Antibody–drug conjugates: Recent advances in linker chemistry
Antibody–drug conjugates (ADCs) are gradually revolutionizing clinical cancer therapy. The antibody–drug conjugate linker molecule determines both the efficacy and the adverse effects, and so has a major influence on the fate of ADCs. An ideal linker should be stable in the circulatory system and re...
Saved in:
Published in | Acta pharmaceutica Sinica. B Vol. 11; no. 12; pp. 3889 - 3907 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.12.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Antibody–drug conjugates (ADCs) are gradually revolutionizing clinical cancer therapy. The antibody–drug conjugate linker molecule determines both the efficacy and the adverse effects, and so has a major influence on the fate of ADCs. An ideal linker should be stable in the circulatory system and release the cytotoxic payload specifically in the tumor. However, existing linkers often release payloads nonspecifically and inevitably lead to off-target toxicity. This defect is becoming an increasingly important factor that restricts the development of ADCs. The pursuit of ADCs with optimal therapeutic windows has resulted in remarkable progress in the discovery and development of novel linkers. The present review summarizes the advance of the chemical trigger, linker‒antibody attachment and linker‒payload attachment over the last 5 years, and describes the ADMET properties of ADCs. This work also helps clarify future developmental directions for the linkers.
Antibody–drug conjugates (ADCs) are revolutionizing cancer therapy. Linkers, determining both efficacy and off-target toxicity, are the core components of ADCs. The advances of linkers over the past 5 years are reviewed. [Display omitted] |
---|---|
AbstractList | Antibody–drug conjugates (ADCs) are gradually revolutionizing clinical cancer therapy. The antibody–drug conjugate linker molecule determines both the efficacy and the adverse effects, and so has a major influence on the fate of ADCs. An ideal linker should be stable in the circulatory system and release the cytotoxic payload specifically in the tumor. However, existing linkers often release payloads nonspecifically and inevitably lead to off-target toxicity. This defect is becoming an increasingly important factor that restricts the development of ADCs. The pursuit of ADCs with optimal therapeutic windows has resulted in remarkable progress in the discovery and development of novel linkers. The present review summarizes the advance of the chemical trigger, linker‒antibody attachment and linker‒payload attachment over the last 5 years, and describes the ADMET properties of ADCs. This work also helps clarify future developmental directions for the linkers. Antibody-drug conjugates (ADCs) are gradually revolutionizing clinical cancer therapy. The antibody-drug conjugate linker molecule determines both the efficacy and the adverse effects, and so has a major influence on the fate of ADCs. An ideal linker should be stable in the circulatory system and release the cytotoxic payload specifically in the tumor. However, existing linkers often release payloads nonspecifically and inevitably lead to off-target toxicity. This defect is becoming an increasingly important factor that restricts the development of ADCs. The pursuit of ADCs with optimal therapeutic windows has resulted in remarkable progress in the discovery and development of novel linkers. The present review summarizes the advance of the chemical trigger, linker‒antibody attachment and linker‒payload attachment over the last 5 years, and describes the ADMET properties of ADCs. This work also helps clarify future developmental directions for the linkers.Antibody-drug conjugates (ADCs) are gradually revolutionizing clinical cancer therapy. The antibody-drug conjugate linker molecule determines both the efficacy and the adverse effects, and so has a major influence on the fate of ADCs. An ideal linker should be stable in the circulatory system and release the cytotoxic payload specifically in the tumor. However, existing linkers often release payloads nonspecifically and inevitably lead to off-target toxicity. This defect is becoming an increasingly important factor that restricts the development of ADCs. The pursuit of ADCs with optimal therapeutic windows has resulted in remarkable progress in the discovery and development of novel linkers. The present review summarizes the advance of the chemical trigger, linker‒antibody attachment and linker‒payload attachment over the last 5 years, and describes the ADMET properties of ADCs. This work also helps clarify future developmental directions for the linkers. Antibody–drug conjugates (ADCs) are gradually revolutionizing clinical cancer therapy. The antibody–drug conjugate linker molecule determines both the efficacy and the adverse effects, and so has a major influence on the fate of ADCs. An ideal linker should be stable in the circulatory system and release the cytotoxic payload specifically in the tumor. However, existing linkers often release payloads nonspecifically and inevitably lead to off-target toxicity. This defect is becoming an increasingly important factor that restricts the development of ADCs. The pursuit of ADCs with optimal therapeutic windows has resulted in remarkable progress in the discovery and development of novel linkers. The present review summarizes the advance of the chemical trigger, linker‒antibody attachment and linker‒payload attachment over the last 5 years, and describes the ADMET properties of ADCs. This work also helps clarify future developmental directions for the linkers. Antibody–drug conjugates (ADCs) are revolutionizing cancer therapy. Linkers, determining both efficacy and off-target toxicity, are the core components of ADCs. The advances of linkers over the past 5 years are reviewed. [Display omitted] Antibody–drug conjugates (ADCs) are gradually revolutionizing clinical cancer therapy. The antibody–drug conjugate linker molecule determines both the efficacy and the adverse effects, and so has a major influence on the fate of ADCs. An ideal linker should be stable in the circulatory system and release the cytotoxic payload specifically in the tumor. However, existing linkers often release payloads nonspecifically and inevitably lead to off-target toxicity. This defect is becoming an increasingly important factor that restricts the development of ADCs. The pursuit of ADCs with optimal therapeutic windows has resulted in remarkable progress in the discovery and development of novel linkers. The present review summarizes the advance of the chemical trigger, linker‒antibody attachment and linker‒payload attachment over the last 5 years, and describes the ADMET properties of ADCs. This work also helps clarify future developmental directions for the linkers. Antibody–drug conjugates (ADCs) are revolutionizing cancer therapy. Linkers, determining both efficacy and off-target toxicity, are the core components of ADCs. The advances of linkers over the past 5 years are reviewed. Image 1 |
Author | Su, Zheng Li, Song Liu, Lianqi Fan, Shiyong Wang, Yanming Xie, Fei Xiao, Dian Zhou, Xinbo |
Author_xml | – sequence: 1 givenname: Zheng surname: Su fullname: Su, Zheng organization: School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China – sequence: 2 givenname: Dian surname: Xiao fullname: Xiao, Dian organization: National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China – sequence: 3 givenname: Fei surname: Xie fullname: Xie, Fei organization: National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China – sequence: 4 givenname: Lianqi surname: Liu fullname: Liu, Lianqi organization: National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China – sequence: 5 givenname: Yanming surname: Wang fullname: Wang, Yanming organization: National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China – sequence: 6 givenname: Shiyong orcidid: 0000-0003-4216-8226 surname: Fan fullname: Fan, Shiyong email: fsyn1996@163.com organization: National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China – sequence: 7 givenname: Xinbo surname: Zhou fullname: Zhou, Xinbo email: zhouxinbo@bmi.ac.cn organization: National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China – sequence: 8 givenname: Song surname: Li fullname: Li, Song organization: School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35024314$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u1DAUhSNURH_oC7BAWbKZYF_bsQchqqrip1IlJARry3Fupg6ZeLCdkWbHO_CGPEkdpowoi3pj6_qec-z7nRZHox-xKF5QUlFC69d9ZTaxqYAArQirCIcnxQkApQumODs6nJk4Ls5j7EleNQGQ4llxzAQBzig_KS4ux-Qa3-5-__zVhmlVWj_208okjG_KL2hxTKVpt2a0GEs3loMbv2Mo7S2uXUxh97x42pkh4vn9flZ8-_D-69Wnxc3nj9dXlzcLK4CmBWXCiCVYwxUwS2TXNHLZSAqqVktKWyZQdLRtpELOJAJrO8IaCbVVILjk7Ky43vu23vR6E9zahJ32xuk_BR9W2oTk7IDa1gw7LjhwIjhVnYGuBaXqJkdzgrPXu73XZmrW2M5_DGZ4YPrwZnS3euW3WkmQUrFs8OreIPgfE8ak8zAsDoMZ0U9RQ02XOV-wOevlv1mHkL8EcgPsG2zwMQbsDi2U6Jm07vVMWs-kNWE6k84i9Z_IumSS8_N73fC49O1eipnW1mHQ0TrMeFsX0KY8TveY_A4skcMV |
CitedBy_id | crossref_primary_10_3390_pharmaceutics14112533 crossref_primary_10_3389_fphar_2023_1274088 crossref_primary_10_1007_s10928_023_09884_6 crossref_primary_10_1021_acs_bioconjchem_2c00314 crossref_primary_10_3390_ijms25136969 crossref_primary_10_3390_pharmaceutics14020396 crossref_primary_10_1016_j_bioorg_2022_106190 crossref_primary_10_1038_s41573_022_00579_0 crossref_primary_10_1002_advs_202306309 crossref_primary_10_1158_2159_8290_CD_24_0708 crossref_primary_10_1038_s41467_024_46331_7 crossref_primary_10_1002_chem_202404413 crossref_primary_10_1016_j_apsb_2024_01_010 crossref_primary_10_1055_s_0042_1752654 crossref_primary_10_1007_s11912_023_01478_2 crossref_primary_10_1016_j_apsb_2024_01_009 crossref_primary_10_1016_j_bmcl_2025_130114 crossref_primary_10_1016_j_ijbiomac_2023_126413 crossref_primary_10_1007_s11684_024_1072_8 crossref_primary_10_1007_s40268_024_00473_7 crossref_primary_10_34133_research_0251 crossref_primary_10_3390_biomedicines11113080 crossref_primary_10_3390_pharmaceutics16020221 crossref_primary_10_1007_s00105_024_05403_x crossref_primary_10_14229_jadc_2023_07_10_002 crossref_primary_10_3390_ijms252111384 crossref_primary_10_1007_s11523_022_00872_3 crossref_primary_10_3390_curroncol31040172 crossref_primary_10_3390_ph17121701 crossref_primary_10_1021_acs_jmedchem_4c00804 crossref_primary_10_1039_D3CS00805C crossref_primary_10_3390_cancers16152681 crossref_primary_10_3390_cells12182253 crossref_primary_10_1016_j_jconrel_2021_10_006 crossref_primary_10_1186_s40164_024_00493_8 crossref_primary_10_1158_1535_7163_MCT_22_0362 crossref_primary_10_1016_j_bcp_2024_116378 crossref_primary_10_3390_bioengineering9110635 crossref_primary_10_1016_j_biopha_2023_114408 crossref_primary_10_1002_app_56928 crossref_primary_10_1039_D2RA03761K crossref_primary_10_1093_abt_tbae016 crossref_primary_10_1016_j_chroma_2023_464575 crossref_primary_10_3390_pharmaceutics14081707 crossref_primary_10_1016_j_bmc_2025_118088 crossref_primary_10_1177_11795549241260418 crossref_primary_10_1016_j_phrs_2024_107341 crossref_primary_10_1002_jcp_30880 crossref_primary_10_1007_s11654_024_00598_w crossref_primary_10_3389_fonc_2021_718590 crossref_primary_10_1039_D3MD00473B crossref_primary_10_1111_imcb_70017 crossref_primary_10_2174_1871520623666221031105432 crossref_primary_10_1158_1535_7163_MCT_23_0359 crossref_primary_10_1071_CH22252 crossref_primary_10_1152_ajpcell_00200_2024 crossref_primary_10_1080_00498254_2024_2336576 crossref_primary_10_1016_j_ejmcr_2023_100113 crossref_primary_10_1002_ptr_8407 crossref_primary_10_1016_j_bbcan_2025_189284 crossref_primary_10_1124_pharmrev_123_001084 crossref_primary_10_1021_acs_jmedchem_4c01384 crossref_primary_10_1021_acs_jmedchem_3c02389 crossref_primary_10_1021_acs_bioconjchem_3c00302 crossref_primary_10_3389_fonc_2023_1259784 crossref_primary_10_1016_j_molstruc_2022_132524 crossref_primary_10_1080_00498254_2022_2141667 crossref_primary_10_1016_j_drup_2024_101086 crossref_primary_10_1021_acs_jmedchem_4c00106 crossref_primary_10_1021_acs_joc_4c01403 crossref_primary_10_3389_fonc_2024_1379738 crossref_primary_10_1097_PPO_0000000000000635 crossref_primary_10_1124_dmd_123_001516 crossref_primary_10_1002_ddr_22033 crossref_primary_10_1021_acs_chemrev_2c00915 crossref_primary_10_1016_j_dyepig_2022_110590 crossref_primary_10_1016_j_cclet_2025_110960 crossref_primary_10_1007_s10555_024_10231_5 crossref_primary_10_1007_s11912_024_01576_9 crossref_primary_10_1002_ijch_202300042 crossref_primary_10_1016_j_jconrel_2023_05_032 crossref_primary_10_1002_mco2_671 crossref_primary_10_1016_j_biopha_2023_115151 crossref_primary_10_1093_nar_gkad831 crossref_primary_10_1002_ange_202317817 crossref_primary_10_1039_D2NR05920G crossref_primary_10_1186_s41181_024_00291_x crossref_primary_10_3390_cancers15133346 crossref_primary_10_3390_ijms26010221 crossref_primary_10_3390_ph15060655 crossref_primary_10_1002_btm2_10677 crossref_primary_10_1177_17588359251324889 crossref_primary_10_1016_j_taap_2023_116585 crossref_primary_10_1016_j_biopha_2023_115039 crossref_primary_10_1158_1078_0432_CCR_22_2981 crossref_primary_10_3390_biomedicines11041214 crossref_primary_10_1038_s41392_021_00833_8 crossref_primary_10_1186_s43556_024_00210_1 crossref_primary_10_14229_jadc_2023_26_020 crossref_primary_10_3904_kjm_2023_98_3_108 crossref_primary_10_1016_j_apsb_2023_10_018 crossref_primary_10_3389_fonc_2022_1039882 crossref_primary_10_1124_pharmrev_121_000499 crossref_primary_10_1007_s00262_024_03814_2 crossref_primary_10_1002_rcm_9910 crossref_primary_10_1016_j_ejmech_2023_116119 crossref_primary_10_3389_fonc_2024_1459368 crossref_primary_10_3390_pharmaceutics15082017 crossref_primary_10_1016_j_aca_2024_342537 crossref_primary_10_1016_j_cellsig_2022_110539 crossref_primary_10_1016_j_lfs_2024_122676 crossref_primary_10_1002_sscp_202400253 crossref_primary_10_1002_cac2_12517 crossref_primary_10_1002_cmdc_202400274 crossref_primary_10_1186_s12885_025_13693_0 crossref_primary_10_3390_ijms25168651 crossref_primary_10_3390_molecules27217232 crossref_primary_10_1158_1535_7163_MCT_22_0322 crossref_primary_10_3390_cancers16020461 crossref_primary_10_1016_j_apsb_2023_02_013 crossref_primary_10_1186_s13045_022_01341_0 crossref_primary_10_3390_pharmaceutics14071316 crossref_primary_10_1039_D4PY00854E crossref_primary_10_1002_anie_202417651 crossref_primary_10_1039_D4OB00234B crossref_primary_10_3390_ijms24108543 crossref_primary_10_3389_fmicb_2022_835677 crossref_primary_10_3390_diseases10030060 crossref_primary_10_52711_0974_360X_2025_00028 crossref_primary_10_1039_D2CS00957A crossref_primary_10_1002_ange_202402267 crossref_primary_10_3390_curroncol30040330 crossref_primary_10_1016_j_apsb_2023_07_028 crossref_primary_10_1186_s43094_024_00590_9 crossref_primary_10_1007_s10989_022_10363_8 crossref_primary_10_1007_s11864_023_01114_y crossref_primary_10_3892_or_2024_8854 crossref_primary_10_1016_j_ejmech_2024_116456 crossref_primary_10_1016_j_nantod_2023_102134 crossref_primary_10_3390_cancers16040827 crossref_primary_10_1016_j_ejmech_2022_114617 crossref_primary_10_1016_j_ajps_2025_101016 crossref_primary_10_1016_j_nantod_2023_102010 crossref_primary_10_1016_j_canlet_2023_216191 crossref_primary_10_1016_j_bbcan_2023_188991 crossref_primary_10_1080_1040841X_2024_2321480 crossref_primary_10_1002_ange_202417651 crossref_primary_10_3389_fmolb_2023_1165781 crossref_primary_10_1002_anie_202317817 crossref_primary_10_1021_acs_oprd_3c00428 crossref_primary_10_1021_acsomega_2c06844 crossref_primary_10_1021_acs_jmedchem_2c01771 crossref_primary_10_1021_acs_jnatprod_2c01068 crossref_primary_10_1016_j_apsb_2024_06_007 crossref_primary_10_1186_s13045_022_01397_y crossref_primary_10_3390_cancers14010154 crossref_primary_10_1002_anie_202402267 crossref_primary_10_1007_s12033_024_01270_y crossref_primary_10_1016_j_biotechadv_2023_108213 crossref_primary_10_3390_cancers16020447 crossref_primary_10_1002_elps_202200140 crossref_primary_10_1016_j_ijpharm_2024_124211 crossref_primary_10_1016_j_ejmech_2023_115298 crossref_primary_10_1016_j_bmc_2023_117334 crossref_primary_10_31083_j_fbl2708240 crossref_primary_10_1039_D4CC00704B |
Cites_doi | 10.1021/jm500766w 10.1158/1535-7163.MCT-15-1004 10.1158/1535-7163.MCT-16-0021 10.3390/ijms140612222 10.1126/science.1990438 10.1016/0006-2952(96)00241-9 10.1021/acs.bioconjchem.9b00713 10.1007/s40265-019-01214-w 10.1039/b808198k 10.3390/antib6040020 10.1038/nbt.2968 10.1016/j.bmcl.2018.03.005 10.1158/1535-7163.MCT-12-1170 10.1080/17425247.2019.1645118 10.1007/s40265-020-01404-x 10.1021/acs.molpharmaceut.9b00696 10.1158/1535-7163.MCT-17-0697 10.1039/C9SC00285E 10.1016/j.taap.2003.08.019 10.1021/acs.jmedchem.7b00736 10.1021/acs.orglett.8b02849 10.1158/1535-7163.MCT-16-0641 10.1038/nrc2394 10.1038/nrc3495 10.1158/1078-0432.CCR-20-3119 10.1038/nbt832 10.1158/1535-7163.MCT-16-0038 10.18632/oncotarget.26491 10.1056/NEJMoa1002965 10.1038/srep30835 10.7150/thno.51232 10.1021/acs.bioconjchem.6b00337 10.1021/acs.molpharmaceut.8b00242 10.1039/b200777k 10.1021/jacs.5b12547 10.1016/j.ddtec.2018.10.001 10.1158/1078-0432.CCR-04-0789 10.1200/JCO.2009.26.2071 10.1021/acs.jmedchem.7b01430 10.1021/acs.bioconjchem.7b00062 10.1021/acs.bioconjchem.5b00244 10.1002/cmdc.201402496 10.1021/jm00137a001 10.1124/dmd.119.087023 10.1038/nrm2820 10.1007/s40265-017-0802-5 10.1016/j.bioorg.2020.104475 10.1016/j.taap.2020.114932 10.1007/s13554-013-0008-7 10.3390/biomedicines5040064 10.1158/1078-0432.CCR-20-2275 10.1016/j.bbmt.2014.10.025 10.1158/0008-5472.CAN-17-2391 10.1158/0008-5472.CAN-16-1900 10.3390/ijms18091860 10.1016/j.jconrel.2015.09.032 10.1021/acsmedchemlett.9b00240 10.1021/bc0600214 10.1021/jm500552c 10.3390/cancers12030744 10.1021/acs.molpharmaceut.9b00788 10.1021/acschembio.8b00107 10.1039/C9SC06410A 10.1021/acs.bioconjchem.7b00678 10.1002/anie.201507391 10.1038/nbt.3212 10.1021/acs.bioconjchem.6b00117 10.1021/jacs.9b05833 10.1124/dmd.114.058586 10.1021/bc5005262 10.1016/j.ejmech.2017.08.008 10.1021/acs.jmedchem.6b01470 10.1021/ol902320w 10.1021/acs.bioconjchem.7b00144 10.31635/ccschem.019.20180038 10.3390/cancers11070957 10.1038/nature16057 10.1158/1078-0432.CCR-15-0670 10.1039/C7OB01757J 10.1021/jp1029536 10.1007/s40265-018-1000-9 10.1039/C8OB02877J 10.1021/jm2002958 10.1124/dmd.116.070631 10.1039/C9SC03016F 10.1021/mp500762u 10.1038/nchembio786 10.1002/anie.202011593 10.1063/1.1744225 10.1021/bc500148x 10.1039/C6SC01831A 10.1126/science.121.3145.505 10.1038/nrd4009 10.1158/1078-0432.CCR-04-1845 10.1016/j.ejmech.2020.112080 10.1021/bc010021y 10.1021/acs.bioconjchem.9b00340 |
ContentType | Journal Article |
Copyright | 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences |
Copyright_xml | – notice: 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences – notice: 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. – notice: 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.apsb.2021.03.042 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 2211-3843 |
EndPage | 3907 |
ExternalDocumentID | oai_doaj_org_article_c63ef4542405418fa2fd2886b82340e4 PMC8727783 35024314 10_1016_j_apsb_2021_03_042 S2211383521001143 |
Genre | Journal Article Review |
GroupedDBID | --- --K -05 -0E -SE -S~ 0R~ 0SF 1~5 4.4 457 4G. 53G 5VR 5VS 6I. 7-5 92M 9D9 9DE AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABKZE ABMAC ACGFS ADBBV ADEZE ADRAZ AEXQZ AFUIB AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV CAJEE CAJUS CCEZO CIEJG DIK EBS EJD FDB GROUPED_DOAJ GX1 HH5 HYE HZ~ IPNFZ IXB JUIAU KQ8 M41 M48 NCXOZ O-L O9- OK1 Q-- Q-4 R-E RIG ROL RPM RT5 SES SSZ T8U U1F U1G U5E U5O XH2 ~NG AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-135a592ca4823c07fbb79b712868911d35e5f1db78e437e23df03b726c8254743 |
IEDL.DBID | IXB |
ISSN | 2211-3835 |
IngestDate | Wed Aug 27 01:17:26 EDT 2025 Thu Aug 21 14:07:40 EDT 2025 Fri Jul 11 09:33:27 EDT 2025 Mon Jul 21 05:56:37 EDT 2025 Thu Apr 24 23:01:05 EDT 2025 Tue Jul 01 01:53:06 EDT 2025 Thu Jul 20 20:11:15 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Linker‒payload attachment Antibody–drug conjugate Linker‒antibody attachment Linker Chemical trigger |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-135a592ca4823c07fbb79b712868911d35e5f1db78e437e23df03b726c8254743 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 These authors made equal contributions to this work. |
ORCID | 0000-0003-4216-8226 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2211383521001143 |
PMID | 35024314 |
PQID | 2619542534 |
PQPubID | 23479 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c63ef4542405418fa2fd2886b82340e4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8727783 proquest_miscellaneous_2619542534 pubmed_primary_35024314 crossref_primary_10_1016_j_apsb_2021_03_042 crossref_citationtrail_10_1016_j_apsb_2021_03_042 elsevier_sciencedirect_doi_10_1016_j_apsb_2021_03_042 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Acta pharmaceutica Sinica. B |
PublicationTitleAlternate | Acta Pharm Sin B |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Bargh, Walsh, Isidro-Llobet, Omarjee, Carroll, Spring (bib37) 2020; 11 Matsumura, Ananthaswamy (bib51) 2004; 195 Sun, Ponte, Yoder, Laleau, Coccia, Lanieri (bib85) 2017; 28 Doronina, Toki, Torgov, Mendelsohn, Cerveny, Chace (bib56) 2003; 21 Zhang, Yu, Khojasteh, Ma, Pillow, Sadowsky (bib93) 2018; 17 Wang, Fan, Zhong, Zhou, Li (bib23) 2017; 18 Torti, Torti (bib32) 2013; 13 Mills, Lang (bib29) 1996; 52 Lyu, Kang, Buuh, Jiang, McGuth, Du (bib61) 2018; 13 Pillow, Tien, Parsons-Reponte, Bhakta, Li, Staben (bib16) 2014; 57 Erez, Shabat (bib40) 2008; 6 Pillow, Sadowsky, Zhang, Yu, Del Rosario, Xu (bib30) 2017; 8 Park, Kim, Cho, Jung, Seo, Lee (bib82) 2019; 30 Dovgan, Kolodych, Koniev, Wagner (bib14) 2016; 6 McRae, Kasha (bib50) 1958; 28 Badescu, Bryant, Bird, Henseleit, Swierkosz, Parekh (bib69) 2014; 25 Strebhardt, Ullrich (bib1) 2008; 8 Burke, Hamilton, Pires, Setter, Hunter, Cochran (bib78) 2016; 15 Casey, Grinstein, Orlowski (bib26) 2010; 11 Zhang, Dragovich, Yu, Ma, Pillow, Sadowsky (bib94) 2019; 47 Wang, Liu, Fan, Xiao, Xie, Li (bib59) 2020; 12 Salomon, Reid, Archer, Harris, Maloney, Wilhelm (bib25) 2019; 16 Markham (bib7) 2020; 80 Sijbrandi, Merkul, Muns, Waalboer, Adamzek, Bolijn (bib74) 2017; 77 Huang, Li, Sheng, Yu, Wu, Zhan (bib72) 2018; 20 Viricel, Fournet, Beaumel, Perrial, Papot, Dumontet (bib91) 2019; 10 Christie, Fleming, Bezabeh, Woods, Mao, Harper (bib65) 2015; 220 Reid, Archer, Shizuka, Wilhelm, Yoder, Bai (bib24) 2019; 10 Quintieri, Geroni, Fantin, Battaglia, Rosato, Speed (bib81) 2005; 11 Pillow, Schutten, Yu, Ohri, Sadowsky, Poon (bib31) 2017; 16 Wang, Liu, Fan, Wang, Ngai, Zhang (bib55) 2019; 141 Zhou (bib62) 2017; 5 Gregson, Masterson, Wei, Pillow, Spencer, Kang (bib58) 2017; 60 Simmons, Burke, Cochran, Pittman, Lyon (bib90) 2020; 392 Singh, Setiady, Ponte, Kovtun, Lai, Hong (bib22) 2016; 15 Carl, Chakravarty, Katzenellenbogen (bib39) 1981; 24 Li, Xiao, Xie, Li, Zhao, Sun (bib47) 2021; 111 Spangler, Fontaine, Shi, Sambucetti, Mattis, Hann (bib33) 2016; 59 Lamb (bib2) 2017; 77 Merkul, Muns, Sijbrandi, Houthoff, Nijmeijer, van Rheenen (bib75) 2020; 60 Lambert, Chari (bib12) 2014; 57 Huang, Sheng, Wei, Yu, Chen, Jiang (bib70) 2020; 190 Block, Stephens, Barreto, Murrill (bib79) 1955; 121 D'Orazio, Jarrett, Amaro-Ortiz, Scott (bib52) 2013; 14 Tobaldi, Dovgan, Mosser, Becht, Wagner (bib57) 2017; 15 Han, Zhao (bib83) 2014; 42 Merkul, Sijbrandi, Muns, Aydin, Adamzek, Houthoff (bib76) 2019; 16 Hapuarachchige, Huang, Donnelly, Barinka, Lupold, Pomper (bib53) 2020; 17 Spangler, Kline, Hanson, Li, Zhou, Wells (bib34) 2018; 15 Maderna, Leverett (bib77) 2015; 12 Lehar, Pillow, Xu, Staben, Kajihara, Vandlen (bib17) 2015; 527 Kern, Cancilla, Dooney, Kwasnjuk, Zhang, Beaumont (bib18) 2016; 138 Deeks (bib4) 2019; 79 Lyon (bib9) 2018; 30 Perini, Pro (bib11) 2013; 3 Othus, Appelbaum, Petersdorf, Kopecky, Slovak, Nevill (bib13) 2015; 21 Wahby, Fashoyin-Aje, Osgood, Cheng, Fiero, Zhang (bib8) 2021; 27 Dhillon (bib3) 2018; 78 Abrahams, Li, Embry, Yu, Krimm, Krueger (bib86) 2018; 9 Sharkey, McBride, Cardillo, Govindan, Wang, Rossi (bib95) 2015; 21 Kern, Dooney, Zhang, Liang, Brandish, Cheng (bib38) 2016; 27 Wei, Gunzner-Toste, Yao, Wang, Wang, Xu (bib20) 2018; 61 Bryden, Maruani, Rodrigues, Cheng, Savoie, Beeby (bib44) 2018; 29 Zang, Wang, Li, Zhang, Li, Shang (bib48) 2019; 10 Ito, Mitsunaga, Nishimura, Saruta, Iwamoto, Kobayashi (bib45) 2017; 28 Hamblett, Senter, Chace, Sun, Lenox, Cerveny (bib63) 2004; 10 Chang, Weinstock, Zhang, Charlab, Dorff, Gong (bib5) 2020; 27 Lin, Chen, Zhang, Ching Ngai, Zeng, Lin (bib54) 2019; 1 Ponte, Sun, Yoder, Fishkin, Laleau, Coccia (bib15) 2016; 27 Krop, Beeram, Modi, Jones, Holden, Yu (bib98) 2010; 28 Pando, Dörner, Preusentanz, Denkert, Porzel, Richter (bib80) 2009; 11 Sun, Akkapeddi, Marques, Martinez-Saez, Torres, Cordeiro (bib71) 2019; 17 Lyon, Setter, Bovee, Doronina, Hunter, Anderson (bib64) 2014; 32 Xu, Li, Malkovskiy, Sun, Pang (bib49) 2010; 114 Fodor, Read, Pirrung, Stryer, Lu, Solas (bib42) 1991; 251 Younes, Bartlett, Leonard, Kennedy, Lynch, Sievers (bib97) 2010; 363 Nani, Gorka, Nagaya, Kobayashi, Schnermann (bib46) 2015; 54 Kolodych, Michel, Delacroix, Koniev, Ehkirch, Eberova (bib36) 2017; 142 Waalboer, Muns, Sijbrandi, Schasfoort, Haselberg, Somsen (bib73) 2015; 10 Shaunak, Godwin, Choi, Balan, Pedone, Vijayarangam (bib68) 2006; 2 Jeffrey, Andreyka, Bernhardt, Kissler, Kline, Lenox (bib35) 2006; 17 Lyon, Bovee, Doronina, Burke, Hunter, Neff-LaFord (bib84) 2015; 33 Caculitan, Dela Cruz Chuh, Ma, Zhang, Kozak, Liu (bib19) 2017; 77 Dorywalska, Dushin, Moine, Farias, Zhou, Navaratnam (bib21) 2016; 15 Li, Patterson, Sarkar, Pedzisa, Kodadek, Roush (bib60) 2015; 26 Pelliccioli, Wirz (bib43) 2002; 1 Hamann, Hinman, Hollander, Beyer, Lindh, Holcomb (bib10) 2002; 13 Walker, Sorkin, Ledesma, Kabaria, Barfield, Rabuka (bib89) 2019; 30 Christie, Tiberghien, Du, Bezabeh, Fleming, Shannon (bib67) 2017; 6 Zhang, Yu, Ma, Xu, Dragovich, Pillow (bib92) 2016; 44 Mullard (bib96) 2013; 12 Zhao, Wilhelm, Audette, Jones, Leece, Lazar (bib88) 2011; 54 Govindan, Cardillo, Sharkey, Tat, Gold, Goldenberg (bib27) 2013; 12 Wang, Fan, Xiao, Xie, Li, Zhong (bib28) 2019; 11 Xiao, Zhao, Xie, Fan, Liu, Li (bib41) 2021; 11 Fontaine, Reid, Robinson, Ashley, Santi (bib66) 2015; 26 Shao, Tsai, Lu, Yu, Jin, Xiao (bib87) 2018; 28 Greenblatt, Khaddour (bib6) Dec 19, 2020 Strebhardt (10.1016/j.apsb.2021.03.042_bib1) 2008; 8 Christie (10.1016/j.apsb.2021.03.042_bib65) 2015; 220 Huang (10.1016/j.apsb.2021.03.042_bib70) 2020; 190 Younes (10.1016/j.apsb.2021.03.042_bib97) 2010; 363 Dovgan (10.1016/j.apsb.2021.03.042_bib14) 2016; 6 Pillow (10.1016/j.apsb.2021.03.042_bib31) 2017; 16 Spangler (10.1016/j.apsb.2021.03.042_bib34) 2018; 15 Wang (10.1016/j.apsb.2021.03.042_bib59) 2020; 12 Lambert (10.1016/j.apsb.2021.03.042_bib12) 2014; 57 Bryden (10.1016/j.apsb.2021.03.042_bib44) 2018; 29 Wang (10.1016/j.apsb.2021.03.042_bib23) 2017; 18 Park (10.1016/j.apsb.2021.03.042_bib82) 2019; 30 Torti (10.1016/j.apsb.2021.03.042_bib32) 2013; 13 Sun (10.1016/j.apsb.2021.03.042_bib71) 2019; 17 Reid (10.1016/j.apsb.2021.03.042_bib24) 2019; 10 Greenblatt (10.1016/j.apsb.2021.03.042_bib6) 2020 Lyon (10.1016/j.apsb.2021.03.042_bib9) 2018; 30 Chang (10.1016/j.apsb.2021.03.042_bib5) 2020; 27 Dhillon (10.1016/j.apsb.2021.03.042_bib3) 2018; 78 Casey (10.1016/j.apsb.2021.03.042_bib26) 2010; 11 Lamb (10.1016/j.apsb.2021.03.042_bib2) 2017; 77 Wahby (10.1016/j.apsb.2021.03.042_bib8) 2021; 27 Zhao (10.1016/j.apsb.2021.03.042_bib88) 2011; 54 Mills (10.1016/j.apsb.2021.03.042_bib29) 1996; 52 Zhang (10.1016/j.apsb.2021.03.042_bib92) 2016; 44 Doronina (10.1016/j.apsb.2021.03.042_bib56) 2003; 21 Wei (10.1016/j.apsb.2021.03.042_bib20) 2018; 61 Xiao (10.1016/j.apsb.2021.03.042_bib41) 2021; 11 Walker (10.1016/j.apsb.2021.03.042_bib89) 2019; 30 Huang (10.1016/j.apsb.2021.03.042_bib72) 2018; 20 Singh (10.1016/j.apsb.2021.03.042_bib22) 2016; 15 Zhou (10.1016/j.apsb.2021.03.042_bib62) 2017; 5 Quintieri (10.1016/j.apsb.2021.03.042_bib81) 2005; 11 Caculitan (10.1016/j.apsb.2021.03.042_bib19) 2017; 77 Jeffrey (10.1016/j.apsb.2021.03.042_bib35) 2006; 17 Kern (10.1016/j.apsb.2021.03.042_bib18) 2016; 138 D'Orazio (10.1016/j.apsb.2021.03.042_bib52) 2013; 14 Lehar (10.1016/j.apsb.2021.03.042_bib17) 2015; 527 Li (10.1016/j.apsb.2021.03.042_bib60) 2015; 26 Ponte (10.1016/j.apsb.2021.03.042_bib15) 2016; 27 Shao (10.1016/j.apsb.2021.03.042_bib87) 2018; 28 Block (10.1016/j.apsb.2021.03.042_bib79) 1955; 121 Ito (10.1016/j.apsb.2021.03.042_bib45) 2017; 28 Tobaldi (10.1016/j.apsb.2021.03.042_bib57) 2017; 15 Kolodych (10.1016/j.apsb.2021.03.042_bib36) 2017; 142 Pando (10.1016/j.apsb.2021.03.042_bib80) 2009; 11 Xu (10.1016/j.apsb.2021.03.042_bib49) 2010; 114 Merkul (10.1016/j.apsb.2021.03.042_bib76) 2019; 16 Abrahams (10.1016/j.apsb.2021.03.042_bib86) 2018; 9 Gregson (10.1016/j.apsb.2021.03.042_bib58) 2017; 60 Pillow (10.1016/j.apsb.2021.03.042_bib30) 2017; 8 Sijbrandi (10.1016/j.apsb.2021.03.042_bib74) 2017; 77 Deeks (10.1016/j.apsb.2021.03.042_bib4) 2019; 79 Han (10.1016/j.apsb.2021.03.042_bib83) 2014; 42 Salomon (10.1016/j.apsb.2021.03.042_bib25) 2019; 16 Perini (10.1016/j.apsb.2021.03.042_bib11) 2013; 3 Lyon (10.1016/j.apsb.2021.03.042_bib64) 2014; 32 Bargh (10.1016/j.apsb.2021.03.042_bib37) 2020; 11 Waalboer (10.1016/j.apsb.2021.03.042_bib73) 2015; 10 Christie (10.1016/j.apsb.2021.03.042_bib67) 2017; 6 Mullard (10.1016/j.apsb.2021.03.042_bib96) 2013; 12 Burke (10.1016/j.apsb.2021.03.042_bib78) 2016; 15 Zhang (10.1016/j.apsb.2021.03.042_bib93) 2018; 17 Hamblett (10.1016/j.apsb.2021.03.042_bib63) 2004; 10 Erez (10.1016/j.apsb.2021.03.042_bib40) 2008; 6 Hapuarachchige (10.1016/j.apsb.2021.03.042_bib53) 2020; 17 Krop (10.1016/j.apsb.2021.03.042_bib98) 2010; 28 Badescu (10.1016/j.apsb.2021.03.042_bib69) 2014; 25 Matsumura (10.1016/j.apsb.2021.03.042_bib51) 2004; 195 Maderna (10.1016/j.apsb.2021.03.042_bib77) 2015; 12 Simmons (10.1016/j.apsb.2021.03.042_bib90) 2020; 392 Kern (10.1016/j.apsb.2021.03.042_bib38) 2016; 27 Viricel (10.1016/j.apsb.2021.03.042_bib91) 2019; 10 Dorywalska (10.1016/j.apsb.2021.03.042_bib21) 2016; 15 Nani (10.1016/j.apsb.2021.03.042_bib46) 2015; 54 Sharkey (10.1016/j.apsb.2021.03.042_bib95) 2015; 21 Merkul (10.1016/j.apsb.2021.03.042_bib75) 2020; 60 Fontaine (10.1016/j.apsb.2021.03.042_bib66) 2015; 26 McRae (10.1016/j.apsb.2021.03.042_bib50) 1958; 28 Markham (10.1016/j.apsb.2021.03.042_bib7) 2020; 80 Hamann (10.1016/j.apsb.2021.03.042_bib10) 2002; 13 Zhang (10.1016/j.apsb.2021.03.042_bib94) 2019; 47 Spangler (10.1016/j.apsb.2021.03.042_bib33) 2016; 59 Wang (10.1016/j.apsb.2021.03.042_bib28) 2019; 11 Othus (10.1016/j.apsb.2021.03.042_bib13) 2015; 21 Li (10.1016/j.apsb.2021.03.042_bib47) 2021; 111 Govindan (10.1016/j.apsb.2021.03.042_bib27) 2013; 12 Lyu (10.1016/j.apsb.2021.03.042_bib61) 2018; 13 Fodor (10.1016/j.apsb.2021.03.042_bib42) 1991; 251 Wang (10.1016/j.apsb.2021.03.042_bib55) 2019; 141 Shaunak (10.1016/j.apsb.2021.03.042_bib68) 2006; 2 Pillow (10.1016/j.apsb.2021.03.042_bib16) 2014; 57 Sun (10.1016/j.apsb.2021.03.042_bib85) 2017; 28 Carl (10.1016/j.apsb.2021.03.042_bib39) 1981; 24 Zang (10.1016/j.apsb.2021.03.042_bib48) 2019; 10 Pelliccioli (10.1016/j.apsb.2021.03.042_bib43) 2002; 1 Lin (10.1016/j.apsb.2021.03.042_bib54) 2019; 1 Lyon (10.1016/j.apsb.2021.03.042_bib84) 2015; 33 |
References_xml | – volume: 17 start-page: 2005 year: 2019 end-page: 2012 ident: bib71 article-title: One-pot stapling of interchain disulfides of antibodies using an isobutylene motif publication-title: Org Biomol Chem – volume: 12 start-page: 744 year: 2020 ident: bib59 article-title: Antibody‒drug conjugate using ionized cys-linker-MMAE as the potent payload shows optimal therapeutic safety publication-title: Cancers (Basel) – volume: 30 start-page: 105 year: 2018 end-page: 109 ident: bib9 article-title: Drawing lessons from the clinical development of antibody‒drug conjugates publication-title: Drug Discov Today Technol – volume: 18 start-page: 1860 year: 2017 ident: bib23 article-title: Development and properties of valine-alanine based antibody‒drug conjugates with monomethyl auristatin E as the potent payload publication-title: Int J Mol Sci – volume: 195 start-page: 298 year: 2004 end-page: 308 ident: bib51 article-title: Toxic effects of ultraviolet radiation on the skin publication-title: Toxicol Appl Pharmacol – volume: 10 start-page: 7063 year: 2004 end-page: 7070 ident: bib63 article-title: Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate publication-title: Clin Cancer Res – year: Dec 19, 2020 ident: bib6 article-title: Trastuzumab – volume: 1 start-page: 226 year: 2019 end-page: 236 ident: bib54 article-title: Bioorthogonal prodrug–antibody conjugates for on-target and on-demand chemotherapy publication-title: CCS Chemistry – volume: 16 start-page: 4817 year: 2019 end-page: 4825 ident: bib25 article-title: Optimizing lysosomal activation of antibody-drug conjugates (ADCs) by incorporation of novel cleavable dipeptide linkers publication-title: Mol Pharm – volume: 10 start-page: 4048 year: 2019 end-page: 4053 ident: bib91 article-title: Monodisperse polysarcosine-based highly-loaded antibody‒drug conjugates publication-title: Chem Sci – volume: 27 start-page: 922 year: 2020 end-page: 927 ident: bib5 article-title: FDA approval summary: enfortumab vedotin for locally advanced or metastatic urothelial carcinoma publication-title: Clin Cancer Res – volume: 25 start-page: 1124 year: 2014 end-page: 1136 ident: bib69 article-title: Bridging disulfides for stable and defined antibody drug conjugates publication-title: Bioconjug Chem – volume: 29 start-page: 176 year: 2018 end-page: 181 ident: bib44 article-title: Assembly of high-potency photosensitizer-antibody conjugates through application of dendron multiplier technology publication-title: Bioconjug Chem – volume: 15 start-page: 9305 year: 2017 end-page: 9310 ident: bib57 article-title: Structural investigation of cyclo-dioxo maleimide cross-linkers for acid and serum stability publication-title: Org Biomol Chem – volume: 80 start-page: 1607 year: 2020 end-page: 1613 ident: bib7 article-title: Belantamab mafodotin: first approval publication-title: Drugs – volume: 26 start-page: 145 year: 2015 end-page: 152 ident: bib66 article-title: Long-term stabilization of maleimide-thiol conjugates publication-title: Bioconjug Chem – volume: 44 start-page: 1517 year: 2016 end-page: 1523 ident: bib92 article-title: Chemical structure and concentration of intratumor catabolites determine efficacy of antibody drug conjugates publication-title: Drug Metab Dispos – volume: 12 start-page: 329 year: 2013 end-page: 332 ident: bib96 article-title: Maturing antibody‒drug conjugate pipeline hits 30 publication-title: Nat Rev Drug Discov – volume: 11 start-page: 1608 year: 2005 end-page: 1617 ident: bib81 article-title: Formation and antitumor activity of PNU-159682, a major metabolite of nemorubicin in human liver microsomes publication-title: Clin Cancer Res – volume: 13 start-page: 342 year: 2013 end-page: 355 ident: bib32 article-title: Iron and cancer: more ore to be mined publication-title: Nat Rev Cancer – volume: 60 start-page: 9490 year: 2017 end-page: 9507 ident: bib58 article-title: Pyrrolobenzodiazepine dimer antibody‒drug conjugates: synthesis and evaluation of noncleavable drug-linkers publication-title: J Med Chem – volume: 363 start-page: 1812 year: 2010 end-page: 1821 ident: bib97 article-title: Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas publication-title: N Engl J Med – volume: 11 start-page: 50 year: 2010 end-page: 61 ident: bib26 article-title: Sensors and regulators of intracellular pH publication-title: Nat Rev Mol Cell Biol – volume: 111 start-page: 104475 year: 2021 ident: bib47 article-title: Novel antibody‒drug conjugate with UV-controlled cleavage mechanism for cytotoxin release publication-title: Bioorg Chem – volume: 30 start-page: 2982 year: 2019 end-page: 2988 ident: bib89 article-title: Hydrophilic sequence-defined cross-linkers for antibody‒drug conjugates publication-title: Bioconjug Chem – volume: 57 start-page: 7890 year: 2014 end-page: 7899 ident: bib16 article-title: Site-specific trastuzumab maytansinoid antibody‒drug conjugates with improved therapeutic activity through linker and antibody engineering publication-title: J Med Chem – volume: 11 start-page: 2375 year: 2020 end-page: 2380 ident: bib37 article-title: Sulfatase-cleavable linkers for antibody‒drug conjugates publication-title: Chem Sci – volume: 24 start-page: 479 year: 1981 end-page: 480 ident: bib39 article-title: A novel connector linkage applicable in prodrug design publication-title: J Med Chem – volume: 6 start-page: 2669 year: 2008 end-page: 2672 ident: bib40 article-title: The azaquinone-methide elimination: comparison study of 1,6- and 1,4-eliminations under physiological conditions publication-title: Org Biomol Chem – volume: 10 start-page: 8973 year: 2019 end-page: 8980 ident: bib48 article-title: A light-responsive, self-immolative linker for controlled drug delivery publication-title: Chem Sci – volume: 52 start-page: 401 year: 1996 end-page: 406 ident: bib29 article-title: Differential distribution of free and bound glutathione and cyst(e)ine in human blood publication-title: Biochem Pharmacol – volume: 60 start-page: 3008 year: 2020 end-page: 3015 ident: bib75 article-title: An efficient conjugation approach for coupling drugs to native antibodies publication-title: Angew Chem Int Ed Engl – volume: 21 start-page: 5131 year: 2015 end-page: 5138 ident: bib95 article-title: Enhanced delivery of SN-38 to human tumor xenografts with an anti-Trop-2-SN-38 antibody conjugate (sacituzumab govitecan) publication-title: Clin Cancer Res – volume: 26 start-page: 2243 year: 2015 end-page: 2248 ident: bib60 article-title: Site-specific dual antibody conjugation publication-title: Bioconjug Chem – volume: 78 start-page: 1763 year: 2018 end-page: 1767 ident: bib3 article-title: Moxetumomab pasudotox: first global approval publication-title: Drugs – volume: 14 start-page: 12222 year: 2013 end-page: 12248 ident: bib52 article-title: UV radiation and the skin publication-title: Int J Mol Sci – volume: 190 start-page: 112080 year: 2020 ident: bib70 article-title: Bis(vinylsulfonyl)piperazines as efficient linkers for highly homogeneous antibody‒drug conjugates publication-title: Eur J Med Chem – volume: 42 start-page: 1914 year: 2014 end-page: 1920 ident: bib83 article-title: Absorption, distribution, metabolism, and excretion considerations for the development of antibody‒drug conjugates publication-title: Drug Metab Dispos – volume: 10 start-page: 1193 year: 2019 end-page: 1197 ident: bib24 article-title: Effect of linker stereochemistry on the activity of indolinobenzodiazepine containing antibody‒drug conjugates (ADCs) publication-title: ACS Med Chem Lett – volume: 27 start-page: 2081 year: 2016 end-page: 2088 ident: bib38 article-title: Novel phosphate modified cathepsin B linkers: improving aqueous solubility and enhancing payload scope of ADCs publication-title: Bioconjug Chem – volume: 28 start-page: 2698 year: 2010 end-page: 2704 ident: bib98 article-title: Phase I study of trastuzumab-DM1, an HER2 antibody‒drug conjugate, given every 3 weeks to patients with HER2 publication-title: J Clin Oncol – volume: 32 start-page: 1059 year: 2014 end-page: 1062 ident: bib64 article-title: Self-hydrolyzing maleimides improve the stability and pharmacological properties of antibody‒drug conjugates publication-title: Nat Biotechnol – volume: 77 start-page: 257 year: 2017 end-page: 267 ident: bib74 article-title: A novel platinum(II)-based bifunctional ADC linker benchmarked using 89Zr-desferal and auristatin F-conjugated trastuzumab publication-title: Cancer Res – volume: 3 start-page: 15 year: 2013 end-page: 23 ident: bib11 article-title: Brentuximab vedotin in CD30 publication-title: Biol Ther – volume: 79 start-page: 1829 year: 2019 ident: bib4 article-title: Correction to: polatuzumab vedotin: first global approval publication-title: Drugs – volume: 17 start-page: 831 year: 2006 end-page: 840 ident: bib35 article-title: Development and properties of beta-glucuronide linkers for monoclonal antibody‒drug conjugates publication-title: Bioconjug Chem – volume: 13 start-page: 958 year: 2018 end-page: 964 ident: bib61 article-title: A switchable site-specific antibody conjugate publication-title: ACS Chem Biol – volume: 527 start-page: 323 year: 2015 end-page: 328 ident: bib17 article-title: Novel antibody‒antibiotic conjugate eliminates intracellular publication-title: Nature – volume: 142 start-page: 376 year: 2017 end-page: 382 ident: bib36 article-title: Development and evaluation of beta-galactosidase-sensitive antibody‒drug conjugates publication-title: Eur J Med Chem – volume: 21 start-page: 778 year: 2003 end-page: 784 ident: bib56 article-title: Development of potent monoclonal antibody auristatin conjugates for cancer therapy publication-title: Nat Biotechnol – volume: 77 start-page: 1603 year: 2017 end-page: 1610 ident: bib2 article-title: Inotuzumab ozogamicin: first global approval publication-title: Drugs – volume: 6 start-page: 30835 year: 2016 ident: bib14 article-title: 2-(Maleimidomethyl)-1,3-dioxanes (MD): a serum-stable self-hydrolysable hydrophilic alternative to classical maleimide conjugation publication-title: Sci Rep – volume: 28 start-page: 1458 year: 2017 end-page: 1469 ident: bib45 article-title: Near-infrared photochemoimmunotherapy by photoactivatable bifunctional antibody‒drug conjugates targeting human epidermal growth factor receptor 2 positive cancer publication-title: Bioconjug Chem – volume: 15 start-page: 958 year: 2016 end-page: 970 ident: bib21 article-title: Molecular basis of valine-citrulline-PABC linker instability in site-specific ADCs and its mitigation by linker design publication-title: Mol Cancer Ther – volume: 17 start-page: 98 year: 2020 end-page: 108 ident: bib53 article-title: Cellular delivery of bioorthogonal pretargeting therapeutics in PSMA-positive prostate cancer publication-title: Mol Pharm – volume: 13 start-page: 47 year: 2002 end-page: 58 ident: bib10 article-title: Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia publication-title: Bioconjug Chem – volume: 21 start-page: 559 year: 2015 end-page: 564 ident: bib13 article-title: Fate of patients with newly diagnosed acute myeloid leukemia who fail primary induction therapy publication-title: Biol Blood Marrow Transplant – volume: 8 start-page: 366 year: 2017 end-page: 370 ident: bib30 article-title: Decoupling stability and release in disulfide bonds with antibody-small molecule conjugates publication-title: Chem Sci – volume: 17 start-page: 677 year: 2018 end-page: 685 ident: bib93 article-title: Intratumoral payload concentration correlates with the activity of antibody‒drug conjugates publication-title: Mol Cancer Ther – volume: 2 start-page: 312 year: 2006 end-page: 313 ident: bib68 article-title: Site-specific PEGylation of native disulfide bonds in therapeutic proteins publication-title: Nat Chem Biol – volume: 15 start-page: 2054 year: 2018 end-page: 2059 ident: bib34 article-title: Toward a ferrous iron-cleavable linker for antibody‒drug conjugates publication-title: Mol Pharm – volume: 10 start-page: 797 year: 2015 end-page: 803 ident: bib73 article-title: Platinum(II) as bifunctional linker in antibody‒drug conjugate formation: coupling of a 4-nitrobenzo-2-oxa-1,3-diazole fluorophore to trastuzumab as a model publication-title: ChemMedChem – volume: 27 start-page: 1850 year: 2021 end-page: 1854 ident: bib8 article-title: FDA approval summary: accelerated approval of sacituzumab govitecan-hziy for third line treatment of metastatic triple-negative breast cancer (mTNBC) publication-title: Clin Cancer Res – volume: 1 start-page: 441 year: 2002 end-page: 458 ident: bib43 article-title: Photoremovable protecting groups: reaction mechanisms and applications publication-title: Photochem Photobiol Sci – volume: 251 start-page: 767 year: 1991 end-page: 773 ident: bib42 article-title: Light-directed, spatially addressable parallel chemical synthesis publication-title: Science – volume: 141 start-page: 17133 year: 2019 end-page: 17141 ident: bib55 article-title: Copper-triggered bioorthogonal cleavage reactions for reversible protein and cell surface modifications publication-title: J Am Chem Soc – volume: 47 start-page: 1146 year: 2019 end-page: 1155 ident: bib94 article-title: Exposure-efficacy analysis of antibody‒drug conjugates delivering an excessive level of payload to tissues publication-title: Drug Metab Dispos – volume: 15 start-page: 1311 year: 2016 end-page: 1320 ident: bib22 article-title: A new triglycyl peptide linker for antibody‒drug conjugates (ADCs) with improved targeted killing of cancer cells publication-title: Mol Cancer Ther – volume: 54 start-page: 13635 year: 2015 end-page: 13638 ident: bib46 article-title: Near-IR light-mediated cleavage of antibody‒drug conjugates using cyanine photocages publication-title: Angew Chem Int Ed Engl – volume: 12 start-page: 968 year: 2013 end-page: 978 ident: bib27 article-title: Milatuzumab-SN-38 conjugates for the treatment of CD74 publication-title: Mol Cancer Ther – volume: 30 start-page: 1957 year: 2019 end-page: 1968 ident: bib82 article-title: Aryl sulfate is a useful motif for conjugating and releasing phenolic molecules: sulfur fluorine exchange click chemistry enables discovery of publication-title: Bioconjug Chem – volume: 16 start-page: 783 year: 2019 end-page: 793 ident: bib76 article-title: First platinum(II)-based metal-organic linker technology ( publication-title: Expert Opin Drug Deliv – volume: 57 start-page: 6949 year: 2014 end-page: 6964 ident: bib12 article-title: Ado-trastuzumab emtansine (T-DM1): an antibody-drug conjugate (ADC) for HER2 publication-title: J Med Chem – volume: 11 start-page: 957 year: 2019 ident: bib28 article-title: Novel silyl ether-based acid-cleavable antibody‒MMAE conjugates with appropriate stability and efficacy publication-title: Cancers (Basel) – volume: 8 start-page: 473 year: 2008 end-page: 480 ident: bib1 article-title: Paul Ehrlich's magic bullet concept: 100 years of progress publication-title: Nat Rev Cancer – volume: 61 start-page: 989 year: 2018 end-page: 1000 ident: bib20 article-title: Discovery of peptidomimetic antibody‒drug conjugate linkers with enhanced protease specificity publication-title: J Med Chem – volume: 28 start-page: 1363 year: 2018 end-page: 1370 ident: bib87 article-title: Site-specific and hydrophilic ADCs through disulfide-bridged linker and branched PEG publication-title: Bioorg Med Chem Lett – volume: 12 start-page: 1798 year: 2015 end-page: 1812 ident: bib77 article-title: Recent advances in the development of new auristatins: structural modifications and application in antibody drug conjugates publication-title: Mol Pharm – volume: 11 start-page: 5567 year: 2009 end-page: 5569 ident: bib80 article-title: First total synthesis of tubulysin B publication-title: Org Lett – volume: 28 start-page: 721 year: 1958 end-page: 722 ident: bib50 article-title: Enhancement of phosphorescence ability upon aggregation of dye molecules publication-title: J Chem Phys – volume: 54 start-page: 3606 year: 2011 end-page: 3623 ident: bib88 article-title: Synthesis and evaluation of hydrophilic linkers for antibody-maytansinoid conjugates publication-title: J Med Chem – volume: 392 start-page: 114932 year: 2020 ident: bib90 article-title: Reducing the antigen-independent toxicity of antibody‒drug conjugates by minimizing their non-specific clearance through PEGylation publication-title: Toxicol Appl Pharmacol – volume: 5 start-page: 64 year: 2017 ident: bib62 article-title: Site-specific antibody conjugation for ADC and beyond publication-title: Biomedicines – volume: 121 start-page: 505 year: 1955 end-page: 506 ident: bib79 article-title: Chemical identification of the Amanita toxin in mushrooms publication-title: Science – volume: 220 start-page: 660 year: 2015 end-page: 670 ident: bib65 article-title: Stabilization of cysteine-linked antibody drug conjugates with publication-title: J Control Release – volume: 9 start-page: 37700 year: 2018 end-page: 37714 ident: bib86 article-title: Targeting CD74 in multiple myeloma with the novel, site-specific antibody‒drug conjugate STRO-001 publication-title: Oncotarget – volume: 59 start-page: 11161 year: 2016 end-page: 11170 ident: bib33 article-title: A novel tumor-activated prodrug strategy targeting ferrous iron is effective in multiple preclinical cancer models publication-title: J Med Chem – volume: 16 start-page: 871 year: 2017 end-page: 878 ident: bib31 article-title: Modulating therapeutic activity and toxicity of pyrrolobenzodiazepine antibody‒drug conjugates with self-immolative disulfide linkers publication-title: Mol Cancer Ther – volume: 6 start-page: 20 year: 2017 ident: bib67 article-title: Pyrrolobenzodiazepine antibody‒drug conjugates designed for stable thiol conjugation publication-title: Antibodies (Basel) – volume: 28 start-page: 1371 year: 2017 end-page: 1381 ident: bib85 article-title: Effects of drug-antibody ratio on pharmacokinetics, biodistribution, efficacy, and tolerability of antibody-maytansinoid conjugates publication-title: Bioconjug Chem – volume: 20 start-page: 6526 year: 2018 end-page: 6529 ident: bib72 article-title: -Methyl- publication-title: Org Lett – volume: 11 start-page: 2550 year: 2021 end-page: 2563 ident: bib41 article-title: A bifunctional molecule-based strategy for the development of theranostic antibody‒drug conjugate publication-title: Theranostics – volume: 114 start-page: 8574 year: 2010 end-page: 8580 ident: bib49 article-title: Aggregation control of squaraines and their use as near-infrared fluorescent sensors for protein publication-title: J Phys Chem B – volume: 27 start-page: 1588 year: 2016 end-page: 1598 ident: bib15 article-title: Understanding how the stability of the thiol-maleimide linkage impacts the pharmacokinetics of lysine-linked antibody-maytansinoid conjugates publication-title: Bioconjug Chem – volume: 138 start-page: 1430 year: 2016 end-page: 1445 ident: bib18 article-title: Discovery of pyrophosphate diesters as tunable, soluble, and bioorthogonal linkers for site-specific antibody–drug conjugates publication-title: J Am Chem Soc – volume: 77 start-page: 7027 year: 2017 end-page: 7037 ident: bib19 article-title: Cathepsin B is dispensable for cellular processing of cathepsin B-cleavable antibody‒drug conjugates publication-title: Cancer Res – volume: 15 start-page: 938 year: 2016 end-page: 945 ident: bib78 article-title: Development of novel quaternary ammonium linkers for antibody‒drug conjugates publication-title: Mol Cancer Ther – volume: 33 start-page: 733 year: 2015 end-page: 735 ident: bib84 article-title: Reducing hydrophobicity of homogeneous antibody‒drug conjugates improves pharmacokinetics and therapeutic index publication-title: Nat Biotechnol – volume: 57 start-page: 6949 year: 2014 ident: 10.1016/j.apsb.2021.03.042_bib12 article-title: Ado-trastuzumab emtansine (T-DM1): an antibody-drug conjugate (ADC) for HER2− positive breast cancer publication-title: J Med Chem doi: 10.1021/jm500766w – volume: 15 start-page: 958 year: 2016 ident: 10.1016/j.apsb.2021.03.042_bib21 article-title: Molecular basis of valine-citrulline-PABC linker instability in site-specific ADCs and its mitigation by linker design publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-15-1004 – volume: 15 start-page: 1311 year: 2016 ident: 10.1016/j.apsb.2021.03.042_bib22 article-title: A new triglycyl peptide linker for antibody‒drug conjugates (ADCs) with improved targeted killing of cancer cells publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-16-0021 – volume: 14 start-page: 12222 year: 2013 ident: 10.1016/j.apsb.2021.03.042_bib52 article-title: UV radiation and the skin publication-title: Int J Mol Sci doi: 10.3390/ijms140612222 – volume: 251 start-page: 767 year: 1991 ident: 10.1016/j.apsb.2021.03.042_bib42 article-title: Light-directed, spatially addressable parallel chemical synthesis publication-title: Science doi: 10.1126/science.1990438 – volume: 52 start-page: 401 year: 1996 ident: 10.1016/j.apsb.2021.03.042_bib29 article-title: Differential distribution of free and bound glutathione and cyst(e)ine in human blood publication-title: Biochem Pharmacol doi: 10.1016/0006-2952(96)00241-9 – volume: 30 start-page: 2982 year: 2019 ident: 10.1016/j.apsb.2021.03.042_bib89 article-title: Hydrophilic sequence-defined cross-linkers for antibody‒drug conjugates publication-title: Bioconjug Chem doi: 10.1021/acs.bioconjchem.9b00713 – volume: 79 start-page: 1829 year: 2019 ident: 10.1016/j.apsb.2021.03.042_bib4 article-title: Correction to: polatuzumab vedotin: first global approval publication-title: Drugs doi: 10.1007/s40265-019-01214-w – volume: 6 start-page: 2669 year: 2008 ident: 10.1016/j.apsb.2021.03.042_bib40 article-title: The azaquinone-methide elimination: comparison study of 1,6- and 1,4-eliminations under physiological conditions publication-title: Org Biomol Chem doi: 10.1039/b808198k – volume: 6 start-page: 20 year: 2017 ident: 10.1016/j.apsb.2021.03.042_bib67 article-title: Pyrrolobenzodiazepine antibody‒drug conjugates designed for stable thiol conjugation publication-title: Antibodies (Basel) doi: 10.3390/antib6040020 – volume: 32 start-page: 1059 year: 2014 ident: 10.1016/j.apsb.2021.03.042_bib64 article-title: Self-hydrolyzing maleimides improve the stability and pharmacological properties of antibody‒drug conjugates publication-title: Nat Biotechnol doi: 10.1038/nbt.2968 – volume: 28 start-page: 1363 year: 2018 ident: 10.1016/j.apsb.2021.03.042_bib87 article-title: Site-specific and hydrophilic ADCs through disulfide-bridged linker and branched PEG publication-title: Bioorg Med Chem Lett doi: 10.1016/j.bmcl.2018.03.005 – volume: 12 start-page: 968 year: 2013 ident: 10.1016/j.apsb.2021.03.042_bib27 article-title: Milatuzumab-SN-38 conjugates for the treatment of CD74+ cancers publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-12-1170 – volume: 16 start-page: 783 year: 2019 ident: 10.1016/j.apsb.2021.03.042_bib76 article-title: First platinum(II)-based metal-organic linker technology (Lx®) for a plug-and-play development of antibody‒drug conjugates (ADCs) publication-title: Expert Opin Drug Deliv doi: 10.1080/17425247.2019.1645118 – volume: 80 start-page: 1607 year: 2020 ident: 10.1016/j.apsb.2021.03.042_bib7 article-title: Belantamab mafodotin: first approval publication-title: Drugs doi: 10.1007/s40265-020-01404-x – volume: 16 start-page: 4817 year: 2019 ident: 10.1016/j.apsb.2021.03.042_bib25 article-title: Optimizing lysosomal activation of antibody-drug conjugates (ADCs) by incorporation of novel cleavable dipeptide linkers publication-title: Mol Pharm doi: 10.1021/acs.molpharmaceut.9b00696 – volume: 17 start-page: 677 year: 2018 ident: 10.1016/j.apsb.2021.03.042_bib93 article-title: Intratumoral payload concentration correlates with the activity of antibody‒drug conjugates publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-17-0697 – volume: 10 start-page: 4048 year: 2019 ident: 10.1016/j.apsb.2021.03.042_bib91 article-title: Monodisperse polysarcosine-based highly-loaded antibody‒drug conjugates publication-title: Chem Sci doi: 10.1039/C9SC00285E – volume: 195 start-page: 298 year: 2004 ident: 10.1016/j.apsb.2021.03.042_bib51 article-title: Toxic effects of ultraviolet radiation on the skin publication-title: Toxicol Appl Pharmacol doi: 10.1016/j.taap.2003.08.019 – volume: 60 start-page: 9490 year: 2017 ident: 10.1016/j.apsb.2021.03.042_bib58 article-title: Pyrrolobenzodiazepine dimer antibody‒drug conjugates: synthesis and evaluation of noncleavable drug-linkers publication-title: J Med Chem doi: 10.1021/acs.jmedchem.7b00736 – volume: 20 start-page: 6526 year: 2018 ident: 10.1016/j.apsb.2021.03.042_bib72 article-title: N-Methyl-N-phenylvinylsulfonamides for cysteine-selective conjugation publication-title: Org Lett doi: 10.1021/acs.orglett.8b02849 – volume: 16 start-page: 871 year: 2017 ident: 10.1016/j.apsb.2021.03.042_bib31 article-title: Modulating therapeutic activity and toxicity of pyrrolobenzodiazepine antibody‒drug conjugates with self-immolative disulfide linkers publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-16-0641 – volume: 8 start-page: 473 year: 2008 ident: 10.1016/j.apsb.2021.03.042_bib1 article-title: Paul Ehrlich's magic bullet concept: 100 years of progress publication-title: Nat Rev Cancer doi: 10.1038/nrc2394 – volume: 13 start-page: 342 year: 2013 ident: 10.1016/j.apsb.2021.03.042_bib32 article-title: Iron and cancer: more ore to be mined publication-title: Nat Rev Cancer doi: 10.1038/nrc3495 – volume: 27 start-page: 1850 year: 2021 ident: 10.1016/j.apsb.2021.03.042_bib8 article-title: FDA approval summary: accelerated approval of sacituzumab govitecan-hziy for third line treatment of metastatic triple-negative breast cancer (mTNBC) publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-20-3119 – volume: 21 start-page: 778 year: 2003 ident: 10.1016/j.apsb.2021.03.042_bib56 article-title: Development of potent monoclonal antibody auristatin conjugates for cancer therapy publication-title: Nat Biotechnol doi: 10.1038/nbt832 – volume: 15 start-page: 938 year: 2016 ident: 10.1016/j.apsb.2021.03.042_bib78 article-title: Development of novel quaternary ammonium linkers for antibody‒drug conjugates publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-16-0038 – volume: 9 start-page: 37700 year: 2018 ident: 10.1016/j.apsb.2021.03.042_bib86 article-title: Targeting CD74 in multiple myeloma with the novel, site-specific antibody‒drug conjugate STRO-001 publication-title: Oncotarget doi: 10.18632/oncotarget.26491 – volume: 363 start-page: 1812 year: 2010 ident: 10.1016/j.apsb.2021.03.042_bib97 article-title: Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas publication-title: N Engl J Med doi: 10.1056/NEJMoa1002965 – year: 2020 ident: 10.1016/j.apsb.2021.03.042_bib6 – volume: 6 start-page: 30835 year: 2016 ident: 10.1016/j.apsb.2021.03.042_bib14 article-title: 2-(Maleimidomethyl)-1,3-dioxanes (MD): a serum-stable self-hydrolysable hydrophilic alternative to classical maleimide conjugation publication-title: Sci Rep doi: 10.1038/srep30835 – volume: 11 start-page: 2550 year: 2021 ident: 10.1016/j.apsb.2021.03.042_bib41 article-title: A bifunctional molecule-based strategy for the development of theranostic antibody‒drug conjugate publication-title: Theranostics doi: 10.7150/thno.51232 – volume: 27 start-page: 2081 year: 2016 ident: 10.1016/j.apsb.2021.03.042_bib38 article-title: Novel phosphate modified cathepsin B linkers: improving aqueous solubility and enhancing payload scope of ADCs publication-title: Bioconjug Chem doi: 10.1021/acs.bioconjchem.6b00337 – volume: 15 start-page: 2054 year: 2018 ident: 10.1016/j.apsb.2021.03.042_bib34 article-title: Toward a ferrous iron-cleavable linker for antibody‒drug conjugates publication-title: Mol Pharm doi: 10.1021/acs.molpharmaceut.8b00242 – volume: 1 start-page: 441 year: 2002 ident: 10.1016/j.apsb.2021.03.042_bib43 article-title: Photoremovable protecting groups: reaction mechanisms and applications publication-title: Photochem Photobiol Sci doi: 10.1039/b200777k – volume: 138 start-page: 1430 year: 2016 ident: 10.1016/j.apsb.2021.03.042_bib18 article-title: Discovery of pyrophosphate diesters as tunable, soluble, and bioorthogonal linkers for site-specific antibody–drug conjugates publication-title: J Am Chem Soc doi: 10.1021/jacs.5b12547 – volume: 30 start-page: 105 year: 2018 ident: 10.1016/j.apsb.2021.03.042_bib9 article-title: Drawing lessons from the clinical development of antibody‒drug conjugates publication-title: Drug Discov Today Technol doi: 10.1016/j.ddtec.2018.10.001 – volume: 10 start-page: 7063 year: 2004 ident: 10.1016/j.apsb.2021.03.042_bib63 article-title: Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-04-0789 – volume: 28 start-page: 2698 year: 2010 ident: 10.1016/j.apsb.2021.03.042_bib98 article-title: Phase I study of trastuzumab-DM1, an HER2 antibody‒drug conjugate, given every 3 weeks to patients with HER2-positive metastatic breast cancer publication-title: J Clin Oncol doi: 10.1200/JCO.2009.26.2071 – volume: 61 start-page: 989 year: 2018 ident: 10.1016/j.apsb.2021.03.042_bib20 article-title: Discovery of peptidomimetic antibody‒drug conjugate linkers with enhanced protease specificity publication-title: J Med Chem doi: 10.1021/acs.jmedchem.7b01430 – volume: 28 start-page: 1371 year: 2017 ident: 10.1016/j.apsb.2021.03.042_bib85 article-title: Effects of drug-antibody ratio on pharmacokinetics, biodistribution, efficacy, and tolerability of antibody-maytansinoid conjugates publication-title: Bioconjug Chem doi: 10.1021/acs.bioconjchem.7b00062 – volume: 26 start-page: 2243 year: 2015 ident: 10.1016/j.apsb.2021.03.042_bib60 article-title: Site-specific dual antibody conjugation via engineered cysteine and selenocysteine residues publication-title: Bioconjug Chem doi: 10.1021/acs.bioconjchem.5b00244 – volume: 10 start-page: 797 year: 2015 ident: 10.1016/j.apsb.2021.03.042_bib73 article-title: Platinum(II) as bifunctional linker in antibody‒drug conjugate formation: coupling of a 4-nitrobenzo-2-oxa-1,3-diazole fluorophore to trastuzumab as a model publication-title: ChemMedChem doi: 10.1002/cmdc.201402496 – volume: 24 start-page: 479 year: 1981 ident: 10.1016/j.apsb.2021.03.042_bib39 article-title: A novel connector linkage applicable in prodrug design publication-title: J Med Chem doi: 10.1021/jm00137a001 – volume: 47 start-page: 1146 year: 2019 ident: 10.1016/j.apsb.2021.03.042_bib94 article-title: Exposure-efficacy analysis of antibody‒drug conjugates delivering an excessive level of payload to tissues publication-title: Drug Metab Dispos doi: 10.1124/dmd.119.087023 – volume: 11 start-page: 50 year: 2010 ident: 10.1016/j.apsb.2021.03.042_bib26 article-title: Sensors and regulators of intracellular pH publication-title: Nat Rev Mol Cell Biol doi: 10.1038/nrm2820 – volume: 77 start-page: 1603 year: 2017 ident: 10.1016/j.apsb.2021.03.042_bib2 article-title: Inotuzumab ozogamicin: first global approval publication-title: Drugs doi: 10.1007/s40265-017-0802-5 – volume: 111 start-page: 104475 year: 2021 ident: 10.1016/j.apsb.2021.03.042_bib47 article-title: Novel antibody‒drug conjugate with UV-controlled cleavage mechanism for cytotoxin release publication-title: Bioorg Chem doi: 10.1016/j.bioorg.2020.104475 – volume: 392 start-page: 114932 year: 2020 ident: 10.1016/j.apsb.2021.03.042_bib90 article-title: Reducing the antigen-independent toxicity of antibody‒drug conjugates by minimizing their non-specific clearance through PEGylation publication-title: Toxicol Appl Pharmacol doi: 10.1016/j.taap.2020.114932 – volume: 3 start-page: 15 year: 2013 ident: 10.1016/j.apsb.2021.03.042_bib11 article-title: Brentuximab vedotin in CD30+ lymphomas publication-title: Biol Ther doi: 10.1007/s13554-013-0008-7 – volume: 5 start-page: 64 year: 2017 ident: 10.1016/j.apsb.2021.03.042_bib62 article-title: Site-specific antibody conjugation for ADC and beyond publication-title: Biomedicines doi: 10.3390/biomedicines5040064 – volume: 27 start-page: 922 year: 2020 ident: 10.1016/j.apsb.2021.03.042_bib5 article-title: FDA approval summary: enfortumab vedotin for locally advanced or metastatic urothelial carcinoma publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-20-2275 – volume: 21 start-page: 559 year: 2015 ident: 10.1016/j.apsb.2021.03.042_bib13 article-title: Fate of patients with newly diagnosed acute myeloid leukemia who fail primary induction therapy publication-title: Biol Blood Marrow Transplant doi: 10.1016/j.bbmt.2014.10.025 – volume: 77 start-page: 7027 year: 2017 ident: 10.1016/j.apsb.2021.03.042_bib19 article-title: Cathepsin B is dispensable for cellular processing of cathepsin B-cleavable antibody‒drug conjugates publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-17-2391 – volume: 77 start-page: 257 year: 2017 ident: 10.1016/j.apsb.2021.03.042_bib74 article-title: A novel platinum(II)-based bifunctional ADC linker benchmarked using 89Zr-desferal and auristatin F-conjugated trastuzumab publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-16-1900 – volume: 18 start-page: 1860 year: 2017 ident: 10.1016/j.apsb.2021.03.042_bib23 article-title: Development and properties of valine-alanine based antibody‒drug conjugates with monomethyl auristatin E as the potent payload publication-title: Int J Mol Sci doi: 10.3390/ijms18091860 – volume: 220 start-page: 660 year: 2015 ident: 10.1016/j.apsb.2021.03.042_bib65 article-title: Stabilization of cysteine-linked antibody drug conjugates with N-aryl maleimides publication-title: J Control Release doi: 10.1016/j.jconrel.2015.09.032 – volume: 10 start-page: 1193 year: 2019 ident: 10.1016/j.apsb.2021.03.042_bib24 article-title: Effect of linker stereochemistry on the activity of indolinobenzodiazepine containing antibody‒drug conjugates (ADCs) publication-title: ACS Med Chem Lett doi: 10.1021/acsmedchemlett.9b00240 – volume: 17 start-page: 831 year: 2006 ident: 10.1016/j.apsb.2021.03.042_bib35 article-title: Development and properties of beta-glucuronide linkers for monoclonal antibody‒drug conjugates publication-title: Bioconjug Chem doi: 10.1021/bc0600214 – volume: 57 start-page: 7890 year: 2014 ident: 10.1016/j.apsb.2021.03.042_bib16 article-title: Site-specific trastuzumab maytansinoid antibody‒drug conjugates with improved therapeutic activity through linker and antibody engineering publication-title: J Med Chem doi: 10.1021/jm500552c – volume: 12 start-page: 744 year: 2020 ident: 10.1016/j.apsb.2021.03.042_bib59 article-title: Antibody‒drug conjugate using ionized cys-linker-MMAE as the potent payload shows optimal therapeutic safety publication-title: Cancers (Basel) doi: 10.3390/cancers12030744 – volume: 17 start-page: 98 year: 2020 ident: 10.1016/j.apsb.2021.03.042_bib53 article-title: Cellular delivery of bioorthogonal pretargeting therapeutics in PSMA-positive prostate cancer publication-title: Mol Pharm doi: 10.1021/acs.molpharmaceut.9b00788 – volume: 13 start-page: 958 year: 2018 ident: 10.1016/j.apsb.2021.03.042_bib61 article-title: A switchable site-specific antibody conjugate publication-title: ACS Chem Biol doi: 10.1021/acschembio.8b00107 – volume: 11 start-page: 2375 year: 2020 ident: 10.1016/j.apsb.2021.03.042_bib37 article-title: Sulfatase-cleavable linkers for antibody‒drug conjugates publication-title: Chem Sci doi: 10.1039/C9SC06410A – volume: 29 start-page: 176 year: 2018 ident: 10.1016/j.apsb.2021.03.042_bib44 article-title: Assembly of high-potency photosensitizer-antibody conjugates through application of dendron multiplier technology publication-title: Bioconjug Chem doi: 10.1021/acs.bioconjchem.7b00678 – volume: 54 start-page: 13635 year: 2015 ident: 10.1016/j.apsb.2021.03.042_bib46 article-title: Near-IR light-mediated cleavage of antibody‒drug conjugates using cyanine photocages publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201507391 – volume: 33 start-page: 733 year: 2015 ident: 10.1016/j.apsb.2021.03.042_bib84 article-title: Reducing hydrophobicity of homogeneous antibody‒drug conjugates improves pharmacokinetics and therapeutic index publication-title: Nat Biotechnol doi: 10.1038/nbt.3212 – volume: 27 start-page: 1588 year: 2016 ident: 10.1016/j.apsb.2021.03.042_bib15 article-title: Understanding how the stability of the thiol-maleimide linkage impacts the pharmacokinetics of lysine-linked antibody-maytansinoid conjugates publication-title: Bioconjug Chem doi: 10.1021/acs.bioconjchem.6b00117 – volume: 141 start-page: 17133 year: 2019 ident: 10.1016/j.apsb.2021.03.042_bib55 article-title: Copper-triggered bioorthogonal cleavage reactions for reversible protein and cell surface modifications publication-title: J Am Chem Soc doi: 10.1021/jacs.9b05833 – volume: 42 start-page: 1914 year: 2014 ident: 10.1016/j.apsb.2021.03.042_bib83 article-title: Absorption, distribution, metabolism, and excretion considerations for the development of antibody‒drug conjugates publication-title: Drug Metab Dispos doi: 10.1124/dmd.114.058586 – volume: 26 start-page: 145 year: 2015 ident: 10.1016/j.apsb.2021.03.042_bib66 article-title: Long-term stabilization of maleimide-thiol conjugates publication-title: Bioconjug Chem doi: 10.1021/bc5005262 – volume: 142 start-page: 376 year: 2017 ident: 10.1016/j.apsb.2021.03.042_bib36 article-title: Development and evaluation of beta-galactosidase-sensitive antibody‒drug conjugates publication-title: Eur J Med Chem doi: 10.1016/j.ejmech.2017.08.008 – volume: 59 start-page: 11161 year: 2016 ident: 10.1016/j.apsb.2021.03.042_bib33 article-title: A novel tumor-activated prodrug strategy targeting ferrous iron is effective in multiple preclinical cancer models publication-title: J Med Chem doi: 10.1021/acs.jmedchem.6b01470 – volume: 11 start-page: 5567 year: 2009 ident: 10.1016/j.apsb.2021.03.042_bib80 article-title: First total synthesis of tubulysin B publication-title: Org Lett doi: 10.1021/ol902320w – volume: 28 start-page: 1458 year: 2017 ident: 10.1016/j.apsb.2021.03.042_bib45 article-title: Near-infrared photochemoimmunotherapy by photoactivatable bifunctional antibody‒drug conjugates targeting human epidermal growth factor receptor 2 positive cancer publication-title: Bioconjug Chem doi: 10.1021/acs.bioconjchem.7b00144 – volume: 1 start-page: 226 year: 2019 ident: 10.1016/j.apsb.2021.03.042_bib54 article-title: Bioorthogonal prodrug–antibody conjugates for on-target and on-demand chemotherapy publication-title: CCS Chemistry doi: 10.31635/ccschem.019.20180038 – volume: 11 start-page: 957 year: 2019 ident: 10.1016/j.apsb.2021.03.042_bib28 article-title: Novel silyl ether-based acid-cleavable antibody‒MMAE conjugates with appropriate stability and efficacy publication-title: Cancers (Basel) doi: 10.3390/cancers11070957 – volume: 527 start-page: 323 year: 2015 ident: 10.1016/j.apsb.2021.03.042_bib17 article-title: Novel antibody‒antibiotic conjugate eliminates intracellular S. aureus publication-title: Nature doi: 10.1038/nature16057 – volume: 21 start-page: 5131 year: 2015 ident: 10.1016/j.apsb.2021.03.042_bib95 article-title: Enhanced delivery of SN-38 to human tumor xenografts with an anti-Trop-2-SN-38 antibody conjugate (sacituzumab govitecan) publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-15-0670 – volume: 15 start-page: 9305 year: 2017 ident: 10.1016/j.apsb.2021.03.042_bib57 article-title: Structural investigation of cyclo-dioxo maleimide cross-linkers for acid and serum stability publication-title: Org Biomol Chem doi: 10.1039/C7OB01757J – volume: 114 start-page: 8574 year: 2010 ident: 10.1016/j.apsb.2021.03.042_bib49 article-title: Aggregation control of squaraines and their use as near-infrared fluorescent sensors for protein publication-title: J Phys Chem B doi: 10.1021/jp1029536 – volume: 78 start-page: 1763 year: 2018 ident: 10.1016/j.apsb.2021.03.042_bib3 article-title: Moxetumomab pasudotox: first global approval publication-title: Drugs doi: 10.1007/s40265-018-1000-9 – volume: 17 start-page: 2005 year: 2019 ident: 10.1016/j.apsb.2021.03.042_bib71 article-title: One-pot stapling of interchain disulfides of antibodies using an isobutylene motif publication-title: Org Biomol Chem doi: 10.1039/C8OB02877J – volume: 54 start-page: 3606 year: 2011 ident: 10.1016/j.apsb.2021.03.042_bib88 article-title: Synthesis and evaluation of hydrophilic linkers for antibody-maytansinoid conjugates publication-title: J Med Chem doi: 10.1021/jm2002958 – volume: 44 start-page: 1517 year: 2016 ident: 10.1016/j.apsb.2021.03.042_bib92 article-title: Chemical structure and concentration of intratumor catabolites determine efficacy of antibody drug conjugates publication-title: Drug Metab Dispos doi: 10.1124/dmd.116.070631 – volume: 10 start-page: 8973 year: 2019 ident: 10.1016/j.apsb.2021.03.042_bib48 article-title: A light-responsive, self-immolative linker for controlled drug delivery via peptide‒ and protein‒drug conjugates publication-title: Chem Sci doi: 10.1039/C9SC03016F – volume: 12 start-page: 1798 year: 2015 ident: 10.1016/j.apsb.2021.03.042_bib77 article-title: Recent advances in the development of new auristatins: structural modifications and application in antibody drug conjugates publication-title: Mol Pharm doi: 10.1021/mp500762u – volume: 2 start-page: 312 year: 2006 ident: 10.1016/j.apsb.2021.03.042_bib68 article-title: Site-specific PEGylation of native disulfide bonds in therapeutic proteins publication-title: Nat Chem Biol doi: 10.1038/nchembio786 – volume: 60 start-page: 3008 year: 2020 ident: 10.1016/j.apsb.2021.03.042_bib75 article-title: An efficient conjugation approach for coupling drugs to native antibodies via the Pt(II) linker Lx for improved manufacturability of antibody‒drug conjugates publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.202011593 – volume: 28 start-page: 721 year: 1958 ident: 10.1016/j.apsb.2021.03.042_bib50 article-title: Enhancement of phosphorescence ability upon aggregation of dye molecules publication-title: J Chem Phys doi: 10.1063/1.1744225 – volume: 25 start-page: 1124 year: 2014 ident: 10.1016/j.apsb.2021.03.042_bib69 article-title: Bridging disulfides for stable and defined antibody drug conjugates publication-title: Bioconjug Chem doi: 10.1021/bc500148x – volume: 8 start-page: 366 year: 2017 ident: 10.1016/j.apsb.2021.03.042_bib30 article-title: Decoupling stability and release in disulfide bonds with antibody-small molecule conjugates publication-title: Chem Sci doi: 10.1039/C6SC01831A – volume: 121 start-page: 505 year: 1955 ident: 10.1016/j.apsb.2021.03.042_bib79 article-title: Chemical identification of the Amanita toxin in mushrooms publication-title: Science doi: 10.1126/science.121.3145.505 – volume: 12 start-page: 329 year: 2013 ident: 10.1016/j.apsb.2021.03.042_bib96 article-title: Maturing antibody‒drug conjugate pipeline hits 30 publication-title: Nat Rev Drug Discov doi: 10.1038/nrd4009 – volume: 11 start-page: 1608 year: 2005 ident: 10.1016/j.apsb.2021.03.042_bib81 article-title: Formation and antitumor activity of PNU-159682, a major metabolite of nemorubicin in human liver microsomes publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-04-1845 – volume: 190 start-page: 112080 year: 2020 ident: 10.1016/j.apsb.2021.03.042_bib70 article-title: Bis(vinylsulfonyl)piperazines as efficient linkers for highly homogeneous antibody‒drug conjugates publication-title: Eur J Med Chem doi: 10.1016/j.ejmech.2020.112080 – volume: 13 start-page: 47 year: 2002 ident: 10.1016/j.apsb.2021.03.042_bib10 article-title: Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia publication-title: Bioconjug Chem doi: 10.1021/bc010021y – volume: 30 start-page: 1957 year: 2019 ident: 10.1016/j.apsb.2021.03.042_bib82 article-title: Aryl sulfate is a useful motif for conjugating and releasing phenolic molecules: sulfur fluorine exchange click chemistry enables discovery of ortho-hydroxy-protected aryl sulfate linker publication-title: Bioconjug Chem doi: 10.1021/acs.bioconjchem.9b00340 |
SSID | ssj0000602275 |
Score | 2.5875895 |
SecondaryResourceType | review_article |
Snippet | Antibody–drug conjugates (ADCs) are gradually revolutionizing clinical cancer therapy. The antibody–drug conjugate linker molecule determines both the efficacy... Antibody-drug conjugates (ADCs) are gradually revolutionizing clinical cancer therapy. The antibody-drug conjugate linker molecule determines both the efficacy... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3889 |
SubjectTerms | Antibody–drug conjugate Chemical trigger Linker Linker‒antibody attachment Linker‒payload attachment Review |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT70gXi0LFBkJ9dJGJH7EDhfUIqqKQ9VDK_Vm-RXYCmWrze5hb_yH_sP-ks7EyXYDUrlwjR0745lkvonH3xDyMWppVcxDVjNhIUAJIqsq7zOXl57VFceSSJhtcVaeXorvV_Jqo9QX5oQleuC0cJ98yWMtpADPI0Wha8vqwLQunWZc5LFjAgWftxFMpW8wUuNh_iJjyNMHOKM_MZOSu-xN6yA4ZEXHcCrYyCt15P0j5_Q3-Pwzh3LDKZ08I097NEmPkhTPyZPYvCD754mOenVILx5OV7WHdJ-ePxBVr16SL0fNYupmYXX3-zbMlz8oxMbXS_yv1n6mgCdhTtrnCLR02lDc7I1z6ocaca_I5cm3i6-nWV9QIfNYtyAruLSyYkhkzrjPVe2cqpwCF1Vq-OgFLqOsi-CUjoKryHioc-4UKz3GkYA1dshWM2via0KthH4xgH_DGINXrip9yL21ynGAXHpCimFBje_ZxrHoxS8zpJVdG1SCQSWYnBtQwoQcrO-5SVwbj_Y-Rj2teyJPdncBrMf01mP-ZT0TIgctmx5yJCgBQ00fnfzDYBIGlhw3WWwTZ8vWYEQK80kOY-8mE1k_IpfI_1hAixoZz0iGcUsz_dlxfmvAmUrzN_9D6LdkG0VJSTnvyNZivox7AK0W7n33Ft0DaEAemw priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcuGCeLOlICOhXmhQ4kfsIKGqIKoKCdRDV-rNih8pW1XZkuxK7K3_gX_IL2EmcXYJVD1wTOLYzozt-SYef0PI66BlqULqk4qJEhwUL5KicC6xae5YVXBMiYTRFl_z46n4fCbPtsiQ7igKsL3RtcN8UtPm8u2P76sDmPDvN7Fa5VVrwddjWUdYKmBJvgOWSWFGgy8R7vcrMxLmYVQjY8jeB-gjnqO5uZqRreoo_Ucm619I-ndk5R-m6ug-uRcxJj3sB8UDshXqh2TvpCepXu3T082Zq3af7tGTDX316hE5OKwXMzv3q1_XP32zPKfgMV8s8W9b-44CyoQ2aYwcaOmsprgFHBrqhsxxj8n06NPpx-MkpllIHGYzSDIuS1kwpDdn3KWqslYVVoHhyjUshZ7LIKvMW6WD4Cow7quUW8Vyh94lIJAnZLue1-EZoaWEcsGD1UPPgxe2yJ1PXVkqywGI6QnJBoEaFznIMRXGpRmCzS4MKsGgEkzKDShhQt6s37nqGThuLf0B9bQuiezZ3Y15c27iZDQu56ESUgCakSLTVckqz7TOLQhApEFMiBy0bCIQ6QEGVDW7tfFXw5AwIHLceinrMF-2Bv1UaE9yqPtpP0TWXeQSWSEzeKJGg2f0DeMn9exbxwSuAX0qzXf-s7_PyV286qNzdsn2olmGF4CxFvZlN3F-A7hfI6E priority: 102 providerName: Scholars Portal |
Title | Antibody–drug conjugates: Recent advances in linker chemistry |
URI | https://dx.doi.org/10.1016/j.apsb.2021.03.042 https://www.ncbi.nlm.nih.gov/pubmed/35024314 https://www.proquest.com/docview/2619542534 https://pubmed.ncbi.nlm.nih.gov/PMC8727783 https://doaj.org/article/c63ef4542405418fa2fd2886b82340e4 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhp15K390-ggoll8asrYcl91KS0BBaWlKawN6E9XDqULzLevewt_yH_MP-ks7Y8qZuIYdeDGvLlqyZ1Xwjz3xDyNugZalC6pOKiRIcFC-SonAusWnuWFVwLImE0RZf89ML8WkmZzvkeMiFwbDKuPb3a3q3Wscz0zib00VdT78z8F04AoisywhFxk8udJfENzva7rOkOZLkYSQjtk_whpg704d5lYvWgpvIso7rVLCRfepo_Edm6l8Y-nc05R_m6eQBuR9xJT3sh_6Q7ITmEdk_64mpNwf0_DbPqj2g-_TslrJ685h8OGxWtZ37za_rG79cX1Lwkq_WuMPWvqeALKFPGqMFWlo3FD_7hiV1Q7W4J-Ti5OP58WkSSyskDisYJBmXpSwYUpoz7lJVWasKq8BY5RqWP89lkFXmrdJBcBUY91XKrWK5Q48SUMdTstvMm_Cc0FJCu-DB0qG3wQtb5M6nriyV5QC-9IRkw4QaF3nHsfzFTzMEmF0ZFIJBIZiUGxDChLzb3rPoWTfubH2Ectq2RMbs7sR8eWmiyhiX81AJKQDBSJHpqmSVZ1rnFiZApEFMiBykbEYKCI-q7-z8zaASBqYcP7eUTZivW4O-KfQnOTz7Wa8i2yFyiUyQGVxRI-UZvcP4SlP_6Ni_NSBOpfmL_xzvS3IPf_UROa_I7mq5Dq8BV63sXrcfsdf9feD4-ZuG4xehfwNvDiKs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcAF8WZ5Ggl6odEmfsQJEkItUO3SUlViK-3NjR2npELZ1WZX1d76H_gp_Uf9JczksSUg9YDUa-zYzsx4Hs74G0LeuEgmyvmplzGRQICSCi-OrfWMH1qWxRxLImG2xX44OBRfx3K8Rs7buzCYVtno_lqnV9q6edJvqNmf5nn_O4PYhaMDEVQ3QtsK1rtueQpxW_lh-BmY_JaxnS-jTwOvKS3gWUTw9wIuExkzhPRm3PoqM0bFRoGyDiPY_imXTmZBalTkBFeO8TTzuVEstBhRgdWFcW-Qm-B9KNQGw_H26mDHDxGVD1MncYEerrC5rFPnlSXT0kBcyoIKXFWwjkGs6gZ07OK_fu_f6Zt_2MOdu-RO48jSrZpW98iaK-6TjYMaCXu5SUeXF7vKTbpBDy4xspcPyMetYp6bSbq8OPuVzhbHFMLykwUe6ZXvKbiyMCdt0hNKmhcU_zO7GbVtebqH5PBaCP6IrBeTwj0hNJHQz6VgWjG84bGJQ5v6NkmU4eDtRT0StATVtgE6x3obP3Wb0XaikQkamaB9roEJPfJu9c60hvm4svc28mnVEyG6qweT2bFuZFTbkLtMSAEukxRBlCUsS1kUhQYIIHwnekS2XNYdiYeh8isnf92KhAaS4_-dpHCTRakxGIb5JIexH9cisloilwg9GUCL6ghP5xu6LUX-o4Ibj8DFVRF_-p_rfUVuDUbf9vTecH_3GbmNLXU60HOyPp8t3Atw6ubmZbWJKDm67l37G063Wwo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antibody%E2%80%93drug+conjugates%3A+Recent+advances+in+linker+chemistry&rft.jtitle=Acta+pharmaceutica+Sinica.+B&rft.au=Su%2C+Zheng&rft.au=Xiao%2C+Dian&rft.au=Xie%2C+Fei&rft.au=Liu%2C+Lianqi&rft.date=2021-12-01&rft.pub=Elsevier+B.V&rft.issn=2211-3835&rft.eissn=2211-3843&rft.volume=11&rft.issue=12&rft.spage=3889&rft.epage=3907&rft_id=info:doi/10.1016%2Fj.apsb.2021.03.042&rft.externalDocID=S2211383521001143 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3835&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3835&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3835&client=summon |