Combined delivery of BMP-2 and bFGF from nanostructured colloidal gelatin gels and its effect on bone regeneration in vivo
During the process of bone regeneration, a multitude of morphogenetic signaling factors regulate cellular behavior and ultimately tissue response. These factors are presented to cells under strong spatial and temporal control, which stresses the relevance of controlled delivery of multiple growth fa...
Saved in:
Published in | Journal of controlled release Vol. 166; no. 2; pp. 172 - 181 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
10.03.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | During the process of bone regeneration, a multitude of morphogenetic signaling factors regulate cellular behavior and ultimately tissue response. These factors are presented to cells under strong spatial and temporal control, which stresses the relevance of controlled delivery of multiple growth factors for bone tissue regeneration. This demand for biomimetic delivery has prompted the development of a novel generation of biomaterials that is capable of delivering multiple growth factors in a controlled manner. Therefore, the current study has exploited the strong capacity of colloidal gels solely made of oppositely charged gelatin nanospheres to obtain controlled release of angiogenic and osteogenic growth factors. The release kinetics of dual delivery of osteogenic bone morphogenetic protein-2 (BMP-2) and angiogenic basic fibroblast growth factor (bFGF) were investigated in vitro by radiolabeling the respective growth factors and monitoring their release in vitro. Furthermore, the effect of single or dual delivery of BMP-2 and bFGF on bone regeneration was evaluated in vivo using a rat femoral condyle defect model. The in vitro results confirmed that the delivery kinetics of BMP-2 and/or bFGF are more dependent on the degree of crosslinking than on the type of gelatin. Sequential release characterized by rapid release of angiogenic bFGF and more sustained release of BMP-2 was obtained by loading bFGF onto cationic nanospheres of low crosslinking density and BMP-2 onto anionic nanospheres of high crosslinking density. The in vivo study demonstrated the biocompatibility and biodegradability of bare colloidal gelatin gels, and did not show any adverse effects on the process of bone healing after 4week of implantation since the volumes of new bone formation were comparable to empty control defects. An obvious stimulatory effect on bone regeneration was observed for the colloidal gels loaded with BMP-2, whereas bFGF-loaded colloidal gelatin gels did not influence the rate of bone regeneration. In contrast, the combined delivery of BMP-2 and bFGF resulted into an inhibitory effect on osteogenesis under the current experimental conditions. Summarizing, the current study proved that nanostructured colloidal gelatin gels are suitable carriers for programmed and sustained release of multiple therapeutic proteins for tissue regeneration.
By loading different growth factors in sub-populations of gelatin nanospheres (NS) respectively, colloidal gels comprising oppositely charged gelatin nanospheres showed strong capacity to obtain sequential release of dual growth factors. [Display omitted] |
---|---|
AbstractList | During the process of bone regeneration, a multitude of morphogenetic signaling factors regulate cellular behavior and ultimately tissue response. These factors are presented to cells under strong spatial and temporal control, which stresses the relevance of controlled delivery of multiple growth factors for bone tissue regeneration. This demand for biomimetic delivery has prompted the development of a novel generation of biomaterials that is capable of delivering multiple growth factors in a controlled manner. Therefore, the current study has exploited the strong capacity of colloidal gels solely made of oppositely charged gelatin nanospheres to obtain controlled release of angiogenic and osteogenic growth factors. The release kinetics of dual delivery of osteogenic bone morphogenetic protein-2 (BMP-2) and angiogenic basic fibroblast growth factor (bFGF) were investigated in vitro by radiolabeling the respective growth factors and monitoring their release in vitro. Furthermore, the effect of single or dual delivery of BMP-2 and bFGF on bone regeneration was evaluated in vivo using a rat femoral condyle defect model. The in vitro results confirmed that the delivery kinetics of BMP-2 and/or bFGF are more dependent on the degree of crosslinking than on the type of gelatin. Sequential release characterized by rapid release of angiogenic bFGF and more sustained release of BMP-2 was obtained by loading bFGF onto cationic nanospheres of low crosslinking density and BMP-2 onto anionic nanospheres of high crosslinking density. The in vivo study demonstrated the biocompatibility and biodegradability of bare colloidal gelatin gels, and did not show any adverse effects on the process of bone healing after 4 week of implantation since the volumes of new bone formation were comparable to empty control defects. An obvious stimulatory effect on bone regeneration was observed for the colloidal gels loaded with BMP-2, whereas bFGF-loaded colloidal gelatin gels did not influence the rate of bone regeneration. In contrast, the combined delivery of BMP-2 and bFGF resulted into an inhibitory effect on osteogenesis under the current experimental conditions. Summarizing, the current study proved that nanostructured colloidal gelatin gels are suitable carriers for programmed and sustained release of multiple therapeutic proteins for tissue regeneration. During the process of bone regeneration, a multitude of morphogenetic signaling factors regulate cellular behavior and ultimately tissue response. These factors are presented to cells under strong spatial and temporal control, which stresses the relevance of controlled delivery of multiple growth factors for bone tissue regeneration. This demand for biomimetic delivery has prompted the development of a novel generation of biomaterials that is capable of delivering multiple growth factors in a controlled manner. Therefore, the current study has exploited the strong capacity of colloidal gels solely made of oppositely charged gelatin nanospheres to obtain controlled release of angiogenic and osteogenic growth factors. The release kinetics of dual delivery of osteogenic bone morphogenetic protein-2 (BMP-2) and angiogenic basic fibroblast growth factor (bFGF) were investigated in vitro by radiolabeling the respective growth factors and monitoring their release in vitro. Furthermore, the effect of single or dual delivery of BMP-2 and bFGF on bone regeneration was evaluated in vivo using a rat femoral condyle defect model. The in vitro results confirmed that the delivery kinetics of BMP-2 and/or bFGF are more dependent on the degree of crosslinking than on the type of gelatin. Sequential release characterized by rapid release of angiogenic bFGF and more sustained release of BMP-2 was obtained by loading bFGF onto cationic nanospheres of low crosslinking density and BMP-2 onto anionic nanospheres of high crosslinking density. The in vivo study demonstrated the biocompatibility and biodegradability of bare colloidal gelatin gels, and did not show any adverse effects on the process of bone healing after 4 week of implantation since the volumes of new bone formation were comparable to empty control defects. An obvious stimulatory effect on bone regeneration was observed for the colloidal gels loaded with BMP-2, whereas bFGF-loaded colloidal gelatin gels did not influence the rate of bone regeneration. In contrast, the combined delivery of BMP-2 and bFGF resulted into an inhibitory effect on osteogenesis under the current experimental conditions. Summarizing, the current study proved that nanostructured colloidal gelatin gels are suitable carriers for programmed and sustained release of multiple therapeutic proteins for tissue regeneration.During the process of bone regeneration, a multitude of morphogenetic signaling factors regulate cellular behavior and ultimately tissue response. These factors are presented to cells under strong spatial and temporal control, which stresses the relevance of controlled delivery of multiple growth factors for bone tissue regeneration. This demand for biomimetic delivery has prompted the development of a novel generation of biomaterials that is capable of delivering multiple growth factors in a controlled manner. Therefore, the current study has exploited the strong capacity of colloidal gels solely made of oppositely charged gelatin nanospheres to obtain controlled release of angiogenic and osteogenic growth factors. The release kinetics of dual delivery of osteogenic bone morphogenetic protein-2 (BMP-2) and angiogenic basic fibroblast growth factor (bFGF) were investigated in vitro by radiolabeling the respective growth factors and monitoring their release in vitro. Furthermore, the effect of single or dual delivery of BMP-2 and bFGF on bone regeneration was evaluated in vivo using a rat femoral condyle defect model. The in vitro results confirmed that the delivery kinetics of BMP-2 and/or bFGF are more dependent on the degree of crosslinking than on the type of gelatin. Sequential release characterized by rapid release of angiogenic bFGF and more sustained release of BMP-2 was obtained by loading bFGF onto cationic nanospheres of low crosslinking density and BMP-2 onto anionic nanospheres of high crosslinking density. The in vivo study demonstrated the biocompatibility and biodegradability of bare colloidal gelatin gels, and did not show any adverse effects on the process of bone healing after 4 week of implantation since the volumes of new bone formation were comparable to empty control defects. An obvious stimulatory effect on bone regeneration was observed for the colloidal gels loaded with BMP-2, whereas bFGF-loaded colloidal gelatin gels did not influence the rate of bone regeneration. In contrast, the combined delivery of BMP-2 and bFGF resulted into an inhibitory effect on osteogenesis under the current experimental conditions. Summarizing, the current study proved that nanostructured colloidal gelatin gels are suitable carriers for programmed and sustained release of multiple therapeutic proteins for tissue regeneration. During the process of bone regeneration, a multitude of morphogenetic signaling factors regulate cellular behavior and ultimately tissue response. These factors are presented to cells under strong spatial and temporal control, which stresses the relevance of controlled delivery of multiple growth factors for bone tissue regeneration. This demand for biomimetic delivery has prompted the development of a novel generation of biomaterials that is capable of delivering multiple growth factors in a controlled manner. Therefore, the current study has exploited the strong capacity of colloidal gels solely made of oppositely charged gelatin nanospheres to obtain controlled release of angiogenic and osteogenic growth factors. The release kinetics of dual delivery of osteogenic bone morphogenetic protein-2 (BMP-2) and angiogenic basic fibroblast growth factor (bFGF) were investigated in vitro by radiolabeling the respective growth factors and monitoring their release in vitro. Furthermore, the effect of single or dual delivery of BMP-2 and bFGF on bone regeneration was evaluated in vivo using a rat femoral condyle defect model. The in vitro results confirmed that the delivery kinetics of BMP-2 and/or bFGF are more dependent on the degree of crosslinking than on the type of gelatin. Sequential release characterized by rapid release of angiogenic bFGF and more sustained release of BMP-2 was obtained by loading bFGF onto cationic nanospheres of low crosslinking density and BMP-2 onto anionic nanospheres of high crosslinking density. The in vivo study demonstrated the biocompatibility and biodegradability of bare colloidal gelatin gels, and did not show any adverse effects on the process of bone healing after 4week of implantation since the volumes of new bone formation were comparable to empty control defects. An obvious stimulatory effect on bone regeneration was observed for the colloidal gels loaded with BMP-2, whereas bFGF-loaded colloidal gelatin gels did not influence the rate of bone regeneration. In contrast, the combined delivery of BMP-2 and bFGF resulted into an inhibitory effect on osteogenesis under the current experimental conditions. Summarizing, the current study proved that nanostructured colloidal gelatin gels are suitable carriers for programmed and sustained release of multiple therapeutic proteins for tissue regeneration. During the process of bone regeneration, a multitude of morphogenetic signaling factors regulate cellular behavior and ultimately tissue response. These factors are presented to cells under strong spatial and temporal control, which stresses the relevance of controlled delivery of multiple growth factors for bone tissue regeneration. This demand for biomimetic delivery has prompted the development of a novel generation of biomaterials that is capable of delivering multiple growth factors in a controlled manner. Therefore, the current study has exploited the strong capacity of colloidal gels solely made of oppositely charged gelatin nanospheres to obtain controlled release of angiogenic and osteogenic growth factors. The release kinetics of dual delivery of osteogenic bone morphogenetic protein-2 (BMP-2) and angiogenic basic fibroblast growth factor (bFGF) were investigated in vitro by radiolabeling the respective growth factors and monitoring their release in vitro. Furthermore, the effect of single or dual delivery of BMP-2 and bFGF on bone regeneration was evaluated in vivo using a rat femoral condyle defect model. The in vitro results confirmed that the delivery kinetics of BMP-2 and/or bFGF are more dependent on the degree of crosslinking than on the type of gelatin. Sequential release characterized by rapid release of angiogenic bFGF and more sustained release of BMP-2 was obtained by loading bFGF onto cationic nanospheres of low crosslinking density and BMP-2 onto anionic nanospheres of high crosslinking density. The in vivo study demonstrated the biocompatibility and biodegradability of bare colloidal gelatin gels, and did not show any adverse effects on the process of bone healing after 4week of implantation since the volumes of new bone formation were comparable to empty control defects. An obvious stimulatory effect on bone regeneration was observed for the colloidal gels loaded with BMP-2, whereas bFGF-loaded colloidal gelatin gels did not influence the rate of bone regeneration. In contrast, the combined delivery of BMP-2 and bFGF resulted into an inhibitory effect on osteogenesis under the current experimental conditions. Summarizing, the current study proved that nanostructured colloidal gelatin gels are suitable carriers for programmed and sustained release of multiple therapeutic proteins for tissue regeneration. By loading different growth factors in sub-populations of gelatin nanospheres (NS) respectively, colloidal gels comprising oppositely charged gelatin nanospheres showed strong capacity to obtain sequential release of dual growth factors. [Display omitted] |
Author | Zou, Qin Li, Yubao Boerman, Otto C. Wang, Huanan Nijhuis, Arnold W.G. Leeuwenburgh, Sander C.G. Jansen, John A. |
Author_xml | – sequence: 1 givenname: Huanan surname: Wang fullname: Wang, Huanan organization: Department of Biomaterials, Radboud University Nijmegen Medical Center, 6525 EX Nijmegen, The Netherlands – sequence: 2 givenname: Qin surname: Zou fullname: Zou, Qin organization: Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, 610064 Chengdu, P.R. China – sequence: 3 givenname: Otto C. surname: Boerman fullname: Boerman, Otto C. organization: Department of Nuclear Medicine, Radboud University Nijmegen Medical Centere, 6525 GA Nijmegen, The Netherlands – sequence: 4 givenname: Arnold W.G. surname: Nijhuis fullname: Nijhuis, Arnold W.G. organization: Department of Biomaterials, Radboud University Nijmegen Medical Center, 6525 EX Nijmegen, The Netherlands – sequence: 5 givenname: John A. surname: Jansen fullname: Jansen, John A. organization: Department of Biomaterials, Radboud University Nijmegen Medical Center, 6525 EX Nijmegen, The Netherlands – sequence: 6 givenname: Yubao surname: Li fullname: Li, Yubao organization: Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, 610064 Chengdu, P.R. China – sequence: 7 givenname: Sander C.G. surname: Leeuwenburgh fullname: Leeuwenburgh, Sander C.G. email: s.leeuwenburgh@dent.umcn.nl organization: Department of Biomaterials, Radboud University Nijmegen Medical Center, 6525 EX Nijmegen, The Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23266450$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUGPEyEUx4lZ43ZXP4LK0ctUYJhhiAejjV1N1miieyYUHg0NhRVmmqyfXmZbPXhpQvIS8vvDe-93hS5iioDQS0qWlND-7W65MylmCEtGKFvWQ2j3BC3oINqGS9ldoEXlhqbtO3mJrkrZEUK6lotn6JK1rO95Rxbo9yrtNz6CxRaCP0B-wMnhj1-_NwzraPFmfbPGLqc9jjqmMubJjFOuuEkhJG91wFsIevRxruUx48eCwTkwI04Rb2rfOMMWIuTK1ZvKHvwhPUdPnQ4FXpzqNbpbf_q5-tzcfrv5svpw25iO0bFh3Fog3VDbFYNmrNVUCKIFa2UPRgrBHe-J6LjgmhHXWy2dkWbQlnFJjWuv0Zvju_c5_ZqgjGrvi4EQdIQ0FVWX1AvKCBvOox0hQrSkdnEWZcMgZU8Jr-irEzpt9mDVffZ7nR_UXwsV6I6AyamUDO4fQomabaudOtlWs-36uKq2a-7dfznjx8cdj1n7cDb9-ph2Oim9zb6oux8VqDPOG-bzjO-PRDULBw9ZFeMhGrA-V7vKJn_mjz-xFtCK |
CitedBy_id | crossref_primary_10_1002_admi_201800118 crossref_primary_10_1002_mabi_201500005 crossref_primary_10_1002_jbm_a_36342 crossref_primary_10_1016_j_jconrel_2014_04_014 crossref_primary_10_4155_tde_14_42 crossref_primary_10_1088_1361_6668_ac048f crossref_primary_10_1021_la4041985 crossref_primary_10_1016_j_bprint_2024_e00345 crossref_primary_10_1088_1748_605X_abc1b1 crossref_primary_10_1007_s11706_015_0278_8 crossref_primary_10_1016_j_eurpolymj_2015_05_014 crossref_primary_10_1007_s40005_017_0382_0 crossref_primary_10_1016_j_eurpolymj_2019_07_007 crossref_primary_10_1007_s12274_022_4103_2 crossref_primary_10_1002_admt_201700022 crossref_primary_10_1016_j_bioactmat_2022_02_035 crossref_primary_10_1039_D0TB00172D crossref_primary_10_1016_j_cej_2017_09_145 crossref_primary_10_1016_j_msec_2017_03_297 crossref_primary_10_1007_s13770_023_00534_z crossref_primary_10_1016_j_addr_2020_08_008 crossref_primary_10_1016_j_biomaterials_2014_11_002 crossref_primary_10_3389_fbioe_2016_00045 crossref_primary_10_1002_term_2745 crossref_primary_10_1016_j_colsurfb_2019_110407 crossref_primary_10_1517_17425247_2015_1037272 crossref_primary_10_1002_mabi_202400049 crossref_primary_10_1021_acs_chemrev_2c00179 crossref_primary_10_1016_j_bioactmat_2021_04_013 crossref_primary_10_1016_j_eurpolymj_2022_111671 crossref_primary_10_1080_03639045_2018_1483381 crossref_primary_10_1016_j_addr_2019_03_004 crossref_primary_10_1016_j_jddst_2017_04_012 crossref_primary_10_1179_1743280414Y_0000000045 crossref_primary_10_1122_8_0000161 crossref_primary_10_1002_adhm_201901469 crossref_primary_10_1186_2055_7124_18_16 crossref_primary_10_1016_j_jconrel_2015_08_049 crossref_primary_10_3390_biom13040609 crossref_primary_10_1002_nano_202000087 crossref_primary_10_1515_secm_2015_0372 crossref_primary_10_1016_j_pmatsci_2023_101124 crossref_primary_10_1122_8_0000672 crossref_primary_10_1089_ten_tea_2020_0141 crossref_primary_10_1111_jcpe_12739 crossref_primary_10_1186_s13018_015_0201_0 crossref_primary_10_1002_term_2202 crossref_primary_10_1080_17435889_2025_2457317 crossref_primary_10_1016_j_addr_2020_07_021 crossref_primary_10_1021_acsbiomaterials_8b01098 crossref_primary_10_1016_j_ijbiomac_2015_08_006 crossref_primary_10_3390_applbiosci2040039 crossref_primary_10_1016_j_exger_2015_02_006 crossref_primary_10_1016_j_bprint_2023_e00317 crossref_primary_10_1039_D0NA00478B crossref_primary_10_1016_j_supflu_2023_105979 crossref_primary_10_3892_mmr_2017_7183 crossref_primary_10_1002_mabi_202300122 crossref_primary_10_1021_acs_molpharmaceut_5b00297 crossref_primary_10_1016_j_actbio_2013_08_036 crossref_primary_10_3390_ijms140612714 crossref_primary_10_1088_1748_605X_ad525c crossref_primary_10_1002_jbm_a_35605 crossref_primary_10_1016_j_colsurfb_2018_05_029 crossref_primary_10_1021_acsami_4c12721 crossref_primary_10_1021_acsomega_6b00420 crossref_primary_10_1016_j_jconrel_2014_05_007 crossref_primary_10_1002_adfm_201703438 crossref_primary_10_1021_acsbiomaterials_9b01746 crossref_primary_10_1089_ten_tea_2017_0111 crossref_primary_10_1016_j_jconrel_2023_07_034 crossref_primary_10_1002_term_2677 crossref_primary_10_1016_j_biomaterials_2017_10_018 crossref_primary_10_1002_adhm_201700014 crossref_primary_10_1016_j_biomaterials_2017_04_036 crossref_primary_10_1016_j_ccr_2022_214482 crossref_primary_10_1016_j_actbio_2013_10_014 crossref_primary_10_1016_j_jtice_2015_10_006 crossref_primary_10_1002_anie_201403702 crossref_primary_10_3390_biom13020205 crossref_primary_10_1080_09205063_2015_1049044 crossref_primary_10_1016_j_eurpolymj_2023_111846 crossref_primary_10_1007_s11095_013_1077_5 crossref_primary_10_1016_j_biomaterials_2021_120871 crossref_primary_10_1039_D1BM00504A crossref_primary_10_1080_09205063_2018_1505264 crossref_primary_10_5435_JAAOS_22_10_677 crossref_primary_10_1088_0957_4484_26_1_012001 crossref_primary_10_1021_acsbiomaterials_9b00642 crossref_primary_10_1039_C5RA02588E crossref_primary_10_1186_s13036_021_00271_8 crossref_primary_10_1016_j_jconrel_2015_10_032 crossref_primary_10_1049_bsbt_2020_0020 crossref_primary_10_1016_j_tice_2020_101449 crossref_primary_10_1089_ten_tec_2016_0025 crossref_primary_10_1016_j_nano_2013_04_008 crossref_primary_10_1002_adhm_202001986 crossref_primary_10_1016_j_jconrel_2013_09_019 crossref_primary_10_1016_j_ijom_2014_02_014 crossref_primary_10_1089_ten_tea_2014_0182 crossref_primary_10_3390_pharmaceutics12070604 crossref_primary_10_1002_ange_201403702 crossref_primary_10_1039_C5RA27914C crossref_primary_10_1016_j_jot_2020_01_003 crossref_primary_10_1002_advs_201900520 crossref_primary_10_1016_j_msec_2013_06_013 crossref_primary_10_1016_j_drudis_2013_11_007 crossref_primary_10_1016_j_addr_2017_11_005 crossref_primary_10_1016_j_intimp_2013_04_001 crossref_primary_10_1021_acsbiomaterials_8b01468 crossref_primary_10_1088_1758_5090_acab36 crossref_primary_10_1080_15685551_2016_1259839 crossref_primary_10_2147_IJN_S477587 crossref_primary_10_1177_09636897241276733 crossref_primary_10_3390_nano12193423 crossref_primary_10_1016_j_msec_2021_112343 crossref_primary_10_1016_j_addr_2015_06_003 crossref_primary_10_1016_j_ijbiomac_2021_05_188 crossref_primary_10_1016_j_mtbio_2024_101256 crossref_primary_10_1080_09205063_2019_1652416 crossref_primary_10_1021_acsami_6b03454 crossref_primary_10_1021_acsami_8b06648 crossref_primary_10_1016_j_actbio_2021_10_053 crossref_primary_10_1021_acs_langmuir_6b03529 crossref_primary_10_3390_ma10080929 crossref_primary_10_1089_ten_tea_2013_0181 crossref_primary_10_1007_s00784_017_2202_3 crossref_primary_10_3390_pharmaceutics15051499 crossref_primary_10_1002_mabi_201500414 crossref_primary_10_1021_acsami_9b01227 crossref_primary_10_1021_acs_biomac_3c00177 crossref_primary_10_1039_C6RA19915A crossref_primary_10_1016_j_msec_2018_06_038 crossref_primary_10_1093_rb_rbab051 crossref_primary_10_1155_2013_763937 crossref_primary_10_1111_jre_12628 crossref_primary_10_1021_acs_nanolett_3c03459 crossref_primary_10_2217_rme_2019_0080 crossref_primary_10_1016_j_jconrel_2014_03_044 crossref_primary_10_1016_j_msec_2020_110893 crossref_primary_10_1517_13543784_2016_1161757 crossref_primary_10_1016_j_actbio_2014_09_006 crossref_primary_10_1080_21655979_2022_2085394 crossref_primary_10_1080_00914037_2022_2082423 crossref_primary_10_3390_ma11081280 |
Cites_doi | 10.1039/b814285h 10.1089/ten.tea.2010.0555 10.1016/j.biomaterials.2009.08.038 10.1097/01.brs.0000261626.32999.8a 10.1016/j.spinee.2011.04.023 10.1002/adma.200802106 10.1002/jbm.a.33000 10.1016/S0142-9612(99)00121-0 10.3390/polym3031036 10.1016/j.jcms.2007.09.001 10.3109/08977190903231075 10.1163/156856201744461 10.1039/c0jm00338g 10.1359/jbmr.1997.12.10.1606 10.1073/pnas.0701980104 10.1007/s10439-006-9092-x 10.1016/j.bone.2008.12.017 10.1097/00001665-199611000-00006 10.1016/j.biomaterials.2011.03.063 10.1021/mp200614q 10.1016/j.jconrel.2005.09.023 10.1016/j.bone.2004.11.010 10.1016/j.biomaterials.2010.04.053 10.1002/adma.200702099 10.1016/S0142-9612(99)00207-0 10.1039/b713009k 10.1016/j.biomaterials.2004.05.035 10.1080/08977190412331279890 10.1016/j.cytogfr.2009.10.018 10.1016/j.biomaterials.2010.02.052 10.1039/c0jm00795a 10.1016/S0003-9969(02)00046-8 10.1016/j.addr.2007.03.013 10.1002/adma.201003908 10.1163/156856204774196117 10.1098/rsif.2009.0379 10.1097/00003086-200105000-00032 10.1089/10763270360696941 10.1016/j.biomaterials.2010.05.016 10.1002/adma.200501612 10.1021/nn100869j 10.1016/j.biomaterials.2012.08.024 10.1016/0006-291X(78)91322-0 10.1002/adma.200802009 10.1016/j.ijpharm.2004.03.024 10.1359/jbmr.1998.13.4.645 10.3109/10520298809107179 10.1089/ten.teb.2011.0184 10.1007/s10529-009-0099-x 10.1002/term.41 10.1111/j.1600-0722.1997.tb00222.x 10.1016/S8756-3282(99)00252-5 10.1016/j.biomaterials.2007.04.014 10.1016/S0168-3659(03)00258-X 10.1016/j.addr.2006.09.004 10.1016/S1359-6446(03)02866-6 10.1016/j.biomaterials.2011.09.052 |
ContentType | Journal Article |
Copyright | 2012 Elsevier B.V. Copyright © 2012 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2012 Elsevier B.V. – notice: Copyright © 2012 Elsevier B.V. All rights reserved. |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 7QP 8FD FR3 P64 7S9 L.6 |
DOI | 10.1016/j.jconrel.2012.12.015 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Engineering Research Database AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1873-4995 |
EndPage | 181 |
ExternalDocumentID | 23266450 10_1016_j_jconrel_2012_12_015 US201500177042 S0168365912008577 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AABXZ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATCM AAXUO ABFNM ABFRF ABJNI ABMAC ABOCM ABXDB ABYKQ ABZDS ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC C45 CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMT IHE J1W KOM M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSM SSP SSZ T5K TEORI ~G- .GJ 29K 3O- AAQXK AAYOK ABPIF ABPTK ACNNM ADMUD AHHHB ASPBG AVWKF AZFZN D-I FBQ FEDTE FGOYB G-2 HVGLF HZ~ R2- SEW SPT WUQ AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7QO 7QP 8FD EFKBS FR3 P64 7S9 L.6 |
ID | FETCH-LOGICAL-c521t-24dde05845078a223a1770a72396ec9774f46075474a20f6da9fc9c8ad2491cf3 |
IEDL.DBID | .~1 |
ISSN | 0168-3659 1873-4995 |
IngestDate | Fri Jul 11 09:08:10 EDT 2025 Mon Jul 21 10:48:41 EDT 2025 Fri Jul 11 06:06:16 EDT 2025 Thu Apr 03 07:00:10 EDT 2025 Thu Apr 24 22:57:10 EDT 2025 Tue Jul 01 04:04:14 EDT 2025 Wed Dec 27 19:18:09 EST 2023 Fri Feb 23 02:28:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Sequential release Nanospheres Gelatin Dual growth factor Osteogenesis Colloidal gels |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2012 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-24dde05845078a223a1770a72396ec9774f46075474a20f6da9fc9c8ad2491cf3 |
Notes | http://dx.doi.org/10.1016/j.jconrel.2012.12.015 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23266450 |
PQID | 1288996104 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1686712028 proquest_miscellaneous_1500773022 proquest_miscellaneous_1288996104 pubmed_primary_23266450 crossref_primary_10_1016_j_jconrel_2012_12_015 crossref_citationtrail_10_1016_j_jconrel_2012_12_015 fao_agris_US201500177042 elsevier_sciencedirect_doi_10_1016_j_jconrel_2012_12_015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-03-10 |
PublicationDateYYYYMMDD | 2013-03-10 |
PublicationDate_xml | – month: 03 year: 2013 text: 2013-03-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of controlled release |
PublicationTitleAlternate | J Control Release |
PublicationYear | 2013 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Fujimura, Bessho, Okubo, Kusumoto, Segami, Iizuka (bb0170) 2002; 47 Carragee, Hurwitz, Weiner (bb0025) 2011; 11 Ono, Tateshita, Takita, Kuboki (bb0185) 1996; 7 Lin, Metters (bb0260) 2006; 58 Tabata, Ikada (bb0150) 1999; 20 Gan, Guan, Zhang (bb0095) 2010; 20 van der Lubbe, Klein, de Groot (bb0230) 1988; 63 Grzelczak, Vermant, Furst, Liz-Marzan (bb0070) 2010; 4 Takita, Tsuruga, Ono, Kuboki (bb0165) 1997; 105 Fraker, Speck (bb0205) 1978; 80 Luong, Ramaswamy, Kohn (bb0145) 2012; 33 Maegawa, Kawamura, Hirose, Yajima, Takakura, Ohgushi (bb0285) 2007; 1 Mwangi, Ofner Iii (bb0195) 2004; 278 Patel, Mikos (bb0155) 2004; 15 Li, Yoshii, Hafeman, Nyman, Wenke, Guelcher (bb0250) 2009; 30 Young, Wong, Tabata, Mikos (bb0255) 2005; 109 Debiais, Hott, Graulet, Marie (bb0280) 1998; 13 Chen, Zhang, Wu (bb0020) 2010; 31 Nair, Laurencin (bb0030) 2006; vol. 102 Yu, Ding (bb0045) 2008; 37 Yamamoto, Ikada, Tabata (bb0245) 2001; 12 Vonau, Bostrom, Aspenberg, Sams (bb0300) 2001; 386 Minamide, Yoshida, Kawakami, Okada, Enyo, Hashizume, Boden (bb0295) 2007; 32 Nichol, Khademhosseini (bb0060) 2009; 5 Carano, Filvaroff (bb0135) 2003; 8 Haines-Butterick, Rajagopal, Branco, Salick, Rughani, Pilarz, Lamm, Pochan, Schneider (bb0200) 2007; 104 Zellin, Linde (bb0275) 2000; 26 Springer, Niehoff, Açil, Marget, Lange, Warnke, Pielenz, Roldán, Wiltfang (bb0225) 2008; 36 Tabata (bb0015) 2003; 9 DeVolder, Kong (bb0090) 2010; 31 Slaughter, Khurshid, Fisher, Khademhosseini, Peppas (bb0040) 2009; 21 Wang, Wang, Lu, Detamore, Berkland (bb0080) 2010; 31 Gerstenfeld, Einhorn (bb0140) 2003; 3 Kawai, Suzuki, Tabata, Ikada, Nishimura (bb0160) 2000; 21 Wang, Boerman, Sariibrahimoglu, Li, Jansen, Leeuwenburgh (bb0115) 2012; 33 Wang, Leeuwenburgh, Li, Jansen (bb0055) 2012; 18 Wang, Wang, Detamore, Berkland (bb0110) 2008; 20 Mouriño, Boccaccini (bb0010) 2010; 7 Wang, Li, Zuo, Li, Ma, Cheng (bb0120) 2007; 28 Draenert, Draenert, Tischer (bb0220) 2009; 27 Schrieber, Gareis (bb0235) 2007 Zara, Siu, Zhang, Shen, Ngo, Lee, Li, Chiang, Chung, Kwak, Wu, Ting, Soo (bb0210) 2011; 17 Kretlow, Young, Klouda, Wong, Mikos (bb0035) 2009; 21 Tanaka, Ishino, Sasaki, Hasegawa, Watanabe, Dalla-Bona, Yamano, van Eijden, Tanne (bb0175) 2006; 34 Chen, Zhao, Mundy (bb0125) 2004; 22 Rosen (bb0130) 2009; 20 Büyüktimkin, Wang, Kiptoo, Stewart, Berkland, Siahaan (bb0100) 2012; 9 Peppas, Hilt, Khademhosseini, Langer (bb0050) 2006; 18 Hanada, Dennis, Caplan (bb0290) 1997; 12 Haidar, Hamdy, Tabrizian (bb0265) 2009; 31 Kretlow, Klouda, Mikos (bb0240) 2007; 59 Boerckel, Kolambkar, Dupont, Uhrig, Phelps, Stevens, García, Guldberg (bb0215) 2011; 32 Wang, Hansen, Löwik, van Hest, Li, Jansen, Leeuwenburgh (bb0075) 2011; 23 Kodama, Nagata, Tabata, Ozeki, Ninomiya, Takagi (bb0270) 2009; 44 Nakamura, Tensho, Nakaya, Nawata, Okabe, Wakitani (bb0180) 2005; 36 Van Tomme, Van Steenbergen, De Smedt, van Nostrum, Hennink (bb0085) 2005; 26 Bongio, van den Beucken, Leeuwenburgh, Jansen (bb0005) 2010; 20 Holland, Tabata, Mikos (bb0190) 2003; 91 Bradley, Lazim, Eastoe (bb0065) 2011; 3 Wang, Jamal, Detamore, Berkland (bb0105) 2011; 96A B?y?ktimkin (10.1016/j.jconrel.2012.12.015_bb0100) 2012; 9 Yu (10.1016/j.jconrel.2012.12.015_bb0045) 2008; 37 Tanaka (10.1016/j.jconrel.2012.12.015_bb0175) 2006; 34 Gerstenfeld (10.1016/j.jconrel.2012.12.015_bb0140) 2003; 3 DeVolder (10.1016/j.jconrel.2012.12.015_bb0090) 2010; 31 Rosen (10.1016/j.jconrel.2012.12.015_bb0130) 2009; 20 Holland (10.1016/j.jconrel.2012.12.015_bb0190) 2003; 91 Mouri?o (10.1016/j.jconrel.2012.12.015_bb0010) 2010; 7 Chen (10.1016/j.jconrel.2012.12.015_bb0020) 2010; 31 Nair (10.1016/j.jconrel.2012.12.015_bb0030) 2006; vol. 102 Chen (10.1016/j.jconrel.2012.12.015_bb0125) 2004; 22 Wang (10.1016/j.jconrel.2012.12.015_bb0120) 2007; 28 Takita (10.1016/j.jconrel.2012.12.015_bb0165) 1997; 105 Kretlow (10.1016/j.jconrel.2012.12.015_bb0035) 2009; 21 Kodama (10.1016/j.jconrel.2012.12.015_bb0270) 2009; 44 Vonau (10.1016/j.jconrel.2012.12.015_bb0300) 2001; 386 Tabata (10.1016/j.jconrel.2012.12.015_bb0015) 2003; 9 Wang (10.1016/j.jconrel.2012.12.015_bb0080) 2010; 31 Kawai (10.1016/j.jconrel.2012.12.015_bb0160) 2000; 21 Lin (10.1016/j.jconrel.2012.12.015_bb0260) 2006; 58 Wang (10.1016/j.jconrel.2012.12.015_bb0115) 2012; 33 Wang (10.1016/j.jconrel.2012.12.015_bb0055) 2012; 18 Young (10.1016/j.jconrel.2012.12.015_bb0255) 2005; 109 Luong (10.1016/j.jconrel.2012.12.015_bb0145) 2012; 33 Zara (10.1016/j.jconrel.2012.12.015_bb0210) 2011; 17 Yamamoto (10.1016/j.jconrel.2012.12.015_bb0245) 2001; 12 Draenert (10.1016/j.jconrel.2012.12.015_bb0220) 2009; 27 Hanada (10.1016/j.jconrel.2012.12.015_bb0290) 1997; 12 Kretlow (10.1016/j.jconrel.2012.12.015_bb0240) 2007; 59 Haidar (10.1016/j.jconrel.2012.12.015_bb0265) 2009; 31 Wang (10.1016/j.jconrel.2012.12.015_bb0105) 2011; 96A Fraker (10.1016/j.jconrel.2012.12.015_bb0205) 1978; 80 Zellin (10.1016/j.jconrel.2012.12.015_bb0275) 2000; 26 Springer (10.1016/j.jconrel.2012.12.015_bb0225) 2008; 36 Minamide (10.1016/j.jconrel.2012.12.015_bb0295) 2007; 32 Boerckel (10.1016/j.jconrel.2012.12.015_bb0215) 2011; 32 Mwangi (10.1016/j.jconrel.2012.12.015_bb0195) 2004; 278 Carano (10.1016/j.jconrel.2012.12.015_bb0135) 2003; 8 Wang (10.1016/j.jconrel.2012.12.015_bb0110) 2008; 20 Haines-Butterick (10.1016/j.jconrel.2012.12.015_bb0200) 2007; 104 van der Lubbe (10.1016/j.jconrel.2012.12.015_bb0230) 1988; 63 Tabata (10.1016/j.jconrel.2012.12.015_bb0150) 1999; 20 Wang (10.1016/j.jconrel.2012.12.015_bb0075) 2011; 23 Debiais (10.1016/j.jconrel.2012.12.015_bb0280) 1998; 13 Patel (10.1016/j.jconrel.2012.12.015_bb0155) 2004; 15 Gan (10.1016/j.jconrel.2012.12.015_bb0095) 2010; 20 Slaughter (10.1016/j.jconrel.2012.12.015_bb0040) 2009; 21 Bradley (10.1016/j.jconrel.2012.12.015_bb0065) 2011; 3 Maegawa (10.1016/j.jconrel.2012.12.015_bb0285) 2007; 1 Peppas (10.1016/j.jconrel.2012.12.015_bb0050) 2006; 18 Schrieber (10.1016/j.jconrel.2012.12.015_bb0235) 2007 Fujimura (10.1016/j.jconrel.2012.12.015_bb0170) 2002; 47 Nakamura (10.1016/j.jconrel.2012.12.015_bb0180) 2005; 36 Ono (10.1016/j.jconrel.2012.12.015_bb0185) 1996; 7 Carragee (10.1016/j.jconrel.2012.12.015_bb0025) 2011; 11 Van Tomme (10.1016/j.jconrel.2012.12.015_bb0085) 2005; 26 Bongio (10.1016/j.jconrel.2012.12.015_bb0005) 2010; 20 Grzelczak (10.1016/j.jconrel.2012.12.015_bb0070) 2010; 4 Nichol (10.1016/j.jconrel.2012.12.015_bb0060) 2009; 5 Li (10.1016/j.jconrel.2012.12.015_bb0250) 2009; 30 |
References_xml | – volume: 9 start-page: 979 year: 2012 end-page: 985 ident: bb0100 article-title: Vaccine-like controlled-release delivery of an immunomodulating peptide to treat experimental autoimmune encephalomyelitis publication-title: Mol. Pharm. – volume: 31 start-page: 4980 year: 2010 end-page: 4986 ident: bb0080 article-title: Injectable PLGA based colloidal gels for zero-order dexamethasone release in cranial defects publication-title: Biomaterials – volume: 32 start-page: 1067 year: 2007 end-page: 1071 ident: bb0295 article-title: The effects of bone morphogenetic protein and basic fibroblast growth factor on cultured mesenchymal stem cells for spine fusion publication-title: Spine – volume: 58 start-page: 1379 year: 2006 end-page: 1408 ident: bb0260 article-title: Hydrogels in controlled release formulations: network design and mathematical modeling publication-title: Adv. Drug Deliv. Rev. – volume: 47 start-page: 577 year: 2002 end-page: 584 ident: bb0170 article-title: The effect of fibroblast growth factor-2 on the osteoinductive activity of recombinant human bone morphogenetic protein-2 in rat muscle publication-title: Arch. Oral Biol. – volume: 96A start-page: 520 year: 2011 end-page: 527 ident: bb0105 article-title: PLGA-chitosan/PLGA-alginate nanoparticle blends as biodegradable colloidal gels for seeding human umbilical cord mesenchymal stem cells publication-title: J. Biomed. Mater. Res. A – volume: 36 start-page: 210 year: 2008 end-page: 217 ident: bb0225 article-title: BMP-2 and bFGF in an irradiated bone model publication-title: J. Cranio-Maxillofac. Surg. – volume: 20 start-page: 5937 year: 2010 end-page: 5944 ident: bb0095 article-title: Thermogelable PNIPAM microgel dispersion as 3D cell scaffold: effect of syneresis publication-title: J. Mater. Chem. – volume: 37 start-page: 1473 year: 2008 end-page: 1481 ident: bb0045 article-title: Injectable hydrogels as unique biomedical materials publication-title: Chem. Soc. Rev. – volume: 12 start-page: 1606 year: 1997 end-page: 1614 ident: bb0290 article-title: Stimulatory effects of basic fibroblast growth factor and bone morphogenetic protein-2 on osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells publication-title: J. Bone Miner. Res. – volume: 32 start-page: 5241 year: 2011 end-page: 5251 ident: bb0215 article-title: Effects of protein dose and delivery system on BMP-mediated bone regeneration publication-title: Biomaterials – volume: 31 start-page: 6279 year: 2010 end-page: 6308 ident: bb0020 article-title: Toward delivery of multiple growth factors in tissue engineering publication-title: Biomaterials – volume: 21 start-page: 489 year: 2000 end-page: 499 ident: bb0160 article-title: Accelerated tissue regeneration through incorporation of basic fibroblast growth factor-impregnated gelatin microspheres into artificial dermis publication-title: Biomaterials – volume: 23 start-page: H119 year: 2011 end-page: H124 ident: bb0075 article-title: Oppositely charged gelatin nanospheres as building blocks for injectable and biodegradable gels publication-title: Adv. Mater. – year: 2007 ident: bb0235 article-title: Gelatine Handbook: Theory and Industrial Practice – volume: 20 start-page: 8747 year: 2010 end-page: 8759 ident: bb0005 article-title: Development of bone substitute materials: from ‘biocompatible’ to ‘instructive’ publication-title: J. Mater. Chem. – volume: 44 start-page: 699 year: 2009 end-page: 707 ident: bb0270 article-title: A local bone anabolic effect of rhFGF2-impregnated gelatin hydrogel by promoting cell proliferation and coordinating osteoblastic differentiation publication-title: Bone – volume: 7 start-page: 418 year: 1996 end-page: 425 ident: bb0185 article-title: Promotion of the osteogenetic activity of recombinant human bone morphogenetic protein by basic fibroblast growth factor publication-title: J. Craniofac. Surg. – volume: 18 start-page: 24 year: 2012 end-page: 39 ident: bb0055 article-title: The use of micro- and nanospheres as functional components for bone tissue regeneration publication-title: Tissue Eng. Part B – volume: 36 start-page: 399 year: 2005 end-page: 407 ident: bb0180 article-title: Low dose fibroblast growth factor-2 (FGF-2) enhances bone morphogenetic protein-2 (BMP-2)-induced ectopic bone formation in mice publication-title: Bone – volume: 20 start-page: 475 year: 2009 end-page: 480 ident: bb0130 article-title: BMP2 signaling in bone development and repair publication-title: Cytokine Growth Factor Rev. – volume: 91 start-page: 299 year: 2003 end-page: 313 ident: bb0190 article-title: In vitro release of transforming growth factor-β1 from gelatin microparticles encapsulated in biodegradable, injectable oligo(poly(ethylene glycol) fumarate) hydrogels publication-title: J. Control. Release – volume: 31 start-page: 6494 year: 2010 end-page: 6501 ident: bb0090 article-title: Three dimensionally flocculated proangiogenic microgels for neovascularization publication-title: Biomaterials – volume: 26 start-page: 2129 year: 2005 end-page: 2135 ident: bb0085 article-title: Self-gelling hydrogels based on oppositely charged dextran microspheres publication-title: Biomaterials – volume: 31 start-page: 1817 year: 2009 end-page: 1824 ident: bb0265 article-title: Delivery of recombinant bone morphogenetic proteins for bone regeneration and repair. Part A: current challenges in BMP delivery publication-title: Biotechnol. Lett. – volume: 20 start-page: 2169 year: 1999 end-page: 2175 ident: bb0150 article-title: Vascularization effect of basic fibroblast growth factor released from gelatin hydrogels with different biodegradabilities publication-title: Biomaterials – volume: 7 start-page: 209 year: 2010 end-page: 227 ident: bb0010 article-title: Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds publication-title: J. R. Soc. Interface – volume: 109 start-page: 256 year: 2005 end-page: 274 ident: bb0255 article-title: Gelatin as a delivery vehicle for the controlled release of bioactive molecules publication-title: J. Control. Release – volume: 30 start-page: 6768 year: 2009 end-page: 6779 ident: bb0250 article-title: The effects of rhBMP-2 released from biodegradable polyurethane/microsphere composite scaffolds on new bone formation in rat femora publication-title: Biomaterials – volume: 104 start-page: 7791 year: 2007 end-page: 7796 ident: bb0200 article-title: Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 4 start-page: 3591 year: 2010 end-page: 3605 ident: bb0070 article-title: Directed self-assembly of nanoparticles publication-title: ACS Nano – volume: 33 start-page: 8695 year: 2012 end-page: 8703 ident: bb0115 article-title: Comparison of micro- vs. nanostructured colloidal gelatin gels for sustained delivery of osteogenic proteins: Bone morphogenetic protein-2 and alkaline phosphatase publication-title: Biomaterials – volume: 21 start-page: 3368 year: 2009 end-page: 3393 ident: bb0035 article-title: Injectable biomaterials for regenerating complex craniofacial tissues publication-title: Adv. Mater. – volume: 1 start-page: 306 year: 2007 end-page: 313 ident: bb0285 article-title: Enhancement of osteoblastic differentiation of mesenchymal stromal cells cultured by selective combination of bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor-2 (FGF-2) publication-title: J. Tissue Eng. Regen. Med. – volume: 22 start-page: 233 year: 2004 end-page: 241 ident: bb0125 article-title: Bone morphogenetic proteins publication-title: Growth Factors – volume: 34 start-page: 717 year: 2006 end-page: 725 ident: bb0175 article-title: Fibroblast growth factor-2 augments recombinant human bone morphogenetic protein-2-induced osteoinductive activity publication-title: Ann. Biomed. Eng. – volume: 8 start-page: 980 year: 2003 end-page: 989 ident: bb0135 article-title: Angiogenesis and bone repair publication-title: Drug Discov. Today – volume: 5 start-page: 1312 year: 2009 end-page: 1313 ident: bb0060 article-title: Modular tissue engineering: engineering biological tissues from the bottom up publication-title: Soft Matter – volume: 13 start-page: 645 year: 1998 end-page: 654 ident: bb0280 article-title: The effects of fibroblast growth factor-2 on human neonatal calvaria osteoblastic cells are differentiation stage specific publication-title: J. Bone Miner. Res. – volume: 20 start-page: 236 year: 2008 end-page: 239 ident: bb0110 article-title: Biodegradable colloidal gels as moldable tissue engineering scaffolds publication-title: Adv. Mater. – volume: 386 start-page: 243 year: 2001 end-page: 251 ident: bb0300 article-title: Combination of growth factors inhibits bone ingrowth in the bone harvest chamber publication-title: Clin. Orthop. Relat. Res. – volume: 3 start-page: 1036 year: 2011 end-page: 1050 ident: bb0065 article-title: Stimulus-responsive heteroaggregation of colloidal dispersions: reversible systems and composite materials publication-title: Polymers – volume: 105 start-page: 588 year: 1997 end-page: 592 ident: bb0165 article-title: Enhancement by bFGF of osteogenesis induced by rhBMP-2 in rats publication-title: Eur. J. Oral Sci. – volume: 278 start-page: 319 year: 2004 end-page: 327 ident: bb0195 article-title: Crosslinked gelatin matrices: release of a random coil macromolecular solute publication-title: Int. J. Pharm. – volume: 33 start-page: 283 year: 2012 end-page: 294 ident: bb0145 article-title: Effects of osteogenic growth factors on bone marrow stromal cell differentiation in a mineral-based delivery system publication-title: Biomaterials – volume: 15 start-page: 701 year: 2004 end-page: 726 ident: bb0155 article-title: Angiogenesis with biomaterial-based drug- and cell-delivery systems publication-title: J. Biomater. Sci. Polym. Ed. – volume: 59 start-page: 263 year: 2007 end-page: 273 ident: bb0240 article-title: Injectable matrices and scaffolds for drug delivery in tissue engineering publication-title: Adv. Drug Deliv. Rev. – volume: 26 start-page: 161 year: 2000 end-page: 168 ident: bb0275 article-title: Effects of recombinant human fibroblast growth factor-2 on osteogenic cell populations during orthopic osteogenesis in vivo publication-title: Bone – volume: 9 start-page: 5 year: 2003 end-page: 15 ident: bb0015 article-title: Tissue regeneration based on growth factor release publication-title: Tissue Eng. – volume: 80 start-page: 849 year: 1978 end-page: 857 ident: bb0205 article-title: Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphenylglycoluril publication-title: Biochem. Biophys. Res. Commun. – volume: 12 start-page: 77 year: 2001 end-page: 88 ident: bb0245 article-title: Controlled release of growth factors based on biodegradation of gelatin hydrogel publication-title: J. Biomater. Sci. Polym. Ed. – volume: 63 start-page: 171 year: 1988 end-page: 176 ident: bb0230 article-title: A simple method for preparing thin (10 μm) histological sections of undecalcified plastic embedded bone with implants publication-title: Biotech. Histochem. – volume: 27 start-page: 419 year: 2009 end-page: 424 ident: bb0220 article-title: Dose-dependent osteoinductive effects of bFGF in rabbits publication-title: Growth Factors – volume: 11 start-page: 471 year: 2011 end-page: 491 ident: bb0025 article-title: A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned publication-title: Spine – volume: vol. 102 start-page: 47 year: 2006 end-page: 90 ident: bb0030 article-title: Polymers as biomaterials for tissue engineering and controlled drug delivery tissue engineering publication-title: Tissue engineering I – volume: 28 start-page: 3338 year: 2007 end-page: 3348 ident: bb0120 article-title: Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering publication-title: Biomaterials – volume: 3 start-page: 297 year: 2003 end-page: 303 ident: bb0140 article-title: Developmental aspects of fracture healing and the use of pharmacological agents to alter healing publication-title: J. Musculoskelet. Nueronal Interact. – volume: 18 start-page: 1345 year: 2006 end-page: 1360 ident: bb0050 article-title: Hydrogels in biology and medicine: from molecular principles to bionanotechnology publication-title: Adv. Mater. – volume: 21 start-page: 3307 year: 2009 end-page: 3329 ident: bb0040 article-title: Hydrogels in regenerative medicine publication-title: Adv. Mater. – volume: 17 start-page: 1389 year: 2011 end-page: 1399 ident: bb0210 article-title: High doses of bone morphogenetic protein 2 induce structurally abnormal bone and inflammation in vivo publication-title: Tissue Eng. Part A – volume: 5 start-page: 1312 issue: 7 year: 2009 ident: 10.1016/j.jconrel.2012.12.015_bb0060 article-title: Modular tissue engineering: engineering biological tissues from the bottom up publication-title: Soft Matter doi: 10.1039/b814285h – volume: 17 start-page: 1389 issue: 9?10 year: 2011 ident: 10.1016/j.jconrel.2012.12.015_bb0210 article-title: High doses of bone morphogenetic protein 2 induce structurally abnormal bone and inflammation in vivo publication-title: Tissue Eng. Part A doi: 10.1089/ten.tea.2010.0555 – volume: 30 start-page: 6768 issue: 35 year: 2009 ident: 10.1016/j.jconrel.2012.12.015_bb0250 article-title: The effects of rhBMP-2 released from biodegradable polyurethane/microsphere composite scaffolds on new bone formation in rat femora publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.08.038 – volume: 32 start-page: 1067 issue: 10 year: 2007 ident: 10.1016/j.jconrel.2012.12.015_bb0295 article-title: The effects of bone morphogenetic protein and basic fibroblast growth factor on cultured mesenchymal stem cells for spine fusion publication-title: Spine doi: 10.1097/01.brs.0000261626.32999.8a – volume: vol. 102 start-page: 47 year: 2006 ident: 10.1016/j.jconrel.2012.12.015_bb0030 article-title: Polymers as biomaterials for tissue engineering and controlled drug delivery tissue engineering – volume: 11 start-page: 471 issue: 6 year: 2011 ident: 10.1016/j.jconrel.2012.12.015_bb0025 article-title: A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned publication-title: Spine doi: 10.1016/j.spinee.2011.04.023 – volume: 21 start-page: 3307 issue: 32?33 year: 2009 ident: 10.1016/j.jconrel.2012.12.015_bb0040 article-title: Hydrogels in regenerative medicine publication-title: Adv. Mater. doi: 10.1002/adma.200802106 – volume: 96A start-page: 520 issue: 3 year: 2011 ident: 10.1016/j.jconrel.2012.12.015_bb0105 article-title: PLGA-chitosan/PLGA-alginate nanoparticle blends as biodegradable colloidal gels for seeding human umbilical cord mesenchymal stem cells publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.33000 – volume: 20 start-page: 2169 issue: 22 year: 1999 ident: 10.1016/j.jconrel.2012.12.015_bb0150 article-title: Vascularization effect of basic fibroblast growth factor released from gelatin hydrogels with different biodegradabilities publication-title: Biomaterials doi: 10.1016/S0142-9612(99)00121-0 – volume: 3 start-page: 297 issue: 4 year: 2003 ident: 10.1016/j.jconrel.2012.12.015_bb0140 article-title: Developmental aspects of fracture healing and the use of pharmacological agents to alter healing publication-title: J. Musculoskelet. Nueronal Interact. – volume: 3 start-page: 1036 issue: 3 year: 2011 ident: 10.1016/j.jconrel.2012.12.015_bb0065 article-title: Stimulus-responsive heteroaggregation of colloidal dispersions: reversible systems and composite materials publication-title: Polymers doi: 10.3390/polym3031036 – volume: 36 start-page: 210 issue: 4 year: 2008 ident: 10.1016/j.jconrel.2012.12.015_bb0225 article-title: BMP-2 and bFGF in an irradiated bone model publication-title: J. Cranio-Maxillofac. Surg. doi: 10.1016/j.jcms.2007.09.001 – volume: 27 start-page: 419 issue: 6 year: 2009 ident: 10.1016/j.jconrel.2012.12.015_bb0220 article-title: Dose-dependent osteoinductive effects of bFGF in rabbits publication-title: Growth Factors doi: 10.3109/08977190903231075 – volume: 12 start-page: 77 year: 2001 ident: 10.1016/j.jconrel.2012.12.015_bb0245 article-title: Controlled release of growth factors based on biodegradation of gelatin hydrogel publication-title: J. Biomater. Sci. Polym. Ed. doi: 10.1163/156856201744461 – volume: 20 start-page: 5937 issue: 28 year: 2010 ident: 10.1016/j.jconrel.2012.12.015_bb0095 article-title: Thermogelable PNIPAM microgel dispersion as 3D cell scaffold: effect of syneresis publication-title: J. Mater. Chem. doi: 10.1039/c0jm00338g – volume: 12 start-page: 1606 issue: 10 year: 1997 ident: 10.1016/j.jconrel.2012.12.015_bb0290 article-title: Stimulatory effects of basic fibroblast growth factor and bone morphogenetic protein-2 on osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.1997.12.10.1606 – volume: 104 start-page: 7791 issue: 19 year: 2007 ident: 10.1016/j.jconrel.2012.12.015_bb0200 article-title: Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0701980104 – volume: 34 start-page: 717 issue: 5 year: 2006 ident: 10.1016/j.jconrel.2012.12.015_bb0175 article-title: Fibroblast growth factor-2 augments recombinant human bone morphogenetic protein-2-induced osteoinductive activity publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-006-9092-x – volume: 44 start-page: 699 issue: 4 year: 2009 ident: 10.1016/j.jconrel.2012.12.015_bb0270 article-title: A local bone anabolic effect of rhFGF2-impregnated gelatin hydrogel by promoting cell proliferation and coordinating osteoblastic differentiation publication-title: Bone doi: 10.1016/j.bone.2008.12.017 – volume: 7 start-page: 418 issue: 6 year: 1996 ident: 10.1016/j.jconrel.2012.12.015_bb0185 article-title: Promotion of the osteogenetic activity of recombinant human bone morphogenetic protein by basic fibroblast growth factor publication-title: J. Craniofac. Surg. doi: 10.1097/00001665-199611000-00006 – volume: 32 start-page: 5241 issue: 22 year: 2011 ident: 10.1016/j.jconrel.2012.12.015_bb0215 article-title: Effects of protein dose and delivery system on BMP-mediated bone regeneration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.03.063 – volume: 9 start-page: 979 issue: 4 year: 2012 ident: 10.1016/j.jconrel.2012.12.015_bb0100 article-title: Vaccine-like controlled-release delivery of an immunomodulating peptide to treat experimental autoimmune encephalomyelitis publication-title: Mol. Pharm. doi: 10.1021/mp200614q – volume: 109 start-page: 256 issue: 1?3 year: 2005 ident: 10.1016/j.jconrel.2012.12.015_bb0255 article-title: Gelatin as a delivery vehicle for the controlled release of bioactive molecules publication-title: J. Control. Release doi: 10.1016/j.jconrel.2005.09.023 – volume: 36 start-page: 399 issue: 3 year: 2005 ident: 10.1016/j.jconrel.2012.12.015_bb0180 article-title: Low dose fibroblast growth factor-2 (FGF-2) enhances bone morphogenetic protein-2 (BMP-2)-induced ectopic bone formation in mice publication-title: Bone doi: 10.1016/j.bone.2004.11.010 – volume: 31 start-page: 6279 issue: 24 year: 2010 ident: 10.1016/j.jconrel.2012.12.015_bb0020 article-title: Toward delivery of multiple growth factors in tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.04.053 – volume: 20 start-page: 236 issue: 2 year: 2008 ident: 10.1016/j.jconrel.2012.12.015_bb0110 article-title: Biodegradable colloidal gels as moldable tissue engineering scaffolds publication-title: Adv. Mater. doi: 10.1002/adma.200702099 – volume: 21 start-page: 489 issue: 5 year: 2000 ident: 10.1016/j.jconrel.2012.12.015_bb0160 article-title: Accelerated tissue regeneration through incorporation of basic fibroblast growth factor-impregnated gelatin microspheres into artificial dermis publication-title: Biomaterials doi: 10.1016/S0142-9612(99)00207-0 – volume: 37 start-page: 1473 issue: 8 year: 2008 ident: 10.1016/j.jconrel.2012.12.015_bb0045 article-title: Injectable hydrogels as unique biomedical materials publication-title: Chem. Soc. Rev. doi: 10.1039/b713009k – volume: 26 start-page: 2129 issue: 14 year: 2005 ident: 10.1016/j.jconrel.2012.12.015_bb0085 article-title: Self-gelling hydrogels based on oppositely charged dextran microspheres publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.05.035 – volume: 22 start-page: 233 issue: 4 year: 2004 ident: 10.1016/j.jconrel.2012.12.015_bb0125 article-title: Bone morphogenetic proteins publication-title: Growth Factors doi: 10.1080/08977190412331279890 – year: 2007 ident: 10.1016/j.jconrel.2012.12.015_bb0235 – volume: 20 start-page: 475 issue: 5?6 year: 2009 ident: 10.1016/j.jconrel.2012.12.015_bb0130 article-title: BMP2 signaling in bone development and repair publication-title: Cytokine Growth Factor Rev. doi: 10.1016/j.cytogfr.2009.10.018 – volume: 31 start-page: 4980 issue: 18 year: 2010 ident: 10.1016/j.jconrel.2012.12.015_bb0080 article-title: Injectable PLGA based colloidal gels for zero-order dexamethasone release in cranial defects publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.02.052 – volume: 20 start-page: 8747 issue: 40 year: 2010 ident: 10.1016/j.jconrel.2012.12.015_bb0005 article-title: Development of bone substitute materials: from ?biocompatible? to ?instructive? publication-title: J. Mater. Chem. doi: 10.1039/c0jm00795a – volume: 47 start-page: 577 issue: 8 year: 2002 ident: 10.1016/j.jconrel.2012.12.015_bb0170 article-title: The effect of fibroblast growth factor-2 on the osteoinductive activity of recombinant human bone morphogenetic protein-2 in rat muscle publication-title: Arch. Oral Biol. doi: 10.1016/S0003-9969(02)00046-8 – volume: 59 start-page: 263 issue: 4?5 year: 2007 ident: 10.1016/j.jconrel.2012.12.015_bb0240 article-title: Injectable matrices and scaffolds for drug delivery in tissue engineering publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2007.03.013 – volume: 23 start-page: H119 issue: 12 year: 2011 ident: 10.1016/j.jconrel.2012.12.015_bb0075 article-title: Oppositely charged gelatin nanospheres as building blocks for injectable and biodegradable gels publication-title: Adv. Mater. doi: 10.1002/adma.201003908 – volume: 15 start-page: 701 issue: 6 year: 2004 ident: 10.1016/j.jconrel.2012.12.015_bb0155 article-title: Angiogenesis with biomaterial-based drug- and cell-delivery systems publication-title: J. Biomater. Sci. Polym. Ed. doi: 10.1163/156856204774196117 – volume: 7 start-page: 209 issue: 43 year: 2010 ident: 10.1016/j.jconrel.2012.12.015_bb0010 article-title: Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2009.0379 – volume: 386 start-page: 243 year: 2001 ident: 10.1016/j.jconrel.2012.12.015_bb0300 article-title: Combination of growth factors inhibits bone ingrowth in the bone harvest chamber publication-title: Clin. Orthop. Relat. Res. doi: 10.1097/00003086-200105000-00032 – volume: 9 start-page: 5 issue: Supplement 1 year: 2003 ident: 10.1016/j.jconrel.2012.12.015_bb0015 article-title: Tissue regeneration based on growth factor release publication-title: Tissue Eng. doi: 10.1089/10763270360696941 – volume: 31 start-page: 6494 issue: 25 year: 2010 ident: 10.1016/j.jconrel.2012.12.015_bb0090 article-title: Three dimensionally flocculated proangiogenic microgels for neovascularization publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.05.016 – volume: 18 start-page: 1345 issue: 11 year: 2006 ident: 10.1016/j.jconrel.2012.12.015_bb0050 article-title: Hydrogels in biology and medicine: from molecular principles to bionanotechnology publication-title: Adv. Mater. doi: 10.1002/adma.200501612 – volume: 4 start-page: 3591 issue: 7 year: 2010 ident: 10.1016/j.jconrel.2012.12.015_bb0070 article-title: Directed self-assembly of nanoparticles publication-title: ACS Nano doi: 10.1021/nn100869j – volume: 33 start-page: 8695 issue: 33 year: 2012 ident: 10.1016/j.jconrel.2012.12.015_bb0115 article-title: Comparison of micro- vs. nanostructured colloidal gelatin gels for sustained delivery of osteogenic proteins: Bone morphogenetic protein-2 and alkaline phosphatase publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.08.024 – volume: 80 start-page: 849 issue: 4 year: 1978 ident: 10.1016/j.jconrel.2012.12.015_bb0205 article-title: Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphenylglycoluril publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/0006-291X(78)91322-0 – volume: 21 start-page: 3368 issue: 32?33 year: 2009 ident: 10.1016/j.jconrel.2012.12.015_bb0035 article-title: Injectable biomaterials for regenerating complex craniofacial tissues publication-title: Adv. Mater. doi: 10.1002/adma.200802009 – volume: 278 start-page: 319 issue: 2 year: 2004 ident: 10.1016/j.jconrel.2012.12.015_bb0195 article-title: Crosslinked gelatin matrices: release of a random coil macromolecular solute publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2004.03.024 – volume: 13 start-page: 645 issue: 4 year: 1998 ident: 10.1016/j.jconrel.2012.12.015_bb0280 article-title: The effects of fibroblast growth factor-2 on human neonatal calvaria osteoblastic cells are differentiation stage specific publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.1998.13.4.645 – volume: 63 start-page: 171 issue: 3 year: 1988 ident: 10.1016/j.jconrel.2012.12.015_bb0230 article-title: A simple method for preparing thin (10 ?m) histological sections of undecalcified plastic embedded bone with implants publication-title: Biotech. Histochem. doi: 10.3109/10520298809107179 – volume: 18 start-page: 24 issue: 1 year: 2012 ident: 10.1016/j.jconrel.2012.12.015_bb0055 article-title: The use of micro- and nanospheres as functional components for bone tissue regeneration publication-title: Tissue Eng. Part B doi: 10.1089/ten.teb.2011.0184 – volume: 31 start-page: 1817 issue: 12 year: 2009 ident: 10.1016/j.jconrel.2012.12.015_bb0265 article-title: Delivery of recombinant bone morphogenetic proteins for bone regeneration and repair. Part A: current challenges in BMP delivery publication-title: Biotechnol. Lett. doi: 10.1007/s10529-009-0099-x – volume: 1 start-page: 306 issue: 4 year: 2007 ident: 10.1016/j.jconrel.2012.12.015_bb0285 article-title: Enhancement of osteoblastic differentiation of mesenchymal stromal cells cultured by selective combination of bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor-2 (FGF-2) publication-title: J. Tissue Eng. Regen. Med. doi: 10.1002/term.41 – volume: 105 start-page: 588 issue: 6 year: 1997 ident: 10.1016/j.jconrel.2012.12.015_bb0165 article-title: Enhancement by bFGF of osteogenesis induced by rhBMP-2 in rats publication-title: Eur. J. Oral Sci. doi: 10.1111/j.1600-0722.1997.tb00222.x – volume: 26 start-page: 161 issue: 2 year: 2000 ident: 10.1016/j.jconrel.2012.12.015_bb0275 article-title: Effects of recombinant human fibroblast growth factor-2 on osteogenic cell populations during orthopic osteogenesis in vivo publication-title: Bone doi: 10.1016/S8756-3282(99)00252-5 – volume: 28 start-page: 3338 issue: 22 year: 2007 ident: 10.1016/j.jconrel.2012.12.015_bb0120 article-title: Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.04.014 – volume: 91 start-page: 299 issue: 3 year: 2003 ident: 10.1016/j.jconrel.2012.12.015_bb0190 article-title: In vitro release of transforming growth factor-?1 from gelatin microparticles encapsulated in biodegradable, injectable oligo(poly(ethylene glycol) fumarate) hydrogels publication-title: J. Control. Release doi: 10.1016/S0168-3659(03)00258-X – volume: 58 start-page: 1379 issue: 12?13 year: 2006 ident: 10.1016/j.jconrel.2012.12.015_bb0260 article-title: Hydrogels in controlled release formulations: network design and mathematical modeling publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2006.09.004 – volume: 8 start-page: 980 issue: 21 year: 2003 ident: 10.1016/j.jconrel.2012.12.015_bb0135 article-title: Angiogenesis and bone repair publication-title: Drug Discov. Today doi: 10.1016/S1359-6446(03)02866-6 – volume: 33 start-page: 283 issue: 1 year: 2012 ident: 10.1016/j.jconrel.2012.12.015_bb0145 article-title: Effects of osteogenic growth factors on bone marrow stromal cell differentiation in a mineral-based delivery system publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.09.052 |
SSID | ssj0005347 |
Score | 2.485421 |
Snippet | During the process of bone regeneration, a multitude of morphogenetic signaling factors regulate cellular behavior and ultimately tissue response. These... |
SourceID | proquest pubmed crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 172 |
SubjectTerms | adverse effects Animals biocompatibility biocompatible materials biodegradability biomimetics biopharmaceuticals bone formation Bone Morphogenetic Protein 2 - administration & dosage Bone Morphogenetic Protein 2 - pharmacokinetics Bone Morphogenetic Protein 2 - pharmacology Bone Regeneration - drug effects Colloidal gels Colloids Cross-Linking Reagents crosslinking Drug Carriers Drug Stability Dual growth factor Femur - drug effects Femur - growth & development fibroblast growth factor 2 Fibroblast Growth Factor 2 - administration & dosage Fibroblast Growth Factor 2 - pharmacokinetics Fibroblast Growth Factor 2 - pharmacology Gelatin Gels in vivo studies Iodine Radioisotopes - chemistry Isotope Labeling Light Male monitoring Nanospheres Osteogenesis Particle Size radiolabeling Rats Rats, Sprague-Dawley Rheology Scattering, Radiation Sequential release tissue repair X-Ray Microtomography |
Title | Combined delivery of BMP-2 and bFGF from nanostructured colloidal gelatin gels and its effect on bone regeneration in vivo |
URI | https://dx.doi.org/10.1016/j.jconrel.2012.12.015 https://www.ncbi.nlm.nih.gov/pubmed/23266450 https://www.proquest.com/docview/1288996104 https://www.proquest.com/docview/1500773022 https://www.proquest.com/docview/1686712028 |
Volume | 166 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELcYe-Fl2tgGZRsy0sQTaVPHdexHhtaVTaBKUIk3y0nsKhVyUAtI5YG_fXdOQkHaQEKKFCm6U2Lf-fw75z4I-Z7IVJrUFZEDEUTcxTIyGDTuYKvKnDKD2OI55MmpGE3474vBxRo5anNhMKyysf21TQ_WunnSa2azd1WWvTMAKzIRA9VnoUw7ZpRznqKWd-8fhXkkvE6ZFjJC6lUWT2_WnYHPObf4B6LPwqkgdsf99_70xpnq_yg07EbD9-RdAyPpYf2lH8ia9Ztkf1zXoV4e0PNVWtXigO7T8apC9fIjuQMrAB6xLWhhLzEwY0krR3-cjCNGjS9oNvw1pJh4Qr3xVV1i9mYO5Kg1VVnAm6chiM7jfRF4yusFrYNDaOVpVnlL53Yailqj7CnQ3pa31ScyGf48PxpFTROGKMdeBxHjYABjgCkAHKUBMGH6aRqblCVK2BzRo-MCcAdPuWGxE4VRLle5NAU4dv3cJZ_Juod3bhMKWCiz1imF2bjALbM4K1SWWiXA6bG2Q3g79TpvKpRjo4xL3YaizXQjMY0S03CBxDqk-8B2VZfoeIlBtnLVT3RNwzbyEus26IE2U7DAenLG8LwoxgnhrEP2WuXQsETxv4vxtrpZAKsErxZwKn-GZoCFlRJYJs_QCCxGyAARdshWrX0PAwZgLATIaOf1Y_tCNljo9YHBil_JOiiX_QaI6zrbDUtql7w9PP4zOv0Lc6Aojg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB615QAXxLvhURYJeqoTZ71Zrw8cKBBS2lSRmki9bdf2buSosqukLQoH_hR_kBk_GpCglZAqRYoU7cT2zuzMN-uZbwHeBipUJnSp51AFnnC-8gwVjTsMVbGLTM-3tA85PJSDifh63Dteg59NLwyVVda-v_Lppbeuf-nUs9k5y7LOEYIVFche1OUlTXtYV1bu2-U3zNsW7_c-oZLfcd7_PP448OqjBbyEGPw9LnBZ-xh8EQ4pgyHSdMPQNyEPImkTwkROSIymIhSG-06mJnJJlCiTYrrSTVyA_7sOdwS6Czo2of3jt7qSQFQ92lJ5dHurtqHOrD3DJHdu6ZVHl5fbkHQc798D4rozxb9hbxn--g_gfo1b2Ydqah7Cms0fwfaoIr5e7rDxqo9rscO22WhFib18DN_R7WAKblOW2lOqBFmywrHd4cjjzOQpi_tf-ow6XVhu8qLitL2Y43Ay0yJL8crTsmovp-9FKZOdL1hVjcKKnMVFbtncTksWbTI2hmMvs8viCUxuRTVPYSPHa24CQ_AVW-uiiNp_UVrFfpxGcWgjiVmWtS0QzdTrpKZEp5M5TnVT-zbTtcY0aUzjBzXWgvaV2FnFCXKTgGr0qv8wbo1x6ybRTbQDbabo8vXkiNMGlU8TIngL3jTGodEn0Isek9viYoGiCtNoBMbimjE9YnIKcF1eM0YS-yFHCNqCZ5X1XT0wInEpUUfP___ZXsPdwXh4oA_2DvdfwD1eHjRClZIvYQMNzb5CuHceb5XLi8HJba_nXzufYoY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combined+delivery+of+BMP-2+and+bFGF+from+nanostructured+colloidal+gelatin+gels+and+its+effect+on+bone+regeneration+in+vivo&rft.jtitle=Journal+of+controlled+release&rft.au=Wang%2C+Huanan&rft.au=Zou%2C+Qin&rft.au=Boerman%2C+Otto+C&rft.au=Nijhuis%2C+Arnold+W.G&rft.date=2013-03-10&rft.pub=Elsevier+B.V&rft.issn=0168-3659&rft.eissn=1873-4995&rft.volume=166&rft.issue=2&rft.spage=172&rft.epage=181&rft_id=info:doi/10.1016%2Fj.jconrel.2012.12.015&rft.externalDocID=US201500177042 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-3659&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-3659&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-3659&client=summon |