SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity

Many SARS-CoV-2 variants with naturally acquired mutations have emerged. These mutations can affect viral properties such as infectivity and immune resistance. Although the sensitivity of naturally occurring SARS-CoV-2 variants to humoral immunity has been investigated, sensitivity to human leukocyt...

Full description

Saved in:
Bibliographic Details
Published inCell host & microbe Vol. 29; no. 7; pp. 1124 - 1136.e11
Main Authors Motozono, Chihiro, Toyoda, Mako, Zahradnik, Jiri, Saito, Akatsuki, Nasser, Hesham, Tan, Toong Seng, Ngare, Isaac, Kimura, Izumi, Uriu, Keiya, Kosugi, Yusuke, Yue, Yuan, Shimizu, Ryo, Ito, Jumpei, Torii, Shiho, Yonekawa, Akiko, Shimono, Nobuyuki, Nagasaki, Yoji, Minami, Rumi, Toya, Takashi, Sekiya, Noritaka, Fukuhara, Takasuke, Matsuura, Yoshiharu, Schreiber, Gideon, Ikeda, Terumasa, Nakagawa, So, Ueno, Takamasa, Sato, Kei
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 14.07.2021
The Authors. Published by Elsevier Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Many SARS-CoV-2 variants with naturally acquired mutations have emerged. These mutations can affect viral properties such as infectivity and immune resistance. Although the sensitivity of naturally occurring SARS-CoV-2 variants to humoral immunity has been investigated, sensitivity to human leukocyte antigen (HLA)-restricted cellular immunity remains largely unexplored. Here, we demonstrate that two recently emerging mutations in the receptor-binding domain of the SARS-CoV-2 spike protein, L452R (in B.1.427/429 and B.1.617) and Y453F (in B.1.1.298), confer escape from HLA-A24-restricted cellular immunity. These mutations reinforce affinity toward the host entry receptor ACE2. Notably, the L452R mutation increases spike stability, viral infectivity, viral fusogenicity, and thereby promotes viral replication. These data suggest that HLA-restricted cellular immunity potentially affects the evolution of viral phenotypes and that a further threat of the SARS-CoV-2 pandemic is escape from cellular immunity. [Display omitted] •L452R and Y453F mutations in the SARS-CoV-2 spike RBM have emerged•L452R and Y453F mutants escape HLA-A24-restricted cellular immunity•L452R increases viral infectivity and fusogenicity and promotes viral replication Motozono and G2P-Japan Consortium et al. show that the emerging mutations L452R and Y453F in the SARS-CoV-2 spike receptor-binding motif evade HLA-A24-restricted cellular immunity. L452R increases spike stability, viral infectivity, and viral fusogenicity, thereby promoting viral replication. These data suggest that HLA-restricted cellular immunity potentially affects evolution of viral phenotypes.
AbstractList Many SARS-CoV-2 variants with naturally acquired mutations have emerged. These mutations can affect viral properties such as infectivity and immune resistance. Although the sensitivity of naturally occurring SARS-CoV-2 variants to humoral immunity has been investigated, sensitivity to human leukocyte antigen (HLA)-restricted cellular immunity remains largely unexplored. Here, we demonstrate that two recently emerging mutations in the receptor-binding domain of the SARS-CoV-2 spike protein, L452R (in B.1.427/429 and B.1.617) and Y453F (in B.1.1.298), confer escape from HLA-A24-restricted cellular immunity. These mutations reinforce affinity toward the host entry receptor ACE2. Notably, the L452R mutation increases spike stability, viral infectivity, viral fusogenicity, and thereby promotes viral replication. These data suggest that HLA-restricted cellular immunity potentially affects the evolution of viral phenotypes and that a further threat of the SARS-CoV-2 pandemic is escape from cellular immunity.Many SARS-CoV-2 variants with naturally acquired mutations have emerged. These mutations can affect viral properties such as infectivity and immune resistance. Although the sensitivity of naturally occurring SARS-CoV-2 variants to humoral immunity has been investigated, sensitivity to human leukocyte antigen (HLA)-restricted cellular immunity remains largely unexplored. Here, we demonstrate that two recently emerging mutations in the receptor-binding domain of the SARS-CoV-2 spike protein, L452R (in B.1.427/429 and B.1.617) and Y453F (in B.1.1.298), confer escape from HLA-A24-restricted cellular immunity. These mutations reinforce affinity toward the host entry receptor ACE2. Notably, the L452R mutation increases spike stability, viral infectivity, viral fusogenicity, and thereby promotes viral replication. These data suggest that HLA-restricted cellular immunity potentially affects the evolution of viral phenotypes and that a further threat of the SARS-CoV-2 pandemic is escape from cellular immunity.
Many SARS-CoV-2 variants with naturally acquired mutations have emerged. These mutations can affect viral properties such as infectivity and immune resistance. Although the sensitivity of naturally occurring SARS-CoV-2 variants to humoral immunity has been investigated, sensitivity to human leukocyte antigen (HLA)-restricted cellular immunity remains largely unexplored. Here, we demonstrate that two recently emerging mutations in the receptor-binding domain of the SARS-CoV-2 spike protein, L452R (in B.1.427/429 and B.1.617) and Y453F (in B.1.1.298), confer escape from HLA-A24-restricted cellular immunity. These mutations reinforce affinity toward the host entry receptor ACE2. Notably, the L452R mutation increases spike stability, viral infectivity, viral fusogenicity, and thereby promotes viral replication. These data suggest that HLA-restricted cellular immunity potentially affects the evolution of viral phenotypes and that a further threat of the SARS-CoV-2 pandemic is escape from cellular immunity. Motozono and G2P-Japan Consortium et al. show that the emerging mutations L452R and Y453F in the SARS-CoV-2 spike receptor-binding motif evade HLA-A24-restricted cellular immunity. L452R increases spike stability, viral infectivity, and viral fusogenicity, thereby promoting viral replication. These data suggest that HLA-restricted cellular immunity potentially affects evolution of viral phenotypes.
Many SARS-CoV-2 variants with naturally acquired mutations have emerged. These mutations can affect viral properties such as infectivity and immune resistance. Although the sensitivity of naturally occurring SARS-CoV-2 variants to humoral immunity has been investigated, sensitivity to human leukocyte antigen (HLA)-restricted cellular immunity remains largely unexplored. Here, we demonstrate that two recently emerging mutations in the receptor-binding domain of the SARS-CoV-2 spike protein, L452R (in B.1.427/429 and B.1.617) and Y453F (in B.1.1.298), confer escape from HLA-A24-restricted cellular immunity. These mutations reinforce affinity toward the host entry receptor ACE2. Notably, the L452R mutation increases spike stability, viral infectivity, viral fusogenicity, and thereby promotes viral replication. These data suggest that HLA-restricted cellular immunity potentially affects the evolution of viral phenotypes and that a further threat of the SARS-CoV-2 pandemic is escape from cellular immunity.
Many SARS-CoV-2 variants with naturally acquired mutations have emerged. These mutations can affect viral properties such as infectivity and immune resistance. Although the sensitivity of naturally occurring SARS-CoV-2 variants to humoral immunity has been investigated, sensitivity to human leukocyte antigen (HLA)-restricted cellular immunity remains largely unexplored. Here, we demonstrate that two recently emerging mutations in the receptor-binding domain of the SARS-CoV-2 spike protein, L452R (in B.1.427/429 and B.1.617) and Y453F (in B.1.1.298), confer escape from HLA-A24-restricted cellular immunity. These mutations reinforce affinity toward the host entry receptor ACE2. Notably, the L452R mutation increases spike stability, viral infectivity, viral fusogenicity, and thereby promotes viral replication. These data suggest that HLA-restricted cellular immunity potentially affects the evolution of viral phenotypes and that a further threat of the SARS-CoV-2 pandemic is escape from cellular immunity. [Display omitted] •L452R and Y453F mutations in the SARS-CoV-2 spike RBM have emerged•L452R and Y453F mutants escape HLA-A24-restricted cellular immunity•L452R increases viral infectivity and fusogenicity and promotes viral replication Motozono and G2P-Japan Consortium et al. show that the emerging mutations L452R and Y453F in the SARS-CoV-2 spike receptor-binding motif evade HLA-A24-restricted cellular immunity. L452R increases spike stability, viral infectivity, and viral fusogenicity, thereby promoting viral replication. These data suggest that HLA-restricted cellular immunity potentially affects evolution of viral phenotypes.
Author Tan, Toong Seng
Toya, Takashi
Nakagawa, So
Kosugi, Yusuke
Sato, Kei
Shimono, Nobuyuki
Yue, Yuan
Schreiber, Gideon
Kimura, Izumi
Shimizu, Ryo
Nagasaki, Yoji
Matsuura, Yoshiharu
Ikeda, Terumasa
Nasser, Hesham
Saito, Akatsuki
Uriu, Keiya
Motozono, Chihiro
Sekiya, Noritaka
Ueno, Takamasa
Fukuhara, Takasuke
Zahradnik, Jiri
Torii, Shiho
Yonekawa, Akiko
Minami, Rumi
Ngare, Isaac
Ito, Jumpei
Toyoda, Mako
Author_xml – sequence: 1
  givenname: Chihiro
  surname: Motozono
  fullname: Motozono, Chihiro
  organization: Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8600811, Japan
– sequence: 2
  givenname: Mako
  surname: Toyoda
  fullname: Toyoda, Mako
  organization: Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8600811, Japan
– sequence: 3
  givenname: Jiri
  surname: Zahradnik
  fullname: Zahradnik, Jiri
  organization: Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 4
  givenname: Akatsuki
  surname: Saito
  fullname: Saito, Akatsuki
  organization: Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 8892192, Japan
– sequence: 5
  givenname: Hesham
  surname: Nasser
  fullname: Nasser, Hesham
  organization: Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8600811, Japan
– sequence: 6
  givenname: Toong Seng
  surname: Tan
  fullname: Tan, Toong Seng
  organization: Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8600811, Japan
– sequence: 7
  givenname: Isaac
  surname: Ngare
  fullname: Ngare, Isaac
  organization: Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8600811, Japan
– sequence: 8
  givenname: Izumi
  surname: Kimura
  fullname: Kimura, Izumi
  organization: Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
– sequence: 9
  givenname: Keiya
  surname: Uriu
  fullname: Uriu, Keiya
  organization: Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
– sequence: 10
  givenname: Yusuke
  surname: Kosugi
  fullname: Kosugi, Yusuke
  organization: Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
– sequence: 11
  givenname: Yuan
  surname: Yue
  fullname: Yue, Yuan
  organization: Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8600811, Japan
– sequence: 12
  givenname: Ryo
  surname: Shimizu
  fullname: Shimizu, Ryo
  organization: Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8600811, Japan
– sequence: 13
  givenname: Jumpei
  surname: Ito
  fullname: Ito, Jumpei
  organization: Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
– sequence: 14
  givenname: Shiho
  surname: Torii
  fullname: Torii, Shiho
  organization: Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 5650871, Japan
– sequence: 15
  givenname: Akiko
  surname: Yonekawa
  fullname: Yonekawa, Akiko
  organization: Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 8128582, Japan
– sequence: 16
  givenname: Nobuyuki
  surname: Shimono
  fullname: Shimono, Nobuyuki
  organization: Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 8128582, Japan
– sequence: 17
  givenname: Yoji
  surname: Nagasaki
  fullname: Nagasaki, Yoji
  organization: Division of Infectious Diseases, Clinical Research Institute, National Hospitalization Organization, Kyushu Medical Center, Fukuoka 8108563, Japan
– sequence: 18
  givenname: Rumi
  surname: Minami
  fullname: Minami, Rumi
  organization: Internal Medicine, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka 8108563, Japan
– sequence: 19
  givenname: Takashi
  surname: Toya
  fullname: Toya, Takashi
  organization: Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo 1138677, Japan
– sequence: 20
  givenname: Noritaka
  surname: Sekiya
  fullname: Sekiya, Noritaka
  organization: Department of Infection Prevention and Control, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo 1138677, Japan
– sequence: 21
  givenname: Takasuke
  surname: Fukuhara
  fullname: Fukuhara, Takasuke
  organization: Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Hokkaido 0608638, Japan
– sequence: 22
  givenname: Yoshiharu
  surname: Matsuura
  fullname: Matsuura, Yoshiharu
  organization: Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 5650871, Japan
– sequence: 23
  givenname: Gideon
  surname: Schreiber
  fullname: Schreiber, Gideon
  organization: Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 24
  givenname: Terumasa
  surname: Ikeda
  fullname: Ikeda, Terumasa
  email: ikedat@kumamoto-u.ac.jp
  organization: Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8600811, Japan
– sequence: 25
  givenname: So
  surname: Nakagawa
  fullname: Nakagawa, So
  email: so@tokai.ac.jp
  organization: Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa 2591193, Japan
– sequence: 26
  givenname: Takamasa
  surname: Ueno
  fullname: Ueno, Takamasa
  email: uenotaka@kumamoto-u.ac.jp
  organization: Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 8600811, Japan
– sequence: 27
  givenname: Kei
  surname: Sato
  fullname: Sato, Kei
  email: keisato@g.ecc.u-tokyo.ac.jp
  organization: Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34171266$$D View this record in MEDLINE/PubMed
BookMark eNp9UUuL1TAUDjLiPPQPuJAu3bQmaZOmIMJw8QUXxBl1G85NTp1c2-SatIX596becVAXs8oJ3-M8vnNy4oNHQp4zWjHK5Kt9ZW7CWHHKWUVlRal8RM5YVzelpLI7-V2zsmZcnZLzlPaUCkFb9oSc1g1rGZfyjHy-vry6LjfhW8mLdHA_sNg2gl8VC0QHfipwAYupMDgM8wCxcOM4ezfdFuBt4byJCCnjzvdoJrdk5Cl53MOQ8Nnde0G-vnv7ZfOh3H56_3FzuS2N4GwqmUDZWyUll6IVtOtFqwwKtus6EAJqXosWFAWlGOutqS30VoJUvM2fZsfqC_Lm6HuYdyNag36KMOhDdCPEWx3A6X8R727097BoxangYjV4eWcQw88Z06RHl9ZFwWOYk-aiEaLLc8hMffF3r_smf-6YCfxIMDGkFLG_pzCq17D0Xq9h6TUsTaXOYWWR-k9k3ASTC-u8bnhY-vooxXzhxWHUyTj0Bq2LOQhtg3tI_gskdq9R
CitedBy_id crossref_primary_10_1097_JS9_0000000000000095
crossref_primary_10_3390_ijms232415658
crossref_primary_10_1016_j_isci_2023_108299
crossref_primary_10_1016_j_immuni_2022_08_008
crossref_primary_10_1038_s41467_024_52808_2
crossref_primary_10_4049_immunohorizons_2100096
crossref_primary_10_1007_s11684_021_0906_x
crossref_primary_10_3389_fimmu_2024_1407149
crossref_primary_10_1080_0889311X_2024_2363756
crossref_primary_10_3389_fmed_2023_1294699
crossref_primary_10_1007_s12033_024_01240_4
crossref_primary_10_1007_s12257_021_0327_3
crossref_primary_10_1016_j_rmed_2021_106569
crossref_primary_10_14336_AD_2021_1210
crossref_primary_10_1038_s44298_023_00007_z
crossref_primary_10_1126_science_abl6184
crossref_primary_10_1038_s41586_022_05482_7
crossref_primary_10_1016_j_csbj_2022_08_015
crossref_primary_10_1038_s41467_022_32989_4
crossref_primary_10_1128_mbio_00907_24
crossref_primary_10_1016_j_intimp_2021_108424
crossref_primary_10_3390_v15010070
crossref_primary_10_2139_ssrn_4165630
crossref_primary_10_3390_cells13030203
crossref_primary_10_54817_IC_v63n3a05
crossref_primary_10_1007_s12275_021_1348_5
crossref_primary_10_3390_vaccines10111815
crossref_primary_10_1038_s41467_022_29288_3
crossref_primary_10_1016_j_ebiom_2024_105437
crossref_primary_10_1016_j_vaccine_2022_02_047
crossref_primary_10_3390_microorganisms11122938
crossref_primary_10_3390_pathogens12060775
crossref_primary_10_1016_j_meegid_2024_105556
crossref_primary_10_3390_v13112238
crossref_primary_10_1016_j_isci_2022_105507
crossref_primary_10_1038_s41423_022_00884_z
crossref_primary_10_2222_jsv_73_173
crossref_primary_10_3390_jmp3040018
crossref_primary_10_1016_j_meegid_2021_105147
crossref_primary_10_1016_j_jgr_2022_07_003
crossref_primary_10_3390_v14071378
crossref_primary_10_1007_s00430_023_00773_w
crossref_primary_10_1186_s12929_021_00777_9
crossref_primary_10_1371_journal_pone_0267847
crossref_primary_10_1007_s11427_021_2164_6
crossref_primary_10_1038_s42003_024_05878_3
crossref_primary_10_4236_ajmb_2024_143013
crossref_primary_10_3389_fimmu_2021_789905
crossref_primary_10_3390_ijms242216115
crossref_primary_10_1080_25785826_2024_2304363
crossref_primary_10_3389_fcimb_2022_902914
crossref_primary_10_3390_microorganisms11020431
crossref_primary_10_1016_j_compbiomed_2022_105969
crossref_primary_10_1016_j_heliyon_2022_e09222
crossref_primary_10_1016_j_scitotenv_2023_169747
crossref_primary_10_1016_j_talanta_2022_123813
crossref_primary_10_1093_femsre_fuac003
crossref_primary_10_3390_v14061318
crossref_primary_10_1038_s41579_022_00841_7
crossref_primary_10_1016_j_virol_2023_109850
crossref_primary_10_1016_j_idc_2022_01_004
crossref_primary_10_3389_fcimb_2022_748948
crossref_primary_10_1021_acsanm_1c02446
crossref_primary_10_1111_irv_13109
crossref_primary_10_25259_AUJMSR_8_2022
crossref_primary_10_1186_s13578_022_00794_7
crossref_primary_10_1128_jcm_02374_21
crossref_primary_10_1080_22221751_2022_2132881
crossref_primary_10_3390_v14051087
crossref_primary_10_1016_j_bios_2022_114032
crossref_primary_10_1128_JCM_00921_21
crossref_primary_10_1007_s11033_022_08193_4
crossref_primary_10_3390_app12020665
crossref_primary_10_3390_biomedicines10102593
crossref_primary_10_1002_jmv_28407
crossref_primary_10_1016_j_chom_2024_01_001
crossref_primary_10_1038_s41467_023_38435_3
crossref_primary_10_1016_j_biopha_2021_112527
crossref_primary_10_1128_jvi_00990_23
crossref_primary_10_26508_lsa_202201415
crossref_primary_10_1021_acs_analchem_3c04533
crossref_primary_10_1371_journal_pone_0260438
crossref_primary_10_1016_j_isci_2022_105720
crossref_primary_10_1002_jmv_27445
crossref_primary_10_1111_1348_0421_13157
crossref_primary_10_1111_tan_15071
crossref_primary_10_1016_j_celrep_2023_112470
crossref_primary_10_1016_j_intimp_2022_109128
crossref_primary_10_1128_jcm_01558_23
crossref_primary_10_1016_j_chom_2023_06_002
crossref_primary_10_1371_journal_ppat_1012724
crossref_primary_10_3390_genes14020407
crossref_primary_10_1016_j_cell_2022_07_002
crossref_primary_10_12677_AMB_2022_112006
crossref_primary_10_3389_fmolb_2022_893843
crossref_primary_10_1038_s41598_021_02874_z
crossref_primary_10_1128_jvi_01162_22
crossref_primary_10_3390_v14112499
crossref_primary_10_21055_0370_1069_2023_4_156_159
crossref_primary_10_1016_j_cellin_2022_100029
crossref_primary_10_3389_fmed_2022_825245
crossref_primary_10_5662_wjm_v14_i3_89761
crossref_primary_10_1002_jmv_28539
crossref_primary_10_1038_s41586_022_04474_x
crossref_primary_10_3390_ijms251910820
crossref_primary_10_2139_ssrn_3972247
crossref_primary_10_4014_jmb_2308_08020
crossref_primary_10_1038_s41467_021_27096_9
crossref_primary_10_1128_mbio_00099_22
crossref_primary_10_3389_fviro_2024_1353661
crossref_primary_10_1093_jb_mvab144
crossref_primary_10_3390_v16081331
crossref_primary_10_4103_jgid_jgid_178_22
crossref_primary_10_7705_biomedica_6862
crossref_primary_10_1371_journal_pone_0299082
crossref_primary_10_1016_j_xpro_2022_101773
crossref_primary_10_3390_v15020522
crossref_primary_10_1038_s41591_022_01836_w
crossref_primary_10_3389_fimmu_2023_1269916
crossref_primary_10_3390_v14122610
crossref_primary_10_52547_hrjbaq_7_1_75
crossref_primary_10_3390_cimb46070395
crossref_primary_10_1038_s41586_022_04462_1
crossref_primary_10_7554_eLife_89423_3
crossref_primary_10_1016_j_ejmcr_2024_100173
crossref_primary_10_1016_j_micinf_2023_105101
crossref_primary_10_1016_j_pbiomolbio_2023_02_004
crossref_primary_10_1186_s12929_022_00853_8
crossref_primary_10_3390_ijms232113404
crossref_primary_10_3389_fimmu_2024_1468456
crossref_primary_10_3389_fimmu_2022_962079
crossref_primary_10_3390_vaccines11091472
crossref_primary_10_35118_apjmbb_2024_032_2_09
crossref_primary_10_1021_acsomega_3c00944
crossref_primary_10_1038_s41598_023_48272_5
crossref_primary_10_1038_s41541_023_00636_8
crossref_primary_10_1016_j_lansea_2022_100036
crossref_primary_10_1186_s43088_023_00341_4
crossref_primary_10_1126_scitranslmed_abo3332
crossref_primary_10_1038_s41392_022_00941_z
crossref_primary_10_3390_bioengineering10101116
crossref_primary_10_1016_j_isci_2023_107786
crossref_primary_10_4103_RID_RID_25_21
crossref_primary_10_2217_fvl_2022_0152
crossref_primary_10_1007_s10822_023_00534_0
crossref_primary_10_1080_22221751_2022_2140611
crossref_primary_10_1093_cid_ciac197
crossref_primary_10_1155_2024_3418062
crossref_primary_10_2169_naika_112_1547
crossref_primary_10_1016_j_jpba_2023_115770
crossref_primary_10_1038_s41598_023_30754_1
crossref_primary_10_1016_j_bspc_2021_103433
crossref_primary_10_2139_ssrn_4063814
crossref_primary_10_1126_science_abl8506
crossref_primary_10_1016_S1473_3099_22_00595_3
crossref_primary_10_1038_s41598_022_24519_5
crossref_primary_10_1371_journal_pone_0266844
crossref_primary_10_1016_j_celrep_2022_110344
crossref_primary_10_3389_fmicb_2023_1136386
crossref_primary_10_36233_0507_4088_242
crossref_primary_10_1128_spectrum_00563_22
crossref_primary_10_1186_s12985_023_02154_4
crossref_primary_10_1021_acs_jpcb_3c01467
crossref_primary_10_1016_j_cyto_2024_156592
crossref_primary_10_2147_IDR_S480086
crossref_primary_10_3389_fimmu_2022_825256
crossref_primary_10_3390_v15091937
crossref_primary_10_3390_v15040944
crossref_primary_10_1038_s41392_021_00796_w
crossref_primary_10_1016_j_str_2021_12_011
crossref_primary_10_1007_s11071_022_07473_9
crossref_primary_10_1016_j_chom_2021_10_003
crossref_primary_10_1016_j_gendis_2021_11_007
crossref_primary_10_1128_spectrum_00797_22
crossref_primary_10_1038_s41586_021_03944_y
crossref_primary_10_1093_cid_ciac295
crossref_primary_10_1080_14760584_2021_1976153
crossref_primary_10_1093_ve_veac050
crossref_primary_10_1128_jvi_01011_23
crossref_primary_10_1016_j_virol_2022_05_003
crossref_primary_10_1080_22221751_2023_2297553
crossref_primary_10_3390_ijms232314683
crossref_primary_10_1038_s41591_022_01911_2
crossref_primary_10_1002_mco2_95
crossref_primary_10_1016_j_smim_2021_101533
crossref_primary_10_3390_v14102128
crossref_primary_10_1002_mco2_90
crossref_primary_10_2217_fvl_2023_0146
crossref_primary_10_1073_pnas_2221652120
crossref_primary_10_1093_pcmedi_pbab024
crossref_primary_10_1128_mBio_02936_21
crossref_primary_10_3390_vaccines11010023
crossref_primary_10_3390_ijms25021353
crossref_primary_10_1038_s41467_023_38188_z
crossref_primary_10_1128_mbio_03220_23
crossref_primary_10_1038_s41564_021_01041_4
crossref_primary_10_3389_fimmu_2022_1041185
crossref_primary_10_3389_fimmu_2023_1130539
crossref_primary_10_3390_v14051024
crossref_primary_10_1080_22221751_2022_2128887
crossref_primary_10_3389_fmed_2021_780611
crossref_primary_10_1007_s10549_022_06693_2
crossref_primary_10_3389_fimmu_2022_773652
crossref_primary_10_1016_j_bbrc_2022_06_064
crossref_primary_10_3390_microorganisms12050908
crossref_primary_10_1038_s41576_021_00408_x
crossref_primary_10_1038_s41467_024_46536_w
crossref_primary_10_3389_fmicb_2022_819745
crossref_primary_10_3390_ijms232314670
crossref_primary_10_1111_tan_15216
crossref_primary_10_3389_fmed_2024_1364657
crossref_primary_10_1111_1346_8138_16433
crossref_primary_10_1126_scitranslmed_abj6824
crossref_primary_10_3390_biom12040572
crossref_primary_10_3389_fbioe_2022_966586
crossref_primary_10_3389_fmed_2024_1414331
crossref_primary_10_1016_j_ebiom_2023_104561
crossref_primary_10_1016_j_jbc_2024_107563
crossref_primary_10_3389_fviro_2023_1328229
crossref_primary_10_1038_s41467_024_45274_3
crossref_primary_10_3390_v13112183
crossref_primary_10_1080_22221751_2021_2008775
crossref_primary_10_3389_fmicb_2023_1228128
crossref_primary_10_1007_s11262_023_01986_0
crossref_primary_10_1063_5_0188053
crossref_primary_10_3389_fmicb_2024_1334152
crossref_primary_10_1016_j_ebiom_2023_104916
crossref_primary_10_1038_s41598_021_96195_w
crossref_primary_10_1002_14651858_CD015125
crossref_primary_10_1038_s41467_022_33632_y
crossref_primary_10_3390_biology14010067
crossref_primary_10_7554_eLife_89423
crossref_primary_10_1016_j_jtumed_2023_09_001
crossref_primary_10_15252_embr_202255393
crossref_primary_10_3390_v15020505
crossref_primary_10_1016_j_scitotenv_2023_167844
crossref_primary_10_3389_fimmu_2022_984784
crossref_primary_10_1002_jmv_29459
crossref_primary_10_1016_j_ab_2022_114803
crossref_primary_10_1016_j_medidd_2021_100114
crossref_primary_10_3390_microorganisms10030598
crossref_primary_10_1093_oxfimm_iqac003
crossref_primary_10_1093_ve_veae006
crossref_primary_10_1073_pnas_2213332120
crossref_primary_10_3390_v13122544
crossref_primary_10_1128_mbio_00683_22
crossref_primary_10_3390_biomedicines10112779
crossref_primary_10_3390_v13112295
crossref_primary_10_1073_pnas_2300376120
crossref_primary_10_3390_biomedicines12040821
crossref_primary_10_4014_jmb_2411_11001
crossref_primary_10_3390_biomedicines10092080
crossref_primary_10_1038_s41392_022_00996_y
crossref_primary_10_1038_s41598_023_50856_0
crossref_primary_10_1002_jmv_27957
crossref_primary_10_1186_s41182_021_00365_5
crossref_primary_10_3390_pathogens13040279
crossref_primary_10_1016_j_bbadis_2022_166432
crossref_primary_10_3390_ijms231911325
crossref_primary_10_3389_fmed_2022_973036
crossref_primary_10_1016_j_micres_2022_126993
crossref_primary_10_1038_s42003_022_04068_3
crossref_primary_10_1016_j_jinf_2024_106121
crossref_primary_10_3390_vaccines10030357
crossref_primary_10_1016_j_celrep_2021_109708
crossref_primary_10_1016_j_celrep_2022_110558
crossref_primary_10_3390_v14051007
crossref_primary_10_1002_ame2_12302
crossref_primary_10_1016_j_virol_2024_110285
crossref_primary_10_5937_mp72_33315
crossref_primary_10_1007_s15010_023_02034_7
crossref_primary_10_1111_imr_13086
crossref_primary_10_1371_journal_ppat_1011231
crossref_primary_10_1038_s41467_024_54734_9
crossref_primary_10_3201_eid2911_230894
crossref_primary_10_1002_rmv_2346
crossref_primary_10_1002_rmv_2347
crossref_primary_10_1016_j_bsheal_2021_08_003
crossref_primary_10_1016_j_cell_2022_04_035
crossref_primary_10_1038_s41564_022_01092_1
crossref_primary_10_1016_S2666_5247_24_00068_5
crossref_primary_10_3390_ijms251910541
crossref_primary_10_4103_ijmr_ijmr_2591_22
crossref_primary_10_3390_v13091773
crossref_primary_10_1002_jmv_29356
crossref_primary_10_1016_j_ebiom_2024_105181
crossref_primary_10_1038_s41525_025_00463_x
crossref_primary_10_1111_1348_0421_13165
crossref_primary_10_1016_j_scitotenv_2022_157740
crossref_primary_10_1021_acs_analchem_2c03563
crossref_primary_10_3389_fimmu_2022_1016108
crossref_primary_10_3390_v13122485
crossref_primary_10_1038_s41467_022_32396_9
crossref_primary_10_3390_jcm10245865
crossref_primary_10_1016_j_celrep_2021_110205
crossref_primary_10_1016_j_cels_2021_09_013
crossref_primary_10_1016_j_scitotenv_2022_155828
crossref_primary_10_3389_fmicb_2022_912061
crossref_primary_10_1016_j_ebiom_2024_105185
crossref_primary_10_1016_j_drup_2023_101008
crossref_primary_10_1016_j_gene_2021_146113
crossref_primary_10_1016_j_jbc_2024_107701
crossref_primary_10_1002_jgf2_536
crossref_primary_10_1016_j_jebdp_2024_102040
crossref_primary_10_1371_journal_pone_0274961
crossref_primary_10_1002_jmv_70242
crossref_primary_10_1134_S1607672922060084
crossref_primary_10_1038_s41467_022_33068_4
crossref_primary_10_3390_ijms24032517
crossref_primary_10_3390_vaccines10060919
crossref_primary_10_1038_s41598_024_75658_w
crossref_primary_10_1002_jcb_30514
crossref_primary_10_3390_v14040783
crossref_primary_10_1038_s41598_023_43563_3
crossref_primary_10_1038_s44298_025_00092_2
crossref_primary_10_1016_j_isci_2021_103341
crossref_primary_10_1016_j_cell_2022_09_018
crossref_primary_10_1080_13102818_2024_2401163
crossref_primary_10_1016_j_chom_2022_10_003
crossref_primary_10_3390_v16060900
crossref_primary_10_1099_acmi_0_000839_v3
crossref_primary_10_1016_j_ijbiomac_2022_11_227
crossref_primary_10_3390_bioengineering10020148
crossref_primary_10_3390_bioengineering10091068
crossref_primary_10_3390_microorganisms11010030
crossref_primary_10_3390_tropicalmed7050081
crossref_primary_10_1007_s00705_022_05365_2
crossref_primary_10_3390_vaccines10071103
crossref_primary_10_1371_journal_pone_0296627
crossref_primary_10_1093_procel_pwae007
crossref_primary_10_1111_apm_13388
crossref_primary_10_1038_s41598_021_99827_3
crossref_primary_10_15212_ZOONOSES_2023_0032
crossref_primary_10_1371_journal_pone_0270276
crossref_primary_10_1016_j_isci_2024_109647
crossref_primary_10_1371_journal_pbio_3001871
crossref_primary_10_1371_journal_pone_0266691
crossref_primary_10_1111_imr_13217
crossref_primary_10_3390_vaccines10091509
crossref_primary_10_1016_j_virusres_2022_198907
crossref_primary_10_2147_IDR_S366437
crossref_primary_10_1016_j_heliyon_2023_e16917
crossref_primary_10_1038_s42003_022_03198_y
crossref_primary_10_1186_s41232_022_00239_1
crossref_primary_10_3390_covid2120127
crossref_primary_10_3390_pathogens11090968
crossref_primary_10_1038_s42003_023_05081_w
crossref_primary_10_3389_fimmu_2024_1412873
crossref_primary_10_3390_v16071141
crossref_primary_10_1038_s43856_024_00582_z
crossref_primary_10_2139_ssrn_3917167
crossref_primary_10_4049_immunohorizons_2300034
crossref_primary_10_1016_j_gene_2024_148426
crossref_primary_10_1371_journal_ppat_1012776
crossref_primary_10_1038_s41392_022_01105_9
crossref_primary_10_1186_s12879_023_08527_y
crossref_primary_10_1016_j_ebiom_2024_105415
crossref_primary_10_3389_fpubh_2022_990832
crossref_primary_10_3389_fimmu_2022_797589
crossref_primary_10_1128_jcm_00042_24
crossref_primary_10_1016_j_isci_2022_104959
crossref_primary_10_1038_s41467_023_39942_z
crossref_primary_10_1016_j_celrep_2021_110218
crossref_primary_10_1038_s41586_021_04266_9
crossref_primary_10_3390_v14071399
crossref_primary_10_3390_ijms252312591
crossref_primary_10_2174_2666796704666230328171636
crossref_primary_10_1007_s11684_021_0893_y
crossref_primary_10_1002_minf_202300055
crossref_primary_10_3389_fimmu_2022_786586
crossref_primary_10_3390_v14102296
crossref_primary_10_15252_emmm_202115230
Cites_doi 10.1128/JVI.00940-20
10.1038/s10038-020-0771-5
10.1093/bioinformatics/btz305
10.1016/j.cell.2021.02.033
10.1016/j.cell.2021.03.036
10.1016/j.chom.2020.03.023
10.1016/S1473-3099(20)30912-9
10.1038/s41590-020-00808-x
10.1073/pnas.2002589117
10.1016/j.cell.2021.02.042
10.1016/j.xcrm.2021.100221
10.1126/science.abb2762
10.1016/j.chom.2021.01.004
10.1016/j.celrep.2021.109017
10.1016/j.pecon.2020.09.008
10.1016/j.abb.2012.04.022
10.1038/s41586-021-03361-1
10.1038/s41586-020-2895-3
10.1128/mSphere.00658-20
10.1128/JVI.07020-11
10.1172/JCI145476
10.1016/j.cell.2020.11.020
10.1001/jama.2021.1612
10.1038/s41586-021-03398-2
10.1038/s41586-020-2324-7
10.1038/s41564-020-0770-5
10.1186/s12864-020-6635-8
10.1371/journal.ppat.1007010
10.1016/j.cell.2021.03.013
10.1038/s41586-020-2008-3
10.1016/j.cell.2020.03.045
10.1038/76744
10.1110/ps.0239403
10.1093/bioinformatics/btv639
10.1007/s00251-011-0579-8
10.1016/j.humimm.2018.09.008
10.2807/1560-7917.ES.2021.26.11.2100256
10.1016/j.jbc.2021.100536
10.1038/nrg2323
10.1126/science.abc6284
10.1016/j.chom.2021.01.014
10.1186/s12977-018-0459-5
10.1002/0471143030.cb2609s50
10.1038/s41591-021-01294-w
10.1073/pnas.2010146117
10.1038/s41586-020-2012-7
10.1093/nar/gkaa379
10.1126/science.272.5259.263
10.1128/JVI.01143-07
10.1056/NEJMc2013400
10.1016/j.cell.2020.07.012
10.1093/molbev/mst010
10.1074/jbc.RA120.013887
10.1084/jem.20202617
10.1182/blood-2006-11-056168
10.1038/nm992
10.1136/bmj.n579
10.1093/molbev/msz189
10.1016/0378-1119(91)90434-D
10.1099/jgv.0.001276
10.1038/s41591-020-01143-2
10.1089/crispr.2018.0014
10.1126/science.abf6950
10.1002/jcc.20084
10.1126/science.abe5901
10.1186/1742-4690-6-53
10.1016/j.celrep.2021.109014
10.1038/s41586-020-2180-5
10.1093/bioinformatics/btp348
10.1016/j.isci.2021.102311
10.1016/j.cell.2020.06.043
10.1128/MMBR.00004-08
10.1016/j.cell.2020.09.032
10.1038/s41586-021-03412-7
10.1093/nar/gkn202
10.1007/BF00216838
10.1126/science.abc4776
10.1038/s41467-021-21118-2
10.1016/j.chom.2021.03.002
10.1038/s41586-021-03426-1
10.7554/eLife.61312.sa2
10.1126/science.abd0831
10.1126/science.abb7015
10.1016/j.chom.2021.02.020
10.1126/science.abe8499
10.1056/NEJMc2102017
10.1093/bioinformatics/btp137
10.1038/s41577-018-0007-5
10.1007/978-1-62703-764-8_6
10.1038/s41590-021-00902-8
ContentType Journal Article
Copyright 2021 The Authors
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
2021 The Authors 2021
Copyright_xml – notice: 2021 The Authors
– notice: Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2021 The Authors 2021
CorporateAuthor The Genotype to Phenotype Japan (G2P-Japan) Consortium
Genotype to Phenotype Japan (G2P-Japan) Consortium
CorporateAuthor_xml – name: The Genotype to Phenotype Japan (G2P-Japan) Consortium
– name: Genotype to Phenotype Japan (G2P-Japan) Consortium
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.chom.2021.06.006
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1934-6069
EndPage 1136.e11
ExternalDocumentID PMC8205251
34171266
10_1016_j_chom_2021_06_006
S1931312821002845
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
5GY
62-
6I.
6J9
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
HVGLF
IHE
IXB
JIG
K97
M41
O-L
O9-
OK1
P2P
RCE
ROL
RPZ
SES
SSZ
TR2
UNMZH
WQ6
ZA5
53G
AAEDT
AAIKJ
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
OZT
RIG
ZBA
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
EFKBS
ID FETCH-LOGICAL-c521t-15e6fd8662657509f578ce51b99a55a32357a80a8811fdc3dafd6a6827dc34b13
IEDL.DBID IXB
ISSN 1931-3128
1934-6069
IngestDate Thu Aug 21 18:22:45 EDT 2025
Thu Jul 10 23:22:34 EDT 2025
Thu Apr 03 07:08:37 EDT 2025
Tue Jul 01 02:44:23 EDT 2025
Thu Apr 24 23:08:20 EDT 2025
Fri Feb 23 02:41:39 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords COVID-19
SARS-CoV-2
naturally occurring variants
Y453F
cellular immunity
spike protein
B.1.427/429
B.1.1.298
L452R
receptor-binding motif
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-15e6fd8662657509f578ce51b99a55a32357a80a8811fdc3dafd6a6827dc34b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Twitter: @SystemsVirology
These authors contributed equally
Lead contact
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1931312821002845
PMID 34171266
PQID 2545592356
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8205251
proquest_miscellaneous_2545592356
pubmed_primary_34171266
crossref_primary_10_1016_j_chom_2021_06_006
crossref_citationtrail_10_1016_j_chom_2021_06_006
elsevier_sciencedirect_doi_10_1016_j_chom_2021_06_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-14
PublicationDateYYYYMMDD 2021-07-14
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-14
  day: 14
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell host & microbe
PublicationTitleAlternate Cell Host Microbe
PublicationYear 2021
Publisher Elsevier Inc
The Authors. Published by Elsevier Inc
Publisher_xml – name: Elsevier Inc
– name: The Authors. Published by Elsevier Inc
References Zhao, Chen, Szabla, Zheng, Li, Du, Zheng, Li, Song, Li (bib100) 2020
Schulien, Kemming, Oberhardt, Wild, Seidel, Killmer, Sagar, Daul, Salvat Lago, Decker (bib75) 2021; 27
Liu, Hu, Wang, Ren, Zhao, Ji, Zhu, Feng, Gong, Ju (bib48) 2021; 118
Anderson, Ikeda, Moghadasi, Martin, Brown, Harris (bib1) 2018; 15
Niwa, Yamamura, Miyazaki (bib61) 1991; 108
Challen, Brooks-Pollock, Read, Dyson, Tsaneva-Atanasova, Danon (bib9) 2021; 372
Katoh, Standley (bib34) 2013; 30
Reynisson, Alvarez, Paul, Peters, Nielsen (bib73) 2020; 48
Karosiene, Lundegaard, Lund, Nielsen (bib33) 2012; 64
Zhou, Yang, Wang, Hu, Zhang, Zhang, Si, Zhu, Li, Huang (bib101) 2020; 579
Zahradník, Marciano, Shemesh, Zoler, Chiaravalli, Meyer, Rudich, Dym, Elad, Schreiber (bib97) 2021
Yan, Zhang, Li, Xia, Guo, Zhou (bib93) 2020; 367
(bib7) 2019
Capella-Gutiérrez, Silla-Martínez, Gabaldón (bib6) 2009; 25
Zhang, Lund, Nielsen (bib98) 2009; 25
Pettersen, Goddard, Huang, Couch, Greenblatt, Meng, Ferrin (bib68) 2004; 25
Davies, Jarvis, Edmunds, Jewell, Diaz-Ordaz, Keogh (bib15) 2021; 593
Hoffmann, Zhang, Krüger, Graichen, Kleine-Weber, Hofmann-Winkler, Kempf, Nessler, Riggert, Winkler (bib26) 2021; 35
Matsuyama, Nao, Shirato, Kawase, Saito, Takayama, Nagata, Sekizuka, Katoh, Kato (bib53) 2020; 117
Ikeda, Symeonides, Albin, Li, Thali, Harris (bib29) 2018; 14
Wang, Zhang, Wu, Niu, Song, Zhang, Lu, Qiao, Hu, Yuen (bib84) 2020; 181
Leslie, Pfafferott, Chetty, Draenert, Addo, Feeney, Tang, Holmes, Allen, Prado (bib45) 2004; 10
Peleg, Unger (bib67) 2014; 1116
Liu, Liu, Xia, Zhang, Fontes-Garfias, Swanson, Cai, Sarkar, Chen, Cutler (bib49) 2021; 384
Kozlov, Darriba, Flouri, Morel, Stamatakis (bib41) 2019; 35
Bayarri-Olmos, Rosbjerg, Johnsen, Helgstrand, Bak-Thomsen, Garred, Skjoedt (bib5) 2021; 296
Torii, Ono, Suzuki, Morioka, Anzai, Fauzyah, Maeda, Kamitani, Fukuhara, Matsuura (bib81) 2021; 35
Ozono, Zhang, Ode, Sano, Tan, Imai, Miyoshi, Kishigami, Ueno, Iwatani (bib65) 2021; 12
Shen, Tang, McDanal, Wagh, Fischer, Theiler, Yoon, Li, Haynes, Sanders (bib78) 2021; 29
(bib89) 2020
Volz, Hill, McCrone, Price, Jorgensen, O’Toole, Southgate, Johnson, Jackson, Nascimento (bib83) 2021; 184
Wang, Nair, Liu, Iketani, Luo, Guo, Wang, Yu, Zhang, Kwong (bib86) 2021; 593
Montagutelli, Prot, Levillayer, Salazar, Jouvion, Conquet, Donati, Albert, Gambaro, Behillil (bib55) 2021
Damas, Hughes, Keough, Painter, Persky, Corbo, Hiller, Koepfli, Pfenning, Zhao (bib13) 2020; 117
Naldini, Blömer, Gallay, Ory, Mulligan, Gage, Verma, Trono (bib58) 1996; 272
Wang, Nair, Liu, Iketani, Luo, Guo, Wang, Yu, Zhang, Kwong (bib85) 2021; 593
Darriba, Posada, Kozlov, Stamatakis, Morel, Flouri (bib14) 2020; 37
La Gruta, Gras, Daley, Thomas, Rossjohn (bib42) 2018; 18
Wu, Zhao, Yu, Chen, Wang, Song, Hu, Tao, Tian, Pei (bib92) 2020; 579
Plante, Mitchell, Plante, Debbink, Weaver, Menachery (bib70) 2021; 29
Nelde, Bilich, Heitmann, Maringer, Salih, Roerden, Lübke, Bauer, Rieth, Wacker (bib59) 2021; 22
Plante, Liu, Liu, Xia, Johnson, Lokugamage, Zhang, Muruato, Zou, Fontes-Garfias (bib69) 2021; 592
Martínez-Hernández, Isaak-Delgado, Alfonso-Toledo, Muñoz-García, Villalobos, Aréchiga-Ceballos, Rendón-Franco (bib52) 2020; 18
(bib88) 2020
Le Bert, Clapham, Tan, Chia, Tham, Lim, Kunasegaran, Tan, Dutertre, Shankar (bib44) 2021; 218
Wolfl, Kuball, Ho, Nguyen, Manley, Bleakley, Greenberg (bib91) 2007; 110
Li, Nie, Wu, Zhang, Ding, Wang, Zhang, Li, Liu, Zhang (bib47) 2021; 184
Oude Munnink, Sikkema, Nieuwenhuijse, Molenaar, Munger, Molenkamp, van der Spek, Tolsma, Rietveld, Brouwer (bib63) 2021; 371
Moore, Grifoni, Weiskopf, Schulten, Arlehamn, Angelo, Pham, Leary, Sidney, Broide (bib56) 2018; 79
Collier, De Marco, Ferreira, Meng, Datir, Walls, Kemp, Bassi, Pinto, Silacci-Fregni (bib12) 2021; 593
Kim, Kim, Kim, Kim, Park, Yu, Chang, Kim, Lee, Casel (bib35) 2020; 27
Li, Wu, Nie, Zhang, Hao, Liu, Zhao, Zhang, Liu, Nie (bib46) 2020; 182
Nielsen, Lundegaard, Worning, Lauemøller, Lamberth, Buus, Brunak, Lund (bib60) 2003; 12
Fryer, Frater, Duda, Palmer, Phillips, McLean (bib18) 2012; 86
Supasa, Zhou, Dejnirattisai, Liu, Mentzer, Ginn, Zhao, Duyvesteyn, Nutalai, Tuekprakhon (bib80) 2021; 184
Chandrashekar, Liu, Martinot, McMahan, Mercado, Peter, Tostanoski, Yu, Maliga, Nekorchuk (bib10) 2020; 369
Sato, Yamamoto, Misawa, Yoshida, Miyazawa, Koyanagi (bib74) 2009; 6
Banerjee, Mossman, Baker (bib3) 2021; 29
Lan, Ge, Yu, Shan, Zhou, Fan, Zhang, Shi, Wang, Zhang, Wang (bib43) 2020; 581
Hu, Shen, Han, Chen, Li, Chen, Zhang, Gao, Wang, Wang (bib28) 2020
Rambaut, Holmes, O’Toole, Hill, McCrone, Ruis, du Plessis, Pybus (bib71) 2020; 5
Halfmann, Hatta, Chiba, Maemura, Fan, Takeda, Kinoshita, Hattori, Sakai-Tagawa, Iwatsuki-Horimoto (bib24) 2020; 383
Wilson, Hirneise, Singharoy, Anderson (bib90) 2021; 2
Rausch, Fritz, Untergasser, Benes (bib72) 2020; 21
Yu, Tostanoski, Peter, Mercado, McMahan, Mahrokhian, Nkolola, Liu, Li, Chandrashekar (bib94) 2020; 369
Deng, Garcia-Knight, Khalid, Servellita, Wang, Morris, Sotomayor-González, Glasner, Reyes, Gliwa (bib16) 2021
Koopmans (bib39) 2021; 21
Hou, Chiba, Halfmann, Ehre, Kuroda, Dinnon, Leist, Schäfer, Nakajima, Takahashi (bib27) 2020; 370
Zahradník, Dey, Marciano, Schreiber (bib96) 2021
Kluesner, Nedveck, Lahr, Garbe, Abrahante, Webber, Moriarity (bib37) 2018; 1
Selzer, Albeck, Schreiber (bib76) 2000; 7
Zhou, Thao, Hoffmann, Taddeo, Ebert, Labroussaa, Pohlmann, King, Steiner, Kelly (bib102) 2021; 592
Chen, Zhang, Case, Winkler, Liu, VanBlargan, Liu, Errico, Xie, Suryadevara (bib11) 2021; 27
Parrish, Holmes, Morens, Park, Burke, Calisher, Laughlin, Saif, Daszak (bib66) 2008; 72
Duffy, Shackelton, Holmes (bib17) 2008; 9
Zhang, Davis, Chen, Sincuir Martinez, Plummer, Vail (bib99) 2021; 325
Traxlmayr, Obinger (bib82) 2012; 526
Hoffmann, Arora, Groß, Seidel, Hörnich, Hahn, Krüger, Graichen, Hofmann-Winkler, Kempf (bib25) 2021; 184
Gonzalez-Galarza, McCabe, Santos, Jones, Takeshita, Ortega-Rivera, Cid-Pavon, Ramsbottom, Ghattaoraya, Alfirevic (bib22) 2020; 48
Kiyotani, Toyoshima, Nemoto, Nakamura (bib36) 2020; 65
McCarthy, Rennick, Nambulli, Robinson-McCarthy, Bain, Haidar, Duprex (bib54) 2021; 371
Ozono, Zhang, Tobiume, Kishigami, Tokunaga (bib64) 2020; 295
Andreatta, Nielsen (bib2) 2016; 32
Fukushi, Mizutani, Sakai, Saijo, Taguchi, Yokoyama, Kurane, Morikawa (bib19) 2007; 81
Kondo, Miyauchi, Matsuda (bib38) 2011
(bib62) 2021
Grint, Wing, Williamson, McDonald, Bhaskaran, Evans, Evans, Walker, Hickman, Nightingale (bib23) 2021; 26
Ikeda, Molan, Jarvis, Carpenter, Salamango, Brown, Harris (bib30) 2019; 100
(bib8) 2020
Gao, Chen, Amitai, Doelger, Mallajosyula, Sundquist, Segal, Carrington, Davis, Streeck (bib20) 2021; 24
Weisblum, Schmidt, Zhang, DaSilva, Poston, Lorenzi, Muecksch, Rutkowska, Hoffmann, Michailidis (bib87) 2020
Munster, Feldmann, Williamson, van Doremalen, Pérez-Pérez, Schulz, Meade-White, Okumura, Callison, Brumbaugh (bib57) 2020; 585
Lundegaard, Lamberth, Harndahl, Buus, Lund, Nielsen (bib51) 2008; 36
Yurkovetskiy, Wang, Pascal, Tomkins-Tinch, Nyalile, Wang, Baum, Diehl, Dauphin, Carbone (bib95) 2020; 183
Shi, Wen, Zhong, Yang, Wang, Huang, Liu, He, Shuai, Sun (bib79) 2020; 368
Karaki, Kariyone, Kato, Kano, Iwakura, Takiguchi (bib31) 1993; 37
Liu, VanBlargan, Bloyet, Rothlauf, Chen, Stumpf, Zhao, Errico, Theel, Liebeskind (bib50) 2021; 29
Garcia-Beltran, Lam, St Denis, Nitido, Garcia, Hauser, Feldman, Pavlovic, Gregory, Poznansky (bib21) 2021; 184
Korber, Fischer, Gnanakaran, Yoon, Theiler, Abfalterer, Hengartner, Giorgi, Bhattacharya, Foley (bib40) 2020; 182
Kared, Redd, Bloch, Bonny, Sumatoh, Kairi, Carbajo, Abel, Newell, Bettinotti (bib32) 2021; 131
Zuo, Dowell, Pearce, Verma, Long, Begum, Aiano, Amin-Chowdhury, Hoschler, Brooks (bib103) 2021; 22
Shema Mugisha, Vuong, Puray-Chavez, Bailey, Fox, Chen, Wessel, Scott, Harastani, Boon (bib77) 2020; 5
Baum, Fulton, Wloga, Copin, Pascal, Russo, Giordano, Lanza, Negron, Ni (bib4) 2020; 369
Kondo (10.1016/j.chom.2021.06.006_bib38) 2011
Ozono (10.1016/j.chom.2021.06.006_bib65) 2021; 12
Wang (10.1016/j.chom.2021.06.006_bib86) 2021; 593
Capella-Gutiérrez (10.1016/j.chom.2021.06.006_bib6) 2009; 25
Naldini (10.1016/j.chom.2021.06.006_bib58) 1996; 272
Yan (10.1016/j.chom.2021.06.006_bib93) 2020; 367
Banerjee (10.1016/j.chom.2021.06.006_bib3) 2021; 29
Lundegaard (10.1016/j.chom.2021.06.006_bib51) 2008; 36
Grint (10.1016/j.chom.2021.06.006_bib23) 2021; 26
Zhou (10.1016/j.chom.2021.06.006_bib101) 2020; 579
Liu (10.1016/j.chom.2021.06.006_bib50) 2021; 29
Torii (10.1016/j.chom.2021.06.006_bib81) 2021; 35
Martínez-Hernández (10.1016/j.chom.2021.06.006_bib52) 2020; 18
Montagutelli (10.1016/j.chom.2021.06.006_bib55) 2021
Wolfl (10.1016/j.chom.2021.06.006_bib91) 2007; 110
Hoffmann (10.1016/j.chom.2021.06.006_bib25) 2021; 184
Hu (10.1016/j.chom.2021.06.006_bib28) 2020
McCarthy (10.1016/j.chom.2021.06.006_bib54) 2021; 371
Weisblum (10.1016/j.chom.2021.06.006_bib87) 2020
Wu (10.1016/j.chom.2021.06.006_bib92) 2020; 579
Li (10.1016/j.chom.2021.06.006_bib47) 2021; 184
Zahradník (10.1016/j.chom.2021.06.006_bib97) 2021
Moore (10.1016/j.chom.2021.06.006_bib56) 2018; 79
Zhou (10.1016/j.chom.2021.06.006_bib102) 2021; 592
Kiyotani (10.1016/j.chom.2021.06.006_bib36) 2020; 65
Shen (10.1016/j.chom.2021.06.006_bib78) 2021; 29
Deng (10.1016/j.chom.2021.06.006_bib16) 2021
Shema Mugisha (10.1016/j.chom.2021.06.006_bib77) 2020; 5
La Gruta (10.1016/j.chom.2021.06.006_bib42) 2018; 18
Bayarri-Olmos (10.1016/j.chom.2021.06.006_bib5) 2021; 296
Traxlmayr (10.1016/j.chom.2021.06.006_bib82) 2012; 526
Selzer (10.1016/j.chom.2021.06.006_bib76) 2000; 7
Challen (10.1016/j.chom.2021.06.006_bib9) 2021; 372
Reynisson (10.1016/j.chom.2021.06.006_bib73) 2020; 48
Karaki (10.1016/j.chom.2021.06.006_bib31) 1993; 37
Fryer (10.1016/j.chom.2021.06.006_bib18) 2012; 86
Matsuyama (10.1016/j.chom.2021.06.006_bib53) 2020; 117
Wang (10.1016/j.chom.2021.06.006_bib85) 2021; 593
Kluesner (10.1016/j.chom.2021.06.006_bib37) 2018; 1
Yurkovetskiy (10.1016/j.chom.2021.06.006_bib95) 2020; 183
Plante (10.1016/j.chom.2021.06.006_bib70) 2021; 29
Parrish (10.1016/j.chom.2021.06.006_bib66) 2008; 72
Koopmans (10.1016/j.chom.2021.06.006_bib39) 2021; 21
Rausch (10.1016/j.chom.2021.06.006_bib72) 2020; 21
Katoh (10.1016/j.chom.2021.06.006_bib34) 2013; 30
Ozono (10.1016/j.chom.2021.06.006_bib64) 2020; 295
Gonzalez-Galarza (10.1016/j.chom.2021.06.006_bib22) 2020; 48
Nielsen (10.1016/j.chom.2021.06.006_bib60) 2003; 12
Anderson (10.1016/j.chom.2021.06.006_bib1) 2018; 15
Darriba (10.1016/j.chom.2021.06.006_bib14) 2020; 37
Korber (10.1016/j.chom.2021.06.006_bib40) 2020; 182
Gao (10.1016/j.chom.2021.06.006_bib20) 2021; 24
Liu (10.1016/j.chom.2021.06.006_bib49) 2021; 384
Plante (10.1016/j.chom.2021.06.006_bib69) 2021; 592
Zhao (10.1016/j.chom.2021.06.006_bib100) 2020
Hou (10.1016/j.chom.2021.06.006_bib27) 2020; 370
Yu (10.1016/j.chom.2021.06.006_bib94) 2020; 369
Collier (10.1016/j.chom.2021.06.006_bib12) 2021; 593
Munster (10.1016/j.chom.2021.06.006_bib57) 2020; 585
Oude Munnink (10.1016/j.chom.2021.06.006_bib63) 2021; 371
Chandrashekar (10.1016/j.chom.2021.06.006_bib10) 2020; 369
Duffy (10.1016/j.chom.2021.06.006_bib17) 2008; 9
Baum (10.1016/j.chom.2021.06.006_bib4) 2020; 369
Liu (10.1016/j.chom.2021.06.006_bib48) 2021; 118
Chen (10.1016/j.chom.2021.06.006_bib11) 2021; 27
Ikeda (10.1016/j.chom.2021.06.006_bib29) 2018; 14
Zuo (10.1016/j.chom.2021.06.006_bib103) 2021; 22
Li (10.1016/j.chom.2021.06.006_bib46) 2020; 182
Wang (10.1016/j.chom.2021.06.006_bib84) 2020; 181
Wilson (10.1016/j.chom.2021.06.006_bib90) 2021; 2
Schulien (10.1016/j.chom.2021.06.006_bib75) 2021; 27
Halfmann (10.1016/j.chom.2021.06.006_bib24) 2020; 383
Kozlov (10.1016/j.chom.2021.06.006_bib41) 2019; 35
Shi (10.1016/j.chom.2021.06.006_bib79) 2020; 368
Niwa (10.1016/j.chom.2021.06.006_bib61) 1991; 108
Sato (10.1016/j.chom.2021.06.006_bib74) 2009; 6
Karosiene (10.1016/j.chom.2021.06.006_bib33) 2012; 64
Lan (10.1016/j.chom.2021.06.006_bib43) 2020; 581
Ikeda (10.1016/j.chom.2021.06.006_bib30) 2019; 100
Damas (10.1016/j.chom.2021.06.006_bib13) 2020; 117
Fukushi (10.1016/j.chom.2021.06.006_bib19) 2007; 81
Zahradník (10.1016/j.chom.2021.06.006_bib96) 2021
Hoffmann (10.1016/j.chom.2021.06.006_bib26) 2021; 35
Pettersen (10.1016/j.chom.2021.06.006_bib68) 2004; 25
Nelde (10.1016/j.chom.2021.06.006_bib59) 2021; 22
Volz (10.1016/j.chom.2021.06.006_bib83) 2021; 184
Kim (10.1016/j.chom.2021.06.006_bib35) 2020; 27
Davies (10.1016/j.chom.2021.06.006_bib15) 2021; 593
Leslie (10.1016/j.chom.2021.06.006_bib45) 2004; 10
Andreatta (10.1016/j.chom.2021.06.006_bib2) 2016; 32
Garcia-Beltran (10.1016/j.chom.2021.06.006_bib21) 2021; 184
Zhang (10.1016/j.chom.2021.06.006_bib99) 2021; 325
Kared (10.1016/j.chom.2021.06.006_bib32) 2021; 131
Le Bert (10.1016/j.chom.2021.06.006_bib44) 2021; 218
Rambaut (10.1016/j.chom.2021.06.006_bib71) 2020; 5
Supasa (10.1016/j.chom.2021.06.006_bib80) 2021; 184
Peleg (10.1016/j.chom.2021.06.006_bib67) 2014; 1116
Zhang (10.1016/j.chom.2021.06.006_bib98) 2009; 25
References_xml – volume: 369
  start-page: 812
  year: 2020
  end-page: 817
  ident: bib10
  article-title: SARS-CoV-2 infection protects against rechallenge in rhesus macaques
  publication-title: Science
– year: 2020
  ident: bib28
  article-title: Identification of cross-reactive CD8
  publication-title: bioRxiv
– volume: 79
  start-page: 821
  year: 2018
  end-page: 822
  ident: bib56
  article-title: Sequence-based HLA-A, B, C, DP, DQ, and DR typing of 496 adults from San Diego, California, USA
  publication-title: Hum. Immunol.
– volume: 29
  start-page: 508
  year: 2021
  end-page: 515
  ident: bib70
  article-title: The variant gambit: COVID-19's next move
  publication-title: Cell Host Microbe
– volume: 6
  start-page: 53
  year: 2009
  ident: bib74
  article-title: Comparative study on the effect of human BST-2/Tetherin on HIV-1 release in cells of various species
  publication-title: Retrovirology
– volume: 25
  start-page: 1972
  year: 2009
  end-page: 1973
  ident: bib6
  article-title: trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses
  publication-title: Bioinformatics
– volume: 372
  start-page: n579
  year: 2021
  ident: bib9
  article-title: Risk of mortality in patients infected with SARS-CoV-2 variant of concern 202012/1: matched cohort study
  publication-title: BMJ
– volume: 184
  start-page: 2384
  year: 2021
  end-page: 2393.e12
  ident: bib25
  article-title: SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies
  publication-title: Cell
– volume: 48
  start-page: W449
  year: 2020
  end-page: W454
  ident: bib73
  article-title: NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data
  publication-title: Nucleic Acids Res.
– volume: 5
  year: 2020
  ident: bib77
  article-title: A simplified quantitative real-time PCR assay for monitoring SARS-CoV-2 growth in cell culture
  publication-title: MSphere
– volume: 9
  start-page: 267
  year: 2008
  end-page: 276
  ident: bib17
  article-title: Rates of evolutionary change in viruses: patterns and determinants
  publication-title: Nat. Rev. Genet.
– volume: 25
  start-page: 1605
  year: 2004
  end-page: 1612
  ident: bib68
  article-title: UCSF Chimera--a visualization system for exploratory research and analysis
  publication-title: J. Comput. Chem.
– volume: 21
  start-page: 18
  year: 2021
  end-page: 19
  ident: bib39
  article-title: SARS-CoV-2 and the human-animal interface: outbreaks on mink farms
  publication-title: Lancet Infect. Dis.
– volume: 2
  start-page: 100221
  year: 2021
  ident: bib90
  article-title: Total predicted MHC-I epitope load is inversely associated with population mortality from SARS-CoV-2
  publication-title: Cell Rep. Med.
– volume: 117
  start-page: 22311
  year: 2020
  end-page: 22322
  ident: bib13
  article-title: Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 37
  start-page: 291
  year: 2020
  end-page: 294
  ident: bib14
  article-title: ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models
  publication-title: Mol. Biol. Evol.
– volume: 183
  start-page: 739
  year: 2020
  end-page: 751.e8
  ident: bib95
  article-title: Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant
  publication-title: Cell
– volume: 371
  start-page: 1139
  year: 2021
  end-page: 1142
  ident: bib54
  article-title: Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape
  publication-title: Science
– volume: 131
  start-page: e145476
  year: 2021
  ident: bib32
  article-title: SARS-CoV-2-specific CD8
  publication-title: J. Clin. Invest.
– start-page: 436013
  year: 2021
  ident: bib55
  article-title: The B1.351 and P.1 variants extend SARS-CoV-2 host range to mice
  publication-title: bioRxiv
– year: 2020
  ident: bib100
  article-title: Broad and differential animal angiotensin-converting enzyme 2 receptor usage by SARS-CoV-2
  publication-title: J. Virol.
– volume: 370
  start-page: 1464
  year: 2020
  end-page: 1468
  ident: bib27
  article-title: SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo
  publication-title: Science
– volume: 35
  start-page: 4453
  year: 2019
  end-page: 4455
  ident: bib41
  article-title: RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference
  publication-title: Bioinformatics
– volume: 585
  start-page: 268
  year: 2020
  end-page: 272
  ident: bib57
  article-title: Respiratory disease in rhesus macaques inoculated with SARS-CoV-2
  publication-title: Nature
– volume: 1116
  start-page: 73
  year: 2014
  end-page: 87
  ident: bib67
  article-title: Application of the Restriction-Free (RF) cloning for multicomponents assembly
  publication-title: Methods Mol. Biol.
– volume: 184
  start-page: 64
  year: 2021
  end-page: 75.e11
  ident: bib83
  article-title: Evaluating the effects of SARS-CoV-2 spike mutation D614G on transmissibility and pathogenicity
  publication-title: Cell
– volume: 15
  start-page: 78
  year: 2018
  ident: bib1
  article-title: Natural APOBEC3C variants can elicit differential HIV-1 restriction activity
  publication-title: Retrovirology
– volume: 12
  start-page: 1007
  year: 2003
  end-page: 1017
  ident: bib60
  article-title: Reliable prediction of T-cell epitopes using neural networks with novel sequence representations
  publication-title: Protein Sci.
– volume: 5
  start-page: 1403
  year: 2020
  end-page: 1407
  ident: bib71
  article-title: A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology
  publication-title: Nat. Microbiol.
– volume: 65
  start-page: 569
  year: 2020
  end-page: 575
  ident: bib36
  article-title: Bioinformatic prediction of potential T cell epitopes for SARS-Cov-2
  publication-title: J. Hum. Genet.
– volume: 593
  start-page: 130
  year: 2021
  end-page: 135
  ident: bib86
  article-title: Antibody Resistance of SARS-CoV-2 Variants B.1.351 and B.1.1.7
  publication-title: Nature
– volume: 581
  start-page: 215
  year: 2020
  end-page: 220
  ident: bib43
  article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor
  publication-title: Nature
– year: 2020
  ident: bib89
  article-title: SARS-CoV-2 mink-associated variant strain – Denmark (November 6, 2020)
– volume: 295
  start-page: 13023
  year: 2020
  end-page: 13030
  ident: bib64
  article-title: Super-rapid quantitation of the production of HIV-1 harboring a luminescent peptide tag
  publication-title: J. Biol. Chem.
– volume: 21
  start-page: 230
  year: 2020
  ident: bib72
  article-title: Tracy: basecalling, alignment, assembly and deconvolution of sanger chromatogram trace files
  publication-title: BMC Genomics
– volume: 35
  start-page: 109014
  year: 2021
  ident: bib81
  article-title: Establishment of a reverse genetics system for SARS-CoV-2 using circular polymerase extension reaction
  publication-title: Cell Rep.
– volume: 182
  start-page: 812
  year: 2020
  end-page: 827.e19
  ident: bib40
  article-title: Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus
  publication-title: Cell
– volume: 10
  start-page: 282
  year: 2004
  end-page: 289
  ident: bib45
  article-title: HIV evolution: CTL escape mutation and reversion after transmission
  publication-title: Nat. Med.
– volume: 7
  start-page: 537
  year: 2000
  end-page: 541
  ident: bib76
  article-title: Rational design of faster associating and tighter binding protein complexes
  publication-title: Nat. Struct. Biol.
– volume: 368
  start-page: 1016
  year: 2020
  end-page: 1020
  ident: bib79
  article-title: Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2
  publication-title: Science
– volume: 184
  start-page: 2372
  year: 2021
  end-page: 2383.e9
  ident: bib21
  article-title: Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity
  publication-title: Cell
– volume: 272
  start-page: 263
  year: 1996
  end-page: 267
  ident: bib58
  article-title: In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector
  publication-title: Science
– volume: 383
  start-page: 592
  year: 2020
  end-page: 594
  ident: bib24
  article-title: Transmission of SARS-CoV-2 in domestic cats
  publication-title: N. Engl. J. Med.
– volume: 24
  start-page: 102311
  year: 2021
  ident: bib20
  article-title: Learning from HIV-1 to predict the immunogenicity of T cell epitopes in SARS-COV-2
  publication-title: iScience
– year: 2021
  ident: bib96
  article-title: An enhanced yeast display platform demonstrates the binding plasticity under various selection pressures
  publication-title: bioRxiv
– volume: 296
  start-page: 100536
  year: 2021
  ident: bib5
  article-title: The SARS-CoV-2 Y453F mink variant displays a pronounced increase in ACE-2 affinity but does not challenge antibody neutralization
  publication-title: J. Biol. Chem.
– year: 2021
  ident: bib16
  article-title: Transmission, infectivity, and antibody neutralization of an emerging SARS-CoV-2 variant in California carrying a L452R spike protein mutation
  publication-title: medRxiv
– volume: 592
  start-page: 122
  year: 2021
  end-page: 127
  ident: bib102
  article-title: SARS-CoV-2 spike D614G change enhances replication and transmission
  publication-title: Nature
– year: 2020
  ident: bib87
  article-title: Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants
  publication-title: eLife
– volume: 118
  year: 2021
  ident: bib48
  article-title: Functional and genetic analysis of viral receptor ACE2 orthologs reveals a broad potential host range of SARS-CoV-2
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 12
  start-page: 848
  year: 2021
  ident: bib65
  article-title: SARS-CoV-2 D614G spike mutation increases entry efficiency with enhanced ACE2-binding affinity
  publication-title: Nat. Commun.
– volume: 81
  start-page: 10831
  year: 2007
  end-page: 10834
  ident: bib19
  article-title: Amino acid substitutions in the s2 region enhance severe acute respiratory syndrome coronavirus infectivity in rat angiotensin-converting enzyme 2-expressing cells
  publication-title: J. Virol.
– volume: 26
  start-page: 2100256
  year: 2021
  ident: bib23
  article-title: Case fatality risk of the SARS-CoV-2 variant of concern B.1.1.7 in England, 16 November to 5 February
  publication-title: Euro Surveill.
– volume: 184
  start-page: 2201
  year: 2021
  end-page: 2211.e7
  ident: bib80
  article-title: Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera
  publication-title: Cell
– year: 2020
  ident: bib88
  article-title: Coronavirus disease 2019
– volume: 369
  start-page: 1014
  year: 2020
  end-page: 1018
  ident: bib4
  article-title: Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies
  publication-title: Science
– volume: 526
  start-page: 174
  year: 2012
  end-page: 180
  ident: bib82
  article-title: Directed evolution of proteins for increased stability and expression using yeast display
  publication-title: Arch. Biochem. Biophys.
– volume: 593
  start-page: 130
  year: 2021
  end-page: 135
  ident: bib85
  article-title: Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7
  publication-title: Nature
– volume: 25
  start-page: 1293
  year: 2009
  end-page: 1299
  ident: bib98
  article-title: The PickPocket method for predicting binding specificities for receptors based on receptor pocket similarities: application to MHC-peptide binding
  publication-title: Bioinformatics
– volume: 593
  start-page: 136
  year: 2021
  end-page: 141
  ident: bib12
  article-title: Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies
  publication-title: Nature
– volume: 27
  start-page: 717
  year: 2021
  end-page: 726
  ident: bib11
  article-title: Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies
  publication-title: Nat. Med.
– volume: 29
  start-page: 477
  year: 2021
  end-page: 488.e44
  ident: bib50
  article-title: Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization
  publication-title: Cell Host Microbe
– volume: 182
  start-page: 1284
  year: 2020
  end-page: 1294.e9
  ident: bib46
  article-title: The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity
  publication-title: Cell
– volume: 72
  start-page: 457
  year: 2008
  end-page: 470
  ident: bib66
  article-title: Cross-species virus transmission and the emergence of new epidemic diseases
  publication-title: Microbiol. Mol. Biol. Rev.
– volume: 64
  start-page: 177
  year: 2012
  end-page: 186
  ident: bib33
  article-title: NetMHCcons: a consensus method for the major histocompatibility complex class I predictions
  publication-title: Immunogenetics
– volume: 22
  start-page: 74
  year: 2021
  end-page: 85
  ident: bib59
  article-title: SARS-CoV-2-derived peptides define heterologous and COVID-19-induced T cell recognition
  publication-title: Nat. Immunol.
– volume: 32
  start-page: 511
  year: 2016
  end-page: 517
  ident: bib2
  article-title: Gapped sequence alignment using artificial neural networks: application to the MHC class I system
  publication-title: Bioinformatics
– volume: 579
  start-page: 265
  year: 2020
  end-page: 269
  ident: bib92
  article-title: A new coronavirus associated with human respiratory disease in China
  publication-title: Nature
– year: 2011
  ident: bib38
  article-title: Monitoring viral-mediated membrane fusion using fluorescent reporter methods
  publication-title: Curr Protoc Cell Biol
– volume: 22
  start-page: 620
  year: 2021
  end-page: 626
  ident: bib103
  article-title: Robust SARS-CoV-2-specific T cell immunity is maintained at 6 months following primary infection
  publication-title: Nat. Immunol.
– volume: 579
  start-page: 270
  year: 2020
  end-page: 273
  ident: bib101
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
– volume: 218
  start-page: e20202617
  year: 2021
  ident: bib44
  article-title: Highly functional virus-specific cellular immune response in asymptomatic SARS-CoV-2 infection
  publication-title: J. Exp. Med.
– volume: 325
  start-page: 1324
  year: 2021
  end-page: 1326
  ident: bib99
  article-title: Emergence of a novel SARS-CoV-2 variant in Southern California
  publication-title: JAMA
– volume: 36
  year: 2008
  ident: bib51
  article-title: NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11
  publication-title: Nucleic Acids Res.
– volume: 367
  start-page: 1444
  year: 2020
  end-page: 1448
  ident: bib93
  article-title: Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2
  publication-title: Science
– volume: 371
  start-page: 172
  year: 2021
  end-page: 177
  ident: bib63
  article-title: Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans
  publication-title: Science
– year: 2021
  ident: bib62
  article-title: Infection with SARS-CoV-2 in animals (January 2021)
– volume: 117
  start-page: 7001
  year: 2020
  end-page: 7003
  ident: bib53
  article-title: Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 18
  start-page: 467
  year: 2018
  end-page: 478
  ident: bib42
  article-title: Understanding the drivers of MHC restriction of T cell receptors
  publication-title: Nat. Rev. Immunol.
– volume: 184
  start-page: 2362
  year: 2021
  end-page: 2371.e9
  ident: bib47
  article-title: SARS-CoV-2 501Y.V2 variants lack higher infectivity but do have immune escape
  publication-title: Cell
– year: 2019
  ident: bib7
  article-title: Birth: final data for 2018
– volume: 384
  start-page: 1466
  year: 2021
  end-page: 1468
  ident: bib49
  article-title: Neutralizing activity of BNT162b2-elicited serum
  publication-title: N. Engl. J. Med.
– volume: 27
  start-page: 78
  year: 2021
  end-page: 85
  ident: bib75
  article-title: Characterization of pre-existing and induced SARS-CoV-2-specific CD8
  publication-title: Nat. Med.
– volume: 48
  start-page: D783
  year: 2020
  end-page: D788
  ident: bib22
  article-title: Allele frequency net database (AFND) 2020 update: gold-standard data classification, open access genotype data and new query tools
  publication-title: Nucleic Acids Res.
– volume: 592
  start-page: 116
  year: 2021
  end-page: 121
  ident: bib69
  article-title: Spike mutation D614G alters SARS-CoV-2 fitness
  publication-title: Nature
– volume: 29
  start-page: 529
  year: 2021
  end-page: 539.e3
  ident: bib78
  article-title: SARS-CoV-2 variant B.1.1.7 is susceptible to neutralizing antibodies elicited by ancestral spike vaccines
  publication-title: Cell Host Microbe
– volume: 18
  start-page: 223
  year: 2020
  end-page: 234
  ident: bib52
  article-title: Assessing the SARS-CoV-2 threat to wildlife: Potential risk to a broad range of mammals
  publication-title: Perspectives in Ecology and Conservation
– volume: 108
  start-page: 193
  year: 1991
  end-page: 199
  ident: bib61
  article-title: Efficient selection for high-expression transfectants with a novel eukaryotic vector
  publication-title: Gene
– volume: 369
  start-page: 806
  year: 2020
  end-page: 811
  ident: bib94
  article-title: DNA vaccine protection against SARS-CoV-2 in rhesus macaques
  publication-title: Science
– year: 2020
  ident: bib8
  article-title: Emerging SARS-CoV-2 variants (updated January 28, 2021)
– volume: 100
  start-page: 1140
  year: 2019
  end-page: 1152
  ident: bib30
  article-title: HIV-1 restriction by endogenous APOBEC3G in the myeloid cell line THP-1
  publication-title: J. Gen. Virol.
– volume: 37
  start-page: 139
  year: 1993
  end-page: 142
  ident: bib31
  article-title: HLA-B51 transgenic mice as recipients for production of polymorphic HLA-A, B-specific antibodies
  publication-title: Immunogenetics
– volume: 29
  start-page: 160
  year: 2021
  end-page: 164
  ident: bib3
  article-title: Zooanthroponotic potential of SARS-CoV-2 and implications of reintroduction into human populations
  publication-title: Cell Host Microbe
– volume: 86
  start-page: 8568
  year: 2012
  end-page: 8580
  ident: bib18
  article-title: Cytotoxic T-lymphocyte escape mutations identified by HLA association favor those which escape and revert rapidly
  publication-title: J. Virol.
– volume: 14
  start-page: e1007010
  year: 2018
  ident: bib29
  article-title: HIV-1 adaptation studies reveal a novel Env-mediated homeostasis mechanism for evading lethal hypermutation by APOBEC3G
  publication-title: PLoS Pathog.
– volume: 27
  start-page: 704
  year: 2020
  end-page: 709.e2
  ident: bib35
  article-title: Infection and rapid transmission of SARS-CoV-2 in ferrets
  publication-title: Cell Host Microbe
– volume: 110
  start-page: 201
  year: 2007
  end-page: 210
  ident: bib91
  article-title: Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8
  publication-title: Blood
– volume: 593
  start-page: 270
  year: 2021
  end-page: 274
  ident: bib15
  article-title: Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7
  publication-title: Nature
– volume: 35
  start-page: 109017
  year: 2021
  ident: bib26
  article-title: SARS-CoV-2 mutations acquired in mink reduce antibody-mediated neutralization
  publication-title: Cell Rep.
– volume: 30
  start-page: 772
  year: 2013
  end-page: 780
  ident: bib34
  article-title: MAFFT multiple sequence alignment software version 7: improvements in performance and usability
  publication-title: Mol. Biol. Evol.
– volume: 181
  start-page: 894
  year: 2020
  end-page: 904.e9
  ident: bib84
  article-title: Structural and functional basis of SARS-CoV-2 entry by using human ACE2
  publication-title: Cell
– volume: 1
  start-page: 239
  year: 2018
  end-page: 250
  ident: bib37
  article-title: EditR: a method to quantify base editing from Sanger sequencing
  publication-title: The CRISPR Journal
– year: 2021
  ident: bib97
  article-title: SARS-CoV-2 RBD in vitro evolution follows contagious mutation spread yet generates an able infection inhibitor
  publication-title: bioRxiv
– year: 2020
  ident: 10.1016/j.chom.2021.06.006_bib100
  article-title: Broad and differential animal angiotensin-converting enzyme 2 receptor usage by SARS-CoV-2
  publication-title: J. Virol.
  doi: 10.1128/JVI.00940-20
– volume: 65
  start-page: 569
  year: 2020
  ident: 10.1016/j.chom.2021.06.006_bib36
  article-title: Bioinformatic prediction of potential T cell epitopes for SARS-Cov-2
  publication-title: J. Hum. Genet.
  doi: 10.1038/s10038-020-0771-5
– volume: 35
  start-page: 4453
  year: 2019
  ident: 10.1016/j.chom.2021.06.006_bib41
  article-title: RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz305
– volume: 184
  start-page: 2201
  year: 2021
  ident: 10.1016/j.chom.2021.06.006_bib80
  article-title: Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera
  publication-title: Cell
  doi: 10.1016/j.cell.2021.02.033
– volume: 184
  start-page: 2384
  year: 2021
  ident: 10.1016/j.chom.2021.06.006_bib25
  article-title: SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies
  publication-title: Cell
  doi: 10.1016/j.cell.2021.03.036
– volume: 27
  start-page: 704
  year: 2020
  ident: 10.1016/j.chom.2021.06.006_bib35
  article-title: Infection and rapid transmission of SARS-CoV-2 in ferrets
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.03.023
– year: 2021
  ident: 10.1016/j.chom.2021.06.006_bib96
  article-title: An enhanced yeast display platform demonstrates the binding plasticity under various selection pressures
  publication-title: bioRxiv
– volume: 21
  start-page: 18
  year: 2021
  ident: 10.1016/j.chom.2021.06.006_bib39
  article-title: SARS-CoV-2 and the human-animal interface: outbreaks on mink farms
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(20)30912-9
– volume: 22
  start-page: 74
  year: 2021
  ident: 10.1016/j.chom.2021.06.006_bib59
  article-title: SARS-CoV-2-derived peptides define heterologous and COVID-19-induced T cell recognition
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-020-00808-x
– volume: 117
  start-page: 7001
  year: 2020
  ident: 10.1016/j.chom.2021.06.006_bib53
  article-title: Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2002589117
– volume: 184
  start-page: 2362
  year: 2021
  ident: 10.1016/j.chom.2021.06.006_bib47
  article-title: SARS-CoV-2 501Y.V2 variants lack higher infectivity but do have immune escape
  publication-title: Cell
  doi: 10.1016/j.cell.2021.02.042
– volume: 2
  start-page: 100221
  year: 2021
  ident: 10.1016/j.chom.2021.06.006_bib90
  article-title: Total predicted MHC-I epitope load is inversely associated with population mortality from SARS-CoV-2
  publication-title: Cell Rep. Med.
  doi: 10.1016/j.xcrm.2021.100221
– volume: 367
  start-page: 1444
  year: 2020
  ident: 10.1016/j.chom.2021.06.006_bib93
  article-title: Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2
  publication-title: Science
  doi: 10.1126/science.abb2762
– volume: 29
  start-page: 160
  year: 2021
  ident: 10.1016/j.chom.2021.06.006_bib3
  article-title: Zooanthroponotic potential of SARS-CoV-2 and implications of reintroduction into human populations
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.01.004
– volume: 35
  start-page: 109017
  year: 2021
  ident: 10.1016/j.chom.2021.06.006_bib26
  article-title: SARS-CoV-2 mutations acquired in mink reduce antibody-mediated neutralization
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2021.109017
– volume: 18
  start-page: 223
  year: 2020
  ident: 10.1016/j.chom.2021.06.006_bib52
  article-title: Assessing the SARS-CoV-2 threat to wildlife: Potential risk to a broad range of mammals
  publication-title: Perspectives in Ecology and Conservation
  doi: 10.1016/j.pecon.2020.09.008
– volume: 526
  start-page: 174
  year: 2012
  ident: 10.1016/j.chom.2021.06.006_bib82
  article-title: Directed evolution of proteins for increased stability and expression using yeast display
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2012.04.022
– volume: 592
  start-page: 122
  year: 2021
  ident: 10.1016/j.chom.2021.06.006_bib102
  article-title: SARS-CoV-2 spike D614G change enhances replication and transmission
  publication-title: Nature
  doi: 10.1038/s41586-021-03361-1
– volume: 592
  start-page: 116
  year: 2021
  ident: 10.1016/j.chom.2021.06.006_bib69
  article-title: Spike mutation D614G alters SARS-CoV-2 fitness
  publication-title: Nature
  doi: 10.1038/s41586-020-2895-3
– volume: 5
  year: 2020
  ident: 10.1016/j.chom.2021.06.006_bib77
  article-title: A simplified quantitative real-time PCR assay for monitoring SARS-CoV-2 growth in cell culture
  publication-title: MSphere
  doi: 10.1128/mSphere.00658-20
– volume: 86
  start-page: 8568
  year: 2012
  ident: 10.1016/j.chom.2021.06.006_bib18
  article-title: Cytotoxic T-lymphocyte escape mutations identified by HLA association favor those which escape and revert rapidly
  publication-title: J. Virol.
  doi: 10.1128/JVI.07020-11
– volume: 131
  start-page: e145476
  year: 2021
  ident: 10.1016/j.chom.2021.06.006_bib32
  article-title: SARS-CoV-2-specific CD8+ T cell responses in convalescent COVID-19 individuals
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI145476
– volume: 184
  start-page: 64
  year: 2021
  ident: 10.1016/j.chom.2021.06.006_bib83
  article-title: Evaluating the effects of SARS-CoV-2 spike mutation D614G on transmissibility and pathogenicity
  publication-title: Cell
  doi: 10.1016/j.cell.2020.11.020
– volume: 325
  start-page: 1324
  year: 2021
  ident: 10.1016/j.chom.2021.06.006_bib99
  article-title: Emergence of a novel SARS-CoV-2 variant in Southern California
  publication-title: JAMA
  doi: 10.1001/jama.2021.1612
– volume: 593
  start-page: 130
  year: 2021
  ident: 10.1016/j.chom.2021.06.006_bib86
  article-title: Antibody Resistance of SARS-CoV-2 Variants B.1.351 and B.1.1.7
  publication-title: Nature
  doi: 10.1038/s41586-021-03398-2
– volume: 585
  start-page: 268
  year: 2020
  ident: 10.1016/j.chom.2021.06.006_bib57
  article-title: Respiratory disease in rhesus macaques inoculated with SARS-CoV-2
  publication-title: Nature
  doi: 10.1038/s41586-020-2324-7
– volume: 5
  start-page: 1403
  year: 2020
  ident: 10.1016/j.chom.2021.06.006_bib71
  article-title: A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-020-0770-5
– volume: 21
  start-page: 230
  year: 2020
  ident: 10.1016/j.chom.2021.06.006_bib72
  article-title: Tracy: basecalling, alignment, assembly and deconvolution of sanger chromatogram trace files
  publication-title: BMC Genomics
  doi: 10.1186/s12864-020-6635-8
– volume: 14
  start-page: e1007010
  year: 2018
  ident: 10.1016/j.chom.2021.06.006_bib29
  article-title: HIV-1 adaptation studies reveal a novel Env-mediated homeostasis mechanism for evading lethal hypermutation by APOBEC3G
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1007010
– volume: 184
  start-page: 2372
  year: 2021
  ident: 10.1016/j.chom.2021.06.006_bib21
  article-title: Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity
  publication-title: Cell
  doi: 10.1016/j.cell.2021.03.013
– volume: 579
  start-page: 265
  year: 2020
  ident: 10.1016/j.chom.2021.06.006_bib92
  article-title: A new coronavirus associated with human respiratory disease in China
  publication-title: Nature
  doi: 10.1038/s41586-020-2008-3
– volume: 181
  start-page: 894
  year: 2020
  ident: 10.1016/j.chom.2021.06.006_bib84
  article-title: Structural and functional basis of SARS-CoV-2 entry by using human ACE2
  publication-title: Cell
  doi: 10.1016/j.cell.2020.03.045
– volume: 7
  start-page: 537
  year: 2000
  ident: 10.1016/j.chom.2021.06.006_bib76
  article-title: Rational design of faster associating and tighter binding protein complexes
  publication-title: Nat. Struct. Biol.
  doi: 10.1038/76744
– volume: 12
  start-page: 1007
  year: 2003
  ident: 10.1016/j.chom.2021.06.006_bib60
  article-title: Reliable prediction of T-cell epitopes using neural networks with novel sequence representations
  publication-title: Protein Sci.
  doi: 10.1110/ps.0239403
– volume: 32
  start-page: 511
  year: 2016
  ident: 10.1016/j.chom.2021.06.006_bib2
  article-title: Gapped sequence alignment using artificial neural networks: application to the MHC class I system
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv639
– volume: 64
  start-page: 177
  year: 2012
  ident: 10.1016/j.chom.2021.06.006_bib33
  article-title: NetMHCcons: a consensus method for the major histocompatibility complex class I predictions
  publication-title: Immunogenetics
  doi: 10.1007/s00251-011-0579-8
– volume: 79
  start-page: 821
  year: 2018
  ident: 10.1016/j.chom.2021.06.006_bib56
  article-title: Sequence-based HLA-A, B, C, DP, DQ, and DR typing of 496 adults from San Diego, California, USA
  publication-title: Hum. Immunol.
  doi: 10.1016/j.humimm.2018.09.008
– volume: 26
  start-page: 2100256
  year: 2021
  ident: 10.1016/j.chom.2021.06.006_bib23
  article-title: Case fatality risk of the SARS-CoV-2 variant of concern B.1.1.7 in England, 16 November to 5 February
  publication-title: Euro Surveill.
  doi: 10.2807/1560-7917.ES.2021.26.11.2100256
– volume: 296
  start-page: 100536
  year: 2021
  ident: 10.1016/j.chom.2021.06.006_bib5
  article-title: The SARS-CoV-2 Y453F mink variant displays a pronounced increase in ACE-2 affinity but does not challenge antibody neutralization
  publication-title: J. Biol. Chem.
  doi: 10.1016/j.jbc.2021.100536
– start-page: 436013
  year: 2021
  ident: 10.1016/j.chom.2021.06.006_bib55
  article-title: The B1.351 and P.1 variants extend SARS-CoV-2 host range to mice
  publication-title: bioRxiv
– volume: 9
  start-page: 267
  year: 2008
  ident: 10.1016/j.chom.2021.06.006_bib17
  article-title: Rates of evolutionary change in viruses: patterns and determinants
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2323
– volume: 369
  start-page: 806
  year: 2020
  ident: 10.1016/j.chom.2021.06.006_bib94
  article-title: DNA vaccine protection against SARS-CoV-2 in rhesus macaques
  publication-title: Science
  doi: 10.1126/science.abc6284
– volume: 29
  start-page: 477
  year: 2021
  ident: 10.1016/j.chom.2021.06.006_bib50
  article-title: Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.01.014
– volume: 15
  start-page: 78
  year: 2018
  ident: 10.1016/j.chom.2021.06.006_bib1
  article-title: Natural APOBEC3C variants can elicit differential HIV-1 restriction activity
  publication-title: Retrovirology
  doi: 10.1186/s12977-018-0459-5
– year: 2011
  ident: 10.1016/j.chom.2021.06.006_bib38
  article-title: Monitoring viral-mediated membrane fusion using fluorescent reporter methods
  publication-title: Curr Protoc Cell Biol
  doi: 10.1002/0471143030.cb2609s50
– volume: 27
  start-page: 717
  year: 2021
  ident: 10.1016/j.chom.2021.06.006_bib11
  article-title: Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01294-w
– volume: 117
  start-page: 22311
  year: 2020
  ident: 10.1016/j.chom.2021.06.006_bib13
  article-title: Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2010146117
– volume: 579
  start-page: 270
  year: 2020
  ident: 10.1016/j.chom.2021.06.006_bib101
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
  doi: 10.1038/s41586-020-2012-7
– volume: 48
  start-page: W449
  issue: W1
  year: 2020
  ident: 10.1016/j.chom.2021.06.006_bib73
  article-title: NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa379
– volume: 272
  start-page: 263
  year: 1996
  ident: 10.1016/j.chom.2021.06.006_bib58
  article-title: In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector
  publication-title: Science
  doi: 10.1126/science.272.5259.263
– volume: 81
  start-page: 10831
  year: 2007
  ident: 10.1016/j.chom.2021.06.006_bib19
  article-title: Amino acid substitutions in the s2 region enhance severe acute respiratory syndrome coronavirus infectivity in rat angiotensin-converting enzyme 2-expressing cells
  publication-title: J. Virol.
  doi: 10.1128/JVI.01143-07
– volume: 48
  start-page: D783
  issue: D1
  year: 2020
  ident: 10.1016/j.chom.2021.06.006_bib22
  article-title: Allele frequency net database (AFND) 2020 update: gold-standard data classification, open access genotype data and new query tools
  publication-title: Nucleic Acids Res.
– volume: 118
  year: 2021
  ident: 10.1016/j.chom.2021.06.006_bib48
  article-title: Functional and genetic analysis of viral receptor ACE2 orthologs reveals a broad potential host range of SARS-CoV-2
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 383
  start-page: 592
  year: 2020
  ident: 10.1016/j.chom.2021.06.006_bib24
  article-title: Transmission of SARS-CoV-2 in domestic cats
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2013400
– volume: 182
  start-page: 1284
  year: 2020
  ident: 10.1016/j.chom.2021.06.006_bib46
  article-title: The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity
  publication-title: Cell
  doi: 10.1016/j.cell.2020.07.012
– volume: 30
  start-page: 772
  year: 2013
  ident: 10.1016/j.chom.2021.06.006_bib34
  article-title: MAFFT multiple sequence alignment software version 7: improvements in performance and usability
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/mst010
– volume: 295
  start-page: 13023
  year: 2020
  ident: 10.1016/j.chom.2021.06.006_bib64
  article-title: Super-rapid quantitation of the production of HIV-1 harboring a luminescent peptide tag
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA120.013887
– volume: 218
  start-page: e20202617
  year: 2021
  ident: 10.1016/j.chom.2021.06.006_bib44
  article-title: Highly functional virus-specific cellular immune response in asymptomatic SARS-CoV-2 infection
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20202617
– volume: 110
  start-page: 201
  year: 2007
  ident: 10.1016/j.chom.2021.06.006_bib91
  article-title: Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities
  publication-title: Blood
  doi: 10.1182/blood-2006-11-056168
– volume: 10
  start-page: 282
  year: 2004
  ident: 10.1016/j.chom.2021.06.006_bib45
  article-title: HIV evolution: CTL escape mutation and reversion after transmission
  publication-title: Nat. Med.
  doi: 10.1038/nm992
– volume: 372
  start-page: n579
  year: 2021
  ident: 10.1016/j.chom.2021.06.006_bib9
  article-title: Risk of mortality in patients infected with SARS-CoV-2 variant of concern 202012/1: matched cohort study
  publication-title: BMJ
  doi: 10.1136/bmj.n579
– volume: 37
  start-page: 291
  year: 2020
  ident: 10.1016/j.chom.2021.06.006_bib14
  article-title: ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msz189
– volume: 108
  start-page: 193
  year: 1991
  ident: 10.1016/j.chom.2021.06.006_bib61
  article-title: Efficient selection for high-expression transfectants with a novel eukaryotic vector
  publication-title: Gene
  doi: 10.1016/0378-1119(91)90434-D
– volume: 593
  start-page: 130
  year: 2021
  ident: 10.1016/j.chom.2021.06.006_bib85
  article-title: Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7
  publication-title: Nature
  doi: 10.1038/s41586-021-03398-2
– volume: 100
  start-page: 1140
  year: 2019
  ident: 10.1016/j.chom.2021.06.006_bib30
  article-title: HIV-1 restriction by endogenous APOBEC3G in the myeloid cell line THP-1
  publication-title: J. Gen. Virol.
  doi: 10.1099/jgv.0.001276
– volume: 27
  start-page: 78
  year: 2021
  ident: 10.1016/j.chom.2021.06.006_bib75
  article-title: Characterization of pre-existing and induced SARS-CoV-2-specific CD8+ T cells
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-01143-2
– volume: 1
  start-page: 239
  year: 2018
  ident: 10.1016/j.chom.2021.06.006_bib37
  article-title: EditR: a method to quantify base editing from Sanger sequencing
  publication-title: The CRISPR Journal
  doi: 10.1089/crispr.2018.0014
– volume: 371
  start-page: 1139
  year: 2021
  ident: 10.1016/j.chom.2021.06.006_bib54
  article-title: Recurrent deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape
  publication-title: Science
  doi: 10.1126/science.abf6950
– volume: 25
  start-page: 1605
  year: 2004
  ident: 10.1016/j.chom.2021.06.006_bib68
  article-title: UCSF Chimera--a visualization system for exploratory research and analysis
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20084
– volume: 371
  start-page: 172
  year: 2021
  ident: 10.1016/j.chom.2021.06.006_bib63
  article-title: Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans
  publication-title: Science
  doi: 10.1126/science.abe5901
– volume: 6
  start-page: 53
  year: 2009
  ident: 10.1016/j.chom.2021.06.006_bib74
  article-title: Comparative study on the effect of human BST-2/Tetherin on HIV-1 release in cells of various species
  publication-title: Retrovirology
  doi: 10.1186/1742-4690-6-53
– volume: 35
  start-page: 109014
  year: 2021
  ident: 10.1016/j.chom.2021.06.006_bib81
  article-title: Establishment of a reverse genetics system for SARS-CoV-2 using circular polymerase extension reaction
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2021.109014
– volume: 581
  start-page: 215
  year: 2020
  ident: 10.1016/j.chom.2021.06.006_bib43
  article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor
  publication-title: Nature
  doi: 10.1038/s41586-020-2180-5
– volume: 25
  start-page: 1972
  year: 2009
  ident: 10.1016/j.chom.2021.06.006_bib6
  article-title: trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp348
– year: 2021
  ident: 10.1016/j.chom.2021.06.006_bib16
  article-title: Transmission, infectivity, and antibody neutralization of an emerging SARS-CoV-2 variant in California carrying a L452R spike protein mutation
  publication-title: medRxiv
– volume: 24
  start-page: 102311
  year: 2021
  ident: 10.1016/j.chom.2021.06.006_bib20
  article-title: Learning from HIV-1 to predict the immunogenicity of T cell epitopes in SARS-COV-2
  publication-title: iScience
  doi: 10.1016/j.isci.2021.102311
– volume: 182
  start-page: 812
  year: 2020
  ident: 10.1016/j.chom.2021.06.006_bib40
  article-title: Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus
  publication-title: Cell
  doi: 10.1016/j.cell.2020.06.043
– volume: 72
  start-page: 457
  year: 2008
  ident: 10.1016/j.chom.2021.06.006_bib66
  article-title: Cross-species virus transmission and the emergence of new epidemic diseases
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.00004-08
– volume: 183
  start-page: 739
  year: 2020
  ident: 10.1016/j.chom.2021.06.006_bib95
  article-title: Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant
  publication-title: Cell
  doi: 10.1016/j.cell.2020.09.032
– year: 2020
  ident: 10.1016/j.chom.2021.06.006_bib28
  article-title: Identification of cross-reactive CD8+ T cell receptors with high functional avidity to a SARS-CoV-2 immunodominant epitope and its natural mutant variants
  publication-title: bioRxiv
– volume: 593
  start-page: 136
  year: 2021
  ident: 10.1016/j.chom.2021.06.006_bib12
  article-title: Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies
  publication-title: Nature
  doi: 10.1038/s41586-021-03412-7
– volume: 36
  year: 2008
  ident: 10.1016/j.chom.2021.06.006_bib51
  article-title: NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn202
– volume: 37
  start-page: 139
  year: 1993
  ident: 10.1016/j.chom.2021.06.006_bib31
  article-title: HLA-B51 transgenic mice as recipients for production of polymorphic HLA-A, B-specific antibodies
  publication-title: Immunogenetics
  doi: 10.1007/BF00216838
– volume: 369
  start-page: 812
  year: 2020
  ident: 10.1016/j.chom.2021.06.006_bib10
  article-title: SARS-CoV-2 infection protects against rechallenge in rhesus macaques
  publication-title: Science
  doi: 10.1126/science.abc4776
– volume: 12
  start-page: 848
  year: 2021
  ident: 10.1016/j.chom.2021.06.006_bib65
  article-title: SARS-CoV-2 D614G spike mutation increases entry efficiency with enhanced ACE2-binding affinity
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21118-2
– volume: 29
  start-page: 529
  year: 2021
  ident: 10.1016/j.chom.2021.06.006_bib78
  article-title: SARS-CoV-2 variant B.1.1.7 is susceptible to neutralizing antibodies elicited by ancestral spike vaccines
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.03.002
– year: 2021
  ident: 10.1016/j.chom.2021.06.006_bib97
  article-title: SARS-CoV-2 RBD in vitro evolution follows contagious mutation spread yet generates an able infection inhibitor
  publication-title: bioRxiv
– volume: 593
  start-page: 270
  year: 2021
  ident: 10.1016/j.chom.2021.06.006_bib15
  article-title: Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7
  publication-title: Nature
  doi: 10.1038/s41586-021-03426-1
– year: 2020
  ident: 10.1016/j.chom.2021.06.006_bib87
  article-title: Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants
  publication-title: eLife
  doi: 10.7554/eLife.61312.sa2
– volume: 369
  start-page: 1014
  year: 2020
  ident: 10.1016/j.chom.2021.06.006_bib4
  article-title: Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies
  publication-title: Science
  doi: 10.1126/science.abd0831
– volume: 368
  start-page: 1016
  year: 2020
  ident: 10.1016/j.chom.2021.06.006_bib79
  article-title: Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2
  publication-title: Science
  doi: 10.1126/science.abb7015
– volume: 29
  start-page: 508
  year: 2021
  ident: 10.1016/j.chom.2021.06.006_bib70
  article-title: The variant gambit: COVID-19's next move
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.02.020
– volume: 370
  start-page: 1464
  year: 2020
  ident: 10.1016/j.chom.2021.06.006_bib27
  article-title: SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo
  publication-title: Science
  doi: 10.1126/science.abe8499
– volume: 384
  start-page: 1466
  year: 2021
  ident: 10.1016/j.chom.2021.06.006_bib49
  article-title: Neutralizing activity of BNT162b2-elicited serum
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2102017
– volume: 25
  start-page: 1293
  year: 2009
  ident: 10.1016/j.chom.2021.06.006_bib98
  article-title: The PickPocket method for predicting binding specificities for receptors based on receptor pocket similarities: application to MHC-peptide binding
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp137
– volume: 18
  start-page: 467
  year: 2018
  ident: 10.1016/j.chom.2021.06.006_bib42
  article-title: Understanding the drivers of MHC restriction of T cell receptors
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-018-0007-5
– volume: 1116
  start-page: 73
  year: 2014
  ident: 10.1016/j.chom.2021.06.006_bib67
  article-title: Application of the Restriction-Free (RF) cloning for multicomponents assembly
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-62703-764-8_6
– volume: 22
  start-page: 620
  year: 2021
  ident: 10.1016/j.chom.2021.06.006_bib103
  article-title: Robust SARS-CoV-2-specific T cell immunity is maintained at 6 months following primary infection
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-021-00902-8
SSID ssj0055071
Score 2.70416
Snippet Many SARS-CoV-2 variants with naturally acquired mutations have emerged. These mutations can affect viral properties such as infectivity and immune resistance....
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1124
SubjectTerms Angiotensin-Converting Enzyme 2
B.1.1.298
B.1.427/429
cellular immunity
COVID-19
COVID-19 - epidemiology
COVID-19 - virology
Genome, Viral
Humans
Immunity, Cellular
L452R
Mutation
naturally occurring variants
Phylogeny
Protein Binding
receptor-binding motif
SARS-CoV-2
SARS-CoV-2 - genetics
SARS-CoV-2 - immunology
Short
Spike Glycoprotein, Coronavirus - genetics
Spike Glycoprotein, Coronavirus - immunology
spike protein
Viral Proteins - genetics
Virus Replication
Y453F
Title SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity
URI https://dx.doi.org/10.1016/j.chom.2021.06.006
https://www.ncbi.nlm.nih.gov/pubmed/34171266
https://www.proquest.com/docview/2545592356
https://pubmed.ncbi.nlm.nih.gov/PMC8205251
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEA5FEHwRb-tRIvgmoWZ3s5t9rMVST7C10reQ3aS4KttiD-i_d2aPYlX64GM2Ewgz2ZlvkjkIOQelCMDBSBaYIGTeQOAjITfMyFAPTOxLnkVVPjz67Z532xf9CmmWuTAYVlno_lynZ9q6-FIvuFkfJUm9C9CDu6BeHawiKj1MNHc9mSXx9a9KbYzlunj-sswZUheJM3mMF_YjAR_R4VkNT-x69Ldx-g0-f8ZQfjNKrS2yWaBJ2sg3vE0qNt0h63l_yfkueeo2Ol3WHL4wh45Hybul955wOnQGDjJwlNqZNnZM8fIeo1FpkiWLTOZUp4YmKQLKMcwXAVvYZWKP9FrXz802K3oosBhbFTAurD8w0ge_RSA4AGHI2AoehaEWQrtY7UbLSy0l5yAb14CEfO1LJ4CBF3F3n6ylw9QeEmoD18RREEZo0oEsstaCsxW7wouxUXmV8JJ5Ki4KjGOfiw9VRpK9KWS4QoarLJwO1lws1ozy8horqUUpE7V0SBTo_5XrzkoBKvh7kKs6tcPpWIF7DC4VMAFoDnKBLvYB9j3ggF-qJFgS9YIAK3Mvz6TJa1ahG2CVAOB49M_9HpMNHOEVMvdOyNrkc2pPAftMohqg_pu7WnbEvwDSTQH_
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9TEX0Rv781gm8SZtqmTR91OKZuA7cpewtpk2FVuuGm4H_vXT-GU_HBxzYXCHfp3e-ay_0IOQWnCMDBSBaYIGTeQOAhITfMyFAPTOxLnlVVttp-49676Yt-hdTKuzBYVln4_tynZ966eFMttFkdJUm1C9CDu-BeHewiKj0xRxYADQTI33DdvyzdMfbr4vnRMmcoXtycyYu8kJAEkkSHZ008kfbo9-j0E31-L6L8EpXqq2SlgJP0Il_xGqnYdJ0s5gSTHxvkrnvR6bLa8IE5dDxKni1tesLp0HfIkEGl1L5rY8cU_95jOSpNstsikw-qU0OTFBHlGMaLii2kmdgk9_WrXq3BChIFFiNXAePC-gMjfUhcBKIDsIaMreBRGGohtIvtbrQ811JyDsZxDZjI1750AnjwIu5ukfl0mNodQm3gmjgKwghjOohF1lrItmJXeDEyle8SXipPxUWHcSS6eFFlKdmTQoUrVLjK6ulgztl0zijvr_GntChtomZ2iYIA8Oe8k9KACj4f1KpO7fBtrCA_hpwKlAAy27lBp-uAAB9wADC7JJgx9VQAW3PPjqTJY9aiG3CVAOS498_1HpOlRq_VVM3r9u0-WcYR_J_MvQMyP3l9s4cAhCbRUbbRPwG2DwQl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SARS-CoV-2+spike+L452R+variant+evades+cellular+immunity+and+increases+infectivity&rft.jtitle=Cell+host+%26+microbe&rft.au=Motozono%2C+Chihiro&rft.au=Toyoda%2C+Mako&rft.au=Zahradnik%2C+Jiri&rft.au=Saito%2C+Akatsuki&rft.date=2021-07-14&rft.pub=The+Authors.+Published+by+Elsevier+Inc&rft.issn=1931-3128&rft.eissn=1934-6069&rft.volume=29&rft.issue=7&rft.spage=1124&rft.epage=1136.e11&rft_id=info:doi/10.1016%2Fj.chom.2021.06.006&rft_id=info%3Apmid%2F34171266&rft.externalDocID=PMC8205251
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3128&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3128&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3128&client=summon