Polyamines and eIF5A Hypusination Modulate Mitochondrial Respiration and Macrophage Activation

How cells adapt metabolism to meet demands is an active area of interest across biology. Among a broad range of functions, the polyamine spermidine is needed to hypusinate the translation factor eukaryotic initiation factor 5A (eIF5A). We show here that hypusinated eIF5A (eIF5AH) promotes the effici...

Full description

Saved in:
Bibliographic Details
Published inCell metabolism Vol. 30; no. 2; pp. 352 - 363.e8
Main Authors Puleston, Daniel J., Buck, Michael D., Klein Geltink, Ramon I., Kyle, Ryan L., Caputa, George, O’Sullivan, David, Cameron, Alanna M., Castoldi, Angela, Musa, Yaarub, Kabat, Agnieszka M., Zhang, Ying, Flachsmann, Lea J., Field, Cameron S., Patterson, Annette E., Scherer, Stefanie, Alfei, Francesca, Baixauli, Francesc, Austin, S. Kyle, Kelly, Beth, Matsushita, Mai, Curtis, Jonathan D., Grzes, Katarzyna M., Villa, Matteo, Corrado, Mauro, Sanin, David E., Qiu, Jing, Pällman, Nora, Paz, Katelyn, Maccari, Maria Elena, Blazar, Bruce R., Mittler, Gerhard, Buescher, Joerg M., Zehn, Dietmar, Rospert, Sabine, Pearce, Edward J., Balabanov, Stefan, Pearce, Erika L.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 06.08.2019
Cell Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract How cells adapt metabolism to meet demands is an active area of interest across biology. Among a broad range of functions, the polyamine spermidine is needed to hypusinate the translation factor eukaryotic initiation factor 5A (eIF5A). We show here that hypusinated eIF5A (eIF5AH) promotes the efficient expression of a subset of mitochondrial proteins involved in the TCA cycle and oxidative phosphorylation (OXPHOS). Several of these proteins have mitochondrial targeting sequences (MTSs) that in part confer an increased dependency on eIF5AH. In macrophages, metabolic switching between OXPHOS and glycolysis supports divergent functional fates stimulated by activation signals. In these cells, hypusination of eIF5A appears to be dynamically regulated after activation. Using in vivo and in vitro models, we show that acute inhibition of this pathway blunts OXPHOS-dependent alternative activation, while leaving aerobic glycolysis-dependent classical activation intact. These results might have implications for therapeutically controlling macrophage activation by targeting the polyamine-eIF5A-hypusine axis. [Display omitted] •The polyamine synthesis pathway and hypusinated eIF5A modulate mitochondrial OXPHOS•Hypusinated eIF5A maintains TCA cycle and ETC integrity in macrophages•Some mitochondrial enzymes depend on eIF5AH for efficient expression•Inhibition of hypusinated eIF5A blunts macrophage alternative activation Puleston et al. show that polyamine biosynthesis modulates mitochondrial metabolism through eIF5A hypusination (eIF5AH). They find that inhibiting the polyamine-eIF5A-hypusine pathway blocks OXPHOS-dependent macrophage alternative activation, while leaving aerobic glycolysis-dependent macrophage classical activation intact. These results might have implications for therapeutically controlling macrophage activation by targeting the polyamine-eIF5A-hypusine axis.
AbstractList How cells adapt metabolism to meet demands is an active area of interest across biology. Among a broad range of functions, the polyamine spermidine is needed to hypusinate the translation factor eukaryotic initiation factor 5A (eIF5A). We show here that hypusinated eIF5A (eIF5AH) promotes the efficient expression of a subset of mitochondrial proteins involved in the TCA cycle and oxidative phosphorylation (OXPHOS). Several of these proteins have mitochondrial targeting sequences (MTSs) that in part confer an increased dependency on eIF5AH. In macrophages, metabolic switching between OXPHOS and glycolysis supports divergent functional fates stimulated by activation signals. In these cells, hypusination of eIF5A appears to be dynamically regulated after activation. Using in vivo and in vitro models, we show that acute inhibition of this pathway blunts OXPHOS-dependent alternative activation, while leaving aerobic glycolysis-dependent classical activation intact. These results might have implications for therapeutically controlling macrophage activation by targeting the polyamine-eIF5A-hypusine axis. [Display omitted] •The polyamine synthesis pathway and hypusinated eIF5A modulate mitochondrial OXPHOS•Hypusinated eIF5A maintains TCA cycle and ETC integrity in macrophages•Some mitochondrial enzymes depend on eIF5AH for efficient expression•Inhibition of hypusinated eIF5A blunts macrophage alternative activation Puleston et al. show that polyamine biosynthesis modulates mitochondrial metabolism through eIF5A hypusination (eIF5AH). They find that inhibiting the polyamine-eIF5A-hypusine pathway blocks OXPHOS-dependent macrophage alternative activation, while leaving aerobic glycolysis-dependent macrophage classical activation intact. These results might have implications for therapeutically controlling macrophage activation by targeting the polyamine-eIF5A-hypusine axis.
How cells adapt metabolism to meet demands is an active area of interest across biology. Among a broad range of functions, the polyamine spermidine is needed to hypusinate the translation factor eukaryotic initiation factor 5A (eIF5A). We show here that hypusinated eIF5A (eIF5A ) promotes the efficient expression of a subset of mitochondrial proteins involved in the TCA cycle and oxidative phosphorylation (OXPHOS). Several of these proteins have mitochondrial targeting sequences (MTSs) that in part confer an increased dependency on eIF5AH. In macrophages, metabolic switching between OXPHOS and glycolysis supports divergent functional fates stimulated by activation signals. In these cells, hypusination of eIF5A appears to be dynamically regulated after activation. Using in vivo and in vitro models, we show that acute inhibition of this pathway blunts OXPHOS-dependent alternative activation, while leaving aerobic glycolysis-dependent classical activation intact. These results might have implications for therapeutically controlling macrophage activation by targeting the polyamine-eIF5A-hypusine axis.
How cells adapt metabolism to meet demands is an active area of interest across biology. Among a broad range of functions, the polyamine spermidine is needed to hypusinate the translation factor eukaryotic initiation factor 5A (eIF5A). We show here that hypusinated eIF5A (eIF5A H ) promotes the efficient expression of a subset of mitochondrial proteins involved in the TCA cycle and oxidative phosphorylation (OXPHOS). Several of these proteins have mitochondrial targeting sequences (MTSs) that in part confer an increased dependency on eIF5AH. In macrophages, metabolic switching between OXPHOS and glycolysis supports divergent functional fates stimulated by activation signals. In these cells, hypusination of eIF5A appears to be dynamically regulated after activation. Using in vivo and in vitro models, we show that acute inhibition of this pathway blunts OXPHOS-dependent alternative activation, while leaving aerobic glycolysis-dependent classical activation intact. These results might have implications for therapeutically controlling macrophage activation by targeting the polyamine-eIF5A-hypusine axis. • The polyamine synthesis pathway and hypusinated eIF5A modulate mitochondrial OXPHOS • Hypusinated eIF5A maintains TCA cycle and ETC integrity in macrophages • Some mitochondrial enzymes depend on eIF5A H for efficient expression • Inhibition of hypusinated eIF5A blunts macrophage alternative activation Puleston et al. show that polyamine biosynthesis modulates mitochondrial metabolism through eIF5A hypusination (eIF5A H ). They find that inhibiting the polyamine-eIF5A-hypusine pathway blocks OXPHOS-dependent macrophage alternative activation, while leaving aerobic glycolysis-dependent macrophage classical activation intact. These results might have implications for therapeutically controlling macrophage activation by targeting the polyamine-eIF5A-hypusine axis.
How cells adapt metabolism to meet demands is an active area of interest across biology. Among a broad range of functions, the polyamine spermidine is needed to hypusinate the translation factor eukaryotic initiation factor 5A (eIF5A). We show here that hypusinated eIF5A (eIF5AH) promotes the efficient expression of a subset of mitochondrial proteins involved in the TCA cycle and oxidative phosphorylation (OXPHOS). Several of these proteins have mitochondrial targeting sequences (MTSs) that in part confer an increased dependency on eIF5AH. In macrophages, metabolic switching between OXPHOS and glycolysis supports divergent functional fates stimulated by activation signals. In these cells, hypusination of eIF5A appears to be dynamically regulated after activation. Using in vivo and in vitro models, we show that acute inhibition of this pathway blunts OXPHOS-dependent alternative activation, while leaving aerobic glycolysis-dependent classical activation intact. These results might have implications for therapeutically controlling macrophage activation by targeting the polyamine-eIF5A-hypusine axis.How cells adapt metabolism to meet demands is an active area of interest across biology. Among a broad range of functions, the polyamine spermidine is needed to hypusinate the translation factor eukaryotic initiation factor 5A (eIF5A). We show here that hypusinated eIF5A (eIF5AH) promotes the efficient expression of a subset of mitochondrial proteins involved in the TCA cycle and oxidative phosphorylation (OXPHOS). Several of these proteins have mitochondrial targeting sequences (MTSs) that in part confer an increased dependency on eIF5AH. In macrophages, metabolic switching between OXPHOS and glycolysis supports divergent functional fates stimulated by activation signals. In these cells, hypusination of eIF5A appears to be dynamically regulated after activation. Using in vivo and in vitro models, we show that acute inhibition of this pathway blunts OXPHOS-dependent alternative activation, while leaving aerobic glycolysis-dependent classical activation intact. These results might have implications for therapeutically controlling macrophage activation by targeting the polyamine-eIF5A-hypusine axis.
Author Paz, Katelyn
Austin, S. Kyle
Patterson, Annette E.
Zehn, Dietmar
Sanin, David E.
Pällman, Nora
Musa, Yaarub
Pearce, Erika L.
O’Sullivan, David
Alfei, Francesca
Matsushita, Mai
Rospert, Sabine
Klein Geltink, Ramon I.
Mittler, Gerhard
Balabanov, Stefan
Pearce, Edward J.
Curtis, Jonathan D.
Maccari, Maria Elena
Buescher, Joerg M.
Buck, Michael D.
Baixauli, Francesc
Field, Cameron S.
Caputa, George
Kyle, Ryan L.
Blazar, Bruce R.
Kelly, Beth
Castoldi, Angela
Cameron, Alanna M.
Corrado, Mauro
Villa, Matteo
Grzes, Katarzyna M.
Kabat, Agnieszka M.
Zhang, Ying
Flachsmann, Lea J.
Scherer, Stefanie
Puleston, Daniel J.
Qiu, Jing
AuthorAffiliation 5 Division of Haematology, University Hospital Zurich and University of Zurich, Zurich 8091, Switzerland
8 Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
7 Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Center for Pediatrics, and Faculty of Medicine, Medical Center - University of Freiburg, Freiburg 79106, Germany
2 The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
3 Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg 79104, Germany
4 Department of Animal Physiology and Immunology, Technical University of Munich, Freising, Germany
6 Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
1 Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
AuthorAffiliation_xml – name: 8 Faculty of Biology, University of Freiburg, Freiburg 79104, Germany
– name: 3 Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg 79104, Germany
– name: 7 Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Center for Pediatrics, and Faculty of Medicine, Medical Center - University of Freiburg, Freiburg 79106, Germany
– name: 4 Department of Animal Physiology and Immunology, Technical University of Munich, Freising, Germany
– name: 6 Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
– name: 5 Division of Haematology, University Hospital Zurich and University of Zurich, Zurich 8091, Switzerland
– name: 1 Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
– name: 2 The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
Author_xml – sequence: 1
  givenname: Daniel J.
  surname: Puleston
  fullname: Puleston, Daniel J.
  organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
– sequence: 2
  givenname: Michael D.
  surname: Buck
  fullname: Buck, Michael D.
  organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
– sequence: 3
  givenname: Ramon I.
  surname: Klein Geltink
  fullname: Klein Geltink, Ramon I.
  organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
– sequence: 4
  givenname: Ryan L.
  surname: Kyle
  fullname: Kyle, Ryan L.
  organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
– sequence: 5
  givenname: George
  surname: Caputa
  fullname: Caputa, George
  organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
– sequence: 6
  givenname: David
  surname: O’Sullivan
  fullname: O’Sullivan, David
  organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
– sequence: 7
  givenname: Alanna M.
  surname: Cameron
  fullname: Cameron, Alanna M.
  organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
– sequence: 8
  givenname: Angela
  surname: Castoldi
  fullname: Castoldi, Angela
  organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
– sequence: 9
  givenname: Yaarub
  surname: Musa
  fullname: Musa, Yaarub
  organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
– sequence: 10
  givenname: Agnieszka M.
  surname: Kabat
  fullname: Kabat, Agnieszka M.
  organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
– sequence: 11
  givenname: Ying
  surname: Zhang
  fullname: Zhang, Ying
  organization: Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg 79104, Germany
– sequence: 12
  givenname: Lea J.
  surname: Flachsmann
  fullname: Flachsmann, Lea J.
  organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
– sequence: 13
  givenname: Cameron S.
  surname: Field
  fullname: Field, Cameron S.
  organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
– sequence: 14
  givenname: Annette E.
  surname: Patterson
  fullname: Patterson, Annette E.
  organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
– sequence: 15
  givenname: Stefanie
  surname: Scherer
  fullname: Scherer, Stefanie
  organization: Department of Animal Physiology and Immunology, Technical University of Munich, Freising, Germany
– sequence: 16
  givenname: Francesca
  surname: Alfei
  fullname: Alfei, Francesca
  organization: Department of Animal Physiology and Immunology, Technical University of Munich, Freising, Germany
– sequence: 17
  givenname: Francesc
  surname: Baixauli
  fullname: Baixauli, Francesc
  organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
– sequence: 18
  givenname: S. Kyle
  surname: Austin
  fullname: Austin, S. Kyle
  organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
– sequence: 19
  givenname: Beth
  surname: Kelly
  fullname: Kelly, Beth
  organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
– sequence: 20
  givenname: Mai
  surname: Matsushita
  fullname: Matsushita, Mai
  organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
– sequence: 21
  givenname: Jonathan D.
  surname: Curtis
  fullname: Curtis, Jonathan D.
  organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
– sequence: 22
  givenname: Katarzyna M.
  surname: Grzes
  fullname: Grzes, Katarzyna M.
  organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
– sequence: 23
  givenname: Matteo
  surname: Villa
  fullname: Villa, Matteo
  organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
– sequence: 24
  givenname: Mauro
  surname: Corrado
  fullname: Corrado, Mauro
  organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
– sequence: 25
  givenname: David E.
  surname: Sanin
  fullname: Sanin, David E.
  organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
– sequence: 26
  givenname: Jing
  surname: Qiu
  fullname: Qiu, Jing
  organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
– sequence: 27
  givenname: Nora
  surname: Pällman
  fullname: Pällman, Nora
  organization: Division of Haematology, University Hospital Zurich and University of Zurich, Zurich 8091, Switzerland
– sequence: 28
  givenname: Katelyn
  surname: Paz
  fullname: Paz, Katelyn
  organization: Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
– sequence: 29
  givenname: Maria Elena
  surname: Maccari
  fullname: Maccari, Maria Elena
  organization: Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Center for Pediatrics, and Faculty of Medicine, Medical Center - University of Freiburg, Freiburg 79106, Germany
– sequence: 30
  givenname: Bruce R.
  surname: Blazar
  fullname: Blazar, Bruce R.
  organization: Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
– sequence: 31
  givenname: Gerhard
  surname: Mittler
  fullname: Mittler, Gerhard
  organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
– sequence: 32
  givenname: Joerg M.
  surname: Buescher
  fullname: Buescher, Joerg M.
  organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
– sequence: 33
  givenname: Dietmar
  surname: Zehn
  fullname: Zehn, Dietmar
  organization: Department of Animal Physiology and Immunology, Technical University of Munich, Freising, Germany
– sequence: 34
  givenname: Sabine
  surname: Rospert
  fullname: Rospert, Sabine
  organization: Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, and BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg 79104, Germany
– sequence: 35
  givenname: Edward J.
  surname: Pearce
  fullname: Pearce, Edward J.
  organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
– sequence: 36
  givenname: Stefan
  surname: Balabanov
  fullname: Balabanov, Stefan
  organization: Division of Haematology, University Hospital Zurich and University of Zurich, Zurich 8091, Switzerland
– sequence: 37
  givenname: Erika L.
  surname: Pearce
  fullname: Pearce, Erika L.
  email: pearce@ie-freiburg.mpg.de
  organization: Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31130465$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtr3DAUhUVJaB7tH-iieNmNXT0sW4ZSGELSBDIklHZbIcvXGQ225ErywPz7ypk0tFlkIwnud84V55yhI-ssIPSB4IJgUn3eFnqEWFBMmgLzAmP2Bp2ShtG8Lik-Sm_OcV4SRk7QWQjbBFSsYW_RCSOE4bLip-jXvRv2ajQWQqZsl8HNFV9l1_tpDsaqaJzN1q6bBxUhW5vo9MbZzhs1ZN8hTMYfkEW5Vtq7aaMeIFvpaHaPk3fouFdDgPdP9zn6eXX54-I6v737dnOxus01pyTmtK1BYF41Pa25qkDTtmxETfq27lTXQ0tq2vaU8OVoa9VrDj3rQLSYC1Fjdo6-HnynuR2h02CjV4OcvBmV30unjPx_Ys1GPridrCohBBXJ4NOTgXe_ZwhRjiZoGAZlwc1BUsooobSkLKEf_931vORvqAmgByAFEoKH_hkhWC7Nya1cmpNLcxJzmYpJIvFCpE18zDD91wyvS78cpJAS3hnwMmgDVkNnPOgoO2dek_8BpeC2kA
CitedBy_id crossref_primary_10_1302_2046_3758_142_BJR_2024_0288_R1
crossref_primary_10_1016_j_isci_2024_109789
crossref_primary_10_1016_j_cell_2021_06_007
crossref_primary_10_1016_j_cmet_2020_02_005
crossref_primary_10_1152_ajpcell_00074_2024
crossref_primary_10_1111_imr_12858
crossref_primary_10_3389_fimmu_2023_1230772
crossref_primary_10_1016_j_cmet_2020_06_010
crossref_primary_10_1016_j_exer_2025_110360
crossref_primary_10_1038_s41423_021_00783_9
crossref_primary_10_1016_j_intimp_2022_108702
crossref_primary_10_1038_s44318_025_00379_3
crossref_primary_10_1016_j_intimp_2024_111544
crossref_primary_10_1038_s41389_020_00271_1
crossref_primary_10_26508_lsa_202302339
crossref_primary_10_1016_j_abb_2020_108587
crossref_primary_10_1016_j_coi_2020_10_012
crossref_primary_10_1016_j_jff_2020_104064
crossref_primary_10_3389_fimmu_2021_798156
crossref_primary_10_1111_febs_15715
crossref_primary_10_1111_imr_12848
crossref_primary_10_3389_fcimb_2022_960138
crossref_primary_10_1126_science_abj3510
crossref_primary_10_1007_s12013_024_01231_x
crossref_primary_10_1016_j_ebiom_2020_102964
crossref_primary_10_1083_jcb_202404094
crossref_primary_10_3390_medsci9020044
crossref_primary_10_3390_ijms22010219
crossref_primary_10_1093_intimm_dxaa019
crossref_primary_10_1038_s41419_023_06109_z
crossref_primary_10_1038_s41467_022_33015_3
crossref_primary_10_1126_sciadv_adq0355
crossref_primary_10_1182_blood_2021013244
crossref_primary_10_3389_fphar_2021_794298
crossref_primary_10_3390_cells11050896
crossref_primary_10_1016_j_nfs_2020_06_001
crossref_primary_10_1002_JLB_3MR0422_665R
crossref_primary_10_1158_1535_7163_MCT_19_1116
crossref_primary_10_1002_eji_202048784
crossref_primary_10_1016_j_tcb_2020_02_005
crossref_primary_10_1038_s42003_025_07921_3
crossref_primary_10_3389_fimmu_2022_935692
crossref_primary_10_1016_j_isci_2024_111525
crossref_primary_10_1038_s41467_021_22212_1
crossref_primary_10_3390_ani14162438
crossref_primary_10_1038_s41598_021_92332_7
crossref_primary_10_3390_ijms232112972
crossref_primary_10_1016_j_biopha_2023_115440
crossref_primary_10_3390_biomedicines10081800
crossref_primary_10_1002_advs_202205692
crossref_primary_10_1681_ASN_2021121548
crossref_primary_10_3389_fimmu_2023_1344697
crossref_primary_10_1242_bio_059647
crossref_primary_10_1016_j_mam_2020_100922
crossref_primary_10_1016_j_mucimm_2023_08_004
crossref_primary_10_7554_eLife_65487
crossref_primary_10_1016_j_cmet_2021_07_017
crossref_primary_10_1186_s12974_020_01955_6
crossref_primary_10_3390_ijms25020996
crossref_primary_10_1038_s41421_024_00712_w
crossref_primary_10_1111_febs_16465
crossref_primary_10_1038_s41467_023_36163_2
crossref_primary_10_1016_j_cmet_2024_07_022
crossref_primary_10_1016_j_jbc_2021_100904
crossref_primary_10_1038_s41467_021_24007_w
crossref_primary_10_1016_j_immuni_2023_09_012
crossref_primary_10_1038_s41467_021_21617_2
crossref_primary_10_1038_s41467_022_35252_y
crossref_primary_10_1007_s00726_021_03120_6
crossref_primary_10_1016_j_theriogenology_2024_03_002
crossref_primary_10_1038_s41586_024_07840_z
crossref_primary_10_1126_sciadv_abc4275
crossref_primary_10_3390_biom10040628
crossref_primary_10_1016_j_chembiol_2024_02_001
crossref_primary_10_1371_journal_pbio_3000808
crossref_primary_10_1038_s43587_022_00322_9
crossref_primary_10_26508_lsa_202201715
crossref_primary_10_1016_j_phrs_2024_107453
crossref_primary_10_1038_s41419_024_06720_8
crossref_primary_10_1002_eji_202350476
crossref_primary_10_3390_ijms22136883
crossref_primary_10_1093_pnasnexus_pgac086
crossref_primary_10_1038_s41586_022_05111_3
crossref_primary_10_1172_JCI141964
crossref_primary_10_1146_annurev_biochem_071322_021330
crossref_primary_10_1021_acsmedchemlett_0c00331
crossref_primary_10_18632_aging_103035
crossref_primary_10_1016_j_fgb_2023_103792
crossref_primary_10_2147_IDR_S262024
crossref_primary_10_3390_ijms25158171
crossref_primary_10_3390_ijms23031284
crossref_primary_10_1038_s41467_022_32788_x
crossref_primary_10_1242_jcs_253781
crossref_primary_10_7554_eLife_57950
crossref_primary_10_1007_s00281_024_01035_4
crossref_primary_10_1080_19490976_2023_2203968
crossref_primary_10_1016_j_jmb_2022_167564
crossref_primary_10_1021_acsinfecdis_3c00669
crossref_primary_10_1016_j_molcel_2019_08_005
crossref_primary_10_7554_eLife_69015
crossref_primary_10_3390_nu12010197
crossref_primary_10_1186_s12943_024_02031_w
crossref_primary_10_3389_fcimb_2022_990889
crossref_primary_10_3390_ijms242015330
crossref_primary_10_1111_eci_14138
crossref_primary_10_1186_s13395_020_00249_y
crossref_primary_10_2337_db24_0501
crossref_primary_10_1007_s11306_020_01755_2
crossref_primary_10_3389_fimmu_2021_665782
crossref_primary_10_1002_advs_202402450
crossref_primary_10_1016_j_nbd_2021_105289
crossref_primary_10_1042_BST20221035
crossref_primary_10_3390_metabo12040344
crossref_primary_10_1016_j_immuni_2020_09_014
crossref_primary_10_1038_s12276_024_01214_1
crossref_primary_10_1016_j_celrep_2023_112424
crossref_primary_10_1371_journal_ppat_1009198
crossref_primary_10_1200_JCO_23_01783
crossref_primary_10_1242_jcs_252767
crossref_primary_10_1016_j_cellsig_2023_110901
crossref_primary_10_1615_CritRevOncog_2024053830
crossref_primary_10_1242_dmm_043208
crossref_primary_10_1007_s11883_024_01229_z
crossref_primary_10_1016_j_smim_2021_101526
crossref_primary_10_1016_j_intimp_2023_110583
crossref_primary_10_3390_metabo11010012
crossref_primary_10_1172_JCI177824
crossref_primary_10_3389_fimmu_2022_937331
crossref_primary_10_3389_fimmu_2022_912279
crossref_primary_10_3389_fimmu_2020_00910
crossref_primary_10_1038_s41419_021_03577_z
crossref_primary_10_1186_s10020_022_00533_1
crossref_primary_10_1038_s41467_024_54838_2
crossref_primary_10_1016_j_bbamcr_2022_119354
crossref_primary_10_1038_s41423_021_00791_9
crossref_primary_10_1038_s41577_024_01098_2
crossref_primary_10_1016_j_ejphar_2024_176804
crossref_primary_10_1128_aem_02037_21
crossref_primary_10_1007_s00281_022_00965_1
crossref_primary_10_1186_s12935_020_01226_7
crossref_primary_10_1007_s00726_020_02843_2
crossref_primary_10_1021_acs_jmedchem_9b01979
crossref_primary_10_15252_embr_202153251
crossref_primary_10_3390_cells12030409
crossref_primary_10_1016_j_molcel_2019_09_003
crossref_primary_10_1161_CIRCRESAHA_119_315939
crossref_primary_10_1093_hmg_ddaa047
crossref_primary_10_1126_sciadv_abc8929
crossref_primary_10_1158_2767_9764_CRC_22_0061
crossref_primary_10_20900_immunometab20210017
crossref_primary_10_1016_j_tcb_2022_03_006
crossref_primary_10_20900_immunometab20210018
crossref_primary_10_3390_plants10071261
crossref_primary_10_1186_s12915_024_01892_3
crossref_primary_10_1186_s40170_025_00384_4
crossref_primary_10_1016_j_celrep_2021_108985
crossref_primary_10_1038_s41467_021_21053_2
crossref_primary_10_1161_CIRCULATIONAHA_120_052788
crossref_primary_10_12677_acm_2025_151131
crossref_primary_10_1002_1873_3468_14474
crossref_primary_10_1016_j_mam_2019_100838
crossref_primary_10_1186_s13578_021_00733_y
crossref_primary_10_1186_s13024_022_00548_6
crossref_primary_10_3390_ijms26062753
crossref_primary_10_3390_ijms222011131
crossref_primary_10_3389_fcell_2021_747377
crossref_primary_10_1016_j_it_2020_09_007
crossref_primary_10_3389_fimmu_2025_1529337
crossref_primary_10_3390_medsci10020031
crossref_primary_10_1007_s11357_020_00310_0
crossref_primary_10_1186_s13048_024_01427_y
crossref_primary_10_3390_biom13091329
crossref_primary_10_1177_0271678X20928882
crossref_primary_10_1002_mnfr_202100315
crossref_primary_10_3390_jcdd10020052
crossref_primary_10_4049_immunohorizons_2200097
crossref_primary_10_1002_advs_202306515
crossref_primary_10_1016_j_bbamcr_2024_119849
crossref_primary_10_1002_1873_3468_14366
crossref_primary_10_1002_1878_0261_13691
crossref_primary_10_1038_s41598_024_74728_3
crossref_primary_10_4110_in_2023_23_e6
crossref_primary_10_1159_000533296
crossref_primary_10_1164_rccm_202305_0909OC
crossref_primary_10_3389_fimmu_2022_780839
crossref_primary_10_1016_j_molcel_2024_01_002
crossref_primary_10_15252_embj_2021109823
crossref_primary_10_1111_imr_13230
crossref_primary_10_47853_FAS_2023_e11
crossref_primary_10_1080_15257770_2024_2308522
crossref_primary_10_1038_s41467_024_51901_w
crossref_primary_10_1172_JCI175445
crossref_primary_10_1016_j_cell_2021_07_012
crossref_primary_10_1007_s11427_023_2305_0
crossref_primary_10_31083_j_fbl2901026
crossref_primary_10_3390_cancers13164054
crossref_primary_10_3389_fmicb_2024_1359188
crossref_primary_10_3934_molsci_2021015
crossref_primary_10_3390_math11081795
crossref_primary_10_1016_j_isci_2019_100807
crossref_primary_10_1002_jcb_29884
crossref_primary_10_1038_s41531_023_00531_y
crossref_primary_10_1016_j_celrep_2023_113661
crossref_primary_10_1016_j_tem_2024_05_008
crossref_primary_10_1016_j_immuni_2023_03_007
crossref_primary_10_1038_s41568_021_00380_y
crossref_primary_10_3390_ijms24098358
crossref_primary_10_1016_j_cmet_2020_01_001
crossref_primary_10_3389_fphys_2023_1145233
crossref_primary_10_3390_metabo11030160
crossref_primary_10_1016_j_cmet_2021_08_003
crossref_primary_10_1158_2643_3230_BCD_22_0162
crossref_primary_10_1016_j_celrep_2021_108941
crossref_primary_10_1186_s10020_025_01099_4
crossref_primary_10_1016_j_biomaterials_2022_121973
crossref_primary_10_1016_j_cellsig_2024_111580
crossref_primary_10_1016_j_cmet_2021_08_001
crossref_primary_10_1111_imr_13214
crossref_primary_10_1016_j_oor_2023_100123
crossref_primary_10_1016_j_celrep_2021_110222
crossref_primary_10_1016_j_mehy_2022_110841
crossref_primary_10_1111_ajt_15994
crossref_primary_10_1016_j_celrep_2020_108510
crossref_primary_10_1038_s42255_024_01015_w
crossref_primary_10_1051_medsci_2021068
crossref_primary_10_1016_j_tcb_2023_08_002
crossref_primary_10_1016_j_ccell_2024_01_002
crossref_primary_10_1016_j_ccell_2024_01_003
crossref_primary_10_1016_j_arr_2023_101993
crossref_primary_10_3390_pharmaceutics14061215
crossref_primary_10_3390_cells9010161
Cites_doi 10.1016/j.cmet.2006.05.011
10.1371/journal.ppat.1000371
10.1074/jbc.270.15.8660
10.1021/pr500218f
10.1038/ni.3421
10.1158/0008-5472.CAN-04-0465
10.1038/nmeth.2834
10.15252/embr.201846072
10.1016/j.bbagrm.2015.05.002
10.1016/S0021-9258(17)41723-6
10.1073/pnas.1518000113
10.1016/j.cell.2017.04.004
10.1073/pnas.1008150108
10.1073/pnas.78.5.2869
10.1016/j.cmet.2018.06.001
10.1038/ni.2956
10.1038/ni.3314
10.1074/jbc.M115.664490
10.1016/j.celrep.2016.09.008
10.1016/j.molcel.2013.04.021
10.1016/j.cub.2018.01.004
10.1016/j.cell.2015.08.016
10.1371/journal.pone.0043468
10.1021/pr3000249
10.1681/ASN.2016010012
10.1016/S0021-9258(18)48472-4
10.1006/geno.2000.6418
10.1128/MCB.00986-10
10.1038/nature08034
10.1038/nmeth.3901
10.1371/journal.pbio.1001508
10.1002/jcp.25370
10.1016/j.cell.2016.01.003
10.1038/nbt.1511
10.1016/j.molcel.2017.03.003
10.1038/nature11986
10.1074/jbc.R116.731661
10.1016/j.immuni.2011.09.021
10.1073/pnas.91.23.10829
10.1038/nrd2243
10.1074/mcp.M113.031591
10.1091/mbc.e07-05-0487
10.1126/science.1204351
10.1080/10409230902882090
10.1002/eji.200838283
10.1093/nar/gkx479
10.1186/1471-2164-16-S10-S5
10.1189/jlb.0213084
10.1016/j.jmb.2015.06.020
10.1186/2193-1801-2-421
10.1007/PL00000852
10.1021/pr101065j
10.1007/s00726-016-2275-3
10.1016/S0021-9258(17)35750-2
10.1038/ncb1975
10.1016/j.copbio.2015.02.003
10.1002/jcp.21655
ContentType Journal Article
Copyright 2019 The Authors
Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
2019 The Authors 2019
Copyright_xml – notice: 2019 The Authors
– notice: Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2019 The Authors 2019
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.cmet.2019.05.003
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1932-7420
EndPage 363.e8
ExternalDocumentID PMC6688828
31130465
10_1016_j_cmet_2019_05_003
S1550413119302438
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI053825
– fundername: NHLBI NIH HHS
  grantid: R01 HL118979
– fundername: Wellcome Trust
  grantid: 201330/Z/16/Z
– fundername: NHLBI NIH HHS
  grantid: R01 HL056067
– fundername: NIAID NIH HHS
  grantid: R01 AI110481
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6I.
6J9
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IHE
IXB
J1W
JIG
M3Z
M41
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SES
SSZ
TR2
UNMZH
WQ6
ZA5
AAEDT
AAIKJ
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
OZT
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
EFKBS
ID FETCH-LOGICAL-c521t-2b7e80569f275a6ec2b49871fb7dadfeb172bf215bf21b7afc5ef3de8b0588703
IEDL.DBID IXB
ISSN 1550-4131
1932-7420
IngestDate Thu Aug 21 18:19:32 EDT 2025
Fri Jul 11 00:54:33 EDT 2025
Thu Apr 03 07:08:11 EDT 2025
Tue Jul 01 03:58:18 EDT 2025
Thu Apr 24 22:51:22 EDT 2025
Fri Feb 23 02:48:35 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords hypusination
immunometabolism
deoxyhypusine hydroxylase
metabolism
macrophage activation
deoxyhypusine synthase
polyamines
eIF5A
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-2b7e80569f275a6ec2b49871fb7dadfeb172bf215bf21b7afc5ef3de8b0588703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
These authors contributed equally
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1550413119302438
PMID 31130465
PQID 2232122423
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6688828
proquest_miscellaneous_2232122423
pubmed_primary_31130465
crossref_primary_10_1016_j_cmet_2019_05_003
crossref_citationtrail_10_1016_j_cmet_2019_05_003
elsevier_sciencedirect_doi_10_1016_j_cmet_2019_05_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-06
PublicationDateYYYYMMDD 2019-08-06
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-06
  day: 06
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell metabolism
PublicationTitleAlternate Cell Metab
PublicationYear 2019
Publisher Elsevier Inc
Cell Press
Publisher_xml – name: Elsevier Inc
– name: Cell Press
References Pegg (bib39) 2016; 291
Poulin, Lu, Ackermann, Bey, Pegg (bib44) 1992; 267
Casero, Marton (bib7) 2007; 6
Hoque, Hanauske-Abel, Palumbo, Saxena, Gandolfi, Pe'ery, Mathews, Park (bib19) 2009
Pereira, Tamborlin, Meneguello, de Proença, Almeida, Lourenço, Luchessi (bib41) 2016; 231
Pelechano, Alepuz (bib40) 2017; 45
Buescher, Antoniewicz, Boros, Burgess, Brunengraber, Clish, DeBerardinis, Feron, Frezza, Ghesquiere (bib6) 2015; 34
Van den Bossche, Baardman, Otto, van der Velden, Neele, van den Berg, Luque-Martin, Chen, Boshuizen, Ahmed (bib54) 2016; 17
Jenkins, Hååg, Johansson (bib24) 2001; 71
Preukschas, Hagel, Schulte, Weber, Lamszus, Sievert, Pällmann, Bokemeyer, Hauber, Braig (bib45) 2012; 7
Nakanishi, Cleveland (bib35) 2016; 48
Park, Cooper, Folk (bib38) 1981; 78
Huang, Everts, Ivanova, O’Sullivan, Nascimento, Smith, Beatty, Love-Gregory, Lam, O'Neil (bib20) 2014; 15
Kelstrup, Young, Lavallee, Nielsen, Olsen (bib27) 2012; 11
Pesce, Ramalingam, Mentink-Kane, Wilson, El Kasmi, Smith, Thompson, Cheever, Murray, Wynn (bib42) 2009; 5
Thomas, Thomas (bib52) 2001; 58
Kelly, Vanslyke, Musil (bib26) 2007; 18
Hukelmann, Anderson, Sinclair, Grzes, Murillo, Hawkins, Stephens, Lamond, Cantrell (bib21) 2016; 17
Miller-Fleming, Olin-Sandoval, Campbell, Ralser (bib33) 2015; 427
Liu, Lu, Martinez, Bi, Lian, Wang, Milasta, Wang, Yang, Liu (bib29) 2016; 113
Bando, Nussbaum, Liang, Locksley (bib3) 2013; 94
Henderson, Hershey (bib17) 2011; 108
Charneski, Hurst (bib9) 2013; 11
Divakaruni, Hsieh, Minarrieta, Duong, Kim, Desousa, Andreyev, Bowman, Caradonna, Dranka (bib13) 2018; 28
Nishiki, Farb, Friedrich, Bokvist, Mirmira, Maier (bib36) 2013; 2
Kang, Hershey (bib25) 1994; 269
Jaiswal, Conz, Otto, Wölfle, Fitzke, Mayer, Rospert (bib22) 2011; 31
Engelke, Riede, Hegermann, Wuerch, Eimer, Dengjel, Mittler (bib15) 2014; 13
Melis, Rubera, Cougnon, Giraud, Mograbi, Belaid, Pisani, Huber, Lacas-Gervais, Fragaki (bib32) 2017; 28
Tyanova, Temu, Sinitcyn, Carlson, Hein, Geiger, Mann, Cox (bib53) 2016; 13
Vats, Mukundan, Odegaard, Zhang, Smith, Morel, Wagner, Greaves, Murray, Chawla (bib56) 2006; 4
Cox, Neuhauser, Michalski, Scheltema, Olsen, Mann (bib12) 2011; 10
Schuller, Wu, Dever, Buskirk, Green (bib49) 2017; 66
Tannahill, Curtis, Adamik, Palsson-McDermott, McGettrick, Goel, Frezza, Bernard, Kelly, Foley (bib51) 2013; 496
Gutierrez, Shin, Woolstenhulme, Kim, Saini, Buskirk, Dever (bib16) 2013; 51
Saini, Eyler, Green, Dever (bib48) 2009; 459
Buck, Sowell, Kaech, Pearce (bib5) 2017; 169
Cox, Hein, Luber, Paron, Nagaraj, Mann (bib10) 2014; 13
Heyer, Moore (bib18) 2016; 164
Monticelli, Buck, Flamar, Saenz, Tait Wojno, Yudanin, Osborne, Hepworth, Tran, Rodewald (bib34) 2016; 17
Pällmann, Braig, Sievert, Preukschas, Hermans-Borgmeyer, Schweizer, Nagel, Neumann, Wild, Haralambieva (bib37) 2015; 290
Sabi, Tuller (bib47) 2015; 16
Eisenberg, Knauer, Schauer, Büttner, Ruckenstuhl, Carmona-Gutierrez, Ring, Schroeder, Magnes, Antonacci (bib14) 2009; 11
Bevec, Klier, Holter, Tschachler, Valent, Lottspeich, Baumruker, Hauber (bib4) 1994; 91
Chang, Qiu, O’Sullivan, Buck, Noguchi, Curtis, Chen, Gindin, Gubin, van der Windt (bib8) 2015; 162
Cox, Mann (bib11) 2008; 26
Kulak, Pichler, Paron, Nagaraj, Mann (bib28) 2014; 11
Mathews, Hershey (bib31) 2015; 1849
Wang, Dillon, Shi, Milasta, Carter, Finkelstein, McCormick, Fitzgerald, Chi, Munger (bib57) 2011; 35
Rodríguez, Quiceno, Zabaleta, Ortiz, Zea, Piazuelo, Delgado, Correa, Brayer, Sotomayor (bib46) 2004; 64
Abbruzzese, Park, Folk (bib1) 1986; 261
Stanić, Facchini, Borzì, Stefanelli, Flamigni (bib50) 2009; 219
Lubas, Harder, Kumsta, Tiessen, Hansen, Andersen, Lund, Frankel (bib30) 2018; 19
Wolff, Lee, Chung, Folk, Park (bib58) 1995; 270
Jenkins, Ruckerl, Cook, Jones, Finkelman, Van Rooijen, MacDonald, Allen (bib23) 2011; 332
Pickles, Vigié, Youle (bib43) 2018; 28
Van Der Kelen, Beyaert, Inzé, De Veylder (bib55) 2009; 44
Arpa, Valledor, Lloberas, Celada (bib2) 2009; 39
Mathews (10.1016/j.cmet.2019.05.003_bib31) 2015; 1849
Heyer (10.1016/j.cmet.2019.05.003_bib18) 2016; 164
Kulak (10.1016/j.cmet.2019.05.003_bib28) 2014; 11
Pickles (10.1016/j.cmet.2019.05.003_bib43) 2018; 28
Van den Bossche (10.1016/j.cmet.2019.05.003_bib54) 2016; 17
Casero (10.1016/j.cmet.2019.05.003_bib7) 2007; 6
Jaiswal (10.1016/j.cmet.2019.05.003_bib22) 2011; 31
Thomas (10.1016/j.cmet.2019.05.003_bib52) 2001; 58
Kelstrup (10.1016/j.cmet.2019.05.003_bib27) 2012; 11
Arpa (10.1016/j.cmet.2019.05.003_bib2) 2009; 39
Tannahill (10.1016/j.cmet.2019.05.003_bib51) 2013; 496
Poulin (10.1016/j.cmet.2019.05.003_bib44) 1992; 267
Saini (10.1016/j.cmet.2019.05.003_bib48) 2009; 459
Buck (10.1016/j.cmet.2019.05.003_bib5) 2017; 169
Melis (10.1016/j.cmet.2019.05.003_bib32) 2017; 28
Pällmann (10.1016/j.cmet.2019.05.003_bib37) 2015; 290
Preukschas (10.1016/j.cmet.2019.05.003_bib45) 2012; 7
Jenkins (10.1016/j.cmet.2019.05.003_bib23) 2011; 332
Sabi (10.1016/j.cmet.2019.05.003_bib47) 2015; 16
Vats (10.1016/j.cmet.2019.05.003_bib56) 2006; 4
Van Der Kelen (10.1016/j.cmet.2019.05.003_bib55) 2009; 44
Pereira (10.1016/j.cmet.2019.05.003_bib41) 2016; 231
Hoque (10.1016/j.cmet.2019.05.003_bib19) 2009
Liu (10.1016/j.cmet.2019.05.003_bib29) 2016; 113
Stanić (10.1016/j.cmet.2019.05.003_bib50) 2009; 219
Jenkins (10.1016/j.cmet.2019.05.003_bib24) 2001; 71
Gutierrez (10.1016/j.cmet.2019.05.003_bib16) 2013; 51
Pesce (10.1016/j.cmet.2019.05.003_bib42) 2009; 5
Cox (10.1016/j.cmet.2019.05.003_bib10) 2014; 13
Nishiki (10.1016/j.cmet.2019.05.003_bib36) 2013; 2
Schuller (10.1016/j.cmet.2019.05.003_bib49) 2017; 66
Engelke (10.1016/j.cmet.2019.05.003_bib15) 2014; 13
Pegg (10.1016/j.cmet.2019.05.003_bib39) 2016; 291
Bevec (10.1016/j.cmet.2019.05.003_bib4) 1994; 91
Eisenberg (10.1016/j.cmet.2019.05.003_bib14) 2009; 11
Buescher (10.1016/j.cmet.2019.05.003_bib6) 2015; 34
Miller-Fleming (10.1016/j.cmet.2019.05.003_bib33) 2015; 427
Tyanova (10.1016/j.cmet.2019.05.003_bib53) 2016; 13
Cox (10.1016/j.cmet.2019.05.003_bib11) 2008; 26
Lubas (10.1016/j.cmet.2019.05.003_bib30) 2018; 19
Kang (10.1016/j.cmet.2019.05.003_bib25) 1994; 269
Cox (10.1016/j.cmet.2019.05.003_bib12) 2011; 10
Chang (10.1016/j.cmet.2019.05.003_bib8) 2015; 162
Charneski (10.1016/j.cmet.2019.05.003_bib9) 2013; 11
Nakanishi (10.1016/j.cmet.2019.05.003_bib35) 2016; 48
Wang (10.1016/j.cmet.2019.05.003_bib57) 2011; 35
Wolff (10.1016/j.cmet.2019.05.003_bib58) 1995; 270
Abbruzzese (10.1016/j.cmet.2019.05.003_bib1) 1986; 261
Divakaruni (10.1016/j.cmet.2019.05.003_bib13) 2018; 28
Henderson (10.1016/j.cmet.2019.05.003_bib17) 2011; 108
Huang (10.1016/j.cmet.2019.05.003_bib20) 2014; 15
Rodríguez (10.1016/j.cmet.2019.05.003_bib46) 2004; 64
Kelly (10.1016/j.cmet.2019.05.003_bib26) 2007; 18
Pelechano (10.1016/j.cmet.2019.05.003_bib40) 2017; 45
Park (10.1016/j.cmet.2019.05.003_bib38) 1981; 78
Bando (10.1016/j.cmet.2019.05.003_bib3) 2013; 94
Monticelli (10.1016/j.cmet.2019.05.003_bib34) 2016; 17
Hukelmann (10.1016/j.cmet.2019.05.003_bib21) 2016; 17
References_xml – volume: 5
  start-page: e1000371
  year: 2009
  ident: bib42
  article-title: Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis
  publication-title: PLoS Pathog.
– volume: 290
  start-page: 18343
  year: 2015
  end-page: 18360
  ident: bib37
  article-title: Biological relevance and therapeutic potential of the hypusine modification system
  publication-title: J. Biol. Chem.
– volume: 219
  start-page: 109
  year: 2009
  end-page: 116
  ident: bib50
  article-title: The polyamine analogue N1,N11-diethylnorspermine can induce chondrocyte apoptosis independently of its ability to alter metabolism and levels of natural polyamines
  publication-title: J. Cell. Physiol.
– volume: 332
  start-page: 1284
  year: 2011
  end-page: 1288
  ident: bib23
  article-title: Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation
  publication-title: Science
– volume: 231
  start-page: 2682
  year: 2016
  end-page: 2689
  ident: bib41
  article-title: Alternative start codon connects eIF5A to mitochondria
  publication-title: J. Cell. Physiol.
– volume: 16
  year: 2015
  ident: bib47
  article-title: A comparative genomics study on the effect of individual amino acids on ribosome stalling
  publication-title: BMC Genomics
– volume: 291
  start-page: 14904
  year: 2016
  end-page: 14912
  ident: bib39
  article-title: Functions of polyamines in mammals
  publication-title: J. Biol. Chem.
– volume: 459
  start-page: 118
  year: 2009
  end-page: 121
  ident: bib48
  article-title: Hypusine-containing protein eIF5A promotes translation elongation
  publication-title: Nature
– volume: 4
  start-page: 13
  year: 2006
  end-page: 24
  ident: bib56
  article-title: Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation
  publication-title: Cell Metab.
– volume: 58
  start-page: 244
  year: 2001
  end-page: 258
  ident: bib52
  article-title: Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications
  publication-title: Cell. Mol. Life Sci.
– volume: 427
  start-page: 3389
  year: 2015
  end-page: 3406
  ident: bib33
  article-title: Remaining mysteries of molecular biology: the role of polyamines in the cell
  publication-title: J. Mol. Biol.
– volume: 44
  start-page: 143
  year: 2009
  end-page: 168
  ident: bib55
  article-title: Translational control of eukaryotic gene expression
  publication-title: Crit. Rev. Biochem. Mol. Biol.
– volume: 18
  start-page: 4279
  year: 2007
  end-page: 4291
  ident: bib26
  article-title: Regulation of ubiquitin-proteasome system mediated degradation by cytosolic stress
  publication-title: Mol. Biol. Cell
– volume: 34
  start-page: 189
  year: 2015
  end-page: 201
  ident: bib6
  article-title: A roadmap for interpreting (13) C metabolite labeling patterns from cells
  publication-title: Curr. Opin. Biotechnol.
– volume: 169
  start-page: 570
  year: 2017
  end-page: 586
  ident: bib5
  article-title: Metabolic instruction of immunity
  publication-title: Cell
– volume: 66
  start-page: 194
  year: 2017
  end-page: 205.e5
  ident: bib49
  article-title: eIF5A functions globally in translation elongation and termination
  publication-title: Mol. Cell
– volume: 31
  start-page: 1160
  year: 2011
  end-page: 1173
  ident: bib22
  article-title: The chaperone network connected to human ribosome-associated complex
  publication-title: Mol. Cell. Biol.
– volume: 113
  start-page: 1564
  year: 2016
  end-page: 1569
  ident: bib29
  article-title: Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1α-dependent
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 35
  start-page: 871
  year: 2011
  end-page: 882
  ident: bib57
  article-title: The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation
  publication-title: Immunity
– volume: 17
  start-page: 684
  year: 2016
  end-page: 696
  ident: bib54
  article-title: Mitochondrial dysfunction prevents repolarization of inflammatory macrophages
  publication-title: Cell Rep.
– volume: 48
  start-page: 2353
  year: 2016
  end-page: 2362
  ident: bib35
  article-title: Targeting the polyamine-hypusine circuit for the prevention and treatment of cancer
  publication-title: Amino Acids
– volume: 28
  start-page: R170
  year: 2018
  end-page: R185
  ident: bib43
  article-title: Mitophagy and quality control mechanisms in mitochondrial maintenance
  publication-title: Curr. Biol.
– volume: 45
  start-page: 7326
  year: 2017
  end-page: 7338
  ident: bib40
  article-title: eIF5A facilitates translation termination globally and promotes the elongation of many non polyproline-specific tripeptide sequences
  publication-title: Nucleic Acids Res.
– volume: 11
  start-page: 1305
  year: 2009
  end-page: 1314
  ident: bib14
  article-title: Induction of autophagy by spermidine promotes longevity
  publication-title: Nat. Cell Biol.
– volume: 496
  start-page: 238
  year: 2013
  end-page: 242
  ident: bib51
  article-title: Succinate is an inflammatory signal that induces IL-1β through HIF-1α
  publication-title: Nature
– volume: 10
  start-page: 1794
  year: 2011
  end-page: 1805
  ident: bib12
  article-title: Andromeda: a peptide search engine integrated into the MaxQuant environment
  publication-title: J. Proteome Res.
– volume: 19
  start-page: e46072
  year: 2018
  ident: bib30
  article-title: eIF5A is required for autophagy by mediating ATG3 translation
  publication-title: EMBO Rep.
– volume: 26
  start-page: 1367
  year: 2008
  end-page: 1372
  ident: bib11
  article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification
  publication-title: Nat. Biotechnol.
– volume: 6
  start-page: 373
  year: 2007
  end-page: 390
  ident: bib7
  article-title: Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases
  publication-title: Nat. Rev. Drug Discov.
– volume: 11
  start-page: 3487
  year: 2012
  end-page: 3497
  ident: bib27
  article-title: Optimized fast and sensitive acquisition methods for shotgun proteomics on a quadrupole Orbitrap mass spectrometer
  publication-title: J. Proteome Res.
– volume: 64
  start-page: 5839
  year: 2004
  end-page: 5849
  ident: bib46
  article-title: Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses
  publication-title: Cancer Res.
– start-page: 6
  year: 2009
  end-page: 90
  ident: bib19
  article-title: Inhibition of HIV-1 gene expression by Ciclopirox and Deferiprone, drugs that prevent hypusination of eukaryotic initiation factor 5A
  publication-title: Retrovirology
– volume: 164
  start-page: 757
  year: 2016
  end-page: 769
  ident: bib18
  article-title: Redefining the translational status of 80S monosomes
  publication-title: Cell
– volume: 78
  start-page: 2869
  year: 1981
  end-page: 2873
  ident: bib38
  article-title: Identification of hypusine, an unusual amino-acid, in a protein from human-lymphocytes and of spermidine as its biosynthetic precursor
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 94
  start-page: 877
  year: 2013
  end-page: 884
  ident: bib3
  article-title: Type 2 innate lymphoid cells constitutively express arginase-I in the naive and inflamed lung
  publication-title: J. Leukoc. Biol.
– volume: 11
  start-page: e1001508
  year: 2013
  ident: bib9
  article-title: Positively charged residues are the major determinants of ribosomal velocity
  publication-title: PLoS Biol.
– volume: 108
  start-page: 6415
  year: 2011
  end-page: 6419
  ident: bib17
  article-title: Eukaryotic translation initiation factor (eIF) 5A stimulates protein synthesis in Saccharomyces cerevisiae
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 71
  start-page: 101
  year: 2001
  end-page: 109
  ident: bib24
  article-title: Human EIF5A2 on chromosome 3q25-q27 is a phylogenetically conserved vertebrate variant of eukaryotic translation initiation factor 5A with tissue-specific expression
  publication-title: Genomics
– volume: 28
  start-page: 811
  year: 2017
  end-page: 822
  ident: bib32
  article-title: Targeting eIF5A hypusination prevents anoxic cell death through mitochondrial silencing and improves kidney transplant outcome
  publication-title: J. Am. Soc. Nephrol.
– volume: 13
  start-page: 3940
  year: 2014
  end-page: 3956
  ident: bib15
  article-title: The quantitative nuclear matrix proteome as a biochemical snapshot of nuclear organization
  publication-title: J. Proteome Res.
– volume: 51
  start-page: 35
  year: 2013
  end-page: 45
  ident: bib16
  article-title: eIF5A promotes translation of polyproline motifs
  publication-title: Mol. Cell
– volume: 17
  start-page: 104
  year: 2016
  end-page: 112
  ident: bib21
  article-title: The cytotoxic T cell proteome and its shaping by the kinase mTOR
  publication-title: Nat. Immunol.
– volume: 15
  start-page: 846
  year: 2014
  end-page: 855
  ident: bib20
  article-title: Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages
  publication-title: Nat. Immunol.
– volume: 261
  start-page: 3085
  year: 1986
  end-page: 3089
  ident: bib1
  article-title: Deoxyhypusine hydroxylase from rat testis. Partial purification and characterization
  publication-title: J. Biol. Chem.
– volume: 17
  start-page: 656
  year: 2016
  end-page: 665
  ident: bib34
  article-title: Arginase 1 is an innate lymphoid-cell-intrinsic metabolic checkpoint controlling type 2 inflammation
  publication-title: Nat. Immunol.
– volume: 270
  start-page: 8660
  year: 1995
  end-page: 8666
  ident: bib58
  article-title: Deoxyhypusine synthase from rat testis: purification and characterization
  publication-title: J. Biol. Chem.
– volume: 39
  start-page: 514
  year: 2009
  end-page: 526
  ident: bib2
  article-title: IL-4 blocks M-CSF-dependent macrophage proliferation by inducing p21WAF1 in a STAT6-dependent way
  publication-title: Eur. J. Immunol.
– volume: 2
  start-page: 421
  year: 2013
  ident: bib36
  article-title: Characterization of a novel polyclonal anti-hypusine antibody
  publication-title: SpringerPlus
– volume: 162
  start-page: 1229
  year: 2015
  end-page: 1241
  ident: bib8
  article-title: Metabolic competition in the tumor microenvironment is a driver of cancer progression
  publication-title: Cell
– volume: 91
  start-page: 10829
  year: 1994
  end-page: 10833
  ident: bib4
  article-title: Induced gene expression of the hypusine-containing protein eukaryotic initiation factor 5A in activated human T lymphocytes
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 13
  start-page: 2513
  year: 2014
  end-page: 2526
  ident: bib10
  article-title: Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ
  publication-title: Mol. Cell Proteomics
– volume: 267
  start-page: 150
  year: 1992
  end-page: 158
  ident: bib44
  article-title: Mechanism of the irreversible inactivation of mouse ornithine decarboxylase by alpha-difluoromethylornithine. Characterization of sequences at the inhibitor and coenzyme binding-sites
  publication-title: J. Biol. Chem.
– volume: 7
  start-page: e43468
  year: 2012
  ident: bib45
  article-title: Expression of eukaryotic initiation factor 5A and hypusine forming enzymes in glioblastoma patient samples: implications for new targeted therapies
  publication-title: PLoS One
– volume: 269
  start-page: 3934
  year: 1994
  end-page: 3940
  ident: bib25
  article-title: Effect of initiation-factor Eif-5a depletion on protein-synthesis and proliferation of Saccharomyces-cerevisiae
  publication-title: J. Biol. Chem.
– volume: 13
  start-page: 731
  year: 2016
  end-page: 740
  ident: bib53
  article-title: The Perseus computational platform for comprehensive analysis of (prote)omics data
  publication-title: Nat. Methods
– volume: 28
  start-page: 490
  year: 2018
  end-page: 503.e7
  ident: bib13
  article-title: Etomoxir inhibits macrophage polarization by disrupting CoA homeostasis
  publication-title: Cell Metab
– volume: 11
  start-page: 319
  year: 2014
  end-page: 324
  ident: bib28
  article-title: Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells
  publication-title: Nat. Methods
– volume: 1849
  start-page: 836
  year: 2015
  end-page: 844
  ident: bib31
  article-title: The translation factor eIF5A and human cancer
  publication-title: Biochim. Biophys. Acta
– volume: 4
  start-page: 13
  year: 2006
  ident: 10.1016/j.cmet.2019.05.003_bib56
  article-title: Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2006.05.011
– volume: 5
  start-page: e1000371
  year: 2009
  ident: 10.1016/j.cmet.2019.05.003_bib42
  article-title: Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1000371
– volume: 270
  start-page: 8660
  year: 1995
  ident: 10.1016/j.cmet.2019.05.003_bib58
  article-title: Deoxyhypusine synthase from rat testis: purification and characterization
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.270.15.8660
– volume: 13
  start-page: 3940
  year: 2014
  ident: 10.1016/j.cmet.2019.05.003_bib15
  article-title: The quantitative nuclear matrix proteome as a biochemical snapshot of nuclear organization
  publication-title: J. Proteome Res.
  doi: 10.1021/pr500218f
– volume: 17
  start-page: 656
  year: 2016
  ident: 10.1016/j.cmet.2019.05.003_bib34
  article-title: Arginase 1 is an innate lymphoid-cell-intrinsic metabolic checkpoint controlling type 2 inflammation
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3421
– volume: 64
  start-page: 5839
  year: 2004
  ident: 10.1016/j.cmet.2019.05.003_bib46
  article-title: Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-04-0465
– volume: 11
  start-page: 319
  year: 2014
  ident: 10.1016/j.cmet.2019.05.003_bib28
  article-title: Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2834
– volume: 19
  start-page: e46072
  year: 2018
  ident: 10.1016/j.cmet.2019.05.003_bib30
  article-title: eIF5A is required for autophagy by mediating ATG3 translation
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201846072
– volume: 1849
  start-page: 836
  year: 2015
  ident: 10.1016/j.cmet.2019.05.003_bib31
  article-title: The translation factor eIF5A and human cancer
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagrm.2015.05.002
– volume: 269
  start-page: 3934
  year: 1994
  ident: 10.1016/j.cmet.2019.05.003_bib25
  article-title: Effect of initiation-factor Eif-5a depletion on protein-synthesis and proliferation of Saccharomyces-cerevisiae
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)41723-6
– volume: 113
  start-page: 1564
  year: 2016
  ident: 10.1016/j.cmet.2019.05.003_bib29
  article-title: Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1α-dependent
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1518000113
– volume: 169
  start-page: 570
  year: 2017
  ident: 10.1016/j.cmet.2019.05.003_bib5
  article-title: Metabolic instruction of immunity
  publication-title: Cell
  doi: 10.1016/j.cell.2017.04.004
– volume: 108
  start-page: 6415
  year: 2011
  ident: 10.1016/j.cmet.2019.05.003_bib17
  article-title: Eukaryotic translation initiation factor (eIF) 5A stimulates protein synthesis in Saccharomyces cerevisiae
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1008150108
– volume: 78
  start-page: 2869
  year: 1981
  ident: 10.1016/j.cmet.2019.05.003_bib38
  article-title: Identification of hypusine, an unusual amino-acid, in a protein from human-lymphocytes and of spermidine as its biosynthetic precursor
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.78.5.2869
– volume: 28
  start-page: 490
  year: 2018
  ident: 10.1016/j.cmet.2019.05.003_bib13
  article-title: Etomoxir inhibits macrophage polarization by disrupting CoA homeostasis
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2018.06.001
– volume: 15
  start-page: 846
  year: 2014
  ident: 10.1016/j.cmet.2019.05.003_bib20
  article-title: Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2956
– volume: 17
  start-page: 104
  year: 2016
  ident: 10.1016/j.cmet.2019.05.003_bib21
  article-title: The cytotoxic T cell proteome and its shaping by the kinase mTOR
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3314
– volume: 290
  start-page: 18343
  year: 2015
  ident: 10.1016/j.cmet.2019.05.003_bib37
  article-title: Biological relevance and therapeutic potential of the hypusine modification system
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.664490
– volume: 17
  start-page: 684
  year: 2016
  ident: 10.1016/j.cmet.2019.05.003_bib54
  article-title: Mitochondrial dysfunction prevents repolarization of inflammatory macrophages
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.09.008
– volume: 51
  start-page: 35
  year: 2013
  ident: 10.1016/j.cmet.2019.05.003_bib16
  article-title: eIF5A promotes translation of polyproline motifs
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.04.021
– volume: 28
  start-page: R170
  year: 2018
  ident: 10.1016/j.cmet.2019.05.003_bib43
  article-title: Mitophagy and quality control mechanisms in mitochondrial maintenance
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2018.01.004
– volume: 162
  start-page: 1229
  year: 2015
  ident: 10.1016/j.cmet.2019.05.003_bib8
  article-title: Metabolic competition in the tumor microenvironment is a driver of cancer progression
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.016
– volume: 7
  start-page: e43468
  year: 2012
  ident: 10.1016/j.cmet.2019.05.003_bib45
  article-title: Expression of eukaryotic initiation factor 5A and hypusine forming enzymes in glioblastoma patient samples: implications for new targeted therapies
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0043468
– volume: 11
  start-page: 3487
  year: 2012
  ident: 10.1016/j.cmet.2019.05.003_bib27
  article-title: Optimized fast and sensitive acquisition methods for shotgun proteomics on a quadrupole Orbitrap mass spectrometer
  publication-title: J. Proteome Res.
  doi: 10.1021/pr3000249
– volume: 28
  start-page: 811
  year: 2017
  ident: 10.1016/j.cmet.2019.05.003_bib32
  article-title: Targeting eIF5A hypusination prevents anoxic cell death through mitochondrial silencing and improves kidney transplant outcome
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2016010012
– volume: 267
  start-page: 150
  year: 1992
  ident: 10.1016/j.cmet.2019.05.003_bib44
  article-title: Mechanism of the irreversible inactivation of mouse ornithine decarboxylase by alpha-difluoromethylornithine. Characterization of sequences at the inhibitor and coenzyme binding-sites
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)48472-4
– volume: 71
  start-page: 101
  year: 2001
  ident: 10.1016/j.cmet.2019.05.003_bib24
  article-title: Human EIF5A2 on chromosome 3q25-q27 is a phylogenetically conserved vertebrate variant of eukaryotic translation initiation factor 5A with tissue-specific expression
  publication-title: Genomics
  doi: 10.1006/geno.2000.6418
– volume: 31
  start-page: 1160
  year: 2011
  ident: 10.1016/j.cmet.2019.05.003_bib22
  article-title: The chaperone network connected to human ribosome-associated complex
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00986-10
– volume: 459
  start-page: 118
  year: 2009
  ident: 10.1016/j.cmet.2019.05.003_bib48
  article-title: Hypusine-containing protein eIF5A promotes translation elongation
  publication-title: Nature
  doi: 10.1038/nature08034
– volume: 13
  start-page: 731
  year: 2016
  ident: 10.1016/j.cmet.2019.05.003_bib53
  article-title: The Perseus computational platform for comprehensive analysis of (prote)omics data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3901
– volume: 11
  start-page: e1001508
  year: 2013
  ident: 10.1016/j.cmet.2019.05.003_bib9
  article-title: Positively charged residues are the major determinants of ribosomal velocity
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1001508
– volume: 231
  start-page: 2682
  year: 2016
  ident: 10.1016/j.cmet.2019.05.003_bib41
  article-title: Alternative start codon connects eIF5A to mitochondria
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.25370
– volume: 164
  start-page: 757
  year: 2016
  ident: 10.1016/j.cmet.2019.05.003_bib18
  article-title: Redefining the translational status of 80S monosomes
  publication-title: Cell
  doi: 10.1016/j.cell.2016.01.003
– volume: 26
  start-page: 1367
  year: 2008
  ident: 10.1016/j.cmet.2019.05.003_bib11
  article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1511
– volume: 66
  start-page: 194
  year: 2017
  ident: 10.1016/j.cmet.2019.05.003_bib49
  article-title: eIF5A functions globally in translation elongation and termination
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.03.003
– volume: 496
  start-page: 238
  year: 2013
  ident: 10.1016/j.cmet.2019.05.003_bib51
  article-title: Succinate is an inflammatory signal that induces IL-1β through HIF-1α
  publication-title: Nature
  doi: 10.1038/nature11986
– volume: 291
  start-page: 14904
  year: 2016
  ident: 10.1016/j.cmet.2019.05.003_bib39
  article-title: Functions of polyamines in mammals
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R116.731661
– volume: 35
  start-page: 871
  year: 2011
  ident: 10.1016/j.cmet.2019.05.003_bib57
  article-title: The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.09.021
– volume: 91
  start-page: 10829
  year: 1994
  ident: 10.1016/j.cmet.2019.05.003_bib4
  article-title: Induced gene expression of the hypusine-containing protein eukaryotic initiation factor 5A in activated human T lymphocytes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.91.23.10829
– volume: 6
  start-page: 373
  year: 2007
  ident: 10.1016/j.cmet.2019.05.003_bib7
  article-title: Targeting polyamine metabolism and function in cancer and other hyperproliferative diseases
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd2243
– volume: 13
  start-page: 2513
  year: 2014
  ident: 10.1016/j.cmet.2019.05.003_bib10
  article-title: Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ
  publication-title: Mol. Cell Proteomics
  doi: 10.1074/mcp.M113.031591
– volume: 18
  start-page: 4279
  year: 2007
  ident: 10.1016/j.cmet.2019.05.003_bib26
  article-title: Regulation of ubiquitin-proteasome system mediated degradation by cytosolic stress
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e07-05-0487
– volume: 332
  start-page: 1284
  year: 2011
  ident: 10.1016/j.cmet.2019.05.003_bib23
  article-title: Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation
  publication-title: Science
  doi: 10.1126/science.1204351
– volume: 44
  start-page: 143
  year: 2009
  ident: 10.1016/j.cmet.2019.05.003_bib55
  article-title: Translational control of eukaryotic gene expression
  publication-title: Crit. Rev. Biochem. Mol. Biol.
  doi: 10.1080/10409230902882090
– volume: 39
  start-page: 514
  year: 2009
  ident: 10.1016/j.cmet.2019.05.003_bib2
  article-title: IL-4 blocks M-CSF-dependent macrophage proliferation by inducing p21WAF1 in a STAT6-dependent way
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.200838283
– volume: 45
  start-page: 7326
  year: 2017
  ident: 10.1016/j.cmet.2019.05.003_bib40
  article-title: eIF5A facilitates translation termination globally and promotes the elongation of many non polyproline-specific tripeptide sequences
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx479
– volume: 16
  year: 2015
  ident: 10.1016/j.cmet.2019.05.003_bib47
  article-title: A comparative genomics study on the effect of individual amino acids on ribosome stalling
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-16-S10-S5
– volume: 94
  start-page: 877
  year: 2013
  ident: 10.1016/j.cmet.2019.05.003_bib3
  article-title: Type 2 innate lymphoid cells constitutively express arginase-I in the naive and inflamed lung
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.0213084
– start-page: 6
  year: 2009
  ident: 10.1016/j.cmet.2019.05.003_bib19
  article-title: Inhibition of HIV-1 gene expression by Ciclopirox and Deferiprone, drugs that prevent hypusination of eukaryotic initiation factor 5A
  publication-title: Retrovirology
– volume: 427
  start-page: 3389
  year: 2015
  ident: 10.1016/j.cmet.2019.05.003_bib33
  article-title: Remaining mysteries of molecular biology: the role of polyamines in the cell
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2015.06.020
– volume: 2
  start-page: 421
  year: 2013
  ident: 10.1016/j.cmet.2019.05.003_bib36
  article-title: Characterization of a novel polyclonal anti-hypusine antibody
  publication-title: SpringerPlus
  doi: 10.1186/2193-1801-2-421
– volume: 58
  start-page: 244
  year: 2001
  ident: 10.1016/j.cmet.2019.05.003_bib52
  article-title: Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/PL00000852
– volume: 10
  start-page: 1794
  year: 2011
  ident: 10.1016/j.cmet.2019.05.003_bib12
  article-title: Andromeda: a peptide search engine integrated into the MaxQuant environment
  publication-title: J. Proteome Res.
  doi: 10.1021/pr101065j
– volume: 48
  start-page: 2353
  year: 2016
  ident: 10.1016/j.cmet.2019.05.003_bib35
  article-title: Targeting the polyamine-hypusine circuit for the prevention and treatment of cancer
  publication-title: Amino Acids
  doi: 10.1007/s00726-016-2275-3
– volume: 261
  start-page: 3085
  year: 1986
  ident: 10.1016/j.cmet.2019.05.003_bib1
  article-title: Deoxyhypusine hydroxylase from rat testis. Partial purification and characterization
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)35750-2
– volume: 11
  start-page: 1305
  year: 2009
  ident: 10.1016/j.cmet.2019.05.003_bib14
  article-title: Induction of autophagy by spermidine promotes longevity
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1975
– volume: 34
  start-page: 189
  year: 2015
  ident: 10.1016/j.cmet.2019.05.003_bib6
  article-title: A roadmap for interpreting (13) C metabolite labeling patterns from cells
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2015.02.003
– volume: 219
  start-page: 109
  year: 2009
  ident: 10.1016/j.cmet.2019.05.003_bib50
  article-title: The polyamine analogue N1,N11-diethylnorspermine can induce chondrocyte apoptosis independently of its ability to alter metabolism and levels of natural polyamines
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.21655
SSID ssj0036393
Score 2.6663775
Snippet How cells adapt metabolism to meet demands is an active area of interest across biology. Among a broad range of functions, the polyamine spermidine is needed...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 352
SubjectTerms Animals
Cells, Cultured
deoxyhypusine hydroxylase
deoxyhypusine synthase
eIF5A
Eukaryotic Translation Initiation Factor 5A
hypusination
immunometabolism
Macrophage Activation
Macrophages - metabolism
metabolism
Mice
Mice, Inbred C57BL
Mice, Transgenic
Mitochondria - metabolism
Peptide Initiation Factors - metabolism
polyamines
Polyamines - metabolism
Proteomics
RNA-Binding Proteins - metabolism
Title Polyamines and eIF5A Hypusination Modulate Mitochondrial Respiration and Macrophage Activation
URI https://dx.doi.org/10.1016/j.cmet.2019.05.003
https://www.ncbi.nlm.nih.gov/pubmed/31130465
https://www.proquest.com/docview/2232122423
https://pubmed.ncbi.nlm.nih.gov/PMC6688828
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa8IwFA4iDHYZ-z33iwx2G0VNk6Y9Opm4gWNsEzwtpGmKDq2y6cH_fu-lrcwJHnYptH2BkJd8-UK-9x4ht7IZh1GgpQfcg3vc-ImnUbimpeCwtILEt04g-xx0-_xpIAYV0i5jYVBWWWB_jukOrYsv9WI067PRqP6G5JpjtpjIx7R6GPDr89AF8Q3uSzT2YQd2Insw9tC6CJzJNV5mYlFP2Yxc9s6ycNbm5rRJPv9qKH9tSp19slewSdrKO3xAKjY7JDt5fcnlEfl4mY6XeoLKdqqzhNrHjmjR7nKGanfnEtqbJljAy9IeLG2AwizBGUlfixt4NMGWPY2lvoYAPrRlyopox6TfeXhvd72ioIJnsG6Bx2JpQ2A8Ucqk0IE1LOYRnJjSWCY6SQG2JYtTIAH4iKVOjbCpn9gwbggAo4Z_QqrZNLNnhEorg1RqjSFbXBgRspQJJAs-nEAAfGukWY6kMkW2cSx6MValrOxT4egrHH3VEJijtEbuVm1mea6NrdaidJBamzEKNoOt7W5KbypYSng_ojM7XXwrYEoMLxoZ2Jzm3l31A6YZ3iGLGpFrfl8ZYJru9T_ZaOjSdQdBCMeY8Pyf_b0gu_jmRIfBJanOvxb2CojQPL52M_0Hb98Gnw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFL3oRPRF_HZ-RvBNyra2adrHKY5OrYhusCdD2qY4cd3Q7WH_3nv7MZyDPfiyh_UGQm5yckJO7gG4Eo3Q9RwlDOQetmFHVmwoEq4pwW1cWk5s6Uwg--T4Xfu-x3srcFu-hSFZZYH9OaZnaF38UytGszbq92uvRK5tqhbjWVRWz12FNWQDgvwb2r2bEo4t3IIzlT1GGxRevJzJRV7RQJOgsuFl5TtL56zF3WmRff4VUf7alVrbsFXQSdbMe7wDKzrdhfXcYHK6B2_Pw8-pGpC0nak0Zrrd4k3mT0ckd89ywoJhTA5emgW4thEL05imJHspruAphFoGiry-3hF9WDMqLdH2odu669z6RuGoYERkXGCYodAuUh4vMQVXjo7M0PbwyJSEIlZxgrgtzDBBFkA_oVBJxHVixdoN6xzRqG4dQCUdpvoImNDCSYRS9GbL5hF3zcTkxBYsPIIg-lahUY6kjIpy4-R68SlLXdmHpNGXNPqyzqlIaRWuZ21GebGNpdG8TJCcmzISd4Ol7S7LbEpcS3RBolI9nHxLpEom3TSaGHOYZ3fWD5xndInMqyDm8j4LoDrd81_S_ntWr9txXDzHuMf_7O8FbPid4FE-tp8eTmCTvmQKROcUKuOviT5DVjQOz7NZ_wOhCwm-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polyamines+and+eIF5A+Hypusination+Modulate+Mitochondrial+Respiration+and+Macrophage+Activation&rft.jtitle=Cell+metabolism&rft.au=Puleston%2C+Daniel+J.&rft.au=Buck%2C+Michael+D.&rft.au=Klein+Geltink%2C+Ramon+I.&rft.au=Kyle%2C+Ryan+L.&rft.date=2019-08-06&rft.pub=Elsevier+Inc&rft.issn=1550-4131&rft.eissn=1932-7420&rft.volume=30&rft.issue=2&rft.spage=352&rft.epage=363.e8&rft_id=info:doi/10.1016%2Fj.cmet.2019.05.003&rft.externalDocID=S1550413119302438
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon