Sunlight-Driven Hydrogen Peroxide Production from Water and Molecular Oxygen by Metal-Free Photocatalysts
Design of green, safe, and sustainable process for the synthesis of hydrogen peroxide (H2O2) is a very important subject. Early reported processes, however, require hydrogen (H2) and palladium‐based catalysts. Herein we propose a photocatalytic process for H2O2 synthesis driven by metal‐free catalys...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 53; no. 49; pp. 13454 - 13459 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
01.12.2014
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 1521-3773 |
DOI | 10.1002/anie.201407938 |
Cover
Loading…
Abstract | Design of green, safe, and sustainable process for the synthesis of hydrogen peroxide (H2O2) is a very important subject. Early reported processes, however, require hydrogen (H2) and palladium‐based catalysts. Herein we propose a photocatalytic process for H2O2 synthesis driven by metal‐free catalysts with earth‐abundant water and molecular oxygen (O2) as resources under sunlight irradiation (λ>400 nm). We use graphitic carbon nitride (g‐C3N4) containing electron‐deficient aromatic diimide units as catalysts. Incorporating the diimide units positively shifts the valence‐band potential of the catalysts, while maintaining sufficient conduction‐band potential for O2 reduction. Visible light irradiation of the catalysts in pure water with O2 successfully produces H2O2 by oxidation of water by the photoformed valence‐band holes and selective two‐electron reduction of O2 by the conduction band electrons.
Peroxide made by sunbathing: Sunlight irradiation (λ>400 nm) of graphitic carbon nitride (g‐C3N4) containing electron‐deficient aromatic diimide units successfully produces H2O2 from water and O2. This metal‐free H2O2 synthesis is driven by oxidation of water by the photoformed valence‐band holes and selective two‐electron reduction of O2 by the conduction‐band electrons. |
---|---|
AbstractList | Design of green, safe, and sustainable process for the synthesis of hydrogen peroxide (H sub(2)O sub(2)) is a very important subject. Early reported processes, however, require hydrogen (H sub(2)) and palladium-based catalysts. Herein we propose a photocatalytic process for H sub(2)O sub(2) synthesis driven by metal-free catalysts with earth-abundant water and molecular oxygen (O sub(2)) as resources under sunlight irradiation ( lambda >400nm). We use graphitic carbon nitride (g-C sub(3)N sub(4)) containing electron-deficient aromatic diimide units as catalysts. Incorporating the diimide units positively shifts the valence-band potential of the catalysts, while maintaining sufficient conduction-band potential for O sub(2) reduction. Visible light irradiation of the catalysts in pure water with O sub(2) successfully produces H sub(2)O sub(2) by oxidation of water by the photoformed valence-band holes and selective two-electron reduction of O sub(2) by the conduction band electrons. Peroxide made by sunbathing: Sunlight irradiation ( lambda >400nm) of graphitic carbon nitride (g-C sub(3)N sub(4)) containing electron-deficient aromatic diimide units successfully produces H sub(2)O sub(2) from water and O sub(2). This metal-free H sub(2)O sub(2) synthesis is driven by oxidation of water by the photoformed valence-band holes and selective two-electron reduction of O sub(2) by the conduction-band electrons. Design of green, safe, and sustainable process for the synthesis of hydrogen peroxide (H 2 O 2 ) is a very important subject. Early reported processes, however, require hydrogen (H 2 ) and palladium‐based catalysts. Herein we propose a photocatalytic process for H 2 O 2 synthesis driven by metal‐free catalysts with earth‐abundant water and molecular oxygen (O 2 ) as resources under sunlight irradiation ( λ >400 nm). We use graphitic carbon nitride (g‐C 3 N 4 ) containing electron‐deficient aromatic diimide units as catalysts. Incorporating the diimide units positively shifts the valence‐band potential of the catalysts, while maintaining sufficient conduction‐band potential for O 2 reduction. Visible light irradiation of the catalysts in pure water with O 2 successfully produces H 2 O 2 by oxidation of water by the photoformed valence‐band holes and selective two‐electron reduction of O 2 by the conduction band electrons. Design of green, safe, and sustainable process for the synthesis of hydrogen peroxide (H2 O2 ) is a very important subject. Early reported processes, however, require hydrogen (H2 ) and palladium-based catalysts. Herein we propose a photocatalytic process for H2 O2 synthesis driven by metal-free catalysts with earth-abundant water and molecular oxygen (O2 ) as resources under sunlight irradiation (λ>400 nm). We use graphitic carbon nitride (g-C3 N4 ) containing electron-deficient aromatic diimide units as catalysts. Incorporating the diimide units positively shifts the valence-band potential of the catalysts, while maintaining sufficient conduction-band potential for O2 reduction. Visible light irradiation of the catalysts in pure water with O2 successfully produces H2 O2 by oxidation of water by the photoformed valence-band holes and selective two-electron reduction of O2 by the conduction band electrons.Design of green, safe, and sustainable process for the synthesis of hydrogen peroxide (H2 O2 ) is a very important subject. Early reported processes, however, require hydrogen (H2 ) and palladium-based catalysts. Herein we propose a photocatalytic process for H2 O2 synthesis driven by metal-free catalysts with earth-abundant water and molecular oxygen (O2 ) as resources under sunlight irradiation (λ>400 nm). We use graphitic carbon nitride (g-C3 N4 ) containing electron-deficient aromatic diimide units as catalysts. Incorporating the diimide units positively shifts the valence-band potential of the catalysts, while maintaining sufficient conduction-band potential for O2 reduction. Visible light irradiation of the catalysts in pure water with O2 successfully produces H2 O2 by oxidation of water by the photoformed valence-band holes and selective two-electron reduction of O2 by the conduction band electrons. Design of green, safe, and sustainable process for the synthesis of hydrogen peroxide (H2O2) is a very important subject. Early reported processes, however, require hydrogen (H2) and palladium-based catalysts. Herein we propose a photocatalytic process for H2O2 synthesis driven by metal-free catalysts with earth-abundant water and molecular oxygen (O2) as resources under sunlight irradiation (λ>400nm). We use graphitic carbon nitride (g-C3N4) containing electron-deficient aromatic diimide units as catalysts. Incorporating the diimide units positively shifts the valence-band potential of the catalysts, while maintaining sufficient conduction-band potential for O2 reduction. Visible light irradiation of the catalysts in pure water with O2 successfully produces H2O2 by oxidation of water by the photoformed valence-band holes and selective two-electron reduction of O2 by the conduction band electrons. Design of green, safe, and sustainable process for the synthesis of hydrogen peroxide (H2 O2 ) is a very important subject. Early reported processes, however, require hydrogen (H2 ) and palladium-based catalysts. Herein we propose a photocatalytic process for H2 O2 synthesis driven by metal-free catalysts with earth-abundant water and molecular oxygen (O2 ) as resources under sunlight irradiation (λ>400 nm). We use graphitic carbon nitride (g-C3 N4 ) containing electron-deficient aromatic diimide units as catalysts. Incorporating the diimide units positively shifts the valence-band potential of the catalysts, while maintaining sufficient conduction-band potential for O2 reduction. Visible light irradiation of the catalysts in pure water with O2 successfully produces H2 O2 by oxidation of water by the photoformed valence-band holes and selective two-electron reduction of O2 by the conduction band electrons. Design of green, safe, and sustainable process for the synthesis of hydrogen peroxide (H2O2) is a very important subject. Early reported processes, however, require hydrogen (H2) and palladium‐based catalysts. Herein we propose a photocatalytic process for H2O2 synthesis driven by metal‐free catalysts with earth‐abundant water and molecular oxygen (O2) as resources under sunlight irradiation (λ>400 nm). We use graphitic carbon nitride (g‐C3N4) containing electron‐deficient aromatic diimide units as catalysts. Incorporating the diimide units positively shifts the valence‐band potential of the catalysts, while maintaining sufficient conduction‐band potential for O2 reduction. Visible light irradiation of the catalysts in pure water with O2 successfully produces H2O2 by oxidation of water by the photoformed valence‐band holes and selective two‐electron reduction of O2 by the conduction band electrons. Peroxide made by sunbathing: Sunlight irradiation (λ>400 nm) of graphitic carbon nitride (g‐C3N4) containing electron‐deficient aromatic diimide units successfully produces H2O2 from water and O2. This metal‐free H2O2 synthesis is driven by oxidation of water by the photoformed valence‐band holes and selective two‐electron reduction of O2 by the conduction‐band electrons. |
Author | Sakamoto, Hirokatsu Kanazawa, Shunsuke Tanaka, Shunsuke Shiraishi, Yasuhiro Ichikawa, Satoshi Hirai, Takayuki Kofuji, Yusuke |
Author_xml | – sequence: 1 givenname: Yasuhiro surname: Shiraishi fullname: Shiraishi, Yasuhiro email: shiraish@cheng.es.osaka-u.ac.jp organization: Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531 (Japan) – sequence: 2 givenname: Shunsuke surname: Kanazawa fullname: Kanazawa, Shunsuke organization: Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531 (Japan) – sequence: 3 givenname: Yusuke surname: Kofuji fullname: Kofuji, Yusuke organization: Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531 (Japan) – sequence: 4 givenname: Hirokatsu surname: Sakamoto fullname: Sakamoto, Hirokatsu organization: Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531 (Japan) – sequence: 5 givenname: Satoshi surname: Ichikawa fullname: Ichikawa, Satoshi organization: Institute for NanoScience Design, Osaka University (Japan) – sequence: 6 givenname: Shunsuke surname: Tanaka fullname: Tanaka, Shunsuke organization: Department of Chemical, Energy and Environmental Engineering, Kansai University (Japan) – sequence: 7 givenname: Takayuki surname: Hirai fullname: Hirai, Takayuki organization: Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531 (Japan) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25293501$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUlv1DAYhi1URBe4ckSRuHDJ4CXxcqxKN2mmi2jp0fLEX1qXTFxsByb_Hg9TRlWlqid_lp7Hy_vuoq3e94DQR4InBGP61fQOJhSTCgvF5Bu0Q2pKSiYE28pzxVgpZE220W6M95mXEvN3aJvWVLEakx3kvg99527vUvktuN_QFyejDf42DxcQ_NJZKC6Ct0OTnO-LNvhFcWMShML0tpj5DpqhM6E4X44rZz4WM0imK48CZPHOJ9-YvB9jiu_R29Z0ET48rnvo-ujw6uCknJ4fnx7sT8smv1yWwLmiYBUQa5qaVWAUt0KBFFZSaits5JzbSpl5Q3iFa9q2REpoDSfUEsXYHvqyPvch-F8DxKQXLjbQdaYHP0RNBMZKUazE6yjPgUmac8vo52fovR9Cnz_yj8oN8Fpl6tMjNcwXYPVDcAsTRv0_7wxM1kATfIwB2g1CsF4VqleF6k2hWaieCY1LZlVGCsZ1L2tqrf1xHYyvXKL3z04Pn7rl2nUxwXLjmvBTc8FErW_OjvWMzabix-WlVuwv9APDzA |
CODEN | ACIEAY |
CitedBy_id | crossref_primary_10_1039_D4QI01580K crossref_primary_10_1016_j_apcatb_2021_120757 crossref_primary_10_1016_j_seppur_2024_128829 crossref_primary_10_1007_s11244_020_01317_9 crossref_primary_10_1016_j_apsusc_2020_146908 crossref_primary_10_1016_j_jcat_2022_08_019 crossref_primary_10_1016_j_apcatb_2021_120516 crossref_primary_10_1016_j_apcatb_2020_119003 crossref_primary_10_1016_j_cattod_2022_05_020 crossref_primary_10_1016_j_colsurfa_2018_04_013 crossref_primary_10_1021_acscatal_1c03733 crossref_primary_10_1016_j_nanoen_2022_107906 crossref_primary_10_1016_j_jpowsour_2024_234654 crossref_primary_10_1039_D3CC03807F crossref_primary_10_1016_j_apcatb_2021_120522 crossref_primary_10_1039_D3GC04123A crossref_primary_10_1002_smll_201703142 crossref_primary_10_1002_anie_202006747 crossref_primary_10_1016_j_apcatb_2021_119993 crossref_primary_10_1039_C5EE00748H crossref_primary_10_1016_j_apcatb_2019_117956 crossref_primary_10_1021_jacs_7b06634 crossref_primary_10_1002_anie_201811261 crossref_primary_10_1039_D1TA07802J crossref_primary_10_1039_C7RE00112F crossref_primary_10_1016_j_apcatb_2018_03_077 crossref_primary_10_1016_j_diamond_2023_110225 crossref_primary_10_1021_jacs_9b00144 crossref_primary_10_1088_1361_6528_ac4f83 crossref_primary_10_1007_s12274_022_4111_2 crossref_primary_10_1039_D1CY00581B crossref_primary_10_1016_j_apcatb_2017_07_021 crossref_primary_10_1007_s12274_024_6736_9 crossref_primary_10_1002_anie_202316998 crossref_primary_10_1016_j_apcatb_2018_11_044 crossref_primary_10_1002_adfm_202213173 crossref_primary_10_1016_j_apcatb_2021_120666 crossref_primary_10_1021_acsami_1c23960 crossref_primary_10_1021_acsami_5b11326 crossref_primary_10_1021_acsami_8b01295 crossref_primary_10_1002_anie_202200413 crossref_primary_10_1021_acsenergylett_8b00318 crossref_primary_10_1016_j_molcata_2016_04_009 crossref_primary_10_1016_j_apcatb_2020_119150 crossref_primary_10_1039_C6CC01605G crossref_primary_10_1021_acsapm_3c01455 crossref_primary_10_1016_j_mtsust_2024_100819 crossref_primary_10_1039_D2QM01371A crossref_primary_10_1016_j_envres_2021_110785 crossref_primary_10_1039_D0TA10944D crossref_primary_10_1021_acs_est_0c00886 crossref_primary_10_1002_adfm_201705407 crossref_primary_10_31613_ceramist_2022_25_2_05 crossref_primary_10_3390_nano10091824 crossref_primary_10_3390_catal13020218 crossref_primary_10_1016_j_jcis_2024_08_058 crossref_primary_10_1016_j_apcatb_2021_120316 crossref_primary_10_1021_jacs_5b04062 crossref_primary_10_2139_ssrn_4065669 crossref_primary_10_1002_anie_202404563 crossref_primary_10_1016_j_mseb_2016_08_003 crossref_primary_10_1021_jacs_6b05806 crossref_primary_10_1016_j_cej_2022_135664 crossref_primary_10_1002_ange_201811261 crossref_primary_10_1021_acsomega_1c04107 crossref_primary_10_1002_solr_202000594 crossref_primary_10_26599_NRE_2023_9120091 crossref_primary_10_1155_je_5807390 crossref_primary_10_1002_ange_202210856 crossref_primary_10_1016_j_cej_2023_148059 crossref_primary_10_1016_S1872_2067_18_63180_8 crossref_primary_10_1016_j_apcatb_2019_03_024 crossref_primary_10_1016_j_envpol_2018_11_090 crossref_primary_10_1016_j_chemosphere_2021_130556 crossref_primary_10_1039_C8NR09005J crossref_primary_10_1039_C9GC04324A crossref_primary_10_1021_jacs_9b13410 crossref_primary_10_1039_C5CY01845E crossref_primary_10_1016_j_jclepro_2021_130026 crossref_primary_10_1039_D4EE02505A crossref_primary_10_1039_C6TA11168H crossref_primary_10_1039_C7CS00840F crossref_primary_10_1002_ange_201606734 crossref_primary_10_1039_D4RA00536H crossref_primary_10_1002_adfm_202111125 crossref_primary_10_1016_j_actphy_2025_100064 crossref_primary_10_1016_j_cclet_2024_110125 crossref_primary_10_1021_acscatal_6b02611 crossref_primary_10_1021_acsestwater_1c00048 crossref_primary_10_1039_D1MA00304F crossref_primary_10_1039_C9SC01626K crossref_primary_10_1016_j_jcis_2023_06_186 crossref_primary_10_1039_D3YA00038A crossref_primary_10_1021_acssuschemeng_9b06134 crossref_primary_10_1039_D0GC04236F crossref_primary_10_1007_s10562_020_03389_4 crossref_primary_10_1002_ange_202404563 crossref_primary_10_1021_acs_jpcc_4c01272 crossref_primary_10_1039_D0EN00801J crossref_primary_10_1016_j_apcatb_2020_119064 crossref_primary_10_1039_D2CY00269H crossref_primary_10_1002_aenm_202003121 crossref_primary_10_1002_cctc_201701683 crossref_primary_10_1016_j_cej_2022_139929 crossref_primary_10_1021_acssuschemeng_0c07753 crossref_primary_10_1016_j_cplett_2023_140936 crossref_primary_10_1039_D0CP03533E crossref_primary_10_1021_acsenergylett_6b00415 crossref_primary_10_1016_j_apcatb_2019_03_040 crossref_primary_10_1002_adfm_201602114 crossref_primary_10_2139_ssrn_4158326 crossref_primary_10_1039_D0TA05621A crossref_primary_10_1039_D1DT02367E crossref_primary_10_1016_j_apcatb_2022_121066 crossref_primary_10_1039_C5EE03115J crossref_primary_10_1016_j_jhazmat_2022_129251 crossref_primary_10_1039_D1TA08036A crossref_primary_10_1002_adma_201904433 crossref_primary_10_1021_acs_macromol_3c02001 crossref_primary_10_1016_j_cej_2023_147724 crossref_primary_10_1088_1361_6528_abedec crossref_primary_10_1016_j_xcrp_2025_102431 crossref_primary_10_1039_C5TC01406A crossref_primary_10_1039_C6TA10114C crossref_primary_10_1038_s44160_023_00272_z crossref_primary_10_1002_ange_202100164 crossref_primary_10_1039_C8EN00908B crossref_primary_10_1016_j_cattod_2023_114400 crossref_primary_10_1016_j_jece_2024_112290 crossref_primary_10_1002_aenm_202302797 crossref_primary_10_1021_acsami_2c16549 crossref_primary_10_1016_j_cjche_2021_09_030 crossref_primary_10_1002_adma_202110266 crossref_primary_10_1016_j_jtice_2021_09_036 crossref_primary_10_1039_C9TA13929J crossref_primary_10_1007_s40843_022_2337_7 crossref_primary_10_1002_ange_202316998 crossref_primary_10_1021_acs_jpclett_5b00149 crossref_primary_10_1071_CH18328 crossref_primary_10_2139_ssrn_4199809 crossref_primary_10_1002_cssc_202300860 crossref_primary_10_1039_D4GC01321B crossref_primary_10_1039_C6RA28768A crossref_primary_10_1016_j_apsusc_2018_09_141 crossref_primary_10_1016_j_indcrop_2023_117000 crossref_primary_10_1021_acs_jpcc_9b02311 crossref_primary_10_1016_j_jallcom_2023_172000 crossref_primary_10_1039_D2TA01646J crossref_primary_10_1021_acs_chemrev_6b00396 crossref_primary_10_1039_D2TA08722G crossref_primary_10_1016_j_scib_2017_04_013 crossref_primary_10_1016_j_apmate_2024_100179 crossref_primary_10_1016_j_cej_2021_130067 crossref_primary_10_1016_j_jcat_2019_06_015 crossref_primary_10_1016_j_jhazmat_2020_123703 crossref_primary_10_1016_j_xcrp_2022_100874 crossref_primary_10_1007_s12274_024_6623_4 crossref_primary_10_1038_s41557_024_01553_6 crossref_primary_10_1002_anie_202317572 crossref_primary_10_1038_s41563_019_0398_0 crossref_primary_10_1021_acs_jpcc_3c06435 crossref_primary_10_3390_nano13091481 crossref_primary_10_1021_acssuschemeng_3c02461 crossref_primary_10_1038_srep16947 crossref_primary_10_1002_cctc_201702055 crossref_primary_10_1016_j_nanoen_2025_110862 crossref_primary_10_1002_advs_202102376 crossref_primary_10_1016_j_jechem_2017_12_014 crossref_primary_10_1021_acssuschemeng_2c05634 crossref_primary_10_1039_D2CY01135B crossref_primary_10_1016_j_carbon_2020_11_032 crossref_primary_10_1016_j_checat_2023_100870 crossref_primary_10_1016_j_jcat_2016_10_028 crossref_primary_10_1002_adsu_202100184 crossref_primary_10_1021_acsanm_4c06284 crossref_primary_10_1038_s42004_020_00421_x crossref_primary_10_1002_solr_202000440 crossref_primary_10_1021_acs_jpclett_1c00421 crossref_primary_10_1002_adfm_202416753 crossref_primary_10_1002_cptc_201700146 crossref_primary_10_1021_acs_chemmater_1c03166 crossref_primary_10_1039_D4CC01577K crossref_primary_10_1021_acs_jpcc_8b03996 crossref_primary_10_1016_j_chemosphere_2019_01_109 crossref_primary_10_1016_S1872_2067_23_64629_7 crossref_primary_10_1039_D1GC00198A crossref_primary_10_1134_S0036023622050102 crossref_primary_10_1016_j_snb_2018_12_068 crossref_primary_10_1039_C9NA00431A crossref_primary_10_1039_D2CS00806H crossref_primary_10_1002_ange_202200413 crossref_primary_10_1016_j_cej_2021_132032 crossref_primary_10_1016_S1872_2067_20_63715_9 crossref_primary_10_1021_am509213x crossref_primary_10_1016_j_apcatb_2022_121379 crossref_primary_10_1002_smll_202206587 crossref_primary_10_1002_anie_202310847 crossref_primary_10_3390_catal9120990 crossref_primary_10_1002_smll_202103224 crossref_primary_10_1002_ange_202406143 crossref_primary_10_1016_j_jece_2024_114425 crossref_primary_10_1039_C7TA05882A crossref_primary_10_1016_j_apcatb_2022_121485 crossref_primary_10_1021_jacs_0c01683 crossref_primary_10_1016_j_nantod_2020_101059 crossref_primary_10_1039_D2EW00504B crossref_primary_10_1016_j_seppur_2022_121947 crossref_primary_10_1021_acscatal_3c02904 crossref_primary_10_1016_j_apcatb_2018_03_035 crossref_primary_10_1039_D1EE02369A crossref_primary_10_1002_cctc_201801803 crossref_primary_10_1002_cjoc_202300494 crossref_primary_10_1039_D0EN00329H crossref_primary_10_1039_C7NJ03298F crossref_primary_10_1016_j_jcis_2020_06_023 crossref_primary_10_1016_j_materresbull_2018_12_014 crossref_primary_10_1021_acs_chemrev_6b00075 crossref_primary_10_1021_acssuschemeng_2c04512 crossref_primary_10_1021_acs_jpcc_9b11568 crossref_primary_10_3390_molecules27175535 crossref_primary_10_1016_j_cossms_2022_100988 crossref_primary_10_1016_j_chemosphere_2024_142330 crossref_primary_10_1002_anie_202403884 crossref_primary_10_1016_j_cej_2024_153871 crossref_primary_10_1007_s10853_023_08745_4 crossref_primary_10_1002_smtd_202301368 crossref_primary_10_1002_cptc_202300070 crossref_primary_10_1016_j_cej_2025_160563 crossref_primary_10_1038_s41467_020_17216_2 crossref_primary_10_1016_j_apsusc_2021_151515 crossref_primary_10_1039_D2QM00604A crossref_primary_10_1021_acs_langmuir_9b03445 crossref_primary_10_1002_chin_201511011 crossref_primary_10_1021_acscatal_8b03738 crossref_primary_10_1002_aic_18692 crossref_primary_10_1016_S1872_2067_22_64114_7 crossref_primary_10_1016_j_jcat_2017_10_002 crossref_primary_10_1016_j_cej_2024_150245 crossref_primary_10_1002_aenm_202400740 crossref_primary_10_1021_acscatal_2c04085 crossref_primary_10_1002_smll_202404139 crossref_primary_10_1021_acsnano_2c11550 crossref_primary_10_1016_j_apcatb_2018_11_087 crossref_primary_10_1039_D2CC05660G crossref_primary_10_1016_j_apcatb_2017_03_079 crossref_primary_10_1002_cssc_202300886 crossref_primary_10_1002_cssc_202300763 crossref_primary_10_1016_j_apcata_2023_119173 crossref_primary_10_1016_j_jwpe_2020_101467 crossref_primary_10_1039_D3CS00213F crossref_primary_10_1039_C6CP07973C crossref_primary_10_1021_acssuschemeng_6b02635 crossref_primary_10_1039_C7NR02310C crossref_primary_10_1016_j_mtphys_2024_101411 crossref_primary_10_1039_C9TA06251C crossref_primary_10_1016_j_jhazmat_2020_122557 crossref_primary_10_1021_acs_jpcc_4c05128 crossref_primary_10_1002_cey2_596 crossref_primary_10_1002_anie_202401884 crossref_primary_10_1016_j_cej_2022_137009 crossref_primary_10_1016_j_jmst_2024_01_065 crossref_primary_10_1039_D2RA01797K crossref_primary_10_1021_acscatal_6b02367 crossref_primary_10_1021_acscatal_6b03334 crossref_primary_10_1002_asia_201700292 crossref_primary_10_3390_ma12244238 crossref_primary_10_1039_C7CC00621G crossref_primary_10_1002_smtd_202400797 crossref_primary_10_1021_acs_jpclett_6b02026 crossref_primary_10_1016_j_jhazmat_2019_03_114 crossref_primary_10_1016_j_apcatb_2020_119817 crossref_primary_10_1016_j_cej_2021_129107 crossref_primary_10_1007_s12039_021_01999_y crossref_primary_10_1039_D1NJ04682A crossref_primary_10_1039_D0NR03178J crossref_primary_10_1002_adfm_202420504 crossref_primary_10_1039_D0TA11510J crossref_primary_10_1016_S1872_2067_22_64205_0 crossref_primary_10_1039_C5NJ00158G crossref_primary_10_1002_adfm_202201743 crossref_primary_10_1021_acsaem_8b00829 crossref_primary_10_1021_acscatal_9b05247 crossref_primary_10_1002_ange_201911609 crossref_primary_10_1002_ange_202317572 crossref_primary_10_1016_j_carbon_2021_07_025 crossref_primary_10_14356_kona_2023004 crossref_primary_10_1016_j_cej_2021_129346 crossref_primary_10_1039_D1NJ02608A crossref_primary_10_1021_jacs_4c07170 crossref_primary_10_1002_ange_202305355 crossref_primary_10_1021_jacs_2c02666 crossref_primary_10_1021_acscatal_5b00408 crossref_primary_10_1016_j_jhazmat_2019_120815 crossref_primary_10_1016_j_apsusc_2018_08_070 crossref_primary_10_1016_j_colsurfa_2018_01_021 crossref_primary_10_1021_acs_jpcc_5b10626 crossref_primary_10_1016_j_chemosphere_2019_124927 crossref_primary_10_3390_molecules28041805 crossref_primary_10_1021_acs_jpcc_3c04523 crossref_primary_10_1002_anie_202408186 crossref_primary_10_1021_acsestengg_1c00456 crossref_primary_10_1016_j_apsusc_2022_155717 crossref_primary_10_1016_j_cclet_2023_109429 crossref_primary_10_1016_j_colsurfa_2024_135774 crossref_primary_10_1002_celc_201600317 crossref_primary_10_1002_ange_202310847 crossref_primary_10_1016_j_jece_2024_114093 crossref_primary_10_1016_j_jmst_2021_09_002 crossref_primary_10_1002_aesr_202300090 crossref_primary_10_1039_D3CY00235G crossref_primary_10_1016_j_jcis_2017_07_099 crossref_primary_10_1016_j_apcatb_2017_12_044 crossref_primary_10_1016_j_cej_2025_160091 crossref_primary_10_1016_j_nantod_2017_12_011 crossref_primary_10_1016_j_apcata_2020_117419 crossref_primary_10_1002_adsu_201900027 crossref_primary_10_1002_anie_202100164 crossref_primary_10_1039_C6TA04737H crossref_primary_10_1002_smll_202301007 crossref_primary_10_1002_adfm_202002021 crossref_primary_10_1016_j_cej_2022_138489 crossref_primary_10_1002_ejic_201700930 crossref_primary_10_1016_j_mattod_2023_10_005 crossref_primary_10_1039_C6RA26137J crossref_primary_10_1002_cjoc_202200355 crossref_primary_10_1021_jacs_1c10786 crossref_primary_10_1039_C8EE01316K crossref_primary_10_1016_j_molstruc_2021_131244 crossref_primary_10_1016_j_envint_2020_106273 crossref_primary_10_1021_acsomega_2c02371 crossref_primary_10_1016_j_apcatb_2017_11_026 crossref_primary_10_1016_j_ccr_2018_03_003 crossref_primary_10_1002_ange_201705926 crossref_primary_10_1149_1945_7111_abad6f crossref_primary_10_1016_j_jcis_2022_07_137 crossref_primary_10_1016_j_jece_2023_109405 crossref_primary_10_1016_j_snb_2020_128142 crossref_primary_10_1016_j_apcatb_2017_05_038 crossref_primary_10_1039_D3EE03032F crossref_primary_10_1039_D1CY01657A crossref_primary_10_1002_anie_202305355 crossref_primary_10_1039_D0QI01327G crossref_primary_10_1007_s12274_023_6159_z crossref_primary_10_1016_j_apcatb_2024_124590 crossref_primary_10_1016_j_jmst_2021_03_025 crossref_primary_10_1016_j_jcat_2022_05_017 crossref_primary_10_1016_j_mssp_2019_03_002 crossref_primary_10_1002_ange_202401884 crossref_primary_10_1039_D2NJ02237K crossref_primary_10_1073_pnas_2115666118 crossref_primary_10_1021_acsanm_1c02896 crossref_primary_10_1002_ange_202304349 crossref_primary_10_1016_j_cej_2024_154212 crossref_primary_10_1021_acs_chemmater_2c00936 crossref_primary_10_1016_j_inoche_2025_113975 crossref_primary_10_1039_D4CE00420E crossref_primary_10_1016_j_cclet_2022_06_044 crossref_primary_10_1016_j_jpcs_2022_110588 crossref_primary_10_1016_j_apsusc_2022_153866 crossref_primary_10_1016_j_bbabio_2015_08_012 crossref_primary_10_1016_j_jece_2025_115422 crossref_primary_10_1021_acscatal_6b01187 crossref_primary_10_1039_D4TA03950E crossref_primary_10_1021_acscatal_3c01076 crossref_primary_10_1016_j_fuel_2023_129465 crossref_primary_10_1002_qua_26960 crossref_primary_10_1016_j_apcatb_2020_118770 crossref_primary_10_1016_j_cclet_2023_108784 crossref_primary_10_1016_j_nanoen_2017_04_017 crossref_primary_10_1073_pnas_2202913119 crossref_primary_10_1002_cssc_201600661 crossref_primary_10_1002_sus2_83 crossref_primary_10_1002_anie_202403926 crossref_primary_10_1016_j_apcatb_2024_124264 crossref_primary_10_1016_j_cej_2019_03_141 crossref_primary_10_1002_adfm_201601946 crossref_primary_10_1016_j_apcatb_2022_121859 crossref_primary_10_1016_j_memsci_2017_07_044 crossref_primary_10_1038_s41467_024_49663_6 crossref_primary_10_1016_j_jcat_2022_06_042 crossref_primary_10_1016_j_joule_2017_07_007 crossref_primary_10_1021_acs_cgd_1c01163 crossref_primary_10_1021_acs_chemmater_2c00910 crossref_primary_10_1016_j_jechem_2021_03_055 crossref_primary_10_1016_j_mtener_2023_101475 crossref_primary_10_1016_j_jece_2023_109512 crossref_primary_10_1002_adfm_202106120 crossref_primary_10_1002_chem_201704512 crossref_primary_10_1016_j_catcom_2019_02_011 crossref_primary_10_1002_ange_202403926 crossref_primary_10_1038_s41467_023_40991_7 crossref_primary_10_1021_acscatal_1c03690 crossref_primary_10_1039_D2TA10074F crossref_primary_10_1002_phmt_8 crossref_primary_10_3390_nano10091751 crossref_primary_10_1246_cl_230044 crossref_primary_10_1016_j_isci_2019_06_023 crossref_primary_10_1002_anie_202406143 crossref_primary_10_1039_D0CP00369G crossref_primary_10_1016_j_cej_2024_155079 crossref_primary_10_1007_s40820_020_00504_3 crossref_primary_10_1002_anie_201606734 crossref_primary_10_1002_anie_202304349 crossref_primary_10_1021_acs_energyfuels_3c01173 crossref_primary_10_1002_aenm_202300119 crossref_primary_10_1007_s41061_023_00423_y crossref_primary_10_1021_acsami_3c19464 crossref_primary_10_1016_j_apcatb_2024_124323 crossref_primary_10_1016_j_apcatb_2020_119539 crossref_primary_10_1039_C9EN00482C crossref_primary_10_1016_j_cej_2021_130615 crossref_primary_10_1002_cssc_201600705 crossref_primary_10_1134_S0040579524600979 crossref_primary_10_1016_j_ijhydene_2024_11_272 crossref_primary_10_1021_acs_langmuir_4c01014 crossref_primary_10_1002_anie_201705926 crossref_primary_10_1021_acscatal_1c03103 crossref_primary_10_1021_acs_jpcc_5c00163 crossref_primary_10_1039_D0TA07796H crossref_primary_10_1016_j_apsusc_2024_159494 crossref_primary_10_1016_j_jtice_2021_104179 crossref_primary_10_1039_D1TA06960H crossref_primary_10_1021_acscatal_0c03359 crossref_primary_10_1016_j_apsusc_2020_145650 crossref_primary_10_1016_j_jcat_2023_01_021 crossref_primary_10_1016_j_jcis_2021_04_019 crossref_primary_10_1016_j_jelechem_2020_114677 crossref_primary_10_1016_j_jcis_2022_11_146 crossref_primary_10_1016_j_xinn_2021_100089 crossref_primary_10_1021_acs_iecr_2c03673 crossref_primary_10_1016_j_mssp_2020_105024 crossref_primary_10_1016_j_jphotochem_2022_113949 crossref_primary_10_1016_j_electacta_2022_140433 crossref_primary_10_1016_j_porgcoat_2021_106356 crossref_primary_10_1016_j_cattod_2018_11_067 crossref_primary_10_1016_j_apcatb_2016_03_004 crossref_primary_10_3389_fchem_2022_1098209 crossref_primary_10_2174_1573411019666230224142001 crossref_primary_10_1039_D0CS00458H crossref_primary_10_1021_acscatal_2c05931 crossref_primary_10_3390_catal13101331 crossref_primary_10_1002_ange_202408186 crossref_primary_10_1021_ic502678k crossref_primary_10_1016_j_cej_2021_130991 crossref_primary_10_1016_j_cej_2024_158432 crossref_primary_10_1002_adfm_202400612 crossref_primary_10_1021_acsami_0c13656 crossref_primary_10_1016_j_cej_2025_161904 crossref_primary_10_1021_acsapm_4c02016 crossref_primary_10_1016_j_apcata_2021_118240 crossref_primary_10_1016_j_jcis_2024_09_118 crossref_primary_10_1002_ange_202006747 crossref_primary_10_1016_j_apcatb_2019_02_041 crossref_primary_10_1016_j_jcis_2021_04_111 crossref_primary_10_1021_acsearthspacechem_9b00297 crossref_primary_10_1016_j_apcatb_2022_121944 crossref_primary_10_12677_MS_2021_1112141 crossref_primary_10_1002_anie_202210856 crossref_primary_10_1007_s10854_022_09344_w crossref_primary_10_1016_S1872_2067_20_63767_6 crossref_primary_10_1016_S1872_2067_24_60143_9 crossref_primary_10_1002_adma_201605148 crossref_primary_10_1039_D2TA09122D crossref_primary_10_1016_j_apcatb_2023_123271 crossref_primary_10_1016_j_jcat_2021_05_007 crossref_primary_10_1039_D2TA08045A crossref_primary_10_1002_asia_201900261 crossref_primary_10_1016_j_jechem_2022_02_031 crossref_primary_10_1038_srep22808 crossref_primary_10_1002_smll_202409006 crossref_primary_10_1002_adsu_202200143 crossref_primary_10_1016_j_cclet_2020_04_020 crossref_primary_10_1039_C5CC02589C crossref_primary_10_3390_catal8040147 crossref_primary_10_1021_acssuschemeng_7b00575 crossref_primary_10_1016_j_cej_2019_123427 crossref_primary_10_1021_acsami_8b03756 crossref_primary_10_1039_C7EE03459H crossref_primary_10_1002_ente_201800886 crossref_primary_10_1021_acsami_4c14902 crossref_primary_10_1038_s41467_021_24048_1 crossref_primary_10_1039_C8TA02061B crossref_primary_10_1021_acsanm_3c04969 crossref_primary_10_20964_2022_11_41 crossref_primary_10_1142_S1088424622300075 crossref_primary_10_1016_j_ceja_2021_100142 crossref_primary_10_1080_01614940_2021_1948302 crossref_primary_10_1021_acs_jpca_0c08496 crossref_primary_10_1016_j_apcatb_2021_120736 crossref_primary_10_1016_j_cej_2022_138551 crossref_primary_10_1016_j_jcis_2022_06_068 crossref_primary_10_1021_acssuschemeng_2c06497 crossref_primary_10_1016_j_apcatb_2020_119225 crossref_primary_10_1021_acsami_3c08466 crossref_primary_10_1021_acsnano_4c04797 crossref_primary_10_1016_j_apcatb_2020_119589 crossref_primary_10_1021_acs_chemmater_2c00528 crossref_primary_10_1016_j_jpowsour_2022_231368 crossref_primary_10_1039_D1CS00219H crossref_primary_10_1038_ncomms11470 crossref_primary_10_1016_j_carbon_2022_12_075 crossref_primary_10_1016_j_cej_2020_128184 crossref_primary_10_1016_j_molliq_2020_114772 crossref_primary_10_1016_j_jcis_2022_07_077 crossref_primary_10_1038_s41467_019_08731_y crossref_primary_10_1016_j_apcatb_2019_118054 crossref_primary_10_1002_eem2_12553 crossref_primary_10_1002_anie_201911609 crossref_primary_10_1021_acscatal_6b03092 crossref_primary_10_1021_am508769x crossref_primary_10_1016_j_radphyschem_2019_108449 crossref_primary_10_1016_j_seppur_2020_116576 crossref_primary_10_1007_s11244_024_01936_6 crossref_primary_10_1016_j_jcat_2022_08_030 crossref_primary_10_1002_ange_202403884 crossref_primary_10_1016_j_checat_2024_101260 crossref_primary_10_1073_pnas_1913403117 crossref_primary_10_1016_j_chemosphere_2023_138107 crossref_primary_10_3390_en14051278 crossref_primary_10_1002_ejic_202001151 crossref_primary_10_1016_j_apcatb_2018_08_031 crossref_primary_10_1039_D2TA07272F crossref_primary_10_1002_cssc_202201514 crossref_primary_10_1016_S1872_2067_22_64163_9 crossref_primary_10_1021_acs_energyfuels_3c02432 crossref_primary_10_1021_jacs_6b07272 |
Cites_doi | 10.1016/j.apcatb.2012.08.015 10.1021/es071379t 10.1002/ange.201301669 10.1016/j.ijhydene.2010.09.038 10.1039/b924472g 10.1021/ie050593s 10.1021/cs2006873 10.1063/1.1488251 10.1021/ja805746h 10.1021/ja073306f 10.1002/anie.201107355 10.1016/j.apsusc.2010.05.077 10.1016/j.cej.2012.12.033 10.1038/440295a 10.1016/j.cplett.2009.02.068 10.1039/C1CP22820J 10.1021/ja102651g 10.1002/ange.201107355 10.1007/s00289-012-0704-3 10.1016/j.diamond.2013.06.012 10.1002/adma.201000731 10.1021/ja071546p 10.1039/b418789j 10.1021/cs401208c 10.1021/cm021723f 10.1039/b800274f 10.1021/jp8055015 10.1002/ange.200503779 10.1021/cs4000624 10.1021/la00041a033 10.1016/j.jcat.2004.04.001 10.1002/anie.201301669 10.1016/j.synthmet.2013.05.017 10.1016/j.jcis.2010.07.012 10.1016/S0168-583X(00)00257-3 10.1007/s11244-013-0014-5 10.1021/la0509302 10.1016/S0021-9517(03)00197-0 10.1021/cs400511q 10.1038/nmat2317 10.1016/j.jcat.2005.09.015 10.1021/es00172a009 10.1016/j.jcat.2006.02.014 10.1002/anie.200503779 10.1021/ja809307s |
ContentType | Journal Article |
Copyright | 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION NPM 7TM K9. 7X8 7SR 8BQ 8FD JG9 |
DOI | 10.1002/anie.201407938 |
DatabaseName | Istex CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 13459 |
ExternalDocumentID | 3508857461 25293501 10_1002_anie_201407938 ANIE201407938 ark_67375_WNG_M3ML7VQQ_9 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: Ministry of Education, Culture, Sports, Science and Technology – fundername: Grant‐in‐Aid for Scientific Research funderid: 26289296 – fundername: MEXT |
GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB B-7 BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ .GJ .HR 186 31~ 9M8 AAYJJ AAYOK AAYXX ABDBF ABDPE ABEFU ABJNI ADXHL AETEA AEYWJ AGCDD AGHNM AGQPQ AGYGG AI. ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF H~9 MVM NHB OHT PALCI RIWAO RJQFR RWH S10 SAMSI UQL VH1 WHG XOL YYP ZCG ZE2 ZGI ZXP ZY4 NPM YIN 7TM K9. 7X8 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c5218-e6692ed9e1dac534ea96d79e87d822d40a8b6d49abc164052ff188efa612d1933 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 02:06:47 EDT 2025 Fri Jul 11 03:51:56 EDT 2025 Fri Jul 25 10:49:11 EDT 2025 Wed Feb 19 01:55:35 EST 2025 Tue Jul 01 03:26:41 EDT 2025 Thu Apr 24 23:02:57 EDT 2025 Wed Jan 22 17:03:47 EST 2025 Wed Oct 30 09:49:35 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 49 |
Keywords | photocatalysis oxygen water graphitic carbon nitride hydrogen peroxide |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5218-e6692ed9e1dac534ea96d79e87d822d40a8b6d49abc164052ff188efa612d1933 |
Notes | MEXT istex:BFA49EC8A63BCFC2E8C04F752E877B7A5778440C ArticleID:ANIE201407938 This work was supported by the Grant-in-Aid for Scientific Research (No. 26289296) from the Ministry of Education, Culture, Sports, Science and Technology (Japan) (MEXT). Ministry of Education, Culture, Sports, Science and Technology ark:/67375/WNG-M3ML7VQQ-9 Grant-in-Aid for Scientific Research - No. 26289296 This work was supported by the Grant‐in‐Aid for Scientific Research (No. 26289296) from the Ministry of Education, Culture, Sports, Science and Technology (Japan) (MEXT). ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/anie.201407938 |
PMID | 25293501 |
PQID | 1628201659 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1700992097 proquest_miscellaneous_1628882002 proquest_journals_1628201659 pubmed_primary_25293501 crossref_primary_10_1002_anie_201407938 crossref_citationtrail_10_1002_anie_201407938 wiley_primary_10_1002_anie_201407938_ANIE201407938 istex_primary_ark_67375_WNG_M3ML7VQQ_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 1, 2014 |
PublicationDateYYYYMMDD | 2014-12-01 |
PublicationDate_xml | – month: 12 year: 2014 text: December 1, 2014 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew. Chem. Int. Ed |
PublicationYear | 2014 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J. O. Müller, R. Schlögl, J. M. Carlsson, J. Mater. Chem. 2008, 18, 4893-4908. C. Hu, Q. Zhang, Polym. Bull. 2012, 69, 63-69 Q. Bao, B. M. Goh, B. Yan, T. Yu, Z. Shen, K. P. Loh, Adv. Mater. 2010, 22, 3661-3666. Z. Qin, J. Zhang, H. Zhou, Y. Song, T. He, Nucl. Instrum. Methods Phys. Res. Sect. B 2000, 170, 406-412. F. Sandelin, P. Oinas, T. Salmi, J. Paloniemi, H. Haario, Ind. Eng. Chem. Res. 2006, 45, 986-992. Y. Shiraishi, S. Kanazawa, D. Tsukamoto, A. Shiro, Y. Sugano, T. Hirai, ACS Catal. 2013, 3, 2222-2227. W. H. Koppenol, J. Am. Chem. Soc. 2007, 129, 9686-9690. Angew. Chem. 2012, 124, 1943-1946 S. Melada, R. Rioda, F. Menegazzo, F. Pinna, G. Strukul, J. Catal. 2006, 239, 422-430. K. Bijak, M. G. Zajac, H. Janeczek, M. Wiacek, E. S. Balcerzak, Synth. Met. 2013, 175, 146-154 T. Hirakawa, Y. Nosaka, J. Phys. Chem. C 2008, 112, 15818-15823 Y. Shiraishi, S. Kanazawa, Y. Sugano, D. Tsukamoto, H. Sakamoto, S. Ichikawa, T. Hirai, ACS Catal. 2014, 4, 774-780. J. K. Edwards, B. E. Solsona, P. Landon, A. F. Carley, A. Herzing, C. J. Kiely, G. J. Hutchings, J. Catal. 2005, 236, 69-79 H. Dai, X. Gao, E. Liu, Y. Yang, W. Hou, L. Kang, J. Fan, X. Hu, Diamond Relat. Mater. 2013, 38, 109-117. K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Nature 2006, 440, 295. Y. Sugano, Y. Shiraishi, D. Tsukamoto, S. Ichikawa, S. Tanaka, T. Hirai, Angew. Chem. Int. Ed. 2013, 52, 5295-5299 D. Gudarzi, W. Ratchananusorn, I. Turunen, T. Salmi, M. Heinonen, Top. Catal. 2013, 56, 527-539 D. Tsukamoto, A. Shiro, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka, T. Hirai, ACS Catal. 2012, 2, 599-603. A. E. Sanli, A. Aytac, Int. J. Hydrogen Energy 2011, 36, 869-875. P. V. Zinin, L. C. Ming, S. K. Sharma, V. N. Khabashesku, X. Liu, S. Hong, S. Endo, T. Acosta, Chem. Phys. Lett. 2009, 472, 69-73 H. Ji, F. Chang, X. Hu, W. Qin, J. Shen, Chem. Eng. J. 2013, 218, 183-190. F. Xiao, K. Wang, M. Zhan, Appl. Surf. Sci. 2010, 256, 7384-7388 L. Xue, Y. Wang, Y. Chen, X. Li, J. Colloid Interface Sci. 2010, 350, 523-529. V. Maurino, C. Minero, G. Mariella, E. Pelizzetti, Chem. Commun. 2005, 2627-2629 X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 2009, 8, 76-80 Z. Wang, C. Kim, A. Facchetti, T. J. Marks, J. Am. Chem. Soc. 2007, 129, 13362-13363 M. Teranishi, S. Naya, H. Tada, J. Am. Chem. Soc. 2010, 132, 7850-7851 H. Xu, J. Yan, Y. Xu, Y. Song, H. Li, J. Xia, C. Huang, H. Wan, Appl. Catal. B 2013, 129, 182-193. T. J. Dingemans, S. J. Picken, N. S. Murthy, P. Mark, T. L. St Clair, E. T. Samulski, Chem. Mater. 2004, 16, 966-974. S. R. Puniredd, M. P. Srinivasan, Langmuir 2005, 21, 7812-7822. W. H. Tsai, F. J. Boerio, K. M. Jackson, Langmuir 1992, 8, 1443-1450. C. Kormann, D. W. Bahnemann, M. R. Hoffmann, Environ. Sci. Technol. 1988, 22, 798-806 Y. Cui, Z. Ding, P. Liu, M. Antonietti, X. Fu, X. Wang, Phys. Chem. Chem. Phys. 2012, 14, 1455-1462. J. M. Campos-Martin, G. Blanco-Brieva, J. L. G. Fierro, Angew. Chem. Int. Ed. 2006, 45, 6962-6984 S. Goldstein, D. Aschengrau, Y. Diamant, J. Rabani, Environ. Sci. Technol. 2007, 41, 7486-7490. Angew. Chem. 2013, 125, 5403-5407. X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, X. Fu, M. Antonietti, J. Am. Chem. Soc. 2009, 131, 1680-1681. H. Goto, Y. Hanada, T. Ohno, M. Matsumura, J. Catal. 2004, 225, 223-229 Q. Zheng, J. Huang, A. Sarjeant, H. E. Katz, J. Am. Chem. Soc. 2008, 130, 14410-14411 J. Chen, P. Wagner, L. Tong, G. G. Wallace, D. L. Officer, G. F. Sweigers, Angew. Chem. Int. Ed. 2012, 51, 1907-1910 R. Cai, Y. Kubota, A. Fujishima, J. Catal. 2003, 219, 214-218 D. Papadimitriou, G. Roupakas, C. A. Dimitriadis, S. Logothetidis, J. Appl. Phys. 2002, 92, 870-875. S. Chu, Y. Wang, Y. Guo, J. Feng, C. Wang, W. Luo, X. Fan, Z. Zou, ACS Catal. 2013, 3, 912-919. J. C. Pritchard, Q. He, E. N. Ntainjua, M. Piccinini, J. K. Edwards, A. A. Herzing, A. F. Carley, J. A. Moulijn, C. J. Kiely, G. J. Hutchings, Green Chem. 2010, 12, 915-921. Angew. Chem. 2006, 118, 7116-7139. 2010; 12 2003; 219 2013; 3 2007; 129 2004; 225 2008; 18 2005; 236 2013; 129 2005; 21 2005 2011; 36 2009; 131 2009; 472 2012; 14 2006; 239 2013 2013; 52 125 2000; 170 2006 2006; 45 118 2010; 22 1992; 8 2012; 2 2014; 4 2013; 38 2006; 45 2013; 218 2004; 16 2013; 56 2012 2012; 51 124 2010; 256 2010; 132 1988; 22 2010; 350 2006; 440 2009; 8 2002; 92 2013; 175 2007; 41 2008; 112 2012; 69 2008; 130 e_1_2_2_24_2 e_1_2_2_47_2 e_1_2_2_4_2 e_1_2_2_22_2 e_1_2_2_49_2 e_1_2_2_6_2 e_1_2_2_20_2 e_1_2_2_2_2 e_1_2_2_41_2 e_1_2_2_8_2 e_1_2_2_28_2 e_1_2_2_43_2 e_1_2_2_26_2 e_1_2_2_45_2 e_1_2_2_45_3 e_1_2_2_13_2 e_1_2_2_36_2 e_1_2_2_11_2 e_1_2_2_38_2 e_1_2_2_19_2 e_1_2_2_30_2 e_1_2_2_53_2 e_1_2_2_17_2 e_1_2_2_32_2 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_3_2 e_1_2_2_23_2 e_1_2_2_48_2 e_1_2_2_5_2 e_1_2_2_21_2 e_1_2_2_1_2 e_1_2_2_1_3 Papadimitriou D. (e_1_2_2_51_2) 2002; 92 e_1_2_2_40_2 e_1_2_2_29_2 e_1_2_2_42_2 e_1_2_2_7_2 e_1_2_2_27_2 e_1_2_2_44_2 e_1_2_2_25_3 e_1_2_2_9_2 e_1_2_2_25_2 e_1_2_2_46_2 e_1_2_2_12_2 e_1_2_2_37_2 e_1_2_2_10_2 e_1_2_2_39_2 e_1_2_2_50_2 e_1_2_2_18_2 e_1_2_2_31_2 e_1_2_2_52_2 e_1_2_2_16_2 e_1_2_2_33_2 e_1_2_2_14_2 e_1_2_2_35_2 |
References_xml | – reference: X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, X. Fu, M. Antonietti, J. Am. Chem. Soc. 2009, 131, 1680-1681. – reference: D. Papadimitriou, G. Roupakas, C. A. Dimitriadis, S. Logothetidis, J. Appl. Phys. 2002, 92, 870-875. – reference: Y. Shiraishi, S. Kanazawa, D. Tsukamoto, A. Shiro, Y. Sugano, T. Hirai, ACS Catal. 2013, 3, 2222-2227. – reference: Z. Qin, J. Zhang, H. Zhou, Y. Song, T. He, Nucl. Instrum. Methods Phys. Res. Sect. B 2000, 170, 406-412. – reference: H. Xu, J. Yan, Y. Xu, Y. Song, H. Li, J. Xia, C. Huang, H. Wan, Appl. Catal. B 2013, 129, 182-193. – reference: S. Melada, R. Rioda, F. Menegazzo, F. Pinna, G. Strukul, J. Catal. 2006, 239, 422-430. – reference: A. E. Sanli, A. Aytac, Int. J. Hydrogen Energy 2011, 36, 869-875. – reference: S. Chu, Y. Wang, Y. Guo, J. Feng, C. Wang, W. Luo, X. Fan, Z. Zou, ACS Catal. 2013, 3, 912-919. – reference: S. R. Puniredd, M. P. Srinivasan, Langmuir 2005, 21, 7812-7822. – reference: R. Cai, Y. Kubota, A. Fujishima, J. Catal. 2003, 219, 214-218; – reference: T. Hirakawa, Y. Nosaka, J. Phys. Chem. C 2008, 112, 15818-15823; – reference: D. Gudarzi, W. Ratchananusorn, I. Turunen, T. Salmi, M. Heinonen, Top. Catal. 2013, 56, 527-539; – reference: M. Teranishi, S. Naya, H. Tada, J. Am. Chem. Soc. 2010, 132, 7850-7851; – reference: X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 2009, 8, 76-80; – reference: Y. Shiraishi, S. Kanazawa, Y. Sugano, D. Tsukamoto, H. Sakamoto, S. Ichikawa, T. Hirai, ACS Catal. 2014, 4, 774-780. – reference: Y. Sugano, Y. Shiraishi, D. Tsukamoto, S. Ichikawa, S. Tanaka, T. Hirai, Angew. Chem. Int. Ed. 2013, 52, 5295-5299; – reference: Q. Bao, B. M. Goh, B. Yan, T. Yu, Z. Shen, K. P. Loh, Adv. Mater. 2010, 22, 3661-3666. – reference: L. Xue, Y. Wang, Y. Chen, X. Li, J. Colloid Interface Sci. 2010, 350, 523-529. – reference: P. V. Zinin, L. C. Ming, S. K. Sharma, V. N. Khabashesku, X. Liu, S. Hong, S. Endo, T. Acosta, Chem. Phys. Lett. 2009, 472, 69-73; – reference: A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J. O. Müller, R. Schlögl, J. M. Carlsson, J. Mater. Chem. 2008, 18, 4893-4908. – reference: J. K. Edwards, B. E. Solsona, P. Landon, A. F. Carley, A. Herzing, C. J. Kiely, G. J. Hutchings, J. Catal. 2005, 236, 69-79; – reference: K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Nature 2006, 440, 295. – reference: F. Sandelin, P. Oinas, T. Salmi, J. Paloniemi, H. Haario, Ind. Eng. Chem. Res. 2006, 45, 986-992. – reference: W. H. Tsai, F. J. Boerio, K. M. Jackson, Langmuir 1992, 8, 1443-1450. – reference: J. M. Campos-Martin, G. Blanco-Brieva, J. L. G. Fierro, Angew. Chem. Int. Ed. 2006, 45, 6962-6984; – reference: J. Chen, P. Wagner, L. Tong, G. G. Wallace, D. L. Officer, G. F. Sweigers, Angew. Chem. Int. Ed. 2012, 51, 1907-1910; – reference: C. Kormann, D. W. Bahnemann, M. R. Hoffmann, Environ. Sci. Technol. 1988, 22, 798-806; – reference: H. Ji, F. Chang, X. Hu, W. Qin, J. Shen, Chem. Eng. J. 2013, 218, 183-190. – reference: V. Maurino, C. Minero, G. Mariella, E. Pelizzetti, Chem. Commun. 2005, 2627-2629; – reference: W. H. Koppenol, J. Am. Chem. Soc. 2007, 129, 9686-9690. – reference: C. Hu, Q. Zhang, Polym. Bull. 2012, 69, 63-69; – reference: H. Dai, X. Gao, E. Liu, Y. Yang, W. Hou, L. Kang, J. Fan, X. Hu, Diamond Relat. Mater. 2013, 38, 109-117. – reference: Angew. Chem. 2012, 124, 1943-1946; – reference: T. J. Dingemans, S. J. Picken, N. S. Murthy, P. Mark, T. L. St Clair, E. T. Samulski, Chem. Mater. 2004, 16, 966-974. – reference: Q. Zheng, J. Huang, A. Sarjeant, H. E. Katz, J. Am. Chem. Soc. 2008, 130, 14410-14411; – reference: K. Bijak, M. G. Zajac, H. Janeczek, M. Wiacek, E. S. Balcerzak, Synth. Met. 2013, 175, 146-154; – reference: D. Tsukamoto, A. Shiro, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka, T. Hirai, ACS Catal. 2012, 2, 599-603. – reference: J. C. Pritchard, Q. He, E. N. Ntainjua, M. Piccinini, J. K. Edwards, A. A. Herzing, A. F. Carley, J. A. Moulijn, C. J. Kiely, G. J. Hutchings, Green Chem. 2010, 12, 915-921. – reference: F. Xiao, K. Wang, M. Zhan, Appl. Surf. Sci. 2010, 256, 7384-7388; – reference: S. Goldstein, D. Aschengrau, Y. Diamant, J. Rabani, Environ. Sci. Technol. 2007, 41, 7486-7490. – reference: Angew. Chem. 2006, 118, 7116-7139. – reference: Angew. Chem. 2013, 125, 5403-5407. – reference: Z. Wang, C. Kim, A. Facchetti, T. J. Marks, J. Am. Chem. Soc. 2007, 129, 13362-13363; – reference: H. Goto, Y. Hanada, T. Ohno, M. Matsumura, J. Catal. 2004, 225, 223-229; – reference: Y. Cui, Z. Ding, P. Liu, M. Antonietti, X. Fu, X. Wang, Phys. Chem. Chem. Phys. 2012, 14, 1455-1462. – volume: 3 start-page: 2222 year: 2013 end-page: 2227 publication-title: ACS Catal. – volume: 92 start-page: 870 year: 2002 end-page: 875 publication-title: J. Appl. Phys. – volume: 21 start-page: 7812 year: 2005 end-page: 7822 publication-title: Langmuir – volume: 38 start-page: 109 year: 2013 end-page: 117 publication-title: Diamond Relat. Mater. – start-page: 2627 year: 2005 end-page: 2629 publication-title: Chem. Commun. – volume: 8 start-page: 76 year: 2009 end-page: 80 publication-title: Nat. Mater. – volume: 14 start-page: 1455 year: 2012 end-page: 1462 publication-title: Phys. Chem. Chem. Phys. – volume: 16 start-page: 966 year: 2004 end-page: 974 publication-title: Chem. Mater. – volume: 22 start-page: 3661 year: 2010 end-page: 3666 publication-title: Adv. Mater. – volume: 132 start-page: 7850 year: 2010 end-page: 7851 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 599 year: 2012 end-page: 603 publication-title: ACS Catal. – volume: 45 118 start-page: 6962 7116 year: 2006 2006 end-page: 6984 7139 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 175 start-page: 146 year: 2013 end-page: 154 publication-title: Synth. Met. – volume: 472 start-page: 69 year: 2009 end-page: 73 publication-title: Chem. Phys. Lett. – volume: 131 start-page: 1680 year: 2009 end-page: 1681 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 1443 year: 1992 end-page: 1450 publication-title: Langmuir – volume: 56 start-page: 527 year: 2013 end-page: 539 publication-title: Top. Catal. – volume: 218 start-page: 183 year: 2013 end-page: 190 publication-title: Chem. Eng. J. – volume: 350 start-page: 523 year: 2010 end-page: 529 publication-title: J. Colloid Interface Sci. – volume: 239 start-page: 422 year: 2006 end-page: 430 publication-title: J. Catal. – volume: 236 start-page: 69 year: 2005 end-page: 79 publication-title: J. Catal. – volume: 36 start-page: 869 year: 2011 end-page: 875 publication-title: Int. J. Hydrogen Energy – volume: 12 start-page: 915 year: 2010 end-page: 921 publication-title: Green Chem. – volume: 170 start-page: 406 year: 2000 end-page: 412 publication-title: Nucl. Instrum. Methods Phys. Res. Sect. B – volume: 52 125 start-page: 5295 5403 year: 2013 2013 end-page: 5299 5407 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 129 start-page: 13362 year: 2007 end-page: 13363 publication-title: J. Am. Chem. Soc. – volume: 440 start-page: 295 year: 2006 publication-title: Nature – volume: 130 start-page: 14410 year: 2008 end-page: 14411 publication-title: J. Am. Chem. Soc. – volume: 112 start-page: 15818 year: 2008 end-page: 15823 publication-title: J. Phys. Chem. C – volume: 225 start-page: 223 year: 2004 end-page: 229 publication-title: J. Catal. – volume: 45 start-page: 986 year: 2006 end-page: 992 publication-title: Ind. Eng. Chem. Res. – volume: 256 start-page: 7384 year: 2010 end-page: 7388 publication-title: Appl. Surf. Sci. – volume: 41 start-page: 7486 year: 2007 end-page: 7490 publication-title: Environ. Sci. Technol. – volume: 69 start-page: 63 year: 2012 end-page: 69 publication-title: Polym. Bull. – volume: 4 start-page: 774 year: 2014 end-page: 780 publication-title: ACS Catal. – volume: 3 start-page: 912 year: 2013 end-page: 919 publication-title: ACS Catal. – volume: 51 124 start-page: 1907 1943 year: 2012 2012 end-page: 1910 1946 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 219 start-page: 214 year: 2003 end-page: 218 publication-title: J. Catal. – volume: 129 start-page: 9686 year: 2007 end-page: 9690 publication-title: J. Am. Chem. Soc. – volume: 129 start-page: 182 year: 2013 end-page: 193 publication-title: Appl. Catal. B – volume: 18 start-page: 4893 year: 2008 end-page: 4908 publication-title: J. Mater. Chem. – volume: 22 start-page: 798 year: 1988 end-page: 806 publication-title: Environ. Sci. Technol. – ident: e_1_2_2_38_2 doi: 10.1016/j.apcatb.2012.08.015 – ident: e_1_2_2_52_2 doi: 10.1021/es071379t – ident: e_1_2_2_45_3 doi: 10.1002/ange.201301669 – ident: e_1_2_2_53_2 – ident: e_1_2_2_2_2 doi: 10.1016/j.ijhydene.2010.09.038 – ident: e_1_2_2_9_2 doi: 10.1039/b924472g – ident: e_1_2_2_19_2 – ident: e_1_2_2_3_2 doi: 10.1021/ie050593s – ident: e_1_2_2_17_2 doi: 10.1021/cs2006873 – volume: 92 start-page: 870 year: 2002 ident: e_1_2_2_51_2 publication-title: J. Appl. Phys. doi: 10.1063/1.1488251 – ident: e_1_2_2_28_2 doi: 10.1021/ja805746h – ident: e_1_2_2_29_2 doi: 10.1021/ja073306f – ident: e_1_2_2_25_2 doi: 10.1002/anie.201107355 – ident: e_1_2_2_36_2 doi: 10.1016/j.apsusc.2010.05.077 – ident: e_1_2_2_39_2 doi: 10.1016/j.cej.2012.12.033 – ident: e_1_2_2_46_2 doi: 10.1038/440295a – ident: e_1_2_2_49_2 – ident: e_1_2_2_50_2 doi: 10.1016/j.cplett.2009.02.068 – ident: e_1_2_2_35_2 – ident: e_1_2_2_23_2 doi: 10.1039/C1CP22820J – ident: e_1_2_2_27_2 – ident: e_1_2_2_16_2 doi: 10.1021/ja102651g – ident: e_1_2_2_25_3 doi: 10.1002/ange.201107355 – ident: e_1_2_2_32_2 doi: 10.1007/s00289-012-0704-3 – ident: e_1_2_2_42_2 doi: 10.1016/j.diamond.2013.06.012 – ident: e_1_2_2_40_2 doi: 10.1002/adma.201000731 – ident: e_1_2_2_26_2 doi: 10.1021/ja071546p – ident: e_1_2_2_14_2 doi: 10.1039/b418789j – ident: e_1_2_2_22_2 doi: 10.1021/cs401208c – ident: e_1_2_2_30_2 doi: 10.1021/cm021723f – ident: e_1_2_2_21_2 doi: 10.1039/b800274f – ident: e_1_2_2_24_2 – ident: e_1_2_2_15_2 doi: 10.1021/jp8055015 – ident: e_1_2_2_1_3 doi: 10.1002/ange.200503779 – ident: e_1_2_2_34_2 doi: 10.1021/cs4000624 – ident: e_1_2_2_10_2 – ident: e_1_2_2_47_2 – ident: e_1_2_2_48_2 doi: 10.1021/la00041a033 – ident: e_1_2_2_7_2 – ident: e_1_2_2_13_2 doi: 10.1016/j.jcat.2004.04.001 – ident: e_1_2_2_45_2 doi: 10.1002/anie.201301669 – ident: e_1_2_2_33_2 doi: 10.1016/j.synthmet.2013.05.017 – ident: e_1_2_2_41_2 doi: 10.1016/j.jcis.2010.07.012 – ident: e_1_2_2_43_2 doi: 10.1016/S0168-583X(00)00257-3 – ident: e_1_2_2_5_2 doi: 10.1007/s11244-013-0014-5 – ident: e_1_2_2_37_2 doi: 10.1021/la0509302 – ident: e_1_2_2_12_2 doi: 10.1016/S0021-9517(03)00197-0 – ident: e_1_2_2_31_2 – ident: e_1_2_2_18_2 doi: 10.1021/cs400511q – ident: e_1_2_2_20_2 doi: 10.1038/nmat2317 – ident: e_1_2_2_8_2 doi: 10.1016/j.jcat.2005.09.015 – ident: e_1_2_2_11_2 doi: 10.1021/es00172a009 – ident: e_1_2_2_6_2 doi: 10.1016/j.jcat.2006.02.014 – ident: e_1_2_2_1_2 doi: 10.1002/anie.200503779 – ident: e_1_2_2_44_2 doi: 10.1021/ja809307s – ident: e_1_2_2_4_2 |
SSID | ssj0028806 |
Score | 2.6248293 |
Snippet | Design of green, safe, and sustainable process for the synthesis of hydrogen peroxide (H2O2) is a very important subject. Early reported processes, however,... Design of green, safe, and sustainable process for the synthesis of hydrogen peroxide (H 2 O 2 ) is a very important subject. Early reported processes,... Design of green, safe, and sustainable process for the synthesis of hydrogen peroxide (H2 O2 ) is a very important subject. Early reported processes, however,... Design of green, safe, and sustainable process for the synthesis of hydrogen peroxide (H sub(2)O sub(2)) is a very important subject. Early reported processes,... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13454 |
SubjectTerms | Carbon nitride Catalysis Catalysts Diimide graphitic carbon nitride Hydrogen peroxide Irradiation Oxidation Oxygen Palladium photocatalysis Reduction Sunlight Synthesis water |
Title | Sunlight-Driven Hydrogen Peroxide Production from Water and Molecular Oxygen by Metal-Free Photocatalysts |
URI | https://api.istex.fr/ark:/67375/WNG-M3ML7VQQ-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201407938 https://www.ncbi.nlm.nih.gov/pubmed/25293501 https://www.proquest.com/docview/1628201659 https://www.proquest.com/docview/1628882002 https://www.proquest.com/docview/1700992097 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOcCFNzRQkJEQnNImTpzEx6p0WRBZWqC0N8uJJwIVEpTNSl1O_AR-I7-EmXgTWMRDgluijB0_xsk39sw3jD2AUiUZpOATmPVjiQaKsrHyEZoGcYWQveiPC_JZMj2Kn53Ikx-i-B0_xLjhRiuj_17TAjfFfOc7aShFYJNrVkwUbxTtSw5bhIpejvxRApXThRdFkU9Z6AfWxkDsrBdf-yudpwE--xXkXEew_S9ocpmZofHO8-R0e9EV2-Wnn3gd_6d3V9ilFT7lu06hrrJzUF9jF_aGtHDX2YdXC6weLfqvn788bulbyadL2zaoiPwAsGnvLPADxyOLc84pfoUfI6Jtuaktz4d0vPzF2ZLKFEueA1oAWN2kBSz6tumaflNpOe_mN9jRZP_13tRf5WzwSwQCmQ9JogRYBaE1pYxiMCqxqYIstQhFbByYrEhQGUxRoqEWSFFVYZZBZRBpWQST0U22UTc1bDJukqCSpSirkk5fg8qAtaG1KZiggqiIPeYPc6bLFaE55dV4rx0Vs9A0iHocRI89GuU_OiqP30o-7FVgFDPtKTnApVIfz57oPMqfp28OD7Xy2NagI3q19uc6TATBqkTi4_vjY5wlOooxNTQLJ4O2Db76DzIpwXcRqNRjt5z-jQ0SEmGaDEKPiV6L_tIhvTt7uj_e3f6XQnfYRbp2njxbbKNrF3AX8VhX3OvX3De2Uy4q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagPZQL70eggJEQnNI6zvtYlS5b2CwttLQ3y4knAhUSlM1KXU78BH4jv4SZeBO0iIcExyRjx4-x_Y09_oaxx1CkUQIxuARm3SBEAyU1QeoiNBVBiZA9744Lsmk0Pg5enIa9NyHdhbH8EMOGG42Mbr6mAU4b0ts_WEPpCjb5ZgXE8ZZcZOsU1ruzql4PDFIS1dNeMPJ9l-LQ97yNQm6vpl9Zl9apic9_BTpXMWy3CI2usLwvvvU9Oduat_lW8fknZsf_qt9VdnkJUfmO1alr7AJU19nGbh8Z7gb7-GaO-aNR_-3L12cNTZd8vDBNjbrIDwDL9t4AP7BUstjtnK6w8BMEtQ3XleFZH5GXvzpfUJp8wTNAIwCzGzWASd_Vbd3tKy1m7ewmOx7tHe2O3WXYBrdALJC4EEWpBJOCZ3QR-gHoNDJxCklsEI2YQOgkj1AfdF6grSZCWZZekkCpEWwZxJP-LbZW1RXcYVxHogwLWZQFHcCKUoMxnjExaFGCnwcOc_tOU8WS05xCa3xQlo1ZKmpENTSiw54O8p8sm8dvJZ90OjCI6eaMfODiUJ1Mn6vMzybx28NDlTpss1cStRz-M-VFkpBVFOLnR8Nn7CU6jdEV1HMrg-YN_voPMjEheCnS2GG3rQIOBZIhIrVQeA6TnRr9pUJqZ7q_Nzzd_ZdED9nG-CibqMn-9OU9doneW8eeTbbWNnO4j_CszR90A_A7fV4yRQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb5RAFJ5om6gv3i9o1TEx-kQ7DDDAY9PtutWybtXavk0G5hBNFRp2N-n65E_wN_pLPAcWdI2XRB-BM8NcvoHvzOU7jD2GPFExROASmXWDEB2UxAaJi9RUBAVS9qxZLkjHanQYPD8Oj384xd_qQ_QTbjQymu81DfBTW2x9Fw2lE9i0NSsgibf4PFsPlIgJ14NXvYCURHS254t836Uw9J1so5Bbq-lXfkvr1MJnv-KcqxS2-QcNrzDTlb7denKyOZ9lm_mnn4Qd_6d6V9nlJUHl2y2irrFzUF5nF3e6uHA32MfXc8weXfqvn78MavpY8tHC1hUikU8Ai_beAp-0QrLY6ZwOsPAjpLQ1N6XlaRePl788W1CabMFTQBcAsxvWgEnfVbOqmVVaTGfTm-xwuPtmZ-Qugza4OTKB2AWlEgk2Ac-aPPQDMImyUQJxZJGL2ECYOFOIBpPl6KmJUBaFF8dQGKRaFtmkf4utlVUJdxg3ShRhLvMip-VXURiw1rM2AiMK8LPAYW7XZzpfKppTYI0PutVilpoaUfeN6LCnvf1pq-XxW8snDQR6M1Of0A64KNRH42c69dP96O3BgU4cttFhRC8H_1R7ShKvUiE-ftQ_xl6itRhTQjVvbdC5wVf_wSYi_i5FEjnsdou_vkAyRJ4WCs9hskHRXyqkt8d7u_3V3X9J9JBdmAyGen9v_OIeu0S32109G2xtVs_hPnKzWfagGX7fAN4bMP0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sunlight%E2%80%90Driven+Hydrogen+Peroxide+Production+from+Water+and+Molecular+Oxygen+by+Metal%E2%80%90Free+Photocatalysts&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Shiraishi%2C+Yasuhiro&rft.au=Kanazawa%2C+Shunsuke&rft.au=Kofuji%2C+Yusuke&rft.au=Sakamoto%2C+Hirokatsu&rft.date=2014-12-01&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=53&rft.issue=49&rft.spage=13454&rft.epage=13459&rft_id=info:doi/10.1002%2Fanie.201407938&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_201407938 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |