Sunlight-Driven Hydrogen Peroxide Production from Water and Molecular Oxygen by Metal-Free Photocatalysts

Design of green, safe, and sustainable process for the synthesis of hydrogen peroxide (H2O2) is a very important subject. Early reported processes, however, require hydrogen (H2) and palladium‐based catalysts. Herein we propose a photocatalytic process for H2O2 synthesis driven by metal‐free catalys...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 53; no. 49; pp. 13454 - 13459
Main Authors Shiraishi, Yasuhiro, Kanazawa, Shunsuke, Kofuji, Yusuke, Sakamoto, Hirokatsu, Ichikawa, Satoshi, Tanaka, Shunsuke, Hirai, Takayuki
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 01.12.2014
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
EditionInternational ed. in English
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
1521-3773
DOI10.1002/anie.201407938

Cover

Loading…
Abstract Design of green, safe, and sustainable process for the synthesis of hydrogen peroxide (H2O2) is a very important subject. Early reported processes, however, require hydrogen (H2) and palladium‐based catalysts. Herein we propose a photocatalytic process for H2O2 synthesis driven by metal‐free catalysts with earth‐abundant water and molecular oxygen (O2) as resources under sunlight irradiation (λ>400 nm). We use graphitic carbon nitride (g‐C3N4) containing electron‐deficient aromatic diimide units as catalysts. Incorporating the diimide units positively shifts the valence‐band potential of the catalysts, while maintaining sufficient conduction‐band potential for O2 reduction. Visible light irradiation of the catalysts in pure water with O2 successfully produces H2O2 by oxidation of water by the photoformed valence‐band holes and selective two‐electron reduction of O2 by the conduction band electrons. Peroxide made by sunbathing: Sunlight irradiation (λ>400 nm) of graphitic carbon nitride (g‐C3N4) containing electron‐deficient aromatic diimide units successfully produces H2O2 from water and O2. This metal‐free H2O2 synthesis is driven by oxidation of water by the photoformed valence‐band holes and selective two‐electron reduction of O2 by the conduction‐band electrons.
AbstractList Design of green, safe, and sustainable process for the synthesis of hydrogen peroxide (H sub(2)O sub(2)) is a very important subject. Early reported processes, however, require hydrogen (H sub(2)) and palladium-based catalysts. Herein we propose a photocatalytic process for H sub(2)O sub(2) synthesis driven by metal-free catalysts with earth-abundant water and molecular oxygen (O sub(2)) as resources under sunlight irradiation ( lambda >400nm). We use graphitic carbon nitride (g-C sub(3)N sub(4)) containing electron-deficient aromatic diimide units as catalysts. Incorporating the diimide units positively shifts the valence-band potential of the catalysts, while maintaining sufficient conduction-band potential for O sub(2) reduction. Visible light irradiation of the catalysts in pure water with O sub(2) successfully produces H sub(2)O sub(2) by oxidation of water by the photoformed valence-band holes and selective two-electron reduction of O sub(2) by the conduction band electrons. Peroxide made by sunbathing: Sunlight irradiation ( lambda >400nm) of graphitic carbon nitride (g-C sub(3)N sub(4)) containing electron-deficient aromatic diimide units successfully produces H sub(2)O sub(2) from water and O sub(2). This metal-free H sub(2)O sub(2) synthesis is driven by oxidation of water by the photoformed valence-band holes and selective two-electron reduction of O sub(2) by the conduction-band electrons.
Design of green, safe, and sustainable process for the synthesis of hydrogen peroxide (H 2 O 2 ) is a very important subject. Early reported processes, however, require hydrogen (H 2 ) and palladium‐based catalysts. Herein we propose a photocatalytic process for H 2 O 2 synthesis driven by metal‐free catalysts with earth‐abundant water and molecular oxygen (O 2 ) as resources under sunlight irradiation ( λ >400 nm). We use graphitic carbon nitride (g‐C 3 N 4 ) containing electron‐deficient aromatic diimide units as catalysts. Incorporating the diimide units positively shifts the valence‐band potential of the catalysts, while maintaining sufficient conduction‐band potential for O 2 reduction. Visible light irradiation of the catalysts in pure water with O 2 successfully produces H 2 O 2 by oxidation of water by the photoformed valence‐band holes and selective two‐electron reduction of O 2 by the conduction band electrons.
Design of green, safe, and sustainable process for the synthesis of hydrogen peroxide (H2 O2 ) is a very important subject. Early reported processes, however, require hydrogen (H2 ) and palladium-based catalysts. Herein we propose a photocatalytic process for H2 O2 synthesis driven by metal-free catalysts with earth-abundant water and molecular oxygen (O2 ) as resources under sunlight irradiation (λ>400 nm). We use graphitic carbon nitride (g-C3 N4 ) containing electron-deficient aromatic diimide units as catalysts. Incorporating the diimide units positively shifts the valence-band potential of the catalysts, while maintaining sufficient conduction-band potential for O2 reduction. Visible light irradiation of the catalysts in pure water with O2 successfully produces H2 O2 by oxidation of water by the photoformed valence-band holes and selective two-electron reduction of O2 by the conduction band electrons.Design of green, safe, and sustainable process for the synthesis of hydrogen peroxide (H2 O2 ) is a very important subject. Early reported processes, however, require hydrogen (H2 ) and palladium-based catalysts. Herein we propose a photocatalytic process for H2 O2 synthesis driven by metal-free catalysts with earth-abundant water and molecular oxygen (O2 ) as resources under sunlight irradiation (λ>400 nm). We use graphitic carbon nitride (g-C3 N4 ) containing electron-deficient aromatic diimide units as catalysts. Incorporating the diimide units positively shifts the valence-band potential of the catalysts, while maintaining sufficient conduction-band potential for O2 reduction. Visible light irradiation of the catalysts in pure water with O2 successfully produces H2 O2 by oxidation of water by the photoformed valence-band holes and selective two-electron reduction of O2 by the conduction band electrons.
Design of green, safe, and sustainable process for the synthesis of hydrogen peroxide (H2O2) is a very important subject. Early reported processes, however, require hydrogen (H2) and palladium-based catalysts. Herein we propose a photocatalytic process for H2O2 synthesis driven by metal-free catalysts with earth-abundant water and molecular oxygen (O2) as resources under sunlight irradiation (λ>400nm). We use graphitic carbon nitride (g-C3N4) containing electron-deficient aromatic diimide units as catalysts. Incorporating the diimide units positively shifts the valence-band potential of the catalysts, while maintaining sufficient conduction-band potential for O2 reduction. Visible light irradiation of the catalysts in pure water with O2 successfully produces H2O2 by oxidation of water by the photoformed valence-band holes and selective two-electron reduction of O2 by the conduction band electrons.
Design of green, safe, and sustainable process for the synthesis of hydrogen peroxide (H2 O2 ) is a very important subject. Early reported processes, however, require hydrogen (H2 ) and palladium-based catalysts. Herein we propose a photocatalytic process for H2 O2 synthesis driven by metal-free catalysts with earth-abundant water and molecular oxygen (O2 ) as resources under sunlight irradiation (λ>400 nm). We use graphitic carbon nitride (g-C3 N4 ) containing electron-deficient aromatic diimide units as catalysts. Incorporating the diimide units positively shifts the valence-band potential of the catalysts, while maintaining sufficient conduction-band potential for O2 reduction. Visible light irradiation of the catalysts in pure water with O2 successfully produces H2 O2 by oxidation of water by the photoformed valence-band holes and selective two-electron reduction of O2 by the conduction band electrons.
Design of green, safe, and sustainable process for the synthesis of hydrogen peroxide (H2O2) is a very important subject. Early reported processes, however, require hydrogen (H2) and palladium‐based catalysts. Herein we propose a photocatalytic process for H2O2 synthesis driven by metal‐free catalysts with earth‐abundant water and molecular oxygen (O2) as resources under sunlight irradiation (λ>400 nm). We use graphitic carbon nitride (g‐C3N4) containing electron‐deficient aromatic diimide units as catalysts. Incorporating the diimide units positively shifts the valence‐band potential of the catalysts, while maintaining sufficient conduction‐band potential for O2 reduction. Visible light irradiation of the catalysts in pure water with O2 successfully produces H2O2 by oxidation of water by the photoformed valence‐band holes and selective two‐electron reduction of O2 by the conduction band electrons. Peroxide made by sunbathing: Sunlight irradiation (λ>400 nm) of graphitic carbon nitride (g‐C3N4) containing electron‐deficient aromatic diimide units successfully produces H2O2 from water and O2. This metal‐free H2O2 synthesis is driven by oxidation of water by the photoformed valence‐band holes and selective two‐electron reduction of O2 by the conduction‐band electrons.
Author Sakamoto, Hirokatsu
Kanazawa, Shunsuke
Tanaka, Shunsuke
Shiraishi, Yasuhiro
Ichikawa, Satoshi
Hirai, Takayuki
Kofuji, Yusuke
Author_xml – sequence: 1
  givenname: Yasuhiro
  surname: Shiraishi
  fullname: Shiraishi, Yasuhiro
  email: shiraish@cheng.es.osaka-u.ac.jp
  organization: Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531 (Japan)
– sequence: 2
  givenname: Shunsuke
  surname: Kanazawa
  fullname: Kanazawa, Shunsuke
  organization: Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531 (Japan)
– sequence: 3
  givenname: Yusuke
  surname: Kofuji
  fullname: Kofuji, Yusuke
  organization: Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531 (Japan)
– sequence: 4
  givenname: Hirokatsu
  surname: Sakamoto
  fullname: Sakamoto, Hirokatsu
  organization: Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531 (Japan)
– sequence: 5
  givenname: Satoshi
  surname: Ichikawa
  fullname: Ichikawa, Satoshi
  organization: Institute for NanoScience Design, Osaka University (Japan)
– sequence: 6
  givenname: Shunsuke
  surname: Tanaka
  fullname: Tanaka, Shunsuke
  organization: Department of Chemical, Energy and Environmental Engineering, Kansai University (Japan)
– sequence: 7
  givenname: Takayuki
  surname: Hirai
  fullname: Hirai, Takayuki
  organization: Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531 (Japan)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25293501$$D View this record in MEDLINE/PubMed
BookMark eNqFkUlv1DAYhi1URBe4ckSRuHDJ4CXxcqxKN2mmi2jp0fLEX1qXTFxsByb_Hg9TRlWlqid_lp7Hy_vuoq3e94DQR4InBGP61fQOJhSTCgvF5Bu0Q2pKSiYE28pzxVgpZE220W6M95mXEvN3aJvWVLEakx3kvg99527vUvktuN_QFyejDf42DxcQ_NJZKC6Ct0OTnO-LNvhFcWMShML0tpj5DpqhM6E4X44rZz4WM0imK48CZPHOJ9-YvB9jiu_R29Z0ET48rnvo-ujw6uCknJ4fnx7sT8smv1yWwLmiYBUQa5qaVWAUt0KBFFZSaits5JzbSpl5Q3iFa9q2REpoDSfUEsXYHvqyPvch-F8DxKQXLjbQdaYHP0RNBMZKUazE6yjPgUmac8vo52fovR9Cnz_yj8oN8Fpl6tMjNcwXYPVDcAsTRv0_7wxM1kATfIwB2g1CsF4VqleF6k2hWaieCY1LZlVGCsZ1L2tqrf1xHYyvXKL3z04Pn7rl2nUxwXLjmvBTc8FErW_OjvWMzabix-WlVuwv9APDzA
CODEN ACIEAY
CitedBy_id crossref_primary_10_1039_D4QI01580K
crossref_primary_10_1016_j_apcatb_2021_120757
crossref_primary_10_1016_j_seppur_2024_128829
crossref_primary_10_1007_s11244_020_01317_9
crossref_primary_10_1016_j_apsusc_2020_146908
crossref_primary_10_1016_j_jcat_2022_08_019
crossref_primary_10_1016_j_apcatb_2021_120516
crossref_primary_10_1016_j_apcatb_2020_119003
crossref_primary_10_1016_j_cattod_2022_05_020
crossref_primary_10_1016_j_colsurfa_2018_04_013
crossref_primary_10_1021_acscatal_1c03733
crossref_primary_10_1016_j_nanoen_2022_107906
crossref_primary_10_1016_j_jpowsour_2024_234654
crossref_primary_10_1039_D3CC03807F
crossref_primary_10_1016_j_apcatb_2021_120522
crossref_primary_10_1039_D3GC04123A
crossref_primary_10_1002_smll_201703142
crossref_primary_10_1002_anie_202006747
crossref_primary_10_1016_j_apcatb_2021_119993
crossref_primary_10_1039_C5EE00748H
crossref_primary_10_1016_j_apcatb_2019_117956
crossref_primary_10_1021_jacs_7b06634
crossref_primary_10_1002_anie_201811261
crossref_primary_10_1039_D1TA07802J
crossref_primary_10_1039_C7RE00112F
crossref_primary_10_1016_j_apcatb_2018_03_077
crossref_primary_10_1016_j_diamond_2023_110225
crossref_primary_10_1021_jacs_9b00144
crossref_primary_10_1088_1361_6528_ac4f83
crossref_primary_10_1007_s12274_022_4111_2
crossref_primary_10_1039_D1CY00581B
crossref_primary_10_1016_j_apcatb_2017_07_021
crossref_primary_10_1007_s12274_024_6736_9
crossref_primary_10_1002_anie_202316998
crossref_primary_10_1016_j_apcatb_2018_11_044
crossref_primary_10_1002_adfm_202213173
crossref_primary_10_1016_j_apcatb_2021_120666
crossref_primary_10_1021_acsami_1c23960
crossref_primary_10_1021_acsami_5b11326
crossref_primary_10_1021_acsami_8b01295
crossref_primary_10_1002_anie_202200413
crossref_primary_10_1021_acsenergylett_8b00318
crossref_primary_10_1016_j_molcata_2016_04_009
crossref_primary_10_1016_j_apcatb_2020_119150
crossref_primary_10_1039_C6CC01605G
crossref_primary_10_1021_acsapm_3c01455
crossref_primary_10_1016_j_mtsust_2024_100819
crossref_primary_10_1039_D2QM01371A
crossref_primary_10_1016_j_envres_2021_110785
crossref_primary_10_1039_D0TA10944D
crossref_primary_10_1021_acs_est_0c00886
crossref_primary_10_1002_adfm_201705407
crossref_primary_10_31613_ceramist_2022_25_2_05
crossref_primary_10_3390_nano10091824
crossref_primary_10_3390_catal13020218
crossref_primary_10_1016_j_jcis_2024_08_058
crossref_primary_10_1016_j_apcatb_2021_120316
crossref_primary_10_1021_jacs_5b04062
crossref_primary_10_2139_ssrn_4065669
crossref_primary_10_1002_anie_202404563
crossref_primary_10_1016_j_mseb_2016_08_003
crossref_primary_10_1021_jacs_6b05806
crossref_primary_10_1016_j_cej_2022_135664
crossref_primary_10_1002_ange_201811261
crossref_primary_10_1021_acsomega_1c04107
crossref_primary_10_1002_solr_202000594
crossref_primary_10_26599_NRE_2023_9120091
crossref_primary_10_1155_je_5807390
crossref_primary_10_1002_ange_202210856
crossref_primary_10_1016_j_cej_2023_148059
crossref_primary_10_1016_S1872_2067_18_63180_8
crossref_primary_10_1016_j_apcatb_2019_03_024
crossref_primary_10_1016_j_envpol_2018_11_090
crossref_primary_10_1016_j_chemosphere_2021_130556
crossref_primary_10_1039_C8NR09005J
crossref_primary_10_1039_C9GC04324A
crossref_primary_10_1021_jacs_9b13410
crossref_primary_10_1039_C5CY01845E
crossref_primary_10_1016_j_jclepro_2021_130026
crossref_primary_10_1039_D4EE02505A
crossref_primary_10_1039_C6TA11168H
crossref_primary_10_1039_C7CS00840F
crossref_primary_10_1002_ange_201606734
crossref_primary_10_1039_D4RA00536H
crossref_primary_10_1002_adfm_202111125
crossref_primary_10_1016_j_actphy_2025_100064
crossref_primary_10_1016_j_cclet_2024_110125
crossref_primary_10_1021_acscatal_6b02611
crossref_primary_10_1021_acsestwater_1c00048
crossref_primary_10_1039_D1MA00304F
crossref_primary_10_1039_C9SC01626K
crossref_primary_10_1016_j_jcis_2023_06_186
crossref_primary_10_1039_D3YA00038A
crossref_primary_10_1021_acssuschemeng_9b06134
crossref_primary_10_1039_D0GC04236F
crossref_primary_10_1007_s10562_020_03389_4
crossref_primary_10_1002_ange_202404563
crossref_primary_10_1021_acs_jpcc_4c01272
crossref_primary_10_1039_D0EN00801J
crossref_primary_10_1016_j_apcatb_2020_119064
crossref_primary_10_1039_D2CY00269H
crossref_primary_10_1002_aenm_202003121
crossref_primary_10_1002_cctc_201701683
crossref_primary_10_1016_j_cej_2022_139929
crossref_primary_10_1021_acssuschemeng_0c07753
crossref_primary_10_1016_j_cplett_2023_140936
crossref_primary_10_1039_D0CP03533E
crossref_primary_10_1021_acsenergylett_6b00415
crossref_primary_10_1016_j_apcatb_2019_03_040
crossref_primary_10_1002_adfm_201602114
crossref_primary_10_2139_ssrn_4158326
crossref_primary_10_1039_D0TA05621A
crossref_primary_10_1039_D1DT02367E
crossref_primary_10_1016_j_apcatb_2022_121066
crossref_primary_10_1039_C5EE03115J
crossref_primary_10_1016_j_jhazmat_2022_129251
crossref_primary_10_1039_D1TA08036A
crossref_primary_10_1002_adma_201904433
crossref_primary_10_1021_acs_macromol_3c02001
crossref_primary_10_1016_j_cej_2023_147724
crossref_primary_10_1088_1361_6528_abedec
crossref_primary_10_1016_j_xcrp_2025_102431
crossref_primary_10_1039_C5TC01406A
crossref_primary_10_1039_C6TA10114C
crossref_primary_10_1038_s44160_023_00272_z
crossref_primary_10_1002_ange_202100164
crossref_primary_10_1039_C8EN00908B
crossref_primary_10_1016_j_cattod_2023_114400
crossref_primary_10_1016_j_jece_2024_112290
crossref_primary_10_1002_aenm_202302797
crossref_primary_10_1021_acsami_2c16549
crossref_primary_10_1016_j_cjche_2021_09_030
crossref_primary_10_1002_adma_202110266
crossref_primary_10_1016_j_jtice_2021_09_036
crossref_primary_10_1039_C9TA13929J
crossref_primary_10_1007_s40843_022_2337_7
crossref_primary_10_1002_ange_202316998
crossref_primary_10_1021_acs_jpclett_5b00149
crossref_primary_10_1071_CH18328
crossref_primary_10_2139_ssrn_4199809
crossref_primary_10_1002_cssc_202300860
crossref_primary_10_1039_D4GC01321B
crossref_primary_10_1039_C6RA28768A
crossref_primary_10_1016_j_apsusc_2018_09_141
crossref_primary_10_1016_j_indcrop_2023_117000
crossref_primary_10_1021_acs_jpcc_9b02311
crossref_primary_10_1016_j_jallcom_2023_172000
crossref_primary_10_1039_D2TA01646J
crossref_primary_10_1021_acs_chemrev_6b00396
crossref_primary_10_1039_D2TA08722G
crossref_primary_10_1016_j_scib_2017_04_013
crossref_primary_10_1016_j_apmate_2024_100179
crossref_primary_10_1016_j_cej_2021_130067
crossref_primary_10_1016_j_jcat_2019_06_015
crossref_primary_10_1016_j_jhazmat_2020_123703
crossref_primary_10_1016_j_xcrp_2022_100874
crossref_primary_10_1007_s12274_024_6623_4
crossref_primary_10_1038_s41557_024_01553_6
crossref_primary_10_1002_anie_202317572
crossref_primary_10_1038_s41563_019_0398_0
crossref_primary_10_1021_acs_jpcc_3c06435
crossref_primary_10_3390_nano13091481
crossref_primary_10_1021_acssuschemeng_3c02461
crossref_primary_10_1038_srep16947
crossref_primary_10_1002_cctc_201702055
crossref_primary_10_1016_j_nanoen_2025_110862
crossref_primary_10_1002_advs_202102376
crossref_primary_10_1016_j_jechem_2017_12_014
crossref_primary_10_1021_acssuschemeng_2c05634
crossref_primary_10_1039_D2CY01135B
crossref_primary_10_1016_j_carbon_2020_11_032
crossref_primary_10_1016_j_checat_2023_100870
crossref_primary_10_1016_j_jcat_2016_10_028
crossref_primary_10_1002_adsu_202100184
crossref_primary_10_1021_acsanm_4c06284
crossref_primary_10_1038_s42004_020_00421_x
crossref_primary_10_1002_solr_202000440
crossref_primary_10_1021_acs_jpclett_1c00421
crossref_primary_10_1002_adfm_202416753
crossref_primary_10_1002_cptc_201700146
crossref_primary_10_1021_acs_chemmater_1c03166
crossref_primary_10_1039_D4CC01577K
crossref_primary_10_1021_acs_jpcc_8b03996
crossref_primary_10_1016_j_chemosphere_2019_01_109
crossref_primary_10_1016_S1872_2067_23_64629_7
crossref_primary_10_1039_D1GC00198A
crossref_primary_10_1134_S0036023622050102
crossref_primary_10_1016_j_snb_2018_12_068
crossref_primary_10_1039_C9NA00431A
crossref_primary_10_1039_D2CS00806H
crossref_primary_10_1002_ange_202200413
crossref_primary_10_1016_j_cej_2021_132032
crossref_primary_10_1016_S1872_2067_20_63715_9
crossref_primary_10_1021_am509213x
crossref_primary_10_1016_j_apcatb_2022_121379
crossref_primary_10_1002_smll_202206587
crossref_primary_10_1002_anie_202310847
crossref_primary_10_3390_catal9120990
crossref_primary_10_1002_smll_202103224
crossref_primary_10_1002_ange_202406143
crossref_primary_10_1016_j_jece_2024_114425
crossref_primary_10_1039_C7TA05882A
crossref_primary_10_1016_j_apcatb_2022_121485
crossref_primary_10_1021_jacs_0c01683
crossref_primary_10_1016_j_nantod_2020_101059
crossref_primary_10_1039_D2EW00504B
crossref_primary_10_1016_j_seppur_2022_121947
crossref_primary_10_1021_acscatal_3c02904
crossref_primary_10_1016_j_apcatb_2018_03_035
crossref_primary_10_1039_D1EE02369A
crossref_primary_10_1002_cctc_201801803
crossref_primary_10_1002_cjoc_202300494
crossref_primary_10_1039_D0EN00329H
crossref_primary_10_1039_C7NJ03298F
crossref_primary_10_1016_j_jcis_2020_06_023
crossref_primary_10_1016_j_materresbull_2018_12_014
crossref_primary_10_1021_acs_chemrev_6b00075
crossref_primary_10_1021_acssuschemeng_2c04512
crossref_primary_10_1021_acs_jpcc_9b11568
crossref_primary_10_3390_molecules27175535
crossref_primary_10_1016_j_cossms_2022_100988
crossref_primary_10_1016_j_chemosphere_2024_142330
crossref_primary_10_1002_anie_202403884
crossref_primary_10_1016_j_cej_2024_153871
crossref_primary_10_1007_s10853_023_08745_4
crossref_primary_10_1002_smtd_202301368
crossref_primary_10_1002_cptc_202300070
crossref_primary_10_1016_j_cej_2025_160563
crossref_primary_10_1038_s41467_020_17216_2
crossref_primary_10_1016_j_apsusc_2021_151515
crossref_primary_10_1039_D2QM00604A
crossref_primary_10_1021_acs_langmuir_9b03445
crossref_primary_10_1002_chin_201511011
crossref_primary_10_1021_acscatal_8b03738
crossref_primary_10_1002_aic_18692
crossref_primary_10_1016_S1872_2067_22_64114_7
crossref_primary_10_1016_j_jcat_2017_10_002
crossref_primary_10_1016_j_cej_2024_150245
crossref_primary_10_1002_aenm_202400740
crossref_primary_10_1021_acscatal_2c04085
crossref_primary_10_1002_smll_202404139
crossref_primary_10_1021_acsnano_2c11550
crossref_primary_10_1016_j_apcatb_2018_11_087
crossref_primary_10_1039_D2CC05660G
crossref_primary_10_1016_j_apcatb_2017_03_079
crossref_primary_10_1002_cssc_202300886
crossref_primary_10_1002_cssc_202300763
crossref_primary_10_1016_j_apcata_2023_119173
crossref_primary_10_1016_j_jwpe_2020_101467
crossref_primary_10_1039_D3CS00213F
crossref_primary_10_1039_C6CP07973C
crossref_primary_10_1021_acssuschemeng_6b02635
crossref_primary_10_1039_C7NR02310C
crossref_primary_10_1016_j_mtphys_2024_101411
crossref_primary_10_1039_C9TA06251C
crossref_primary_10_1016_j_jhazmat_2020_122557
crossref_primary_10_1021_acs_jpcc_4c05128
crossref_primary_10_1002_cey2_596
crossref_primary_10_1002_anie_202401884
crossref_primary_10_1016_j_cej_2022_137009
crossref_primary_10_1016_j_jmst_2024_01_065
crossref_primary_10_1039_D2RA01797K
crossref_primary_10_1021_acscatal_6b02367
crossref_primary_10_1021_acscatal_6b03334
crossref_primary_10_1002_asia_201700292
crossref_primary_10_3390_ma12244238
crossref_primary_10_1039_C7CC00621G
crossref_primary_10_1002_smtd_202400797
crossref_primary_10_1021_acs_jpclett_6b02026
crossref_primary_10_1016_j_jhazmat_2019_03_114
crossref_primary_10_1016_j_apcatb_2020_119817
crossref_primary_10_1016_j_cej_2021_129107
crossref_primary_10_1007_s12039_021_01999_y
crossref_primary_10_1039_D1NJ04682A
crossref_primary_10_1039_D0NR03178J
crossref_primary_10_1002_adfm_202420504
crossref_primary_10_1039_D0TA11510J
crossref_primary_10_1016_S1872_2067_22_64205_0
crossref_primary_10_1039_C5NJ00158G
crossref_primary_10_1002_adfm_202201743
crossref_primary_10_1021_acsaem_8b00829
crossref_primary_10_1021_acscatal_9b05247
crossref_primary_10_1002_ange_201911609
crossref_primary_10_1002_ange_202317572
crossref_primary_10_1016_j_carbon_2021_07_025
crossref_primary_10_14356_kona_2023004
crossref_primary_10_1016_j_cej_2021_129346
crossref_primary_10_1039_D1NJ02608A
crossref_primary_10_1021_jacs_4c07170
crossref_primary_10_1002_ange_202305355
crossref_primary_10_1021_jacs_2c02666
crossref_primary_10_1021_acscatal_5b00408
crossref_primary_10_1016_j_jhazmat_2019_120815
crossref_primary_10_1016_j_apsusc_2018_08_070
crossref_primary_10_1016_j_colsurfa_2018_01_021
crossref_primary_10_1021_acs_jpcc_5b10626
crossref_primary_10_1016_j_chemosphere_2019_124927
crossref_primary_10_3390_molecules28041805
crossref_primary_10_1021_acs_jpcc_3c04523
crossref_primary_10_1002_anie_202408186
crossref_primary_10_1021_acsestengg_1c00456
crossref_primary_10_1016_j_apsusc_2022_155717
crossref_primary_10_1016_j_cclet_2023_109429
crossref_primary_10_1016_j_colsurfa_2024_135774
crossref_primary_10_1002_celc_201600317
crossref_primary_10_1002_ange_202310847
crossref_primary_10_1016_j_jece_2024_114093
crossref_primary_10_1016_j_jmst_2021_09_002
crossref_primary_10_1002_aesr_202300090
crossref_primary_10_1039_D3CY00235G
crossref_primary_10_1016_j_jcis_2017_07_099
crossref_primary_10_1016_j_apcatb_2017_12_044
crossref_primary_10_1016_j_cej_2025_160091
crossref_primary_10_1016_j_nantod_2017_12_011
crossref_primary_10_1016_j_apcata_2020_117419
crossref_primary_10_1002_adsu_201900027
crossref_primary_10_1002_anie_202100164
crossref_primary_10_1039_C6TA04737H
crossref_primary_10_1002_smll_202301007
crossref_primary_10_1002_adfm_202002021
crossref_primary_10_1016_j_cej_2022_138489
crossref_primary_10_1002_ejic_201700930
crossref_primary_10_1016_j_mattod_2023_10_005
crossref_primary_10_1039_C6RA26137J
crossref_primary_10_1002_cjoc_202200355
crossref_primary_10_1021_jacs_1c10786
crossref_primary_10_1039_C8EE01316K
crossref_primary_10_1016_j_molstruc_2021_131244
crossref_primary_10_1016_j_envint_2020_106273
crossref_primary_10_1021_acsomega_2c02371
crossref_primary_10_1016_j_apcatb_2017_11_026
crossref_primary_10_1016_j_ccr_2018_03_003
crossref_primary_10_1002_ange_201705926
crossref_primary_10_1149_1945_7111_abad6f
crossref_primary_10_1016_j_jcis_2022_07_137
crossref_primary_10_1016_j_jece_2023_109405
crossref_primary_10_1016_j_snb_2020_128142
crossref_primary_10_1016_j_apcatb_2017_05_038
crossref_primary_10_1039_D3EE03032F
crossref_primary_10_1039_D1CY01657A
crossref_primary_10_1002_anie_202305355
crossref_primary_10_1039_D0QI01327G
crossref_primary_10_1007_s12274_023_6159_z
crossref_primary_10_1016_j_apcatb_2024_124590
crossref_primary_10_1016_j_jmst_2021_03_025
crossref_primary_10_1016_j_jcat_2022_05_017
crossref_primary_10_1016_j_mssp_2019_03_002
crossref_primary_10_1002_ange_202401884
crossref_primary_10_1039_D2NJ02237K
crossref_primary_10_1073_pnas_2115666118
crossref_primary_10_1021_acsanm_1c02896
crossref_primary_10_1002_ange_202304349
crossref_primary_10_1016_j_cej_2024_154212
crossref_primary_10_1021_acs_chemmater_2c00936
crossref_primary_10_1016_j_inoche_2025_113975
crossref_primary_10_1039_D4CE00420E
crossref_primary_10_1016_j_cclet_2022_06_044
crossref_primary_10_1016_j_jpcs_2022_110588
crossref_primary_10_1016_j_apsusc_2022_153866
crossref_primary_10_1016_j_bbabio_2015_08_012
crossref_primary_10_1016_j_jece_2025_115422
crossref_primary_10_1021_acscatal_6b01187
crossref_primary_10_1039_D4TA03950E
crossref_primary_10_1021_acscatal_3c01076
crossref_primary_10_1016_j_fuel_2023_129465
crossref_primary_10_1002_qua_26960
crossref_primary_10_1016_j_apcatb_2020_118770
crossref_primary_10_1016_j_cclet_2023_108784
crossref_primary_10_1016_j_nanoen_2017_04_017
crossref_primary_10_1073_pnas_2202913119
crossref_primary_10_1002_cssc_201600661
crossref_primary_10_1002_sus2_83
crossref_primary_10_1002_anie_202403926
crossref_primary_10_1016_j_apcatb_2024_124264
crossref_primary_10_1016_j_cej_2019_03_141
crossref_primary_10_1002_adfm_201601946
crossref_primary_10_1016_j_apcatb_2022_121859
crossref_primary_10_1016_j_memsci_2017_07_044
crossref_primary_10_1038_s41467_024_49663_6
crossref_primary_10_1016_j_jcat_2022_06_042
crossref_primary_10_1016_j_joule_2017_07_007
crossref_primary_10_1021_acs_cgd_1c01163
crossref_primary_10_1021_acs_chemmater_2c00910
crossref_primary_10_1016_j_jechem_2021_03_055
crossref_primary_10_1016_j_mtener_2023_101475
crossref_primary_10_1016_j_jece_2023_109512
crossref_primary_10_1002_adfm_202106120
crossref_primary_10_1002_chem_201704512
crossref_primary_10_1016_j_catcom_2019_02_011
crossref_primary_10_1002_ange_202403926
crossref_primary_10_1038_s41467_023_40991_7
crossref_primary_10_1021_acscatal_1c03690
crossref_primary_10_1039_D2TA10074F
crossref_primary_10_1002_phmt_8
crossref_primary_10_3390_nano10091751
crossref_primary_10_1246_cl_230044
crossref_primary_10_1016_j_isci_2019_06_023
crossref_primary_10_1002_anie_202406143
crossref_primary_10_1039_D0CP00369G
crossref_primary_10_1016_j_cej_2024_155079
crossref_primary_10_1007_s40820_020_00504_3
crossref_primary_10_1002_anie_201606734
crossref_primary_10_1002_anie_202304349
crossref_primary_10_1021_acs_energyfuels_3c01173
crossref_primary_10_1002_aenm_202300119
crossref_primary_10_1007_s41061_023_00423_y
crossref_primary_10_1021_acsami_3c19464
crossref_primary_10_1016_j_apcatb_2024_124323
crossref_primary_10_1016_j_apcatb_2020_119539
crossref_primary_10_1039_C9EN00482C
crossref_primary_10_1016_j_cej_2021_130615
crossref_primary_10_1002_cssc_201600705
crossref_primary_10_1134_S0040579524600979
crossref_primary_10_1016_j_ijhydene_2024_11_272
crossref_primary_10_1021_acs_langmuir_4c01014
crossref_primary_10_1002_anie_201705926
crossref_primary_10_1021_acscatal_1c03103
crossref_primary_10_1021_acs_jpcc_5c00163
crossref_primary_10_1039_D0TA07796H
crossref_primary_10_1016_j_apsusc_2024_159494
crossref_primary_10_1016_j_jtice_2021_104179
crossref_primary_10_1039_D1TA06960H
crossref_primary_10_1021_acscatal_0c03359
crossref_primary_10_1016_j_apsusc_2020_145650
crossref_primary_10_1016_j_jcat_2023_01_021
crossref_primary_10_1016_j_jcis_2021_04_019
crossref_primary_10_1016_j_jelechem_2020_114677
crossref_primary_10_1016_j_jcis_2022_11_146
crossref_primary_10_1016_j_xinn_2021_100089
crossref_primary_10_1021_acs_iecr_2c03673
crossref_primary_10_1016_j_mssp_2020_105024
crossref_primary_10_1016_j_jphotochem_2022_113949
crossref_primary_10_1016_j_electacta_2022_140433
crossref_primary_10_1016_j_porgcoat_2021_106356
crossref_primary_10_1016_j_cattod_2018_11_067
crossref_primary_10_1016_j_apcatb_2016_03_004
crossref_primary_10_3389_fchem_2022_1098209
crossref_primary_10_2174_1573411019666230224142001
crossref_primary_10_1039_D0CS00458H
crossref_primary_10_1021_acscatal_2c05931
crossref_primary_10_3390_catal13101331
crossref_primary_10_1002_ange_202408186
crossref_primary_10_1021_ic502678k
crossref_primary_10_1016_j_cej_2021_130991
crossref_primary_10_1016_j_cej_2024_158432
crossref_primary_10_1002_adfm_202400612
crossref_primary_10_1021_acsami_0c13656
crossref_primary_10_1016_j_cej_2025_161904
crossref_primary_10_1021_acsapm_4c02016
crossref_primary_10_1016_j_apcata_2021_118240
crossref_primary_10_1016_j_jcis_2024_09_118
crossref_primary_10_1002_ange_202006747
crossref_primary_10_1016_j_apcatb_2019_02_041
crossref_primary_10_1016_j_jcis_2021_04_111
crossref_primary_10_1021_acsearthspacechem_9b00297
crossref_primary_10_1016_j_apcatb_2022_121944
crossref_primary_10_12677_MS_2021_1112141
crossref_primary_10_1002_anie_202210856
crossref_primary_10_1007_s10854_022_09344_w
crossref_primary_10_1016_S1872_2067_20_63767_6
crossref_primary_10_1016_S1872_2067_24_60143_9
crossref_primary_10_1002_adma_201605148
crossref_primary_10_1039_D2TA09122D
crossref_primary_10_1016_j_apcatb_2023_123271
crossref_primary_10_1016_j_jcat_2021_05_007
crossref_primary_10_1039_D2TA08045A
crossref_primary_10_1002_asia_201900261
crossref_primary_10_1016_j_jechem_2022_02_031
crossref_primary_10_1038_srep22808
crossref_primary_10_1002_smll_202409006
crossref_primary_10_1002_adsu_202200143
crossref_primary_10_1016_j_cclet_2020_04_020
crossref_primary_10_1039_C5CC02589C
crossref_primary_10_3390_catal8040147
crossref_primary_10_1021_acssuschemeng_7b00575
crossref_primary_10_1016_j_cej_2019_123427
crossref_primary_10_1021_acsami_8b03756
crossref_primary_10_1039_C7EE03459H
crossref_primary_10_1002_ente_201800886
crossref_primary_10_1021_acsami_4c14902
crossref_primary_10_1038_s41467_021_24048_1
crossref_primary_10_1039_C8TA02061B
crossref_primary_10_1021_acsanm_3c04969
crossref_primary_10_20964_2022_11_41
crossref_primary_10_1142_S1088424622300075
crossref_primary_10_1016_j_ceja_2021_100142
crossref_primary_10_1080_01614940_2021_1948302
crossref_primary_10_1021_acs_jpca_0c08496
crossref_primary_10_1016_j_apcatb_2021_120736
crossref_primary_10_1016_j_cej_2022_138551
crossref_primary_10_1016_j_jcis_2022_06_068
crossref_primary_10_1021_acssuschemeng_2c06497
crossref_primary_10_1016_j_apcatb_2020_119225
crossref_primary_10_1021_acsami_3c08466
crossref_primary_10_1021_acsnano_4c04797
crossref_primary_10_1016_j_apcatb_2020_119589
crossref_primary_10_1021_acs_chemmater_2c00528
crossref_primary_10_1016_j_jpowsour_2022_231368
crossref_primary_10_1039_D1CS00219H
crossref_primary_10_1038_ncomms11470
crossref_primary_10_1016_j_carbon_2022_12_075
crossref_primary_10_1016_j_cej_2020_128184
crossref_primary_10_1016_j_molliq_2020_114772
crossref_primary_10_1016_j_jcis_2022_07_077
crossref_primary_10_1038_s41467_019_08731_y
crossref_primary_10_1016_j_apcatb_2019_118054
crossref_primary_10_1002_eem2_12553
crossref_primary_10_1002_anie_201911609
crossref_primary_10_1021_acscatal_6b03092
crossref_primary_10_1021_am508769x
crossref_primary_10_1016_j_radphyschem_2019_108449
crossref_primary_10_1016_j_seppur_2020_116576
crossref_primary_10_1007_s11244_024_01936_6
crossref_primary_10_1016_j_jcat_2022_08_030
crossref_primary_10_1002_ange_202403884
crossref_primary_10_1016_j_checat_2024_101260
crossref_primary_10_1073_pnas_1913403117
crossref_primary_10_1016_j_chemosphere_2023_138107
crossref_primary_10_3390_en14051278
crossref_primary_10_1002_ejic_202001151
crossref_primary_10_1016_j_apcatb_2018_08_031
crossref_primary_10_1039_D2TA07272F
crossref_primary_10_1002_cssc_202201514
crossref_primary_10_1016_S1872_2067_22_64163_9
crossref_primary_10_1021_acs_energyfuels_3c02432
crossref_primary_10_1021_jacs_6b07272
Cites_doi 10.1016/j.apcatb.2012.08.015
10.1021/es071379t
10.1002/ange.201301669
10.1016/j.ijhydene.2010.09.038
10.1039/b924472g
10.1021/ie050593s
10.1021/cs2006873
10.1063/1.1488251
10.1021/ja805746h
10.1021/ja073306f
10.1002/anie.201107355
10.1016/j.apsusc.2010.05.077
10.1016/j.cej.2012.12.033
10.1038/440295a
10.1016/j.cplett.2009.02.068
10.1039/C1CP22820J
10.1021/ja102651g
10.1002/ange.201107355
10.1007/s00289-012-0704-3
10.1016/j.diamond.2013.06.012
10.1002/adma.201000731
10.1021/ja071546p
10.1039/b418789j
10.1021/cs401208c
10.1021/cm021723f
10.1039/b800274f
10.1021/jp8055015
10.1002/ange.200503779
10.1021/cs4000624
10.1021/la00041a033
10.1016/j.jcat.2004.04.001
10.1002/anie.201301669
10.1016/j.synthmet.2013.05.017
10.1016/j.jcis.2010.07.012
10.1016/S0168-583X(00)00257-3
10.1007/s11244-013-0014-5
10.1021/la0509302
10.1016/S0021-9517(03)00197-0
10.1021/cs400511q
10.1038/nmat2317
10.1016/j.jcat.2005.09.015
10.1021/es00172a009
10.1016/j.jcat.2006.02.014
10.1002/anie.200503779
10.1021/ja809307s
ContentType Journal Article
Copyright 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
NPM
7TM
K9.
7X8
7SR
8BQ
8FD
JG9
DOI 10.1002/anie.201407938
DatabaseName Istex
CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database
CrossRef
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 13459
ExternalDocumentID 3508857461
25293501
10_1002_anie_201407938
ANIE201407938
ark_67375_WNG_M3ML7VQQ_9
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: Ministry of Education, Culture, Sports, Science and Technology
– fundername: Grant‐in‐Aid for Scientific Research
  funderid: 26289296
– fundername: MEXT
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
B-7
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
.GJ
.HR
186
31~
9M8
AAYJJ
AAYOK
AAYXX
ABDBF
ABDPE
ABEFU
ABJNI
ADXHL
AETEA
AEYWJ
AGCDD
AGHNM
AGQPQ
AGYGG
AI.
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
H~9
MVM
NHB
OHT
PALCI
RIWAO
RJQFR
RWH
S10
SAMSI
UQL
VH1
WHG
XOL
YYP
ZCG
ZE2
ZGI
ZXP
ZY4
NPM
YIN
7TM
K9.
7X8
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c5218-e6692ed9e1dac534ea96d79e87d822d40a8b6d49abc164052ff188efa612d1933
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 02:06:47 EDT 2025
Fri Jul 11 03:51:56 EDT 2025
Fri Jul 25 10:49:11 EDT 2025
Wed Feb 19 01:55:35 EST 2025
Tue Jul 01 03:26:41 EDT 2025
Thu Apr 24 23:02:57 EDT 2025
Wed Jan 22 17:03:47 EST 2025
Wed Oct 30 09:49:35 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 49
Keywords photocatalysis
oxygen
water
graphitic carbon nitride
hydrogen peroxide
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5218-e6692ed9e1dac534ea96d79e87d822d40a8b6d49abc164052ff188efa612d1933
Notes MEXT
istex:BFA49EC8A63BCFC2E8C04F752E877B7A5778440C
ArticleID:ANIE201407938
This work was supported by the Grant-in-Aid for Scientific Research (No. 26289296) from the Ministry of Education, Culture, Sports, Science and Technology (Japan) (MEXT).
Ministry of Education, Culture, Sports, Science and Technology
ark:/67375/WNG-M3ML7VQQ-9
Grant-in-Aid for Scientific Research - No. 26289296
This work was supported by the Grant‐in‐Aid for Scientific Research (No. 26289296) from the Ministry of Education, Culture, Sports, Science and Technology (Japan) (MEXT).
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/anie.201407938
PMID 25293501
PQID 1628201659
PQPubID 946352
PageCount 6
ParticipantIDs proquest_miscellaneous_1700992097
proquest_miscellaneous_1628882002
proquest_journals_1628201659
pubmed_primary_25293501
crossref_primary_10_1002_anie_201407938
crossref_citationtrail_10_1002_anie_201407938
wiley_primary_10_1002_anie_201407938_ANIE201407938
istex_primary_ark_67375_WNG_M3ML7VQQ_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 1, 2014
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: December 1, 2014
  day: 01
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew. Chem. Int. Ed
PublicationYear 2014
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J. O. Müller, R. Schlögl, J. M. Carlsson, J. Mater. Chem. 2008, 18, 4893-4908.
C. Hu, Q. Zhang, Polym. Bull. 2012, 69, 63-69
Q. Bao, B. M. Goh, B. Yan, T. Yu, Z. Shen, K. P. Loh, Adv. Mater. 2010, 22, 3661-3666.
Z. Qin, J. Zhang, H. Zhou, Y. Song, T. He, Nucl. Instrum. Methods Phys. Res. Sect. B 2000, 170, 406-412.
F. Sandelin, P. Oinas, T. Salmi, J. Paloniemi, H. Haario, Ind. Eng. Chem. Res. 2006, 45, 986-992.
Y. Shiraishi, S. Kanazawa, D. Tsukamoto, A. Shiro, Y. Sugano, T. Hirai, ACS Catal. 2013, 3, 2222-2227.
W. H. Koppenol, J. Am. Chem. Soc. 2007, 129, 9686-9690.
Angew. Chem. 2012, 124, 1943-1946
S. Melada, R. Rioda, F. Menegazzo, F. Pinna, G. Strukul, J. Catal. 2006, 239, 422-430.
K. Bijak, M. G. Zajac, H. Janeczek, M. Wiacek, E. S. Balcerzak, Synth. Met. 2013, 175, 146-154
T. Hirakawa, Y. Nosaka, J. Phys. Chem. C 2008, 112, 15818-15823
Y. Shiraishi, S. Kanazawa, Y. Sugano, D. Tsukamoto, H. Sakamoto, S. Ichikawa, T. Hirai, ACS Catal. 2014, 4, 774-780.
J. K. Edwards, B. E. Solsona, P. Landon, A. F. Carley, A. Herzing, C. J. Kiely, G. J. Hutchings, J. Catal. 2005, 236, 69-79
H. Dai, X. Gao, E. Liu, Y. Yang, W. Hou, L. Kang, J. Fan, X. Hu, Diamond Relat. Mater. 2013, 38, 109-117.
K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Nature 2006, 440, 295.
Y. Sugano, Y. Shiraishi, D. Tsukamoto, S. Ichikawa, S. Tanaka, T. Hirai, Angew. Chem. Int. Ed. 2013, 52, 5295-5299
D. Gudarzi, W. Ratchananusorn, I. Turunen, T. Salmi, M. Heinonen, Top. Catal. 2013, 56, 527-539
D. Tsukamoto, A. Shiro, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka, T. Hirai, ACS Catal. 2012, 2, 599-603.
A. E. Sanli, A. Aytac, Int. J. Hydrogen Energy 2011, 36, 869-875.
P. V. Zinin, L. C. Ming, S. K. Sharma, V. N. Khabashesku, X. Liu, S. Hong, S. Endo, T. Acosta, Chem. Phys. Lett. 2009, 472, 69-73
H. Ji, F. Chang, X. Hu, W. Qin, J. Shen, Chem. Eng. J. 2013, 218, 183-190.
F. Xiao, K. Wang, M. Zhan, Appl. Surf. Sci. 2010, 256, 7384-7388
L. Xue, Y. Wang, Y. Chen, X. Li, J. Colloid Interface Sci. 2010, 350, 523-529.
V. Maurino, C. Minero, G. Mariella, E. Pelizzetti, Chem. Commun. 2005, 2627-2629
X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 2009, 8, 76-80
Z. Wang, C. Kim, A. Facchetti, T. J. Marks, J. Am. Chem. Soc. 2007, 129, 13362-13363
M. Teranishi, S. Naya, H. Tada, J. Am. Chem. Soc. 2010, 132, 7850-7851
H. Xu, J. Yan, Y. Xu, Y. Song, H. Li, J. Xia, C. Huang, H. Wan, Appl. Catal. B 2013, 129, 182-193.
T. J. Dingemans, S. J. Picken, N. S. Murthy, P. Mark, T. L. St Clair, E. T. Samulski, Chem. Mater. 2004, 16, 966-974.
S. R. Puniredd, M. P. Srinivasan, Langmuir 2005, 21, 7812-7822.
W. H. Tsai, F. J. Boerio, K. M. Jackson, Langmuir 1992, 8, 1443-1450.
C. Kormann, D. W. Bahnemann, M. R. Hoffmann, Environ. Sci. Technol. 1988, 22, 798-806
Y. Cui, Z. Ding, P. Liu, M. Antonietti, X. Fu, X. Wang, Phys. Chem. Chem. Phys. 2012, 14, 1455-1462.
J. M. Campos-Martin, G. Blanco-Brieva, J. L. G. Fierro, Angew. Chem. Int. Ed. 2006, 45, 6962-6984
S. Goldstein, D. Aschengrau, Y. Diamant, J. Rabani, Environ. Sci. Technol. 2007, 41, 7486-7490.
Angew. Chem. 2013, 125, 5403-5407.
X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, X. Fu, M. Antonietti, J. Am. Chem. Soc. 2009, 131, 1680-1681.
H. Goto, Y. Hanada, T. Ohno, M. Matsumura, J. Catal. 2004, 225, 223-229
Q. Zheng, J. Huang, A. Sarjeant, H. E. Katz, J. Am. Chem. Soc. 2008, 130, 14410-14411
J. Chen, P. Wagner, L. Tong, G. G. Wallace, D. L. Officer, G. F. Sweigers, Angew. Chem. Int. Ed. 2012, 51, 1907-1910
R. Cai, Y. Kubota, A. Fujishima, J. Catal. 2003, 219, 214-218
D. Papadimitriou, G. Roupakas, C. A. Dimitriadis, S. Logothetidis, J. Appl. Phys. 2002, 92, 870-875.
S. Chu, Y. Wang, Y. Guo, J. Feng, C. Wang, W. Luo, X. Fan, Z. Zou, ACS Catal. 2013, 3, 912-919.
J. C. Pritchard, Q. He, E. N. Ntainjua, M. Piccinini, J. K. Edwards, A. A. Herzing, A. F. Carley, J. A. Moulijn, C. J. Kiely, G. J. Hutchings, Green Chem. 2010, 12, 915-921.
Angew. Chem. 2006, 118, 7116-7139.
2010; 12
2003; 219
2013; 3
2007; 129
2004; 225
2008; 18
2005; 236
2013; 129
2005; 21
2005
2011; 36
2009; 131
2009; 472
2012; 14
2006; 239
2013 2013; 52 125
2000; 170
2006 2006; 45 118
2010; 22
1992; 8
2012; 2
2014; 4
2013; 38
2006; 45
2013; 218
2004; 16
2013; 56
2012 2012; 51 124
2010; 256
2010; 132
1988; 22
2010; 350
2006; 440
2009; 8
2002; 92
2013; 175
2007; 41
2008; 112
2012; 69
2008; 130
e_1_2_2_24_2
e_1_2_2_47_2
e_1_2_2_4_2
e_1_2_2_22_2
e_1_2_2_49_2
e_1_2_2_6_2
e_1_2_2_20_2
e_1_2_2_2_2
e_1_2_2_41_2
e_1_2_2_8_2
e_1_2_2_28_2
e_1_2_2_43_2
e_1_2_2_26_2
e_1_2_2_45_2
e_1_2_2_45_3
e_1_2_2_13_2
e_1_2_2_36_2
e_1_2_2_11_2
e_1_2_2_38_2
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_53_2
e_1_2_2_17_2
e_1_2_2_32_2
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_3_2
e_1_2_2_23_2
e_1_2_2_48_2
e_1_2_2_5_2
e_1_2_2_21_2
e_1_2_2_1_2
e_1_2_2_1_3
Papadimitriou D. (e_1_2_2_51_2) 2002; 92
e_1_2_2_40_2
e_1_2_2_29_2
e_1_2_2_42_2
e_1_2_2_7_2
e_1_2_2_27_2
e_1_2_2_44_2
e_1_2_2_25_3
e_1_2_2_9_2
e_1_2_2_25_2
e_1_2_2_46_2
e_1_2_2_12_2
e_1_2_2_37_2
e_1_2_2_10_2
e_1_2_2_39_2
e_1_2_2_50_2
e_1_2_2_18_2
e_1_2_2_31_2
e_1_2_2_52_2
e_1_2_2_16_2
e_1_2_2_33_2
e_1_2_2_14_2
e_1_2_2_35_2
References_xml – reference: X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, X. Fu, M. Antonietti, J. Am. Chem. Soc. 2009, 131, 1680-1681.
– reference: D. Papadimitriou, G. Roupakas, C. A. Dimitriadis, S. Logothetidis, J. Appl. Phys. 2002, 92, 870-875.
– reference: Y. Shiraishi, S. Kanazawa, D. Tsukamoto, A. Shiro, Y. Sugano, T. Hirai, ACS Catal. 2013, 3, 2222-2227.
– reference: Z. Qin, J. Zhang, H. Zhou, Y. Song, T. He, Nucl. Instrum. Methods Phys. Res. Sect. B 2000, 170, 406-412.
– reference: H. Xu, J. Yan, Y. Xu, Y. Song, H. Li, J. Xia, C. Huang, H. Wan, Appl. Catal. B 2013, 129, 182-193.
– reference: S. Melada, R. Rioda, F. Menegazzo, F. Pinna, G. Strukul, J. Catal. 2006, 239, 422-430.
– reference: A. E. Sanli, A. Aytac, Int. J. Hydrogen Energy 2011, 36, 869-875.
– reference: S. Chu, Y. Wang, Y. Guo, J. Feng, C. Wang, W. Luo, X. Fan, Z. Zou, ACS Catal. 2013, 3, 912-919.
– reference: S. R. Puniredd, M. P. Srinivasan, Langmuir 2005, 21, 7812-7822.
– reference: R. Cai, Y. Kubota, A. Fujishima, J. Catal. 2003, 219, 214-218;
– reference: T. Hirakawa, Y. Nosaka, J. Phys. Chem. C 2008, 112, 15818-15823;
– reference: D. Gudarzi, W. Ratchananusorn, I. Turunen, T. Salmi, M. Heinonen, Top. Catal. 2013, 56, 527-539;
– reference: M. Teranishi, S. Naya, H. Tada, J. Am. Chem. Soc. 2010, 132, 7850-7851;
– reference: X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 2009, 8, 76-80;
– reference: Y. Shiraishi, S. Kanazawa, Y. Sugano, D. Tsukamoto, H. Sakamoto, S. Ichikawa, T. Hirai, ACS Catal. 2014, 4, 774-780.
– reference: Y. Sugano, Y. Shiraishi, D. Tsukamoto, S. Ichikawa, S. Tanaka, T. Hirai, Angew. Chem. Int. Ed. 2013, 52, 5295-5299;
– reference: Q. Bao, B. M. Goh, B. Yan, T. Yu, Z. Shen, K. P. Loh, Adv. Mater. 2010, 22, 3661-3666.
– reference: L. Xue, Y. Wang, Y. Chen, X. Li, J. Colloid Interface Sci. 2010, 350, 523-529.
– reference: P. V. Zinin, L. C. Ming, S. K. Sharma, V. N. Khabashesku, X. Liu, S. Hong, S. Endo, T. Acosta, Chem. Phys. Lett. 2009, 472, 69-73;
– reference: A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J. O. Müller, R. Schlögl, J. M. Carlsson, J. Mater. Chem. 2008, 18, 4893-4908.
– reference: J. K. Edwards, B. E. Solsona, P. Landon, A. F. Carley, A. Herzing, C. J. Kiely, G. J. Hutchings, J. Catal. 2005, 236, 69-79;
– reference: K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Nature 2006, 440, 295.
– reference: F. Sandelin, P. Oinas, T. Salmi, J. Paloniemi, H. Haario, Ind. Eng. Chem. Res. 2006, 45, 986-992.
– reference: W. H. Tsai, F. J. Boerio, K. M. Jackson, Langmuir 1992, 8, 1443-1450.
– reference: J. M. Campos-Martin, G. Blanco-Brieva, J. L. G. Fierro, Angew. Chem. Int. Ed. 2006, 45, 6962-6984;
– reference: J. Chen, P. Wagner, L. Tong, G. G. Wallace, D. L. Officer, G. F. Sweigers, Angew. Chem. Int. Ed. 2012, 51, 1907-1910;
– reference: C. Kormann, D. W. Bahnemann, M. R. Hoffmann, Environ. Sci. Technol. 1988, 22, 798-806;
– reference: H. Ji, F. Chang, X. Hu, W. Qin, J. Shen, Chem. Eng. J. 2013, 218, 183-190.
– reference: V. Maurino, C. Minero, G. Mariella, E. Pelizzetti, Chem. Commun. 2005, 2627-2629;
– reference: W. H. Koppenol, J. Am. Chem. Soc. 2007, 129, 9686-9690.
– reference: C. Hu, Q. Zhang, Polym. Bull. 2012, 69, 63-69;
– reference: H. Dai, X. Gao, E. Liu, Y. Yang, W. Hou, L. Kang, J. Fan, X. Hu, Diamond Relat. Mater. 2013, 38, 109-117.
– reference: Angew. Chem. 2012, 124, 1943-1946;
– reference: T. J. Dingemans, S. J. Picken, N. S. Murthy, P. Mark, T. L. St Clair, E. T. Samulski, Chem. Mater. 2004, 16, 966-974.
– reference: Q. Zheng, J. Huang, A. Sarjeant, H. E. Katz, J. Am. Chem. Soc. 2008, 130, 14410-14411;
– reference: K. Bijak, M. G. Zajac, H. Janeczek, M. Wiacek, E. S. Balcerzak, Synth. Met. 2013, 175, 146-154;
– reference: D. Tsukamoto, A. Shiro, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka, T. Hirai, ACS Catal. 2012, 2, 599-603.
– reference: J. C. Pritchard, Q. He, E. N. Ntainjua, M. Piccinini, J. K. Edwards, A. A. Herzing, A. F. Carley, J. A. Moulijn, C. J. Kiely, G. J. Hutchings, Green Chem. 2010, 12, 915-921.
– reference: F. Xiao, K. Wang, M. Zhan, Appl. Surf. Sci. 2010, 256, 7384-7388;
– reference: S. Goldstein, D. Aschengrau, Y. Diamant, J. Rabani, Environ. Sci. Technol. 2007, 41, 7486-7490.
– reference: Angew. Chem. 2006, 118, 7116-7139.
– reference: Angew. Chem. 2013, 125, 5403-5407.
– reference: Z. Wang, C. Kim, A. Facchetti, T. J. Marks, J. Am. Chem. Soc. 2007, 129, 13362-13363;
– reference: H. Goto, Y. Hanada, T. Ohno, M. Matsumura, J. Catal. 2004, 225, 223-229;
– reference: Y. Cui, Z. Ding, P. Liu, M. Antonietti, X. Fu, X. Wang, Phys. Chem. Chem. Phys. 2012, 14, 1455-1462.
– volume: 3
  start-page: 2222
  year: 2013
  end-page: 2227
  publication-title: ACS Catal.
– volume: 92
  start-page: 870
  year: 2002
  end-page: 875
  publication-title: J. Appl. Phys.
– volume: 21
  start-page: 7812
  year: 2005
  end-page: 7822
  publication-title: Langmuir
– volume: 38
  start-page: 109
  year: 2013
  end-page: 117
  publication-title: Diamond Relat. Mater.
– start-page: 2627
  year: 2005
  end-page: 2629
  publication-title: Chem. Commun.
– volume: 8
  start-page: 76
  year: 2009
  end-page: 80
  publication-title: Nat. Mater.
– volume: 14
  start-page: 1455
  year: 2012
  end-page: 1462
  publication-title: Phys. Chem. Chem. Phys.
– volume: 16
  start-page: 966
  year: 2004
  end-page: 974
  publication-title: Chem. Mater.
– volume: 22
  start-page: 3661
  year: 2010
  end-page: 3666
  publication-title: Adv. Mater.
– volume: 132
  start-page: 7850
  year: 2010
  end-page: 7851
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 599
  year: 2012
  end-page: 603
  publication-title: ACS Catal.
– volume: 45 118
  start-page: 6962 7116
  year: 2006 2006
  end-page: 6984 7139
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 175
  start-page: 146
  year: 2013
  end-page: 154
  publication-title: Synth. Met.
– volume: 472
  start-page: 69
  year: 2009
  end-page: 73
  publication-title: Chem. Phys. Lett.
– volume: 131
  start-page: 1680
  year: 2009
  end-page: 1681
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 1443
  year: 1992
  end-page: 1450
  publication-title: Langmuir
– volume: 56
  start-page: 527
  year: 2013
  end-page: 539
  publication-title: Top. Catal.
– volume: 218
  start-page: 183
  year: 2013
  end-page: 190
  publication-title: Chem. Eng. J.
– volume: 350
  start-page: 523
  year: 2010
  end-page: 529
  publication-title: J. Colloid Interface Sci.
– volume: 239
  start-page: 422
  year: 2006
  end-page: 430
  publication-title: J. Catal.
– volume: 236
  start-page: 69
  year: 2005
  end-page: 79
  publication-title: J. Catal.
– volume: 36
  start-page: 869
  year: 2011
  end-page: 875
  publication-title: Int. J. Hydrogen Energy
– volume: 12
  start-page: 915
  year: 2010
  end-page: 921
  publication-title: Green Chem.
– volume: 170
  start-page: 406
  year: 2000
  end-page: 412
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B
– volume: 52 125
  start-page: 5295 5403
  year: 2013 2013
  end-page: 5299 5407
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 129
  start-page: 13362
  year: 2007
  end-page: 13363
  publication-title: J. Am. Chem. Soc.
– volume: 440
  start-page: 295
  year: 2006
  publication-title: Nature
– volume: 130
  start-page: 14410
  year: 2008
  end-page: 14411
  publication-title: J. Am. Chem. Soc.
– volume: 112
  start-page: 15818
  year: 2008
  end-page: 15823
  publication-title: J. Phys. Chem. C
– volume: 225
  start-page: 223
  year: 2004
  end-page: 229
  publication-title: J. Catal.
– volume: 45
  start-page: 986
  year: 2006
  end-page: 992
  publication-title: Ind. Eng. Chem. Res.
– volume: 256
  start-page: 7384
  year: 2010
  end-page: 7388
  publication-title: Appl. Surf. Sci.
– volume: 41
  start-page: 7486
  year: 2007
  end-page: 7490
  publication-title: Environ. Sci. Technol.
– volume: 69
  start-page: 63
  year: 2012
  end-page: 69
  publication-title: Polym. Bull.
– volume: 4
  start-page: 774
  year: 2014
  end-page: 780
  publication-title: ACS Catal.
– volume: 3
  start-page: 912
  year: 2013
  end-page: 919
  publication-title: ACS Catal.
– volume: 51 124
  start-page: 1907 1943
  year: 2012 2012
  end-page: 1910 1946
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 219
  start-page: 214
  year: 2003
  end-page: 218
  publication-title: J. Catal.
– volume: 129
  start-page: 9686
  year: 2007
  end-page: 9690
  publication-title: J. Am. Chem. Soc.
– volume: 129
  start-page: 182
  year: 2013
  end-page: 193
  publication-title: Appl. Catal. B
– volume: 18
  start-page: 4893
  year: 2008
  end-page: 4908
  publication-title: J. Mater. Chem.
– volume: 22
  start-page: 798
  year: 1988
  end-page: 806
  publication-title: Environ. Sci. Technol.
– ident: e_1_2_2_38_2
  doi: 10.1016/j.apcatb.2012.08.015
– ident: e_1_2_2_52_2
  doi: 10.1021/es071379t
– ident: e_1_2_2_45_3
  doi: 10.1002/ange.201301669
– ident: e_1_2_2_53_2
– ident: e_1_2_2_2_2
  doi: 10.1016/j.ijhydene.2010.09.038
– ident: e_1_2_2_9_2
  doi: 10.1039/b924472g
– ident: e_1_2_2_19_2
– ident: e_1_2_2_3_2
  doi: 10.1021/ie050593s
– ident: e_1_2_2_17_2
  doi: 10.1021/cs2006873
– volume: 92
  start-page: 870
  year: 2002
  ident: e_1_2_2_51_2
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1488251
– ident: e_1_2_2_28_2
  doi: 10.1021/ja805746h
– ident: e_1_2_2_29_2
  doi: 10.1021/ja073306f
– ident: e_1_2_2_25_2
  doi: 10.1002/anie.201107355
– ident: e_1_2_2_36_2
  doi: 10.1016/j.apsusc.2010.05.077
– ident: e_1_2_2_39_2
  doi: 10.1016/j.cej.2012.12.033
– ident: e_1_2_2_46_2
  doi: 10.1038/440295a
– ident: e_1_2_2_49_2
– ident: e_1_2_2_50_2
  doi: 10.1016/j.cplett.2009.02.068
– ident: e_1_2_2_35_2
– ident: e_1_2_2_23_2
  doi: 10.1039/C1CP22820J
– ident: e_1_2_2_27_2
– ident: e_1_2_2_16_2
  doi: 10.1021/ja102651g
– ident: e_1_2_2_25_3
  doi: 10.1002/ange.201107355
– ident: e_1_2_2_32_2
  doi: 10.1007/s00289-012-0704-3
– ident: e_1_2_2_42_2
  doi: 10.1016/j.diamond.2013.06.012
– ident: e_1_2_2_40_2
  doi: 10.1002/adma.201000731
– ident: e_1_2_2_26_2
  doi: 10.1021/ja071546p
– ident: e_1_2_2_14_2
  doi: 10.1039/b418789j
– ident: e_1_2_2_22_2
  doi: 10.1021/cs401208c
– ident: e_1_2_2_30_2
  doi: 10.1021/cm021723f
– ident: e_1_2_2_21_2
  doi: 10.1039/b800274f
– ident: e_1_2_2_24_2
– ident: e_1_2_2_15_2
  doi: 10.1021/jp8055015
– ident: e_1_2_2_1_3
  doi: 10.1002/ange.200503779
– ident: e_1_2_2_34_2
  doi: 10.1021/cs4000624
– ident: e_1_2_2_10_2
– ident: e_1_2_2_47_2
– ident: e_1_2_2_48_2
  doi: 10.1021/la00041a033
– ident: e_1_2_2_7_2
– ident: e_1_2_2_13_2
  doi: 10.1016/j.jcat.2004.04.001
– ident: e_1_2_2_45_2
  doi: 10.1002/anie.201301669
– ident: e_1_2_2_33_2
  doi: 10.1016/j.synthmet.2013.05.017
– ident: e_1_2_2_41_2
  doi: 10.1016/j.jcis.2010.07.012
– ident: e_1_2_2_43_2
  doi: 10.1016/S0168-583X(00)00257-3
– ident: e_1_2_2_5_2
  doi: 10.1007/s11244-013-0014-5
– ident: e_1_2_2_37_2
  doi: 10.1021/la0509302
– ident: e_1_2_2_12_2
  doi: 10.1016/S0021-9517(03)00197-0
– ident: e_1_2_2_31_2
– ident: e_1_2_2_18_2
  doi: 10.1021/cs400511q
– ident: e_1_2_2_20_2
  doi: 10.1038/nmat2317
– ident: e_1_2_2_8_2
  doi: 10.1016/j.jcat.2005.09.015
– ident: e_1_2_2_11_2
  doi: 10.1021/es00172a009
– ident: e_1_2_2_6_2
  doi: 10.1016/j.jcat.2006.02.014
– ident: e_1_2_2_1_2
  doi: 10.1002/anie.200503779
– ident: e_1_2_2_44_2
  doi: 10.1021/ja809307s
– ident: e_1_2_2_4_2
SSID ssj0028806
Score 2.6248293
Snippet Design of green, safe, and sustainable process for the synthesis of hydrogen peroxide (H2O2) is a very important subject. Early reported processes, however,...
Design of green, safe, and sustainable process for the synthesis of hydrogen peroxide (H 2 O 2 ) is a very important subject. Early reported processes,...
Design of green, safe, and sustainable process for the synthesis of hydrogen peroxide (H2 O2 ) is a very important subject. Early reported processes, however,...
Design of green, safe, and sustainable process for the synthesis of hydrogen peroxide (H sub(2)O sub(2)) is a very important subject. Early reported processes,...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13454
SubjectTerms Carbon nitride
Catalysis
Catalysts
Diimide
graphitic carbon nitride
Hydrogen peroxide
Irradiation
Oxidation
Oxygen
Palladium
photocatalysis
Reduction
Sunlight
Synthesis
water
Title Sunlight-Driven Hydrogen Peroxide Production from Water and Molecular Oxygen by Metal-Free Photocatalysts
URI https://api.istex.fr/ark:/67375/WNG-M3ML7VQQ-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201407938
https://www.ncbi.nlm.nih.gov/pubmed/25293501
https://www.proquest.com/docview/1628201659
https://www.proquest.com/docview/1628882002
https://www.proquest.com/docview/1700992097
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOcCFNzRQkJEQnNImTpzEx6p0WRBZWqC0N8uJJwIVEpTNSl1O_AR-I7-EmXgTWMRDgluijB0_xsk39sw3jD2AUiUZpOATmPVjiQaKsrHyEZoGcYWQveiPC_JZMj2Kn53Ikx-i-B0_xLjhRiuj_17TAjfFfOc7aShFYJNrVkwUbxTtSw5bhIpejvxRApXThRdFkU9Z6AfWxkDsrBdf-yudpwE--xXkXEew_S9ocpmZofHO8-R0e9EV2-Wnn3gd_6d3V9ilFT7lu06hrrJzUF9jF_aGtHDX2YdXC6weLfqvn788bulbyadL2zaoiPwAsGnvLPADxyOLc84pfoUfI6Jtuaktz4d0vPzF2ZLKFEueA1oAWN2kBSz6tumaflNpOe_mN9jRZP_13tRf5WzwSwQCmQ9JogRYBaE1pYxiMCqxqYIstQhFbByYrEhQGUxRoqEWSFFVYZZBZRBpWQST0U22UTc1bDJukqCSpSirkk5fg8qAtaG1KZiggqiIPeYPc6bLFaE55dV4rx0Vs9A0iHocRI89GuU_OiqP30o-7FVgFDPtKTnApVIfz57oPMqfp28OD7Xy2NagI3q19uc6TATBqkTi4_vjY5wlOooxNTQLJ4O2Db76DzIpwXcRqNRjt5z-jQ0SEmGaDEKPiV6L_tIhvTt7uj_e3f6XQnfYRbp2njxbbKNrF3AX8VhX3OvX3De2Uy4q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagPZQL70eggJEQnNI6zvtYlS5b2CwttLQ3y4knAhUSlM1KXU78BH4jv4SZeBO0iIcExyRjx4-x_Y09_oaxx1CkUQIxuARm3SBEAyU1QeoiNBVBiZA9744Lsmk0Pg5enIa9NyHdhbH8EMOGG42Mbr6mAU4b0ts_WEPpCjb5ZgXE8ZZcZOsU1ruzql4PDFIS1dNeMPJ9l-LQ97yNQm6vpl9Zl9apic9_BTpXMWy3CI2usLwvvvU9Oduat_lW8fknZsf_qt9VdnkJUfmO1alr7AJU19nGbh8Z7gb7-GaO-aNR_-3L12cNTZd8vDBNjbrIDwDL9t4AP7BUstjtnK6w8BMEtQ3XleFZH5GXvzpfUJp8wTNAIwCzGzWASd_Vbd3tKy1m7ewmOx7tHe2O3WXYBrdALJC4EEWpBJOCZ3QR-gHoNDJxCklsEI2YQOgkj1AfdF6grSZCWZZekkCpEWwZxJP-LbZW1RXcYVxHogwLWZQFHcCKUoMxnjExaFGCnwcOc_tOU8WS05xCa3xQlo1ZKmpENTSiw54O8p8sm8dvJZ90OjCI6eaMfODiUJ1Mn6vMzybx28NDlTpss1cStRz-M-VFkpBVFOLnR8Nn7CU6jdEV1HMrg-YN_voPMjEheCnS2GG3rQIOBZIhIrVQeA6TnRr9pUJqZ7q_Nzzd_ZdED9nG-CibqMn-9OU9doneW8eeTbbWNnO4j_CszR90A_A7fV4yRQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb5RAFJ5om6gv3i9o1TEx-kQ7DDDAY9PtutWybtXavk0G5hBNFRp2N-n65E_wN_pLPAcWdI2XRB-BM8NcvoHvzOU7jD2GPFExROASmXWDEB2UxAaJi9RUBAVS9qxZLkjHanQYPD8Oj384xd_qQ_QTbjQymu81DfBTW2x9Fw2lE9i0NSsgibf4PFsPlIgJ14NXvYCURHS254t836Uw9J1so5Bbq-lXfkvr1MJnv-KcqxS2-QcNrzDTlb7denKyOZ9lm_mnn4Qd_6d6V9nlJUHl2y2irrFzUF5nF3e6uHA32MfXc8weXfqvn78MavpY8tHC1hUikU8Ai_beAp-0QrLY6ZwOsPAjpLQ1N6XlaRePl788W1CabMFTQBcAsxvWgEnfVbOqmVVaTGfTm-xwuPtmZ-Qugza4OTKB2AWlEgk2Ac-aPPQDMImyUQJxZJGL2ECYOFOIBpPl6KmJUBaFF8dQGKRaFtmkf4utlVUJdxg3ShRhLvMip-VXURiw1rM2AiMK8LPAYW7XZzpfKppTYI0PutVilpoaUfeN6LCnvf1pq-XxW8snDQR6M1Of0A64KNRH42c69dP96O3BgU4cttFhRC8H_1R7ShKvUiE-ftQ_xl6itRhTQjVvbdC5wVf_wSYi_i5FEjnsdou_vkAyRJ4WCs9hskHRXyqkt8d7u_3V3X9J9JBdmAyGen9v_OIeu0S32109G2xtVs_hPnKzWfagGX7fAN4bMP0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sunlight%E2%80%90Driven+Hydrogen+Peroxide+Production+from+Water+and+Molecular+Oxygen+by+Metal%E2%80%90Free+Photocatalysts&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Shiraishi%2C+Yasuhiro&rft.au=Kanazawa%2C+Shunsuke&rft.au=Kofuji%2C+Yusuke&rft.au=Sakamoto%2C+Hirokatsu&rft.date=2014-12-01&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=53&rft.issue=49&rft.spage=13454&rft.epage=13459&rft_id=info:doi/10.1002%2Fanie.201407938&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_201407938
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon