Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Decline in Mice
NAD+ availability decreases with age and in certain disease conditions. Nicotinamide mononucleotide (NMN), a key NAD+ intermediate, has been shown to enhance NAD+ biosynthesis and ameliorate various pathologies in mouse disease models. In this study, we conducted a 12-month-long NMN administration t...
Saved in:
Published in | Cell metabolism Vol. 24; no. 6; pp. 795 - 806 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
13.12.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | NAD+ availability decreases with age and in certain disease conditions. Nicotinamide mononucleotide (NMN), a key NAD+ intermediate, has been shown to enhance NAD+ biosynthesis and ameliorate various pathologies in mouse disease models. In this study, we conducted a 12-month-long NMN administration to regular chow-fed wild-type C57BL/6N mice during their normal aging. Orally administered NMN was quickly utilized to synthesize NAD+ in tissues. Remarkably, NMN effectively mitigates age-associated physiological decline in mice. Without any obvious toxicity or deleterious effects, NMN suppressed age-associated body weight gain, enhanced energy metabolism, promoted physical activity, improved insulin sensitivity and plasma lipid profile, and ameliorated eye function and other pathophysiologies. Consistent with these phenotypes, NMN prevented age-associated gene expression changes in key metabolic organs and enhanced mitochondrial oxidative metabolism and mitonuclear protein imbalance in skeletal muscle. These effects of NMN highlight the preventive and therapeutic potential of NAD+ intermediates as effective anti-aging interventions in humans.
[Display omitted]
•NMN suppresses age-associated body weight gain and enhances energy metabolism•NMN improves insulin sensitivity, eye function, and other features with no toxicity•NMN prevents age-associated gene expression changes in a tissue-specific manner•NMN is an effective anti-aging intervention that could be translated to humans
Mills et al. conducted a 12-month-long administration of nicotinamide mononucleotide (NMN), a key natural NAD+ intermediate, to normal wild-type mice, demonstrating that NMN effectively mitigates age-associated physiological decline in mice without any obvious toxicity. These results highlight the significant potential of NMN as an effective anti-aging intervention in humans. |
---|---|
AbstractList | NAD+ availability decreases with age and in certain disease conditions. Nicotinamide mononucleotide (NMN), a key NAD+ intermediate, has been shown to enhance NAD+ biosynthesis and ameliorate various pathologies in mouse disease models. In this study, we conducted a 12-month-long NMN administration to regular chow-fed wild-type C57BL/6N mice during their normal aging. Orally administered NMN was quickly utilized to synthesize NAD+ in tissues. Remarkably, NMN effectively mitigates age-associated physiological decline in mice. Without any obvious toxicity or deleterious effects, NMN suppressed age-associated body weight gain, enhanced energy metabolism, promoted physical activity, improved insulin sensitivity and plasma lipid profile, and ameliorated eye function and other pathophysiologies. Consistent with these phenotypes, NMN prevented age-associated gene expression changes in key metabolic organs and enhanced mitochondrial oxidative metabolism and mitonuclear protein imbalance in skeletal muscle. These effects of NMN highlight the preventive and therapeutic potential of NAD+ intermediates as effective anti-aging interventions in humans.
[Display omitted]
•NMN suppresses age-associated body weight gain and enhances energy metabolism•NMN improves insulin sensitivity, eye function, and other features with no toxicity•NMN prevents age-associated gene expression changes in a tissue-specific manner•NMN is an effective anti-aging intervention that could be translated to humans
Mills et al. conducted a 12-month-long administration of nicotinamide mononucleotide (NMN), a key natural NAD+ intermediate, to normal wild-type mice, demonstrating that NMN effectively mitigates age-associated physiological decline in mice without any obvious toxicity. These results highlight the significant potential of NMN as an effective anti-aging intervention in humans. NAD+ availability decreases with age and in certain disease conditions. Nicotinamide mononucleotide (NMN), a key NAD+ intermediate, has been shown to enhance NAD+ biosynthesis and ameliorate various pathologies in mouse disease models. In this study, we conducted a 12-month-long NMN administration to regular chow-fed wild-type C57BL/6N mice during their normal aging. Orally administered NMN was quickly utilized to synthesize NAD+ in tissues. Remarkably, NMN effectively mitigates age-associated physiological decline in mice. Without any obvious toxicity or deleterious effects, NMN suppressed age-associated body weight gain, enhanced energy metabolism, promoted physical activity, improved insulin sensitivity and plasma lipid profile, and ameliorated eye function and other pathophysiologies. Consistent with these phenotypes, NMN prevented age-associated gene expression changes in key metabolic organs and enhanced mitochondrial oxidative metabolism and mitonuclear protein imbalance in skeletal muscle. These effects of NMN highlight the preventive and therapeutic potential of NAD+ intermediates as effective anti-aging interventions in humans.NAD+ availability decreases with age and in certain disease conditions. Nicotinamide mononucleotide (NMN), a key NAD+ intermediate, has been shown to enhance NAD+ biosynthesis and ameliorate various pathologies in mouse disease models. In this study, we conducted a 12-month-long NMN administration to regular chow-fed wild-type C57BL/6N mice during their normal aging. Orally administered NMN was quickly utilized to synthesize NAD+ in tissues. Remarkably, NMN effectively mitigates age-associated physiological decline in mice. Without any obvious toxicity or deleterious effects, NMN suppressed age-associated body weight gain, enhanced energy metabolism, promoted physical activity, improved insulin sensitivity and plasma lipid profile, and ameliorated eye function and other pathophysiologies. Consistent with these phenotypes, NMN prevented age-associated gene expression changes in key metabolic organs and enhanced mitochondrial oxidative metabolism and mitonuclear protein imbalance in skeletal muscle. These effects of NMN highlight the preventive and therapeutic potential of NAD+ intermediates as effective anti-aging interventions in humans. NAD + availability decreases with age and in certain disease conditions. Nicotinamide mononucleotide (NMN), a key NAD + intermediate, has been shown to enhance NAD + biosynthesis and ameliorate various pathologies in mouse disease models. In this study, we conducted a 12 month-long NMN administration to regular chow-fed wild-type C57BL/6N mice during their normal aging. Orally administered NMN was quickly utilized to synthesize NAD + in tissues. Remarkably, NMN effectively mitigates age-associated physiological decline in mice. Without any obvious toxicity or deleterious effects, NMN suppressed age-associated body weight gain, enhanced energy metabolism, promoted physical activity, improved insulin sensitivity and plasma lipid profile, and ameliorated eye function and other pathophysiologies. Consistent with these phenotypes, NMN prevented age-associated gene expression changes in key metabolic organs and enhanced mitochondrial oxidative metabolism and mitonuclear protein imbalance in skeletal muscle. These effects of NMN highlight the preventive and therapeutic potential of NAD + intermediates as effective anti-aging interventions in humans. NAD availability decreases with age and in certain disease conditions. Nicotinamide mononucleotide (NMN), a key NAD intermediate, has been shown to enhance NAD biosynthesis and ameliorate various pathologies in mouse disease models. In this study, we conducted a 12-month-long NMN administration to regular chow-fed wild-type C57BL/6N mice during their normal aging. Orally administered NMN was quickly utilized to synthesize NAD in tissues. Remarkably, NMN effectively mitigates age-associated physiological decline in mice. Without any obvious toxicity or deleterious effects, NMN suppressed age-associated body weight gain, enhanced energy metabolism, promoted physical activity, improved insulin sensitivity and plasma lipid profile, and ameliorated eye function and other pathophysiologies. Consistent with these phenotypes, NMN prevented age-associated gene expression changes in key metabolic organs and enhanced mitochondrial oxidative metabolism and mitonuclear protein imbalance in skeletal muscle. These effects of NMN highlight the preventive and therapeutic potential of NAD intermediates as effective anti-aging interventions in humans. |
