Bi-allelic Mutations in TTC21A Induce Asthenoteratospermia in Humans and Mice
Male infertility is a major concern affecting human reproductive health. Asthenoteratospermia can cause male infertility through reduced motility and abnormal morphology of spermatozoa. Several genes, including DNAH1 and some CFAP family members, are involved in multiple morphological abnormalities...
Saved in:
Published in | American journal of human genetics Vol. 104; no. 4; pp. 738 - 748 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
04.04.2019
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Male infertility is a major concern affecting human reproductive health. Asthenoteratospermia can cause male infertility through reduced motility and abnormal morphology of spermatozoa. Several genes, including DNAH1 and some CFAP family members, are involved in multiple morphological abnormalities of the sperm flagella (MMAF). However, these known genes only account for approximately 60% of human MMAF cases. Here, we conducted further genetic analyses by using whole-exome sequencing in a cohort of 65 Han Chinese men with MMAF. Intriguingly, bi-allelic mutations of TTC21A (tetratricopeptide repeat domain 21A) were identified in three (5%) unrelated, MMAF-affected men, including two with homozygous stop-gain mutations and one with compound heterozygous mutations of TTC21A. Notably, these men consistently presented with MMAF and additional abnormalities of sperm head-tail conjunction. Furthermore, a homozygous TTC21A splicing mutation was identified in two Tunisian cases from an independent MMAF cohort. TTC21A is preferentially expressed in the testis and encodes an intraflagellar transport (IFT)-associated protein that possesses several tetratricopeptide repeat domains that perform functions crucial for ciliary function. To further investigate the potential roles of TTC21A in spermatogenesis, we generated Ttc21a mutant mice by using CRISPR-Cas9 technology and revealed sperm structural defects of the flagella and the connecting piece. Our consistent observations across human populations and in the mouse model strongly support the notion that bi-allelic mutations in TTC21A can induce asthenoteratospermia with defects of the sperm flagella and head-tail conjunction. |
---|---|
AbstractList | Male infertility is a major concern affecting human reproductive health. Asthenoteratospermia can cause male infertility through reduced motility and abnormal morphology of spermatozoa. Several genes, including DNAH1 and some CFAP family members, are involved in multiple morphological abnormalities of the sperm flagella (MMAF). However, these known genes only account for approximately 60% of human MMAF cases. Here, we conducted further genetic analyses by using whole-exome sequencing in a cohort of 65 Han Chinese men with MMAF. Intriguingly, bi-allelic mutations of TTC21A (tetratricopeptide repeat domain 21A) were identified in three (5%) unrelated, MMAF-affected men, including two with homozygous stop-gain mutations and one with compound heterozygous mutations of TTC21A. Notably, these men consistently presented with MMAF and additional abnormalities of sperm head-tail conjunction. Furthermore, a homozygous TTC21A splicing mutation was identified in two Tunisian cases from an independent MMAF cohort. TTC21A is preferentially expressed in the testis and encodes an intraflagellar transport (IFT)-associated protein that possesses several tetratricopeptide repeat domains that perform functions crucial for ciliary function. To further investigate the potential roles of TTC21A in spermatogenesis, we generated Ttc21a mutant mice by using CRISPR-Cas9 technology and revealed sperm structural defects of the flagella and the connecting piece. Our consistent observations across human populations and in the mouse model strongly support the notion that bi-allelic mutations in TTC21A can induce asthenoteratospermia with defects of the sperm flagella and head-tail conjunction. Male infertility is a major concern affecting human reproductive health. Asthenoteratospermia can cause male infertility through reduced motility and abnormal morphology of spermatozoa. Several genes, including DNAH1 and some CFAP family members, are involved in multiple morphological abnormalities of the sperm flagella (MMAF). However, these known genes only account for approximately 60% of human MMAF cases. Here, we conducted further genetic analyses by using whole-exome sequencing in a cohort of 65 Han Chinese men with MMAF. Intriguingly, bi-allelic mutations of TTC21A (tetratricopeptide repeat domain 21A) were identified in three (5%) unrelated, MMAF-affected men, including two with homozygous stop-gain mutations and one with compound heterozygous mutations of TTC21A . Notably, these men consistently presented with MMAF and additional abnormalities of sperm head-tail conjunction. Furthermore, a homozygous TTC21A splicing mutation was identified in two Tunisian cases from an independent MMAF cohort. TTC21A is preferentially expressed in the testis and encodes an intraflagellar transport (IFT)-associated protein that possesses several tetratricopeptide repeat domains that perform functions crucial for ciliary function. To further investigate the potential roles of TTC21A in spermatogenesis, we generated Ttc21a mutant mice by using CRISPR-Cas9 technology and revealed sperm structural defects of the flagella and the connecting piece. Our consistent observations across human populations and in the mouse model strongly support the notion that bi-allelic mutations in TTC21A can induce asthenoteratospermia with defects of the sperm flagella and head-tail conjunction. Male infertility is a major concern affecting human reproductive health. Asthenoteratospermia can cause male infertility through reduced motility and abnormal morphology of spermatozoa. Several genes, including DNAH1 and some CFAP family members, are involved in multiple morphological abnormalities of the sperm flagella (MMAF). However, these known genes only account for approximately 60% of human MMAF cases. Here, we conducted further genetic analyses by using whole-exome sequencing in a cohort of 65 Han Chinese men with MMAF. Intriguingly, bi-allelic mutations of TTC21A (tetratricopeptide repeat domain 21A) were identified in three (5%) unrelated, MMAF-affected men, including two with homozygous stop-gain mutations and one with compound heterozygous mutations of TTC21A. Notably, these men consistently presented with MMAF and additional abnormalities of sperm head-tail conjunction. Furthermore, a homozygous TTC21A splicing mutation was identified in two Tunisian cases from an independent MMAF cohort. TTC21A is preferentially expressed in the testis and encodes an intraflagellar transport (IFT)-associated protein that possesses several tetratricopeptide repeat domains that perform functions crucial for ciliary function. To further investigate the potential roles of TTC21A in spermatogenesis, we generated Ttc21a mutant mice by using CRISPR-Cas9 technology and revealed sperm structural defects of the flagella and the connecting piece. Our consistent observations across human populations and in the mouse model strongly support the notion that bi-allelic mutations in TTC21A can induce asthenoteratospermia with defects of the sperm flagella and head-tail conjunction.Male infertility is a major concern affecting human reproductive health. Asthenoteratospermia can cause male infertility through reduced motility and abnormal morphology of spermatozoa. Several genes, including DNAH1 and some CFAP family members, are involved in multiple morphological abnormalities of the sperm flagella (MMAF). However, these known genes only account for approximately 60% of human MMAF cases. Here, we conducted further genetic analyses by using whole-exome sequencing in a cohort of 65 Han Chinese men with MMAF. Intriguingly, bi-allelic mutations of TTC21A (tetratricopeptide repeat domain 21A) were identified in three (5%) unrelated, MMAF-affected men, including two with homozygous stop-gain mutations and one with compound heterozygous mutations of TTC21A. Notably, these men consistently presented with MMAF and additional abnormalities of sperm head-tail conjunction. Furthermore, a homozygous TTC21A splicing mutation was identified in two Tunisian cases from an independent MMAF cohort. TTC21A is preferentially expressed in the testis and encodes an intraflagellar transport (IFT)-associated protein that possesses several tetratricopeptide repeat domains that perform functions crucial for ciliary function. To further investigate the potential roles of TTC21A in spermatogenesis, we generated Ttc21a mutant mice by using CRISPR-Cas9 technology and revealed sperm structural defects of the flagella and the connecting piece. Our consistent observations across human populations and in the mouse model strongly support the notion that bi-allelic mutations in TTC21A can induce asthenoteratospermia with defects of the sperm flagella and head-tail conjunction. |
Author | Arnoult, Christophe Ray, Pierre F. Tang, Dongdong Yang, Shenmin Zouari, Raoudha Zhao, Shimin Zhang, Jingjing Liu, Wangjie Kherraf, Zine-Eddine Tang, Shuyan Coutton, Charles Lv, Mingrong Cao, Yunxia Jin, Li Zhao, Rui Zhang, Feng Zhao, Jianyuan Liu, Chunyu He, Xiaojin Wang, Jiaxiong Fang, Youyan Wang, Xue Zhang, Zhiguo Li, Hong Wu, Huan Li, Weiyu |
AuthorAffiliation | 8 Suzhou Municipal Hospital, Suzhou 215002, China 7 State Key Laboratory of Reproductive Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China 10 Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de la Recherche Scientifique UMR 5309, Université Grenoble Alpes, Grenoble 38000, France 6 Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei 230022, China 12 Centre Hospitalier Universitaire de Grenoble, UM de Génétique Chromosomique, Grenoble 38000, France 5 Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei 230022, China 3 State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211116, China 13 Department of Gynecology and Obstetrics, the Second Affiliated Hospital of |
AuthorAffiliation_xml | – name: 3 State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211116, China – name: 7 State Key Laboratory of Reproductive Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China – name: 5 Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei 230022, China – name: 12 Centre Hospitalier Universitaire de Grenoble, UM de Génétique Chromosomique, Grenoble 38000, France – name: 9 Polyclinique les Jasmins, Centre d’Aide Médicale à la Procréation, Centre Urbain Nord, 1003 Tunis, Tunisia – name: 6 Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei 230022, China – name: 10 Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de la Recherche Scientifique UMR 5309, Université Grenoble Alpes, Grenoble 38000, France – name: 4 Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China – name: 8 Suzhou Municipal Hospital, Suzhou 215002, China – name: 13 Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China – name: 11 Centre Hospitalier Universitaire de Grenoble, UM GI-DPI, Grenoble 38000, France – name: 1 Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China – name: 2 Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China |
Author_xml | – sequence: 1 givenname: Wangjie surname: Liu fullname: Liu, Wangjie organization: Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China – sequence: 2 givenname: Xiaojin surname: He fullname: He, Xiaojin organization: Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China – sequence: 3 givenname: Shenmin surname: Yang fullname: Yang, Shenmin organization: State Key Laboratory of Reproductive Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China – sequence: 4 givenname: Raoudha surname: Zouari fullname: Zouari, Raoudha organization: Polyclinique les Jasmins, Centre d’Aide Médicale à la Procréation, Centre Urbain Nord, 1003 Tunis, Tunisia – sequence: 5 givenname: Jiaxiong surname: Wang fullname: Wang, Jiaxiong organization: State Key Laboratory of Reproductive Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China – sequence: 6 givenname: Huan surname: Wu fullname: Wu, Huan organization: Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China – sequence: 7 givenname: Zine-Eddine surname: Kherraf fullname: Kherraf, Zine-Eddine organization: Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de la Recherche Scientifique UMR 5309, Université Grenoble Alpes, Grenoble 38000, France – sequence: 8 givenname: Chunyu surname: Liu fullname: Liu, Chunyu organization: Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China – sequence: 9 givenname: Charles surname: Coutton fullname: Coutton, Charles organization: Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de la Recherche Scientifique UMR 5309, Université Grenoble Alpes, Grenoble 38000, France – sequence: 10 givenname: Rui surname: Zhao fullname: Zhao, Rui organization: Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China – sequence: 11 givenname: Dongdong surname: Tang fullname: Tang, Dongdong organization: Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China – sequence: 12 givenname: Shuyan surname: Tang fullname: Tang, Shuyan organization: Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China – sequence: 13 givenname: Mingrong surname: Lv fullname: Lv, Mingrong organization: Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China – sequence: 14 givenname: Youyan surname: Fang fullname: Fang, Youyan organization: Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China – sequence: 15 givenname: Weiyu surname: Li fullname: Li, Weiyu organization: Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China – sequence: 16 givenname: Hong surname: Li fullname: Li, Hong organization: State Key Laboratory of Reproductive Medicine, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China – sequence: 17 givenname: Jianyuan surname: Zhao fullname: Zhao, Jianyuan organization: Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China – sequence: 18 givenname: Xue surname: Wang fullname: Wang, Xue organization: Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China – sequence: 19 givenname: Shimin surname: Zhao fullname: Zhao, Shimin organization: Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China – sequence: 20 givenname: Jingjing surname: Zhang fullname: Zhang, Jingjing organization: Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China – sequence: 21 givenname: Christophe surname: Arnoult fullname: Arnoult, Christophe organization: Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de la Recherche Scientifique UMR 5309, Université Grenoble Alpes, Grenoble 38000, France – sequence: 22 givenname: Li surname: Jin fullname: Jin, Li organization: Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China – sequence: 23 givenname: Zhiguo surname: Zhang fullname: Zhang, Zhiguo organization: Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China – sequence: 24 givenname: Pierre F. surname: Ray fullname: Ray, Pierre F. organization: Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de la Recherche Scientifique UMR 5309, Université Grenoble Alpes, Grenoble 38000, France – sequence: 25 givenname: Yunxia surname: Cao fullname: Cao, Yunxia email: caoyunxia6@126.com organization: Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China – sequence: 26 givenname: Feng orcidid: 0000-0003-4556-8276 surname: Zhang fullname: Zhang, Feng email: zhangfeng@fudan.edu.cn organization: Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai 200011, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30929735$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9rGzEQxUVJSJw0X6CHssde1tUf78oLpeCatgnE9OKexXg0G8vsSq60G-i3rxanoc0hMGhA-r034s0VO_PBE2PvBJ8LLuqPhzkc9g9zyUUz5zIXf8NmolK6rGtenbEZ51yWjWz0JbtK6cC5EEuuLtil4tOtqmZs88WV0HXUOSw24wCDCz4Vzhfb7VqKVXHn7YhUrNKwJx8GijCEdKTYO5io27GHzIO3xcYhvWXnLXSJbp76Nfv57et2fVve__h-t17dl1hJMZSiRaVRqcbuBCxliw1vgKyQii9abYUgWEBuiDtoAKEFQJ0P20qplZXqmn0--R7HXU8WyQ8ROnOMrof42wRw5v8X7_bmITyaelEJLZts8OHJIIZfI6XB9C4hdR14CmMyMoeqha6Xi4y-_3fW85C_GWZAngCMIaVI7TMiuJkWZQ5mWpSZFmW4zMWzaPlChO6Ufv6v616XfjpJKSf86CiahI48knWRcDA2uNfkfwC986-b |
CitedBy_id | crossref_primary_10_1016_j_beem_2020_101472 crossref_primary_10_1007_s10815_020_01770_1 crossref_primary_10_1016_j_rbmo_2021_07_005 crossref_primary_10_1016_j_ajhg_2021_06_010 crossref_primary_10_1007_s00439_021_02270_7 crossref_primary_10_1055_s_0040_1718941 crossref_primary_10_1093_hmg_ddad013 crossref_primary_10_3390_genes13061000 crossref_primary_10_1007_s00018_022_04134_3 crossref_primary_10_1136_jmedgenet_2019_106344 crossref_primary_10_1111_and_13575 crossref_primary_10_1002_jat_4290 crossref_primary_10_1080_10495398_2024_2428402 crossref_primary_10_1136_jmedgenet_2019_106825 crossref_primary_10_1371_journal_pcbi_1010730 crossref_primary_10_1016_j_ajhg_2019_10_010 crossref_primary_10_1016_j_rbmo_2021_01_011 crossref_primary_10_7554_eLife_92769_2 crossref_primary_10_1038_s41421_021_00327_5 crossref_primary_10_1016_j_ajhg_2020_06_004 crossref_primary_10_1007_s00018_019_03389_7 crossref_primary_10_1096_fj_201902611R crossref_primary_10_1007_s00018_023_05025_x crossref_primary_10_1111_cge_14197 crossref_primary_10_1080_19396368_2024_2317804 crossref_primary_10_4103_aja202471 crossref_primary_10_7554_eLife_86845_3 crossref_primary_10_3389_fendo_2023_1118841 crossref_primary_10_3389_fgene_2022_967378 crossref_primary_10_1136_jmedgenet_2021_107919 crossref_primary_10_1093_hmg_ddab165 crossref_primary_10_1360_SSV_2023_0160 crossref_primary_10_1007_s00439_020_02113_x crossref_primary_10_3389_fgene_2022_1034951 crossref_primary_10_1002_mgg3_920 crossref_primary_10_3390_cells10030666 crossref_primary_10_1093_abbs_gmab013 crossref_primary_10_3390_ijms23158525 crossref_primary_10_3390_genes15050600 crossref_primary_10_3390_ijms24032559 crossref_primary_10_1111_andr_13828 crossref_primary_10_1093_humupd_dmaa034 crossref_primary_10_1155_2019_7249679 crossref_primary_10_3389_fgene_2021_783790 crossref_primary_10_7554_eLife_87698_3 crossref_primary_10_1007_s10815_022_02516_x crossref_primary_10_1007_s11427_024_2757_7 crossref_primary_10_3389_fcell_2021_700290 crossref_primary_10_1136_jmedgenet_2019_106775 crossref_primary_10_1016_j_ajhg_2020_07_010 crossref_primary_10_1093_hmg_ddab171 crossref_primary_10_1016_j_jgg_2024_12_010 crossref_primary_10_1093_biolre_ioac134 crossref_primary_10_7554_eLife_76157 crossref_primary_10_1007_s00439_021_02313_z crossref_primary_10_1016_j_ebiom_2023_104675 crossref_primary_10_1093_humrep_dez166 crossref_primary_10_1155_2023_9222954 crossref_primary_10_3389_fphys_2022_961773 crossref_primary_10_1016_j_diff_2022_08_001 crossref_primary_10_1111_cge_13604 crossref_primary_10_1007_s00018_023_04800_0 crossref_primary_10_1016_j_rbmo_2021_07_021 crossref_primary_10_1016_j_smallrumres_2021_106456 crossref_primary_10_1007_s00018_021_03806_w crossref_primary_10_1111_cge_13644 crossref_primary_10_3389_fcell_2021_676910 crossref_primary_10_1016_j_inffus_2021_04_012 crossref_primary_10_4103_aja202496 crossref_primary_10_1038_s41431_022_01095_w crossref_primary_10_1093_humrep_deab200 crossref_primary_10_1016_j_scib_2020_01_023 crossref_primary_10_1242_dev_200516 crossref_primary_10_1017_S0967199420000556 crossref_primary_10_7554_eLife_92769 crossref_primary_10_4103_aja202328 crossref_primary_10_1093_biolre_ioac109 crossref_primary_10_7554_eLife_86845 crossref_primary_10_1016_j_ajhg_2021_01_002 crossref_primary_10_1016_j_ajhg_2019_10_007 crossref_primary_10_1136_jmedgenet_2019_106031 crossref_primary_10_1186_s12967_024_05162_2 crossref_primary_10_1111_ahg_12369 crossref_primary_10_1242_dev_199805 crossref_primary_10_3390_cells12162091 crossref_primary_10_1007_s10815_024_03087_9 crossref_primary_10_1007_s10815_024_03274_8 crossref_primary_10_1136_jmedgenet_2019_106479 crossref_primary_10_7554_eLife_87698 crossref_primary_10_1007_s10815_020_01945_w crossref_primary_10_3389_fcell_2019_00188 crossref_primary_10_1007_s12041_021_01264_8 crossref_primary_10_1007_s43152_020_00011_y crossref_primary_10_3389_fendo_2020_581838 crossref_primary_10_1093_humrep_deab099 crossref_primary_10_1186_s12920_024_02005_3 |
Cites_doi | 10.1038/nrm3085 10.1016/S0960-9822(01)00484-5 10.1091/mbc.e16-05-0318 10.1083/jcb.151.3.709 10.1242/jcs.117069 10.1073/pnas.94.9.4457 10.1016/S0070-2153(08)00802-8 10.1016/j.ajhg.2018.03.007 10.1002/rmb2.12067 10.1093/humupd/dmv020 10.1038/nprot.2013.143 10.1146/annurev.genom.7.080505.115610 10.1073/pnas.1221011110 10.1111/and.13151 10.1016/j.ajhg.2013.11.017 10.1016/j.ajhg.2018.12.013 10.1136/jmedgenet-2018-105486 10.1038/s41467-017-02792-7 10.1038/ng.756 10.1016/j.ajhg.2018.07.013 10.1093/biolre/iox029 10.1073/pnas.1424648112 10.1038/s41467-018-08182-x 10.1016/j.ajhg.2018.07.014 10.1038/ng.105 10.1093/hmg/ddy034 10.1016/j.ydbio.2017.09.023 10.1038/s10038-018-0520-1 10.1002/cm.21427 10.1093/humupd/dmv016 10.1016/j.ajhg.2017.04.012 10.1093/humrep/dey264 10.1038/nrm2278 10.1093/humrep/dei126 10.4103/1008-682X.146100 |
ContentType | Journal Article |
Copyright | 2019 American Society of Human Genetics Copyright © 2019 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved. 2019 American Society of Human Genetics. 2019 American Society of Human Genetics |
Copyright_xml | – notice: 2019 American Society of Human Genetics – notice: Copyright © 2019 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved. – notice: 2019 American Society of Human Genetics. 2019 American Society of Human Genetics |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.ajhg.2019.02.020 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1537-6605 |
EndPage | 748 |
ExternalDocumentID | PMC6451729 30929735 10_1016_j_ajhg_2019_02_020 S0002929719300655 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- --K --Z -~X 0R~ 123 1~5 23M 2WC 4.4 457 4G. 53G 5GY 62- 6I. 6J9 7-5 85S AACTN AAEDT AAEDW AAFTH AAIAV AAKRW AALRI AAUCE AAVLU AAWTL AAXUO ABJNI ABMAC ABMWF ABOCM ABVKL ACGFO ACGFS ACGOD ACNCT ACPRK ADBBV ADEZE ADJPV AENEX AEXQZ AFRAH AFTJW AGKMS AHMBA AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS ASPBG AVWKF AZFZN BAWUL CS3 D0L DIK E3Z EBS ECV EJD F5P FCP FDB FEDTE GX1 HVGLF HYE IH2 IHE IXB JIG KQ8 L7B M41 NCXOZ O-L O9- OK1 P2P PQQKQ RCE RIG RNS ROL RPM RPZ SES SJN SSZ TN5 TR2 TWZ UHB UKR UNMZH UPT VQA WH7 WQ6 ZA5 ZCA .55 .GJ 34R 3O- 41~ AAFWJ AAIKJ AAMRU AAQXK AAYWO AAYXX ABDGV ABWVN ACKIV ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AEUPX AFPUW AGCDD AGCQF AGHFR AGQPQ AI. AIGII AKAPO AKBMS AKRWK AKYEP APXCP C1A CITATION FA8 FGOYB HZ~ MVM NEJ OHT OZT R2- VH1 WOQ X7M XOL ZCG ZGI ZXP 0SF CGR CUY CVF ECM EIF NPM Z5M 7X8 5PM EFKBS |
ID | FETCH-LOGICAL-c521t-1fc37c339db1a82fc909aed12304f7d11ea4ad11ccba9acafaac7faadf2273d23 |
IEDL.DBID | IXB |
ISSN | 0002-9297 1537-6605 |
IngestDate | Thu Aug 21 17:48:04 EDT 2025 Fri Jul 11 02:02:42 EDT 2025 Wed Feb 19 02:31:01 EST 2025 Thu Apr 24 22:58:40 EDT 2025 Tue Jul 01 03:39:18 EDT 2025 Fri Feb 23 02:29:33 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | flagella CRISPR MMAF exome TTC21A sperm male infertility sequencing |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2019 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-1fc37c339db1a82fc909aed12304f7d11ea4ad11ccba9acafaac7faadf2273d23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work |
ORCID | 0000-0003-4556-8276 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0002929719300655 |
PMID | 30929735 |
PQID | 2201717684 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6451729 proquest_miscellaneous_2201717684 pubmed_primary_30929735 crossref_primary_10_1016_j_ajhg_2019_02_020 crossref_citationtrail_10_1016_j_ajhg_2019_02_020 elsevier_sciencedirect_doi_10_1016_j_ajhg_2019_02_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-04 |
PublicationDateYYYYMMDD | 2019-04-04 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | American journal of human genetics |
PublicationTitleAlternate | Am J Hum Genet |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Piperno, Mead (bib5) 1997; 94 Fliegauf, Benzing, Omran (bib37) 2007; 8 Inhorn, Patrizio (bib1) 2015; 21 van Dam, Townsend, Turk, Schlessinger, Sali, Field, Huynen (bib28) 2013; 110 Coutton, Vargas, Amiri-Yekta, Kherraf, Ben Mustapha, Le Tanno, Wambergue-Legrand, Karaouzène, Martinez, Crouzy (bib15) 2018; 9 Buisson, Chenouard, Lagache, Blisnick, Olivo-Marin, Bastin (bib4) 2013; 126 He, Li, Wu, Lv, Liu, Liu, Zhu, Li, Fang, Yang (bib19) 2019; 56 Auguste, Delague, Desvignes, Longepied, Gnisci, Besnier, Levy, Beroud, Megarbane, Metzler-Guillemain, Mitchell (bib21) 2018; 103 Zhang, Liu, Li, Zhang, Zhang, Teves, Stevens, Foster, Campbell, Windle (bib8) 2018; 75 Yuan, Stratton, Bao, Zheng, Bhetwal, Yanagimachi, Yan (bib33) 2015; 112 Li, He, Yang, Liu, Wu, Liu, Lv, Tang, Tan, Tang (bib22) 2019; 64 Zhang, Li, Zhang, Zhang, Teves, Liu, Strauss, Pazour, Foster, Hess, Zhang (bib9) 2016; 27 Abbasi, Miyata, Ikawa (bib31) 2017; 17 Dong, Amiri-Yekta, Martinez, Saut, Tek, Stouvenel, Lorès, Karaouzène, Thierry-Mieg, Satre (bib18) 2018; 102 Yang, Li, Wang, Shi, Cheng, Wang, Li, Hou, Wen (bib29) 2015; 17 Coutton, Escoffier, Martinez, Arnoult, Ray (bib2) 2015; 21 Lorès, Coutton, El Khouri, Stouvenel, Givelet, Thomas, Rode, Schmitt, Louis, Sakheli (bib17) 2018; 27 Pazour, Dickert, Vucica, Seeley, Rosenbaum, Witman, Cole (bib27) 2000; 151 Ran, Hsu, Wright, Agarwala, Scott, Zhang (bib30) 2013; 8 Shen, Zhang, Li, Jiang, Yang, Li, Li, Wang, Cheng, Liu (bib26) 2019; 10 Baccetti, Collodel, Estenoz, Manca, Moretti, Piomboni (bib12) 2005; 20 Ishikawa, Marshall (bib6) 2011; 12 Sha, Wang, Su, Mei, Ji, Bao, Li (bib16) 2019; 51 Davis, Zhang, Liu, Diplas, Davey, Hartley, Stoetzel, Szymanska, Ramaswami, Logan (bib35) 2011; 43 Chemes (bib32) 2012 Kherraf, Amiri-Yekta, Dacheux, Karaouzène, Coutton, Christou-Kent, Martinez, Landrein, Le Tanno, Fourati Ben Mustapha (bib20) 2018; 103 Martinez, Kherraf, Zouari, Fourati Ben Mustapha, Saut, Pernet-Gallay, Bertrand, Bidart, Hograindleur, Amiri-Yekta (bib23) 2018; 33 Zhang, Liu, Li, Zhang, Shang, Zhang, Li, Zhang, Liu, Hess (bib11) 2017; 432 Badano, Mitsuma, Beales, Katsanis (bib36) 2006; 7 Deane, Cole, Seeley, Diener, Rosenbaum (bib7) 2001; 11 Coutton, Martinez, Kherraf, Amiri-Yekta, Boguenet, Saut, He, Zhang, Cristou-Kent, Escoffier (bib25) 2019; 104 Pedersen, Rosenbaum (bib3) 2008; 85 Tang, Wang, Li, Yang, Li, Liu, Li, Zhu, Wang, Wang (bib14) 2017; 100 Liu, Wu, Wang, Yang, Liu, He, Li, Wang, Chen, Wang (bib24) 2018; 46 Liu, Li, Zhang, Zhang, Shang, Zhang, Zhang, Li, Somoza, Delpi (bib10) 2017; 96 Ben Khelifa, Coutton, Zouari, Karaouzène, Rendu, Bidart, Yassine, Pierre, Delaroche, Hennebicq (bib13) 2014; 94 Tran, Haycraft, Besschetnova, Turbe-Doan, Stottmann, Herron, Chesebro, Qiu, Scherz, Shah (bib34) 2008; 40 Ben Khelifa (10.1016/j.ajhg.2019.02.020_bib13) 2014; 94 Coutton (10.1016/j.ajhg.2019.02.020_bib25) 2019; 104 Inhorn (10.1016/j.ajhg.2019.02.020_bib1) 2015; 21 van Dam (10.1016/j.ajhg.2019.02.020_bib28) 2013; 110 Ishikawa (10.1016/j.ajhg.2019.02.020_bib6) 2011; 12 Fliegauf (10.1016/j.ajhg.2019.02.020_bib37) 2007; 8 Shen (10.1016/j.ajhg.2019.02.020_bib26) 2019; 10 Tran (10.1016/j.ajhg.2019.02.020_bib34) 2008; 40 Sha (10.1016/j.ajhg.2019.02.020_bib16) 2019; 51 Dong (10.1016/j.ajhg.2019.02.020_bib18) 2018; 102 He (10.1016/j.ajhg.2019.02.020_bib19) 2019; 56 Zhang (10.1016/j.ajhg.2019.02.020_bib9) 2016; 27 Coutton (10.1016/j.ajhg.2019.02.020_bib2) 2015; 21 Chemes (10.1016/j.ajhg.2019.02.020_bib32) 2012 Pazour (10.1016/j.ajhg.2019.02.020_bib27) 2000; 151 Buisson (10.1016/j.ajhg.2019.02.020_bib4) 2013; 126 Kherraf (10.1016/j.ajhg.2019.02.020_bib20) 2018; 103 Yang (10.1016/j.ajhg.2019.02.020_bib29) 2015; 17 Liu (10.1016/j.ajhg.2019.02.020_bib24) 2018; 46 Badano (10.1016/j.ajhg.2019.02.020_bib36) 2006; 7 Baccetti (10.1016/j.ajhg.2019.02.020_bib12) 2005; 20 Martinez (10.1016/j.ajhg.2019.02.020_bib23) 2018; 33 Lorès (10.1016/j.ajhg.2019.02.020_bib17) 2018; 27 Ran (10.1016/j.ajhg.2019.02.020_bib30) 2013; 8 Pedersen (10.1016/j.ajhg.2019.02.020_bib3) 2008; 85 Liu (10.1016/j.ajhg.2019.02.020_bib10) 2017; 96 Coutton (10.1016/j.ajhg.2019.02.020_bib15) 2018; 9 Zhang (10.1016/j.ajhg.2019.02.020_bib8) 2018; 75 Abbasi (10.1016/j.ajhg.2019.02.020_bib31) 2017; 17 Piperno (10.1016/j.ajhg.2019.02.020_bib5) 1997; 94 Davis (10.1016/j.ajhg.2019.02.020_bib35) 2011; 43 Zhang (10.1016/j.ajhg.2019.02.020_bib11) 2017; 432 Auguste (10.1016/j.ajhg.2019.02.020_bib21) 2018; 103 Li (10.1016/j.ajhg.2019.02.020_bib22) 2019; 64 Deane (10.1016/j.ajhg.2019.02.020_bib7) 2001; 11 Tang (10.1016/j.ajhg.2019.02.020_bib14) 2017; 100 Yuan (10.1016/j.ajhg.2019.02.020_bib33) 2015; 112 |
References_xml | – volume: 40 start-page: 403 year: 2008 end-page: 410 ident: bib34 article-title: THM1 negatively modulates mouse sonic hedgehog signal transduction and affects retrograde intraflagellar transport in cilia publication-title: Nat. Genet. – volume: 64 start-page: 49 year: 2019 end-page: 54 ident: bib22 article-title: Biallelic mutations of CFAP251 cause sperm flagellar defects and human male infertility publication-title: J. Hum. Genet. – start-page: 33 year: 2012 end-page: 48 ident: bib32 article-title: Sperm Centrioles and Their Dual Role in Flagellogenesis and Cell Cycle of the Zygote publication-title: The Centrosome: Cell and Molecular Mechanisms of Functions and Dysfunctions in Disease – volume: 9 start-page: 686 year: 2018 ident: bib15 article-title: Mutations in CFAP43 and CFAP44 cause male infertility and flagellum defects in Trypanosoma and human publication-title: Nat. Commun. – volume: 102 start-page: 636 year: 2018 end-page: 648 ident: bib18 article-title: Absence of CFAP69 causes male infertility due to multiple morphological abnormalities of the flagella in human and mouse publication-title: Am. J. Hum. Genet. – volume: 104 start-page: 331 year: 2019 end-page: 340 ident: bib25 article-title: Bi-allelic mutations in ARMC2 lead to severe astheno-teratozoospermia due to sperm flagellum malformations in humans and mice publication-title: Am. J. Hum. Genet. – volume: 112 start-page: E430 year: 2015 end-page: E439 ident: bib33 article-title: Spata6 is required for normal assembly of the sperm connecting piece and tight head-tail conjunction publication-title: Proc. Natl. Acad. Sci. USA – volume: 110 start-page: 6943 year: 2013 end-page: 6948 ident: bib28 article-title: Evolution of modular intraflagellar transport from a coatomer-like progenitor publication-title: Proc. Natl. Acad. Sci. USA – volume: 51 start-page: e13151 year: 2019 ident: bib16 article-title: Patients with multiple morphological abnormalities of the sperm flagella harbouring CFAP44 or CFAP43 mutations have a good pregnancy outcome following intracytoplasmic sperm injection publication-title: Andrologia – volume: 11 start-page: 1586 year: 2001 end-page: 1590 ident: bib7 article-title: Localization of intraflagellar transport protein IFT52 identifies basal body transitional fibers as the docking site for IFT particles publication-title: Curr. Biol. – volume: 96 start-page: 993 year: 2017 end-page: 1006 ident: bib10 article-title: IFT25, an intraflagellar transporter protein dispensable for ciliogenesis in somatic cells, is essential for sperm flagella formation publication-title: Biol. Reprod. – volume: 100 start-page: 854 year: 2017 end-page: 864 ident: bib14 article-title: Biallelic mutations in CFAP43 and CFAP44 cause male infertility with multiple morphological abnormalities of the sperm flagella publication-title: Am. J. Hum. Genet. – volume: 46 year: 2018 ident: bib24 article-title: Homozygous loss-of-function mutations in FSIP2 cause male infertility with asthenoteratospermia publication-title: J. Genet. Genomics – volume: 94 start-page: 4457 year: 1997 end-page: 4462 ident: bib5 article-title: Transport of a novel complex in the cytoplasmic matrix of Chlamydomonas flagella publication-title: Proc. Natl. Acad. Sci. USA – volume: 432 start-page: 125 year: 2017 end-page: 139 ident: bib11 article-title: Intraflagellar transporter protein (IFT27), an IFT25 binding partner, is essential for male fertility and spermiogenesis in mice publication-title: Dev. Biol. – volume: 20 start-page: 2790 year: 2005 end-page: 2794 ident: bib12 article-title: Gene deletions in an infertile man with sperm fibrous sheath dysplasia publication-title: Hum. Reprod. – volume: 27 start-page: 1196 year: 2018 end-page: 1211 ident: bib17 article-title: Homozygous missense mutation L673P in adenylate kinase 7 (AK7) leads to primary male infertility and multiple morphological anomalies of the flagella but not to primary ciliary dyskinesia publication-title: Hum. Mol. Genet. – volume: 8 start-page: 2281 year: 2013 end-page: 2308 ident: bib30 article-title: Genome engineering using the CRISPR-Cas9 system publication-title: Nat. Protoc. – volume: 21 start-page: 455 year: 2015 end-page: 485 ident: bib2 article-title: Teratozoospermia: Spotlight on the main genetic actors in the human publication-title: Hum. Reprod. Update – volume: 27 start-page: 3705 year: 2016 end-page: 3716 ident: bib9 article-title: Intraflagellar transport protein IFT20 is essential for male fertility and spermiogenesis in mice publication-title: Mol. Biol. Cell – volume: 21 start-page: 411 year: 2015 end-page: 426 ident: bib1 article-title: Infertility around the globe: New thinking on gender, reproductive technologies and global movements in the 21st century publication-title: Hum. Reprod. Update – volume: 126 start-page: 327 year: 2013 end-page: 338 ident: bib4 article-title: Intraflagellar transport proteins cycle between the flagellum and its base publication-title: J. Cell Sci. – volume: 17 start-page: 3 year: 2017 end-page: 10 ident: bib31 article-title: Revolutionizing male fertility factor research in mice by using the genome editing tool CRISPR/Cas9 publication-title: Reprod. Med. Biol. – volume: 17 start-page: 513 year: 2015 end-page: 515 ident: bib29 article-title: Morphological characteristics and initial genetic study of multiple morphological anomalies of the flagella in China publication-title: Asian J. Androl. – volume: 103 start-page: 413 year: 2018 end-page: 420 ident: bib21 article-title: Loss of calmodulin- and radial-spoke-associated complex protein CFAP251 leads to immotile spermatozoa lacking mitochondria and infertility in men publication-title: Am. J. Hum. Genet. – volume: 43 start-page: 189 year: 2011 end-page: 196 ident: bib35 article-title: TTC21B contributes both causal and modifying alleles across the ciliopathy spectrum publication-title: Nat. Genet. – volume: 94 start-page: 95 year: 2014 end-page: 104 ident: bib13 article-title: Mutations in DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the sperm flagella publication-title: Am. J. Hum. Genet. – volume: 151 start-page: 709 year: 2000 end-page: 718 ident: bib27 article-title: Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella publication-title: J. Cell Biol. – volume: 85 start-page: 23 year: 2008 end-page: 61 ident: bib3 article-title: Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling publication-title: Curr. Top. Dev. Biol. – volume: 75 start-page: 70 year: 2018 end-page: 84 ident: bib8 article-title: Intraflagellar transporter protein 140 (IFT140), a component of IFT-A complex, is essential for male fertility and spermiogenesis in mice publication-title: Cytoskeleton (Hoboken) – volume: 12 start-page: 222 year: 2011 end-page: 234 ident: bib6 article-title: Ciliogenesis: Building the cell’s antenna publication-title: Nat. Rev. Mol. Cell Biol. – volume: 56 start-page: 96 year: 2019 end-page: 103 ident: bib19 article-title: Novel homozygous publication-title: J. Med. Genet. – volume: 103 start-page: 400 year: 2018 end-page: 412 ident: bib20 article-title: A homozygous ancestral SVA-insertion-mediated deletion in WDR66 induces multiple morphological abnormalities of the sperm flagellum and male infertility publication-title: Am. J. Hum. Genet. – volume: 8 start-page: 880 year: 2007 end-page: 893 ident: bib37 article-title: When cilia go bad: Cilia defects and ciliopathies publication-title: Nat. Rev. Mol. Cell Biol. – volume: 33 start-page: 1973 year: 2018 end-page: 1984 ident: bib23 article-title: Whole-exome sequencing identifies mutations in FSIP2 as a recurrent cause of multiple morphological abnormalities of the sperm flagella publication-title: Hum. Reprod. – volume: 7 start-page: 125 year: 2006 end-page: 148 ident: bib36 article-title: The ciliopathies: An emerging class of human genetic disorders publication-title: Annu. Rev. Genomics Hum. Genet. – volume: 10 start-page: 433 year: 2019 ident: bib26 article-title: Loss-of-function mutations in QRICH2 cause male infertility with multiple morphological abnormalities of the sperm flagella publication-title: Nat. Commun. – volume: 12 start-page: 222 year: 2011 ident: 10.1016/j.ajhg.2019.02.020_bib6 article-title: Ciliogenesis: Building the cell’s antenna publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3085 – volume: 11 start-page: 1586 year: 2001 ident: 10.1016/j.ajhg.2019.02.020_bib7 article-title: Localization of intraflagellar transport protein IFT52 identifies basal body transitional fibers as the docking site for IFT particles publication-title: Curr. Biol. doi: 10.1016/S0960-9822(01)00484-5 – volume: 27 start-page: 3705 year: 2016 ident: 10.1016/j.ajhg.2019.02.020_bib9 article-title: Intraflagellar transport protein IFT20 is essential for male fertility and spermiogenesis in mice publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e16-05-0318 – volume: 151 start-page: 709 year: 2000 ident: 10.1016/j.ajhg.2019.02.020_bib27 article-title: Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella publication-title: J. Cell Biol. doi: 10.1083/jcb.151.3.709 – volume: 126 start-page: 327 year: 2013 ident: 10.1016/j.ajhg.2019.02.020_bib4 article-title: Intraflagellar transport proteins cycle between the flagellum and its base publication-title: J. Cell Sci. doi: 10.1242/jcs.117069 – volume: 94 start-page: 4457 year: 1997 ident: 10.1016/j.ajhg.2019.02.020_bib5 article-title: Transport of a novel complex in the cytoplasmic matrix of Chlamydomonas flagella publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.94.9.4457 – volume: 85 start-page: 23 year: 2008 ident: 10.1016/j.ajhg.2019.02.020_bib3 article-title: Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling publication-title: Curr. Top. Dev. Biol. doi: 10.1016/S0070-2153(08)00802-8 – volume: 102 start-page: 636 year: 2018 ident: 10.1016/j.ajhg.2019.02.020_bib18 article-title: Absence of CFAP69 causes male infertility due to multiple morphological abnormalities of the flagella in human and mouse publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2018.03.007 – volume: 17 start-page: 3 year: 2017 ident: 10.1016/j.ajhg.2019.02.020_bib31 article-title: Revolutionizing male fertility factor research in mice by using the genome editing tool CRISPR/Cas9 publication-title: Reprod. Med. Biol. doi: 10.1002/rmb2.12067 – volume: 21 start-page: 455 year: 2015 ident: 10.1016/j.ajhg.2019.02.020_bib2 article-title: Teratozoospermia: Spotlight on the main genetic actors in the human publication-title: Hum. Reprod. Update doi: 10.1093/humupd/dmv020 – volume: 8 start-page: 2281 year: 2013 ident: 10.1016/j.ajhg.2019.02.020_bib30 article-title: Genome engineering using the CRISPR-Cas9 system publication-title: Nat. Protoc. doi: 10.1038/nprot.2013.143 – volume: 7 start-page: 125 year: 2006 ident: 10.1016/j.ajhg.2019.02.020_bib36 article-title: The ciliopathies: An emerging class of human genetic disorders publication-title: Annu. Rev. Genomics Hum. Genet. doi: 10.1146/annurev.genom.7.080505.115610 – volume: 110 start-page: 6943 year: 2013 ident: 10.1016/j.ajhg.2019.02.020_bib28 article-title: Evolution of modular intraflagellar transport from a coatomer-like progenitor publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1221011110 – volume: 51 start-page: e13151 year: 2019 ident: 10.1016/j.ajhg.2019.02.020_bib16 article-title: Patients with multiple morphological abnormalities of the sperm flagella harbouring CFAP44 or CFAP43 mutations have a good pregnancy outcome following intracytoplasmic sperm injection publication-title: Andrologia doi: 10.1111/and.13151 – volume: 94 start-page: 95 year: 2014 ident: 10.1016/j.ajhg.2019.02.020_bib13 article-title: Mutations in DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the sperm flagella publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2013.11.017 – volume: 104 start-page: 331 year: 2019 ident: 10.1016/j.ajhg.2019.02.020_bib25 article-title: Bi-allelic mutations in ARMC2 lead to severe astheno-teratozoospermia due to sperm flagellum malformations in humans and mice publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2018.12.013 – volume: 56 start-page: 96 year: 2019 ident: 10.1016/j.ajhg.2019.02.020_bib19 article-title: Novel homozygous CFAP69 mutations in humans and mice cause severe asthenoteratospermia with multiple morphological abnormalities of the sperm flagella publication-title: J. Med. Genet. doi: 10.1136/jmedgenet-2018-105486 – volume: 9 start-page: 686 year: 2018 ident: 10.1016/j.ajhg.2019.02.020_bib15 article-title: Mutations in CFAP43 and CFAP44 cause male infertility and flagellum defects in Trypanosoma and human publication-title: Nat. Commun. doi: 10.1038/s41467-017-02792-7 – volume: 43 start-page: 189 year: 2011 ident: 10.1016/j.ajhg.2019.02.020_bib35 article-title: TTC21B contributes both causal and modifying alleles across the ciliopathy spectrum publication-title: Nat. Genet. doi: 10.1038/ng.756 – volume: 103 start-page: 413 year: 2018 ident: 10.1016/j.ajhg.2019.02.020_bib21 article-title: Loss of calmodulin- and radial-spoke-associated complex protein CFAP251 leads to immotile spermatozoa lacking mitochondria and infertility in men publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2018.07.013 – volume: 96 start-page: 993 year: 2017 ident: 10.1016/j.ajhg.2019.02.020_bib10 article-title: IFT25, an intraflagellar transporter protein dispensable for ciliogenesis in somatic cells, is essential for sperm flagella formation publication-title: Biol. Reprod. doi: 10.1093/biolre/iox029 – volume: 112 start-page: E430 year: 2015 ident: 10.1016/j.ajhg.2019.02.020_bib33 article-title: Spata6 is required for normal assembly of the sperm connecting piece and tight head-tail conjunction publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1424648112 – volume: 10 start-page: 433 year: 2019 ident: 10.1016/j.ajhg.2019.02.020_bib26 article-title: Loss-of-function mutations in QRICH2 cause male infertility with multiple morphological abnormalities of the sperm flagella publication-title: Nat. Commun. doi: 10.1038/s41467-018-08182-x – volume: 103 start-page: 400 year: 2018 ident: 10.1016/j.ajhg.2019.02.020_bib20 article-title: A homozygous ancestral SVA-insertion-mediated deletion in WDR66 induces multiple morphological abnormalities of the sperm flagellum and male infertility publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2018.07.014 – volume: 46 year: 2018 ident: 10.1016/j.ajhg.2019.02.020_bib24 article-title: Homozygous loss-of-function mutations in FSIP2 cause male infertility with asthenoteratospermia publication-title: J. Genet. Genomics – volume: 40 start-page: 403 year: 2008 ident: 10.1016/j.ajhg.2019.02.020_bib34 article-title: THM1 negatively modulates mouse sonic hedgehog signal transduction and affects retrograde intraflagellar transport in cilia publication-title: Nat. Genet. doi: 10.1038/ng.105 – volume: 27 start-page: 1196 year: 2018 ident: 10.1016/j.ajhg.2019.02.020_bib17 article-title: Homozygous missense mutation L673P in adenylate kinase 7 (AK7) leads to primary male infertility and multiple morphological anomalies of the flagella but not to primary ciliary dyskinesia publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddy034 – volume: 432 start-page: 125 year: 2017 ident: 10.1016/j.ajhg.2019.02.020_bib11 article-title: Intraflagellar transporter protein (IFT27), an IFT25 binding partner, is essential for male fertility and spermiogenesis in mice publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2017.09.023 – volume: 64 start-page: 49 year: 2019 ident: 10.1016/j.ajhg.2019.02.020_bib22 article-title: Biallelic mutations of CFAP251 cause sperm flagellar defects and human male infertility publication-title: J. Hum. Genet. doi: 10.1038/s10038-018-0520-1 – volume: 75 start-page: 70 year: 2018 ident: 10.1016/j.ajhg.2019.02.020_bib8 article-title: Intraflagellar transporter protein 140 (IFT140), a component of IFT-A complex, is essential for male fertility and spermiogenesis in mice publication-title: Cytoskeleton (Hoboken) doi: 10.1002/cm.21427 – start-page: 33 year: 2012 ident: 10.1016/j.ajhg.2019.02.020_bib32 article-title: Sperm Centrioles and Their Dual Role in Flagellogenesis and Cell Cycle of the Zygote – volume: 21 start-page: 411 year: 2015 ident: 10.1016/j.ajhg.2019.02.020_bib1 article-title: Infertility around the globe: New thinking on gender, reproductive technologies and global movements in the 21st century publication-title: Hum. Reprod. Update doi: 10.1093/humupd/dmv016 – volume: 100 start-page: 854 year: 2017 ident: 10.1016/j.ajhg.2019.02.020_bib14 article-title: Biallelic mutations in CFAP43 and CFAP44 cause male infertility with multiple morphological abnormalities of the sperm flagella publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2017.04.012 – volume: 33 start-page: 1973 year: 2018 ident: 10.1016/j.ajhg.2019.02.020_bib23 article-title: Whole-exome sequencing identifies mutations in FSIP2 as a recurrent cause of multiple morphological abnormalities of the sperm flagella publication-title: Hum. Reprod. doi: 10.1093/humrep/dey264 – volume: 8 start-page: 880 year: 2007 ident: 10.1016/j.ajhg.2019.02.020_bib37 article-title: When cilia go bad: Cilia defects and ciliopathies publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2278 – volume: 20 start-page: 2790 year: 2005 ident: 10.1016/j.ajhg.2019.02.020_bib12 article-title: Gene deletions in an infertile man with sperm fibrous sheath dysplasia publication-title: Hum. Reprod. doi: 10.1093/humrep/dei126 – volume: 17 start-page: 513 year: 2015 ident: 10.1016/j.ajhg.2019.02.020_bib29 article-title: Morphological characteristics and initial genetic study of multiple morphological anomalies of the flagella in China publication-title: Asian J. Androl. doi: 10.4103/1008-682X.146100 |
SSID | ssj0011803 |
Score | 2.5725846 |
Snippet | Male infertility is a major concern affecting human reproductive health. Asthenoteratospermia can cause male infertility through reduced motility and abnormal... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 738 |
SubjectTerms | Alleles Alternative Splicing Animals China CRISPR CRISPR-Cas Systems Exome flagella Flagella - pathology Homozygote Humans Infertility, Male - genetics Male male infertility Mice Microtubule-Associated Proteins - genetics MMAF Mutation Phenotype sequencing sperm Sperm Motility Spermatozoa - abnormalities TTC21A Whole Exome Sequencing |
Title | Bi-allelic Mutations in TTC21A Induce Asthenoteratospermia in Humans and Mice |
URI | https://dx.doi.org/10.1016/j.ajhg.2019.02.020 https://www.ncbi.nlm.nih.gov/pubmed/30929735 https://www.proquest.com/docview/2201717684 https://pubmed.ncbi.nlm.nih.gov/PMC6451729 |
Volume | 104 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB7SQCCX0nedtmELuRWRfSnyHh3TNBTckwO-LaN9NAqpHOL4kH_fnZVk6ibkEBASklawzKxmPnZmvgE4kt5x7zUWCYqrQtdKF3WNsXAaTYWRY8y9Dme_Ts4v9M9FudiB6VALQ2mVve3vbHq21v2T416axzdNQzW-XCbnXiUIQo6UCs2VHucivsXpJpIgxlwNEJhG94UzXY4XXl3-pvQuk3k7qef3487pIfj8P4fyH6d09gpe9miSTboJv4ad0L6Bva6_5P1bmJ02BfVKuW4cm627oPuKNS2bz6dSTBj17XCBTVZEgbDM_MqZOfxPgzQqb_CvGLaezZI9eQcXZ9_n0_Oi759QOGpTUIjoVOWUMr4WOJbRGW4weEH7wLHyQgTUmC7O1WjQYUR0VTr5KBOo8VK9h9122YaPwBTiCfpQehVrLQOvTcVNZcpxcBTHlCMQg-Cs68nFqcfFtR2yyK4sCduSsC2X6eAj-Lb55qaj1nhydDnow24tEJts_5PffR2UZ9OfQ-EQbMNyvbJSElcQBSJH8KFT5mYeitNaUeUIqi01bwYQK_f2m7a5zOzcSRwJFJqDZ873E-zTXU4O0p9h9-52Hb4k3HNXH8KLHwtxmJf3X6y_AvI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SlNJeSt_dtklV6K2YyJIdrY6bJWHTxjltYG9irEfjkHpDN3vov69GtpduW3IIGBusEYgZafShGX0D8Fk4y50rMItQXGZFLYusrjFktkCtMHAMqdZhdX44uyi-LsrFDkyHuzCUVtn7_s6nJ2_d_znotXlw0zR0x5eLuLmrCEFoIy0fwMOIBhStztPF0SaUkI-5HDAwifc3Z7okL7y6_E75XToRd1LR7__vTv-iz7-TKP_YlU6ewdMeTrJJN-LnsOPbF_CoKzD56yVUR01GxVKuG8uqdRd1X7GmZfP5VOQTRoU7rGeTFXEgLBPBcqIO_9EgSaUT_hXD1rEqOpRXcHFyPJ_Osr6AQmapTkGWByuVlVK7OsexCFZzjd7ldBAclMtzjwXGj7U1arQYEK2KLxdERDVOyNew2y5b_xaYRDxE50snQ10Iz2utuFa6HHtLgUwxgnxQnLE9uzgVubg2QxrZlSFlG1K24SI-fARfNn1uOm6NO6XLwR5ma4aY6Pzv7PdpMJ6JS4fiIdj65XplhCCyIIpEjuBNZ8zNOCSnuSLLEagtM28EiJZ7u6VtLhM9d1RHRIX63T3H-xEez-bVmTk7Pf_2Hp5QS8oUKj7A7u3Ptd-LIOi23k-T_DeZlgUh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bi-allelic+Mutations+in+TTC21A+Induce+Asthenoteratospermia+in+Humans+and+Mice&rft.jtitle=American+journal+of+human+genetics&rft.au=Liu%2C+Wangjie&rft.au=He%2C+Xiaojin&rft.au=Yang%2C+Shenmin&rft.au=Zouari%2C+Raoudha&rft.date=2019-04-04&rft.issn=1537-6605&rft.eissn=1537-6605&rft.volume=104&rft.issue=4&rft.spage=738&rft_id=info:doi/10.1016%2Fj.ajhg.2019.02.020&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9297&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9297&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9297&client=summon |