Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Decline in Mice

NAD+ availability decreases with age and in certain disease conditions. Nicotinamide mononucleotide (NMN), a key NAD+ intermediate, has been shown to enhance NAD+ biosynthesis and ameliorate various pathologies in mouse disease models. In this study, we conducted a 12-month-long NMN administration t...

Full description

Saved in:
Bibliographic Details
Published inCell metabolism Vol. 24; no. 6; pp. 795 - 806
Main Authors Mills, Kathryn F., Yoshida, Shohei, Stein, Liana R., Grozio, Alessia, Kubota, Shunsuke, Sasaki, Yo, Redpath, Philip, Migaud, Marie E., Apte, Rajendra S., Uchida, Koji, Yoshino, Jun, Imai, Shin-ichiro
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 13.12.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract NAD+ availability decreases with age and in certain disease conditions. Nicotinamide mononucleotide (NMN), a key NAD+ intermediate, has been shown to enhance NAD+ biosynthesis and ameliorate various pathologies in mouse disease models. In this study, we conducted a 12-month-long NMN administration to regular chow-fed wild-type C57BL/6N mice during their normal aging. Orally administered NMN was quickly utilized to synthesize NAD+ in tissues. Remarkably, NMN effectively mitigates age-associated physiological decline in mice. Without any obvious toxicity or deleterious effects, NMN suppressed age-associated body weight gain, enhanced energy metabolism, promoted physical activity, improved insulin sensitivity and plasma lipid profile, and ameliorated eye function and other pathophysiologies. Consistent with these phenotypes, NMN prevented age-associated gene expression changes in key metabolic organs and enhanced mitochondrial oxidative metabolism and mitonuclear protein imbalance in skeletal muscle. These effects of NMN highlight the preventive and therapeutic potential of NAD+ intermediates as effective anti-aging interventions in humans. [Display omitted] •NMN suppresses age-associated body weight gain and enhances energy metabolism•NMN improves insulin sensitivity, eye function, and other features with no toxicity•NMN prevents age-associated gene expression changes in a tissue-specific manner•NMN is an effective anti-aging intervention that could be translated to humans Mills et al. conducted a 12-month-long administration of nicotinamide mononucleotide (NMN), a key natural NAD+ intermediate, to normal wild-type mice, demonstrating that NMN effectively mitigates age-associated physiological decline in mice without any obvious toxicity. These results highlight the significant potential of NMN as an effective anti-aging intervention in humans.
AbstractList NAD+ availability decreases with age and in certain disease conditions. Nicotinamide mononucleotide (NMN), a key NAD+ intermediate, has been shown to enhance NAD+ biosynthesis and ameliorate various pathologies in mouse disease models. In this study, we conducted a 12-month-long NMN administration to regular chow-fed wild-type C57BL/6N mice during their normal aging. Orally administered NMN was quickly utilized to synthesize NAD+ in tissues. Remarkably, NMN effectively mitigates age-associated physiological decline in mice. Without any obvious toxicity or deleterious effects, NMN suppressed age-associated body weight gain, enhanced energy metabolism, promoted physical activity, improved insulin sensitivity and plasma lipid profile, and ameliorated eye function and other pathophysiologies. Consistent with these phenotypes, NMN prevented age-associated gene expression changes in key metabolic organs and enhanced mitochondrial oxidative metabolism and mitonuclear protein imbalance in skeletal muscle. These effects of NMN highlight the preventive and therapeutic potential of NAD+ intermediates as effective anti-aging interventions in humans. [Display omitted] •NMN suppresses age-associated body weight gain and enhances energy metabolism•NMN improves insulin sensitivity, eye function, and other features with no toxicity•NMN prevents age-associated gene expression changes in a tissue-specific manner•NMN is an effective anti-aging intervention that could be translated to humans Mills et al. conducted a 12-month-long administration of nicotinamide mononucleotide (NMN), a key natural NAD+ intermediate, to normal wild-type mice, demonstrating that NMN effectively mitigates age-associated physiological decline in mice without any obvious toxicity. These results highlight the significant potential of NMN as an effective anti-aging intervention in humans.
NAD+ availability decreases with age and in certain disease conditions. Nicotinamide mononucleotide (NMN), a key NAD+ intermediate, has been shown to enhance NAD+ biosynthesis and ameliorate various pathologies in mouse disease models. In this study, we conducted a 12-month-long NMN administration to regular chow-fed wild-type C57BL/6N mice during their normal aging. Orally administered NMN was quickly utilized to synthesize NAD+ in tissues. Remarkably, NMN effectively mitigates age-associated physiological decline in mice. Without any obvious toxicity or deleterious effects, NMN suppressed age-associated body weight gain, enhanced energy metabolism, promoted physical activity, improved insulin sensitivity and plasma lipid profile, and ameliorated eye function and other pathophysiologies. Consistent with these phenotypes, NMN prevented age-associated gene expression changes in key metabolic organs and enhanced mitochondrial oxidative metabolism and mitonuclear protein imbalance in skeletal muscle. These effects of NMN highlight the preventive and therapeutic potential of NAD+ intermediates as effective anti-aging interventions in humans.NAD+ availability decreases with age and in certain disease conditions. Nicotinamide mononucleotide (NMN), a key NAD+ intermediate, has been shown to enhance NAD+ biosynthesis and ameliorate various pathologies in mouse disease models. In this study, we conducted a 12-month-long NMN administration to regular chow-fed wild-type C57BL/6N mice during their normal aging. Orally administered NMN was quickly utilized to synthesize NAD+ in tissues. Remarkably, NMN effectively mitigates age-associated physiological decline in mice. Without any obvious toxicity or deleterious effects, NMN suppressed age-associated body weight gain, enhanced energy metabolism, promoted physical activity, improved insulin sensitivity and plasma lipid profile, and ameliorated eye function and other pathophysiologies. Consistent with these phenotypes, NMN prevented age-associated gene expression changes in key metabolic organs and enhanced mitochondrial oxidative metabolism and mitonuclear protein imbalance in skeletal muscle. These effects of NMN highlight the preventive and therapeutic potential of NAD+ intermediates as effective anti-aging interventions in humans.
NAD + availability decreases with age and in certain disease conditions. Nicotinamide mononucleotide (NMN), a key NAD + intermediate, has been shown to enhance NAD + biosynthesis and ameliorate various pathologies in mouse disease models. In this study, we conducted a 12 month-long NMN administration to regular chow-fed wild-type C57BL/6N mice during their normal aging. Orally administered NMN was quickly utilized to synthesize NAD + in tissues. Remarkably, NMN effectively mitigates age-associated physiological decline in mice. Without any obvious toxicity or deleterious effects, NMN suppressed age-associated body weight gain, enhanced energy metabolism, promoted physical activity, improved insulin sensitivity and plasma lipid profile, and ameliorated eye function and other pathophysiologies. Consistent with these phenotypes, NMN prevented age-associated gene expression changes in key metabolic organs and enhanced mitochondrial oxidative metabolism and mitonuclear protein imbalance in skeletal muscle. These effects of NMN highlight the preventive and therapeutic potential of NAD + intermediates as effective anti-aging interventions in humans.
NAD availability decreases with age and in certain disease conditions. Nicotinamide mononucleotide (NMN), a key NAD intermediate, has been shown to enhance NAD biosynthesis and ameliorate various pathologies in mouse disease models. In this study, we conducted a 12-month-long NMN administration to regular chow-fed wild-type C57BL/6N mice during their normal aging. Orally administered NMN was quickly utilized to synthesize NAD in tissues. Remarkably, NMN effectively mitigates age-associated physiological decline in mice. Without any obvious toxicity or deleterious effects, NMN suppressed age-associated body weight gain, enhanced energy metabolism, promoted physical activity, improved insulin sensitivity and plasma lipid profile, and ameliorated eye function and other pathophysiologies. Consistent with these phenotypes, NMN prevented age-associated gene expression changes in key metabolic organs and enhanced mitochondrial oxidative metabolism and mitonuclear protein imbalance in skeletal muscle. These effects of NMN highlight the preventive and therapeutic potential of NAD intermediates as effective anti-aging interventions in humans.
Author Sasaki, Yo
Kubota, Shunsuke
Migaud, Marie E.
Uchida, Koji
Imai, Shin-ichiro
Yoshino, Jun
Apte, Rajendra S.
Grozio, Alessia
Mills, Kathryn F.
Stein, Liana R.
Redpath, Philip
Yoshida, Shohei
AuthorAffiliation 1 Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
6 Center for Human Nutrition, Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
4 Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
2 Oriental Yeast Co., Tokyo, Japan
3 Department of Ophthalmology, Washington University School of Medicine, St. Louis, MO 63110, USA
5 School of Pharmacy, Queen’s University Belfast, UK
AuthorAffiliation_xml – name: 6 Center for Human Nutrition, Division of Geriatrics and Nutritional Science, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
– name: 2 Oriental Yeast Co., Tokyo, Japan
– name: 5 School of Pharmacy, Queen’s University Belfast, UK
– name: 3 Department of Ophthalmology, Washington University School of Medicine, St. Louis, MO 63110, USA
– name: 4 Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
– name: 1 Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
Author_xml – sequence: 1
  givenname: Kathryn F.
  surname: Mills
  fullname: Mills, Kathryn F.
  organization: Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 2
  givenname: Shohei
  surname: Yoshida
  fullname: Yoshida, Shohei
  organization: Oriental Yeast Company, Tokyo 174-0051, Japan
– sequence: 3
  givenname: Liana R.
  surname: Stein
  fullname: Stein, Liana R.
  organization: Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 4
  givenname: Alessia
  surname: Grozio
  fullname: Grozio, Alessia
  organization: Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 5
  givenname: Shunsuke
  surname: Kubota
  fullname: Kubota, Shunsuke
  organization: Department of Ophthalmology, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 6
  givenname: Yo
  surname: Sasaki
  fullname: Sasaki, Yo
  organization: Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 7
  givenname: Philip
  surname: Redpath
  fullname: Redpath, Philip
  organization: School of Pharmacy, Queen’s University Belfast, Belfast, Northern Ireland BT7 1NN, UK
– sequence: 8
  givenname: Marie E.
  surname: Migaud
  fullname: Migaud, Marie E.
  organization: School of Pharmacy, Queen’s University Belfast, Belfast, Northern Ireland BT7 1NN, UK
– sequence: 9
  givenname: Rajendra S.
  surname: Apte
  fullname: Apte, Rajendra S.
  organization: Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 10
  givenname: Koji
  surname: Uchida
  fullname: Uchida, Koji
  organization: Oriental Yeast Company, Tokyo 174-0051, Japan
– sequence: 11
  givenname: Jun
  surname: Yoshino
  fullname: Yoshino, Jun
  email: jyoshino@wustl.edu
  organization: Division of Geriatrics and Nutritional Science, Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 12
  givenname: Shin-ichiro
  surname: Imai
  fullname: Imai, Shin-ichiro
  email: imaishin@wustl.edu
  organization: Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28068222$$D View this record in MEDLINE/PubMed
BookMark eNp9UUlv1TAQtlARXeAPcEA5cknqJc4iIaSnFijSYzmUs-VMJuk8JXaJ_Sr13-PwSgUcevLM-Fvs-U7ZkfMOGXsteCG4qM53BcwYC5nqgrcFF-oZOxGtknldSn6Uaq15XgoljtlpCDvOVaVa9YIdy4ZXjZTyhLmtd2N-jcucbfqZHIW42EjeZX7IvhL4SM7O1GP2xSf7PUyYRmtLkUYbMWSbEfNNCB4otX32_eY-kJ_8SGCn7BJhIocZucQAfMmeD3YK-OrhPGM_Pn64vrjKt98-fb7YbHPQUsRcgG07XQ011I2Fbiixr63irWplqWVbqrpErmwJaugs73TTyE6A7oemlpXVnTpj7w-6t_tuxh7QpW9N5nah2S73xlsy_944ujGjvzO6qhqh6iTw9kFg8T_3GKKZKQBOk3Xo98GIRtdq3aJO0Dd_ez2a_FlyAsgDABYfwoLDI0RwsyZpdmZN0qxJGt6alGQiNf-RgOLvZNJ7aXqa-u5AxbThO8LFBCB0gD0tCNH0np6i_wIxW7v6
CitedBy_id crossref_primary_10_1001_jamadermatol_2025_0001
crossref_primary_10_1016_j_heares_2025_109182
crossref_primary_10_1016_j_tifs_2018_07_020
crossref_primary_10_1089_ars_2017_7145
crossref_primary_10_1007_s11357_023_00823_4
crossref_primary_10_1073_pnas_2011226118
crossref_primary_10_1007_s11357_020_00156_6
crossref_primary_10_3389_fnagi_2018_00394
crossref_primary_10_1038_s41580_020_00313_x
crossref_primary_10_3389_fendo_2023_1099134
crossref_primary_10_1016_j_biopha_2022_113210
crossref_primary_10_1016_j_abb_2021_109050
crossref_primary_10_1016_j_freeradbiomed_2023_09_019
crossref_primary_10_7554_eLife_29626
crossref_primary_10_1093_jn_nxab193
crossref_primary_10_1016_j_gendis_2021_04_001
crossref_primary_10_1016_j_cels_2024_12_005
crossref_primary_10_1152_physrev_00061_2017
crossref_primary_10_1038_s41419_024_07062_1
crossref_primary_10_1016_j_metabol_2024_156110
crossref_primary_10_1111_acel_14127
crossref_primary_10_1002_cbf_4087
crossref_primary_10_3390_ijms23031499
crossref_primary_10_1080_19768354_2022_2106303
crossref_primary_10_1080_1028415X_2019_1637504
crossref_primary_10_1186_s12891_022_05205_z
crossref_primary_10_1177_1178646917704662
crossref_primary_10_18632_oncotarget_24461
crossref_primary_10_3390_ijms21124484
crossref_primary_10_1039_D1FO02750F
crossref_primary_10_1212_WNL_0000000000210152
crossref_primary_10_1016_j_bbrep_2023_101476
crossref_primary_10_3390_biology11050675
crossref_primary_10_3390_cells11101654
crossref_primary_10_1016_j_stem_2016_12_015
crossref_primary_10_1016_j_mad_2021_111545
crossref_primary_10_1089_rej_2021_0062
crossref_primary_10_1016_j_intimp_2022_108812
crossref_primary_10_1016_j_chembiol_2017_12_008
crossref_primary_10_1002_advs_202207170
crossref_primary_10_1074_jbc_RA118_006756
crossref_primary_10_1016_j_arr_2018_05_006
crossref_primary_10_1161_CIRCRESAHA_123_323683
crossref_primary_10_3390_ijms232314711
crossref_primary_10_7554_eLife_83395
crossref_primary_10_2174_1389201023666220518113219
crossref_primary_10_1016_j_bcp_2020_114019
crossref_primary_10_3724_abbs_2022099
crossref_primary_10_1155_2021_8043346
crossref_primary_10_3390_nu15132851
crossref_primary_10_3389_pore_2024_1611623
crossref_primary_10_1161_CIRCULATIONAHA_121_056589
crossref_primary_10_3389_fnut_2022_868640
crossref_primary_10_7554_eLife_96962_3
crossref_primary_10_1007_s00417_023_06118_w
crossref_primary_10_1016_j_arr_2021_101464
crossref_primary_10_1038_s41598_022_18147_2
crossref_primary_10_1111_ggi_14513
crossref_primary_10_1038_s41580_021_00441_y
crossref_primary_10_1002_iub_1997
crossref_primary_10_1007_s10522_022_09958_x
crossref_primary_10_1016_j_molmed_2017_08_001
crossref_primary_10_3390_ijms26072897
crossref_primary_10_3389_fphar_2021_643089
crossref_primary_10_1039_D2FO00525E
crossref_primary_10_1007_s00018_016_2431_7
crossref_primary_10_1016_j_celrep_2020_107987
crossref_primary_10_1016_j_mad_2021_111567
crossref_primary_10_3389_fncel_2023_1323566
crossref_primary_10_1016_j_neurobiolaging_2018_07_024
crossref_primary_10_1101_cshperspect_a041193
crossref_primary_10_1155_2020_8819627
crossref_primary_10_3390_antiox14010039
crossref_primary_10_1038_s41392_020_00354_w
crossref_primary_10_1111_acel_14236
crossref_primary_10_1021_acs_analchem_1c04278
crossref_primary_10_1038_s41514_023_00133_1
crossref_primary_10_1016_j_mehy_2019_109306
crossref_primary_10_1007_s13258_021_01206_9
crossref_primary_10_1016_j_mad_2021_111569
crossref_primary_10_1186_s12989_024_00597_3
crossref_primary_10_1016_j_aca_2024_343074
crossref_primary_10_1021_acssynbio_2c00100
crossref_primary_10_1111_ceo_13818
crossref_primary_10_1007_s11357_022_00564_w
crossref_primary_10_3390_nu14020300
crossref_primary_10_3390_biom10030396
crossref_primary_10_1038_s41598_021_87759_x
crossref_primary_10_1186_s40246_019_0251_1
crossref_primary_10_3390_ijms25179526
crossref_primary_10_2490_jjrmc_58_644
crossref_primary_10_3390_cells10030660
crossref_primary_10_1016_j_fbio_2023_103126
crossref_primary_10_3389_fphar_2024_1436597
crossref_primary_10_1111_acel_14462
crossref_primary_10_1016_j_cmet_2018_02_011
crossref_primary_10_1007_s10522_022_09957_y
crossref_primary_10_1111_jpi_12964
crossref_primary_10_1007_s12192_023_01356_7
crossref_primary_10_1016_j_tjnut_2024_10_017
crossref_primary_10_1038_s41392_021_00625_0
crossref_primary_10_1007_s11427_024_2717_6
crossref_primary_10_1038_s41388_023_02592_y
crossref_primary_10_1016_j_molmet_2022_101583
crossref_primary_10_1016_j_mad_2021_111584
crossref_primary_10_1039_D4AN00186A
crossref_primary_10_7759_cureus_65961
crossref_primary_10_1021_acssynbio_2c00350
crossref_primary_10_3390_nu12061616
crossref_primary_10_1038_s41467_024_44808_z
crossref_primary_10_1089_ars_2017_7445
crossref_primary_10_1080_19476337_2025_2458753
crossref_primary_10_1038_s42255_023_00815_w
crossref_primary_10_1557_s43578_024_01374_w
crossref_primary_10_1016_j_anireprosci_2025_107797
crossref_primary_10_1021_acschembio_2c00773
crossref_primary_10_1016_j_molmet_2021_101195
crossref_primary_10_1093_eurheartj_ehad381
crossref_primary_10_1016_j_ab_2021_114409
crossref_primary_10_1016_j_jbc_2022_102835
crossref_primary_10_1016_j_cej_2023_146092
crossref_primary_10_3389_fnut_2021_756243
crossref_primary_10_1007_s11357_019_00101_2
crossref_primary_10_1038_s41556_019_0287_4
crossref_primary_10_3389_fphar_2020_604404
crossref_primary_10_1016_j_cmet_2019_03_001
crossref_primary_10_1002_fft2_511
crossref_primary_10_1038_s43587_022_00174_3
crossref_primary_10_1074_mcp_RA118_000882
crossref_primary_10_7554_eLife_35368
crossref_primary_10_17816_MAJ89964
crossref_primary_10_1016_j_isci_2019_05_001
crossref_primary_10_1111_acel_13213
crossref_primary_10_1016_j_bcp_2022_114946
crossref_primary_10_1016_j_biopha_2020_110928
crossref_primary_10_1093_stmcls_sxac008
crossref_primary_10_1016_j_tem_2024_08_004
crossref_primary_10_1016_j_bbrep_2024_101715
crossref_primary_10_1096_fj_202402479RRR
crossref_primary_10_14336_AD_2021_1208
crossref_primary_10_1007_s00253_023_12612_2
crossref_primary_10_1038_s42003_021_01765_3
crossref_primary_10_2174_0115672050300063240305074310
crossref_primary_10_3390_ph18030281
crossref_primary_10_3390_biom14080909
crossref_primary_10_3390_nu15061494
crossref_primary_10_1016_j_bbrc_2023_05_075
crossref_primary_10_1017_erm_2022_36
crossref_primary_10_1146_annurev_vision_100419_115156
crossref_primary_10_37349_eds_2025_100881
crossref_primary_10_1038_s41419_023_06192_2
crossref_primary_10_1016_j_pnpbp_2019_109708
crossref_primary_10_1007_s11010_022_04408_1
crossref_primary_10_1016_j_freeradbiomed_2022_10_267
crossref_primary_10_3892_ol_2025_14924
crossref_primary_10_1096_fj_201800554RR
crossref_primary_10_1007_s11357_020_00311_z
crossref_primary_10_1016_j_cmet_2024_12_008
crossref_primary_10_3390_ph13080164
crossref_primary_10_1134_S0006297918070040
crossref_primary_10_1016_j_semnephrol_2022_10_013
crossref_primary_10_3390_antiox11091637
crossref_primary_10_7600_jpfsm_6_201
crossref_primary_10_1093_gerona_glad106
crossref_primary_10_1016_j_survophthal_2021_12_001
crossref_primary_10_14336_AD_2021_0523
crossref_primary_10_3390_cells12010108
crossref_primary_10_1002_advs_202204190
crossref_primary_10_1016_j_mad_2019_111194
crossref_primary_10_1113_JP278752
crossref_primary_10_1016_j_reprotox_2023_108530
crossref_primary_10_1016_j_molmed_2017_02_005
crossref_primary_10_1186_s12979_023_00398_w
crossref_primary_10_1016_j_exger_2019_05_016
crossref_primary_10_1016_j_cmet_2018_03_016
crossref_primary_10_1111_acel_13206
crossref_primary_10_1021_acsnano_3c10547
crossref_primary_10_3390_ijms21113756
crossref_primary_10_1016_j_jhazmat_2024_135103
crossref_primary_10_1016_j_arr_2024_102400
crossref_primary_10_1016_j_jddst_2025_106846
crossref_primary_10_1016_j_athplu_2024_06_001
crossref_primary_10_1007_s11357_020_00211_2
crossref_primary_10_1038_nrn_2017_42
crossref_primary_10_1038_s41467_020_15794_9
crossref_primary_10_3803_EnM_2020_405
crossref_primary_10_3762_bjoc_15_36
crossref_primary_10_1111_1751_7915_70048
crossref_primary_10_37349_etat_2021_00053
crossref_primary_10_59368_agingbio_20240034
crossref_primary_10_1016_j_cmet_2018_02_001
crossref_primary_10_1016_j_arr_2020_101107
crossref_primary_10_1186_s13045_020_00986_z
crossref_primary_10_1007_s11892_024_01557_z
crossref_primary_10_1002_der2_239
crossref_primary_10_1016_j_jdermsci_2022_05_002
crossref_primary_10_1016_j_mad_2022_111755
crossref_primary_10_1016_j_jnutbio_2023_109433
crossref_primary_10_1016_j_fct_2023_113878
crossref_primary_10_1038_s41514_018_0031_5
crossref_primary_10_1210_endrev_bnad019
crossref_primary_10_1038_s43587_022_00172_5
crossref_primary_10_1111_brv_12866
crossref_primary_10_1126_sciadv_adr8648
crossref_primary_10_1159_000529125
crossref_primary_10_1155_2020_2692794
crossref_primary_10_1210_er_2017_00211
crossref_primary_10_1016_j_indcrop_2023_117158
crossref_primary_10_1016_j_enzmictec_2022_110122
crossref_primary_10_14336_AD_2020_0909
crossref_primary_10_1016_j_fct_2021_112060
crossref_primary_10_1042_BST20180420
crossref_primary_10_1097_FJC_0000000000001154
crossref_primary_10_1007_s12011_023_03904_9
crossref_primary_10_1038_s41467_020_20213_0
crossref_primary_10_1111_1751_7915_13901
crossref_primary_10_3390_molecules27207054
crossref_primary_10_1007_s12264_023_01072_3
crossref_primary_10_3389_fnut_2021_714604
crossref_primary_10_3390_nu16142354
crossref_primary_10_1039_D0QM00897D
crossref_primary_10_1111_acel_13301
crossref_primary_10_1042_BST20180417
crossref_primary_10_1016_j_biopha_2024_116481
crossref_primary_10_1016_j_celrep_2022_111131
crossref_primary_10_1089_rej_2017_1975
crossref_primary_10_3390_catal15010037
crossref_primary_10_1096_fj_202001826R
crossref_primary_10_1186_s40104_023_00843_2
crossref_primary_10_1002_smll_202001849
crossref_primary_10_3892_mmr_2020_11116
crossref_primary_10_1016_j_chembiol_2018_01_012
crossref_primary_10_1016_j_lwt_2021_111605
crossref_primary_10_1016_j_mad_2020_111208
crossref_primary_10_1016_j_ymben_2020_11_008
crossref_primary_10_15252_emmm_202113943
crossref_primary_10_1007_s11948_017_9917_z
crossref_primary_10_1038_s41514_025_00192_6
crossref_primary_10_1038_s42255_018_0009_4
crossref_primary_10_1126_sciadv_adk9373
crossref_primary_10_1016_j_arr_2024_102213
crossref_primary_10_1016_j_brainresbull_2020_04_022
crossref_primary_10_3390_biom14050598
crossref_primary_10_1093_gerona_glac175
crossref_primary_10_1038_s41467_021_27080_3
crossref_primary_10_1038_s41591_018_0138_z
crossref_primary_10_3390_ijms251910534
crossref_primary_10_1002_trc2_70023
crossref_primary_10_3390_catal13050815
crossref_primary_10_3389_fmolb_2024_1354682
crossref_primary_10_1038_s42003_024_06888_x
crossref_primary_10_1093_gerona_glac049
crossref_primary_10_1007_s11357_022_00705_1
crossref_primary_10_1167_iovs_19_27099
crossref_primary_10_1111_acel_12793
crossref_primary_10_1007_s40266_022_00989_0
crossref_primary_10_3389_fchem_2023_1203278
crossref_primary_10_1177_17590914231198983
crossref_primary_10_1016_j_phanu_2019_100175
crossref_primary_10_1016_j_ejphar_2020_173158
crossref_primary_10_1681_ASN_2020081188
crossref_primary_10_1021_acsnano_0c09278
crossref_primary_10_3389_fragi_2022_851698
crossref_primary_10_1111_gtc_12542
crossref_primary_10_1016_j_cmet_2019_05_015
crossref_primary_10_1038_s41598_019_57085_4
crossref_primary_10_3390_cells13171509
crossref_primary_10_1016_j_bcp_2019_02_008
crossref_primary_10_3390_biom14121556
crossref_primary_10_4049_jimmunol_2300693
crossref_primary_10_18632_aging_202453
crossref_primary_10_1016_j_xcrm_2023_101157
crossref_primary_10_59541_001c_117234
crossref_primary_10_59541_001c_118564
crossref_primary_10_1097_HNP_0000000000000461
crossref_primary_10_1507_endocrj_EJ19_0313
crossref_primary_10_3389_fphys_2018_00704
crossref_primary_10_1172_JCI139828
crossref_primary_10_1152_ajpendo_00446_2020
crossref_primary_10_1186_s12970_021_00442_4
crossref_primary_10_1016_j_neulet_2025_138178
crossref_primary_10_1016_j_tips_2018_02_001
crossref_primary_10_1016_j_jphs_2022_11_005
crossref_primary_10_1021_acs_jproteome_2c00167
crossref_primary_10_5653_cerm_2023_06744
crossref_primary_10_1097_JXX_0000000000000597
crossref_primary_10_1016_j_cell_2018_02_008
crossref_primary_10_1210_clinem_dgad027
crossref_primary_10_1016_j_jid_2018_05_033
crossref_primary_10_1093_gerona_glad034
crossref_primary_10_3389_fncel_2018_00343
crossref_primary_10_1007_s00125_019_4831_3
crossref_primary_10_1016_j_jare_2021_08_003
crossref_primary_10_1016_j_reprotox_2024_108762
crossref_primary_10_3390_ijms25105303
crossref_primary_10_1038_s41598_023_33297_7
crossref_primary_10_1002_crt2_56
crossref_primary_10_14336_AD_2022_0414
crossref_primary_10_3389_fphar_2022_919905
crossref_primary_10_1080_10408398_2024_2387324
crossref_primary_10_1016_j_yjmcc_2021_04_007
crossref_primary_10_3390_ijms22083838
crossref_primary_10_15252_embj_2019103420
crossref_primary_10_1007_s11357_020_00171_7
crossref_primary_10_3390_nu14040755
crossref_primary_10_1038_s41598_019_49547_6
crossref_primary_10_1002_mus_26714
crossref_primary_10_1038_s41467_018_03421_7
crossref_primary_10_3390_polym15092031
crossref_primary_10_1016_j_bbrc_2024_149590
crossref_primary_10_1172_jci_insight_93885
crossref_primary_10_1096_fj_202400453R
crossref_primary_10_1038_s41598_022_18272_y
crossref_primary_10_1161_CIRCRESAHA_123_322910
crossref_primary_10_3389_fphys_2019_01125
crossref_primary_10_1038_s41514_021_00058_7
crossref_primary_10_1016_j_coph_2021_08_006
crossref_primary_10_1016_j_cmet_2021_04_003
crossref_primary_10_1080_14737140_2017_1298447
crossref_primary_10_1096_fj_201802752R
crossref_primary_10_1177_2632010X221106986
crossref_primary_10_1038_s41467_020_20123_1
crossref_primary_10_3389_fphys_2021_702276
crossref_primary_10_1128_mcb_00171_22
crossref_primary_10_1038_s42003_023_04613_8
crossref_primary_10_1038_s41387_024_00280_8
crossref_primary_10_1016_j_intimp_2025_114407
crossref_primary_10_1016_j_mcat_2024_114058
crossref_primary_10_1002_jnr_24397
crossref_primary_10_1016_j_ebiom_2023_104877
crossref_primary_10_1038_s42255_018_0015_6
crossref_primary_10_3389_fphar_2021_749727
crossref_primary_10_1080_21623945_2024_2313297
crossref_primary_10_3389_fimmu_2019_01187
crossref_primary_10_3389_fphys_2021_649547
crossref_primary_10_1016_j_cmet_2017_11_002
crossref_primary_10_1002_jcb_30522
crossref_primary_10_1007_s11306_019_1604_4
crossref_primary_10_7717_peerj_11401
crossref_primary_10_1016_j_neuint_2017_02_007
crossref_primary_10_3390_nu13061914
crossref_primary_10_1038_s41569_022_00685_x
crossref_primary_10_12688_f1000research_12120_1
crossref_primary_10_3390_cells9040791
crossref_primary_10_3143_geriatrics_57_213
crossref_primary_10_3389_fmolb_2021_702107
crossref_primary_10_1016_j_yjmcc_2017_09_001
crossref_primary_10_1038_s41598_017_14866_z
crossref_primary_10_3390_ijms25094680
crossref_primary_10_1038_s41467_025_56402_y
crossref_primary_10_3390_antiox12020376
crossref_primary_10_1038_s41419_019_1569_2
crossref_primary_10_1038_s41375_019_0692_5
crossref_primary_10_1016_j_aninu_2022_06_009
crossref_primary_10_1038_s41580_024_00752_w
crossref_primary_10_3390_biomedicines12010127
crossref_primary_10_1097_MOH_0000000000000601
crossref_primary_10_1016_j_phrs_2019_03_007
crossref_primary_10_1016_j_expneurol_2024_114698
crossref_primary_10_1007_s11357_020_00282_1
crossref_primary_10_1007_s11357_019_00074_2
crossref_primary_10_1038_s41573_020_0067_7
crossref_primary_10_15252_embj_201797135
crossref_primary_10_3390_ijms22073709
crossref_primary_10_3389_fcell_2020_00246
crossref_primary_10_1007_s00018_022_04499_5
crossref_primary_10_1007_s40279_022_01772_2
crossref_primary_10_1016_j_jbc_2025_108248
crossref_primary_10_1002_adbi_202400028
crossref_primary_10_1021_acs_biochem_7b01185
crossref_primary_10_1172_JCI120844
crossref_primary_10_3389_fmolb_2021_655687
crossref_primary_10_1002_stem_3152
crossref_primary_10_1016_j_trecan_2017_06_001
crossref_primary_10_7759_cureus_28812
crossref_primary_10_3390_cells12060915
crossref_primary_10_18632_aging_104007
crossref_primary_10_1016_j_arr_2023_102106
crossref_primary_10_1186_s12929_019_0527_8
crossref_primary_10_1016_j_metabol_2021_154923
crossref_primary_10_7554_eLife_104068_3
crossref_primary_10_1016_j_bbrc_2021_04_132
crossref_primary_10_1152_ajpheart_00409_2017
crossref_primary_10_1177_0192623317737065
crossref_primary_10_1016_j_expneurol_2020_113219
crossref_primary_10_1111_acel_13920
crossref_primary_10_1016_j_foodres_2023_112560
crossref_primary_10_1039_D3FO05221D
crossref_primary_10_7554_eLife_34836
crossref_primary_10_1002_mc_23673
crossref_primary_10_1016_j_jff_2022_105381
crossref_primary_10_1161_CIRCHEARTFAILURE_120_008170
crossref_primary_10_1161_CIRCRESAHA_118_311378
crossref_primary_10_3390_biom9010034
crossref_primary_10_1002_prp2_986
crossref_primary_10_1007_s12035_023_03251_9
crossref_primary_10_3389_fragi_2024_1452453
crossref_primary_10_7554_eLife_96962
crossref_primary_10_1016_j_lfs_2021_119299
crossref_primary_10_1016_j_molcel_2020_12_034
crossref_primary_10_1038_s41598_023_38762_x
crossref_primary_10_1016_j_abb_2018_10_013
crossref_primary_10_1126_sciadv_adr1538
crossref_primary_10_3390_nu16162795
crossref_primary_10_1007_s11033_022_07459_1
crossref_primary_10_1016_j_jad_2019_11_147
crossref_primary_10_3389_fcell_2020_00265
crossref_primary_10_3390_nu16010145
crossref_primary_10_1016_j_jss_2022_09_030
crossref_primary_10_3389_fragi_2022_926627
crossref_primary_10_1007_s13668_023_00475_y
crossref_primary_10_1631_jzus_B2300886
crossref_primary_10_1161_CIRCRESAHA_122_321587
crossref_primary_10_1007_s10522_019_09805_6
crossref_primary_10_1002_mnfr_202100111
crossref_primary_10_1016_j_colsurfa_2023_133024
crossref_primary_10_1007_s00439_020_02119_5
crossref_primary_10_1007_s11033_020_05590_5
crossref_primary_10_3390_antiox10121939
crossref_primary_10_1093_jb_mvab136
crossref_primary_10_3390_biomedicines8120615
crossref_primary_10_1038_s41514_023_00106_4
crossref_primary_10_1111_bph_15477
crossref_primary_10_1016_j_ab_2022_114837
crossref_primary_10_1111_jne_12508
crossref_primary_10_1016_j_preteyeres_2018_06_002
crossref_primary_10_1007_s11357_023_00789_3
crossref_primary_10_1093_chromsci_bmac107
crossref_primary_10_1016_j_neuroscience_2019_09_037
crossref_primary_10_3390_biom14050602
crossref_primary_10_3389_fphys_2021_746278
crossref_primary_10_1002_advs_202308698
crossref_primary_10_1016_j_exger_2020_110831
crossref_primary_10_3389_fnut_2021_717343
crossref_primary_10_1016_j_drudis_2020_06_016
crossref_primary_10_1016_j_neubiorev_2021_09_055
crossref_primary_10_3390_ijms241311114
crossref_primary_10_1126_science_aan2788
crossref_primary_10_1016_j_mce_2018_01_025
crossref_primary_10_1093_humupd_dmab038
crossref_primary_10_1002_bies_201600227
crossref_primary_10_12997_jla_2019_8_1_26
crossref_primary_10_2174_1871530322666220516160435
crossref_primary_10_18699_SSMJ20210505
crossref_primary_10_1126_science_abe9985
crossref_primary_10_1039_D1CY01798E
crossref_primary_10_1128_aem_01106_23
crossref_primary_10_1002_1873_3468_14698
crossref_primary_10_1002_cti2_1091
crossref_primary_10_1073_pnas_1902346116
crossref_primary_10_3390_ijms24032959
crossref_primary_10_1016_j_exger_2020_110841
crossref_primary_10_1080_13813455_2019_1638414
crossref_primary_10_1186_s12014_024_09509_1
crossref_primary_10_3390_ijms23158165
crossref_primary_10_1007_s10157_024_02502_w
crossref_primary_10_1161_HYPERTENSIONAHA_119_13357
crossref_primary_10_1089_ars_2018_7722
crossref_primary_10_1002_advs_202406390
crossref_primary_10_1007_s11064_019_02729_0
crossref_primary_10_1016_j_bbrc_2024_150889
crossref_primary_10_1289_EHP12259
crossref_primary_10_1016_j_cjca_2024_03_004
crossref_primary_10_1038_s43587_021_00167_8
crossref_primary_10_1002_advs_202305682
crossref_primary_10_3389_fneur_2018_00552
crossref_primary_10_3390_cimb45050250
crossref_primary_10_1016_j_neunet_2024_106940
crossref_primary_10_3389_fragi_2021_785171
crossref_primary_10_1016_j_biopha_2024_117199
crossref_primary_10_1073_pnas_1720673115
crossref_primary_10_1155_2017_9028435
crossref_primary_10_1155_2021_9955448
crossref_primary_10_1186_s13287_022_02748_9
crossref_primary_10_1016_j_tma_2018_08_003
crossref_primary_10_1016_j_neures_2023_01_004
crossref_primary_10_1089_rej_2019_2218
crossref_primary_10_1093_lifemeta_loac025
crossref_primary_10_3390_fermentation9070594
crossref_primary_10_1002_mco2_727
crossref_primary_10_14336_AD_2020_0105
crossref_primary_10_1007_s10517_022_05606_z
crossref_primary_10_3892_or_2017_5793
crossref_primary_10_1016_j_jff_2023_105985
crossref_primary_10_1093_hmg_ddac115
crossref_primary_10_1186_s12967_024_05614_9
crossref_primary_10_14336_AD_2023_0519_1
crossref_primary_10_1152_japplphysiol_00662_2022
crossref_primary_10_1038_s41514_018_0029_z
crossref_primary_10_3390_metabo14060341
crossref_primary_10_1016_j_celrep_2020_01_058
crossref_primary_10_1111_trf_15556
crossref_primary_10_2174_0118746098266041231212105020
crossref_primary_10_1002_med_22034
crossref_primary_10_35693_2500_1388_2021_6_4_19_39
crossref_primary_10_1016_j_neuron_2023_08_010
crossref_primary_10_1101_cshperspect_a037416
crossref_primary_10_1038_s41392_020_00311_7
crossref_primary_10_1124_pharmrev_121_000418
crossref_primary_10_1172_jci_insight_120182
crossref_primary_10_1172_jci_insight_178048
crossref_primary_10_1111_cpr_13303
crossref_primary_10_3389_fphys_2021_735573
crossref_primary_10_4103_1673_5374_290893
crossref_primary_10_1016_j_jia_2024_04_027
crossref_primary_10_1038_s41514_017_0017_8
crossref_primary_10_1007_s12640_017_9795_9
crossref_primary_10_1155_2024_8472130
crossref_primary_10_1111_bph_15980
crossref_primary_10_1016_j_biortech_2025_132350
crossref_primary_10_1016_j_mex_2023_102061
crossref_primary_10_1016_j_ebiom_2020_102636
crossref_primary_10_1186_s13395_018_0154_1
crossref_primary_10_1016_j_enzmictec_2025_110585
crossref_primary_10_1038_s41401_022_00956_w
crossref_primary_10_1016_j_jbiotec_2024_10_014
crossref_primary_10_1016_j_jff_2023_105922
crossref_primary_10_1007_s11427_023_2305_0
crossref_primary_10_1093_biolre_ioab078
crossref_primary_10_1016_j_bbrep_2024_101655
crossref_primary_10_1111_nyas_14599
crossref_primary_10_1016_j_advnut_2023_08_008
crossref_primary_10_1016_j_exger_2020_110888
crossref_primary_10_1093_ajcn_nqaa368
crossref_primary_10_1002_iub_2707
crossref_primary_10_1111_cpr_13419
crossref_primary_10_1016_j_semcancer_2024_10_005
crossref_primary_10_2174_1385272827666230201103848
crossref_primary_10_1016_j_freeradbiomed_2021_12_008
crossref_primary_10_1002_mnfr_202400340
crossref_primary_10_1016_j_gene_2022_146348
crossref_primary_10_1096_fj_201800361R
crossref_primary_10_1152_ajpheart_00039_2019
crossref_primary_10_1186_s13048_024_01504_2
crossref_primary_10_1111_eci_13334
crossref_primary_10_1016_j_ecoenv_2024_117388
crossref_primary_10_1016_j_exger_2020_110972
crossref_primary_10_1002_bab_2713
crossref_primary_10_1016_j_phrs_2020_105240
crossref_primary_10_1016_j_mad_2024_111993
crossref_primary_10_3389_fphar_2024_1410479
crossref_primary_10_1038_s41514_022_00084_z
crossref_primary_10_1111_imm_13837
crossref_primary_10_1016_j_bone_2024_117382
crossref_primary_10_3390_ijms25052594
crossref_primary_10_1002_fft2_350
crossref_primary_10_1507_endocrj_EJ23_0431
crossref_primary_10_1016_j_celrep_2024_114102
crossref_primary_10_1111_acel_14386
crossref_primary_10_1016_j_celrep_2019_07_043
crossref_primary_10_1016_j_jbc_2021_100855
crossref_primary_10_1038_s41574_021_00626_7
crossref_primary_10_1177_15353702221094235
crossref_primary_10_1007_s11357_020_00165_5
crossref_primary_10_1186_s40035_024_00409_w
crossref_primary_10_1681_ASN_2021020275
crossref_primary_10_1016_j_ejpb_2023_10_004
crossref_primary_10_1038_s41420_022_01031_3
crossref_primary_10_1530_JME_18_0085
crossref_primary_10_1002_oby_22263
crossref_primary_10_1007_s11357_021_00502_2
crossref_primary_10_1016_j_foodchem_2023_135982
crossref_primary_10_1016_j_it_2022_02_001
crossref_primary_10_1038_s41598_018_30792_0
crossref_primary_10_2220_biomedres_42_173
crossref_primary_10_3390_cells9030671
crossref_primary_10_20900_immunometab20200026
crossref_primary_10_1016_j_cels_2021_09_001
crossref_primary_10_1021_acsami_2c12971
crossref_primary_10_1021_acssensors_2c02565
crossref_primary_10_1038_s41598_023_30081_5
crossref_primary_10_7554_eLife_104068
crossref_primary_10_3389_fneur_2022_903565
crossref_primary_10_3390_cells11040710
crossref_primary_10_1016_j_molmet_2019_09_013
crossref_primary_10_3390_nu15133064
Cites_doi 10.1038/nature12188
10.1016/j.cmet.2015.05.023
10.1016/j.cell.2007.03.024
10.1016/j.febslet.2011.04.060
10.1002/emmm.201403943
10.1186/s12974-014-0221-4
10.1016/j.cmet.2016.05.011
10.1111/j.1474-9726.2007.00355.x
10.1016/j.cmet.2007.09.003
10.1016/j.cmet.2012.04.022
10.1016/j.tcb.2014.04.002
10.1186/s12883-015-0272-x
10.1016/j.cmet.2014.11.003
10.1002/hep.28245
10.1016/j.cell.2013.11.037
10.1016/j.phrs.2010.01.006
10.1172/JCI64099
10.1371/journal.pone.0098972
10.1089/jmf.2015.3439
10.1016/j.brainres.2016.04.060
10.1007/s00125-011-2288-0
10.1016/j.cmet.2014.04.001
10.1167/iovs.12-9662
10.1016/j.cmet.2013.07.013
10.1073/pnas.1417921112
10.1074/jbc.M111773200
10.1016/j.cmet.2015.04.002
10.1016/j.cell.2013.06.016
10.2337/db14-0667
10.1126/science.aaf2693
10.1523/JNEUROSCI.1385-10.2010
10.1016/j.tips.2013.12.004
10.1074/jbc.M110.213298
10.1016/j.neurobiolaging.2012.12.005
10.1161/01.RES.0000163635.62927.34
10.1371/journal.pone.0042357
10.1016/j.cmet.2011.08.014
10.1016/j.exer.2005.10.018
10.1016/j.ccell.2014.10.002
10.1111/acel.12461
10.1007/s12013-008-9041-4
10.1074/jbc.M804681200
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Copyright © 2016 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Inc.
– notice: Copyright © 2016 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.cmet.2016.09.013
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1932-7420
EndPage 806
ExternalDocumentID PMC5668137
28068222
10_1016_j_cmet_2016_09_013
S1550413116304958
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/N001842/1
– fundername: NIDDK NIH HHS
  grantid: P30 DK020579
– fundername: NIDDK NIH HHS
  grantid: P30 DK056341
– fundername: NIA NIH HHS
  grantid: R01 AG047902
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6I.
6J9
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IHE
IXB
J1W
JIG
M3Z
M41
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SES
SSZ
TR2
UNMZH
WQ6
ZA5
AAEDT
AAIKJ
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
OZT
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
EFKBS
ID FETCH-LOGICAL-c521t-1ca9b56f7c78acbf4ed7a30939245294374e03a4c3fba0b5882b1c5df8726a5b3
IEDL.DBID IXB
ISSN 1550-4131
1932-7420
IngestDate Thu Aug 21 18:32:52 EDT 2025
Fri Jul 11 09:32:10 EDT 2025
Thu Jan 02 22:59:22 EST 2025
Tue Jul 01 03:58:16 EDT 2025
Thu Apr 24 23:11:30 EDT 2025
Fri Feb 23 02:27:34 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords NAD
NAD+ precursor
insulin sensitivity
eye function
anti-aging
mitochondria
aging
nicotinamide mononucleotide
glucose metabolism
NMN
energy metabolism
NAD(+)
NAD(+) precursor
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2016 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-1ca9b56f7c78acbf4ed7a30939245294374e03a4c3fba0b5882b1c5df8726a5b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present address: Gladstone Institute of Neurological Disease and Department of Neurology, University of California, San Francisco, CA 94158, USA.
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1550413116304958
PMID 28068222
PQID 1857380685
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5668137
proquest_miscellaneous_1857380685
pubmed_primary_28068222
crossref_primary_10_1016_j_cmet_2016_09_013
crossref_citationtrail_10_1016_j_cmet_2016_09_013
elsevier_sciencedirect_doi_10_1016_j_cmet_2016_09_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12-13
PublicationDateYYYYMMDD 2016-12-13
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-13
  day: 13
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell metabolism
PublicationTitleAlternate Cell Metab
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Cantó, Houtkooper, Pirinen, Youn, Oosterveer, Cen, Fernandez-Marcos, Yamamoto, Andreux, Cettour-Rose (bib8) 2012; 15
Imai (bib20) 2010; 62
Barzilai, Crandall, Kritchevsky, Espeland (bib4) 2016; 23
Imai (bib21) 2011; 585
Ramsey, Mills, Satoh, Imai (bib32) 2008; 7
Yamamoto, Byun, Zhai, Ikeda, Oka, Sadoshima (bib40) 2014; 9
Wang, Hu, Yang, Takata, Sakurai (bib39) 2016; 1643
Aredo, Zhang, Chen, Wang, Li, Ufret-Vincenty (bib2) 2015; 12
Gariani, Menzies, Ryu, Wegner, Wang, Ropelle, Moullan, Zhang, Perino, Lemos (bib14) 2015; 63
Hubbard, Sinclair (bib18) 2014; 35
Lee, Hong, Jun, Yang (bib25) 2015; 18
Anderson, Bitterman, Wood, Medvedik, Cohen, Lin, Manchester, Gordon, Sinclair (bib1) 2002; 277
Khan, Auranen, Paetau, Pirinen, Euro, Forsström, Pasila, Velagapudi, Carroll, Auwerx, Suomalainen (bib23) 2014; 6
Long, Owens, Schlappal, Kristian, Fishman, Schuh (bib26) 2015; 15
Massudi, Grant, Braidy, Guest, Farnsworth, Guillemin (bib27) 2012; 7
Yoon, Yoshida, Johnson, Takikawa, Usui, Tobe, Nakagawa, Yoshino, Imai (bib41) 2015; 21
Houtkooper, Mouchiroud, Ryu, Moullan, Katsyuba, Knott, Williams, Auwerx (bib17) 2013; 497
Mouchiroud, Houtkooper, Moullan, Katsyuba, Ryu, Cantó, Mottis, Jo, Viswanathan, Schoonjans (bib29) 2013; 154
Caton, Kieswich, Yaqoob, Holness, Sugden (bib10) 2011; 54
Cerutti, Pirinen, Lamperti, Marchet, Sauve, Li, Leoni, Schon, Dantzer, Auwerx (bib11) 2014; 19
Satoh, Brace, Rensing, Cliften, Wozniak, Herzog, Yamada, Imai (bib35) 2013; 18
Mattapallil, Wawrousek, Chan, Zhao, Roychoudhury, Ferguson, Caspi (bib28) 2012; 53
Tummala, Gomes, Yilmaz, Graña, Bakiri, Ruppen, Ximénez-Embún, Sheshappanavar, Rodriguez-Justo, Pisano (bib37) 2014; 26
Zhu, Lu, Lee, Ugurbil, Chen (bib44) 2015; 112
Nikiforov, Doelle, Niere, Ziegler (bib30) 2011; 286
Zhang, Ryu, Wu, Gariani, Wang, Luan, D’Amico, Ropelle, Lutolf, Aebersold (bib43) 2016; 352
Brown, Maqsood, Huang, Pan, Harkcom, Li, Sauve, Verdin, Jaffrey (bib7) 2014; 20
Berg, Scherer (bib6) 2005; 96
Lamming, Ye, Sabatini, Baur (bib24) 2013; 123
Balan, Miller, Kaplun, Balan, Chong, Li, Kaplun, VanBerkum, Arking, Freeman (bib3) 2008; 283
Belenky, Racette, Bogan, McClure, Smith, Brenner (bib5) 2007; 129
de Picciotto, Gano, Johnson, Martens, Sindler, Mills, Imai, Seals (bib12) 2016; 15
Imai (bib19) 2009; 53
van de Weijer, Phielix, Bilet, Williams, Ropelle, Bierwagen, Livingstone, Nowotny, Sparks, Paglialunga (bib38) 2015; 64
Revollo, Körner, Mills, Satoh, Wang, Garten, Dasgupta, Sasaki, Wolberger, Townsend (bib33) 2007; 6
Zoukhri (bib45) 2006; 82
Gomes, Price, Ling, Moslehi, Montgomery, Rajman, White, Teodoro, Wrann, Hubbard (bib15) 2013; 155
Imai, Guarente (bib22) 2014; 24
Freireich, Gehan, Rall, Schmidt, Skipper (bib13) 1966; 50
Gong, Pan, Vempati, Zhao, Knable, Ho, Wang, Sastre, Ono, Sauve, Pasinetti (bib16) 2013; 34
(bib31) 2013
Yoshino, Mills, Yoon, Imai (bib42) 2011; 14
Satoh, Brace, Ben-Josef, West, Wozniak, Holtzman, Herzog, Imai (bib34) 2010; 30
Cantó, Menzies, Auwerx (bib9) 2015; 22
Stein, Imai (bib36) 2014; 33
Aredo (10.1016/j.cmet.2016.09.013_bib2) 2015; 12
Belenky (10.1016/j.cmet.2016.09.013_bib5) 2007; 129
Wang (10.1016/j.cmet.2016.09.013_bib39) 2016; 1643
Zhu (10.1016/j.cmet.2016.09.013_bib44) 2015; 112
Berg (10.1016/j.cmet.2016.09.013_bib6) 2005; 96
Khan (10.1016/j.cmet.2016.09.013_bib23) 2014; 6
Mouchiroud (10.1016/j.cmet.2016.09.013_bib29) 2013; 154
Houtkooper (10.1016/j.cmet.2016.09.013_bib17) 2013; 497
Freireich (10.1016/j.cmet.2016.09.013_bib13) 1966; 50
Revollo (10.1016/j.cmet.2016.09.013_bib33) 2007; 6
Imai (10.1016/j.cmet.2016.09.013_bib21) 2011; 585
Massudi (10.1016/j.cmet.2016.09.013_bib27) 2012; 7
Tummala (10.1016/j.cmet.2016.09.013_bib37) 2014; 26
Zhang (10.1016/j.cmet.2016.09.013_bib43) 2016; 352
Gomes (10.1016/j.cmet.2016.09.013_bib15) 2013; 155
de Picciotto (10.1016/j.cmet.2016.09.013_bib12) 2016; 15
Brown (10.1016/j.cmet.2016.09.013_bib7) 2014; 20
Lamming (10.1016/j.cmet.2016.09.013_bib24) 2013; 123
Zoukhri (10.1016/j.cmet.2016.09.013_bib45) 2006; 82
Satoh (10.1016/j.cmet.2016.09.013_bib35) 2013; 18
Yoon (10.1016/j.cmet.2016.09.013_bib41) 2015; 21
Satoh (10.1016/j.cmet.2016.09.013_bib34) 2010; 30
Anderson (10.1016/j.cmet.2016.09.013_bib1) 2002; 277
Barzilai (10.1016/j.cmet.2016.09.013_bib4) 2016; 23
Imai (10.1016/j.cmet.2016.09.013_bib19) 2009; 53
Gariani (10.1016/j.cmet.2016.09.013_bib14) 2015; 63
Stein (10.1016/j.cmet.2016.09.013_bib36) 2014; 33
Hubbard (10.1016/j.cmet.2016.09.013_bib18) 2014; 35
Mattapallil (10.1016/j.cmet.2016.09.013_bib28) 2012; 53
(10.1016/j.cmet.2016.09.013_bib31) 2013
Cantó (10.1016/j.cmet.2016.09.013_bib9) 2015; 22
Gong (10.1016/j.cmet.2016.09.013_bib16) 2013; 34
Long (10.1016/j.cmet.2016.09.013_bib26) 2015; 15
Yamamoto (10.1016/j.cmet.2016.09.013_bib40) 2014; 9
Yoshino (10.1016/j.cmet.2016.09.013_bib42) 2011; 14
Caton (10.1016/j.cmet.2016.09.013_bib10) 2011; 54
Imai (10.1016/j.cmet.2016.09.013_bib22) 2014; 24
Balan (10.1016/j.cmet.2016.09.013_bib3) 2008; 283
Lee (10.1016/j.cmet.2016.09.013_bib25) 2015; 18
Ramsey (10.1016/j.cmet.2016.09.013_bib32) 2008; 7
Imai (10.1016/j.cmet.2016.09.013_bib20) 2010; 62
Nikiforov (10.1016/j.cmet.2016.09.013_bib30) 2011; 286
Cantó (10.1016/j.cmet.2016.09.013_bib8) 2012; 15
Cerutti (10.1016/j.cmet.2016.09.013_bib11) 2014; 19
van de Weijer (10.1016/j.cmet.2016.09.013_bib38) 2015; 64
References_xml – volume: 123
  start-page: 980
  year: 2013
  end-page: 989
  ident: bib24
  article-title: Rapalogs and mTOR inhibitors as anti-aging therapeutics
  publication-title: J. Clin. Invest.
– volume: 18
  start-page: 416
  year: 2013
  end-page: 430
  ident: bib35
  article-title: Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH
  publication-title: Cell Metab.
– volume: 6
  start-page: 363
  year: 2007
  end-page: 375
  ident: bib33
  article-title: Nampt/PBEF/Visfatin regulates insulin secretion in β cells as a systemic NAD biosynthetic enzyme
  publication-title: Cell Metab.
– volume: 15
  start-page: 522
  year: 2016
  end-page: 530
  ident: bib12
  article-title: Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice
  publication-title: Aging Cell
– volume: 35
  start-page: 146
  year: 2014
  end-page: 154
  ident: bib18
  article-title: Small molecule SIRT1 activators for the treatment of aging and age-related diseases
  publication-title: Trends Pharmacol. Sci.
– volume: 9
  start-page: e98972
  year: 2014
  ident: bib40
  article-title: Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion
  publication-title: PLoS ONE
– volume: 20
  start-page: 1059
  year: 2014
  end-page: 1068
  ident: bib7
  article-title: Activation of SIRT3 by the NAD
  publication-title: Cell Metab.
– volume: 22
  start-page: 31
  year: 2015
  end-page: 53
  ident: bib9
  article-title: NAD(+) metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus
  publication-title: Cell Metab.
– volume: 53
  start-page: 2921
  year: 2012
  end-page: 2927
  ident: bib28
  article-title: The Rd8 mutation of the Crb1 gene is present in vendor lines of C57BL/6N mice and embryonic stem cells, and confounds ocular induced mutant phenotypes
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 62
  start-page: 42
  year: 2010
  end-page: 47
  ident: bib20
  article-title: A possibility of nutriceuticals as an anti-aging intervention: activation of sirtuins by promoting mammalian NAD biosynthesis
  publication-title: Pharmacol. Res.
– volume: 24
  start-page: 464
  year: 2014
  end-page: 471
  ident: bib22
  article-title: NAD+ and sirtuins in aging and disease
  publication-title: Trends Cell Biol.
– volume: 14
  start-page: 528
  year: 2011
  end-page: 536
  ident: bib42
  article-title: Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice
  publication-title: Cell Metab.
– volume: 34
  start-page: 1581
  year: 2013
  end-page: 1588
  ident: bib16
  article-title: Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-γ coactivator 1α regulated β-secretase 1 degradation and mitochondrial gene expression in Alzheimer’s mouse models
  publication-title: Neurobiol. Aging
– volume: 23
  start-page: 1060
  year: 2016
  end-page: 1065
  ident: bib4
  article-title: Metformin as a Tool to Target Aging
  publication-title: Cell Metab.
– volume: 96
  start-page: 939
  year: 2005
  end-page: 949
  ident: bib6
  article-title: Adipose tissue, inflammation, and cardiovascular disease
  publication-title: Circ. Res.
– volume: 18
  start-page: 1207
  year: 2015
  end-page: 1213
  ident: bib25
  article-title: Nicotinamide riboside ameliorates hepatic metaflammation by modulating NLRP3 inflammasome in a rodent model of type 2 diabetes
  publication-title: J. Med. Food
– volume: 15
  start-page: 19
  year: 2015
  ident: bib26
  article-title: Effect of nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an Alzheimer’s disease-relevant murine model
  publication-title: BMC Neurol.
– volume: 50
  start-page: 219
  year: 1966
  end-page: 244
  ident: bib13
  article-title: Quantitative comparison of toxicity of anticancer agents in mouse, rat, hamster, dog, monkey, and man
  publication-title: Cancer Chemother. Rep.
– volume: 7
  start-page: 78
  year: 2008
  end-page: 88
  ident: bib32
  article-title: Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in β cell-specific Sirt1-overexpressing (BESTO) mice
  publication-title: Aging Cell
– volume: 585
  start-page: 1657
  year: 2011
  end-page: 1662
  ident: bib21
  article-title: Dissecting systemic control of metabolism and aging in the NAD World: the importance of SIRT1 and NAMPT-mediated NAD biosynthesis
  publication-title: FEBS Lett.
– volume: 154
  start-page: 430
  year: 2013
  end-page: 441
  ident: bib29
  article-title: The NAD(+)/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling
  publication-title: Cell
– volume: 1643
  start-page: 1
  year: 2016
  end-page: 9
  ident: bib39
  article-title: Nicotinamide mononucleotide protects against β-amyloid oligomer-induced cognitive impairment and neuronal death
  publication-title: Brain Res.
– volume: 54
  start-page: 3083
  year: 2011
  end-page: 3092
  ident: bib10
  article-title: Nicotinamide mononucleotide protects against pro-inflammatory cytokine-mediated impairment of mouse islet function
  publication-title: Diabetologia
– volume: 155
  start-page: 1624
  year: 2013
  end-page: 1638
  ident: bib15
  article-title: Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging
  publication-title: Cell
– volume: 7
  start-page: e42357
  year: 2012
  ident: bib27
  article-title: Age-associated changes in oxidative stress and NAD+ metabolism in human tissue
  publication-title: PLoS ONE
– volume: 12
  start-page: 6
  year: 2015
  ident: bib2
  article-title: Differences in the distribution, phenotype and gene expression of subretinal microglia/macrophages in C57BL/6N (Crb1 rd8/rd8) versus C57BL6/J (Crb1 wt/wt) mice
  publication-title: J. Neuroinflammation
– volume: 6
  start-page: 721
  year: 2014
  end-page: 731
  ident: bib23
  article-title: Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3
  publication-title: EMBO Mol. Med.
– volume: 286
  start-page: 21767
  year: 2011
  end-page: 21778
  ident: bib30
  article-title: Pathways and subcellular compartmentation of NAD biosynthesis in human cells: from entry of extracellular precursors to mitochondrial NAD generation
  publication-title: J. Biol. Chem.
– volume: 283
  start-page: 27810
  year: 2008
  end-page: 27819
  ident: bib3
  article-title: Life span extension and neuronal cell protection by Drosophila nicotinamidase
  publication-title: J. Biol. Chem.
– volume: 26
  start-page: 826
  year: 2014
  end-page: 839
  ident: bib37
  article-title: Inhibition of de novo NAD(+) synthesis by oncogenic URI causes liver tumorigenesis through DNA damage
  publication-title: Cancer Cell
– volume: 82
  start-page: 885
  year: 2006
  end-page: 898
  ident: bib45
  article-title: Effect of inflammation on lacrimal gland function
  publication-title: Exp. Eye Res.
– volume: 277
  start-page: 18881
  year: 2002
  end-page: 18890
  ident: bib1
  article-title: Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels
  publication-title: J. Biol. Chem.
– volume: 30
  start-page: 10220
  year: 2010
  end-page: 10232
  ident: bib34
  article-title: SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus
  publication-title: J. Neurosci.
– volume: 33
  start-page: 1321
  year: 2014
  end-page: 1340
  ident: bib36
  article-title: Specific ablation of Nampt in adult neural stem cells recapitulates their functional defects during aging
  publication-title: EMBO J.
– volume: 64
  start-page: 1193
  year: 2015
  end-page: 1201
  ident: bib38
  article-title: Evidence for a direct effect of the NAD+ precursor acipimox on muscle mitochondrial function in humans
  publication-title: Diabetes
– volume: 21
  start-page: 706
  year: 2015
  end-page: 717
  ident: bib41
  article-title: SIRT1-mediated eNAMPT secretion from adipose tissue regulates hypothalamic NAD+ and function in mice
  publication-title: Cell Metab.
– volume: 15
  start-page: 838
  year: 2012
  end-page: 847
  ident: bib8
  article-title: The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity
  publication-title: Cell Metab.
– volume: 112
  start-page: 2876
  year: 2015
  end-page: 2881
  ident: bib44
  article-title: In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 129
  start-page: 473
  year: 2007
  end-page: 484
  ident: bib5
  article-title: Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD
  publication-title: Cell
– volume: 63
  start-page: 1190
  year: 2015
  end-page: 1204
  ident: bib14
  article-title: Eliciting the mitochondrial unfolded protein response via NAD repletion reverses fatty liver disease
  publication-title: Hepatology
– volume: 53
  start-page: 65
  year: 2009
  end-page: 74
  ident: bib19
  article-title: The NAD World: a new systemic regulatory network for metabolism and aging--Sirt1, systemic NAD biosynthesis, and their importance
  publication-title: Cell Biochem. Biophys.
– year: 2013
  ident: bib31
  publication-title: What Future for Health Spending?
– volume: 19
  start-page: 1042
  year: 2014
  end-page: 1049
  ident: bib11
  article-title: NAD(+)-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease
  publication-title: Cell Metab.
– volume: 352
  start-page: 1436
  year: 2016
  end-page: 1443
  ident: bib43
  article-title: NAD
  publication-title: Science
– volume: 497
  start-page: 451
  year: 2013
  end-page: 457
  ident: bib17
  article-title: Mitonuclear protein imbalance as a conserved longevity mechanism
  publication-title: Nature
– volume: 497
  start-page: 451
  year: 2013
  ident: 10.1016/j.cmet.2016.09.013_bib17
  article-title: Mitonuclear protein imbalance as a conserved longevity mechanism
  publication-title: Nature
  doi: 10.1038/nature12188
– volume: 22
  start-page: 31
  year: 2015
  ident: 10.1016/j.cmet.2016.09.013_bib9
  article-title: NAD(+) metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.05.023
– volume: 129
  start-page: 473
  year: 2007
  ident: 10.1016/j.cmet.2016.09.013_bib5
  article-title: Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+
  publication-title: Cell
  doi: 10.1016/j.cell.2007.03.024
– volume: 585
  start-page: 1657
  year: 2011
  ident: 10.1016/j.cmet.2016.09.013_bib21
  article-title: Dissecting systemic control of metabolism and aging in the NAD World: the importance of SIRT1 and NAMPT-mediated NAD biosynthesis
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2011.04.060
– volume: 6
  start-page: 721
  year: 2014
  ident: 10.1016/j.cmet.2016.09.013_bib23
  article-title: Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3
  publication-title: EMBO Mol. Med.
  doi: 10.1002/emmm.201403943
– volume: 12
  start-page: 6
  year: 2015
  ident: 10.1016/j.cmet.2016.09.013_bib2
  article-title: Differences in the distribution, phenotype and gene expression of subretinal microglia/macrophages in C57BL/6N (Crb1 rd8/rd8) versus C57BL6/J (Crb1 wt/wt) mice
  publication-title: J. Neuroinflammation
  doi: 10.1186/s12974-014-0221-4
– volume: 23
  start-page: 1060
  year: 2016
  ident: 10.1016/j.cmet.2016.09.013_bib4
  article-title: Metformin as a Tool to Target Aging
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.05.011
– volume: 7
  start-page: 78
  year: 2008
  ident: 10.1016/j.cmet.2016.09.013_bib32
  article-title: Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in β cell-specific Sirt1-overexpressing (BESTO) mice
  publication-title: Aging Cell
  doi: 10.1111/j.1474-9726.2007.00355.x
– volume: 6
  start-page: 363
  year: 2007
  ident: 10.1016/j.cmet.2016.09.013_bib33
  article-title: Nampt/PBEF/Visfatin regulates insulin secretion in β cells as a systemic NAD biosynthetic enzyme
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2007.09.003
– volume: 15
  start-page: 838
  year: 2012
  ident: 10.1016/j.cmet.2016.09.013_bib8
  article-title: The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2012.04.022
– volume: 24
  start-page: 464
  year: 2014
  ident: 10.1016/j.cmet.2016.09.013_bib22
  article-title: NAD+ and sirtuins in aging and disease
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2014.04.002
– year: 2013
  ident: 10.1016/j.cmet.2016.09.013_bib31
– volume: 15
  start-page: 19
  year: 2015
  ident: 10.1016/j.cmet.2016.09.013_bib26
  article-title: Effect of nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an Alzheimer’s disease-relevant murine model
  publication-title: BMC Neurol.
  doi: 10.1186/s12883-015-0272-x
– volume: 20
  start-page: 1059
  year: 2014
  ident: 10.1016/j.cmet.2016.09.013_bib7
  article-title: Activation of SIRT3 by the NAD+ precursor nicotinamide riboside protects from noise-induced hearing loss
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.11.003
– volume: 63
  start-page: 1190
  year: 2015
  ident: 10.1016/j.cmet.2016.09.013_bib14
  article-title: Eliciting the mitochondrial unfolded protein response via NAD repletion reverses fatty liver disease
  publication-title: Hepatology
  doi: 10.1002/hep.28245
– volume: 155
  start-page: 1624
  year: 2013
  ident: 10.1016/j.cmet.2016.09.013_bib15
  article-title: Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging
  publication-title: Cell
  doi: 10.1016/j.cell.2013.11.037
– volume: 62
  start-page: 42
  year: 2010
  ident: 10.1016/j.cmet.2016.09.013_bib20
  article-title: A possibility of nutriceuticals as an anti-aging intervention: activation of sirtuins by promoting mammalian NAD biosynthesis
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2010.01.006
– volume: 123
  start-page: 980
  year: 2013
  ident: 10.1016/j.cmet.2016.09.013_bib24
  article-title: Rapalogs and mTOR inhibitors as anti-aging therapeutics
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI64099
– volume: 9
  start-page: e98972
  year: 2014
  ident: 10.1016/j.cmet.2016.09.013_bib40
  article-title: Nicotinamide mononucleotide, an intermediate of NAD+ synthesis, protects the heart from ischemia and reperfusion
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0098972
– volume: 18
  start-page: 1207
  year: 2015
  ident: 10.1016/j.cmet.2016.09.013_bib25
  article-title: Nicotinamide riboside ameliorates hepatic metaflammation by modulating NLRP3 inflammasome in a rodent model of type 2 diabetes
  publication-title: J. Med. Food
  doi: 10.1089/jmf.2015.3439
– volume: 1643
  start-page: 1
  year: 2016
  ident: 10.1016/j.cmet.2016.09.013_bib39
  article-title: Nicotinamide mononucleotide protects against β-amyloid oligomer-induced cognitive impairment and neuronal death
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2016.04.060
– volume: 54
  start-page: 3083
  year: 2011
  ident: 10.1016/j.cmet.2016.09.013_bib10
  article-title: Nicotinamide mononucleotide protects against pro-inflammatory cytokine-mediated impairment of mouse islet function
  publication-title: Diabetologia
  doi: 10.1007/s00125-011-2288-0
– volume: 19
  start-page: 1042
  year: 2014
  ident: 10.1016/j.cmet.2016.09.013_bib11
  article-title: NAD(+)-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2014.04.001
– volume: 53
  start-page: 2921
  year: 2012
  ident: 10.1016/j.cmet.2016.09.013_bib28
  article-title: The Rd8 mutation of the Crb1 gene is present in vendor lines of C57BL/6N mice and embryonic stem cells, and confounds ocular induced mutant phenotypes
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.12-9662
– volume: 18
  start-page: 416
  year: 2013
  ident: 10.1016/j.cmet.2016.09.013_bib35
  article-title: Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2013.07.013
– volume: 112
  start-page: 2876
  year: 2015
  ident: 10.1016/j.cmet.2016.09.013_bib44
  article-title: In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1417921112
– volume: 277
  start-page: 18881
  year: 2002
  ident: 10.1016/j.cmet.2016.09.013_bib1
  article-title: Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111773200
– volume: 21
  start-page: 706
  year: 2015
  ident: 10.1016/j.cmet.2016.09.013_bib41
  article-title: SIRT1-mediated eNAMPT secretion from adipose tissue regulates hypothalamic NAD+ and function in mice
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.04.002
– volume: 50
  start-page: 219
  year: 1966
  ident: 10.1016/j.cmet.2016.09.013_bib13
  article-title: Quantitative comparison of toxicity of anticancer agents in mouse, rat, hamster, dog, monkey, and man
  publication-title: Cancer Chemother. Rep.
– volume: 154
  start-page: 430
  year: 2013
  ident: 10.1016/j.cmet.2016.09.013_bib29
  article-title: The NAD(+)/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling
  publication-title: Cell
  doi: 10.1016/j.cell.2013.06.016
– volume: 64
  start-page: 1193
  year: 2015
  ident: 10.1016/j.cmet.2016.09.013_bib38
  article-title: Evidence for a direct effect of the NAD+ precursor acipimox on muscle mitochondrial function in humans
  publication-title: Diabetes
  doi: 10.2337/db14-0667
– volume: 352
  start-page: 1436
  year: 2016
  ident: 10.1016/j.cmet.2016.09.013_bib43
  article-title: NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice
  publication-title: Science
  doi: 10.1126/science.aaf2693
– volume: 30
  start-page: 10220
  year: 2010
  ident: 10.1016/j.cmet.2016.09.013_bib34
  article-title: SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1385-10.2010
– volume: 35
  start-page: 146
  year: 2014
  ident: 10.1016/j.cmet.2016.09.013_bib18
  article-title: Small molecule SIRT1 activators for the treatment of aging and age-related diseases
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/j.tips.2013.12.004
– volume: 286
  start-page: 21767
  year: 2011
  ident: 10.1016/j.cmet.2016.09.013_bib30
  article-title: Pathways and subcellular compartmentation of NAD biosynthesis in human cells: from entry of extracellular precursors to mitochondrial NAD generation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.213298
– volume: 34
  start-page: 1581
  year: 2013
  ident: 10.1016/j.cmet.2016.09.013_bib16
  article-title: Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-γ coactivator 1α regulated β-secretase 1 degradation and mitochondrial gene expression in Alzheimer’s mouse models
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2012.12.005
– volume: 96
  start-page: 939
  year: 2005
  ident: 10.1016/j.cmet.2016.09.013_bib6
  article-title: Adipose tissue, inflammation, and cardiovascular disease
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.0000163635.62927.34
– volume: 7
  start-page: e42357
  year: 2012
  ident: 10.1016/j.cmet.2016.09.013_bib27
  article-title: Age-associated changes in oxidative stress and NAD+ metabolism in human tissue
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0042357
– volume: 14
  start-page: 528
  year: 2011
  ident: 10.1016/j.cmet.2016.09.013_bib42
  article-title: Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2011.08.014
– volume: 82
  start-page: 885
  year: 2006
  ident: 10.1016/j.cmet.2016.09.013_bib45
  article-title: Effect of inflammation on lacrimal gland function
  publication-title: Exp. Eye Res.
  doi: 10.1016/j.exer.2005.10.018
– volume: 33
  start-page: 1321
  year: 2014
  ident: 10.1016/j.cmet.2016.09.013_bib36
  article-title: Specific ablation of Nampt in adult neural stem cells recapitulates their functional defects during aging
  publication-title: EMBO J.
– volume: 26
  start-page: 826
  year: 2014
  ident: 10.1016/j.cmet.2016.09.013_bib37
  article-title: Inhibition of de novo NAD(+) synthesis by oncogenic URI causes liver tumorigenesis through DNA damage
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2014.10.002
– volume: 15
  start-page: 522
  year: 2016
  ident: 10.1016/j.cmet.2016.09.013_bib12
  article-title: Nicotinamide mononucleotide supplementation reverses vascular dysfunction and oxidative stress with aging in mice
  publication-title: Aging Cell
  doi: 10.1111/acel.12461
– volume: 53
  start-page: 65
  year: 2009
  ident: 10.1016/j.cmet.2016.09.013_bib19
  article-title: The NAD World: a new systemic regulatory network for metabolism and aging--Sirt1, systemic NAD biosynthesis, and their importance
  publication-title: Cell Biochem. Biophys.
  doi: 10.1007/s12013-008-9041-4
– volume: 283
  start-page: 27810
  year: 2008
  ident: 10.1016/j.cmet.2016.09.013_bib3
  article-title: Life span extension and neuronal cell protection by Drosophila nicotinamidase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M804681200
SSID ssj0036393
Score 2.6670372
Snippet NAD+ availability decreases with age and in certain disease conditions. Nicotinamide mononucleotide (NMN), a key NAD+ intermediate, has been shown to enhance...
NAD availability decreases with age and in certain disease conditions. Nicotinamide mononucleotide (NMN), a key NAD intermediate, has been shown to enhance NAD...
NAD + availability decreases with age and in certain disease conditions. Nicotinamide mononucleotide (NMN), a key NAD + intermediate, has been shown to enhance...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 795
SubjectTerms Administration, Oral
aging
Aging - drug effects
Aging - genetics
Aging - physiology
Animals
anti-aging
Bone Density - drug effects
Cell Respiration - drug effects
Darkness
Drinking - drug effects
Eating - drug effects
energy metabolism
Energy Metabolism - drug effects
eye function
Food
Gene Expression Regulation - drug effects
glucose metabolism
Insulin - pharmacology
insulin sensitivity
Lipids - blood
Lymphocytes - drug effects
Lymphocytes - metabolism
Male
Mice, Inbred C57BL
mitochondria
Mitochondria - drug effects
Mitochondria - metabolism
Muscle, Skeletal - drug effects
Muscle, Skeletal - metabolism
Myeloid Cells - drug effects
Myeloid Cells - metabolism
NAD
NAD - metabolism
NAD+ precursor
nicotinamide mononucleotide
Nicotinamide Mononucleotide - administration & dosage
Nicotinamide Mononucleotide - blood
Nicotinamide Mononucleotide - pharmacology
NMN
Physical Conditioning, Animal
Time Factors
Weight Gain - drug effects
Title Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Decline in Mice
URI https://dx.doi.org/10.1016/j.cmet.2016.09.013
https://www.ncbi.nlm.nih.gov/pubmed/28068222
https://www.proquest.com/docview/1857380685
https://pubmed.ncbi.nlm.nih.gov/PMC5668137
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhEOilJGmbbl6o0FsRa0eSLR_zWkJpe-kG9iYkeZw4JN4lu3vIv8-MbC_dhuSQo2UJhGY084mZ-Yax7yYB6RAHiVLhS0ehjxQ-81oUzlQGH2PVSewN-PtPdnWtfk70ZIOd97UwlFbZ2f7Wpkdr3Y0Mu9Mczup6-JfAtSK2mIxCRZoKfqUysYhvctZbY4keOCbZ42RBs7vCmTbHKzwA5VOmWeQ6TeVrzukl-Pw_h_IfpzTaZh87NMlP2w3vsA1odtlW21_y6RNrfk2bGzFG48vXSXL5tOKkA4ua-tGXwPFqTxuiNsYh-qwj9QbM-ekNiF6EUPKYMNrbS34BVFgJvG5wRYDP7Hp0OT6_El2DBRGoj4FIgyu8zqo85MYFXykoc0eh0SLGY5XMFSTSqSAr7xKvEY37NOiyMvlJ5rSXX9gm7g6-Mo64SZWQeB-cUiqAkc5Lr2XhlMtTFQYs7U_Who59nJpg3Ns-zezOkjQsScMmhUVpDNiP1ZpZy73x5mzdC8yuaZBF5_Dmum-9dC1eLYqXuAamy7klmixpkszoAdtrpb3aBwWkCVsNWL6mB6sJRNu9_qepbyN9NwJok8p8_537PWAf6Cum1OhDtrl4XMIRAqOFP46a_wzhoQ2M
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIgQXxGdZPo0EJxRtsrZj58ChUKpduu2FrbQ3YztOCaLZit0K9XfxB5lxkhULogekHpPY0chjzzxrnp8BXuk0cIs4KCkF7nQE5sjE5U4mhdWVxs1YNYp3Ax4e5eNj8XEu51vwsz8LQ7TKLva3MT1G6-7NsBvN4VldDz8RuBakFpNTqUjqjll5EC5-4L5t-Xayh05-PRrtf5i9Hyfd1QKJJwX_JPO2cDKvlFfaeleJUCpLRcEiViIFVyKk3ArPK2dTJxGHuszLstJqlFvpOP73GlxH9KEoGkzm7_rwzzHlR1Y_WpeQed1JnZZU5k8DETizPIqrZvxf2fBvtPsnafO3LLh_B2538JXttiN0F7ZCcw9utBdaXtyHZrpoTpIZRnu2qcrLFhWjSbeqG3tal4FhLFk0pKWMr-ixjlofYcl2T0LSz5lQsshQ7QM02wt0kjOwusEePjyA4ysZ9oewjdaFR8AQqIkypM55K4TwQXPruJO8sMKqTPgBZP3IGt_JndOtG99Mz2v7asgbhrxh0sKgNwbwZt3nrBX7uLS17B1mNqaswWx0ab-XvXcNrmUq0NgmLM6XhnS5uE5zLQew03p7bQdVwAnMDUBtzIN1A9IJ3_zS1F-iXjgidp1x9fg_7X0BN8ezw6mZTo4OnsAt-kJ8now_he3V9_PwDFHZyj2Pq4DB56tedr8ATWdK2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-Term+Administration+of+Nicotinamide+Mononucleotide+Mitigates+Age-Associated+Physiological+Decline+in+Mice&rft.jtitle=Cell+metabolism&rft.au=Mills%2C+Kathryn+F.&rft.au=Yoshida%2C+Shohei&rft.au=Stein%2C+Liana+R.&rft.au=Grozio%2C+Alessia&rft.date=2016-12-13&rft.pub=Elsevier+Inc&rft.issn=1550-4131&rft.eissn=1932-7420&rft.volume=24&rft.issue=6&rft.spage=795&rft.epage=806&rft_id=info:doi/10.1016%2Fj.cmet.2016.09.013&rft.externalDocID=S1550413116304958
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4131&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4131&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4131&client=summon