Author | Sasaki, Yo Kubota, Shunsuke Migaud, Marie E. Uchida, Koji Imai, Shin-ichiro Yoshino, Jun Apte, Rajendra S. Grozio, Alessia Mills, Kathryn F. Stein, Liana R. Redpath, Philip Yoshida, Shohei |
AuthorAffiliation | 1 Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA 6 Center for Human Nutrition, Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA 4 Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA 2 Oriental Yeast Co., Tokyo, Japan 3 Department of Ophthalmology, Washington University School of Medicine, St. Louis, MO 63110, USA 5 School of Pharmacy, Queen’s University Belfast, UK |
AuthorAffiliation_xml | – name: 6 Center for Human Nutrition, Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA – name: 2 Oriental Yeast Co., Tokyo, Japan – name: 5 School of Pharmacy, Queen’s University Belfast, UK – name: 3 Department of Ophthalmology, Washington University School of Medicine, St. Louis, MO 63110, USA – name: 4 Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA – name: 1 Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA |
Author_xml | – sequence: 1 givenname: Kathryn F. surname: Mills fullname: Mills, Kathryn F. organization: Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA – sequence: 2 givenname: Shohei surname: Yoshida fullname: Yoshida, Shohei organization: Oriental Yeast Company, Tokyo 174-0051, Japan – sequence: 3 givenname: Liana R. surname: Stein fullname: Stein, Liana R. organization: Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA – sequence: 4 givenname: Alessia surname: Grozio fullname: Grozio, Alessia organization: Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA – sequence: 5 givenname: Shunsuke surname: Kubota fullname: Kubota, Shunsuke organization: Department of Ophthalmology, Washington University School of Medicine, St. Louis, MO 63110, USA – sequence: 6 givenname: Yo surname: Sasaki fullname: Sasaki, Yo organization: Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA – sequence: 7 givenname: Philip surname: Redpath fullname: Redpath, Philip organization: School of Pharmacy, Queen’s University Belfast, Belfast, Northern Ireland BT7 1NN, UK – sequence: 8 givenname: Marie E. surname: Migaud fullname: Migaud, Marie E. organization: School of Pharmacy, Queen’s University Belfast, Belfast, Northern Ireland BT7 1NN, UK – sequence: 9 givenname: Rajendra S. surname: Apte fullname: Apte, Rajendra S. organization: Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA – sequence: 10 givenname: Koji surname: Uchida fullname: Uchida, Koji organization: Oriental Yeast Company, Tokyo 174-0051, Japan – sequence: 11 givenname: Jun surname: Yoshino fullname: Yoshino, Jun email: jyoshino@wustl.edu organization: Division of Geriatrics and Nutritional Science, Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110, USA – sequence: 12 givenname: Shin-ichiro surname: Imai fullname: Imai, Shin-ichiro email: imaishin@wustl.edu organization: Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28068222$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UUlv1TAQtlARXeAPcEA5cknqJc4iIaSnFijSYzmUs-VMJuk8JXaJ_Sr13-PwSgUcevLM-Fvs-U7ZkfMOGXsteCG4qM53BcwYC5nqgrcFF-oZOxGtknldSn6Uaq15XgoljtlpCDvOVaVa9YIdy4ZXjZTyhLmtd2N-jcucbfqZHIW42EjeZX7IvhL4SM7O1GP2xSf7PUyYRmtLkUYbMWSbEfNNCB4otX32_eY-kJ_8SGCn7BJhIocZucQAfMmeD3YK-OrhPGM_Pn64vrjKt98-fb7YbHPQUsRcgG07XQ011I2Fbiixr63irWplqWVbqrpErmwJaugs73TTyE6A7oemlpXVnTpj7w-6t_tuxh7QpW9N5nah2S73xlsy_944ujGjvzO6qhqh6iTw9kFg8T_3GKKZKQBOk3Xo98GIRtdq3aJO0Dd_ez2a_FlyAsgDABYfwoLDI0RwsyZpdmZN0qxJGt6alGQiNf-RgOLvZNJ7aXqa-u5AxbThO8LFBCB0gD0tCNH0np6i_wIxW7v6 |
CitedBy_id | crossref_primary_10_1001_jamadermatol_2025_0001 crossref_primary_10_1016_j_heares_2025_109182 crossref_primary_10_1016_j_tifs_2018_07_020 crossref_primary_10_1089_ars_2017_7145 crossref_primary_10_1007_s11357_023_00823_4 crossref_primary_10_1073_pnas_2011226118 crossref_primary_10_1007_s11357_020_00156_6 crossref_primary_10_3389_fnagi_2018_00394 crossref_primary_10_1038_s41580_020_00313_x crossref_primary_10_3389_fendo_2023_1099134 crossref_primary_10_1016_j_biopha_2022_113210 crossref_primary_10_1016_j_abb_2021_109050 crossref_primary_10_1016_j_freeradbiomed_2023_09_019 crossref_primary_10_7554_eLife_29626 crossref_primary_10_1093_jn_nxab193 crossref_primary_10_1016_j_gendis_2021_04_001 crossref_primary_10_1016_j_cels_2024_12_005 crossref_primary_10_1152_physrev_00061_2017 crossref_primary_10_1038_s41419_024_07062_1 crossref_primary_10_1016_j_metabol_2024_156110 crossref_primary_10_1111_acel_14127 crossref_primary_10_1002_cbf_4087 crossref_primary_10_3390_ijms23031499 crossref_primary_10_1080_19768354_2022_2106303 crossref_primary_10_1080_1028415X_2019_1637504 crossref_primary_10_1186_s12891_022_05205_z crossref_primary_10_1177_1178646917704662 crossref_primary_10_18632_oncotarget_24461 crossref_primary_10_3390_ijms21124484 crossref_primary_10_1039_D1FO02750F crossref_primary_10_1212_WNL_0000000000210152 crossref_primary_10_1016_j_bbrep_2023_101476 crossref_primary_10_3390_biology11050675 crossref_primary_10_3390_cells11101654 crossref_primary_10_1016_j_stem_2016_12_015 crossref_primary_10_1016_j_mad_2021_111545 crossref_primary_10_1089_rej_2021_0062 crossref_primary_10_1016_j_intimp_2022_108812 crossref_primary_10_1016_j_chembiol_2017_12_008 crossref_primary_10_1002_advs_202207170 crossref_primary_10_1074_jbc_RA118_006756 crossref_primary_10_1016_j_arr_2018_05_006 crossref_primary_10_1161_CIRCRESAHA_123_323683 crossref_primary_10_3390_ijms232314711 crossref_primary_10_7554_eLife_83395 crossref_primary_10_2174_1389201023666220518113219 crossref_primary_10_1016_j_bcp_2020_114019 crossref_primary_10_3724_abbs_2022099 crossref_primary_10_1155_2021_8043346 crossref_primary_10_3390_nu15132851 crossref_primary_10_3389_pore_2024_1611623 crossref_primary_10_1161_CIRCULATIONAHA_121_056589 crossref_primary_10_3389_fnut_2022_868640 crossref_primary_10_7554_eLife_96962_3 crossref_primary_10_1007_s00417_023_06118_w crossref_primary_10_1016_j_arr_2021_101464 crossref_primary_10_1038_s41598_022_18147_2 crossref_primary_10_1111_ggi_14513 crossref_primary_10_1038_s41580_021_00441_y crossref_primary_10_1002_iub_1997 crossref_primary_10_1007_s10522_022_09958_x crossref_primary_10_1016_j_molmed_2017_08_001 crossref_primary_10_3390_ijms26072897 crossref_primary_10_3389_fphar_2021_643089 crossref_primary_10_1039_D2FO00525E crossref_primary_10_1007_s00018_016_2431_7 crossref_primary_10_1016_j_celrep_2020_107987 crossref_primary_10_1016_j_mad_2021_111567 crossref_primary_10_3389_fncel_2023_1323566 crossref_primary_10_1016_j_neurobiolaging_2018_07_024 crossref_primary_10_1101_cshperspect_a041193 crossref_primary_10_1155_2020_8819627 crossref_primary_10_3390_antiox14010039 crossref_primary_10_1038_s41392_020_00354_w crossref_primary_10_1111_acel_14236 crossref_primary_10_1021_acs_analchem_1c04278 crossref_primary_10_1038_s41514_023_00133_1 crossref_primary_10_1016_j_mehy_2019_109306 crossref_primary_10_1007_s13258_021_01206_9 crossref_primary_10_1016_j_mad_2021_111569 crossref_primary_10_1186_s12989_024_00597_3 crossref_primary_10_1016_j_aca_2024_343074 crossref_primary_10_1021_acssynbio_2c00100 crossref_primary_10_1111_ceo_13818 crossref_primary_10_1007_s11357_022_00564_w crossref_primary_10_3390_nu14020300 crossref_primary_10_3390_biom10030396 crossref_primary_10_1038_s41598_021_87759_x crossref_primary_10_1186_s40246_019_0251_1 crossref_primary_10_3390_ijms25179526 crossref_primary_10_2490_jjrmc_58_644 crossref_primary_10_3390_cells10030660 crossref_primary_10_1016_j_fbio_2023_103126 crossref_primary_10_3389_fphar_2024_1436597 crossref_primary_10_1111_acel_14462 crossref_primary_10_1016_j_cmet_2018_02_011 crossref_primary_10_1007_s10522_022_09957_y crossref_primary_10_1111_jpi_12964 crossref_primary_10_1007_s12192_023_01356_7 crossref_primary_10_1016_j_tjnut_2024_10_017 crossref_primary_10_1038_s41392_021_00625_0 crossref_primary_10_1007_s11427_024_2717_6 crossref_primary_10_1038_s41388_023_02592_y crossref_primary_10_1016_j_molmet_2022_101583 crossref_primary_10_1016_j_mad_2021_111584 crossref_primary_10_1039_D4AN00186A crossref_primary_10_7759_cureus_65961 crossref_primary_10_1021_acssynbio_2c00350 crossref_primary_10_3390_nu12061616 crossref_primary_10_1038_s41467_024_44808_z crossref_primary_10_1089_ars_2017_7445 crossref_primary_10_1080_19476337_2025_2458753 crossref_primary_10_1038_s42255_023_00815_w crossref_primary_10_1557_s43578_024_01374_w crossref_primary_10_1016_j_anireprosci_2025_107797 crossref_primary_10_1021_acschembio_2c00773 crossref_primary_10_1016_j_molmet_2021_101195 crossref_primary_10_1093_eurheartj_ehad381 crossref_primary_10_1016_j_ab_2021_114409 crossref_primary_10_1016_j_jbc_2022_102835 crossref_primary_10_1016_j_cej_2023_146092 crossref_primary_10_3389_fnut_2021_756243 crossref_primary_10_1007_s11357_019_00101_2 crossref_primary_10_1038_s41556_019_0287_4 crossref_primary_10_3389_fphar_2020_604404 crossref_primary_10_1016_j_cmet_2019_03_001 crossref_primary_10_1002_fft2_511 crossref_primary_10_1038_s43587_022_00174_3 crossref_primary_10_1074_mcp_RA118_000882 crossref_primary_10_7554_eLife_35368 crossref_primary_10_17816_MAJ89964 crossref_primary_10_1016_j_isci_2019_05_001 crossref_primary_10_1111_acel_13213 crossref_primary_10_1016_j_bcp_2022_114946 crossref_primary_10_1016_j_biopha_2020_110928 crossref_primary_10_1093_stmcls_sxac008 crossref_primary_10_1016_j_tem_2024_08_004 crossref_primary_10_1016_j_bbrep_2024_101715 crossref_primary_10_1096_fj_202402479RRR crossref_primary_10_14336_AD_2021_1208 crossref_primary_10_1007_s00253_023_12612_2 crossref_primary_10_1038_s42003_021_01765_3 crossref_primary_10_2174_0115672050300063240305074310 crossref_primary_10_3390_ph18030281 crossref_primary_10_3390_biom14080909 crossref_primary_10_3390_nu15061494 crossref_primary_10_1016_j_bbrc_2023_05_075 crossref_primary_10_1017_erm_2022_36 crossref_primary_10_1146_annurev_vision_100419_115156 crossref_primary_10_37349_eds_2025_100881 crossref_primary_10_1038_s41419_023_06192_2 crossref_primary_10_1016_j_pnpbp_2019_109708 crossref_primary_10_1007_s11010_022_04408_1 crossref_primary_10_1016_j_freeradbiomed_2022_10_267 crossref_primary_10_3892_ol_2025_14924 crossref_primary_10_1096_fj_201800554RR crossref_primary_10_1007_s11357_020_00311_z crossref_primary_10_1016_j_cmet_2024_12_008 crossref_primary_10_3390_ph13080164 crossref_primary_10_1134_S0006297918070040 crossref_primary_10_1016_j_semnephrol_2022_10_013 crossref_primary_10_3390_antiox11091637 crossref_primary_10_7600_jpfsm_6_201 crossref_primary_10_1093_gerona_glad106 crossref_primary_10_1016_j_survophthal_2021_12_001 crossref_primary_10_14336_AD_2021_0523 crossref_primary_10_3390_cells12010108 crossref_primary_10_1002_advs_202204190 crossref_primary_10_1016_j_mad_2019_111194 crossref_primary_10_1113_JP278752 crossref_primary_10_1016_j_reprotox_2023_108530 crossref_primary_10_1016_j_molmed_2017_02_005 crossref_primary_10_1186_s12979_023_00398_w crossref_primary_10_1016_j_exger_2019_05_016 crossref_primary_10_1016_j_cmet_2018_03_016 crossref_primary_10_1111_acel_13206 crossref_primary_10_1021_acsnano_3c10547 crossref_primary_10_3390_ijms21113756 crossref_primary_10_1016_j_jhazmat_2024_135103 crossref_primary_10_1016_j_arr_2024_102400 crossref_primary_10_1016_j_jddst_2025_106846 crossref_primary_10_1016_j_athplu_2024_06_001 crossref_primary_10_1007_s11357_020_00211_2 crossref_primary_10_1038_nrn_2017_42 crossref_primary_10_1038_s41467_020_15794_9 crossref_primary_10_3803_EnM_2020_405 crossref_primary_10_3762_bjoc_15_36 crossref_primary_10_1111_1751_7915_70048 crossref_primary_10_37349_etat_2021_00053 crossref_primary_10_59368_agingbio_20240034 crossref_primary_10_1016_j_cmet_2018_02_001 crossref_primary_10_1016_j_arr_2020_101107 crossref_primary_10_1186_s13045_020_00986_z crossref_primary_10_1007_s11892_024_01557_z crossref_primary_10_1002_der2_239 crossref_primary_10_1016_j_jdermsci_2022_05_002 crossref_primary_10_1016_j_mad_2022_111755 crossref_primary_10_1016_j_jnutbio_2023_109433 crossref_primary_10_1016_j_fct_2023_113878 crossref_primary_10_1038_s41514_018_0031_5 crossref_primary_10_1210_endrev_bnad019 crossref_primary_10_1038_s43587_022_00172_5 crossref_primary_10_1111_brv_12866 crossref_primary_10_1126_sciadv_adr8648 crossref_primary_10_1159_000529125 crossref_primary_10_1155_2020_2692794 crossref_primary_10_1210_er_2017_00211 crossref_primary_10_1016_j_indcrop_2023_117158 crossref_primary_10_1016_j_enzmictec_2022_110122 crossref_primary_10_14336_AD_2020_0909 crossref_primary_10_1016_j_fct_2021_112060 crossref_primary_10_1042_BST20180420 crossref_primary_10_1097_FJC_0000000000001154 crossref_primary_10_1007_s12011_023_03904_9 crossref_primary_10_1038_s41467_020_20213_0 crossref_primary_10_1111_1751_7915_13901 crossref_primary_10_3390_molecules27207054 crossref_primary_10_1007_s12264_023_01072_3 crossref_primary_10_3389_fnut_2021_714604 crossref_primary_10_3390_nu16142354 crossref_primary_10_1039_D0QM00897D crossref_primary_10_1111_acel_13301 crossref_primary_10_1042_BST20180417 crossref_primary_10_1016_j_biopha_2024_116481 crossref_primary_10_1016_j_celrep_2022_111131 crossref_primary_10_1089_rej_2017_1975 crossref_primary_10_3390_catal15010037 crossref_primary_10_1096_fj_202001826R crossref_primary_10_1186_s40104_023_00843_2 crossref_primary_10_1002_smll_202001849 crossref_primary_10_3892_mmr_2020_11116 crossref_primary_10_1016_j_chembiol_2018_01_012 crossref_primary_10_1016_j_lwt_2021_111605 crossref_primary_10_1016_j_mad_2020_111208 crossref_primary_10_1016_j_ymben_2020_11_008 crossref_primary_10_15252_emmm_202113943 crossref_primary_10_1007_s11948_017_9917_z crossref_primary_10_1038_s41514_025_00192_6 crossref_primary_10_1038_s42255_018_0009_4 crossref_primary_10_1126_sciadv_adk9373 crossref_primary_10_1016_j_arr_2024_102213 crossref_primary_10_1016_j_brainresbull_2020_04_022 crossref_primary_10_3390_biom14050598 crossref_primary_10_1093_gerona_glac175 crossref_primary_10_1038_s41467_021_27080_3 crossref_primary_10_1038_s41591_018_0138_z crossref_primary_10_3390_ijms251910534 crossref_primary_10_1002_trc2_70023 crossref_primary_10_3390_catal13050815 crossref_primary_10_3389_fmolb_2024_1354682 crossref_primary_10_1038_s42003_024_06888_x crossref_primary_10_1093_gerona_glac049 crossref_primary_10_1007_s11357_022_00705_1 crossref_primary_10_1167_iovs_19_27099 crossref_primary_10_1111_acel_12793 crossref_primary_10_1007_s40266_022_00989_0 crossref_primary_10_3389_fchem_2023_1203278 crossref_primary_10_1177_17590914231198983 crossref_primary_10_1016_j_phanu_2019_100175 crossref_primary_10_1016_j_ejphar_2020_173158 crossref_primary_10_1681_ASN_2020081188 crossref_primary_10_1021_acsnano_0c09278 crossref_primary_10_3389_fragi_2022_851698 crossref_primary_10_1111_gtc_12542 crossref_primary_10_1016_j_cmet_2019_05_015 crossref_primary_10_1038_s41598_019_57085_4 crossref_primary_10_3390_cells13171509 crossref_primary_10_1016_j_bcp_2019_02_008 crossref_primary_10_3390_biom14121556 crossref_primary_10_4049_jimmunol_2300693 crossref_primary_10_18632_aging_202453 crossref_primary_10_1016_j_xcrm_2023_101157 crossref_primary_10_59541_001c_117234 crossref_primary_10_59541_001c_118564 crossref_primary_10_1097_HNP_0000000000000461 crossref_primary_10_1507_endocrj_EJ19_0313 crossref_primary_10_3389_fphys_2018_00704 crossref_primary_10_1172_JCI139828 crossref_primary_10_1152_ajpendo_00446_2020 crossref_primary_10_1186_s12970_021_00442_4 crossref_primary_10_1016_j_neulet_2025_138178 crossref_primary_10_1016_j_tips_2018_02_001 crossref_primary_10_1016_j_jphs_2022_11_005 crossref_primary_10_1021_acs_jproteome_2c00167 crossref_primary_10_5653_cerm_2023_06744 crossref_primary_10_1097_JXX_0000000000000597 crossref_primary_10_1016_j_cell_2018_02_008 crossref_primary_10_1210_clinem_dgad027 crossref_primary_10_1016_j_jid_2018_05_033 crossref_primary_10_1093_gerona_glad034 crossref_primary_10_3389_fncel_2018_00343 crossref_primary_10_1007_s00125_019_4831_3 crossref_primary_10_1016_j_jare_2021_08_003 crossref_primary_10_1016_j_reprotox_2024_108762 crossref_primary_10_3390_ijms25105303 crossref_primary_10_1038_s41598_023_33297_7 crossref_primary_10_1002_crt2_56 crossref_primary_10_14336_AD_2022_0414 crossref_primary_10_3389_fphar_2022_919905 crossref_primary_10_1080_10408398_2024_2387324 crossref_primary_10_1016_j_yjmcc_2021_04_007 crossref_primary_10_3390_ijms22083838 crossref_primary_10_15252_embj_2019103420 crossref_primary_10_1007_s11357_020_00171_7 crossref_primary_10_3390_nu14040755 crossref_primary_10_1038_s41598_019_49547_6 crossref_primary_10_1002_mus_26714 crossref_primary_10_1038_s41467_018_03421_7 crossref_primary_10_3390_polym15092031 crossref_primary_10_1016_j_bbrc_2024_149590 crossref_primary_10_1172_jci_insight_93885 crossref_primary_10_1096_fj_202400453R crossref_primary_10_1038_s41598_022_18272_y crossref_primary_10_1161_CIRCRESAHA_123_322910 crossref_primary_10_3389_fphys_2019_01125 crossref_primary_10_1038_s41514_021_00058_7 crossref_primary_10_1016_j_coph_2021_08_006 crossref_primary_10_1016_j_cmet_2021_04_003 crossref_primary_10_1080_14737140_2017_1298447 crossref_primary_10_1096_fj_201802752R crossref_primary_10_1177_2632010X221106986 crossref_primary_10_1038_s41467_020_20123_1 crossref_primary_10_3389_fphys_2021_702276 crossref_primary_10_1128_mcb_00171_22 crossref_primary_10_1038_s42003_023_04613_8 crossref_primary_10_1038_s41387_024_00280_8 crossref_primary_10_1016_j_intimp_2025_114407 crossref_primary_10_1016_j_mcat_2024_114058 crossref_primary_10_1002_jnr_24397 crossref_primary_10_1016_j_ebiom_2023_104877 crossref_primary_10_1038_s42255_018_0015_6 crossref_primary_10_3389_fphar_2021_749727 crossref_primary_10_1080_21623945_2024_2313297 crossref_primary_10_3389_fimmu_2019_01187 crossref_primary_10_3389_fphys_2021_649547 crossref_primary_10_1016_j_cmet_2017_11_002 crossref_primary_10_1002_jcb_30522 crossref_primary_10_1007_s11306_019_1604_4 crossref_primary_10_7717_peerj_11401 crossref_primary_10_1016_j_neuint_2017_02_007 crossref_primary_10_3390_nu13061914 crossref_primary_10_1038_s41569_022_00685_x crossref_primary_10_12688_f1000research_12120_1 crossref_primary_10_3390_cells9040791 crossref_primary_10_3143_geriatrics_57_213 crossref_primary_10_3389_fmolb_2021_702107 crossref_primary_10_1016_j_yjmcc_2017_09_001 crossref_primary_10_1038_s41598_017_14866_z crossref_primary_10_3390_ijms25094680 crossref_primary_10_1038_s41467_025_56402_y crossref_primary_10_3390_antiox12020376 crossref_primary_10_1038_s41419_019_1569_2 crossref_primary_10_1038_s41375_019_0692_5 crossref_primary_10_1016_j_aninu_2022_06_009 crossref_primary_10_1038_s41580_024_00752_w crossref_primary_10_3390_biomedicines12010127 crossref_primary_10_1097_MOH_0000000000000601 crossref_primary_10_1016_j_phrs_2019_03_007 crossref_primary_10_1016_j_expneurol_2024_114698 crossref_primary_10_1007_s11357_020_00282_1 crossref_primary_10_1007_s11357_019_00074_2 crossref_primary_10_1038_s41573_020_0067_7 crossref_primary_10_15252_embj_201797135 crossref_primary_10_3390_ijms22073709 crossref_primary_10_3389_fcell_2020_00246 crossref_primary_10_1007_s00018_022_04499_5 crossref_primary_10_1007_s40279_022_01772_2 crossref_primary_10_1016_j_jbc_2025_108248 crossref_primary_10_1002_adbi_202400028 crossref_primary_10_1021_acs_biochem_7b01185 crossref_primary_10_1172_JCI120844 crossref_primary_10_3389_fmolb_2021_655687 crossref_primary_10_1002_stem_3152 crossref_primary_10_1016_j_trecan_2017_06_001 crossref_primary_10_7759_cureus_28812 crossref_primary_10_3390_cells12060915 crossref_primary_10_18632_aging_104007 crossref_primary_10_1016_j_arr_2023_102106 crossref_primary_10_1186_s12929_019_0527_8 crossref_primary_10_1016_j_metabol_2021_154923 crossref_primary_10_7554_eLife_104068_3 crossref_primary_10_1016_j_bbrc_2021_04_132 crossref_primary_10_1152_ajpheart_00409_2017 crossref_primary_10_1177_0192623317737065 crossref_primary_10_1016_j_expneurol_2020_113219 crossref_primary_10_1111_acel_13920 crossref_primary_10_1016_j_foodres_2023_112560 crossref_primary_10_1039_D3FO05221D crossref_primary_10_7554_eLife_34836 crossref_primary_10_1002_mc_23673 crossref_primary_10_1016_j_jff_2022_105381 crossref_primary_10_1161_CIRCHEARTFAILURE_120_008170 crossref_primary_10_1161_CIRCRESAHA_118_311378 crossref_primary_10_3390_biom9010034 crossref_primary_10_1002_prp2_986 crossref_primary_10_1007_s12035_023_03251_9 crossref_primary_10_3389_fragi_2024_1452453 crossref_primary_10_7554_eLife_96962 crossref_primary_10_1016_j_lfs_2021_119299 crossref_primary_10_1016_j_molcel_2020_12_034 crossref_primary_10_1038_s41598_023_38762_x crossref_primary_10_1016_j_abb_2018_10_013 crossref_primary_10_1126_sciadv_adr1538 crossref_primary_10_3390_nu16162795 crossref_primary_10_1007_s11033_022_07459_1 crossref_primary_10_1016_j_jad_2019_11_147 crossref_primary_10_3389_fcell_2020_00265 crossref_primary_10_3390_nu16010145 crossref_primary_10_1016_j_jss_2022_09_030 crossref_primary_10_3389_fragi_2022_926627 crossref_primary_10_1007_s13668_023_00475_y crossref_primary_10_1631_jzus_B2300886 crossref_primary_10_1161_CIRCRESAHA_122_321587 crossref_primary_10_1007_s10522_019_09805_6 crossref_primary_10_1002_mnfr_202100111 crossref_primary_10_1016_j_colsurfa_2023_133024 crossref_primary_10_1007_s00439_020_02119_5 crossref_primary_10_1007_s11033_020_05590_5 crossref_primary_10_3390_antiox10121939 crossref_primary_10_1093_jb_mvab136 crossref_primary_10_3390_biomedicines8120615 crossref_primary_10_1038_s41514_023_00106_4 crossref_primary_10_1111_bph_15477 crossref_primary_10_1016_j_ab_2022_114837 crossref_primary_10_1111_jne_12508 crossref_primary_10_1016_j_preteyeres_2018_06_002 crossref_primary_10_1007_s11357_023_00789_3 crossref_primary_10_1093_chromsci_bmac107 crossref_primary_10_1016_j_neuroscience_2019_09_037 crossref_primary_10_3390_biom14050602 crossref_primary_10_3389_fphys_2021_746278 crossref_primary_10_1002_advs_202308698 crossref_primary_10_1016_j_exger_2020_110831 crossref_primary_10_3389_fnut_2021_717343 crossref_primary_10_1016_j_drudis_2020_06_016 crossref_primary_10_1016_j_neubiorev_2021_09_055 crossref_primary_10_3390_ijms241311114 crossref_primary_10_1126_science_aan2788 crossref_primary_10_1016_j_mce_2018_01_025 crossref_primary_10_1093_humupd_dmab038 crossref_primary_10_1002_bies_201600227 crossref_primary_10_12997_jla_2019_8_1_26 crossref_primary_10_2174_1871530322666220516160435 crossref_primary_10_18699_SSMJ20210505 crossref_primary_10_1126_science_abe9985 crossref_primary_10_1039_D1CY01798E crossref_primary_10_1128_aem_01106_23 crossref_primary_10_1002_1873_3468_14698 crossref_primary_10_1002_cti2_1091 crossref_primary_10_1073_pnas_1902346116 crossref_primary_10_3390_ijms24032959 crossref_primary_10_1016_j_exger_2020_110841 crossref_primary_10_1080_13813455_2019_1638414 crossref_primary_10_1186_s12014_024_09509_1 crossref_primary_10_3390_ijms23158165 crossref_primary_10_1007_s10157_024_02502_w crossref_primary_10_1161_HYPERTENSIONAHA_119_13357 crossref_primary_10_1089_ars_2018_7722 crossref_primary_10_1002_advs_202406390 crossref_primary_10_1007_s11064_019_02729_0 crossref_primary_10_1016_j_bbrc_2024_150889 crossref_primary_10_1289_EHP12259 crossref_primary_10_1016_j_cjca_2024_03_004 crossref_primary_10_1038_s43587_021_00167_8 crossref_primary_10_1002_advs_202305682 crossref_primary_10_3389_fneur_2018_00552 crossref_primary_10_3390_cimb45050250 crossref_primary_10_1016_j_neunet_2024_106940 crossref_primary_10_3389_fragi_2021_785171 crossref_primary_10_1016_j_biopha_2024_117199 crossref_primary_10_1073_pnas_1720673115 crossref_primary_10_1155_2017_9028435 crossref_primary_10_1155_2021_9955448 crossref_primary_10_1186_s13287_022_02748_9 crossref_primary_10_1016_j_tma_2018_08_003 crossref_primary_10_1016_j_neures_2023_01_004 crossref_primary_10_1089_rej_2019_2218 crossref_primary_10_1093_lifemeta_loac025 crossref_primary_10_3390_fermentation9070594 crossref_primary_10_1002_mco2_727 crossref_primary_10_14336_AD_2020_0105 crossref_primary_10_1007_s10517_022_05606_z crossref_primary_10_3892_or_2017_5793 crossref_primary_10_1016_j_jff_2023_105985 crossref_primary_10_1093_hmg_ddac115 crossref_primary_10_1186_s12967_024_05614_9 crossref_primary_10_14336_AD_2023_0519_1 crossref_primary_10_1152_japplphysiol_00662_2022 crossref_primary_10_1038_s41514_018_0029_z crossref_primary_10_3390_metabo14060341 crossref_primary_10_1016_j_celrep_2020_01_058 crossref_primary_10_1111_trf_15556 crossref_primary_10_2174_0118746098266041231212105020 crossref_primary_10_1002_med_22034 crossref_primary_10_35693_2500_1388_2021_6_4_19_39 crossref_primary_10_1016_j_neuron_2023_08_010 crossref_primary_10_1101_cshperspect_a037416 crossref_primary_10_1038_s41392_020_00311_7 crossref_primary_10_1124_pharmrev_121_000418 crossref_primary_10_1172_jci_insight_120182 crossref_primary_10_1172_jci_insight_178048 crossref_primary_10_1111_cpr_13303 crossref_primary_10_3389_fphys_2021_735573 crossref_primary_10_4103_1673_5374_290893 crossref_primary_10_1016_j_jia_2024_04_027 crossref_primary_10_1038_s41514_017_0017_8 crossref_primary_10_1007_s12640_017_9795_9 crossref_primary_10_1155_2024_8472130 crossref_primary_10_1111_bph_15980 crossref_primary_10_1016_j_biortech_2025_132350 crossref_primary_10_1016_j_mex_2023_102061 crossref_primary_10_1016_j_ebiom_2020_102636 crossref_primary_10_1186_s13395_018_0154_1 crossref_primary_10_1016_j_enzmictec_2025_110585 crossref_primary_10_1038_s41401_022_00956_w crossref_primary_10_1016_j_jbiotec_2024_10_014 crossref_primary_10_1016_j_jff_2023_105922 crossref_primary_10_1007_s11427_023_2305_0 crossref_primary_10_1093_biolre_ioab078 crossref_primary_10_1016_j_bbrep_2024_101655 crossref_primary_10_1111_nyas_14599 crossref_primary_10_1016_j_advnut_2023_08_008 crossref_primary_10_1016_j_exger_2020_110888 crossref_primary_10_1093_ajcn_nqaa368 crossref_primary_10_1002_iub_2707 crossref_primary_10_1111_cpr_13419 crossref_primary_10_1016_j_semcancer_2024_10_005 crossref_primary_10_2174_1385272827666230201103848 crossref_primary_10_1016_j_freeradbiomed_2021_12_008 crossref_primary_10_1002_mnfr_202400340 crossref_primary_10_1016_j_gene_2022_146348 crossref_primary_10_1096_fj_201800361R crossref_primary_10_1152_ajpheart_00039_2019 crossref_primary_10_1186_s13048_024_01504_2 crossref_primary_10_1111_eci_13334 crossref_primary_10_1016_j_ecoenv_2024_117388 crossref_primary_10_1016_j_exger_2020_110972 crossref_primary_10_1002_bab_2713 crossref_primary_10_1016_j_phrs_2020_105240 crossref_primary_10_1016_j_mad_2024_111993 crossref_primary_10_3389_fphar_2024_1410479 crossref_primary_10_1038_s41514_022_00084_z crossref_primary_10_1111_imm_13837 crossref_primary_10_1016_j_bone_2024_117382 crossref_primary_10_3390_ijms25052594 crossref_primary_10_1002_fft2_350 crossref_primary_10_1507_endocrj_EJ23_0431 crossref_primary_10_1016_j_celrep_2024_114102 crossref_primary_10_1111_acel_14386 crossref_primary_10_1016_j_celrep_2019_07_043 crossref_primary_10_1016_j_jbc_2021_100855 crossref_primary_10_1038_s41574_021_00626_7 crossref_primary_10_1177_15353702221094235 crossref_primary_10_1007_s11357_020_00165_5 crossref_primary_10_1186_s40035_024_00409_w crossref_primary_10_1681_ASN_2021020275 crossref_primary_10_1016_j_ejpb_2023_10_004 crossref_primary_10_1038_s41420_022_01031_3 crossref_primary_10_1530_JME_18_0085 crossref_primary_10_1002_oby_22263 crossref_primary_10_1007_s11357_021_00502_2 crossref_primary_10_1016_j_foodchem_2023_135982 crossref_primary_10_1016_j_it_2022_02_001 crossref_primary_10_1038_s41598_018_30792_0 crossref_primary_10_2220_biomedres_42_173 crossref_primary_10_3390_cells9030671 crossref_primary_10_20900_immunometab20200026 crossref_primary_10_1016_j_cels_2021_09_001 crossref_primary_10_1021_acsami_2c12971 crossref_primary_10_1021_acssensors_2c02565 crossref_primary_10_1038_s41598_023_30081_5 crossref_primary_10_7554_eLife_104068 crossref_primary_10_3389_fneur_2022_903565 crossref_primary_10_3390_cells11040710 crossref_primary_10_1016_j_molmet_2019_09_013 crossref_primary_10_3390_nu15133064 |
Cites_doi | 10.1038/nature12188 10.1016/j.cmet.2015.05.023 10.1016/j.cell.2007.03.024 10.1016/j.febslet.2011.04.060 10.1002/emmm.201403943 10.1186/s12974-014-0221-4 10.1016/j.cmet.2016.05.011 10.1111/j.1474-9726.2007.00355.x 10.1016/j.cmet.2007.09.003 10.1016/j.cmet.2012.04.022 10.1016/j.tcb.2014.04.002 10.1186/s12883-015-0272-x 10.1016/j.cmet.2014.11.003 10.1002/hep.28245 10.1016/j.cell.2013.11.037 10.1016/j.phrs.2010.01.006 10.1172/JCI64099 10.1371/journal.pone.0098972 10.1089/jmf.2015.3439 10.1016/j.brainres.2016.04.060 10.1007/s00125-011-2288-0 10.1016/j.cmet.2014.04.001 10.1167/iovs.12-9662 10.1016/j.cmet.2013.07.013 10.1073/pnas.1417921112 10.1074/jbc.M111773200 10.1016/j.cmet.2015.04.002 10.1016/j.cell.2013.06.016 10.2337/db14-0667 10.1126/science.aaf2693 10.1523/JNEUROSCI.1385-10.2010 10.1016/j.tips.2013.12.004 10.1074/jbc.M110.213298 10.1016/j.neurobiolaging.2012.12.005 10.1161/01.RES.0000163635.62927.34 10.1371/journal.pone.0042357 10.1016/j.cmet.2011.08.014 10.1016/j.exer.2005.10.018 10.1016/j.ccell.2014.10.002 10.1111/acel.12461 10.1007/s12013-008-9041-4 10.1074/jbc.M804681200 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Inc. Copyright © 2016 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier Inc. – notice: Copyright © 2016 Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.cmet.2016.09.013 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1932-7420 |
EndPage | 806 |
ExternalDocumentID | PMC5668137 28068222 10_1016_j_cmet_2016_09_013 S1550413116304958 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/N001842/1 – fundername: NIDDK NIH HHS grantid: P30 DK020579 – fundername: NIDDK NIH HHS grantid: P30 DK056341 – fundername: NIA NIH HHS grantid: R01 AG047902 |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 53G 5GY 62- 6I. 6J9 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HVGLF IHE IXB J1W JIG M3Z M41 NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SES SSZ TR2 UNMZH WQ6 ZA5 AAEDT AAIKJ AAMRU AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AGHFR AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION HZ~ OZT 0SF CGR CUY CVF ECM EIF NPM 7X8 5PM EFKBS |
ID | FETCH-LOGICAL-c521t-1ca9b56f7c78acbf4ed7a30939245294374e03a4c3fba0b5882b1c5df8726a5b3 |
IEDL.DBID | IXB |
ISSN | 1550-4131 1932-7420 |
IngestDate | Thu Aug 21 18:32:52 EDT 2025 Fri Jul 11 09:32:10 EDT 2025 Thu Jan 02 22:59:22 EST 2025 Tue Jul 01 03:58:16 EDT 2025 Thu Apr 24 23:11:30 EDT 2025 Fri Feb 23 02:27:34 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | NAD NAD+ precursor insulin sensitivity eye function anti-aging mitochondria aging nicotinamide mononucleotide glucose metabolism NMN energy metabolism NAD(+) NAD(+) precursor |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2016 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-1ca9b56f7c78acbf4ed7a30939245294374e03a4c3fba0b5882b1c5df8726a5b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present address: Gladstone Institute of Neurological Disease and Department of Neurology, University of California, San Francisco, CA 94158, USA. |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1550413116304958 |
PMID | 28068222 |
PQID | 1857380685 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5668137 proquest_miscellaneous_1857380685 pubmed_primary_28068222 crossref_primary_10_1016_j_cmet_2016_09_013 crossref_citationtrail_10_1016_j_cmet_2016_09_013 elsevier_sciencedirect_doi_10_1016_j_cmet_2016_09_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-12-13 |
PublicationDateYYYYMMDD | 2016-12-13 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell metabolism |
PublicationTitleAlternate | Cell Metab |
PublicationYear | 2016 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Cantó, Houtkooper, Pirinen, Youn, Oosterveer, Cen, Fernandez-Marcos, Yamamoto, Andreux, Cettour-Rose (bib8) 2012; 15 Imai (bib20) 2010; 62 Barzilai, Crandall, Kritchevsky, Espeland (bib4) 2016; 23 Imai (bib21) 2011; 585 Ramsey, Mills, Satoh, Imai (bib32) 2008; 7 Yamamoto, Byun, Zhai, Ikeda, Oka, Sadoshima (bib40) 2014; 9 Wang, Hu, Yang, Takata, Sakurai (bib39) 2016; 1643 Aredo, Zhang, Chen, Wang, Li, Ufret-Vincenty (bib2) 2015; 12 Gariani, Menzies, Ryu, Wegner, Wang, Ropelle, Moullan, Zhang, Perino, Lemos (bib14) 2015; 63 Hubbard, Sinclair (bib18) 2014; 35 Lee, Hong, Jun, Yang (bib25) 2015; 18 Anderson, Bitterman, Wood, Medvedik, Cohen, Lin, Manchester, Gordon, Sinclair (bib1) 2002; 277 Khan, Auranen, Paetau, Pirinen, Euro, Forsström, Pasila, Velagapudi, Carroll, Auwerx, Suomalainen (bib23) 2014; 6 Long, Owens, Schlappal, Kristian, Fishman, Schuh (bib26) 2015; 15 Massudi, Grant, Braidy, Guest, Farnsworth, Guillemin (bib27) 2012; 7 Yoon, Yoshida, Johnson, Takikawa, Usui, Tobe, Nakagawa, Yoshino, Imai (bib41) 2015; 21 Houtkooper, Mouchiroud, Ryu, Moullan, Katsyuba, Knott, Williams, Auwerx (bib17) 2013; 497 Mouchiroud, Houtkooper, Moullan, Katsyuba, Ryu, Cantó, Mottis, Jo, Viswanathan, Schoonjans (bib29) 2013; 154 Caton, Kieswich, Yaqoob, Holness, Sugden (bib10) 2011; 54 Cerutti, Pirinen, Lamperti, Marchet, Sauve, Li, Leoni, Schon, Dantzer, Auwerx (bib11) 2014; 19 Satoh, Brace, Rensing, Cliften, Wozniak, Herzog, Yamada, Imai (bib35) 2013; 18 Mattapallil, Wawrousek, Chan, Zhao, Roychoudhury, Ferguson, Caspi (bib28) 2012; 53 Tummala, Gomes, Yilmaz, Graña, Bakiri, Ruppen, Ximénez-Embún, Sheshappanavar, Rodriguez-Justo, Pisano (bib37) 2014; 26 Zhu, Lu, Lee, Ugurbil, Chen (bib44) 2015; 112 Nikiforov, Doelle, Niere, Ziegler (bib30) 2011; 286 Zhang, Ryu, Wu, Gariani, Wang, Luan, D’Amico, Ropelle, Lutolf, Aebersold (bib43) 2016; 352 Brown, Maqsood, Huang, Pan, Harkcom, Li, Sauve, Verdin, Jaffrey (bib7) 2014; 20 Berg, Scherer (bib6) 2005; 96 Lamming, Ye, Sabatini, Baur (bib24) 2013; 123 Balan, Miller, Kaplun, Balan, Chong, Li, Kaplun, VanBerkum, Arking, Freeman (bib3) 2008; 283 Belenky, Racette, Bogan, McClure, Smith, Brenner (bib5) 2007; 129 de Picciotto, Gano, Johnson, Martens, Sindler, Mills, Imai, Seals (bib12) 2016; 15 Imai (bib19) 2009; 53 van de Weijer, Phielix, Bilet, Williams, Ropelle, Bierwagen, Livingstone, Nowotny, Sparks, Paglialunga (bib38) 2015; 64 Revollo, Körner, Mills, Satoh, Wang, Garten, Dasgupta, Sasaki, Wolberger, Townsend (bib33) 2007; 6 Zoukhri (bib45) 2006; 82 Gomes, Price, Ling, Moslehi, Montgomery, Rajman, White, Teodoro, Wrann, Hubbard (bib15) 2013; 155 Imai, Guarente (bib22) 2014; 24 Freireich, Gehan, Rall, Schmidt, Skipper (bib13) 1966; 50 Gong, Pan, Vempati, Zhao, Knable, Ho, Wang, Sastre, Ono, Sauve, Pasinetti (bib16) 2013; 34 (bib31) 2013 Yoshino, Mills, Yoon, Imai (bib42) 2011; 14 Satoh, Brace, Ben-Josef, West, Wozniak, Holtzman, Herzog, Imai (bib34) 2010; 30 Cantó, Menzies, Auwerx (bib9) 2015; 22 Stein, Imai (bib36) 2014; 33 Aredo (10.1016/j.cmet.2016.09.013_bib2) 2015; 12 Belenky (10.1016/j.cmet.2016.09.013_bib5) 2007; 129 Wang (10.1016/j.cmet.2016.09.013_bib39) 2016; 1643 Zhu (10.1016/j.cmet.2016.09.013_bib44) 2015; 112 Berg (10.1016/j.cmet.2016.09.013_bib6) 2005; 96 Khan (10.1016/j.cmet.2016.09.013_bib23) 2014; 6 Mouchiroud (10.1016/j.cmet.2016.09.013_bib29) 2013; 154 Houtkooper (10.1016/j.cmet.2016.09.013_bib17) 2013; 497 Freireich (10.1016/j.cmet.2016.09.013_bib13) 1966; 50 Revollo (10.1016/j.cmet.2016.09.013_bib33) 2007; 6 Imai (10.1016/j.cmet.2016.09.013_bib21) 2011; 585 Massudi (10.1016/j.cmet.2016.09.013_bib27) 2012; 7 Tummala (10.1016/j.cmet.2016.09.013_bib37) 2014; 26 Zhang (10.1016/j.cmet.2016.09.013_bib43) 2016; 352 Gomes (10.1016/j.cmet.2016.09.013_bib15) 2013; 155 de Picciotto (10.1016/j.cmet.2016.09.013_bib12) 2016; 15 Brown (10.1016/j.cmet.2016.09.013_bib7) 2014; 20 Lamming (10.1016/j.cmet.2016.09.013_bib24) 2013; 123 Zoukhri (10.1016/j.cmet.2016.09.013_bib45) 2006; 82 Satoh (10.1016/j.cmet.2016.09.013_bib35) 2013; 18 Yoon (10.1016/j.cmet.2016.09.013_bib41) 2015; 21 Satoh (10.1016/j.cmet.2016.09.013_bib34) 2010; 30 Anderson (10.1016/j.cmet.2016.09.013_bib1) 2002; 277 Barzilai (10.1016/j.cmet.2016.09.013_bib4) 2016; 23 Imai (10.1016/j.cmet.2016.09.013_bib19) 2009; 53 Gariani (10.1016/j.cmet.2016.09.013_bib14) 2015; 63 Stein (10.1016/j.cmet.2016.09.013_bib36) 2014; 33 Hubbard (10.1016/j.cmet.2016.09.013_bib18) 2014; 35 Mattapallil (10.1016/j.cmet.2016.09.013_bib28) 2012; 53 (10.1016/j.cmet.2016.09.013_bib31) 2013 Cantó (10.1016/j.cmet.2016.09.013_bib9) 2015; 22 Gong (10.1016/j.cmet.2016.09.013_bib16) 2013; 34 Long (10.1016/j.cmet.2016.09.013_bib26) 2015; 15 Yamamoto (10.1016/j.cmet.2016.09.013_bib40) 2014; 9 Yoshino (10.1016/j.cmet.2016.09.013_bib42) 2011; 14 Caton (10.1016/j.cmet.2016.09.013_bib10) 2011; 54 Imai (10.1016/j.cmet.2016.09.013_bib22) 2014; 24 Balan (10.1016/j.cmet.2016.09.013_bib3) 2008; 283 Lee (10.1016/j.cmet.2016.09.013_bib25) 2015; 18 Ramsey (10.1016/j.cmet.2016.09.013_bib32) 2008; 7 Imai (10.1016/j.cmet.2016.09.013_bib20) 2010; 62 Nikiforov (10.1016/j.cmet.2016.09.013_bib30) 2011; 286 Cantó (10.1016/j.cmet.2016.09.013_bib8) 2012; 15 Cerutti (10.1016/j.cmet.2016.09.013_bib11) 2014; 19 van de Weijer (10.1016/j.cmet.2016.09.013_bib38) 2015; 64 |
References_xml | – volume: 123 start-page: 980 year: 2013 end-page: 989 ident: bib24 article-title: Rapalogs and mTOR inhibitors as anti-aging therapeutics publication-title: J. Clin. Invest. – volume: 18 start-page: 416 year: 2013 end-page: 430 ident: bib35 article-title: Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH publication-title: Cell Metab. – volume: 6 start-page: 363 year: 2007 end-page: 375 ident: bib33 article-title: Nampt/PBEF/Visfatin regulates insulin secretion in β cells as a systemic NAD biosynthetic enzyme publication-title: Cell Metab. – volume: 15 start-page: 522 year: 2016 end-page: 530 ident: bib12 article-title: Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice publication-title: Aging Cell – volume: 35 start-page: 146 year: 2014 end-page: 154 ident: bib18 article-title: Small molecule SIRT1 activators for the treatment of aging and age-related diseases publication-title: Trends Pharmacol. Sci. – volume: 9 start-page: e98972 year: 2014 ident: bib40 article-title: Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion publication-title: PLoS ONE – volume: 20 start-page: 1059 year: 2014 end-page: 1068 ident: bib7 article-title: Activation of SIRT3 by the NAD publication-title: Cell Metab. – volume: 22 start-page: 31 year: 2015 end-page: 53 ident: bib9 article-title: NAD(+) metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus publication-title: Cell Metab. – volume: 53 start-page: 2921 year: 2012 end-page: 2927 ident: bib28 article-title: The Rd8 mutation of the Crb1 gene is present in vendor lines of C57BL/6N mice and embryonic stem cells, and confounds ocular induced mutant phenotypes publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 62 start-page: 42 year: 2010 end-page: 47 ident: bib20 article-title: A possibility of nutriceuticals as an anti-aging intervention: activation of sirtuins by promoting mammalian NAD biosynthesis publication-title: Pharmacol. Res. – volume: 24 start-page: 464 year: 2014 end-page: 471 ident: bib22 article-title: NAD+ and sirtuins in aging and disease publication-title: Trends Cell Biol. – volume: 14 start-page: 528 year: 2011 end-page: 536 ident: bib42 article-title: Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice publication-title: Cell Metab. – volume: 34 start-page: 1581 year: 2013 end-page: 1588 ident: bib16 article-title: Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-γ coactivator 1α regulated β-secretase 1 degradation and mitochondrial gene expression in Alzheimer’s mouse models publication-title: Neurobiol. Aging – volume: 23 start-page: 1060 year: 2016 end-page: 1065 ident: bib4 article-title: Metformin as a Tool to Target Aging publication-title: Cell Metab. – volume: 96 start-page: 939 year: 2005 end-page: 949 ident: bib6 article-title: Adipose tissue, inflammation, and cardiovascular disease publication-title: Circ. Res. – volume: 18 start-page: 1207 year: 2015 end-page: 1213 ident: bib25 article-title: Nicotinamide riboside ameliorates hepatic metaflammation by modulating NLRP3 inflammasome in a rodent model of type 2 diabetes publication-title: J. Med. Food – volume: 15 start-page: 19 year: 2015 ident: bib26 article-title: Effect of nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an Alzheimer’s disease-relevant murine model publication-title: BMC Neurol. – volume: 50 start-page: 219 year: 1966 end-page: 244 ident: bib13 article-title: Quantitative comparison of toxicity of anticancer agents in mouse, rat, hamster, dog, monkey, and man publication-title: Cancer Chemother. Rep. – volume: 7 start-page: 78 year: 2008 end-page: 88 ident: bib32 article-title: Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in β cell-specific Sirt1-overexpressing (BESTO) mice publication-title: Aging Cell – volume: 585 start-page: 1657 year: 2011 end-page: 1662 ident: bib21 article-title: Dissecting systemic control of metabolism and aging in the NAD World: the importance of SIRT1 and NAMPT-mediated NAD biosynthesis publication-title: FEBS Lett. – volume: 154 start-page: 430 year: 2013 end-page: 441 ident: bib29 article-title: The NAD(+)/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling publication-title: Cell – volume: 1643 start-page: 1 year: 2016 end-page: 9 ident: bib39 article-title: Nicotinamide mononucleotide protects against β-amyloid oligomer-induced cognitive impairment and neuronal death publication-title: Brain Res. – volume: 54 start-page: 3083 year: 2011 end-page: 3092 ident: bib10 article-title: Nicotinamide mononucleotide protects against pro-inflammatory cytokine-mediated impairment of mouse islet function publication-title: Diabetologia – volume: 155 start-page: 1624 year: 2013 end-page: 1638 ident: bib15 article-title: Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging publication-title: Cell – volume: 7 start-page: e42357 year: 2012 ident: bib27 article-title: Age-associated changes in oxidative stress and NAD+ metabolism in human tissue publication-title: PLoS ONE – volume: 12 start-page: 6 year: 2015 ident: bib2 article-title: Differences in the distribution, phenotype and gene expression of subretinal microglia/macrophages in C57BL/6N (Crb1 rd8/rd8) versus C57BL6/J (Crb1 wt/wt) mice publication-title: J. Neuroinflammation – volume: 6 start-page: 721 year: 2014 end-page: 731 ident: bib23 article-title: Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3 publication-title: EMBO Mol. Med. – volume: 286 start-page: 21767 year: 2011 end-page: 21778 ident: bib30 article-title: Pathways and subcellular compartmentation of NAD biosynthesis in human cells: from entry of extracellular precursors to mitochondrial NAD generation publication-title: J. Biol. Chem. – volume: 283 start-page: 27810 year: 2008 end-page: 27819 ident: bib3 article-title: Life span extension and neuronal cell protection by Drosophila nicotinamidase publication-title: J. Biol. Chem. – volume: 26 start-page: 826 year: 2014 end-page: 839 ident: bib37 article-title: Inhibition of de novo NAD(+) synthesis by oncogenic URI causes liver tumorigenesis through DNA damage publication-title: Cancer Cell – volume: 82 start-page: 885 year: 2006 end-page: 898 ident: bib45 article-title: Effect of inflammation on lacrimal gland function publication-title: Exp. Eye Res. – volume: 277 start-page: 18881 year: 2002 end-page: 18890 ident: bib1 article-title: Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels publication-title: J. Biol. Chem. – volume: 30 start-page: 10220 year: 2010 end-page: 10232 ident: bib34 article-title: SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus publication-title: J. Neurosci. – volume: 33 start-page: 1321 year: 2014 end-page: 1340 ident: bib36 article-title: Specific ablation of Nampt in adult neural stem cells recapitulates their functional defects during aging publication-title: EMBO J. – volume: 64 start-page: 1193 year: 2015 end-page: 1201 ident: bib38 article-title: Evidence for a direct effect of the NAD+ precursor acipimox on muscle mitochondrial function in humans publication-title: Diabetes – volume: 21 start-page: 706 year: 2015 end-page: 717 ident: bib41 article-title: SIRT1-mediated eNAMPT secretion from adipose tissue regulates hypothalamic NAD+ and function in mice publication-title: Cell Metab. – volume: 15 start-page: 838 year: 2012 end-page: 847 ident: bib8 article-title: The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity publication-title: Cell Metab. – volume: 112 start-page: 2876 year: 2015 end-page: 2881 ident: bib44 article-title: In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences publication-title: Proc. Natl. Acad. Sci. USA – volume: 129 start-page: 473 year: 2007 end-page: 484 ident: bib5 article-title: Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD publication-title: Cell – volume: 63 start-page: 1190 year: 2015 end-page: 1204 ident: bib14 article-title: Eliciting the mitochondrial unfolded protein response via NAD repletion reverses fatty liver disease publication-title: Hepatology – volume: 53 start-page: 65 year: 2009 end-page: 74 ident: bib19 article-title: The NAD World: a new systemic regulatory network for metabolism and aging--Sirt1, systemic NAD biosynthesis, and their importance publication-title: Cell Biochem. Biophys. – year: 2013 ident: bib31 publication-title: What Future for Health Spending? – volume: 19 start-page: 1042 year: 2014 end-page: 1049 ident: bib11 article-title: NAD(+)-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease publication-title: Cell Metab. – volume: 352 start-page: 1436 year: 2016 end-page: 1443 ident: bib43 article-title: NAD publication-title: Science – volume: 497 start-page: 451 year: 2013 end-page: 457 ident: bib17 article-title: Mitonuclear protein imbalance as a conserved longevity mechanism publication-title: Nature – volume: 497 start-page: 451 year: 2013 ident: 10.1016/j.cmet.2016.09.013_bib17 article-title: Mitonuclear protein imbalance as a conserved longevity mechanism publication-title: Nature doi: 10.1038/nature12188 – volume: 22 start-page: 31 year: 2015 ident: 10.1016/j.cmet.2016.09.013_bib9 article-title: NAD(+) metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.05.023 – volume: 129 start-page: 473 year: 2007 ident: 10.1016/j.cmet.2016.09.013_bib5 article-title: Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+ publication-title: Cell doi: 10.1016/j.cell.2007.03.024 – volume: 585 start-page: 1657 year: 2011 ident: 10.1016/j.cmet.2016.09.013_bib21 article-title: Dissecting systemic control of metabolism and aging in the NAD World: the importance of SIRT1 and NAMPT-mediated NAD biosynthesis publication-title: FEBS Lett. doi: 10.1016/j.febslet.2011.04.060 – volume: 6 start-page: 721 year: 2014 ident: 10.1016/j.cmet.2016.09.013_bib23 article-title: Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3 publication-title: EMBO Mol. Med. doi: 10.1002/emmm.201403943 – volume: 12 start-page: 6 year: 2015 ident: 10.1016/j.cmet.2016.09.013_bib2 article-title: Differences in the distribution, phenotype and gene expression of subretinal microglia/macrophages in C57BL/6N (Crb1 rd8/rd8) versus C57BL6/J (Crb1 wt/wt) mice publication-title: J. Neuroinflammation doi: 10.1186/s12974-014-0221-4 – volume: 23 start-page: 1060 year: 2016 ident: 10.1016/j.cmet.2016.09.013_bib4 article-title: Metformin as a Tool to Target Aging publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.05.011 – volume: 7 start-page: 78 year: 2008 ident: 10.1016/j.cmet.2016.09.013_bib32 article-title: Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in β cell-specific Sirt1-overexpressing (BESTO) mice publication-title: Aging Cell doi: 10.1111/j.1474-9726.2007.00355.x – volume: 6 start-page: 363 year: 2007 ident: 10.1016/j.cmet.2016.09.013_bib33 article-title: Nampt/PBEF/Visfatin regulates insulin secretion in β cells as a systemic NAD biosynthetic enzyme publication-title: Cell Metab. doi: 10.1016/j.cmet.2007.09.003 – volume: 15 start-page: 838 year: 2012 ident: 10.1016/j.cmet.2016.09.013_bib8 article-title: The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity publication-title: Cell Metab. doi: 10.1016/j.cmet.2012.04.022 – volume: 24 start-page: 464 year: 2014 ident: 10.1016/j.cmet.2016.09.013_bib22 article-title: NAD+ and sirtuins in aging and disease publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2014.04.002 – year: 2013 ident: 10.1016/j.cmet.2016.09.013_bib31 – volume: 15 start-page: 19 year: 2015 ident: 10.1016/j.cmet.2016.09.013_bib26 article-title: Effect of nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an Alzheimer’s disease-relevant murine model publication-title: BMC Neurol. doi: 10.1186/s12883-015-0272-x – volume: 20 start-page: 1059 year: 2014 ident: 10.1016/j.cmet.2016.09.013_bib7 article-title: Activation of SIRT3 by the NAD+ precursor nicotinamide riboside protects from noise-induced hearing loss publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.11.003 – volume: 63 start-page: 1190 year: 2015 ident: 10.1016/j.cmet.2016.09.013_bib14 article-title: Eliciting the mitochondrial unfolded protein response via NAD repletion reverses fatty liver disease publication-title: Hepatology doi: 10.1002/hep.28245 – volume: 155 start-page: 1624 year: 2013 ident: 10.1016/j.cmet.2016.09.013_bib15 article-title: Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging publication-title: Cell doi: 10.1016/j.cell.2013.11.037 – volume: 62 start-page: 42 year: 2010 ident: 10.1016/j.cmet.2016.09.013_bib20 article-title: A possibility of nutriceuticals as an anti-aging intervention: activation of sirtuins by promoting mammalian NAD biosynthesis publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2010.01.006 – volume: 123 start-page: 980 year: 2013 ident: 10.1016/j.cmet.2016.09.013_bib24 article-title: Rapalogs and mTOR inhibitors as anti-aging therapeutics publication-title: J. Clin. Invest. doi: 10.1172/JCI64099 – volume: 9 start-page: e98972 year: 2014 ident: 10.1016/j.cmet.2016.09.013_bib40 article-title: Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion publication-title: PLoS ONE doi: 10.1371/journal.pone.0098972 – volume: 18 start-page: 1207 year: 2015 ident: 10.1016/j.cmet.2016.09.013_bib25 article-title: Nicotinamide riboside ameliorates hepatic metaflammation by modulating NLRP3 inflammasome in a rodent model of type 2 diabetes publication-title: J. Med. Food doi: 10.1089/jmf.2015.3439 – volume: 1643 start-page: 1 year: 2016 ident: 10.1016/j.cmet.2016.09.013_bib39 article-title: Nicotinamide mononucleotide protects against β-amyloid oligomer-induced cognitive impairment and neuronal death publication-title: Brain Res. doi: 10.1016/j.brainres.2016.04.060 – volume: 54 start-page: 3083 year: 2011 ident: 10.1016/j.cmet.2016.09.013_bib10 article-title: Nicotinamide mononucleotide protects against pro-inflammatory cytokine-mediated impairment of mouse islet function publication-title: Diabetologia doi: 10.1007/s00125-011-2288-0 – volume: 19 start-page: 1042 year: 2014 ident: 10.1016/j.cmet.2016.09.013_bib11 article-title: NAD(+)-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.04.001 – volume: 53 start-page: 2921 year: 2012 ident: 10.1016/j.cmet.2016.09.013_bib28 article-title: The Rd8 mutation of the Crb1 gene is present in vendor lines of C57BL/6N mice and embryonic stem cells, and confounds ocular induced mutant phenotypes publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.12-9662 – volume: 18 start-page: 416 year: 2013 ident: 10.1016/j.cmet.2016.09.013_bib35 article-title: Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH publication-title: Cell Metab. doi: 10.1016/j.cmet.2013.07.013 – volume: 112 start-page: 2876 year: 2015 ident: 10.1016/j.cmet.2016.09.013_bib44 article-title: In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1417921112 – volume: 277 start-page: 18881 year: 2002 ident: 10.1016/j.cmet.2016.09.013_bib1 article-title: Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111773200 – volume: 21 start-page: 706 year: 2015 ident: 10.1016/j.cmet.2016.09.013_bib41 article-title: SIRT1-mediated eNAMPT secretion from adipose tissue regulates hypothalamic NAD+ and function in mice publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.04.002 – volume: 50 start-page: 219 year: 1966 ident: 10.1016/j.cmet.2016.09.013_bib13 article-title: Quantitative comparison of toxicity of anticancer agents in mouse, rat, hamster, dog, monkey, and man publication-title: Cancer Chemother. Rep. – volume: 154 start-page: 430 year: 2013 ident: 10.1016/j.cmet.2016.09.013_bib29 article-title: The NAD(+)/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling publication-title: Cell doi: 10.1016/j.cell.2013.06.016 – volume: 64 start-page: 1193 year: 2015 ident: 10.1016/j.cmet.2016.09.013_bib38 article-title: Evidence for a direct effect of the NAD+ precursor acipimox on muscle mitochondrial function in humans publication-title: Diabetes doi: 10.2337/db14-0667 – volume: 352 start-page: 1436 year: 2016 ident: 10.1016/j.cmet.2016.09.013_bib43 article-title: NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice publication-title: Science doi: 10.1126/science.aaf2693 – volume: 30 start-page: 10220 year: 2010 ident: 10.1016/j.cmet.2016.09.013_bib34 article-title: SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1385-10.2010 – volume: 35 start-page: 146 year: 2014 ident: 10.1016/j.cmet.2016.09.013_bib18 article-title: Small molecule SIRT1 activators for the treatment of aging and age-related diseases publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2013.12.004 – volume: 286 start-page: 21767 year: 2011 ident: 10.1016/j.cmet.2016.09.013_bib30 article-title: Pathways and subcellular compartmentation of NAD biosynthesis in human cells: from entry of extracellular precursors to mitochondrial NAD generation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.213298 – volume: 34 start-page: 1581 year: 2013 ident: 10.1016/j.cmet.2016.09.013_bib16 article-title: Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-γ coactivator 1α regulated β-secretase 1 degradation and mitochondrial gene expression in Alzheimer’s mouse models publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2012.12.005 – volume: 96 start-page: 939 year: 2005 ident: 10.1016/j.cmet.2016.09.013_bib6 article-title: Adipose tissue, inflammation, and cardiovascular disease publication-title: Circ. Res. doi: 10.1161/01.RES.0000163635.62927.34 – volume: 7 start-page: e42357 year: 2012 ident: 10.1016/j.cmet.2016.09.013_bib27 article-title: Age-associated changes in oxidative stress and NAD+ metabolism in human tissue publication-title: PLoS ONE doi: 10.1371/journal.pone.0042357 – volume: 14 start-page: 528 year: 2011 ident: 10.1016/j.cmet.2016.09.013_bib42 article-title: Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice publication-title: Cell Metab. doi: 10.1016/j.cmet.2011.08.014 – volume: 82 start-page: 885 year: 2006 ident: 10.1016/j.cmet.2016.09.013_bib45 article-title: Effect of inflammation on lacrimal gland function publication-title: Exp. Eye Res. doi: 10.1016/j.exer.2005.10.018 – volume: 33 start-page: 1321 year: 2014 ident: 10.1016/j.cmet.2016.09.013_bib36 article-title: Specific ablation of Nampt in adult neural stem cells recapitulates their functional defects during aging publication-title: EMBO J. – volume: 26 start-page: 826 year: 2014 ident: 10.1016/j.cmet.2016.09.013_bib37 article-title: Inhibition of de novo NAD(+) synthesis by oncogenic URI causes liver tumorigenesis through DNA damage publication-title: Cancer Cell doi: 10.1016/j.ccell.2014.10.002 – volume: 15 start-page: 522 year: 2016 ident: 10.1016/j.cmet.2016.09.013_bib12 article-title: Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice publication-title: Aging Cell doi: 10.1111/acel.12461 – volume: 53 start-page: 65 year: 2009 ident: 10.1016/j.cmet.2016.09.013_bib19 article-title: The NAD World: a new systemic regulatory network for metabolism and aging--Sirt1, systemic NAD biosynthesis, and their importance publication-title: Cell Biochem. Biophys. doi: 10.1007/s12013-008-9041-4 – volume: 283 start-page: 27810 year: 2008 ident: 10.1016/j.cmet.2016.09.013_bib3 article-title: Life span extension and neuronal cell protection by Drosophila nicotinamidase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M804681200 |
SSID | ssj0036393 |
Score | 2.6670372 |
Snippet | NAD+ availability decreases with age and in certain disease conditions. Nicotinamide mononucleotide (NMN), a key NAD+ intermediate, has been shown to enhance... NAD availability decreases with age and in certain disease conditions. Nicotinamide mononucleotide (NMN), a key NAD intermediate, has been shown to enhance NAD... NAD + availability decreases with age and in certain disease conditions. Nicotinamide mononucleotide (NMN), a key NAD + intermediate, has been shown to enhance... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 795 |
SubjectTerms | Administration, Oral aging Aging - drug effects Aging - genetics Aging - physiology Animals anti-aging Bone Density - drug effects Cell Respiration - drug effects Darkness Drinking - drug effects Eating - drug effects energy metabolism Energy Metabolism - drug effects eye function Food Gene Expression Regulation - drug effects glucose metabolism Insulin - pharmacology insulin sensitivity Lipids - blood Lymphocytes - drug effects Lymphocytes - metabolism Male Mice, Inbred C57BL mitochondria Mitochondria - drug effects Mitochondria - metabolism Muscle, Skeletal - drug effects Muscle, Skeletal - metabolism Myeloid Cells - drug effects Myeloid Cells - metabolism NAD NAD - metabolism NAD+ precursor nicotinamide mononucleotide Nicotinamide Mononucleotide - administration & dosage Nicotinamide Mononucleotide - blood Nicotinamide Mononucleotide - pharmacology NMN Physical Conditioning, Animal Time Factors Weight Gain - drug effects |
Title | Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Decline in Mice |
URI | https://dx.doi.org/10.1016/j.cmet.2016.09.013 https://www.ncbi.nlm.nih.gov/pubmed/28068222 https://www.proquest.com/docview/1857380685 https://pubmed.ncbi.nlm.nih.gov/PMC5668137 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhEOilJGmbbl6o0FsRa0eSLR_zWkJpe-kG9iYkeZw4JN4lu3vIv8-MbC_dhuSQo2UJhGY084mZ-Yax7yYB6RAHiVLhS0ehjxQ-81oUzlQGH2PVSewN-PtPdnWtfk70ZIOd97UwlFbZ2f7Wpkdr3Y0Mu9Mczup6-JfAtSK2mIxCRZoKfqUysYhvctZbY4keOCbZ42RBs7vCmTbHKzwA5VOmWeQ6TeVrzukl-Pw_h_IfpzTaZh87NMlP2w3vsA1odtlW21_y6RNrfk2bGzFG48vXSXL5tOKkA4ua-tGXwPFqTxuiNsYh-qwj9QbM-ekNiF6EUPKYMNrbS34BVFgJvG5wRYDP7Hp0OT6_El2DBRGoj4FIgyu8zqo85MYFXykoc0eh0SLGY5XMFSTSqSAr7xKvEY37NOiyMvlJ5rSXX9gm7g6-Mo64SZWQeB-cUiqAkc5Lr2XhlMtTFQYs7U_Who59nJpg3Ns-zezOkjQsScMmhUVpDNiP1ZpZy73x5mzdC8yuaZBF5_Dmum-9dC1eLYqXuAamy7klmixpkszoAdtrpb3aBwWkCVsNWL6mB6sJRNu9_qepbyN9NwJok8p8_537PWAf6Cum1OhDtrl4XMIRAqOFP46a_wzhoQ2M |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIgQXxGdZPo0EJxRtsrZj58ChUKpduu2FrbQ3YztOCaLZit0K9XfxB5lxkhULogekHpPY0chjzzxrnp8BXuk0cIs4KCkF7nQE5sjE5U4mhdWVxs1YNYp3Ax4e5eNj8XEu51vwsz8LQ7TKLva3MT1G6-7NsBvN4VldDz8RuBakFpNTqUjqjll5EC5-4L5t-Xayh05-PRrtf5i9Hyfd1QKJJwX_JPO2cDKvlFfaeleJUCpLRcEiViIFVyKk3ArPK2dTJxGHuszLstJqlFvpOP73GlxH9KEoGkzm7_rwzzHlR1Y_WpeQed1JnZZU5k8DETizPIqrZvxf2fBvtPsnafO3LLh_B2538JXttiN0F7ZCcw9utBdaXtyHZrpoTpIZRnu2qcrLFhWjSbeqG3tal4FhLFk0pKWMr-ixjlofYcl2T0LSz5lQsshQ7QM02wt0kjOwusEePjyA4ysZ9oewjdaFR8AQqIkypM55K4TwQXPruJO8sMKqTPgBZP3IGt_JndOtG99Mz2v7asgbhrxh0sKgNwbwZt3nrBX7uLS17B1mNqaswWx0ab-XvXcNrmUq0NgmLM6XhnS5uE5zLQew03p7bQdVwAnMDUBtzIN1A9IJ3_zS1F-iXjgidp1x9fg_7X0BN8ezw6mZTo4OnsAt-kJ8now_he3V9_PwDFHZyj2Pq4DB56tedr8ATWdK2Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-Term+Administration+of+Nicotinamide+Mononucleotide+Mitigates+Age-Associated+Physiological+Decline+in+Mice&rft.jtitle=Cell+metabolism&rft.au=Mills%2C+Kathryn+F.&rft.au=Yoshida%2C+Shohei&rft.au=Stein%2C+Liana+R.&rft.au=Grozio%2C+Alessia&rft.date=2016-12-13&rft.pub=Elsevier+Inc&rft.issn=1550-4131&rft.eissn=1932-7420&rft.volume=24&rft.issue=6&rft.spage=795&rft.epage=806&rft_id=info:doi/10.1016%2Fj.cmet.2016.09.013&rft.externalDocID=S1550413116304958 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon |