Cyclic GMP-AMP Synthase Is an Innate Immune DNA Sensor for Mycobacterium tuberculosis
Activation of the DNA-dependent cytosolic surveillance pathway in response to Mycobacterium tuberculosis infection stimulates ubiquitin-dependent autophagy and inflammatory cytokine production, and plays an important role in host defense against M. tuberculosis. However, the identity of the host sen...
Saved in:
Published in | Cell host & microbe Vol. 17; no. 6; pp. 820 - 828 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
10.06.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1931-3128 1934-6069 1934-6069 |
DOI | 10.1016/j.chom.2015.05.005 |
Cover
Abstract | Activation of the DNA-dependent cytosolic surveillance pathway in response to Mycobacterium tuberculosis infection stimulates ubiquitin-dependent autophagy and inflammatory cytokine production, and plays an important role in host defense against M. tuberculosis. However, the identity of the host sensor for M. tuberculosis DNA is unknown. Here we show that M. tuberculosis activated cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) in macrophages to produce cGAMP, a second messenger that activates the adaptor protein stimulator of interferon genes (STING) to induce type I interferons and other cytokines. cGAS localized with M. tuberculosis in mouse and human cells and in human tuberculosis lesions. Knockdown or knockout of cGAS in human or mouse macrophages blocked cytokine production and induction of autophagy. Mice deficient in cGAS were more susceptible to lethality caused by infection with M. tuberculosis. These results demonstrate that cGAS is a vital innate immune sensor of M. tuberculosis infection.
[Display omitted]
•M. tuberculosis infection induces cGAS in macrophages and human lung tissue•cGAS is essential for IFNβ induction in response to M. tuberculosis infection•cGAS and STING are required for selective autophagy of M. tuberculosis•cGAS−/− mice are susceptible to M. tuberculosis infection-induced mortality
Mycobacterium tuberculosis can activate the DNA-sensing cytosolic surveillance pathway. Collins et al. report that the recently discovered cyclic GMP-AMP synthase (cGAS) is the key innate sensor of M. tuberculosis DNA that has dual roles in inducing type I interferon and activating autophagy within mouse and human macrophages. |
---|---|
AbstractList | Activation of the DNA-dependent cytosolic surveillance pathway in response to Mycobacterium tuberculosis infection stimulates ubiquitin-dependent autophagy and inflammatory cytokine production, and plays an important role in host defense against M. tuberculosis. However, the identity of the host sensor for M. tuberculosis DNA is unknown. Here we show that M. tuberculosis activated cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) in macrophages to produce cGAMP, a second messenger that activates the adaptor protein stimulator of interferon genes (STING) to induce type I interferons and other cytokines. cGAS localized with M. tuberculosis in mouse and human cells and in human tuberculosis lesions. Knockdown or knockout of cGAS in human or mouse macrophages blocked cytokine production and induction of autophagy. Mice deficient in cGAS were more susceptible to lethality caused by infection with M. tuberculosis. These results demonstrate that cGAS is a vital innate immune sensor of M. tuberculosis infection. Activation of the DNA-dependent cytosolic surveillance pathway in response to Mycobacterium tuberculosis infection stimulates ubiquitin-dependent autophagy and inflammatory cytokine production, and plays an important role in host defense against M. tuberculosis. However, the identity of the host sensor for M. tuberculosis DNA is unknown. Here we show that M. tuberculosis activated cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) in macrophages to produce cGAMP, a second messenger that activates the adaptor protein stimulator of interferon genes (STING) to induce type I interferons and other cytokines. cGAS localized with M. tuberculosis in mouse and human cells and in human tuberculosis lesions. Knockdown or knockout of cGAS in human or mouse macrophages blocked cytokine production and induction of autophagy. Mice deficient in cGAS were more susceptible to lethality caused by infection with M. tuberculosis. These results demonstrate that cGAS is a vital innate immune sensor of M. tuberculosis infection. [Display omitted] •M. tuberculosis infection induces cGAS in macrophages and human lung tissue•cGAS is essential for IFNβ induction in response to M. tuberculosis infection•cGAS and STING are required for selective autophagy of M. tuberculosis•cGAS−/− mice are susceptible to M. tuberculosis infection-induced mortality Mycobacterium tuberculosis can activate the DNA-sensing cytosolic surveillance pathway. Collins et al. report that the recently discovered cyclic GMP-AMP synthase (cGAS) is the key innate sensor of M. tuberculosis DNA that has dual roles in inducing type I interferon and activating autophagy within mouse and human macrophages. Activation of the DNA-dependent cytosolic surveillance pathway in response to Mycobacterium tuberculosis infection stimulates ubiquitin-dependent autophagy and inflammatory cytokine production, and plays an important role in host defense against M. tuberculosis. However, the identity of the host sensor for M. tuberculosis DNA is unknown. Here we show that M. tuberculosis activated cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) in macrophages to produce cGAMP, a second messenger that activates the adaptor protein stimulator of interferon genes (STING) to induce type I interferons and other cytokines. cGAS localized with M. tuberculosis in mouse and human cells and in human tuberculosis lesions. Knockdown or knockout of cGAS in human or mouse macrophages blocked cytokine production and induction of autophagy. Mice deficient in cGAS were more susceptible to lethality caused by infection with M. tuberculosis. These results demonstrate that cGAS is a vital innate immune sensor of M. tuberculosis infection.Activation of the DNA-dependent cytosolic surveillance pathway in response to Mycobacterium tuberculosis infection stimulates ubiquitin-dependent autophagy and inflammatory cytokine production, and plays an important role in host defense against M. tuberculosis. However, the identity of the host sensor for M. tuberculosis DNA is unknown. Here we show that M. tuberculosis activated cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) in macrophages to produce cGAMP, a second messenger that activates the adaptor protein stimulator of interferon genes (STING) to induce type I interferons and other cytokines. cGAS localized with M. tuberculosis in mouse and human cells and in human tuberculosis lesions. Knockdown or knockout of cGAS in human or mouse macrophages blocked cytokine production and induction of autophagy. Mice deficient in cGAS were more susceptible to lethality caused by infection with M. tuberculosis. These results demonstrate that cGAS is a vital innate immune sensor of M. tuberculosis infection. Activation of the DNA-dependent cytosolic surveillance pathway in response to Mycobacterium tuberculosis infection stimulates ubiquitin-dependent autophagy and inflammatory cytokine production, and plays an important role in host defense against M. tuberculosis . However, the identity of the host sensor for M. tuberculosis DNA is unknown. Here we show that M. tuberculosis activated cyclic guanosine monophosphate–adenosine monophosphate (cGAMP) synthase (cGAS) in macrophages to produce cGAMP, a second messenger that activates the adaptor protein stimulator of interferon genes (STING) to induce type I interferons and other cytokines. cGAS localized with M. tuberculosis in mouse and human cells and in human tuberculosis lesions. Knockdown or knockout of cGAS in human or mouse macrophages blocked cytokine production and induction of autophagy. Mice deficient in cGAS were more susceptible to lethality caused by infection with M. tuberculosis . These results demonstrate that cGAS is a vital innate immune sensor of M. tuberculosis infection. |
Author | Cai, Haocheng Scharn, Caitlyn R. Li, Xiao-Dong Shiloh, Michael U. Franco, Luis H. Stamm, Chelsea E. Nair, Vidhya R. Chen, Zhijian J. Collins, Angela C. Li, Tuo Levine, Beth |
AuthorAffiliation | 4 Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390–9148, USA 2 Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390–9113, USA 3 Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390–9148, USA 1 Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390–9113, USA 5 Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX 75390–9113, USA |
AuthorAffiliation_xml | – name: 4 Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390–9148, USA – name: 3 Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390–9148, USA – name: 5 Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX 75390–9113, USA – name: 1 Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390–9113, USA – name: 2 Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390–9113, USA |
Author_xml | – sequence: 1 givenname: Angela C. surname: Collins fullname: Collins, Angela C. organization: Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9113, USA – sequence: 2 givenname: Haocheng surname: Cai fullname: Cai, Haocheng organization: Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA – sequence: 3 givenname: Tuo surname: Li fullname: Li, Tuo organization: Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA – sequence: 4 givenname: Luis H. surname: Franco fullname: Franco, Luis H. organization: Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA – sequence: 5 givenname: Xiao-Dong surname: Li fullname: Li, Xiao-Dong organization: Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA – sequence: 6 givenname: Vidhya R. surname: Nair fullname: Nair, Vidhya R. organization: Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9113, USA – sequence: 7 givenname: Caitlyn R. surname: Scharn fullname: Scharn, Caitlyn R. organization: Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9113, USA – sequence: 8 givenname: Chelsea E. surname: Stamm fullname: Stamm, Chelsea E. organization: Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9113, USA – sequence: 9 givenname: Beth surname: Levine fullname: Levine, Beth organization: Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9113, USA – sequence: 10 givenname: Zhijian J. surname: Chen fullname: Chen, Zhijian J. email: zhijian.chen@utsouthwestern.edu organization: Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA – sequence: 11 givenname: Michael U. surname: Shiloh fullname: Shiloh, Michael U. email: michael.shiloh@utsouthwestern.edu organization: Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9113, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26048137$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UUuLFDEQDrLiPvQPeJA-eumx0o90GkQYRl0HdnRh3XPIVFc7GbqTNUkvzL837eyKelioIinyPUJ95-zEOkuMveaw4MDFu_0Cd25cFMDrBaSC-hk7421Z5QJEe_L7zvOSF_KUnYewT4AaGv6CnRYCKsnL5ozdrg44GMwuN9f5cnOd3Rxs3OlA2Tpk2mZra3VMwzhOlrKPX5fZDdngfNan3hzQbTVG8mYaszhtyeM0uGDCS_a810OgVw_nBbv9_On76kt-9e1yvVpe5VgXPOYcZMk7kb6FhWyLXkNTNWUneoGyEy2W2FNVA0rYchAlbGXT9w1vCmhEK2VfXrAPR927aTtSh2Sj14O682bU_qCcNurfF2t26oe7V1XVtpWQSeDtg4B3PycKUY0mIA2DtuSmoLiQEkBAWyfom7-9_pg87jIB5BGA3oXgqVdooo7GzdZmUBzUHJvaqzk2NcemIBXM2sV_1Ef1J0nvjyRKG7435FVAQxapM54wqs6Zp-i_ACmbr-Y |
CitedBy_id | crossref_primary_10_15252_embr_201744773 crossref_primary_10_1080_10409238_2024_2411264 crossref_primary_10_1016_j_coi_2017_06_007 crossref_primary_10_15252_embr_201949799 crossref_primary_10_1128_iai_00155_23 crossref_primary_10_1128_microbiolspec_GPP3_0022_2018 crossref_primary_10_1007_s00109_016_1423_2 crossref_primary_10_3389_fimmu_2021_637399 crossref_primary_10_1038_s41467_017_00833_9 crossref_primary_10_1038_nature23890 crossref_primary_10_1186_s12964_020_00659_x crossref_primary_10_1007_s00281_015_0522_4 crossref_primary_10_1073_pnas_1905013116 crossref_primary_10_3389_fimmu_2020_00630 crossref_primary_10_1016_j_coi_2024_102508 crossref_primary_10_1111_febs_16369 crossref_primary_10_1111_cmi_13344 crossref_primary_10_1080_15548627_2024_2429380 crossref_primary_10_18632_oncotarget_10503 crossref_primary_10_1128_msystems_00052_23 crossref_primary_10_3389_fcimb_2019_00138 crossref_primary_10_1146_annurev_genom_090413_025334 crossref_primary_10_1016_j_bioorg_2023_106802 crossref_primary_10_1016_j_dci_2021_104101 crossref_primary_10_3390_pathogens10020120 crossref_primary_10_1128_iai_00578_24 crossref_primary_10_1016_j_tim_2022_03_010 crossref_primary_10_3389_fmicb_2016_00313 crossref_primary_10_1016_j_micpath_2021_104977 crossref_primary_10_1038_s41419_023_06364_0 crossref_primary_10_3390_cells11213483 crossref_primary_10_1016_j_meegid_2016_08_021 crossref_primary_10_1089_jir_2016_0086 crossref_primary_10_3389_fimmu_2024_1356369 crossref_primary_10_3389_fimmu_2023_1166214 crossref_primary_10_1016_j_it_2019_08_001 crossref_primary_10_1038_s41579_021_00560_5 crossref_primary_10_1002_ijc_30074 crossref_primary_10_3389_fimmu_2017_01633 crossref_primary_10_1016_j_celrep_2016_05_030 crossref_primary_10_1371_journal_ppat_1005770 crossref_primary_10_1038_cmi_2016_25 crossref_primary_10_1080_1040841X_2023_2294904 crossref_primary_10_1007_s15010_024_02429_0 crossref_primary_10_1016_j_jaci_2016_05_010 crossref_primary_10_1186_s44149_023_00068_w crossref_primary_10_1016_j_jtbi_2018_11_001 crossref_primary_10_1073_pnas_1516465112 crossref_primary_10_1038_s41577_018_0025_3 crossref_primary_10_1021_acsabm_3c01305 crossref_primary_10_3390_cells11101681 crossref_primary_10_1038_s41467_018_06922_7 crossref_primary_10_1016_j_immuni_2016_06_015 crossref_primary_10_3389_fimmu_2021_814709 crossref_primary_10_1093_aob_mcaa061 crossref_primary_10_1016_j_tox_2017_07_016 crossref_primary_10_1038_cmi_2016_36 crossref_primary_10_1155_2024_9615181 crossref_primary_10_3390_cancers14246150 crossref_primary_10_1038_nnano_2017_52 crossref_primary_10_1002_iub_1566 crossref_primary_10_1016_j_isci_2024_110693 crossref_primary_10_1189_jlb_4MR0216_079R crossref_primary_10_1016_j_immuni_2018_12_013 crossref_primary_10_1038_nchembio_2254 crossref_primary_10_3389_fmicb_2017_02284 crossref_primary_10_7554_eLife_51071 crossref_primary_10_1038_s41467_019_09955_8 crossref_primary_10_3389_fcimb_2018_00238 crossref_primary_10_1016_j_molimm_2017_04_007 crossref_primary_10_1128_microbiolspec_TBTB2_0001_2015 crossref_primary_10_1002_iid3_452 crossref_primary_10_3389_fimmu_2023_1275408 crossref_primary_10_12677_AMS_2017_42009 crossref_primary_10_1146_annurev_pathol_042120_032916 crossref_primary_10_1159_000488952 crossref_primary_10_1016_j_cytogfr_2020_06_004 crossref_primary_10_1016_j_jinf_2021_04_014 crossref_primary_10_3390_ijms24043919 crossref_primary_10_1038_s41598_020_62543_5 crossref_primary_10_1038_srep32618 crossref_primary_10_1111_febs_15640 crossref_primary_10_1186_s44280_024_00065_9 crossref_primary_10_1007_s12088_015_0541_9 crossref_primary_10_1371_journal_ppat_1007491 crossref_primary_10_4049_jimmunol_1900869 crossref_primary_10_1016_j_molcel_2018_07_010 crossref_primary_10_3389_fcimb_2020_595029 crossref_primary_10_1016_j_cell_2022_06_038 crossref_primary_10_1016_j_biopha_2020_110945 crossref_primary_10_1016_j_jmb_2021_167257 crossref_primary_10_1038_srep16882 crossref_primary_10_1371_journal_ppat_1006829 crossref_primary_10_3389_fcimb_2022_862582 crossref_primary_10_1186_s12943_020_01250_1 crossref_primary_10_1016_j_isci_2019_11_001 crossref_primary_10_1371_journal_ppat_1006156 crossref_primary_10_3389_fcvm_2021_715903 crossref_primary_10_1038_s41423_020_0502_z crossref_primary_10_1093_femsre_fuac041 crossref_primary_10_1016_j_celrep_2021_109195 crossref_primary_10_1016_j_celrep_2022_111310 crossref_primary_10_1371_journal_ppat_1009410 crossref_primary_10_1016_j_celrep_2017_02_057 crossref_primary_10_1038_s44319_024_00171_0 crossref_primary_10_3389_fimmu_2016_00652 crossref_primary_10_1038_s41401_022_01002_5 crossref_primary_10_1080_15548627_2017_1402992 crossref_primary_10_1016_j_tim_2017_05_008 crossref_primary_10_1016_j_celrep_2020_108586 crossref_primary_10_1016_j_isci_2024_109807 crossref_primary_10_1038_s41392_021_00613_4 crossref_primary_10_1073_pnas_1812984115 crossref_primary_10_1128_iai_00022_23 crossref_primary_10_1016_j_jmb_2016_04_030 crossref_primary_10_1016_j_meegid_2018_12_013 crossref_primary_10_1111_mmi_14841 crossref_primary_10_1093_femspd_ftw028 crossref_primary_10_1038_s41435_019_0080_1 crossref_primary_10_1016_j_cytogfr_2018_03_002 crossref_primary_10_1038_nri_2017_21 crossref_primary_10_1016_j_ijmm_2019_05_007 crossref_primary_10_1038_s41467_022_33671_5 crossref_primary_10_1371_journal_ppat_1006264 crossref_primary_10_1007_s11904_016_0305_0 crossref_primary_10_3389_fimmu_2018_02372 crossref_primary_10_1371_journal_ppat_1009881 crossref_primary_10_1146_annurev_biochem_061516_044813 crossref_primary_10_1186_s12950_017_0159_2 crossref_primary_10_3389_fcimb_2022_892610 crossref_primary_10_1016_j_chom_2016_05_016 crossref_primary_10_1080_21505594_2022_2150449 crossref_primary_10_1371_journal_ppat_1009888 crossref_primary_10_1146_annurev_cancerbio_030518_055636 crossref_primary_10_1111_evj_14214 crossref_primary_10_1016_j_chom_2016_11_002 crossref_primary_10_1016_j_dci_2019_103402 crossref_primary_10_1016_j_vetmic_2021_109126 crossref_primary_10_1128_mbio_00384_24 crossref_primary_10_1134_S0003683820050129 crossref_primary_10_1172_jci_insight_94142 crossref_primary_10_1016_j_it_2016_10_009 crossref_primary_10_1371_journal_ppat_1006496 crossref_primary_10_2217_fmb_2022_0026 crossref_primary_10_1016_j_jbc_2023_104866 crossref_primary_10_1111_cmi_12594 crossref_primary_10_1159_000492679 crossref_primary_10_1073_pnas_2211047120 crossref_primary_10_1080_1040841X_2024_2321494 crossref_primary_10_1371_journal_pone_0185945 crossref_primary_10_15252_embr_201744017 crossref_primary_10_4049_jimmunol_1901511 crossref_primary_10_1038_s41467_020_15832_6 crossref_primary_10_1002_adbi_202400174 crossref_primary_10_1093_femsre_fuz006 crossref_primary_10_1128_mSphere_00354_19 crossref_primary_10_1126_sciimmunol_aaw6693 crossref_primary_10_1002_JLB_4MR0717_277R crossref_primary_10_1084_jem_20180325 crossref_primary_10_3390_ijms21103720 crossref_primary_10_1146_annurev_biochem_040320_101629 crossref_primary_10_1038_s12276_019_0333_0 crossref_primary_10_1136_lupus_2019_000336 crossref_primary_10_1371_journal_ppat_1006363 crossref_primary_10_4110_in_2020_20_e37 crossref_primary_10_1146_annurev_immunol_093019_010426 crossref_primary_10_1080_1040841X_2024_2397359 crossref_primary_10_1038_ni_3558 crossref_primary_10_3389_fimmu_2018_00806 crossref_primary_10_4049_jimmunol_1701177 crossref_primary_10_1016_j_chom_2023_09_010 crossref_primary_10_1038_ni_3434 crossref_primary_10_3390_ijms22031301 crossref_primary_10_1016_j_celrep_2019_04_110 crossref_primary_10_1093_infdis_jiw144 crossref_primary_10_4049_jimmunol_1701733 crossref_primary_10_1111_imcb_12555 crossref_primary_10_1093_femspd_fty037 crossref_primary_10_3389_fimmu_2017_00294 crossref_primary_10_1016_j_cell_2018_06_053 crossref_primary_10_1016_j_celrep_2015_09_048 crossref_primary_10_1128_mBio_03254_19 crossref_primary_10_1371_journal_ppat_1009182 crossref_primary_10_1128_mSphere_00153_21 crossref_primary_10_1016_j_chom_2015_07_015 crossref_primary_10_1080_21505594_2017_1321191 crossref_primary_10_1007_s00281_015_0531_3 crossref_primary_10_1371_journal_ppat_1005809 crossref_primary_10_1007_s40610_020_00137_w crossref_primary_10_1016_j_mib_2017_11_007 crossref_primary_10_1093_femspd_fty008 crossref_primary_10_1016_j_mib_2015_12_005 crossref_primary_10_3389_fimmu_2023_1130423 crossref_primary_10_1152_physrev_00026_2016 crossref_primary_10_1128_mBio_01765_18 crossref_primary_10_1016_j_meegid_2018_02_014 crossref_primary_10_1155_2017_9361802 crossref_primary_10_3389_fimmu_2019_00125 crossref_primary_10_1016_j_it_2016_07_001 crossref_primary_10_1083_jcb_201701095 crossref_primary_10_4103_apjtm_apjtm_116_24 crossref_primary_10_1038_s41467_018_05559_w crossref_primary_10_1016_j_chom_2016_06_003 crossref_primary_10_4049_jimmunol_2101029 crossref_primary_10_4110_in_2018_18_e17 crossref_primary_10_1002_INMD_20230044 crossref_primary_10_1038_s41467_020_17228_y crossref_primary_10_1038_s41590_018_0225_9 crossref_primary_10_3389_fimmu_2021_714808 crossref_primary_10_1016_j_it_2017_07_012 crossref_primary_10_1146_annurev_micro_102215_095605 crossref_primary_10_3389_fmicb_2021_702881 crossref_primary_10_1038_s41392_022_01056_1 crossref_primary_10_4049_jimmunol_1801303 crossref_primary_10_1002_1873_3468_12072 crossref_primary_10_1093_pnasnexus_pgac109 crossref_primary_10_4049_jimmunol_1601370 crossref_primary_10_1111_cmi_12622 crossref_primary_10_4049_jimmunol_1500434 crossref_primary_10_1371_journal_ppat_1006687 crossref_primary_10_3389_fcimb_2016_00182 crossref_primary_10_3390_ijms21197289 crossref_primary_10_1096_fj_201902833R crossref_primary_10_1038_s41418_020_00624_8 crossref_primary_10_3389_fimmu_2023_1116811 crossref_primary_10_1038_s41598_020_64348_y crossref_primary_10_1016_j_cell_2023_11_002 crossref_primary_10_1038_ni_3356 crossref_primary_10_1073_pnas_1911646117 crossref_primary_10_1016_j_actbio_2025_03_002 crossref_primary_10_1093_bioinformatics_btaa969 crossref_primary_10_1016_j_heliyon_2024_e24029 crossref_primary_10_1080_15548627_2020_1783119 crossref_primary_10_1016_j_chom_2015_05_017 crossref_primary_10_1038_s41392_022_01252_z crossref_primary_10_3389_fimmu_2024_1380517 crossref_primary_10_1002_cpz1_372 crossref_primary_10_1038_s41580_020_0244_x crossref_primary_10_1177_1179670716685085 crossref_primary_10_15406_ijvv_2016_02_00043 crossref_primary_10_1016_j_trsl_2018_07_014 crossref_primary_10_3389_fcimb_2017_00169 crossref_primary_10_3389_fimmu_2021_662218 crossref_primary_10_1371_journal_ppat_1008294 crossref_primary_10_1002_eji_201545493 crossref_primary_10_1111_imm_13030 crossref_primary_10_1093_infdis_jiz461 crossref_primary_10_1186_s12865_022_00518_z crossref_primary_10_1016_j_yexcr_2024_114316 crossref_primary_10_1016_j_chom_2015_05_003 crossref_primary_10_3389_fimmu_2020_550624 crossref_primary_10_1038_nrmicro_2016_131 crossref_primary_10_1016_j_chom_2015_05_004 crossref_primary_10_1128_IAI_00687_20 crossref_primary_10_1038_s41435_018_0029_9 crossref_primary_10_1084_jem_20180508 crossref_primary_10_1093_femspd_fty048 crossref_primary_10_1016_j_molcel_2022_06_010 crossref_primary_10_1128_microbiolspec_PSIB_0029_2019 crossref_primary_10_1038_s41576_019_0151_1 crossref_primary_10_3389_fcell_2023_1069256 crossref_primary_10_55544_jrasb_2_3_31 crossref_primary_10_1038_ni_3273 crossref_primary_10_3390_pathogens13110957 crossref_primary_10_1016_j_immuni_2017_02_014 crossref_primary_10_1172_JCI84978 crossref_primary_10_3390_ijms20040895 crossref_primary_10_1099_mgen_0_000163 crossref_primary_10_3390_cells9030666 crossref_primary_10_3389_fimmu_2021_649475 crossref_primary_10_1038_s41467_020_17156_x crossref_primary_10_1016_j_it_2017_03_004 crossref_primary_10_3390_ijms18122725 crossref_primary_10_3390_ijms241210115 crossref_primary_10_1016_j_molimm_2024_10_002 crossref_primary_10_1128_mBio_01871_20 crossref_primary_10_1038_s41564_019_0578_3 crossref_primary_10_1073_pnas_1707792114 crossref_primary_10_1002_mco2_511 crossref_primary_10_1007_s13238_016_0320_3 crossref_primary_10_5588_ijtldopen_23_0406 crossref_primary_10_1084_jem_20200887 crossref_primary_10_1371_journal_pntd_0007589 |
Cites_doi | 10.1038/nature12862 10.1111/mmi.12641 10.15252/embj.201488029 10.1016/j.cell.2007.05.059 10.1128/IAI.73.8.4581-4587.2005 10.1016/j.chom.2015.05.003 10.1126/science.1232458 10.1371/journal.ppat.1001345 10.1038/nature09247 10.1016/j.molcel.2014.03.040 10.4049/jimmunol.178.5.3143 10.3389/fimmu.2014.00455 10.1038/nature12566 10.1126/science.1240933 10.1016/j.chom.2012.03.007 10.1111/imr.12263 10.1016/j.immuni.2006.08.007 10.1016/j.cell.2014.11.037 10.1074/jbc.M112.420869 10.1128/JVI.00037-14 10.1128/IAI.00999-10 10.1016/j.cell.2014.02.049 10.3389/fimmu.2014.00431 10.1038/nature12640 10.1093/nar/gks923 10.1371/journal.pone.0016161 10.1126/science.1189801 10.1126/science.1233665 10.1016/j.cell.2012.06.040 10.1128/mBio.00282-13 10.1126/science.1244040 10.1016/j.chom.2014.01.009 10.1126/science.aaa2630 10.1128/IAI.01117-08 10.1073/pnas.1210500109 10.1016/j.cell.2011.12.023 10.1046/j.1365-2567.1998.00419.x 10.1126/science.1229963 10.1016/j.chom.2015.05.004 10.1038/nri3532 10.1371/journal.ppat.1002507 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Inc. Copyright © 2015 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2015 Elsevier Inc. – notice: Copyright © 2015 Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.chom.2015.05.005 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1934-6069 |
EndPage | 828 |
ExternalDocumentID | PMC4499468 26048137 10_1016_j_chom_2015_05_005 S1931312815002097 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: U19 AI109725 – fundername: NIAID NIH HHS grantid: AI093967 – fundername: Howard Hughes Medical Institute – fundername: NIAID NIH HHS grantid: T32AI005284 – fundername: NIAID NIH HHS grantid: R01 AI099439 – fundername: NIAID NIH HHS grantid: R21 AI111023 – fundername: NIAID NIH HHS grantid: T32 AI007520 – fundername: NIAID NIH HHS grantid: R01 AI093967 – fundername: NIAID NIH HHS grantid: T32 AI005284 |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 5GY 62- 6I. 6J9 7-5 AACTN AAEDT AAEDW AAFTH AAIAV AAKRW AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGHFR AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE HVGLF IHE IXB JIG K97 M41 NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SES SSZ TR2 UNMZH WQ6 ZA5 53G AAIKJ AAMRU AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION HZ~ OZT ZBA CGR CUY CVF ECM EFKBS EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c521t-10831d6055c2892fa07473d6f6c8d69c3cfe450c80b10630b87ff7172076988f3 |
IEDL.DBID | IXB |
ISSN | 1931-3128 1934-6069 |
IngestDate | Thu Aug 21 18:19:03 EDT 2025 Fri Sep 05 04:27:31 EDT 2025 Mon Jul 21 06:00:36 EDT 2025 Thu Apr 24 23:01:07 EDT 2025 Tue Jul 01 02:44:17 EDT 2025 Fri Feb 23 02:31:04 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2015 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c521t-10831d6055c2892fa07473d6f6c8d69c3cfe450c80b10630b87ff7172076988f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally. Reprints and permissions information is available at Cell Host and Microbe. |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1931312815002097 |
PMID | 26048137 |
PQID | 1688006095 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4499468 proquest_miscellaneous_1688006095 pubmed_primary_26048137 crossref_citationtrail_10_1016_j_chom_2015_05_005 crossref_primary_10_1016_j_chom_2015_05_005 elsevier_sciencedirect_doi_10_1016_j_chom_2015_05_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-06-10 |
PublicationDateYYYYMMDD | 2015-06-10 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell host & microbe |
PublicationTitleAlternate | Cell Host Microbe |
PublicationYear | 2015 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Gao, Wu, Wu, Du, Aroh, Yan, Sun, Chen (bib12) 2013; 341 Liang, Seo, Choi, Kwak, Ge, Rodgers, Shi, Leslie, Hopfner, Ha (bib19) 2014; 15 De Leon, Jiang, Ma, Rubin, Fortune, Sun (bib9) 2012; 287 Wu, Sun, Chen, Du, Shi, Chen, Chen (bib40) 2013; 339 Schoggins, MacDuff, Imanaka, Gainey, Shrestha, Eitson, Mar, Richardson, Ratushny, Litvak (bib26) 2014; 505 Kang, Lin, Moreno, Randall, Khader (bib16) 2011; 6 Darwin, Nathan (bib8) 2005; 73 van der Wel, Hava, Houben, Fluitsma, van Zon, Pierson, Brenner, Peters (bib34) 2007; 129 Li, Wu, Gao, Wang, Sun, Chen (bib18) 2013; 341 Stanley, Johndrow, Manzanillo, Cox (bib29) 2007; 178 Manzanillo, Ayres, Watson, Collins, Souza, Rae, Schneider, Nakamura, Shiloh, Cox (bib22) 2013; 501 Liu, Cai, Wu, Cong, Chen, Li, Du, Ren, Wu, Grishin, Chen (bib20) 2015; 347 Stetson, Medzhitov (bib30) 2006; 25 Converse, Karakousis, Klinkenberg, Kesavan, Ly, Allen, Grosset, Jain, Lamichhane, Manabe (bib7) 2009; 77 Gratz, Hartweger, Matt, Kratochvill, Janos, Sigel, Drobits, Li, Knapp, Kovarik (bib13) 2011; 7 Yang, Bai, Zhang, Gabrielle, Jin, Bai (bib41) 2014; 93 Deretic, Saitoh, Akira (bib10) 2013; 13 Wassermann, Gulen, Sala, Perin, Lou, Rybniker, Schmid-Burgk, Schmidt, Hornung, Cole, Ablasser (bib35) 2015; 17 Watson, Bell, MacDuff, Kimmey, Diner, Olivas, Vance, Stallings, Virgin, Cox (bib37) 2015; 17 Li, He (bib17) 2012; 40 Manzanillo, Shiloh, Portnoy, Cox (bib21) 2012; 11 Teles, Graeber, Krutzik, Montoya, Schenk, Lee, Komisopoulou, Kelly-Scumpia, Chun, Iyer (bib32) 2013; 339 Ablasser, Schmid-Burgk, Hemmerling, Horvath, Schmidt, Latz, Hornung (bib2) 2013; 503 BoseDasgupta, Pieters (bib4) 2014; 5 Eshleman, Lenz (bib11) 2014; 5 Watson, Manzanillo, Cox (bib36) 2012; 150 Rongvaux, Jackson, Harman, Li, West, de Zoete, Wu, Yordy, Lakhani, Kuan (bib24) 2014; 159 Castillo, Dekonenko, Arko-Mensah, Mandell, Dupont, Jiang, Delgado-Vargas, Timmins, Bhattacharya, Yang (bib6) 2012; 109 Sauer, Sotelo-Troha, von Moltke, Monroe, Rae, Brubaker, Hyodo, Hayakawa, Woodward, Portnoy, Vance (bib25) 2011; 79 Hansen, Prabakaran, Laustsen, Jørgensen, Rahbæk, Jensen, Nielsen, Leber, Decker, Horan (bib15) 2014; 33 Stamm, Collins, Shiloh (bib28) 2015; 264 Berry, Graham, McNab, Xu, Bloch, Oni, Wilkinson, Banchereau, Skinner, Wilkinson (bib3) 2010; 466 Cai, Chiu, Chen (bib5) 2014; 54 Woodward, Iavarone, Portnoy (bib39) 2010; 328 Medina, North (bib23) 1998; 93 Sun, Wu, Du, Chen, Chen (bib31) 2013; 339 Abe, Barber (bib1) 2014; 88 Green, Levine (bib14) 2014; 157 Simeone, Bobard, Lippmann, Bitter, Majlessi, Brosch, Enninga (bib27) 2012; 8 Witte, Whiteley, Burke, Sauer, Portnoy, Woodward (bib38) 2013; 4 Tobin, Roca, Oh, McFarland, Vickery, Ray, Ko, Zou, Bang, Chau (bib33) 2012; 148 Simeone (10.1016/j.chom.2015.05.005_bib27) 2012; 8 Castillo (10.1016/j.chom.2015.05.005_bib6) 2012; 109 Green (10.1016/j.chom.2015.05.005_bib14) 2014; 157 Hansen (10.1016/j.chom.2015.05.005_bib15) 2014; 33 Liang (10.1016/j.chom.2015.05.005_bib19) 2014; 15 Berry (10.1016/j.chom.2015.05.005_bib3) 2010; 466 Darwin (10.1016/j.chom.2015.05.005_bib8) 2005; 73 De Leon (10.1016/j.chom.2015.05.005_bib9) 2012; 287 Teles (10.1016/j.chom.2015.05.005_bib32) 2013; 339 Tobin (10.1016/j.chom.2015.05.005_bib33) 2012; 148 Watson (10.1016/j.chom.2015.05.005_bib37) 2015; 17 Medina (10.1016/j.chom.2015.05.005_bib23) 1998; 93 van der Wel (10.1016/j.chom.2015.05.005_bib34) 2007; 129 Ablasser (10.1016/j.chom.2015.05.005_bib2) 2013; 503 Kang (10.1016/j.chom.2015.05.005_bib16) 2011; 6 Manzanillo (10.1016/j.chom.2015.05.005_bib21) 2012; 11 Rongvaux (10.1016/j.chom.2015.05.005_bib24) 2014; 159 Yang (10.1016/j.chom.2015.05.005_bib41) 2014; 93 Gratz (10.1016/j.chom.2015.05.005_bib13) 2011; 7 Converse (10.1016/j.chom.2015.05.005_bib7) 2009; 77 Watson (10.1016/j.chom.2015.05.005_bib36) 2012; 150 Abe (10.1016/j.chom.2015.05.005_bib1) 2014; 88 Manzanillo (10.1016/j.chom.2015.05.005_bib22) 2013; 501 Li (10.1016/j.chom.2015.05.005_bib17) 2012; 40 Sun (10.1016/j.chom.2015.05.005_bib31) 2013; 339 Eshleman (10.1016/j.chom.2015.05.005_bib11) 2014; 5 Wu (10.1016/j.chom.2015.05.005_bib40) 2013; 339 Witte (10.1016/j.chom.2015.05.005_bib38) 2013; 4 Stamm (10.1016/j.chom.2015.05.005_bib28) 2015; 264 Liu (10.1016/j.chom.2015.05.005_bib20) 2015; 347 Gao (10.1016/j.chom.2015.05.005_bib12) 2013; 341 Stanley (10.1016/j.chom.2015.05.005_bib29) 2007; 178 BoseDasgupta (10.1016/j.chom.2015.05.005_bib4) 2014; 5 Sauer (10.1016/j.chom.2015.05.005_bib25) 2011; 79 Schoggins (10.1016/j.chom.2015.05.005_bib26) 2014; 505 Stetson (10.1016/j.chom.2015.05.005_bib30) 2006; 25 Cai (10.1016/j.chom.2015.05.005_bib5) 2014; 54 Li (10.1016/j.chom.2015.05.005_bib18) 2013; 341 Woodward (10.1016/j.chom.2015.05.005_bib39) 2010; 328 Deretic (10.1016/j.chom.2015.05.005_bib10) 2013; 13 Wassermann (10.1016/j.chom.2015.05.005_bib35) 2015; 17 26048138 - Cell Host Microbe. 2015 Jun 10;17(6):799-810 26067600 - Cell Host Microbe. 2015 Jun 10;17(6):733-5 |
References_xml | – volume: 25 start-page: 373 year: 2006 end-page: 381 ident: bib30 article-title: Type I interferons in host defense publication-title: Immunity – volume: 347 start-page: aaa2630 year: 2015 ident: bib20 article-title: Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation publication-title: Science – volume: 13 start-page: 722 year: 2013 end-page: 737 ident: bib10 article-title: Autophagy in infection, inflammation and immunity publication-title: Nat. Rev. Immunol. – volume: 264 start-page: 204 year: 2015 end-page: 219 ident: bib28 article-title: Sensing of publication-title: Immunol. Rev. – volume: 7 start-page: e1001345 year: 2011 ident: bib13 article-title: Type I interferon production induced by publication-title: PLoS Pathog. – volume: 40 start-page: 11292 year: 2012 end-page: 11307 ident: bib17 article-title: LtmA, a novel cyclic di-GMP-responsive activator, broadly regulates the expression of lipid transport and metabolism genes in publication-title: Nucleic Acids Res. – volume: 4 year: 2013 ident: bib38 article-title: Cyclic di-AMP is critical for publication-title: MBio – volume: 341 start-page: 1390 year: 2013 end-page: 1394 ident: bib18 article-title: Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects publication-title: Science – volume: 129 start-page: 1287 year: 2007 end-page: 1298 ident: bib34 article-title: and publication-title: Cell – volume: 178 start-page: 3143 year: 2007 end-page: 3152 ident: bib29 article-title: The Type I IFN response to infection with publication-title: J. Immunol. – volume: 339 start-page: 786 year: 2013 end-page: 791 ident: bib31 article-title: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway publication-title: Science – volume: 109 start-page: E3168 year: 2012 end-page: E3176 ident: bib6 article-title: Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation publication-title: Proc. Natl. Acad. Sci. USA – volume: 339 start-page: 1448 year: 2013 end-page: 1453 ident: bib32 article-title: Type I interferon suppresses type II interferon-triggered human anti-mycobacterial responses publication-title: Science – volume: 159 start-page: 1563 year: 2014 end-page: 1577 ident: bib24 article-title: Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA publication-title: Cell – volume: 5 start-page: 455 year: 2014 ident: bib4 article-title: Striking the right balance determines TB or not TB publication-title: Front. Immunol. – volume: 503 start-page: 530 year: 2013 end-page: 534 ident: bib2 article-title: Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP publication-title: Nature – volume: 466 start-page: 973 year: 2010 end-page: 977 ident: bib3 article-title: An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis publication-title: Nature – volume: 54 start-page: 289 year: 2014 end-page: 296 ident: bib5 article-title: The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling publication-title: Mol. Cell – volume: 17 start-page: 811 year: 2015 end-page: 819 ident: bib37 article-title: The cytosolic sensor cGAS detects publication-title: Cell Host Microbe – volume: 150 start-page: 803 year: 2012 end-page: 815 ident: bib36 article-title: Extracellular publication-title: Cell – volume: 505 start-page: 691 year: 2014 end-page: 695 ident: bib26 article-title: Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity publication-title: Nature – volume: 73 start-page: 4581 year: 2005 end-page: 4587 ident: bib8 article-title: Role for nucleotide excision repair in virulence of publication-title: Infect. Immun. – volume: 339 start-page: 826 year: 2013 end-page: 830 ident: bib40 article-title: Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA publication-title: Science – volume: 88 start-page: 5328 year: 2014 end-page: 5341 ident: bib1 article-title: Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-κB activation through TBK1 publication-title: J. Virol. – volume: 5 start-page: 431 year: 2014 ident: bib11 article-title: Type I interferons in bacterial infections: taming of myeloid cells and possible implications for autoimmunity publication-title: Front. Immunol. – volume: 328 start-page: 1703 year: 2010 end-page: 1705 ident: bib39 article-title: c-di-AMP secreted by intracellular publication-title: Science – volume: 8 start-page: e1002507 year: 2012 ident: bib27 article-title: Phagosomal rupture by publication-title: PLoS Pathog. – volume: 148 start-page: 434 year: 2012 end-page: 446 ident: bib33 article-title: Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections publication-title: Cell – volume: 17 start-page: 799 year: 2015 end-page: 810 ident: bib35 article-title: The ESX-1 secretion system of publication-title: Cell Host Microbe – volume: 287 start-page: 44184 year: 2012 end-page: 44191 ident: bib9 article-title: ESAT-6 exhibits a unique membrane-interacting activity that is not found in its ortholog from non-pathogenic publication-title: J. Biol. Chem. – volume: 157 start-page: 65 year: 2014 end-page: 75 ident: bib14 article-title: To be or not to be? How selective autophagy and cell death govern cell fate publication-title: Cell – volume: 11 start-page: 469 year: 2012 end-page: 480 ident: bib21 article-title: activates the DNA-dependent cytosolic surveillance pathway within macrophages publication-title: Cell Host Microbe – volume: 77 start-page: 1230 year: 2009 end-page: 1237 ident: bib7 article-title: Role of the dosR-dosS two-component regulatory system in publication-title: Infect. Immun. – volume: 93 start-page: 65 year: 2014 end-page: 79 ident: bib41 article-title: Deletion of the cyclic di-AMP phosphodiesterase gene (cnpB) in publication-title: Mol. Microbiol. – volume: 341 start-page: 903 year: 2013 end-page: 906 ident: bib12 article-title: Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses publication-title: Science – volume: 79 start-page: 688 year: 2011 end-page: 694 ident: bib25 article-title: The N-ethyl-N-nitrosourea-induced Goldenticket mouse mutant reveals an essential function of Sting in the in vivo interferon response to publication-title: Infect. Immun. – volume: 33 start-page: 1654 year: 2014 end-page: 1666 ident: bib15 article-title: induces IFNβ expression through an IFI16-, cGAS- and STING-dependent pathway publication-title: EMBO J. – volume: 93 start-page: 270 year: 1998 end-page: 274 ident: bib23 article-title: Resistance ranking of some common inbred mouse strains to publication-title: Immunology – volume: 6 start-page: e16161 year: 2011 ident: bib16 article-title: Profiling early lung immune responses in the mouse model of tuberculosis publication-title: PLoS ONE – volume: 15 start-page: 228 year: 2014 end-page: 238 ident: bib19 article-title: Crosstalk between the cGAS DNA sensor and Beclin-1 autophagy protein shapes innate antimicrobial immune responses publication-title: Cell Host Microbe – volume: 501 start-page: 512 year: 2013 end-page: 516 ident: bib22 article-title: The ubiquitin ligase parkin mediates resistance to intracellular pathogens publication-title: Nature – volume: 505 start-page: 691 year: 2014 ident: 10.1016/j.chom.2015.05.005_bib26 article-title: Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity publication-title: Nature doi: 10.1038/nature12862 – volume: 93 start-page: 65 year: 2014 ident: 10.1016/j.chom.2015.05.005_bib41 article-title: Deletion of the cyclic di-AMP phosphodiesterase gene (cnpB) in Mycobacterium tuberculosis leads to reduced virulence in a mouse model of infection publication-title: Mol. Microbiol. doi: 10.1111/mmi.12641 – volume: 33 start-page: 1654 year: 2014 ident: 10.1016/j.chom.2015.05.005_bib15 article-title: Listeria monocytogenes induces IFNβ expression through an IFI16-, cGAS- and STING-dependent pathway publication-title: EMBO J. doi: 10.15252/embj.201488029 – volume: 129 start-page: 1287 year: 2007 ident: 10.1016/j.chom.2015.05.005_bib34 article-title: M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells publication-title: Cell doi: 10.1016/j.cell.2007.05.059 – volume: 73 start-page: 4581 year: 2005 ident: 10.1016/j.chom.2015.05.005_bib8 article-title: Role for nucleotide excision repair in virulence of Mycobacterium tuberculosis publication-title: Infect. Immun. doi: 10.1128/IAI.73.8.4581-4587.2005 – volume: 17 start-page: 799 year: 2015 ident: 10.1016/j.chom.2015.05.005_bib35 article-title: The ESX-1 secretion system of Mycobacterium tuberculosis differentially regulates cGAS- and inflammasome-dependent intracellular immune responses publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.05.003 – volume: 339 start-page: 786 year: 2013 ident: 10.1016/j.chom.2015.05.005_bib31 article-title: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway publication-title: Science doi: 10.1126/science.1232458 – volume: 7 start-page: e1001345 year: 2011 ident: 10.1016/j.chom.2015.05.005_bib13 article-title: Type I interferon production induced by Streptococcus pyogenes-derived nucleic acids is required for host protection publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1001345 – volume: 466 start-page: 973 year: 2010 ident: 10.1016/j.chom.2015.05.005_bib3 article-title: An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis publication-title: Nature doi: 10.1038/nature09247 – volume: 54 start-page: 289 year: 2014 ident: 10.1016/j.chom.2015.05.005_bib5 article-title: The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.03.040 – volume: 178 start-page: 3143 year: 2007 ident: 10.1016/j.chom.2015.05.005_bib29 article-title: The Type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis publication-title: J. Immunol. doi: 10.4049/jimmunol.178.5.3143 – volume: 5 start-page: 455 year: 2014 ident: 10.1016/j.chom.2015.05.005_bib4 article-title: Striking the right balance determines TB or not TB publication-title: Front. Immunol. doi: 10.3389/fimmu.2014.00455 – volume: 501 start-page: 512 year: 2013 ident: 10.1016/j.chom.2015.05.005_bib22 article-title: The ubiquitin ligase parkin mediates resistance to intracellular pathogens publication-title: Nature doi: 10.1038/nature12566 – volume: 341 start-page: 903 year: 2013 ident: 10.1016/j.chom.2015.05.005_bib12 article-title: Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses publication-title: Science doi: 10.1126/science.1240933 – volume: 11 start-page: 469 year: 2012 ident: 10.1016/j.chom.2015.05.005_bib21 article-title: Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages publication-title: Cell Host Microbe doi: 10.1016/j.chom.2012.03.007 – volume: 264 start-page: 204 year: 2015 ident: 10.1016/j.chom.2015.05.005_bib28 article-title: Sensing of Mycobacterium tuberculosis and consequences to both host and bacillus publication-title: Immunol. Rev. doi: 10.1111/imr.12263 – volume: 25 start-page: 373 year: 2006 ident: 10.1016/j.chom.2015.05.005_bib30 article-title: Type I interferons in host defense publication-title: Immunity doi: 10.1016/j.immuni.2006.08.007 – volume: 159 start-page: 1563 year: 2014 ident: 10.1016/j.chom.2015.05.005_bib24 article-title: Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA publication-title: Cell doi: 10.1016/j.cell.2014.11.037 – volume: 287 start-page: 44184 year: 2012 ident: 10.1016/j.chom.2015.05.005_bib9 article-title: Mycobacterium tuberculosis ESAT-6 exhibits a unique membrane-interacting activity that is not found in its ortholog from non-pathogenic Mycobacterium smegmatis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.420869 – volume: 88 start-page: 5328 year: 2014 ident: 10.1016/j.chom.2015.05.005_bib1 article-title: Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-κB activation through TBK1 publication-title: J. Virol. doi: 10.1128/JVI.00037-14 – volume: 79 start-page: 688 year: 2011 ident: 10.1016/j.chom.2015.05.005_bib25 article-title: The N-ethyl-N-nitrosourea-induced Goldenticket mouse mutant reveals an essential function of Sting in the in vivo interferon response to Listeria monocytogenes and cyclic dinucleotides publication-title: Infect. Immun. doi: 10.1128/IAI.00999-10 – volume: 157 start-page: 65 year: 2014 ident: 10.1016/j.chom.2015.05.005_bib14 article-title: To be or not to be? How selective autophagy and cell death govern cell fate publication-title: Cell doi: 10.1016/j.cell.2014.02.049 – volume: 5 start-page: 431 year: 2014 ident: 10.1016/j.chom.2015.05.005_bib11 article-title: Type I interferons in bacterial infections: taming of myeloid cells and possible implications for autoimmunity publication-title: Front. Immunol. doi: 10.3389/fimmu.2014.00431 – volume: 503 start-page: 530 year: 2013 ident: 10.1016/j.chom.2015.05.005_bib2 article-title: Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP publication-title: Nature doi: 10.1038/nature12640 – volume: 40 start-page: 11292 year: 2012 ident: 10.1016/j.chom.2015.05.005_bib17 article-title: LtmA, a novel cyclic di-GMP-responsive activator, broadly regulates the expression of lipid transport and metabolism genes in Mycobacterium smegmatis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks923 – volume: 6 start-page: e16161 year: 2011 ident: 10.1016/j.chom.2015.05.005_bib16 article-title: Profiling early lung immune responses in the mouse model of tuberculosis publication-title: PLoS ONE doi: 10.1371/journal.pone.0016161 – volume: 328 start-page: 1703 year: 2010 ident: 10.1016/j.chom.2015.05.005_bib39 article-title: c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response publication-title: Science doi: 10.1126/science.1189801 – volume: 339 start-page: 1448 year: 2013 ident: 10.1016/j.chom.2015.05.005_bib32 article-title: Type I interferon suppresses type II interferon-triggered human anti-mycobacterial responses publication-title: Science doi: 10.1126/science.1233665 – volume: 150 start-page: 803 year: 2012 ident: 10.1016/j.chom.2015.05.005_bib36 article-title: Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway publication-title: Cell doi: 10.1016/j.cell.2012.06.040 – volume: 4 year: 2013 ident: 10.1016/j.chom.2015.05.005_bib38 article-title: Cyclic di-AMP is critical for Listeria monocytogenes growth, cell wall homeostasis, and establishment of infection publication-title: MBio doi: 10.1128/mBio.00282-13 – volume: 341 start-page: 1390 year: 2013 ident: 10.1016/j.chom.2015.05.005_bib18 article-title: Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects publication-title: Science doi: 10.1126/science.1244040 – volume: 15 start-page: 228 year: 2014 ident: 10.1016/j.chom.2015.05.005_bib19 article-title: Crosstalk between the cGAS DNA sensor and Beclin-1 autophagy protein shapes innate antimicrobial immune responses publication-title: Cell Host Microbe doi: 10.1016/j.chom.2014.01.009 – volume: 347 start-page: aaa2630 year: 2015 ident: 10.1016/j.chom.2015.05.005_bib20 article-title: Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation publication-title: Science doi: 10.1126/science.aaa2630 – volume: 77 start-page: 1230 year: 2009 ident: 10.1016/j.chom.2015.05.005_bib7 article-title: Role of the dosR-dosS two-component regulatory system in Mycobacterium tuberculosis virulence in three animal models publication-title: Infect. Immun. doi: 10.1128/IAI.01117-08 – volume: 109 start-page: E3168 year: 2012 ident: 10.1016/j.chom.2015.05.005_bib6 article-title: Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1210500109 – volume: 148 start-page: 434 year: 2012 ident: 10.1016/j.chom.2015.05.005_bib33 article-title: Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections publication-title: Cell doi: 10.1016/j.cell.2011.12.023 – volume: 93 start-page: 270 year: 1998 ident: 10.1016/j.chom.2015.05.005_bib23 article-title: Resistance ranking of some common inbred mouse strains to Mycobacterium tuberculosis and relationship to major histocompatibility complex haplotype and Nramp1 genotype publication-title: Immunology doi: 10.1046/j.1365-2567.1998.00419.x – volume: 339 start-page: 826 year: 2013 ident: 10.1016/j.chom.2015.05.005_bib40 article-title: Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA publication-title: Science doi: 10.1126/science.1229963 – volume: 17 start-page: 811 year: 2015 ident: 10.1016/j.chom.2015.05.005_bib37 article-title: The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.05.004 – volume: 13 start-page: 722 year: 2013 ident: 10.1016/j.chom.2015.05.005_bib10 article-title: Autophagy in infection, inflammation and immunity publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3532 – volume: 8 start-page: e1002507 year: 2012 ident: 10.1016/j.chom.2015.05.005_bib27 article-title: Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell death publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002507 – reference: 26067600 - Cell Host Microbe. 2015 Jun 10;17(6):733-5 – reference: 26048138 - Cell Host Microbe. 2015 Jun 10;17(6):799-810 |
SSID | ssj0055071 |
Score | 2.582211 |
Snippet | Activation of the DNA-dependent cytosolic surveillance pathway in response to Mycobacterium tuberculosis infection stimulates ubiquitin-dependent autophagy and... Activation of the DNA-dependent cytosolic surveillance pathway in response to Mycobacterium tuberculosis infection stimulates ubiquitin-dependent autophagy and... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 820 |
SubjectTerms | Animals Autophagy DNA, Bacterial - metabolism DNA-Binding Proteins - metabolism Host-Pathogen Interactions - immunology Humans Immunity, Innate Interferon-beta - immunology Interferon-beta - metabolism Macrophages - metabolism Macrophages - microbiology Membrane Proteins - metabolism Mice, Inbred C57BL Mice, Mutant Strains Mycobacterium tuberculosis - genetics Nucleotidyltransferases - genetics Nucleotidyltransferases - metabolism Proto-Oncogene Proteins c-ets - metabolism Transcription Factors - metabolism Tuberculosis - microbiology Tuberculosis - mortality |
Title | Cyclic GMP-AMP Synthase Is an Innate Immune DNA Sensor for Mycobacterium tuberculosis |
URI | https://dx.doi.org/10.1016/j.chom.2015.05.005 https://www.ncbi.nlm.nih.gov/pubmed/26048137 https://www.proquest.com/docview/1688006095 https://pubmed.ncbi.nlm.nih.gov/PMC4499468 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelZbCX0e4z6wca7G2YWLEky49p2q5ZSSlNw_ImbFmiLplSkvgh_33v_BGWdvRh4AfbkkDopLvfobvfEfJdSsVtlmeBU1IEPIa3JLQiYFEexUomisWYnDy6lpcT_msqpjtk0ObCYFhlo_trnV5p6-ZPt1nN7mNRdMcAPViEF0ECMU-CGeWYVYpJfNPTVhsjXRerb5ZZgL2bxJk6xgvrkWB4l6jYO7GE3b-N00vw-TyG8i-jdLFP3jVokvbrCR-QHevfkzd1fcn1BzIZrM2sMPTn6Cboj27oeO1X92C26HBJU0-H3gPSpENMEbH07LpPx-DUzhcUgCwdrQ0c9YrKufxDV2VmF6aczZfF8iOZXJzfDS6Dpo5CYLBcAWhaFbEc_BZhwL3quRRJ86NcOmlULhMTGWe5CI0KM4YUXJmKnQM3rxfGICzlok9k18-9_UJoLnoO2pWFg4-mPwH00-OGS5fmgqe2Q1i7gNo0JONY62Km22iyB42LrnHRdQhPKDrkx2bMY02x8Wpv0cpFb20UDTbg1XHfWiFqOEF4LZJ6Oy-XmknQYSES73XI51qom3mAtwdbKoo7JN4S96YDsnNvt_jivmLp5uBLcqm-_ud8D8lb_MKoNBYekd3VorTHgH9W2QnZ61_d_r46qTb6EybXAqM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWRQguiOdSnkbihqLGje04x1JYGthUK3Ur9WYljq0NKu6qbQ7998zkUVFAe0DKIYodyZqxZ76RZ74h5IOUituiLAKnpAh4DG9JaEXAojKKlUwUi7E4OZvJ6YJ_W4rlCZn0tTCYVtnZ_tamN9a6-zLspDm8qarhHKAHi_AiSCDmSeI75C6gAYkE-unyU2-Oka-LtVfLLMDpXeVMm-SFDUkwv0s09J3Yw-7f3ulv9PlnEuVvXun8EXnYwUk6blf8mJxY_4TcaxtM7p-SxWRvVpWhX7PLYJxd0vne767Bb9F0S3NPU-8BatIUa0Qs_Twb0zlEtesNBSRLs72Bs95wOdc_6a4u7MbUq_W22j4ji_MvV5Np0DVSCAz2KwBTqyJWQuAiDMRXI5cja35USieNKmViIuMsF6FRYcGQg6tQsXMQ543CGLSlXPScnPq1ty8ILcXIwbiycPLR9ycAf0bccOnyUvDcDgjrBahNxzKOzS5Wuk8n-6FR6BqFrkN4QjEgHw__3LQcG7fOFr1e9NFO0eAEbv3vfa9EDUcI70Vyb9f1VjMJRixE5r0BOWuVelgHhHtcsSgekPhI3YcJSM99POKr64amm0MwyaV6-Z_rfUfuT6-yC32Rzr6_Ig9wBFPUWPianO42tX0DYGhXvG02-y8TVwQk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyclic+GMP-AMP+Synthase+Is+an+Innate+Immune+DNA+Sensor+for+Mycobacterium+tuberculosis&rft.jtitle=Cell+host+%26+microbe&rft.au=Collins%2C+Angela%C2%A0C.&rft.au=Cai%2C+Haocheng&rft.au=Li%2C+Tuo&rft.au=Franco%2C+Luis%C2%A0H.&rft.date=2015-06-10&rft.issn=1931-3128&rft.volume=17&rft.issue=6&rft.spage=820&rft.epage=828&rft_id=info:doi/10.1016%2Fj.chom.2015.05.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chom_2015_05_005 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-3128&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-3128&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-3128&client=summon |