Cyclic GMP-AMP Synthase Is an Innate Immune DNA Sensor for Mycobacterium tuberculosis

Activation of the DNA-dependent cytosolic surveillance pathway in response to Mycobacterium tuberculosis infection stimulates ubiquitin-dependent autophagy and inflammatory cytokine production, and plays an important role in host defense against M. tuberculosis. However, the identity of the host sen...

Full description

Saved in:
Bibliographic Details
Published inCell host & microbe Vol. 17; no. 6; pp. 820 - 828
Main Authors Collins, Angela C., Cai, Haocheng, Li, Tuo, Franco, Luis H., Li, Xiao-Dong, Nair, Vidhya R., Scharn, Caitlyn R., Stamm, Chelsea E., Levine, Beth, Chen, Zhijian J., Shiloh, Michael U.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 10.06.2015
Subjects
Online AccessGet full text
ISSN1931-3128
1934-6069
1934-6069
DOI10.1016/j.chom.2015.05.005

Cover

Abstract Activation of the DNA-dependent cytosolic surveillance pathway in response to Mycobacterium tuberculosis infection stimulates ubiquitin-dependent autophagy and inflammatory cytokine production, and plays an important role in host defense against M. tuberculosis. However, the identity of the host sensor for M. tuberculosis DNA is unknown. Here we show that M. tuberculosis activated cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) in macrophages to produce cGAMP, a second messenger that activates the adaptor protein stimulator of interferon genes (STING) to induce type I interferons and other cytokines. cGAS localized with M. tuberculosis in mouse and human cells and in human tuberculosis lesions. Knockdown or knockout of cGAS in human or mouse macrophages blocked cytokine production and induction of autophagy. Mice deficient in cGAS were more susceptible to lethality caused by infection with M. tuberculosis. These results demonstrate that cGAS is a vital innate immune sensor of M. tuberculosis infection. [Display omitted] •M. tuberculosis infection induces cGAS in macrophages and human lung tissue•cGAS is essential for IFNβ induction in response to M. tuberculosis infection•cGAS and STING are required for selective autophagy of M. tuberculosis•cGAS−/− mice are susceptible to M. tuberculosis infection-induced mortality Mycobacterium tuberculosis can activate the DNA-sensing cytosolic surveillance pathway. Collins et al. report that the recently discovered cyclic GMP-AMP synthase (cGAS) is the key innate sensor of M. tuberculosis DNA that has dual roles in inducing type I interferon and activating autophagy within mouse and human macrophages.
AbstractList Activation of the DNA-dependent cytosolic surveillance pathway in response to Mycobacterium tuberculosis infection stimulates ubiquitin-dependent autophagy and inflammatory cytokine production, and plays an important role in host defense against M. tuberculosis. However, the identity of the host sensor for M. tuberculosis DNA is unknown. Here we show that M. tuberculosis activated cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) in macrophages to produce cGAMP, a second messenger that activates the adaptor protein stimulator of interferon genes (STING) to induce type I interferons and other cytokines. cGAS localized with M. tuberculosis in mouse and human cells and in human tuberculosis lesions. Knockdown or knockout of cGAS in human or mouse macrophages blocked cytokine production and induction of autophagy. Mice deficient in cGAS were more susceptible to lethality caused by infection with M. tuberculosis. These results demonstrate that cGAS is a vital innate immune sensor of M. tuberculosis infection.
Activation of the DNA-dependent cytosolic surveillance pathway in response to Mycobacterium tuberculosis infection stimulates ubiquitin-dependent autophagy and inflammatory cytokine production, and plays an important role in host defense against M. tuberculosis. However, the identity of the host sensor for M. tuberculosis DNA is unknown. Here we show that M. tuberculosis activated cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) in macrophages to produce cGAMP, a second messenger that activates the adaptor protein stimulator of interferon genes (STING) to induce type I interferons and other cytokines. cGAS localized with M. tuberculosis in mouse and human cells and in human tuberculosis lesions. Knockdown or knockout of cGAS in human or mouse macrophages blocked cytokine production and induction of autophagy. Mice deficient in cGAS were more susceptible to lethality caused by infection with M. tuberculosis. These results demonstrate that cGAS is a vital innate immune sensor of M. tuberculosis infection. [Display omitted] •M. tuberculosis infection induces cGAS in macrophages and human lung tissue•cGAS is essential for IFNβ induction in response to M. tuberculosis infection•cGAS and STING are required for selective autophagy of M. tuberculosis•cGAS−/− mice are susceptible to M. tuberculosis infection-induced mortality Mycobacterium tuberculosis can activate the DNA-sensing cytosolic surveillance pathway. Collins et al. report that the recently discovered cyclic GMP-AMP synthase (cGAS) is the key innate sensor of M. tuberculosis DNA that has dual roles in inducing type I interferon and activating autophagy within mouse and human macrophages.
Activation of the DNA-dependent cytosolic surveillance pathway in response to Mycobacterium tuberculosis infection stimulates ubiquitin-dependent autophagy and inflammatory cytokine production, and plays an important role in host defense against M. tuberculosis. However, the identity of the host sensor for M. tuberculosis DNA is unknown. Here we show that M. tuberculosis activated cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) in macrophages to produce cGAMP, a second messenger that activates the adaptor protein stimulator of interferon genes (STING) to induce type I interferons and other cytokines. cGAS localized with M. tuberculosis in mouse and human cells and in human tuberculosis lesions. Knockdown or knockout of cGAS in human or mouse macrophages blocked cytokine production and induction of autophagy. Mice deficient in cGAS were more susceptible to lethality caused by infection with M. tuberculosis. These results demonstrate that cGAS is a vital innate immune sensor of M. tuberculosis infection.Activation of the DNA-dependent cytosolic surveillance pathway in response to Mycobacterium tuberculosis infection stimulates ubiquitin-dependent autophagy and inflammatory cytokine production, and plays an important role in host defense against M. tuberculosis. However, the identity of the host sensor for M. tuberculosis DNA is unknown. Here we show that M. tuberculosis activated cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) in macrophages to produce cGAMP, a second messenger that activates the adaptor protein stimulator of interferon genes (STING) to induce type I interferons and other cytokines. cGAS localized with M. tuberculosis in mouse and human cells and in human tuberculosis lesions. Knockdown or knockout of cGAS in human or mouse macrophages blocked cytokine production and induction of autophagy. Mice deficient in cGAS were more susceptible to lethality caused by infection with M. tuberculosis. These results demonstrate that cGAS is a vital innate immune sensor of M. tuberculosis infection.
Activation of the DNA-dependent cytosolic surveillance pathway in response to Mycobacterium tuberculosis infection stimulates ubiquitin-dependent autophagy and inflammatory cytokine production, and plays an important role in host defense against M. tuberculosis . However, the identity of the host sensor for M. tuberculosis DNA is unknown. Here we show that M. tuberculosis activated cyclic guanosine monophosphate–adenosine monophosphate (cGAMP) synthase (cGAS) in macrophages to produce cGAMP, a second messenger that activates the adaptor protein stimulator of interferon genes (STING) to induce type I interferons and other cytokines. cGAS localized with M. tuberculosis in mouse and human cells and in human tuberculosis lesions. Knockdown or knockout of cGAS in human or mouse macrophages blocked cytokine production and induction of autophagy. Mice deficient in cGAS were more susceptible to lethality caused by infection with M. tuberculosis . These results demonstrate that cGAS is a vital innate immune sensor of M. tuberculosis infection.
Author Cai, Haocheng
Scharn, Caitlyn R.
Li, Xiao-Dong
Shiloh, Michael U.
Franco, Luis H.
Stamm, Chelsea E.
Nair, Vidhya R.
Chen, Zhijian J.
Collins, Angela C.
Li, Tuo
Levine, Beth
AuthorAffiliation 4 Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390–9148, USA
2 Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390–9113, USA
3 Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390–9148, USA
1 Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390–9113, USA
5 Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX 75390–9113, USA
AuthorAffiliation_xml – name: 4 Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390–9148, USA
– name: 3 Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390–9148, USA
– name: 5 Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX 75390–9113, USA
– name: 1 Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390–9113, USA
– name: 2 Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390–9113, USA
Author_xml – sequence: 1
  givenname: Angela C.
  surname: Collins
  fullname: Collins, Angela C.
  organization: Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9113, USA
– sequence: 2
  givenname: Haocheng
  surname: Cai
  fullname: Cai, Haocheng
  organization: Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
– sequence: 3
  givenname: Tuo
  surname: Li
  fullname: Li, Tuo
  organization: Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
– sequence: 4
  givenname: Luis H.
  surname: Franco
  fullname: Franco, Luis H.
  organization: Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
– sequence: 5
  givenname: Xiao-Dong
  surname: Li
  fullname: Li, Xiao-Dong
  organization: Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
– sequence: 6
  givenname: Vidhya R.
  surname: Nair
  fullname: Nair, Vidhya R.
  organization: Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9113, USA
– sequence: 7
  givenname: Caitlyn R.
  surname: Scharn
  fullname: Scharn, Caitlyn R.
  organization: Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9113, USA
– sequence: 8
  givenname: Chelsea E.
  surname: Stamm
  fullname: Stamm, Chelsea E.
  organization: Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9113, USA
– sequence: 9
  givenname: Beth
  surname: Levine
  fullname: Levine, Beth
  organization: Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9113, USA
– sequence: 10
  givenname: Zhijian J.
  surname: Chen
  fullname: Chen, Zhijian J.
  email: zhijian.chen@utsouthwestern.edu
  organization: Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
– sequence: 11
  givenname: Michael U.
  surname: Shiloh
  fullname: Shiloh, Michael U.
  email: michael.shiloh@utsouthwestern.edu
  organization: Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9113, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26048137$$D View this record in MEDLINE/PubMed
BookMark eNp9UUuLFDEQDrLiPvQPeJA-eumx0o90GkQYRl0HdnRh3XPIVFc7GbqTNUkvzL837eyKelioIinyPUJ95-zEOkuMveaw4MDFu_0Cd25cFMDrBaSC-hk7421Z5QJEe_L7zvOSF_KUnYewT4AaGv6CnRYCKsnL5ozdrg44GMwuN9f5cnOd3Rxs3OlA2Tpk2mZra3VMwzhOlrKPX5fZDdngfNan3hzQbTVG8mYaszhtyeM0uGDCS_a810OgVw_nBbv9_On76kt-9e1yvVpe5VgXPOYcZMk7kb6FhWyLXkNTNWUneoGyEy2W2FNVA0rYchAlbGXT9w1vCmhEK2VfXrAPR927aTtSh2Sj14O682bU_qCcNurfF2t26oe7V1XVtpWQSeDtg4B3PycKUY0mIA2DtuSmoLiQEkBAWyfom7-9_pg87jIB5BGA3oXgqVdooo7GzdZmUBzUHJvaqzk2NcemIBXM2sV_1Ef1J0nvjyRKG7435FVAQxapM54wqs6Zp-i_ACmbr-Y
CitedBy_id crossref_primary_10_15252_embr_201744773
crossref_primary_10_1080_10409238_2024_2411264
crossref_primary_10_1016_j_coi_2017_06_007
crossref_primary_10_15252_embr_201949799
crossref_primary_10_1128_iai_00155_23
crossref_primary_10_1128_microbiolspec_GPP3_0022_2018
crossref_primary_10_1007_s00109_016_1423_2
crossref_primary_10_3389_fimmu_2021_637399
crossref_primary_10_1038_s41467_017_00833_9
crossref_primary_10_1038_nature23890
crossref_primary_10_1186_s12964_020_00659_x
crossref_primary_10_1007_s00281_015_0522_4
crossref_primary_10_1073_pnas_1905013116
crossref_primary_10_3389_fimmu_2020_00630
crossref_primary_10_1016_j_coi_2024_102508
crossref_primary_10_1111_febs_16369
crossref_primary_10_1111_cmi_13344
crossref_primary_10_1080_15548627_2024_2429380
crossref_primary_10_18632_oncotarget_10503
crossref_primary_10_1128_msystems_00052_23
crossref_primary_10_3389_fcimb_2019_00138
crossref_primary_10_1146_annurev_genom_090413_025334
crossref_primary_10_1016_j_bioorg_2023_106802
crossref_primary_10_1016_j_dci_2021_104101
crossref_primary_10_3390_pathogens10020120
crossref_primary_10_1128_iai_00578_24
crossref_primary_10_1016_j_tim_2022_03_010
crossref_primary_10_3389_fmicb_2016_00313
crossref_primary_10_1016_j_micpath_2021_104977
crossref_primary_10_1038_s41419_023_06364_0
crossref_primary_10_3390_cells11213483
crossref_primary_10_1016_j_meegid_2016_08_021
crossref_primary_10_1089_jir_2016_0086
crossref_primary_10_3389_fimmu_2024_1356369
crossref_primary_10_3389_fimmu_2023_1166214
crossref_primary_10_1016_j_it_2019_08_001
crossref_primary_10_1038_s41579_021_00560_5
crossref_primary_10_1002_ijc_30074
crossref_primary_10_3389_fimmu_2017_01633
crossref_primary_10_1016_j_celrep_2016_05_030
crossref_primary_10_1371_journal_ppat_1005770
crossref_primary_10_1038_cmi_2016_25
crossref_primary_10_1080_1040841X_2023_2294904
crossref_primary_10_1007_s15010_024_02429_0
crossref_primary_10_1016_j_jaci_2016_05_010
crossref_primary_10_1186_s44149_023_00068_w
crossref_primary_10_1016_j_jtbi_2018_11_001
crossref_primary_10_1073_pnas_1516465112
crossref_primary_10_1038_s41577_018_0025_3
crossref_primary_10_1021_acsabm_3c01305
crossref_primary_10_3390_cells11101681
crossref_primary_10_1038_s41467_018_06922_7
crossref_primary_10_1016_j_immuni_2016_06_015
crossref_primary_10_3389_fimmu_2021_814709
crossref_primary_10_1093_aob_mcaa061
crossref_primary_10_1016_j_tox_2017_07_016
crossref_primary_10_1038_cmi_2016_36
crossref_primary_10_1155_2024_9615181
crossref_primary_10_3390_cancers14246150
crossref_primary_10_1038_nnano_2017_52
crossref_primary_10_1002_iub_1566
crossref_primary_10_1016_j_isci_2024_110693
crossref_primary_10_1189_jlb_4MR0216_079R
crossref_primary_10_1016_j_immuni_2018_12_013
crossref_primary_10_1038_nchembio_2254
crossref_primary_10_3389_fmicb_2017_02284
crossref_primary_10_7554_eLife_51071
crossref_primary_10_1038_s41467_019_09955_8
crossref_primary_10_3389_fcimb_2018_00238
crossref_primary_10_1016_j_molimm_2017_04_007
crossref_primary_10_1128_microbiolspec_TBTB2_0001_2015
crossref_primary_10_1002_iid3_452
crossref_primary_10_3389_fimmu_2023_1275408
crossref_primary_10_12677_AMS_2017_42009
crossref_primary_10_1146_annurev_pathol_042120_032916
crossref_primary_10_1159_000488952
crossref_primary_10_1016_j_cytogfr_2020_06_004
crossref_primary_10_1016_j_jinf_2021_04_014
crossref_primary_10_3390_ijms24043919
crossref_primary_10_1038_s41598_020_62543_5
crossref_primary_10_1038_srep32618
crossref_primary_10_1111_febs_15640
crossref_primary_10_1186_s44280_024_00065_9
crossref_primary_10_1007_s12088_015_0541_9
crossref_primary_10_1371_journal_ppat_1007491
crossref_primary_10_4049_jimmunol_1900869
crossref_primary_10_1016_j_molcel_2018_07_010
crossref_primary_10_3389_fcimb_2020_595029
crossref_primary_10_1016_j_cell_2022_06_038
crossref_primary_10_1016_j_biopha_2020_110945
crossref_primary_10_1016_j_jmb_2021_167257
crossref_primary_10_1038_srep16882
crossref_primary_10_1371_journal_ppat_1006829
crossref_primary_10_3389_fcimb_2022_862582
crossref_primary_10_1186_s12943_020_01250_1
crossref_primary_10_1016_j_isci_2019_11_001
crossref_primary_10_1371_journal_ppat_1006156
crossref_primary_10_3389_fcvm_2021_715903
crossref_primary_10_1038_s41423_020_0502_z
crossref_primary_10_1093_femsre_fuac041
crossref_primary_10_1016_j_celrep_2021_109195
crossref_primary_10_1016_j_celrep_2022_111310
crossref_primary_10_1371_journal_ppat_1009410
crossref_primary_10_1016_j_celrep_2017_02_057
crossref_primary_10_1038_s44319_024_00171_0
crossref_primary_10_3389_fimmu_2016_00652
crossref_primary_10_1038_s41401_022_01002_5
crossref_primary_10_1080_15548627_2017_1402992
crossref_primary_10_1016_j_tim_2017_05_008
crossref_primary_10_1016_j_celrep_2020_108586
crossref_primary_10_1016_j_isci_2024_109807
crossref_primary_10_1038_s41392_021_00613_4
crossref_primary_10_1073_pnas_1812984115
crossref_primary_10_1128_iai_00022_23
crossref_primary_10_1016_j_jmb_2016_04_030
crossref_primary_10_1016_j_meegid_2018_12_013
crossref_primary_10_1111_mmi_14841
crossref_primary_10_1093_femspd_ftw028
crossref_primary_10_1038_s41435_019_0080_1
crossref_primary_10_1016_j_cytogfr_2018_03_002
crossref_primary_10_1038_nri_2017_21
crossref_primary_10_1016_j_ijmm_2019_05_007
crossref_primary_10_1038_s41467_022_33671_5
crossref_primary_10_1371_journal_ppat_1006264
crossref_primary_10_1007_s11904_016_0305_0
crossref_primary_10_3389_fimmu_2018_02372
crossref_primary_10_1371_journal_ppat_1009881
crossref_primary_10_1146_annurev_biochem_061516_044813
crossref_primary_10_1186_s12950_017_0159_2
crossref_primary_10_3389_fcimb_2022_892610
crossref_primary_10_1016_j_chom_2016_05_016
crossref_primary_10_1080_21505594_2022_2150449
crossref_primary_10_1371_journal_ppat_1009888
crossref_primary_10_1146_annurev_cancerbio_030518_055636
crossref_primary_10_1111_evj_14214
crossref_primary_10_1016_j_chom_2016_11_002
crossref_primary_10_1016_j_dci_2019_103402
crossref_primary_10_1016_j_vetmic_2021_109126
crossref_primary_10_1128_mbio_00384_24
crossref_primary_10_1134_S0003683820050129
crossref_primary_10_1172_jci_insight_94142
crossref_primary_10_1016_j_it_2016_10_009
crossref_primary_10_1371_journal_ppat_1006496
crossref_primary_10_2217_fmb_2022_0026
crossref_primary_10_1016_j_jbc_2023_104866
crossref_primary_10_1111_cmi_12594
crossref_primary_10_1159_000492679
crossref_primary_10_1073_pnas_2211047120
crossref_primary_10_1080_1040841X_2024_2321494
crossref_primary_10_1371_journal_pone_0185945
crossref_primary_10_15252_embr_201744017
crossref_primary_10_4049_jimmunol_1901511
crossref_primary_10_1038_s41467_020_15832_6
crossref_primary_10_1002_adbi_202400174
crossref_primary_10_1093_femsre_fuz006
crossref_primary_10_1128_mSphere_00354_19
crossref_primary_10_1126_sciimmunol_aaw6693
crossref_primary_10_1002_JLB_4MR0717_277R
crossref_primary_10_1084_jem_20180325
crossref_primary_10_3390_ijms21103720
crossref_primary_10_1146_annurev_biochem_040320_101629
crossref_primary_10_1038_s12276_019_0333_0
crossref_primary_10_1136_lupus_2019_000336
crossref_primary_10_1371_journal_ppat_1006363
crossref_primary_10_4110_in_2020_20_e37
crossref_primary_10_1146_annurev_immunol_093019_010426
crossref_primary_10_1080_1040841X_2024_2397359
crossref_primary_10_1038_ni_3558
crossref_primary_10_3389_fimmu_2018_00806
crossref_primary_10_4049_jimmunol_1701177
crossref_primary_10_1016_j_chom_2023_09_010
crossref_primary_10_1038_ni_3434
crossref_primary_10_3390_ijms22031301
crossref_primary_10_1016_j_celrep_2019_04_110
crossref_primary_10_1093_infdis_jiw144
crossref_primary_10_4049_jimmunol_1701733
crossref_primary_10_1111_imcb_12555
crossref_primary_10_1093_femspd_fty037
crossref_primary_10_3389_fimmu_2017_00294
crossref_primary_10_1016_j_cell_2018_06_053
crossref_primary_10_1016_j_celrep_2015_09_048
crossref_primary_10_1128_mBio_03254_19
crossref_primary_10_1371_journal_ppat_1009182
crossref_primary_10_1128_mSphere_00153_21
crossref_primary_10_1016_j_chom_2015_07_015
crossref_primary_10_1080_21505594_2017_1321191
crossref_primary_10_1007_s00281_015_0531_3
crossref_primary_10_1371_journal_ppat_1005809
crossref_primary_10_1007_s40610_020_00137_w
crossref_primary_10_1016_j_mib_2017_11_007
crossref_primary_10_1093_femspd_fty008
crossref_primary_10_1016_j_mib_2015_12_005
crossref_primary_10_3389_fimmu_2023_1130423
crossref_primary_10_1152_physrev_00026_2016
crossref_primary_10_1128_mBio_01765_18
crossref_primary_10_1016_j_meegid_2018_02_014
crossref_primary_10_1155_2017_9361802
crossref_primary_10_3389_fimmu_2019_00125
crossref_primary_10_1016_j_it_2016_07_001
crossref_primary_10_1083_jcb_201701095
crossref_primary_10_4103_apjtm_apjtm_116_24
crossref_primary_10_1038_s41467_018_05559_w
crossref_primary_10_1016_j_chom_2016_06_003
crossref_primary_10_4049_jimmunol_2101029
crossref_primary_10_4110_in_2018_18_e17
crossref_primary_10_1002_INMD_20230044
crossref_primary_10_1038_s41467_020_17228_y
crossref_primary_10_1038_s41590_018_0225_9
crossref_primary_10_3389_fimmu_2021_714808
crossref_primary_10_1016_j_it_2017_07_012
crossref_primary_10_1146_annurev_micro_102215_095605
crossref_primary_10_3389_fmicb_2021_702881
crossref_primary_10_1038_s41392_022_01056_1
crossref_primary_10_4049_jimmunol_1801303
crossref_primary_10_1002_1873_3468_12072
crossref_primary_10_1093_pnasnexus_pgac109
crossref_primary_10_4049_jimmunol_1601370
crossref_primary_10_1111_cmi_12622
crossref_primary_10_4049_jimmunol_1500434
crossref_primary_10_1371_journal_ppat_1006687
crossref_primary_10_3389_fcimb_2016_00182
crossref_primary_10_3390_ijms21197289
crossref_primary_10_1096_fj_201902833R
crossref_primary_10_1038_s41418_020_00624_8
crossref_primary_10_3389_fimmu_2023_1116811
crossref_primary_10_1038_s41598_020_64348_y
crossref_primary_10_1016_j_cell_2023_11_002
crossref_primary_10_1038_ni_3356
crossref_primary_10_1073_pnas_1911646117
crossref_primary_10_1016_j_actbio_2025_03_002
crossref_primary_10_1093_bioinformatics_btaa969
crossref_primary_10_1016_j_heliyon_2024_e24029
crossref_primary_10_1080_15548627_2020_1783119
crossref_primary_10_1016_j_chom_2015_05_017
crossref_primary_10_1038_s41392_022_01252_z
crossref_primary_10_3389_fimmu_2024_1380517
crossref_primary_10_1002_cpz1_372
crossref_primary_10_1038_s41580_020_0244_x
crossref_primary_10_1177_1179670716685085
crossref_primary_10_15406_ijvv_2016_02_00043
crossref_primary_10_1016_j_trsl_2018_07_014
crossref_primary_10_3389_fcimb_2017_00169
crossref_primary_10_3389_fimmu_2021_662218
crossref_primary_10_1371_journal_ppat_1008294
crossref_primary_10_1002_eji_201545493
crossref_primary_10_1111_imm_13030
crossref_primary_10_1093_infdis_jiz461
crossref_primary_10_1186_s12865_022_00518_z
crossref_primary_10_1016_j_yexcr_2024_114316
crossref_primary_10_1016_j_chom_2015_05_003
crossref_primary_10_3389_fimmu_2020_550624
crossref_primary_10_1038_nrmicro_2016_131
crossref_primary_10_1016_j_chom_2015_05_004
crossref_primary_10_1128_IAI_00687_20
crossref_primary_10_1038_s41435_018_0029_9
crossref_primary_10_1084_jem_20180508
crossref_primary_10_1093_femspd_fty048
crossref_primary_10_1016_j_molcel_2022_06_010
crossref_primary_10_1128_microbiolspec_PSIB_0029_2019
crossref_primary_10_1038_s41576_019_0151_1
crossref_primary_10_3389_fcell_2023_1069256
crossref_primary_10_55544_jrasb_2_3_31
crossref_primary_10_1038_ni_3273
crossref_primary_10_3390_pathogens13110957
crossref_primary_10_1016_j_immuni_2017_02_014
crossref_primary_10_1172_JCI84978
crossref_primary_10_3390_ijms20040895
crossref_primary_10_1099_mgen_0_000163
crossref_primary_10_3390_cells9030666
crossref_primary_10_3389_fimmu_2021_649475
crossref_primary_10_1038_s41467_020_17156_x
crossref_primary_10_1016_j_it_2017_03_004
crossref_primary_10_3390_ijms18122725
crossref_primary_10_3390_ijms241210115
crossref_primary_10_1016_j_molimm_2024_10_002
crossref_primary_10_1128_mBio_01871_20
crossref_primary_10_1038_s41564_019_0578_3
crossref_primary_10_1073_pnas_1707792114
crossref_primary_10_1002_mco2_511
crossref_primary_10_1007_s13238_016_0320_3
crossref_primary_10_5588_ijtldopen_23_0406
crossref_primary_10_1084_jem_20200887
crossref_primary_10_1371_journal_pntd_0007589
Cites_doi 10.1038/nature12862
10.1111/mmi.12641
10.15252/embj.201488029
10.1016/j.cell.2007.05.059
10.1128/IAI.73.8.4581-4587.2005
10.1016/j.chom.2015.05.003
10.1126/science.1232458
10.1371/journal.ppat.1001345
10.1038/nature09247
10.1016/j.molcel.2014.03.040
10.4049/jimmunol.178.5.3143
10.3389/fimmu.2014.00455
10.1038/nature12566
10.1126/science.1240933
10.1016/j.chom.2012.03.007
10.1111/imr.12263
10.1016/j.immuni.2006.08.007
10.1016/j.cell.2014.11.037
10.1074/jbc.M112.420869
10.1128/JVI.00037-14
10.1128/IAI.00999-10
10.1016/j.cell.2014.02.049
10.3389/fimmu.2014.00431
10.1038/nature12640
10.1093/nar/gks923
10.1371/journal.pone.0016161
10.1126/science.1189801
10.1126/science.1233665
10.1016/j.cell.2012.06.040
10.1128/mBio.00282-13
10.1126/science.1244040
10.1016/j.chom.2014.01.009
10.1126/science.aaa2630
10.1128/IAI.01117-08
10.1073/pnas.1210500109
10.1016/j.cell.2011.12.023
10.1046/j.1365-2567.1998.00419.x
10.1126/science.1229963
10.1016/j.chom.2015.05.004
10.1038/nri3532
10.1371/journal.ppat.1002507
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright © 2015 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2015 Elsevier Inc.
– notice: Copyright © 2015 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.chom.2015.05.005
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1934-6069
EndPage 828
ExternalDocumentID PMC4499468
26048137
10_1016_j_chom_2015_05_005
S1931312815002097
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: U19 AI109725
– fundername: NIAID NIH HHS
  grantid: AI093967
– fundername: Howard Hughes Medical Institute
– fundername: NIAID NIH HHS
  grantid: T32AI005284
– fundername: NIAID NIH HHS
  grantid: R01 AI099439
– fundername: NIAID NIH HHS
  grantid: R21 AI111023
– fundername: NIAID NIH HHS
  grantid: T32 AI007520
– fundername: NIAID NIH HHS
  grantid: R01 AI093967
– fundername: NIAID NIH HHS
  grantid: T32 AI005284
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
5GY
62-
6I.
6J9
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGHFR
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
HVGLF
IHE
IXB
JIG
K97
M41
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SES
SSZ
TR2
UNMZH
WQ6
ZA5
53G
AAIKJ
AAMRU
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
OZT
ZBA
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c521t-10831d6055c2892fa07473d6f6c8d69c3cfe450c80b10630b87ff7172076988f3
IEDL.DBID IXB
ISSN 1931-3128
1934-6069
IngestDate Thu Aug 21 18:19:03 EDT 2025
Fri Sep 05 04:27:31 EDT 2025
Mon Jul 21 06:00:36 EDT 2025
Thu Apr 24 23:01:07 EDT 2025
Tue Jul 01 02:44:17 EDT 2025
Fri Feb 23 02:31:04 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2015 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c521t-10831d6055c2892fa07473d6f6c8d69c3cfe450c80b10630b87ff7172076988f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally.
Reprints and permissions information is available at Cell Host and Microbe.
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1931312815002097
PMID 26048137
PQID 1688006095
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4499468
proquest_miscellaneous_1688006095
pubmed_primary_26048137
crossref_citationtrail_10_1016_j_chom_2015_05_005
crossref_primary_10_1016_j_chom_2015_05_005
elsevier_sciencedirect_doi_10_1016_j_chom_2015_05_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-06-10
PublicationDateYYYYMMDD 2015-06-10
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-10
  day: 10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell host & microbe
PublicationTitleAlternate Cell Host Microbe
PublicationYear 2015
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Gao, Wu, Wu, Du, Aroh, Yan, Sun, Chen (bib12) 2013; 341
Liang, Seo, Choi, Kwak, Ge, Rodgers, Shi, Leslie, Hopfner, Ha (bib19) 2014; 15
De Leon, Jiang, Ma, Rubin, Fortune, Sun (bib9) 2012; 287
Wu, Sun, Chen, Du, Shi, Chen, Chen (bib40) 2013; 339
Schoggins, MacDuff, Imanaka, Gainey, Shrestha, Eitson, Mar, Richardson, Ratushny, Litvak (bib26) 2014; 505
Kang, Lin, Moreno, Randall, Khader (bib16) 2011; 6
Darwin, Nathan (bib8) 2005; 73
van der Wel, Hava, Houben, Fluitsma, van Zon, Pierson, Brenner, Peters (bib34) 2007; 129
Li, Wu, Gao, Wang, Sun, Chen (bib18) 2013; 341
Stanley, Johndrow, Manzanillo, Cox (bib29) 2007; 178
Manzanillo, Ayres, Watson, Collins, Souza, Rae, Schneider, Nakamura, Shiloh, Cox (bib22) 2013; 501
Liu, Cai, Wu, Cong, Chen, Li, Du, Ren, Wu, Grishin, Chen (bib20) 2015; 347
Stetson, Medzhitov (bib30) 2006; 25
Converse, Karakousis, Klinkenberg, Kesavan, Ly, Allen, Grosset, Jain, Lamichhane, Manabe (bib7) 2009; 77
Gratz, Hartweger, Matt, Kratochvill, Janos, Sigel, Drobits, Li, Knapp, Kovarik (bib13) 2011; 7
Yang, Bai, Zhang, Gabrielle, Jin, Bai (bib41) 2014; 93
Deretic, Saitoh, Akira (bib10) 2013; 13
Wassermann, Gulen, Sala, Perin, Lou, Rybniker, Schmid-Burgk, Schmidt, Hornung, Cole, Ablasser (bib35) 2015; 17
Watson, Bell, MacDuff, Kimmey, Diner, Olivas, Vance, Stallings, Virgin, Cox (bib37) 2015; 17
Li, He (bib17) 2012; 40
Manzanillo, Shiloh, Portnoy, Cox (bib21) 2012; 11
Teles, Graeber, Krutzik, Montoya, Schenk, Lee, Komisopoulou, Kelly-Scumpia, Chun, Iyer (bib32) 2013; 339
Ablasser, Schmid-Burgk, Hemmerling, Horvath, Schmidt, Latz, Hornung (bib2) 2013; 503
BoseDasgupta, Pieters (bib4) 2014; 5
Eshleman, Lenz (bib11) 2014; 5
Watson, Manzanillo, Cox (bib36) 2012; 150
Rongvaux, Jackson, Harman, Li, West, de Zoete, Wu, Yordy, Lakhani, Kuan (bib24) 2014; 159
Castillo, Dekonenko, Arko-Mensah, Mandell, Dupont, Jiang, Delgado-Vargas, Timmins, Bhattacharya, Yang (bib6) 2012; 109
Sauer, Sotelo-Troha, von Moltke, Monroe, Rae, Brubaker, Hyodo, Hayakawa, Woodward, Portnoy, Vance (bib25) 2011; 79
Hansen, Prabakaran, Laustsen, Jørgensen, Rahbæk, Jensen, Nielsen, Leber, Decker, Horan (bib15) 2014; 33
Stamm, Collins, Shiloh (bib28) 2015; 264
Berry, Graham, McNab, Xu, Bloch, Oni, Wilkinson, Banchereau, Skinner, Wilkinson (bib3) 2010; 466
Cai, Chiu, Chen (bib5) 2014; 54
Woodward, Iavarone, Portnoy (bib39) 2010; 328
Medina, North (bib23) 1998; 93
Sun, Wu, Du, Chen, Chen (bib31) 2013; 339
Abe, Barber (bib1) 2014; 88
Green, Levine (bib14) 2014; 157
Simeone, Bobard, Lippmann, Bitter, Majlessi, Brosch, Enninga (bib27) 2012; 8
Witte, Whiteley, Burke, Sauer, Portnoy, Woodward (bib38) 2013; 4
Tobin, Roca, Oh, McFarland, Vickery, Ray, Ko, Zou, Bang, Chau (bib33) 2012; 148
Simeone (10.1016/j.chom.2015.05.005_bib27) 2012; 8
Castillo (10.1016/j.chom.2015.05.005_bib6) 2012; 109
Green (10.1016/j.chom.2015.05.005_bib14) 2014; 157
Hansen (10.1016/j.chom.2015.05.005_bib15) 2014; 33
Liang (10.1016/j.chom.2015.05.005_bib19) 2014; 15
Berry (10.1016/j.chom.2015.05.005_bib3) 2010; 466
Darwin (10.1016/j.chom.2015.05.005_bib8) 2005; 73
De Leon (10.1016/j.chom.2015.05.005_bib9) 2012; 287
Teles (10.1016/j.chom.2015.05.005_bib32) 2013; 339
Tobin (10.1016/j.chom.2015.05.005_bib33) 2012; 148
Watson (10.1016/j.chom.2015.05.005_bib37) 2015; 17
Medina (10.1016/j.chom.2015.05.005_bib23) 1998; 93
van der Wel (10.1016/j.chom.2015.05.005_bib34) 2007; 129
Ablasser (10.1016/j.chom.2015.05.005_bib2) 2013; 503
Kang (10.1016/j.chom.2015.05.005_bib16) 2011; 6
Manzanillo (10.1016/j.chom.2015.05.005_bib21) 2012; 11
Rongvaux (10.1016/j.chom.2015.05.005_bib24) 2014; 159
Yang (10.1016/j.chom.2015.05.005_bib41) 2014; 93
Gratz (10.1016/j.chom.2015.05.005_bib13) 2011; 7
Converse (10.1016/j.chom.2015.05.005_bib7) 2009; 77
Watson (10.1016/j.chom.2015.05.005_bib36) 2012; 150
Abe (10.1016/j.chom.2015.05.005_bib1) 2014; 88
Manzanillo (10.1016/j.chom.2015.05.005_bib22) 2013; 501
Li (10.1016/j.chom.2015.05.005_bib17) 2012; 40
Sun (10.1016/j.chom.2015.05.005_bib31) 2013; 339
Eshleman (10.1016/j.chom.2015.05.005_bib11) 2014; 5
Wu (10.1016/j.chom.2015.05.005_bib40) 2013; 339
Witte (10.1016/j.chom.2015.05.005_bib38) 2013; 4
Stamm (10.1016/j.chom.2015.05.005_bib28) 2015; 264
Liu (10.1016/j.chom.2015.05.005_bib20) 2015; 347
Gao (10.1016/j.chom.2015.05.005_bib12) 2013; 341
Stanley (10.1016/j.chom.2015.05.005_bib29) 2007; 178
BoseDasgupta (10.1016/j.chom.2015.05.005_bib4) 2014; 5
Sauer (10.1016/j.chom.2015.05.005_bib25) 2011; 79
Schoggins (10.1016/j.chom.2015.05.005_bib26) 2014; 505
Stetson (10.1016/j.chom.2015.05.005_bib30) 2006; 25
Cai (10.1016/j.chom.2015.05.005_bib5) 2014; 54
Li (10.1016/j.chom.2015.05.005_bib18) 2013; 341
Woodward (10.1016/j.chom.2015.05.005_bib39) 2010; 328
Deretic (10.1016/j.chom.2015.05.005_bib10) 2013; 13
Wassermann (10.1016/j.chom.2015.05.005_bib35) 2015; 17
26048138 - Cell Host Microbe. 2015 Jun 10;17(6):799-810
26067600 - Cell Host Microbe. 2015 Jun 10;17(6):733-5
References_xml – volume: 25
  start-page: 373
  year: 2006
  end-page: 381
  ident: bib30
  article-title: Type I interferons in host defense
  publication-title: Immunity
– volume: 347
  start-page: aaa2630
  year: 2015
  ident: bib20
  article-title: Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation
  publication-title: Science
– volume: 13
  start-page: 722
  year: 2013
  end-page: 737
  ident: bib10
  article-title: Autophagy in infection, inflammation and immunity
  publication-title: Nat. Rev. Immunol.
– volume: 264
  start-page: 204
  year: 2015
  end-page: 219
  ident: bib28
  article-title: Sensing of
  publication-title: Immunol. Rev.
– volume: 7
  start-page: e1001345
  year: 2011
  ident: bib13
  article-title: Type I interferon production induced by
  publication-title: PLoS Pathog.
– volume: 40
  start-page: 11292
  year: 2012
  end-page: 11307
  ident: bib17
  article-title: LtmA, a novel cyclic di-GMP-responsive activator, broadly regulates the expression of lipid transport and metabolism genes in
  publication-title: Nucleic Acids Res.
– volume: 4
  year: 2013
  ident: bib38
  article-title: Cyclic di-AMP is critical for
  publication-title: MBio
– volume: 341
  start-page: 1390
  year: 2013
  end-page: 1394
  ident: bib18
  article-title: Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects
  publication-title: Science
– volume: 129
  start-page: 1287
  year: 2007
  end-page: 1298
  ident: bib34
  article-title: and
  publication-title: Cell
– volume: 178
  start-page: 3143
  year: 2007
  end-page: 3152
  ident: bib29
  article-title: The Type I IFN response to infection with
  publication-title: J. Immunol.
– volume: 339
  start-page: 786
  year: 2013
  end-page: 791
  ident: bib31
  article-title: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway
  publication-title: Science
– volume: 109
  start-page: E3168
  year: 2012
  end-page: E3176
  ident: bib6
  article-title: Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 339
  start-page: 1448
  year: 2013
  end-page: 1453
  ident: bib32
  article-title: Type I interferon suppresses type II interferon-triggered human anti-mycobacterial responses
  publication-title: Science
– volume: 159
  start-page: 1563
  year: 2014
  end-page: 1577
  ident: bib24
  article-title: Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA
  publication-title: Cell
– volume: 5
  start-page: 455
  year: 2014
  ident: bib4
  article-title: Striking the right balance determines TB or not TB
  publication-title: Front. Immunol.
– volume: 503
  start-page: 530
  year: 2013
  end-page: 534
  ident: bib2
  article-title: Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP
  publication-title: Nature
– volume: 466
  start-page: 973
  year: 2010
  end-page: 977
  ident: bib3
  article-title: An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis
  publication-title: Nature
– volume: 54
  start-page: 289
  year: 2014
  end-page: 296
  ident: bib5
  article-title: The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling
  publication-title: Mol. Cell
– volume: 17
  start-page: 811
  year: 2015
  end-page: 819
  ident: bib37
  article-title: The cytosolic sensor cGAS detects
  publication-title: Cell Host Microbe
– volume: 150
  start-page: 803
  year: 2012
  end-page: 815
  ident: bib36
  article-title: Extracellular
  publication-title: Cell
– volume: 505
  start-page: 691
  year: 2014
  end-page: 695
  ident: bib26
  article-title: Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity
  publication-title: Nature
– volume: 73
  start-page: 4581
  year: 2005
  end-page: 4587
  ident: bib8
  article-title: Role for nucleotide excision repair in virulence of
  publication-title: Infect. Immun.
– volume: 339
  start-page: 826
  year: 2013
  end-page: 830
  ident: bib40
  article-title: Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA
  publication-title: Science
– volume: 88
  start-page: 5328
  year: 2014
  end-page: 5341
  ident: bib1
  article-title: Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-κB activation through TBK1
  publication-title: J. Virol.
– volume: 5
  start-page: 431
  year: 2014
  ident: bib11
  article-title: Type I interferons in bacterial infections: taming of myeloid cells and possible implications for autoimmunity
  publication-title: Front. Immunol.
– volume: 328
  start-page: 1703
  year: 2010
  end-page: 1705
  ident: bib39
  article-title: c-di-AMP secreted by intracellular
  publication-title: Science
– volume: 8
  start-page: e1002507
  year: 2012
  ident: bib27
  article-title: Phagosomal rupture by
  publication-title: PLoS Pathog.
– volume: 148
  start-page: 434
  year: 2012
  end-page: 446
  ident: bib33
  article-title: Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections
  publication-title: Cell
– volume: 17
  start-page: 799
  year: 2015
  end-page: 810
  ident: bib35
  article-title: The ESX-1 secretion system of
  publication-title: Cell Host Microbe
– volume: 287
  start-page: 44184
  year: 2012
  end-page: 44191
  ident: bib9
  article-title: ESAT-6 exhibits a unique membrane-interacting activity that is not found in its ortholog from non-pathogenic
  publication-title: J. Biol. Chem.
– volume: 157
  start-page: 65
  year: 2014
  end-page: 75
  ident: bib14
  article-title: To be or not to be? How selective autophagy and cell death govern cell fate
  publication-title: Cell
– volume: 11
  start-page: 469
  year: 2012
  end-page: 480
  ident: bib21
  article-title: activates the DNA-dependent cytosolic surveillance pathway within macrophages
  publication-title: Cell Host Microbe
– volume: 77
  start-page: 1230
  year: 2009
  end-page: 1237
  ident: bib7
  article-title: Role of the dosR-dosS two-component regulatory system in
  publication-title: Infect. Immun.
– volume: 93
  start-page: 65
  year: 2014
  end-page: 79
  ident: bib41
  article-title: Deletion of the cyclic di-AMP phosphodiesterase gene (cnpB) in
  publication-title: Mol. Microbiol.
– volume: 341
  start-page: 903
  year: 2013
  end-page: 906
  ident: bib12
  article-title: Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses
  publication-title: Science
– volume: 79
  start-page: 688
  year: 2011
  end-page: 694
  ident: bib25
  article-title: The N-ethyl-N-nitrosourea-induced Goldenticket mouse mutant reveals an essential function of Sting in the in vivo interferon response to
  publication-title: Infect. Immun.
– volume: 33
  start-page: 1654
  year: 2014
  end-page: 1666
  ident: bib15
  article-title: induces IFNβ expression through an IFI16-, cGAS- and STING-dependent pathway
  publication-title: EMBO J.
– volume: 93
  start-page: 270
  year: 1998
  end-page: 274
  ident: bib23
  article-title: Resistance ranking of some common inbred mouse strains to
  publication-title: Immunology
– volume: 6
  start-page: e16161
  year: 2011
  ident: bib16
  article-title: Profiling early lung immune responses in the mouse model of tuberculosis
  publication-title: PLoS ONE
– volume: 15
  start-page: 228
  year: 2014
  end-page: 238
  ident: bib19
  article-title: Crosstalk between the cGAS DNA sensor and Beclin-1 autophagy protein shapes innate antimicrobial immune responses
  publication-title: Cell Host Microbe
– volume: 501
  start-page: 512
  year: 2013
  end-page: 516
  ident: bib22
  article-title: The ubiquitin ligase parkin mediates resistance to intracellular pathogens
  publication-title: Nature
– volume: 505
  start-page: 691
  year: 2014
  ident: 10.1016/j.chom.2015.05.005_bib26
  article-title: Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity
  publication-title: Nature
  doi: 10.1038/nature12862
– volume: 93
  start-page: 65
  year: 2014
  ident: 10.1016/j.chom.2015.05.005_bib41
  article-title: Deletion of the cyclic di-AMP phosphodiesterase gene (cnpB) in Mycobacterium tuberculosis leads to reduced virulence in a mouse model of infection
  publication-title: Mol. Microbiol.
  doi: 10.1111/mmi.12641
– volume: 33
  start-page: 1654
  year: 2014
  ident: 10.1016/j.chom.2015.05.005_bib15
  article-title: Listeria monocytogenes induces IFNβ expression through an IFI16-, cGAS- and STING-dependent pathway
  publication-title: EMBO J.
  doi: 10.15252/embj.201488029
– volume: 129
  start-page: 1287
  year: 2007
  ident: 10.1016/j.chom.2015.05.005_bib34
  article-title: M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells
  publication-title: Cell
  doi: 10.1016/j.cell.2007.05.059
– volume: 73
  start-page: 4581
  year: 2005
  ident: 10.1016/j.chom.2015.05.005_bib8
  article-title: Role for nucleotide excision repair in virulence of Mycobacterium tuberculosis
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.73.8.4581-4587.2005
– volume: 17
  start-page: 799
  year: 2015
  ident: 10.1016/j.chom.2015.05.005_bib35
  article-title: The ESX-1 secretion system of Mycobacterium tuberculosis differentially regulates cGAS- and inflammasome-dependent intracellular immune responses
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2015.05.003
– volume: 339
  start-page: 786
  year: 2013
  ident: 10.1016/j.chom.2015.05.005_bib31
  article-title: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway
  publication-title: Science
  doi: 10.1126/science.1232458
– volume: 7
  start-page: e1001345
  year: 2011
  ident: 10.1016/j.chom.2015.05.005_bib13
  article-title: Type I interferon production induced by Streptococcus pyogenes-derived nucleic acids is required for host protection
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1001345
– volume: 466
  start-page: 973
  year: 2010
  ident: 10.1016/j.chom.2015.05.005_bib3
  article-title: An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis
  publication-title: Nature
  doi: 10.1038/nature09247
– volume: 54
  start-page: 289
  year: 2014
  ident: 10.1016/j.chom.2015.05.005_bib5
  article-title: The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.03.040
– volume: 178
  start-page: 3143
  year: 2007
  ident: 10.1016/j.chom.2015.05.005_bib29
  article-title: The Type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.178.5.3143
– volume: 5
  start-page: 455
  year: 2014
  ident: 10.1016/j.chom.2015.05.005_bib4
  article-title: Striking the right balance determines TB or not TB
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2014.00455
– volume: 501
  start-page: 512
  year: 2013
  ident: 10.1016/j.chom.2015.05.005_bib22
  article-title: The ubiquitin ligase parkin mediates resistance to intracellular pathogens
  publication-title: Nature
  doi: 10.1038/nature12566
– volume: 341
  start-page: 903
  year: 2013
  ident: 10.1016/j.chom.2015.05.005_bib12
  article-title: Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses
  publication-title: Science
  doi: 10.1126/science.1240933
– volume: 11
  start-page: 469
  year: 2012
  ident: 10.1016/j.chom.2015.05.005_bib21
  article-title: Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2012.03.007
– volume: 264
  start-page: 204
  year: 2015
  ident: 10.1016/j.chom.2015.05.005_bib28
  article-title: Sensing of Mycobacterium tuberculosis and consequences to both host and bacillus
  publication-title: Immunol. Rev.
  doi: 10.1111/imr.12263
– volume: 25
  start-page: 373
  year: 2006
  ident: 10.1016/j.chom.2015.05.005_bib30
  article-title: Type I interferons in host defense
  publication-title: Immunity
  doi: 10.1016/j.immuni.2006.08.007
– volume: 159
  start-page: 1563
  year: 2014
  ident: 10.1016/j.chom.2015.05.005_bib24
  article-title: Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA
  publication-title: Cell
  doi: 10.1016/j.cell.2014.11.037
– volume: 287
  start-page: 44184
  year: 2012
  ident: 10.1016/j.chom.2015.05.005_bib9
  article-title: Mycobacterium tuberculosis ESAT-6 exhibits a unique membrane-interacting activity that is not found in its ortholog from non-pathogenic Mycobacterium smegmatis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.420869
– volume: 88
  start-page: 5328
  year: 2014
  ident: 10.1016/j.chom.2015.05.005_bib1
  article-title: Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-κB activation through TBK1
  publication-title: J. Virol.
  doi: 10.1128/JVI.00037-14
– volume: 79
  start-page: 688
  year: 2011
  ident: 10.1016/j.chom.2015.05.005_bib25
  article-title: The N-ethyl-N-nitrosourea-induced Goldenticket mouse mutant reveals an essential function of Sting in the in vivo interferon response to Listeria monocytogenes and cyclic dinucleotides
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.00999-10
– volume: 157
  start-page: 65
  year: 2014
  ident: 10.1016/j.chom.2015.05.005_bib14
  article-title: To be or not to be? How selective autophagy and cell death govern cell fate
  publication-title: Cell
  doi: 10.1016/j.cell.2014.02.049
– volume: 5
  start-page: 431
  year: 2014
  ident: 10.1016/j.chom.2015.05.005_bib11
  article-title: Type I interferons in bacterial infections: taming of myeloid cells and possible implications for autoimmunity
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2014.00431
– volume: 503
  start-page: 530
  year: 2013
  ident: 10.1016/j.chom.2015.05.005_bib2
  article-title: Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP
  publication-title: Nature
  doi: 10.1038/nature12640
– volume: 40
  start-page: 11292
  year: 2012
  ident: 10.1016/j.chom.2015.05.005_bib17
  article-title: LtmA, a novel cyclic di-GMP-responsive activator, broadly regulates the expression of lipid transport and metabolism genes in Mycobacterium smegmatis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks923
– volume: 6
  start-page: e16161
  year: 2011
  ident: 10.1016/j.chom.2015.05.005_bib16
  article-title: Profiling early lung immune responses in the mouse model of tuberculosis
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0016161
– volume: 328
  start-page: 1703
  year: 2010
  ident: 10.1016/j.chom.2015.05.005_bib39
  article-title: c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response
  publication-title: Science
  doi: 10.1126/science.1189801
– volume: 339
  start-page: 1448
  year: 2013
  ident: 10.1016/j.chom.2015.05.005_bib32
  article-title: Type I interferon suppresses type II interferon-triggered human anti-mycobacterial responses
  publication-title: Science
  doi: 10.1126/science.1233665
– volume: 150
  start-page: 803
  year: 2012
  ident: 10.1016/j.chom.2015.05.005_bib36
  article-title: Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway
  publication-title: Cell
  doi: 10.1016/j.cell.2012.06.040
– volume: 4
  year: 2013
  ident: 10.1016/j.chom.2015.05.005_bib38
  article-title: Cyclic di-AMP is critical for Listeria monocytogenes growth, cell wall homeostasis, and establishment of infection
  publication-title: MBio
  doi: 10.1128/mBio.00282-13
– volume: 341
  start-page: 1390
  year: 2013
  ident: 10.1016/j.chom.2015.05.005_bib18
  article-title: Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects
  publication-title: Science
  doi: 10.1126/science.1244040
– volume: 15
  start-page: 228
  year: 2014
  ident: 10.1016/j.chom.2015.05.005_bib19
  article-title: Crosstalk between the cGAS DNA sensor and Beclin-1 autophagy protein shapes innate antimicrobial immune responses
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2014.01.009
– volume: 347
  start-page: aaa2630
  year: 2015
  ident: 10.1016/j.chom.2015.05.005_bib20
  article-title: Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation
  publication-title: Science
  doi: 10.1126/science.aaa2630
– volume: 77
  start-page: 1230
  year: 2009
  ident: 10.1016/j.chom.2015.05.005_bib7
  article-title: Role of the dosR-dosS two-component regulatory system in Mycobacterium tuberculosis virulence in three animal models
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.01117-08
– volume: 109
  start-page: E3168
  year: 2012
  ident: 10.1016/j.chom.2015.05.005_bib6
  article-title: Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1210500109
– volume: 148
  start-page: 434
  year: 2012
  ident: 10.1016/j.chom.2015.05.005_bib33
  article-title: Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections
  publication-title: Cell
  doi: 10.1016/j.cell.2011.12.023
– volume: 93
  start-page: 270
  year: 1998
  ident: 10.1016/j.chom.2015.05.005_bib23
  article-title: Resistance ranking of some common inbred mouse strains to Mycobacterium tuberculosis and relationship to major histocompatibility complex haplotype and Nramp1 genotype
  publication-title: Immunology
  doi: 10.1046/j.1365-2567.1998.00419.x
– volume: 339
  start-page: 826
  year: 2013
  ident: 10.1016/j.chom.2015.05.005_bib40
  article-title: Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA
  publication-title: Science
  doi: 10.1126/science.1229963
– volume: 17
  start-page: 811
  year: 2015
  ident: 10.1016/j.chom.2015.05.005_bib37
  article-title: The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2015.05.004
– volume: 13
  start-page: 722
  year: 2013
  ident: 10.1016/j.chom.2015.05.005_bib10
  article-title: Autophagy in infection, inflammation and immunity
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3532
– volume: 8
  start-page: e1002507
  year: 2012
  ident: 10.1016/j.chom.2015.05.005_bib27
  article-title: Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1002507
– reference: 26067600 - Cell Host Microbe. 2015 Jun 10;17(6):733-5
– reference: 26048138 - Cell Host Microbe. 2015 Jun 10;17(6):799-810
SSID ssj0055071
Score 2.582211
Snippet Activation of the DNA-dependent cytosolic surveillance pathway in response to Mycobacterium tuberculosis infection stimulates ubiquitin-dependent autophagy and...
Activation of the DNA-dependent cytosolic surveillance pathway in response to Mycobacterium tuberculosis infection stimulates ubiquitin-dependent autophagy and...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 820
SubjectTerms Animals
Autophagy
DNA, Bacterial - metabolism
DNA-Binding Proteins - metabolism
Host-Pathogen Interactions - immunology
Humans
Immunity, Innate
Interferon-beta - immunology
Interferon-beta - metabolism
Macrophages - metabolism
Macrophages - microbiology
Membrane Proteins - metabolism
Mice, Inbred C57BL
Mice, Mutant Strains
Mycobacterium tuberculosis - genetics
Nucleotidyltransferases - genetics
Nucleotidyltransferases - metabolism
Proto-Oncogene Proteins c-ets - metabolism
Transcription Factors - metabolism
Tuberculosis - microbiology
Tuberculosis - mortality
Title Cyclic GMP-AMP Synthase Is an Innate Immune DNA Sensor for Mycobacterium tuberculosis
URI https://dx.doi.org/10.1016/j.chom.2015.05.005
https://www.ncbi.nlm.nih.gov/pubmed/26048137
https://www.proquest.com/docview/1688006095
https://pubmed.ncbi.nlm.nih.gov/PMC4499468
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelZbCX0e4z6wca7G2YWLEky49p2q5ZSSlNw_ImbFmiLplSkvgh_33v_BGWdvRh4AfbkkDopLvfobvfEfJdSsVtlmeBU1IEPIa3JLQiYFEexUomisWYnDy6lpcT_msqpjtk0ObCYFhlo_trnV5p6-ZPt1nN7mNRdMcAPViEF0ECMU-CGeWYVYpJfNPTVhsjXRerb5ZZgL2bxJk6xgvrkWB4l6jYO7GE3b-N00vw-TyG8i-jdLFP3jVokvbrCR-QHevfkzd1fcn1BzIZrM2sMPTn6Cboj27oeO1X92C26HBJU0-H3gPSpENMEbH07LpPx-DUzhcUgCwdrQ0c9YrKufxDV2VmF6aczZfF8iOZXJzfDS6Dpo5CYLBcAWhaFbEc_BZhwL3quRRJ86NcOmlULhMTGWe5CI0KM4YUXJmKnQM3rxfGICzlok9k18-9_UJoLnoO2pWFg4-mPwH00-OGS5fmgqe2Q1i7gNo0JONY62Km22iyB42LrnHRdQhPKDrkx2bMY02x8Wpv0cpFb20UDTbg1XHfWiFqOEF4LZJ6Oy-XmknQYSES73XI51qom3mAtwdbKoo7JN4S96YDsnNvt_jivmLp5uBLcqm-_ud8D8lb_MKoNBYekd3VorTHgH9W2QnZ61_d_r46qTb6EybXAqM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWRQguiOdSnkbihqLGje04x1JYGthUK3Ur9WYljq0NKu6qbQ7998zkUVFAe0DKIYodyZqxZ76RZ74h5IOUituiLAKnpAh4DG9JaEXAojKKlUwUi7E4OZvJ6YJ_W4rlCZn0tTCYVtnZ_tamN9a6-zLspDm8qarhHKAHi_AiSCDmSeI75C6gAYkE-unyU2-Oka-LtVfLLMDpXeVMm-SFDUkwv0s09J3Yw-7f3ulv9PlnEuVvXun8EXnYwUk6blf8mJxY_4TcaxtM7p-SxWRvVpWhX7PLYJxd0vne767Bb9F0S3NPU-8BatIUa0Qs_Twb0zlEtesNBSRLs72Bs95wOdc_6a4u7MbUq_W22j4ji_MvV5Np0DVSCAz2KwBTqyJWQuAiDMRXI5cja35USieNKmViIuMsF6FRYcGQg6tQsXMQ543CGLSlXPScnPq1ty8ILcXIwbiycPLR9ycAf0bccOnyUvDcDgjrBahNxzKOzS5Wuk8n-6FR6BqFrkN4QjEgHw__3LQcG7fOFr1e9NFO0eAEbv3vfa9EDUcI70Vyb9f1VjMJRixE5r0BOWuVelgHhHtcsSgekPhI3YcJSM99POKr64amm0MwyaV6-Z_rfUfuT6-yC32Rzr6_Ig9wBFPUWPianO42tX0DYGhXvG02-y8TVwQk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyclic+GMP-AMP+Synthase+Is+an+Innate+Immune+DNA+Sensor+for+Mycobacterium+tuberculosis&rft.jtitle=Cell+host+%26+microbe&rft.au=Collins%2C+Angela%C2%A0C.&rft.au=Cai%2C+Haocheng&rft.au=Li%2C+Tuo&rft.au=Franco%2C+Luis%C2%A0H.&rft.date=2015-06-10&rft.issn=1931-3128&rft.volume=17&rft.issue=6&rft.spage=820&rft.epage=828&rft_id=info:doi/10.1016%2Fj.chom.2015.05.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chom_2015_05_005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3128&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3128&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3128&client=summon