Combined delivery of BMP-2 and bFGF from nanostructured colloidal gelatin gels and its effect on bone regeneration in vivo

During the process of bone regeneration, a multitude of morphogenetic signaling factors regulate cellular behavior and ultimately tissue response. These factors are presented to cells under strong spatial and temporal control, which stresses the relevance of controlled delivery of multiple growth fa...

Full description

Saved in:
Bibliographic Details
Published inJournal of controlled release Vol. 166; no. 2; pp. 172 - 181
Main Authors Wang, Huanan, Zou, Qin, Boerman, Otto C., Nijhuis, Arnold W.G., Jansen, John A., Li, Yubao, Leeuwenburgh, Sander C.G.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 10.03.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract During the process of bone regeneration, a multitude of morphogenetic signaling factors regulate cellular behavior and ultimately tissue response. These factors are presented to cells under strong spatial and temporal control, which stresses the relevance of controlled delivery of multiple growth factors for bone tissue regeneration. This demand for biomimetic delivery has prompted the development of a novel generation of biomaterials that is capable of delivering multiple growth factors in a controlled manner. Therefore, the current study has exploited the strong capacity of colloidal gels solely made of oppositely charged gelatin nanospheres to obtain controlled release of angiogenic and osteogenic growth factors. The release kinetics of dual delivery of osteogenic bone morphogenetic protein-2 (BMP-2) and angiogenic basic fibroblast growth factor (bFGF) were investigated in vitro by radiolabeling the respective growth factors and monitoring their release in vitro. Furthermore, the effect of single or dual delivery of BMP-2 and bFGF on bone regeneration was evaluated in vivo using a rat femoral condyle defect model. The in vitro results confirmed that the delivery kinetics of BMP-2 and/or bFGF are more dependent on the degree of crosslinking than on the type of gelatin. Sequential release characterized by rapid release of angiogenic bFGF and more sustained release of BMP-2 was obtained by loading bFGF onto cationic nanospheres of low crosslinking density and BMP-2 onto anionic nanospheres of high crosslinking density. The in vivo study demonstrated the biocompatibility and biodegradability of bare colloidal gelatin gels, and did not show any adverse effects on the process of bone healing after 4week of implantation since the volumes of new bone formation were comparable to empty control defects. An obvious stimulatory effect on bone regeneration was observed for the colloidal gels loaded with BMP-2, whereas bFGF-loaded colloidal gelatin gels did not influence the rate of bone regeneration. In contrast, the combined delivery of BMP-2 and bFGF resulted into an inhibitory effect on osteogenesis under the current experimental conditions. Summarizing, the current study proved that nanostructured colloidal gelatin gels are suitable carriers for programmed and sustained release of multiple therapeutic proteins for tissue regeneration. By loading different growth factors in sub-populations of gelatin nanospheres (NS) respectively, colloidal gels comprising oppositely charged gelatin nanospheres showed strong capacity to obtain sequential release of dual growth factors. [Display omitted]
AbstractList During the process of bone regeneration, a multitude of morphogenetic signaling factors regulate cellular behavior and ultimately tissue response. These factors are presented to cells under strong spatial and temporal control, which stresses the relevance of controlled delivery of multiple growth factors for bone tissue regeneration. This demand for biomimetic delivery has prompted the development of a novel generation of biomaterials that is capable of delivering multiple growth factors in a controlled manner. Therefore, the current study has exploited the strong capacity of colloidal gels solely made of oppositely charged gelatin nanospheres to obtain controlled release of angiogenic and osteogenic growth factors. The release kinetics of dual delivery of osteogenic bone morphogenetic protein-2 (BMP-2) and angiogenic basic fibroblast growth factor (bFGF) were investigated in vitro by radiolabeling the respective growth factors and monitoring their release in vitro. Furthermore, the effect of single or dual delivery of BMP-2 and bFGF on bone regeneration was evaluated in vivo using a rat femoral condyle defect model. The in vitro results confirmed that the delivery kinetics of BMP-2 and/or bFGF are more dependent on the degree of crosslinking than on the type of gelatin. Sequential release characterized by rapid release of angiogenic bFGF and more sustained release of BMP-2 was obtained by loading bFGF onto cationic nanospheres of low crosslinking density and BMP-2 onto anionic nanospheres of high crosslinking density. The in vivo study demonstrated the biocompatibility and biodegradability of bare colloidal gelatin gels, and did not show any adverse effects on the process of bone healing after 4 week of implantation since the volumes of new bone formation were comparable to empty control defects. An obvious stimulatory effect on bone regeneration was observed for the colloidal gels loaded with BMP-2, whereas bFGF-loaded colloidal gelatin gels did not influence the rate of bone regeneration. In contrast, the combined delivery of BMP-2 and bFGF resulted into an inhibitory effect on osteogenesis under the current experimental conditions. Summarizing, the current study proved that nanostructured colloidal gelatin gels are suitable carriers for programmed and sustained release of multiple therapeutic proteins for tissue regeneration.
During the process of bone regeneration, a multitude of morphogenetic signaling factors regulate cellular behavior and ultimately tissue response. These factors are presented to cells under strong spatial and temporal control, which stresses the relevance of controlled delivery of multiple growth factors for bone tissue regeneration. This demand for biomimetic delivery has prompted the development of a novel generation of biomaterials that is capable of delivering multiple growth factors in a controlled manner. Therefore, the current study has exploited the strong capacity of colloidal gels solely made of oppositely charged gelatin nanospheres to obtain controlled release of angiogenic and osteogenic growth factors. The release kinetics of dual delivery of osteogenic bone morphogenetic protein-2 (BMP-2) and angiogenic basic fibroblast growth factor (bFGF) were investigated in vitro by radiolabeling the respective growth factors and monitoring their release in vitro. Furthermore, the effect of single or dual delivery of BMP-2 and bFGF on bone regeneration was evaluated in vivo using a rat femoral condyle defect model. The in vitro results confirmed that the delivery kinetics of BMP-2 and/or bFGF are more dependent on the degree of crosslinking than on the type of gelatin. Sequential release characterized by rapid release of angiogenic bFGF and more sustained release of BMP-2 was obtained by loading bFGF onto cationic nanospheres of low crosslinking density and BMP-2 onto anionic nanospheres of high crosslinking density. The in vivo study demonstrated the biocompatibility and biodegradability of bare colloidal gelatin gels, and did not show any adverse effects on the process of bone healing after 4 week of implantation since the volumes of new bone formation were comparable to empty control defects. An obvious stimulatory effect on bone regeneration was observed for the colloidal gels loaded with BMP-2, whereas bFGF-loaded colloidal gelatin gels did not influence the rate of bone regeneration. In contrast, the combined delivery of BMP-2 and bFGF resulted into an inhibitory effect on osteogenesis under the current experimental conditions. Summarizing, the current study proved that nanostructured colloidal gelatin gels are suitable carriers for programmed and sustained release of multiple therapeutic proteins for tissue regeneration.During the process of bone regeneration, a multitude of morphogenetic signaling factors regulate cellular behavior and ultimately tissue response. These factors are presented to cells under strong spatial and temporal control, which stresses the relevance of controlled delivery of multiple growth factors for bone tissue regeneration. This demand for biomimetic delivery has prompted the development of a novel generation of biomaterials that is capable of delivering multiple growth factors in a controlled manner. Therefore, the current study has exploited the strong capacity of colloidal gels solely made of oppositely charged gelatin nanospheres to obtain controlled release of angiogenic and osteogenic growth factors. The release kinetics of dual delivery of osteogenic bone morphogenetic protein-2 (BMP-2) and angiogenic basic fibroblast growth factor (bFGF) were investigated in vitro by radiolabeling the respective growth factors and monitoring their release in vitro. Furthermore, the effect of single or dual delivery of BMP-2 and bFGF on bone regeneration was evaluated in vivo using a rat femoral condyle defect model. The in vitro results confirmed that the delivery kinetics of BMP-2 and/or bFGF are more dependent on the degree of crosslinking than on the type of gelatin. Sequential release characterized by rapid release of angiogenic bFGF and more sustained release of BMP-2 was obtained by loading bFGF onto cationic nanospheres of low crosslinking density and BMP-2 onto anionic nanospheres of high crosslinking density. The in vivo study demonstrated the biocompatibility and biodegradability of bare colloidal gelatin gels, and did not show any adverse effects on the process of bone healing after 4 week of implantation since the volumes of new bone formation were comparable to empty control defects. An obvious stimulatory effect on bone regeneration was observed for the colloidal gels loaded with BMP-2, whereas bFGF-loaded colloidal gelatin gels did not influence the rate of bone regeneration. In contrast, the combined delivery of BMP-2 and bFGF resulted into an inhibitory effect on osteogenesis under the current experimental conditions. Summarizing, the current study proved that nanostructured colloidal gelatin gels are suitable carriers for programmed and sustained release of multiple therapeutic proteins for tissue regeneration.
During the process of bone regeneration, a multitude of morphogenetic signaling factors regulate cellular behavior and ultimately tissue response. These factors are presented to cells under strong spatial and temporal control, which stresses the relevance of controlled delivery of multiple growth factors for bone tissue regeneration. This demand for biomimetic delivery has prompted the development of a novel generation of biomaterials that is capable of delivering multiple growth factors in a controlled manner. Therefore, the current study has exploited the strong capacity of colloidal gels solely made of oppositely charged gelatin nanospheres to obtain controlled release of angiogenic and osteogenic growth factors. The release kinetics of dual delivery of osteogenic bone morphogenetic protein-2 (BMP-2) and angiogenic basic fibroblast growth factor (bFGF) were investigated in vitro by radiolabeling the respective growth factors and monitoring their release in vitro. Furthermore, the effect of single or dual delivery of BMP-2 and bFGF on bone regeneration was evaluated in vivo using a rat femoral condyle defect model. The in vitro results confirmed that the delivery kinetics of BMP-2 and/or bFGF are more dependent on the degree of crosslinking than on the type of gelatin. Sequential release characterized by rapid release of angiogenic bFGF and more sustained release of BMP-2 was obtained by loading bFGF onto cationic nanospheres of low crosslinking density and BMP-2 onto anionic nanospheres of high crosslinking density. The in vivo study demonstrated the biocompatibility and biodegradability of bare colloidal gelatin gels, and did not show any adverse effects on the process of bone healing after 4week of implantation since the volumes of new bone formation were comparable to empty control defects. An obvious stimulatory effect on bone regeneration was observed for the colloidal gels loaded with BMP-2, whereas bFGF-loaded colloidal gelatin gels did not influence the rate of bone regeneration. In contrast, the combined delivery of BMP-2 and bFGF resulted into an inhibitory effect on osteogenesis under the current experimental conditions. Summarizing, the current study proved that nanostructured colloidal gelatin gels are suitable carriers for programmed and sustained release of multiple therapeutic proteins for tissue regeneration.
During the process of bone regeneration, a multitude of morphogenetic signaling factors regulate cellular behavior and ultimately tissue response. These factors are presented to cells under strong spatial and temporal control, which stresses the relevance of controlled delivery of multiple growth factors for bone tissue regeneration. This demand for biomimetic delivery has prompted the development of a novel generation of biomaterials that is capable of delivering multiple growth factors in a controlled manner. Therefore, the current study has exploited the strong capacity of colloidal gels solely made of oppositely charged gelatin nanospheres to obtain controlled release of angiogenic and osteogenic growth factors. The release kinetics of dual delivery of osteogenic bone morphogenetic protein-2 (BMP-2) and angiogenic basic fibroblast growth factor (bFGF) were investigated in vitro by radiolabeling the respective growth factors and monitoring their release in vitro. Furthermore, the effect of single or dual delivery of BMP-2 and bFGF on bone regeneration was evaluated in vivo using a rat femoral condyle defect model. The in vitro results confirmed that the delivery kinetics of BMP-2 and/or bFGF are more dependent on the degree of crosslinking than on the type of gelatin. Sequential release characterized by rapid release of angiogenic bFGF and more sustained release of BMP-2 was obtained by loading bFGF onto cationic nanospheres of low crosslinking density and BMP-2 onto anionic nanospheres of high crosslinking density. The in vivo study demonstrated the biocompatibility and biodegradability of bare colloidal gelatin gels, and did not show any adverse effects on the process of bone healing after 4week of implantation since the volumes of new bone formation were comparable to empty control defects. An obvious stimulatory effect on bone regeneration was observed for the colloidal gels loaded with BMP-2, whereas bFGF-loaded colloidal gelatin gels did not influence the rate of bone regeneration. In contrast, the combined delivery of BMP-2 and bFGF resulted into an inhibitory effect on osteogenesis under the current experimental conditions. Summarizing, the current study proved that nanostructured colloidal gelatin gels are suitable carriers for programmed and sustained release of multiple therapeutic proteins for tissue regeneration. By loading different growth factors in sub-populations of gelatin nanospheres (NS) respectively, colloidal gels comprising oppositely charged gelatin nanospheres showed strong capacity to obtain sequential release of dual growth factors. [Display omitted]
Author Zou, Qin
Li, Yubao
Boerman, Otto C.
Wang, Huanan
Nijhuis, Arnold W.G.
Leeuwenburgh, Sander C.G.
Jansen, John A.
Author_xml – sequence: 1
  givenname: Huanan
  surname: Wang
  fullname: Wang, Huanan
  organization: Department of Biomaterials, Radboud University Nijmegen Medical Center, 6525 EX Nijmegen, The Netherlands
– sequence: 2
  givenname: Qin
  surname: Zou
  fullname: Zou, Qin
  organization: Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, 610064 Chengdu, P.R. China
– sequence: 3
  givenname: Otto C.
  surname: Boerman
  fullname: Boerman, Otto C.
  organization: Department of Nuclear Medicine, Radboud University Nijmegen Medical Centere, 6525 GA Nijmegen, The Netherlands
– sequence: 4
  givenname: Arnold W.G.
  surname: Nijhuis
  fullname: Nijhuis, Arnold W.G.
  organization: Department of Biomaterials, Radboud University Nijmegen Medical Center, 6525 EX Nijmegen, The Netherlands
– sequence: 5
  givenname: John A.
  surname: Jansen
  fullname: Jansen, John A.
  organization: Department of Biomaterials, Radboud University Nijmegen Medical Center, 6525 EX Nijmegen, The Netherlands
– sequence: 6
  givenname: Yubao
  surname: Li
  fullname: Li, Yubao
  organization: Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, 610064 Chengdu, P.R. China
– sequence: 7
  givenname: Sander C.G.
  surname: Leeuwenburgh
  fullname: Leeuwenburgh, Sander C.G.
  email: s.leeuwenburgh@dent.umcn.nl
  organization: Department of Biomaterials, Radboud University Nijmegen Medical Center, 6525 EX Nijmegen, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23266450$$D View this record in MEDLINE/PubMed
BookMark eNqFkUGPEyEUx4lZ43ZXP4LK0ctUYJhhiAejjV1N1miieyYUHg0NhRVmmqyfXmZbPXhpQvIS8vvDe-93hS5iioDQS0qWlND-7W65MylmCEtGKFvWQ2j3BC3oINqGS9ldoEXlhqbtO3mJrkrZEUK6lotn6JK1rO95Rxbo9yrtNz6CxRaCP0B-wMnhj1-_NwzraPFmfbPGLqc9jjqmMubJjFOuuEkhJG91wFsIevRxruUx48eCwTkwI04Rb2rfOMMWIuTK1ZvKHvwhPUdPnQ4FXpzqNbpbf_q5-tzcfrv5svpw25iO0bFh3Fog3VDbFYNmrNVUCKIFa2UPRgrBHe-J6LjgmhHXWy2dkWbQlnFJjWuv0Zvju_c5_ZqgjGrvi4EQdIQ0FVWX1AvKCBvOox0hQrSkdnEWZcMgZU8Jr-irEzpt9mDVffZ7nR_UXwsV6I6AyamUDO4fQomabaudOtlWs-36uKq2a-7dfznjx8cdj1n7cDb9-ph2Oim9zb6oux8VqDPOG-bzjO-PRDULBw9ZFeMhGrA-V7vKJn_mjz-xFtCK
CitedBy_id crossref_primary_10_1002_admi_201800118
crossref_primary_10_1002_mabi_201500005
crossref_primary_10_1002_jbm_a_36342
crossref_primary_10_1016_j_jconrel_2014_04_014
crossref_primary_10_4155_tde_14_42
crossref_primary_10_1088_1361_6668_ac048f
crossref_primary_10_1021_la4041985
crossref_primary_10_1016_j_bprint_2024_e00345
crossref_primary_10_1088_1748_605X_abc1b1
crossref_primary_10_1007_s11706_015_0278_8
crossref_primary_10_1016_j_eurpolymj_2015_05_014
crossref_primary_10_1007_s40005_017_0382_0
crossref_primary_10_1016_j_eurpolymj_2019_07_007
crossref_primary_10_1007_s12274_022_4103_2
crossref_primary_10_1002_admt_201700022
crossref_primary_10_1016_j_bioactmat_2022_02_035
crossref_primary_10_1039_D0TB00172D
crossref_primary_10_1016_j_cej_2017_09_145
crossref_primary_10_1016_j_msec_2017_03_297
crossref_primary_10_1007_s13770_023_00534_z
crossref_primary_10_1016_j_addr_2020_08_008
crossref_primary_10_1016_j_biomaterials_2014_11_002
crossref_primary_10_3389_fbioe_2016_00045
crossref_primary_10_1002_term_2745
crossref_primary_10_1016_j_colsurfb_2019_110407
crossref_primary_10_1517_17425247_2015_1037272
crossref_primary_10_1002_mabi_202400049
crossref_primary_10_1021_acs_chemrev_2c00179
crossref_primary_10_1016_j_bioactmat_2021_04_013
crossref_primary_10_1016_j_eurpolymj_2022_111671
crossref_primary_10_1080_03639045_2018_1483381
crossref_primary_10_1016_j_addr_2019_03_004
crossref_primary_10_1016_j_jddst_2017_04_012
crossref_primary_10_1179_1743280414Y_0000000045
crossref_primary_10_1122_8_0000161
crossref_primary_10_1002_adhm_201901469
crossref_primary_10_1186_2055_7124_18_16
crossref_primary_10_1016_j_jconrel_2015_08_049
crossref_primary_10_3390_biom13040609
crossref_primary_10_1002_nano_202000087
crossref_primary_10_1515_secm_2015_0372
crossref_primary_10_1016_j_pmatsci_2023_101124
crossref_primary_10_1122_8_0000672
crossref_primary_10_1089_ten_tea_2020_0141
crossref_primary_10_1111_jcpe_12739
crossref_primary_10_1186_s13018_015_0201_0
crossref_primary_10_1002_term_2202
crossref_primary_10_1080_17435889_2025_2457317
crossref_primary_10_1016_j_addr_2020_07_021
crossref_primary_10_1021_acsbiomaterials_8b01098
crossref_primary_10_1016_j_ijbiomac_2015_08_006
crossref_primary_10_3390_applbiosci2040039
crossref_primary_10_1016_j_exger_2015_02_006
crossref_primary_10_1016_j_bprint_2023_e00317
crossref_primary_10_1039_D0NA00478B
crossref_primary_10_1016_j_supflu_2023_105979
crossref_primary_10_3892_mmr_2017_7183
crossref_primary_10_1002_mabi_202300122
crossref_primary_10_1021_acs_molpharmaceut_5b00297
crossref_primary_10_1016_j_actbio_2013_08_036
crossref_primary_10_3390_ijms140612714
crossref_primary_10_1088_1748_605X_ad525c
crossref_primary_10_1002_jbm_a_35605
crossref_primary_10_1016_j_colsurfb_2018_05_029
crossref_primary_10_1021_acsami_4c12721
crossref_primary_10_1021_acsomega_6b00420
crossref_primary_10_1016_j_jconrel_2014_05_007
crossref_primary_10_1002_adfm_201703438
crossref_primary_10_1021_acsbiomaterials_9b01746
crossref_primary_10_1089_ten_tea_2017_0111
crossref_primary_10_1016_j_jconrel_2023_07_034
crossref_primary_10_1002_term_2677
crossref_primary_10_1016_j_biomaterials_2017_10_018
crossref_primary_10_1002_adhm_201700014
crossref_primary_10_1016_j_biomaterials_2017_04_036
crossref_primary_10_1016_j_ccr_2022_214482
crossref_primary_10_1016_j_actbio_2013_10_014
crossref_primary_10_1016_j_jtice_2015_10_006
crossref_primary_10_1002_anie_201403702
crossref_primary_10_3390_biom13020205
crossref_primary_10_1080_09205063_2015_1049044
crossref_primary_10_1016_j_eurpolymj_2023_111846
crossref_primary_10_1007_s11095_013_1077_5
crossref_primary_10_1016_j_biomaterials_2021_120871
crossref_primary_10_1039_D1BM00504A
crossref_primary_10_1080_09205063_2018_1505264
crossref_primary_10_5435_JAAOS_22_10_677
crossref_primary_10_1088_0957_4484_26_1_012001
crossref_primary_10_1021_acsbiomaterials_9b00642
crossref_primary_10_1039_C5RA02588E
crossref_primary_10_1186_s13036_021_00271_8
crossref_primary_10_1016_j_jconrel_2015_10_032
crossref_primary_10_1049_bsbt_2020_0020
crossref_primary_10_1016_j_tice_2020_101449
crossref_primary_10_1089_ten_tec_2016_0025
crossref_primary_10_1016_j_nano_2013_04_008
crossref_primary_10_1002_adhm_202001986
crossref_primary_10_1016_j_jconrel_2013_09_019
crossref_primary_10_1016_j_ijom_2014_02_014
crossref_primary_10_1089_ten_tea_2014_0182
crossref_primary_10_3390_pharmaceutics12070604
crossref_primary_10_1002_ange_201403702
crossref_primary_10_1039_C5RA27914C
crossref_primary_10_1016_j_jot_2020_01_003
crossref_primary_10_1002_advs_201900520
crossref_primary_10_1016_j_msec_2013_06_013
crossref_primary_10_1016_j_drudis_2013_11_007
crossref_primary_10_1016_j_addr_2017_11_005
crossref_primary_10_1016_j_intimp_2013_04_001
crossref_primary_10_1021_acsbiomaterials_8b01468
crossref_primary_10_1088_1758_5090_acab36
crossref_primary_10_1080_15685551_2016_1259839
crossref_primary_10_2147_IJN_S477587
crossref_primary_10_1177_09636897241276733
crossref_primary_10_3390_nano12193423
crossref_primary_10_1016_j_msec_2021_112343
crossref_primary_10_1016_j_addr_2015_06_003
crossref_primary_10_1016_j_ijbiomac_2021_05_188
crossref_primary_10_1016_j_mtbio_2024_101256
crossref_primary_10_1080_09205063_2019_1652416
crossref_primary_10_1021_acsami_6b03454
crossref_primary_10_1021_acsami_8b06648
crossref_primary_10_1016_j_actbio_2021_10_053
crossref_primary_10_1021_acs_langmuir_6b03529
crossref_primary_10_3390_ma10080929
crossref_primary_10_1089_ten_tea_2013_0181
crossref_primary_10_1007_s00784_017_2202_3
crossref_primary_10_3390_pharmaceutics15051499
crossref_primary_10_1002_mabi_201500414
crossref_primary_10_1021_acsami_9b01227
crossref_primary_10_1021_acs_biomac_3c00177
crossref_primary_10_1039_C6RA19915A
crossref_primary_10_1016_j_msec_2018_06_038
crossref_primary_10_1093_rb_rbab051
crossref_primary_10_1155_2013_763937
crossref_primary_10_1111_jre_12628
crossref_primary_10_1021_acs_nanolett_3c03459
crossref_primary_10_2217_rme_2019_0080
crossref_primary_10_1016_j_jconrel_2014_03_044
crossref_primary_10_1016_j_msec_2020_110893
crossref_primary_10_1517_13543784_2016_1161757
crossref_primary_10_1016_j_actbio_2014_09_006
crossref_primary_10_1080_21655979_2022_2085394
crossref_primary_10_1080_00914037_2022_2082423
crossref_primary_10_3390_ma11081280
Cites_doi 10.1039/b814285h
10.1089/ten.tea.2010.0555
10.1016/j.biomaterials.2009.08.038
10.1097/01.brs.0000261626.32999.8a
10.1016/j.spinee.2011.04.023
10.1002/adma.200802106
10.1002/jbm.a.33000
10.1016/S0142-9612(99)00121-0
10.3390/polym3031036
10.1016/j.jcms.2007.09.001
10.3109/08977190903231075
10.1163/156856201744461
10.1039/c0jm00338g
10.1359/jbmr.1997.12.10.1606
10.1073/pnas.0701980104
10.1007/s10439-006-9092-x
10.1016/j.bone.2008.12.017
10.1097/00001665-199611000-00006
10.1016/j.biomaterials.2011.03.063
10.1021/mp200614q
10.1016/j.jconrel.2005.09.023
10.1016/j.bone.2004.11.010
10.1016/j.biomaterials.2010.04.053
10.1002/adma.200702099
10.1016/S0142-9612(99)00207-0
10.1039/b713009k
10.1016/j.biomaterials.2004.05.035
10.1080/08977190412331279890
10.1016/j.cytogfr.2009.10.018
10.1016/j.biomaterials.2010.02.052
10.1039/c0jm00795a
10.1016/S0003-9969(02)00046-8
10.1016/j.addr.2007.03.013
10.1002/adma.201003908
10.1163/156856204774196117
10.1098/rsif.2009.0379
10.1097/00003086-200105000-00032
10.1089/10763270360696941
10.1016/j.biomaterials.2010.05.016
10.1002/adma.200501612
10.1021/nn100869j
10.1016/j.biomaterials.2012.08.024
10.1016/0006-291X(78)91322-0
10.1002/adma.200802009
10.1016/j.ijpharm.2004.03.024
10.1359/jbmr.1998.13.4.645
10.3109/10520298809107179
10.1089/ten.teb.2011.0184
10.1007/s10529-009-0099-x
10.1002/term.41
10.1111/j.1600-0722.1997.tb00222.x
10.1016/S8756-3282(99)00252-5
10.1016/j.biomaterials.2007.04.014
10.1016/S0168-3659(03)00258-X
10.1016/j.addr.2006.09.004
10.1016/S1359-6446(03)02866-6
10.1016/j.biomaterials.2011.09.052
ContentType Journal Article
Copyright 2012 Elsevier B.V.
Copyright © 2012 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2012 Elsevier B.V.
– notice: Copyright © 2012 Elsevier B.V. All rights reserved.
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7QP
8FD
FR3
P64
7S9
L.6
DOI 10.1016/j.jconrel.2012.12.015
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Engineering Research Database
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1873-4995
EndPage 181
ExternalDocumentID 23266450
10_1016_j_jconrel_2012_12_015
US201500177042
S0168365912008577
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATCM
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABOCM
ABXDB
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
C45
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMT
IHE
J1W
KOM
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSM
SSP
SSZ
T5K
TEORI
~G-
.GJ
29K
3O-
AAQXK
AAYOK
ABPIF
ABPTK
ACNNM
ADMUD
AHHHB
ASPBG
AVWKF
AZFZN
D-I
FBQ
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEW
SPT
WUQ
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7QP
8FD
EFKBS
FR3
P64
7S9
L.6
ID FETCH-LOGICAL-c521t-24dde05845078a223a1770a72396ec9774f46075474a20f6da9fc9c8ad2491cf3
IEDL.DBID .~1
ISSN 0168-3659
1873-4995
IngestDate Fri Jul 11 09:08:10 EDT 2025
Mon Jul 21 10:48:41 EDT 2025
Fri Jul 11 06:06:16 EDT 2025
Thu Apr 03 07:00:10 EDT 2025
Thu Apr 24 22:57:10 EDT 2025
Tue Jul 01 04:04:14 EDT 2025
Wed Dec 27 19:18:09 EST 2023
Fri Feb 23 02:28:58 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Sequential release
Nanospheres
Gelatin
Dual growth factor
Osteogenesis
Colloidal gels
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2012 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-24dde05845078a223a1770a72396ec9774f46075474a20f6da9fc9c8ad2491cf3
Notes http://dx.doi.org/10.1016/j.jconrel.2012.12.015
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23266450
PQID 1288996104
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1686712028
proquest_miscellaneous_1500773022
proquest_miscellaneous_1288996104
pubmed_primary_23266450
crossref_primary_10_1016_j_jconrel_2012_12_015
crossref_citationtrail_10_1016_j_jconrel_2012_12_015
fao_agris_US201500177042
elsevier_sciencedirect_doi_10_1016_j_jconrel_2012_12_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-03-10
PublicationDateYYYYMMDD 2013-03-10
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-10
  day: 10
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of controlled release
PublicationTitleAlternate J Control Release
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Fujimura, Bessho, Okubo, Kusumoto, Segami, Iizuka (bb0170) 2002; 47
Carragee, Hurwitz, Weiner (bb0025) 2011; 11
Ono, Tateshita, Takita, Kuboki (bb0185) 1996; 7
Lin, Metters (bb0260) 2006; 58
Tabata, Ikada (bb0150) 1999; 20
Gan, Guan, Zhang (bb0095) 2010; 20
van der Lubbe, Klein, de Groot (bb0230) 1988; 63
Grzelczak, Vermant, Furst, Liz-Marzan (bb0070) 2010; 4
Takita, Tsuruga, Ono, Kuboki (bb0165) 1997; 105
Fraker, Speck (bb0205) 1978; 80
Luong, Ramaswamy, Kohn (bb0145) 2012; 33
Maegawa, Kawamura, Hirose, Yajima, Takakura, Ohgushi (bb0285) 2007; 1
Mwangi, Ofner Iii (bb0195) 2004; 278
Patel, Mikos (bb0155) 2004; 15
Li, Yoshii, Hafeman, Nyman, Wenke, Guelcher (bb0250) 2009; 30
Young, Wong, Tabata, Mikos (bb0255) 2005; 109
Debiais, Hott, Graulet, Marie (bb0280) 1998; 13
Chen, Zhang, Wu (bb0020) 2010; 31
Nair, Laurencin (bb0030) 2006; vol. 102
Yu, Ding (bb0045) 2008; 37
Yamamoto, Ikada, Tabata (bb0245) 2001; 12
Vonau, Bostrom, Aspenberg, Sams (bb0300) 2001; 386
Minamide, Yoshida, Kawakami, Okada, Enyo, Hashizume, Boden (bb0295) 2007; 32
Nichol, Khademhosseini (bb0060) 2009; 5
Carano, Filvaroff (bb0135) 2003; 8
Haines-Butterick, Rajagopal, Branco, Salick, Rughani, Pilarz, Lamm, Pochan, Schneider (bb0200) 2007; 104
Zellin, Linde (bb0275) 2000; 26
Springer, Niehoff, Açil, Marget, Lange, Warnke, Pielenz, Roldán, Wiltfang (bb0225) 2008; 36
Tabata (bb0015) 2003; 9
DeVolder, Kong (bb0090) 2010; 31
Slaughter, Khurshid, Fisher, Khademhosseini, Peppas (bb0040) 2009; 21
Wang, Wang, Lu, Detamore, Berkland (bb0080) 2010; 31
Gerstenfeld, Einhorn (bb0140) 2003; 3
Kawai, Suzuki, Tabata, Ikada, Nishimura (bb0160) 2000; 21
Wang, Boerman, Sariibrahimoglu, Li, Jansen, Leeuwenburgh (bb0115) 2012; 33
Wang, Leeuwenburgh, Li, Jansen (bb0055) 2012; 18
Wang, Wang, Detamore, Berkland (bb0110) 2008; 20
Mouriño, Boccaccini (bb0010) 2010; 7
Wang, Li, Zuo, Li, Ma, Cheng (bb0120) 2007; 28
Draenert, Draenert, Tischer (bb0220) 2009; 27
Schrieber, Gareis (bb0235) 2007
Zara, Siu, Zhang, Shen, Ngo, Lee, Li, Chiang, Chung, Kwak, Wu, Ting, Soo (bb0210) 2011; 17
Kretlow, Young, Klouda, Wong, Mikos (bb0035) 2009; 21
Tanaka, Ishino, Sasaki, Hasegawa, Watanabe, Dalla-Bona, Yamano, van Eijden, Tanne (bb0175) 2006; 34
Chen, Zhao, Mundy (bb0125) 2004; 22
Rosen (bb0130) 2009; 20
Büyüktimkin, Wang, Kiptoo, Stewart, Berkland, Siahaan (bb0100) 2012; 9
Peppas, Hilt, Khademhosseini, Langer (bb0050) 2006; 18
Hanada, Dennis, Caplan (bb0290) 1997; 12
Haidar, Hamdy, Tabrizian (bb0265) 2009; 31
Kretlow, Klouda, Mikos (bb0240) 2007; 59
Boerckel, Kolambkar, Dupont, Uhrig, Phelps, Stevens, García, Guldberg (bb0215) 2011; 32
Wang, Hansen, Löwik, van Hest, Li, Jansen, Leeuwenburgh (bb0075) 2011; 23
Kodama, Nagata, Tabata, Ozeki, Ninomiya, Takagi (bb0270) 2009; 44
Nakamura, Tensho, Nakaya, Nawata, Okabe, Wakitani (bb0180) 2005; 36
Van Tomme, Van Steenbergen, De Smedt, van Nostrum, Hennink (bb0085) 2005; 26
Bongio, van den Beucken, Leeuwenburgh, Jansen (bb0005) 2010; 20
Holland, Tabata, Mikos (bb0190) 2003; 91
Bradley, Lazim, Eastoe (bb0065) 2011; 3
Wang, Jamal, Detamore, Berkland (bb0105) 2011; 96A
B?y?ktimkin (10.1016/j.jconrel.2012.12.015_bb0100) 2012; 9
Yu (10.1016/j.jconrel.2012.12.015_bb0045) 2008; 37
Tanaka (10.1016/j.jconrel.2012.12.015_bb0175) 2006; 34
Gerstenfeld (10.1016/j.jconrel.2012.12.015_bb0140) 2003; 3
DeVolder (10.1016/j.jconrel.2012.12.015_bb0090) 2010; 31
Rosen (10.1016/j.jconrel.2012.12.015_bb0130) 2009; 20
Holland (10.1016/j.jconrel.2012.12.015_bb0190) 2003; 91
Mouri?o (10.1016/j.jconrel.2012.12.015_bb0010) 2010; 7
Chen (10.1016/j.jconrel.2012.12.015_bb0020) 2010; 31
Nair (10.1016/j.jconrel.2012.12.015_bb0030) 2006; vol. 102
Chen (10.1016/j.jconrel.2012.12.015_bb0125) 2004; 22
Wang (10.1016/j.jconrel.2012.12.015_bb0120) 2007; 28
Takita (10.1016/j.jconrel.2012.12.015_bb0165) 1997; 105
Kretlow (10.1016/j.jconrel.2012.12.015_bb0035) 2009; 21
Kodama (10.1016/j.jconrel.2012.12.015_bb0270) 2009; 44
Vonau (10.1016/j.jconrel.2012.12.015_bb0300) 2001; 386
Tabata (10.1016/j.jconrel.2012.12.015_bb0015) 2003; 9
Wang (10.1016/j.jconrel.2012.12.015_bb0080) 2010; 31
Kawai (10.1016/j.jconrel.2012.12.015_bb0160) 2000; 21
Lin (10.1016/j.jconrel.2012.12.015_bb0260) 2006; 58
Wang (10.1016/j.jconrel.2012.12.015_bb0115) 2012; 33
Wang (10.1016/j.jconrel.2012.12.015_bb0055) 2012; 18
Young (10.1016/j.jconrel.2012.12.015_bb0255) 2005; 109
Luong (10.1016/j.jconrel.2012.12.015_bb0145) 2012; 33
Zara (10.1016/j.jconrel.2012.12.015_bb0210) 2011; 17
Yamamoto (10.1016/j.jconrel.2012.12.015_bb0245) 2001; 12
Draenert (10.1016/j.jconrel.2012.12.015_bb0220) 2009; 27
Hanada (10.1016/j.jconrel.2012.12.015_bb0290) 1997; 12
Kretlow (10.1016/j.jconrel.2012.12.015_bb0240) 2007; 59
Haidar (10.1016/j.jconrel.2012.12.015_bb0265) 2009; 31
Wang (10.1016/j.jconrel.2012.12.015_bb0105) 2011; 96A
Fraker (10.1016/j.jconrel.2012.12.015_bb0205) 1978; 80
Zellin (10.1016/j.jconrel.2012.12.015_bb0275) 2000; 26
Springer (10.1016/j.jconrel.2012.12.015_bb0225) 2008; 36
Minamide (10.1016/j.jconrel.2012.12.015_bb0295) 2007; 32
Boerckel (10.1016/j.jconrel.2012.12.015_bb0215) 2011; 32
Mwangi (10.1016/j.jconrel.2012.12.015_bb0195) 2004; 278
Carano (10.1016/j.jconrel.2012.12.015_bb0135) 2003; 8
Wang (10.1016/j.jconrel.2012.12.015_bb0110) 2008; 20
Haines-Butterick (10.1016/j.jconrel.2012.12.015_bb0200) 2007; 104
van der Lubbe (10.1016/j.jconrel.2012.12.015_bb0230) 1988; 63
Tabata (10.1016/j.jconrel.2012.12.015_bb0150) 1999; 20
Wang (10.1016/j.jconrel.2012.12.015_bb0075) 2011; 23
Debiais (10.1016/j.jconrel.2012.12.015_bb0280) 1998; 13
Patel (10.1016/j.jconrel.2012.12.015_bb0155) 2004; 15
Gan (10.1016/j.jconrel.2012.12.015_bb0095) 2010; 20
Slaughter (10.1016/j.jconrel.2012.12.015_bb0040) 2009; 21
Bradley (10.1016/j.jconrel.2012.12.015_bb0065) 2011; 3
Maegawa (10.1016/j.jconrel.2012.12.015_bb0285) 2007; 1
Peppas (10.1016/j.jconrel.2012.12.015_bb0050) 2006; 18
Schrieber (10.1016/j.jconrel.2012.12.015_bb0235) 2007
Fujimura (10.1016/j.jconrel.2012.12.015_bb0170) 2002; 47
Nakamura (10.1016/j.jconrel.2012.12.015_bb0180) 2005; 36
Ono (10.1016/j.jconrel.2012.12.015_bb0185) 1996; 7
Carragee (10.1016/j.jconrel.2012.12.015_bb0025) 2011; 11
Van Tomme (10.1016/j.jconrel.2012.12.015_bb0085) 2005; 26
Bongio (10.1016/j.jconrel.2012.12.015_bb0005) 2010; 20
Grzelczak (10.1016/j.jconrel.2012.12.015_bb0070) 2010; 4
Nichol (10.1016/j.jconrel.2012.12.015_bb0060) 2009; 5
Li (10.1016/j.jconrel.2012.12.015_bb0250) 2009; 30
References_xml – volume: 9
  start-page: 979
  year: 2012
  end-page: 985
  ident: bb0100
  article-title: Vaccine-like controlled-release delivery of an immunomodulating peptide to treat experimental autoimmune encephalomyelitis
  publication-title: Mol. Pharm.
– volume: 31
  start-page: 4980
  year: 2010
  end-page: 4986
  ident: bb0080
  article-title: Injectable PLGA based colloidal gels for zero-order dexamethasone release in cranial defects
  publication-title: Biomaterials
– volume: 32
  start-page: 1067
  year: 2007
  end-page: 1071
  ident: bb0295
  article-title: The effects of bone morphogenetic protein and basic fibroblast growth factor on cultured mesenchymal stem cells for spine fusion
  publication-title: Spine
– volume: 58
  start-page: 1379
  year: 2006
  end-page: 1408
  ident: bb0260
  article-title: Hydrogels in controlled release formulations: network design and mathematical modeling
  publication-title: Adv. Drug Deliv. Rev.
– volume: 47
  start-page: 577
  year: 2002
  end-page: 584
  ident: bb0170
  article-title: The effect of fibroblast growth factor-2 on the osteoinductive activity of recombinant human bone morphogenetic protein-2 in rat muscle
  publication-title: Arch. Oral Biol.
– volume: 96A
  start-page: 520
  year: 2011
  end-page: 527
  ident: bb0105
  article-title: PLGA-chitosan/PLGA-alginate nanoparticle blends as biodegradable colloidal gels for seeding human umbilical cord mesenchymal stem cells
  publication-title: J. Biomed. Mater. Res. A
– volume: 36
  start-page: 210
  year: 2008
  end-page: 217
  ident: bb0225
  article-title: BMP-2 and bFGF in an irradiated bone model
  publication-title: J. Cranio-Maxillofac. Surg.
– volume: 20
  start-page: 5937
  year: 2010
  end-page: 5944
  ident: bb0095
  article-title: Thermogelable PNIPAM microgel dispersion as 3D cell scaffold: effect of syneresis
  publication-title: J. Mater. Chem.
– volume: 37
  start-page: 1473
  year: 2008
  end-page: 1481
  ident: bb0045
  article-title: Injectable hydrogels as unique biomedical materials
  publication-title: Chem. Soc. Rev.
– volume: 12
  start-page: 1606
  year: 1997
  end-page: 1614
  ident: bb0290
  article-title: Stimulatory effects of basic fibroblast growth factor and bone morphogenetic protein-2 on osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells
  publication-title: J. Bone Miner. Res.
– volume: 32
  start-page: 5241
  year: 2011
  end-page: 5251
  ident: bb0215
  article-title: Effects of protein dose and delivery system on BMP-mediated bone regeneration
  publication-title: Biomaterials
– volume: 31
  start-page: 6279
  year: 2010
  end-page: 6308
  ident: bb0020
  article-title: Toward delivery of multiple growth factors in tissue engineering
  publication-title: Biomaterials
– volume: 21
  start-page: 489
  year: 2000
  end-page: 499
  ident: bb0160
  article-title: Accelerated tissue regeneration through incorporation of basic fibroblast growth factor-impregnated gelatin microspheres into artificial dermis
  publication-title: Biomaterials
– volume: 23
  start-page: H119
  year: 2011
  end-page: H124
  ident: bb0075
  article-title: Oppositely charged gelatin nanospheres as building blocks for injectable and biodegradable gels
  publication-title: Adv. Mater.
– year: 2007
  ident: bb0235
  article-title: Gelatine Handbook: Theory and Industrial Practice
– volume: 20
  start-page: 8747
  year: 2010
  end-page: 8759
  ident: bb0005
  article-title: Development of bone substitute materials: from ‘biocompatible’ to ‘instructive’
  publication-title: J. Mater. Chem.
– volume: 44
  start-page: 699
  year: 2009
  end-page: 707
  ident: bb0270
  article-title: A local bone anabolic effect of rhFGF2-impregnated gelatin hydrogel by promoting cell proliferation and coordinating osteoblastic differentiation
  publication-title: Bone
– volume: 7
  start-page: 418
  year: 1996
  end-page: 425
  ident: bb0185
  article-title: Promotion of the osteogenetic activity of recombinant human bone morphogenetic protein by basic fibroblast growth factor
  publication-title: J. Craniofac. Surg.
– volume: 18
  start-page: 24
  year: 2012
  end-page: 39
  ident: bb0055
  article-title: The use of micro- and nanospheres as functional components for bone tissue regeneration
  publication-title: Tissue Eng. Part B
– volume: 36
  start-page: 399
  year: 2005
  end-page: 407
  ident: bb0180
  article-title: Low dose fibroblast growth factor-2 (FGF-2) enhances bone morphogenetic protein-2 (BMP-2)-induced ectopic bone formation in mice
  publication-title: Bone
– volume: 20
  start-page: 475
  year: 2009
  end-page: 480
  ident: bb0130
  article-title: BMP2 signaling in bone development and repair
  publication-title: Cytokine Growth Factor Rev.
– volume: 91
  start-page: 299
  year: 2003
  end-page: 313
  ident: bb0190
  article-title: In vitro release of transforming growth factor-β1 from gelatin microparticles encapsulated in biodegradable, injectable oligo(poly(ethylene glycol) fumarate) hydrogels
  publication-title: J. Control. Release
– volume: 31
  start-page: 6494
  year: 2010
  end-page: 6501
  ident: bb0090
  article-title: Three dimensionally flocculated proangiogenic microgels for neovascularization
  publication-title: Biomaterials
– volume: 26
  start-page: 2129
  year: 2005
  end-page: 2135
  ident: bb0085
  article-title: Self-gelling hydrogels based on oppositely charged dextran microspheres
  publication-title: Biomaterials
– volume: 31
  start-page: 1817
  year: 2009
  end-page: 1824
  ident: bb0265
  article-title: Delivery of recombinant bone morphogenetic proteins for bone regeneration and repair. Part A: current challenges in BMP delivery
  publication-title: Biotechnol. Lett.
– volume: 20
  start-page: 2169
  year: 1999
  end-page: 2175
  ident: bb0150
  article-title: Vascularization effect of basic fibroblast growth factor released from gelatin hydrogels with different biodegradabilities
  publication-title: Biomaterials
– volume: 7
  start-page: 209
  year: 2010
  end-page: 227
  ident: bb0010
  article-title: Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds
  publication-title: J. R. Soc. Interface
– volume: 109
  start-page: 256
  year: 2005
  end-page: 274
  ident: bb0255
  article-title: Gelatin as a delivery vehicle for the controlled release of bioactive molecules
  publication-title: J. Control. Release
– volume: 30
  start-page: 6768
  year: 2009
  end-page: 6779
  ident: bb0250
  article-title: The effects of rhBMP-2 released from biodegradable polyurethane/microsphere composite scaffolds on new bone formation in rat femora
  publication-title: Biomaterials
– volume: 104
  start-page: 7791
  year: 2007
  end-page: 7796
  ident: bb0200
  article-title: Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 4
  start-page: 3591
  year: 2010
  end-page: 3605
  ident: bb0070
  article-title: Directed self-assembly of nanoparticles
  publication-title: ACS Nano
– volume: 33
  start-page: 8695
  year: 2012
  end-page: 8703
  ident: bb0115
  article-title: Comparison of micro- vs. nanostructured colloidal gelatin gels for sustained delivery of osteogenic proteins: Bone morphogenetic protein-2 and alkaline phosphatase
  publication-title: Biomaterials
– volume: 21
  start-page: 3368
  year: 2009
  end-page: 3393
  ident: bb0035
  article-title: Injectable biomaterials for regenerating complex craniofacial tissues
  publication-title: Adv. Mater.
– volume: 1
  start-page: 306
  year: 2007
  end-page: 313
  ident: bb0285
  article-title: Enhancement of osteoblastic differentiation of mesenchymal stromal cells cultured by selective combination of bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor-2 (FGF-2)
  publication-title: J. Tissue Eng. Regen. Med.
– volume: 22
  start-page: 233
  year: 2004
  end-page: 241
  ident: bb0125
  article-title: Bone morphogenetic proteins
  publication-title: Growth Factors
– volume: 34
  start-page: 717
  year: 2006
  end-page: 725
  ident: bb0175
  article-title: Fibroblast growth factor-2 augments recombinant human bone morphogenetic protein-2-induced osteoinductive activity
  publication-title: Ann. Biomed. Eng.
– volume: 8
  start-page: 980
  year: 2003
  end-page: 989
  ident: bb0135
  article-title: Angiogenesis and bone repair
  publication-title: Drug Discov. Today
– volume: 5
  start-page: 1312
  year: 2009
  end-page: 1313
  ident: bb0060
  article-title: Modular tissue engineering: engineering biological tissues from the bottom up
  publication-title: Soft Matter
– volume: 13
  start-page: 645
  year: 1998
  end-page: 654
  ident: bb0280
  article-title: The effects of fibroblast growth factor-2 on human neonatal calvaria osteoblastic cells are differentiation stage specific
  publication-title: J. Bone Miner. Res.
– volume: 20
  start-page: 236
  year: 2008
  end-page: 239
  ident: bb0110
  article-title: Biodegradable colloidal gels as moldable tissue engineering scaffolds
  publication-title: Adv. Mater.
– volume: 386
  start-page: 243
  year: 2001
  end-page: 251
  ident: bb0300
  article-title: Combination of growth factors inhibits bone ingrowth in the bone harvest chamber
  publication-title: Clin. Orthop. Relat. Res.
– volume: 3
  start-page: 1036
  year: 2011
  end-page: 1050
  ident: bb0065
  article-title: Stimulus-responsive heteroaggregation of colloidal dispersions: reversible systems and composite materials
  publication-title: Polymers
– volume: 105
  start-page: 588
  year: 1997
  end-page: 592
  ident: bb0165
  article-title: Enhancement by bFGF of osteogenesis induced by rhBMP-2 in rats
  publication-title: Eur. J. Oral Sci.
– volume: 278
  start-page: 319
  year: 2004
  end-page: 327
  ident: bb0195
  article-title: Crosslinked gelatin matrices: release of a random coil macromolecular solute
  publication-title: Int. J. Pharm.
– volume: 33
  start-page: 283
  year: 2012
  end-page: 294
  ident: bb0145
  article-title: Effects of osteogenic growth factors on bone marrow stromal cell differentiation in a mineral-based delivery system
  publication-title: Biomaterials
– volume: 15
  start-page: 701
  year: 2004
  end-page: 726
  ident: bb0155
  article-title: Angiogenesis with biomaterial-based drug- and cell-delivery systems
  publication-title: J. Biomater. Sci. Polym. Ed.
– volume: 59
  start-page: 263
  year: 2007
  end-page: 273
  ident: bb0240
  article-title: Injectable matrices and scaffolds for drug delivery in tissue engineering
  publication-title: Adv. Drug Deliv. Rev.
– volume: 26
  start-page: 161
  year: 2000
  end-page: 168
  ident: bb0275
  article-title: Effects of recombinant human fibroblast growth factor-2 on osteogenic cell populations during orthopic osteogenesis in vivo
  publication-title: Bone
– volume: 9
  start-page: 5
  year: 2003
  end-page: 15
  ident: bb0015
  article-title: Tissue regeneration based on growth factor release
  publication-title: Tissue Eng.
– volume: 80
  start-page: 849
  year: 1978
  end-page: 857
  ident: bb0205
  article-title: Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphenylglycoluril
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 12
  start-page: 77
  year: 2001
  end-page: 88
  ident: bb0245
  article-title: Controlled release of growth factors based on biodegradation of gelatin hydrogel
  publication-title: J. Biomater. Sci. Polym. Ed.
– volume: 63
  start-page: 171
  year: 1988
  end-page: 176
  ident: bb0230
  article-title: A simple method for preparing thin (10 μm) histological sections of undecalcified plastic embedded bone with implants
  publication-title: Biotech. Histochem.
– volume: 27
  start-page: 419
  year: 2009
  end-page: 424
  ident: bb0220
  article-title: Dose-dependent osteoinductive effects of bFGF in rabbits
  publication-title: Growth Factors
– volume: 11
  start-page: 471
  year: 2011
  end-page: 491
  ident: bb0025
  article-title: A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned
  publication-title: Spine
– volume: vol. 102
  start-page: 47
  year: 2006
  end-page: 90
  ident: bb0030
  article-title: Polymers as biomaterials for tissue engineering and controlled drug delivery tissue engineering
  publication-title: Tissue engineering I
– volume: 28
  start-page: 3338
  year: 2007
  end-page: 3348
  ident: bb0120
  article-title: Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering
  publication-title: Biomaterials
– volume: 3
  start-page: 297
  year: 2003
  end-page: 303
  ident: bb0140
  article-title: Developmental aspects of fracture healing and the use of pharmacological agents to alter healing
  publication-title: J. Musculoskelet. Nueronal Interact.
– volume: 18
  start-page: 1345
  year: 2006
  end-page: 1360
  ident: bb0050
  article-title: Hydrogels in biology and medicine: from molecular principles to bionanotechnology
  publication-title: Adv. Mater.
– volume: 21
  start-page: 3307
  year: 2009
  end-page: 3329
  ident: bb0040
  article-title: Hydrogels in regenerative medicine
  publication-title: Adv. Mater.
– volume: 17
  start-page: 1389
  year: 2011
  end-page: 1399
  ident: bb0210
  article-title: High doses of bone morphogenetic protein 2 induce structurally abnormal bone and inflammation in vivo
  publication-title: Tissue Eng. Part A
– volume: 5
  start-page: 1312
  issue: 7
  year: 2009
  ident: 10.1016/j.jconrel.2012.12.015_bb0060
  article-title: Modular tissue engineering: engineering biological tissues from the bottom up
  publication-title: Soft Matter
  doi: 10.1039/b814285h
– volume: 17
  start-page: 1389
  issue: 9?10
  year: 2011
  ident: 10.1016/j.jconrel.2012.12.015_bb0210
  article-title: High doses of bone morphogenetic protein 2 induce structurally abnormal bone and inflammation in vivo
  publication-title: Tissue Eng. Part A
  doi: 10.1089/ten.tea.2010.0555
– volume: 30
  start-page: 6768
  issue: 35
  year: 2009
  ident: 10.1016/j.jconrel.2012.12.015_bb0250
  article-title: The effects of rhBMP-2 released from biodegradable polyurethane/microsphere composite scaffolds on new bone formation in rat femora
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.08.038
– volume: 32
  start-page: 1067
  issue: 10
  year: 2007
  ident: 10.1016/j.jconrel.2012.12.015_bb0295
  article-title: The effects of bone morphogenetic protein and basic fibroblast growth factor on cultured mesenchymal stem cells for spine fusion
  publication-title: Spine
  doi: 10.1097/01.brs.0000261626.32999.8a
– volume: vol. 102
  start-page: 47
  year: 2006
  ident: 10.1016/j.jconrel.2012.12.015_bb0030
  article-title: Polymers as biomaterials for tissue engineering and controlled drug delivery tissue engineering
– volume: 11
  start-page: 471
  issue: 6
  year: 2011
  ident: 10.1016/j.jconrel.2012.12.015_bb0025
  article-title: A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned
  publication-title: Spine
  doi: 10.1016/j.spinee.2011.04.023
– volume: 21
  start-page: 3307
  issue: 32?33
  year: 2009
  ident: 10.1016/j.jconrel.2012.12.015_bb0040
  article-title: Hydrogels in regenerative medicine
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200802106
– volume: 96A
  start-page: 520
  issue: 3
  year: 2011
  ident: 10.1016/j.jconrel.2012.12.015_bb0105
  article-title: PLGA-chitosan/PLGA-alginate nanoparticle blends as biodegradable colloidal gels for seeding human umbilical cord mesenchymal stem cells
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.33000
– volume: 20
  start-page: 2169
  issue: 22
  year: 1999
  ident: 10.1016/j.jconrel.2012.12.015_bb0150
  article-title: Vascularization effect of basic fibroblast growth factor released from gelatin hydrogels with different biodegradabilities
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(99)00121-0
– volume: 3
  start-page: 297
  issue: 4
  year: 2003
  ident: 10.1016/j.jconrel.2012.12.015_bb0140
  article-title: Developmental aspects of fracture healing and the use of pharmacological agents to alter healing
  publication-title: J. Musculoskelet. Nueronal Interact.
– volume: 3
  start-page: 1036
  issue: 3
  year: 2011
  ident: 10.1016/j.jconrel.2012.12.015_bb0065
  article-title: Stimulus-responsive heteroaggregation of colloidal dispersions: reversible systems and composite materials
  publication-title: Polymers
  doi: 10.3390/polym3031036
– volume: 36
  start-page: 210
  issue: 4
  year: 2008
  ident: 10.1016/j.jconrel.2012.12.015_bb0225
  article-title: BMP-2 and bFGF in an irradiated bone model
  publication-title: J. Cranio-Maxillofac. Surg.
  doi: 10.1016/j.jcms.2007.09.001
– volume: 27
  start-page: 419
  issue: 6
  year: 2009
  ident: 10.1016/j.jconrel.2012.12.015_bb0220
  article-title: Dose-dependent osteoinductive effects of bFGF in rabbits
  publication-title: Growth Factors
  doi: 10.3109/08977190903231075
– volume: 12
  start-page: 77
  year: 2001
  ident: 10.1016/j.jconrel.2012.12.015_bb0245
  article-title: Controlled release of growth factors based on biodegradation of gelatin hydrogel
  publication-title: J. Biomater. Sci. Polym. Ed.
  doi: 10.1163/156856201744461
– volume: 20
  start-page: 5937
  issue: 28
  year: 2010
  ident: 10.1016/j.jconrel.2012.12.015_bb0095
  article-title: Thermogelable PNIPAM microgel dispersion as 3D cell scaffold: effect of syneresis
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm00338g
– volume: 12
  start-page: 1606
  issue: 10
  year: 1997
  ident: 10.1016/j.jconrel.2012.12.015_bb0290
  article-title: Stimulatory effects of basic fibroblast growth factor and bone morphogenetic protein-2 on osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.1997.12.10.1606
– volume: 104
  start-page: 7791
  issue: 19
  year: 2007
  ident: 10.1016/j.jconrel.2012.12.015_bb0200
  article-title: Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0701980104
– volume: 34
  start-page: 717
  issue: 5
  year: 2006
  ident: 10.1016/j.jconrel.2012.12.015_bb0175
  article-title: Fibroblast growth factor-2 augments recombinant human bone morphogenetic protein-2-induced osteoinductive activity
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-006-9092-x
– volume: 44
  start-page: 699
  issue: 4
  year: 2009
  ident: 10.1016/j.jconrel.2012.12.015_bb0270
  article-title: A local bone anabolic effect of rhFGF2-impregnated gelatin hydrogel by promoting cell proliferation and coordinating osteoblastic differentiation
  publication-title: Bone
  doi: 10.1016/j.bone.2008.12.017
– volume: 7
  start-page: 418
  issue: 6
  year: 1996
  ident: 10.1016/j.jconrel.2012.12.015_bb0185
  article-title: Promotion of the osteogenetic activity of recombinant human bone morphogenetic protein by basic fibroblast growth factor
  publication-title: J. Craniofac. Surg.
  doi: 10.1097/00001665-199611000-00006
– volume: 32
  start-page: 5241
  issue: 22
  year: 2011
  ident: 10.1016/j.jconrel.2012.12.015_bb0215
  article-title: Effects of protein dose and delivery system on BMP-mediated bone regeneration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.03.063
– volume: 9
  start-page: 979
  issue: 4
  year: 2012
  ident: 10.1016/j.jconrel.2012.12.015_bb0100
  article-title: Vaccine-like controlled-release delivery of an immunomodulating peptide to treat experimental autoimmune encephalomyelitis
  publication-title: Mol. Pharm.
  doi: 10.1021/mp200614q
– volume: 109
  start-page: 256
  issue: 1?3
  year: 2005
  ident: 10.1016/j.jconrel.2012.12.015_bb0255
  article-title: Gelatin as a delivery vehicle for the controlled release of bioactive molecules
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2005.09.023
– volume: 36
  start-page: 399
  issue: 3
  year: 2005
  ident: 10.1016/j.jconrel.2012.12.015_bb0180
  article-title: Low dose fibroblast growth factor-2 (FGF-2) enhances bone morphogenetic protein-2 (BMP-2)-induced ectopic bone formation in mice
  publication-title: Bone
  doi: 10.1016/j.bone.2004.11.010
– volume: 31
  start-page: 6279
  issue: 24
  year: 2010
  ident: 10.1016/j.jconrel.2012.12.015_bb0020
  article-title: Toward delivery of multiple growth factors in tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.04.053
– volume: 20
  start-page: 236
  issue: 2
  year: 2008
  ident: 10.1016/j.jconrel.2012.12.015_bb0110
  article-title: Biodegradable colloidal gels as moldable tissue engineering scaffolds
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200702099
– volume: 21
  start-page: 489
  issue: 5
  year: 2000
  ident: 10.1016/j.jconrel.2012.12.015_bb0160
  article-title: Accelerated tissue regeneration through incorporation of basic fibroblast growth factor-impregnated gelatin microspheres into artificial dermis
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(99)00207-0
– volume: 37
  start-page: 1473
  issue: 8
  year: 2008
  ident: 10.1016/j.jconrel.2012.12.015_bb0045
  article-title: Injectable hydrogels as unique biomedical materials
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b713009k
– volume: 26
  start-page: 2129
  issue: 14
  year: 2005
  ident: 10.1016/j.jconrel.2012.12.015_bb0085
  article-title: Self-gelling hydrogels based on oppositely charged dextran microspheres
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2004.05.035
– volume: 22
  start-page: 233
  issue: 4
  year: 2004
  ident: 10.1016/j.jconrel.2012.12.015_bb0125
  article-title: Bone morphogenetic proteins
  publication-title: Growth Factors
  doi: 10.1080/08977190412331279890
– year: 2007
  ident: 10.1016/j.jconrel.2012.12.015_bb0235
– volume: 20
  start-page: 475
  issue: 5?6
  year: 2009
  ident: 10.1016/j.jconrel.2012.12.015_bb0130
  article-title: BMP2 signaling in bone development and repair
  publication-title: Cytokine Growth Factor Rev.
  doi: 10.1016/j.cytogfr.2009.10.018
– volume: 31
  start-page: 4980
  issue: 18
  year: 2010
  ident: 10.1016/j.jconrel.2012.12.015_bb0080
  article-title: Injectable PLGA based colloidal gels for zero-order dexamethasone release in cranial defects
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.02.052
– volume: 20
  start-page: 8747
  issue: 40
  year: 2010
  ident: 10.1016/j.jconrel.2012.12.015_bb0005
  article-title: Development of bone substitute materials: from ?biocompatible? to ?instructive?
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm00795a
– volume: 47
  start-page: 577
  issue: 8
  year: 2002
  ident: 10.1016/j.jconrel.2012.12.015_bb0170
  article-title: The effect of fibroblast growth factor-2 on the osteoinductive activity of recombinant human bone morphogenetic protein-2 in rat muscle
  publication-title: Arch. Oral Biol.
  doi: 10.1016/S0003-9969(02)00046-8
– volume: 59
  start-page: 263
  issue: 4?5
  year: 2007
  ident: 10.1016/j.jconrel.2012.12.015_bb0240
  article-title: Injectable matrices and scaffolds for drug delivery in tissue engineering
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2007.03.013
– volume: 23
  start-page: H119
  issue: 12
  year: 2011
  ident: 10.1016/j.jconrel.2012.12.015_bb0075
  article-title: Oppositely charged gelatin nanospheres as building blocks for injectable and biodegradable gels
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201003908
– volume: 15
  start-page: 701
  issue: 6
  year: 2004
  ident: 10.1016/j.jconrel.2012.12.015_bb0155
  article-title: Angiogenesis with biomaterial-based drug- and cell-delivery systems
  publication-title: J. Biomater. Sci. Polym. Ed.
  doi: 10.1163/156856204774196117
– volume: 7
  start-page: 209
  issue: 43
  year: 2010
  ident: 10.1016/j.jconrel.2012.12.015_bb0010
  article-title: Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2009.0379
– volume: 386
  start-page: 243
  year: 2001
  ident: 10.1016/j.jconrel.2012.12.015_bb0300
  article-title: Combination of growth factors inhibits bone ingrowth in the bone harvest chamber
  publication-title: Clin. Orthop. Relat. Res.
  doi: 10.1097/00003086-200105000-00032
– volume: 9
  start-page: 5
  issue: Supplement 1
  year: 2003
  ident: 10.1016/j.jconrel.2012.12.015_bb0015
  article-title: Tissue regeneration based on growth factor release
  publication-title: Tissue Eng.
  doi: 10.1089/10763270360696941
– volume: 31
  start-page: 6494
  issue: 25
  year: 2010
  ident: 10.1016/j.jconrel.2012.12.015_bb0090
  article-title: Three dimensionally flocculated proangiogenic microgels for neovascularization
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.05.016
– volume: 18
  start-page: 1345
  issue: 11
  year: 2006
  ident: 10.1016/j.jconrel.2012.12.015_bb0050
  article-title: Hydrogels in biology and medicine: from molecular principles to bionanotechnology
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200501612
– volume: 4
  start-page: 3591
  issue: 7
  year: 2010
  ident: 10.1016/j.jconrel.2012.12.015_bb0070
  article-title: Directed self-assembly of nanoparticles
  publication-title: ACS Nano
  doi: 10.1021/nn100869j
– volume: 33
  start-page: 8695
  issue: 33
  year: 2012
  ident: 10.1016/j.jconrel.2012.12.015_bb0115
  article-title: Comparison of micro- vs. nanostructured colloidal gelatin gels for sustained delivery of osteogenic proteins: Bone morphogenetic protein-2 and alkaline phosphatase
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.08.024
– volume: 80
  start-page: 849
  issue: 4
  year: 1978
  ident: 10.1016/j.jconrel.2012.12.015_bb0205
  article-title: Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphenylglycoluril
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/0006-291X(78)91322-0
– volume: 21
  start-page: 3368
  issue: 32?33
  year: 2009
  ident: 10.1016/j.jconrel.2012.12.015_bb0035
  article-title: Injectable biomaterials for regenerating complex craniofacial tissues
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200802009
– volume: 278
  start-page: 319
  issue: 2
  year: 2004
  ident: 10.1016/j.jconrel.2012.12.015_bb0195
  article-title: Crosslinked gelatin matrices: release of a random coil macromolecular solute
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2004.03.024
– volume: 13
  start-page: 645
  issue: 4
  year: 1998
  ident: 10.1016/j.jconrel.2012.12.015_bb0280
  article-title: The effects of fibroblast growth factor-2 on human neonatal calvaria osteoblastic cells are differentiation stage specific
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.1998.13.4.645
– volume: 63
  start-page: 171
  issue: 3
  year: 1988
  ident: 10.1016/j.jconrel.2012.12.015_bb0230
  article-title: A simple method for preparing thin (10 ?m) histological sections of undecalcified plastic embedded bone with implants
  publication-title: Biotech. Histochem.
  doi: 10.3109/10520298809107179
– volume: 18
  start-page: 24
  issue: 1
  year: 2012
  ident: 10.1016/j.jconrel.2012.12.015_bb0055
  article-title: The use of micro- and nanospheres as functional components for bone tissue regeneration
  publication-title: Tissue Eng. Part B
  doi: 10.1089/ten.teb.2011.0184
– volume: 31
  start-page: 1817
  issue: 12
  year: 2009
  ident: 10.1016/j.jconrel.2012.12.015_bb0265
  article-title: Delivery of recombinant bone morphogenetic proteins for bone regeneration and repair. Part A: current challenges in BMP delivery
  publication-title: Biotechnol. Lett.
  doi: 10.1007/s10529-009-0099-x
– volume: 1
  start-page: 306
  issue: 4
  year: 2007
  ident: 10.1016/j.jconrel.2012.12.015_bb0285
  article-title: Enhancement of osteoblastic differentiation of mesenchymal stromal cells cultured by selective combination of bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor-2 (FGF-2)
  publication-title: J. Tissue Eng. Regen. Med.
  doi: 10.1002/term.41
– volume: 105
  start-page: 588
  issue: 6
  year: 1997
  ident: 10.1016/j.jconrel.2012.12.015_bb0165
  article-title: Enhancement by bFGF of osteogenesis induced by rhBMP-2 in rats
  publication-title: Eur. J. Oral Sci.
  doi: 10.1111/j.1600-0722.1997.tb00222.x
– volume: 26
  start-page: 161
  issue: 2
  year: 2000
  ident: 10.1016/j.jconrel.2012.12.015_bb0275
  article-title: Effects of recombinant human fibroblast growth factor-2 on osteogenic cell populations during orthopic osteogenesis in vivo
  publication-title: Bone
  doi: 10.1016/S8756-3282(99)00252-5
– volume: 28
  start-page: 3338
  issue: 22
  year: 2007
  ident: 10.1016/j.jconrel.2012.12.015_bb0120
  article-title: Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.04.014
– volume: 91
  start-page: 299
  issue: 3
  year: 2003
  ident: 10.1016/j.jconrel.2012.12.015_bb0190
  article-title: In vitro release of transforming growth factor-?1 from gelatin microparticles encapsulated in biodegradable, injectable oligo(poly(ethylene glycol) fumarate) hydrogels
  publication-title: J. Control. Release
  doi: 10.1016/S0168-3659(03)00258-X
– volume: 58
  start-page: 1379
  issue: 12?13
  year: 2006
  ident: 10.1016/j.jconrel.2012.12.015_bb0260
  article-title: Hydrogels in controlled release formulations: network design and mathematical modeling
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2006.09.004
– volume: 8
  start-page: 980
  issue: 21
  year: 2003
  ident: 10.1016/j.jconrel.2012.12.015_bb0135
  article-title: Angiogenesis and bone repair
  publication-title: Drug Discov. Today
  doi: 10.1016/S1359-6446(03)02866-6
– volume: 33
  start-page: 283
  issue: 1
  year: 2012
  ident: 10.1016/j.jconrel.2012.12.015_bb0145
  article-title: Effects of osteogenic growth factors on bone marrow stromal cell differentiation in a mineral-based delivery system
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.09.052
SSID ssj0005347
Score 2.485421
Snippet During the process of bone regeneration, a multitude of morphogenetic signaling factors regulate cellular behavior and ultimately tissue response. These...
SourceID proquest
pubmed
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 172
SubjectTerms adverse effects
Animals
biocompatibility
biocompatible materials
biodegradability
biomimetics
biopharmaceuticals
bone formation
Bone Morphogenetic Protein 2 - administration & dosage
Bone Morphogenetic Protein 2 - pharmacokinetics
Bone Morphogenetic Protein 2 - pharmacology
Bone Regeneration - drug effects
Colloidal gels
Colloids
Cross-Linking Reagents
crosslinking
Drug Carriers
Drug Stability
Dual growth factor
Femur - drug effects
Femur - growth & development
fibroblast growth factor 2
Fibroblast Growth Factor 2 - administration & dosage
Fibroblast Growth Factor 2 - pharmacokinetics
Fibroblast Growth Factor 2 - pharmacology
Gelatin
Gels
in vivo studies
Iodine Radioisotopes - chemistry
Isotope Labeling
Light
Male
monitoring
Nanospheres
Osteogenesis
Particle Size
radiolabeling
Rats
Rats, Sprague-Dawley
Rheology
Scattering, Radiation
Sequential release
tissue repair
X-Ray Microtomography
Title Combined delivery of BMP-2 and bFGF from nanostructured colloidal gelatin gels and its effect on bone regeneration in vivo
URI https://dx.doi.org/10.1016/j.jconrel.2012.12.015
https://www.ncbi.nlm.nih.gov/pubmed/23266450
https://www.proquest.com/docview/1288996104
https://www.proquest.com/docview/1500773022
https://www.proquest.com/docview/1686712028
Volume 166
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELcYe-Fl2tgGZRsy0sQTaVPHdexHhtaVTaBKUIk3y0nsKhVyUAtI5YG_fXdOQkHaQEKKFCm6U2Lf-fw75z4I-Z7IVJrUFZEDEUTcxTIyGDTuYKvKnDKD2OI55MmpGE3474vBxRo5anNhMKyysf21TQ_WunnSa2azd1WWvTMAKzIRA9VnoUw7ZpRznqKWd-8fhXkkvE6ZFjJC6lUWT2_WnYHPObf4B6LPwqkgdsf99_70xpnq_yg07EbD9-RdAyPpYf2lH8ia9Ztkf1zXoV4e0PNVWtXigO7T8apC9fIjuQMrAB6xLWhhLzEwY0krR3-cjCNGjS9oNvw1pJh4Qr3xVV1i9mYO5Kg1VVnAm6chiM7jfRF4yusFrYNDaOVpVnlL53Yailqj7CnQ3pa31ScyGf48PxpFTROGKMdeBxHjYABjgCkAHKUBMGH6aRqblCVK2BzRo-MCcAdPuWGxE4VRLle5NAU4dv3cJZ_Juod3bhMKWCiz1imF2bjALbM4K1SWWiXA6bG2Q3g79TpvKpRjo4xL3YaizXQjMY0S03CBxDqk-8B2VZfoeIlBtnLVT3RNwzbyEus26IE2U7DAenLG8LwoxgnhrEP2WuXQsETxv4vxtrpZAKsErxZwKn-GZoCFlRJYJs_QCCxGyAARdshWrX0PAwZgLATIaOf1Y_tCNljo9YHBil_JOiiX_QaI6zrbDUtql7w9PP4zOv0Lc6Aojg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB615QAXxLvhURYJeqoTZ71Zrw8cKBBS2lSRmki9bdf2buSosqukLQoH_hR_kBk_GpCglZAqRYoU7cT2zuzMN-uZbwHeBipUJnSp51AFnnC-8gwVjTsMVbGLTM-3tA85PJSDifh63Dteg59NLwyVVda-v_Lppbeuf-nUs9k5y7LOEYIVFche1OUlTXtYV1bu2-U3zNsW7_c-oZLfcd7_PP448OqjBbyEGPw9LnBZ-xh8EQ4pgyHSdMPQNyEPImkTwkROSIymIhSG-06mJnJJlCiTYrrSTVyA_7sOdwS6Czo2of3jt7qSQFQ92lJ5dHurtqHOrD3DJHdu6ZVHl5fbkHQc798D4rozxb9hbxn--g_gfo1b2Ydqah7Cms0fwfaoIr5e7rDxqo9rscO22WhFib18DN_R7WAKblOW2lOqBFmywrHd4cjjzOQpi_tf-ow6XVhu8qLitL2Y43Ay0yJL8crTsmovp-9FKZOdL1hVjcKKnMVFbtncTksWbTI2hmMvs8viCUxuRTVPYSPHa24CQ_AVW-uiiNp_UVrFfpxGcWgjiVmWtS0QzdTrpKZEp5M5TnVT-zbTtcY0aUzjBzXWgvaV2FnFCXKTgGr0qv8wbo1x6ybRTbQDbabo8vXkiNMGlU8TIngL3jTGodEn0Isek9viYoGiCtNoBMbimjE9YnIKcF1eM0YS-yFHCNqCZ5X1XT0wInEpUUfP___ZXsPdwXh4oA_2DvdfwD1eHjRClZIvYQMNzb5CuHceb5XLi8HJba_nXzufYoY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combined+delivery+of+BMP-2+and+bFGF+from+nanostructured+colloidal+gelatin+gels+and+its+effect+on+bone+regeneration+in+vivo&rft.jtitle=Journal+of+controlled+release&rft.au=Wang%2C+Huanan&rft.au=Zou%2C+Qin&rft.au=Boerman%2C+Otto+C&rft.au=Nijhuis%2C+Arnold+W.G&rft.date=2013-03-10&rft.pub=Elsevier+B.V&rft.issn=0168-3659&rft.eissn=1873-4995&rft.volume=166&rft.issue=2&rft.spage=172&rft.epage=181&rft_id=info:doi/10.1016%2Fj.jconrel.2012.12.015&rft.externalDocID=US201500177042
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-3659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-3659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-3659&client=summon