267 start-page: 150 year: 1992 ident: 10.1016/j.cmet.2019.05.003_bib44 article-title: Mechanism of the irreversible inactivation of mouse ornithine decarboxylase by alpha-difluoromethylornithine. Characterization of sequences at the inhibitor and coenzyme binding-sites publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)48472-4 – volume: 71 start-page: 101 year: 2001 ident: 10.1016/j.cmet.2019.05.003_bib24 article-title: Human EIF5A2 on chromosome 3q25-q27 is a phylogenetically conserved vertebrate variant of eukaryotic translation initiation factor 5A with tissue-specific expression publication-title: Genomics doi: 10.1006/geno.2000.6418 – volume: 31 start-page: 1160 year: 2011 ident: 10.1016/j.cmet.2019.05.003_bib22 article-title: The chaperone network connected to human ribosome-associated complex publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00986-10 – volume: 459 start-page: 118 year: 2009 ident: 10.1016/j.cmet.2019.05.003_bib48 article-title: Hypusine-containing protein eIF5A promotes translation elongation publication-title: Nature doi: 10.1038/nature08034 – volume: 13 start-page: 731 year: 2016 ident: 10.1016/j.cmet.2019.05.003_bib53 article-title: The Perseus computational platform for comprehensive analysis of (prote)omics data publication-title: Nat. Methods doi: 10.1038/nmeth.3901 – volume: 11 start-page: e1001508 year: 2013 ident: 10.1016/j.cmet.2019.05.003_bib9 article-title: Positively charged residues are the major determinants of ribosomal velocity publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1001508 – volume: 231 start-page: 2682 year: 2016 ident: 10.1016/j.cmet.2019.05.003_bib41 article-title: Alternative start codon connects eIF5A to mitochondria publication-title: J. Cell. Physiol. doi: 10.1002/jcp.25370 – volume: 164 start-page: 757 year: 2016 ident: 10.1016/j.cmet.2019.05.003_bib18 article-title: Redefining the translational status of 80S monosomes publication-title: Cell doi: 10.1016/j.cell.2016.01.003 – volume: 26 start-page: 1367 year: 2008 ident: 10.1016/j.cmet.2019.05.003_bib11 article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1511 – volume: 66 start-page: 194 year: 2017 ident: 10.1016/j.cmet.2019.05.003_bib49 article-title: eIF5A functions globally in translation elongation and termination publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.03.003 – volume: 496 start-page: 238 year: 2013 ident: 10.1016/j.cmet.2019.05.003_bib51 article-title: Succinate is an inflammatory signal that induces IL-1β through HIF-1α publication-title: Nature doi: 10.1038/nature11986 – volume: 291 start-page: 14904 year: 2016 ident: 10.1016/j.cmet.2019.05.003_bib39 article-title: Functions of polyamines in mammals publication-title: J. Biol. Chem. doi: 10.1074/jbc.R116.731661 – volume: 35 start-page: 871 year: 2011 ident: 10.1016/j.cmet.2019.05.003_bib57 article-title: The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation publication-title: Immunity doi: 10.1016/j.immuni.2011.09.021 – volume: 91 start-page: 10829 year: 1994 ident: 10.1016/j.cmet.2019.05.003_bib4 article-title: Induced gene expression of the hypusine-containing protein eukaryotic initiation factor 5A in activated human T lymphocytes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.91.23.10829 – volume: 6 start-page: 373 year: 2007 ident: 10.1016/j.cmet.2019.05.003_bib7 article-title: Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd2243 – volume: 13 start-page: 2513 year: 2014 ident: 10.1016/j.cmet.2019.05.003_bib10 article-title: Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ publication-title: Mol. Cell Proteomics doi: 10.1074/mcp.M113.031591 – volume: 18 start-page: 4279 year: 2007 ident: 10.1016/j.cmet.2019.05.003_bib26 article-title: Regulation of ubiquitin-proteasome system mediated degradation by cytosolic stress publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e07-05-0487 – volume: 332 start-page: 1284 year: 2011 ident: 10.1016/j.cmet.2019.05.003_bib23 article-title: Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation publication-title: Science doi: 10.1126/science.1204351 – volume: 44 start-page: 143 year: 2009 ident: 10.1016/j.cmet.2019.05.003_bib55 article-title: Translational control of eukaryotic gene expression publication-title: Crit. Rev. Biochem. Mol. Biol. doi: 10.1080/10409230902882090 – volume: 39 start-page: 514 year: 2009 ident: 10.1016/j.cmet.2019.05.003_bib2 article-title: IL-4 blocks M-CSF-dependent macrophage proliferation by inducing p21WAF1 in a STAT6-dependent way publication-title: Eur. J. Immunol. doi: 10.1002/eji.200838283 – volume: 45 start-page: 7326 year: 2017 ident: 10.1016/j.cmet.2019.05.003_bib40 article-title: eIF5A facilitates translation termination globally and promotes the elongation of many non polyproline-specific tripeptide sequences publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx479 – volume: 16 year: 2015 ident: 10.1016/j.cmet.2019.05.003_bib47 article-title: A comparative genomics study on the effect of individual amino acids on ribosome stalling publication-title: BMC Genomics doi: 10.1186/1471-2164-16-S10-S5 – volume: 94 start-page: 877 year: 2013 ident: 10.1016/j.cmet.2019.05.003_bib3 article-title: Type 2 innate lymphoid cells constitutively express arginase-I in the naive and inflamed lung publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.0213084 – start-page: 6 year: 2009 ident: 10.1016/j.cmet.2019.05.003_bib19 article-title: Inhibition of HIV-1 gene expression by Ciclopirox and Deferiprone, drugs that prevent hypusination of eukaryotic initiation factor 5A publication-title: Retrovirology – volume: 427 start-page: 3389 year: 2015 ident: 10.1016/j.cmet.2019.05.003_bib33 article-title: Remaining mysteries of molecular biology: the role of polyamines in the cell publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2015.06.020 – volume: 2 start-page: 421 year: 2013 ident: 10.1016/j.cmet.2019.05.003_bib36 article-title: Characterization of a novel polyclonal anti-hypusine antibody publication-title: SpringerPlus doi: 10.1186/2193-1801-2-421 – volume: 58 start-page: 244 year: 2001 ident: 10.1016/j.cmet.2019.05.003_bib52 article-title: Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications publication-title: Cell. Mol. Life Sci. doi: 10.1007/PL00000852 – volume: 10 start-page: 1794 year: 2011 ident: 10.1016/j.cmet.2019.05.003_bib12 article-title: Andromeda: a peptide search engine integrated into the MaxQuant environment publication-title: J. Proteome Res. doi: 10.1021/pr101065j – volume: 48 start-page: 2353 year: 2016 ident: 10.1016/j.cmet.2019.05.003_bib35 article-title: Targeting the polyamine-hypusine circuit for the prevention and treatment of cancer publication-title: Amino Acids doi: 10.1007/s00726-016-2275-3 – volume: 261 start-page: 3085 year: 1986 ident: 10.1016/j.cmet.2019.05.003_bib1 article-title: Deoxyhypusine hydroxylase from rat testis. Partial purification and characterization publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)35750-2 – volume: 11 start-page: 1305 year: 2009 ident: 10.1016/j.cmet.2019.05.003_bib14 article-title: Induction of autophagy by spermidine promotes longevity publication-title: Nat. Cell Biol. doi: 10.1038/ncb1975 – volume: 34 start-page: 189 year: 2015 ident: 10.1016/j.cmet.2019.05.003_bib6 article-title: A roadmap for interpreting (13) C metabolite labeling patterns from cells publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2015.02.003 – volume: 219 start-page: 109 year: 2009 ident: 10.1016/j.cmet.2019.05.003_bib50 article-title: The polyamine analogue N1,N11-diethylnorspermine can induce chondrocyte apoptosis independently of its ability to alter metabolism and levels of natural polyamines publication-title: J. Cell. Physiol. doi: 10.1002/jcp.21655 |
SSID | ssj0036393 |
Score | 2.6663775 |
Snippet | How cells adapt metabolism to meet demands is an active area of interest across biology. Among a broad range of functions, the polyamine spermidine is needed... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 352 |
SubjectTerms | Animals Cells, Cultured deoxyhypusine hydroxylase deoxyhypusine synthase eIF5A Eukaryotic Translation Initiation Factor 5A hypusination immunometabolism Macrophage Activation Macrophages - metabolism metabolism Mice Mice, Inbred C57BL Mice, Transgenic Mitochondria - metabolism Peptide Initiation Factors - metabolism polyamines Polyamines - metabolism Proteomics RNA-Binding Proteins - metabolism |
Title | Polyamines and eIF5A Hypusination Modulate Mitochondrial Respiration and Macrophage Activation |
URI | https://dx.doi.org/10.1016/j.cmet.2019.05.003 https://www.ncbi.nlm.nih.gov/pubmed/31130465 https://www.proquest.com/docview/2232122423 https://pubmed.ncbi.nlm.nih.gov/PMC6688828 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa8IwFA4iDHYZ-z33iwx2G0VNk6Y9Opm4gWNsEzwtpGmKDq2y6cH_fu-lrcwJHnYptH2BkJd8-UK-9x4ht7IZh1GgpQfcg3vc-ImnUbimpeCwtILEt04g-xx0-_xpIAYV0i5jYVBWWWB_jukOrYsv9WI067PRqP6G5JpjtpjIx7R6GPDr89AF8Q3uSzT2YQd2Insw9tC6CJzJNV5mYlFP2Yxc9s6ycNbm5rRJPv9qKH9tSp19slewSdrKO3xAKjY7JDt5fcnlEfl4mY6XeoLKdqqzhNrHjmjR7nKGanfnEtqbJljAy9IeLG2AwizBGUlfixt4NMGWPY2lvoYAPrRlyopox6TfeXhvd72ioIJnsG6Bx2JpQ2A8Ucqk0IE1LOYRnJjSWCY6SQG2JYtTIAH4iKVOjbCpn9gwbggAo4Z_QqrZNLNnhEorg1RqjSFbXBgRspQJJAs-nEAAfGukWY6kMkW2cSx6MValrOxT4egrHH3VEJijtEbuVm1mea6NrdaidJBamzEKNoOt7W5KbypYSng_ojM7XXwrYEoMLxoZ2Jzm3l31A6YZ3iGLGpFrfl8ZYJru9T_ZaOjSdQdBCMeY8Pyf_b0gu_jmRIfBJanOvxb2CojQPL52M_0Hb98Gnw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFL3oRPRF_HZ-RvBNyra2adrHKY5OrYhusCdD2qY4cd3Q7WH_3nv7MZyDPfiyh_UGQm5yckJO7gG4Eo3Q9RwlDOQetmFHVmwoEq4pwW1cWk5s6Uwg--T4Xfu-x3srcFu-hSFZZYH9OaZnaF38UytGszbq92uvRK5tqhbjWVRWz12FNWQDgvwb2r2bEo4t3IIzlT1GGxRevJzJRV7RQJOgsuFl5TtL56zF3WmRff4VUf7alVrbsFXQSdbMe7wDKzrdhfXcYHK6B2_Pw8-pGpC0nak0Zrrd4k3mT0ckd89ywoJhTA5emgW4thEL05imJHspruAphFoGiry-3hF9WDMqLdH2odu669z6RuGoYERkXGCYodAuUh4vMQVXjo7M0PbwyJSEIlZxgrgtzDBBFkA_oVBJxHVixdoN6xzRqG4dQCUdpvoImNDCSYRS9GbL5hF3zcTkxBYsPIIg-lahUY6kjIpy4-R68SlLXdmHpNGXNPqyzqlIaRWuZ21GebGNpdG8TJCcmzISd4Ol7S7LbEpcS3RBolI9nHxLpEom3TSaGHOYZ3fWD5xndInMqyDm8j4LoDrd81_S_ntWr9txXDzHuMf_7O8FbPid4FE-tp8eTmCTvmQKROcUKuOviT5DVjQOz7NZ_wOhCwm- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polyamines+and+eIF5A+Hypusination+Modulate+Mitochondrial+Respiration+and+Macrophage+Activation&rft.jtitle=Cell+metabolism&rft.au=Puleston%2C+Daniel+J.&rft.au=Buck%2C+Michael+D.&rft.au=Klein+Geltink%2C+Ramon+I.&rft.au=Kyle%2C+Ryan+L.&rft.date=2019-08-06&rft.pub=Elsevier+Inc&rft.issn=1550-4131&rft.eissn=1932-7420&rft.volume=30&rft.issue=2&rft.spage=352&rft.epage=363.e8&rft_id=info:doi/10.1016%2Fj.cmet.2019.05.003&rft.externalDocID=S1550413119302438 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon |