Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence
Summary Growth of bacteria and fungi on fatty acid substrates requires the catabolic β‐oxidation cycle and the anaplerotic glyoxylate cycle. Propionyl‐CoA generated by β‐oxidation of odd‐chain fatty acids is metabolized via the methylcitrate cycle. Mycobacterium tuberculosis possesses homologues of...
Saved in:
Published in | Molecular microbiology Vol. 60; no. 5; pp. 1109 - 1122 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.06.2006
Blackwell Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Growth of bacteria and fungi on fatty acid substrates requires the catabolic β‐oxidation cycle and the anaplerotic glyoxylate cycle. Propionyl‐CoA generated by β‐oxidation of odd‐chain fatty acids is metabolized via the methylcitrate cycle. Mycobacterium tuberculosis possesses homologues of methylcitrate synthase (MCS) and methylcitrate dehydratase (MCD) but not 2‐methylisocitrate lyase (MCL). Although MCLs share limited homology with isocitrate lyases (ICLs) of the glyoxylate cycle, these enzymes are thought to be functionally non‐overlapping. Previously we reported that the M. tuberculosis ICL isoforms 1 and 2 are jointly required for growth on fatty acids, in macrophages, and in mice. ICL‐deficient bacteria could not grow on propionate, suggesting that in M. tuberculosis ICL1 and ICL2 might function as ICLs in the glyoxylate cycle and as MCLs in the methylcitrate cycle. Here we provide biochemical and genetic evidence supporting this interpretation. The role of the methylcitrate cycle in M. tuberculosis metabolism was further evaluated by constructing a mutant strain in which prpC (encoding MCS) and prpD (encoding MCD) were deleted. The ΔprpDC strain could not grow on propionate media in vitro or in murine bone marrow‐derived macrophages infected ex vivo; growth under these conditions was restored by complementation with a plasmid containing prpDC. Paradoxically, bacterial growth and persistence, and tissue pathology, were indistinguishable in mice infected with wild‐type or ΔprpDC bacteria. |
---|---|
AbstractList | Summary
Growth of bacteria and fungi on fatty acid substrates requires the catabolic β‐oxidation cycle and the anaplerotic glyoxylate cycle. Propionyl‐CoA generated by β‐oxidation of odd‐chain fatty acids is metabolized via the methylcitrate cycle. Mycobacterium tuberculosis possesses homologues of methylcitrate synthase (MCS) and methylcitrate dehydratase (MCD) but not 2‐methylisocitrate lyase (MCL). Although MCLs share limited homology with isocitrate lyases (ICLs) of the glyoxylate cycle, these enzymes are thought to be functionally non‐overlapping. Previously we reported that the M. tuberculosis ICL isoforms 1 and 2 are jointly required for growth on fatty acids, in macrophages, and in mice. ICL‐deficient bacteria could not grow on propionate, suggesting that in M. tuberculosis ICL1 and ICL2 might function as ICLs in the glyoxylate cycle and as MCLs in the methylcitrate cycle. Here we provide biochemical and genetic evidence supporting this interpretation. The role of the methylcitrate cycle in M. tuberculosis metabolism was further evaluated by constructing a mutant strain in which prpC (encoding MCS) and prpD (encoding MCD) were deleted. The ΔprpDC strain could not grow on propionate media in vitro or in murine bone marrow‐derived macrophages infected ex vivo; growth under these conditions was restored by complementation with a plasmid containing prpDC. Paradoxically, bacterial growth and persistence, and tissue pathology, were indistinguishable in mice infected with wild‐type or ΔprpDC bacteria. Growth of bacteria and fungi on fatty acid substrates requires the catabolic beta-oxidation cycle and the anaplerotic glyoxylate cycle. Propionyl-CoA generated by beta-oxidation of odd-chain fatty acids is metabolized via the methylcitrate cycle. Mycobacterium tuberculosis possesses homologues of methylcitrate synthase (MCS) and methylcitrate dehydratase (MCD) but not 2-methylisocitrate lyase (MCL). Although MCLs share limited homology with isocitrate lyases (ICLs) of the glyoxylate cycle, these enzymes are thought to be functionally non-overlapping. Previously we reported that the M. tuberculosis ICL isoforms 1 and 2 are jointly required for growth on fatty acids, in macrophages, and in mice. ICL-deficient bacteria could not grow on propionate, suggesting that in M. tuberculosis ICL1 and ICL2 might function as ICLs in the glyoxylate cycle and as MCLs in the methylcitrate cycle. Here we provide biochemical and genetic evidence supporting this interpretation. The role of the methylcitrate cycle in M. tuberculosis metabolism was further evaluated by constructing a mutant strain in which prpC (encoding MCS) and prpD (encoding MCD) were deleted. The DeltaprpDC strain could not grow on propionate media in vitro or in murine bone marrow-derived macrophages infected ex vivo; growth under these conditions was restored by complementation with a plasmid containing prpDC. Paradoxically, bacterial growth and persistence, and tissue pathology, were indistinguishable in mice infected with wild-type or DeltaprpDC bacteria. Growth of bacteria and fungi on fatty acid substrates requires the catabolic beta -oxidation cycle and the anaplerotic glyoxylate cycle. Propionyl-CoA generated by beta -oxidation of odd-chain fatty acids is metabolized via the methylcitrate cycle. Mycobacterium tuberculosis possesses homologues of methylcitrate synthase (MCS) and methylcitrate dehydratase (MCD) but not 2-methylisocitrate lyase (MCL). Although MCLs share limited homology with isocitrate lyases (ICLs) of the glyoxylate cycle, these enzymes are thought to be functionally non-overlapping. Previously we reported that the M. tuberculosis ICL isoforms 1 and 2 are jointly required for growth on fatty acids, in macrophages, and in mice. ICL-deficient bacteria could not grow on propionate, suggesting that in M. tuberculosis ICL1 and ICL2 might function as ICLs in the glyoxylate cycle and as MCLs in the methylcitrate cycle. Here we provide biochemical and genetic evidence supporting this interpretation. The role of the methylcitrate cycle in M. tuberculosis metabolism was further evaluated by constructing a mutant strain in which prpC (encoding MCS) and prpD (encoding MCD) were deleted. The Delta prpDC strain could not grow on propionate media in vitro or in murine bone marrow-derived macrophages infected ex vivo; growth under these conditions was restored by complementation with a plasmid containing prpDC. Paradoxically, bacterial growth and persistence, and tissue pathology, were indistinguishable in mice infected with wild-type or Delta prpDC bacteria. Growth of bacteria and fungi on fatty acid substrates requires the catabolic β‐oxidation cycle and the anaplerotic glyoxylate cycle. Propionyl‐CoA generated by β‐oxidation of odd‐chain fatty acids is metabolized via the methylcitrate cycle. Mycobacterium tuberculosis possesses homologues of methylcitrate synthase (MCS) and methylcitrate dehydratase (MCD) but not 2‐methylisocitrate lyase (MCL). Although MCLs share limited homology with isocitrate lyases (ICLs) of the glyoxylate cycle, these enzymes are thought to be functionally non‐overlapping. Previously we reported that the M. tuberculosis ICL isoforms 1 and 2 are jointly required for growth on fatty acids, in macrophages, and in mice. ICL‐deficient bacteria could not grow on propionate, suggesting that in M. tuberculosis ICL1 and ICL2 might function as ICLs in the glyoxylate cycle and as MCLs in the methylcitrate cycle. Here we provide biochemical and genetic evidence supporting this interpretation. The role of the methylcitrate cycle in M. tuberculosis metabolism was further evaluated by constructing a mutant strain in which prpC (encoding MCS) and prpD (encoding MCD) were deleted. The Δ prpDC strain could not grow on propionate media in vitro or in murine bone marrow‐derived macrophages infected ex vivo ; growth under these conditions was restored by complementation with a plasmid containing prpDC . Paradoxically, bacterial growth and persistence, and tissue pathology, were indistinguishable in mice infected with wild‐type or Δ prpDC bacteria. Growth of bacteria and fungi on fatty acid substrates requires the catabolic β-oxidation cycle and the anaplerotic glyoxylate cycle. Propionyl-CoA generated by β-oxidation of odd-chain fatty acids is metabolized via the methylcitrate cycle. Mycobacterium tuberculosis possesses homologues of methylcitrate synthase (MCS) and methylcitrate dehydratase (MCD) but not 2-methylisocitrate lyase (MCL). Although MCLs share limited homology with isocitrate lyases (ICLs) of the glyoxylate cycle, these enzymes are thought to be functionally non-overlapping. Previously we reported that the M. tuberculosis ICL isoforms 1 and 2 are jointly required for growth on fatty acids, in macrophages, and in mice. ICL-deficient bacteria could not grow on propionate, suggesting that in M. tuberculosis ICL1 and ICL2 might function as ICLs in the glyoxylate cycle and as MCLs in the methylcitrate cycle. Here we provide biochemical and genetic evidence supporting this interpretation. The role of the methylcitrate cycle in M. tuberculosis metabolism was further evaluated by constructing a mutant strain in which prpC (encoding MCS) and prpD (encoding MCD) were deleted.The ΔprpDC strain could not grow on propionate media in vitro or in murine bone marrow-derived macrophages infected ex vivo; growth under these conditions was restored by complementation with a plasmid containing prpDC. Paradoxically, bacterial growth and persistence, and tissue pathology, were indistinguishable in mice infected with wild-type or ΔprpDC bacteria. [PUBLICATION ABSTRACT] |
Author | McKinney, John D. Muñoz‐Elías, Ernesto J. Upton, Anna M. Cherian, Joseph |
Author_xml | – sequence: 1 givenname: Ernesto J. surname: Muñoz‐Elías fullname: Muñoz‐Elías, Ernesto J. – sequence: 2 givenname: Anna M. surname: Upton fullname: Upton, Anna M. – sequence: 3 givenname: Joseph surname: Cherian fullname: Cherian, Joseph – sequence: 4 givenname: John D. surname: McKinney fullname: McKinney, John D. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17775241$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/16689789$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9rFDEchoNU7Lb6FSQIeuqMSWby7-BBitpCF0EUvIVMJuNmyUxqMrGdb2_GXVrworkkIc_74w3PGTiZwmQBgBjVuKy3-xo3jFZEUlEThFiNKKa0vn8CNg8PJ2CDJEVVI8j3U3CW0h4h3CDWPAOnmDEhuZAbMH4J3sIwwHln4Wjn3eKNm6OeLTSLKU9ugtvFhE6b2UaXRzjnzkaTfUgurQndBe_SeFHIkjPW--x1hD9iuJt3F1BPPfzlYvZ2MvY5eDpon-yL434Ovn388PXyqrr5_On68v1NZSjBtJK65U0nMZNs6PjQEzSwhmuOBOGMaGsMNW0vWNcyScodtwWQEmGB-4EZ25yDN4e5tzH8zDbNanRpraYnG3JSjEsqBWX_BDEnGHFKCvjqL3AfcpzKJxSWrLQWGBdIHCATQ0rRDuo2ulHHRWGkVnFqr1Y_avWjVnHqjzh1X6Ivj_NzN9r-MXg0VYDXR0Ano_0Q9WRceuQ4LzXbtcO7A3fnvF3-u4Dabq_XU_Mb3fm2Ug |
CitedBy_id | crossref_primary_10_1186_s43008_020_00029_9 crossref_primary_10_3390_microorganisms9061158 crossref_primary_10_1111_j_1574_6976_2012_00331_x crossref_primary_10_1021_acschembio_8b00213 crossref_primary_10_1128_JB_00099_19 crossref_primary_10_1128_msystems_00699_22 crossref_primary_10_1146_annurev_micro_090817_062257 crossref_primary_10_1111_j_1600_065X_2007_00547_x crossref_primary_10_1073_pnas_2007332117 crossref_primary_10_1096_fba_2018_00039 crossref_primary_10_1016_S1995_7645_14_60181_4 crossref_primary_10_1186_s43556_022_00106_y crossref_primary_10_1371_journal_ppat_1000545 crossref_primary_10_1016_j_chembiol_2011_12_016 crossref_primary_10_1111_j_1365_2958_2010_07399_x crossref_primary_10_3389_fmicb_2024_1371717 crossref_primary_10_1128_JB_00259_15 crossref_primary_10_1128_JB_00402_15 crossref_primary_10_1128_JB_00402_21 crossref_primary_10_3389_fmicb_2021_619387 crossref_primary_10_3390_microorganisms11102505 crossref_primary_10_1074_mcp_M113_034082 crossref_primary_10_1038_s41598_018_26950_z crossref_primary_10_53879_id_52_12_10470 crossref_primary_10_1074_jbc_M115_687269 crossref_primary_10_1021_pr101054m crossref_primary_10_1038_ni_1781 crossref_primary_10_1016_j_vaccine_2013_11_065 crossref_primary_10_1126_sciadv_add4220 crossref_primary_10_1016_j_mib_2012_11_007 crossref_primary_10_1093_mmy_myz063 crossref_primary_10_2217_fmb_14_29 crossref_primary_10_1111_mmi_14362 crossref_primary_10_1590_0037_8682_0230_2016 crossref_primary_10_1021_pr2003352 crossref_primary_10_1371_journal_ppat_1002813 crossref_primary_10_1186_1752_0509_3_92 crossref_primary_10_1038_s41598_021_91812_0 crossref_primary_10_7554_eLife_80218 crossref_primary_10_3389_fcimb_2018_00385 crossref_primary_10_1016_j_tube_2019_05_002 crossref_primary_10_1128_JB_00867_13 crossref_primary_10_1111_j_1600_065X_2010_00984_x crossref_primary_10_1016_j_drudis_2017_04_012 crossref_primary_10_1099_mic_0_030858_0 crossref_primary_10_1099_mic_0_2007_011726_0 crossref_primary_10_5808_gi_22006 crossref_primary_10_1111_imr_12952 crossref_primary_10_1016_j_tube_2021_102079 crossref_primary_10_1038_srep44826 crossref_primary_10_1371_journal_ppat_1004679 crossref_primary_10_1073_pnas_1000715107 crossref_primary_10_1128_JB_00459_10 crossref_primary_10_1371_journal_pone_0056037 crossref_primary_10_1038_npjmgrav_2016_38 crossref_primary_10_1111_mmi_13701 crossref_primary_10_1186_s12859_017_1480_8 crossref_primary_10_1128_microbiolspec_VMBF_0001_2014 crossref_primary_10_1038_s41467_021_22760_6 crossref_primary_10_1002_hlca_202300005 crossref_primary_10_1111_mmi_15030 crossref_primary_10_1016_j_coisb_2021_100384 crossref_primary_10_1038_s41598_017_00529_6 crossref_primary_10_1073_pnas_1003219107 crossref_primary_10_1128_JB_00510_09 crossref_primary_10_3389_fimmu_2022_909904 crossref_primary_10_1038_nrmicro2351 crossref_primary_10_1128_IAI_02699_14 crossref_primary_10_1038_s41564_024_01697_8 crossref_primary_10_1128_mbio_02541_22 crossref_primary_10_1021_bi9005418 crossref_primary_10_1038_nrmicro2236 crossref_primary_10_1111_nyas_12459 crossref_primary_10_1007_s00018_023_04914_5 crossref_primary_10_1371_journal_pone_0003496 crossref_primary_10_1128_mBio_02712_19 crossref_primary_10_1021_acs_biochem_7b00778 crossref_primary_10_1371_journal_pcbi_1000489 crossref_primary_10_1016_j_jip_2021_107669 crossref_primary_10_1128_AEM_02353_19 crossref_primary_10_1016_j_tube_2013_05_004 crossref_primary_10_1016_j_cbpa_2018_05_012 crossref_primary_10_1128_mSystems_00057_17 crossref_primary_10_1111_mmi_12664 crossref_primary_10_3109_10409238_2014_895700 crossref_primary_10_1007_s00018_018_2784_1 crossref_primary_10_1128_mBio_00042_17 crossref_primary_10_1016_j_micpath_2023_106078 crossref_primary_10_3389_fmicb_2021_603835 crossref_primary_10_1111_mmi_12546 crossref_primary_10_1016_j_micpath_2020_104250 crossref_primary_10_1016_j_jprot_2011_08_020 crossref_primary_10_1371_journal_pone_0155522 crossref_primary_10_2217_fmb_13_113 crossref_primary_10_1039_c1mb05106g crossref_primary_10_1371_journal_pcbi_1004741 crossref_primary_10_1128_microbiolspec_TBTB2_0025_2016 crossref_primary_10_1084_jem_20180118 crossref_primary_10_3389_fimmu_2019_02909 crossref_primary_10_1073_pnas_1400390111 crossref_primary_10_3390_metabo11020088 crossref_primary_10_2174_0929866529666221006121831 crossref_primary_10_1080_1061186X_2016_1258705 crossref_primary_10_3390_pathogens7040088 crossref_primary_10_1371_journal_pone_0087834 crossref_primary_10_1371_journal_ppat_1005949 crossref_primary_10_3390_proteomes11040039 crossref_primary_10_1128_JB_01055_12 crossref_primary_10_1128_mSystems_00855_20 crossref_primary_10_1128_IAI_00072_16 crossref_primary_10_1111_mmi_12368 crossref_primary_10_1371_journal_pcbi_1007533 crossref_primary_10_3389_fimmu_2021_775326 crossref_primary_10_1016_j_ijmm_2017_10_004 crossref_primary_10_1128_JB_00628_15 crossref_primary_10_3390_jof9010108 crossref_primary_10_1371_journal_ppat_1003097 crossref_primary_10_1099_mic_0_034538_0 crossref_primary_10_1371_journal_ppat_1006363 crossref_primary_10_1021_acs_jpcb_5b04732 crossref_primary_10_1038_s41564_018_0218_3 crossref_primary_10_3389_fimmu_2020_00910 crossref_primary_10_1099_mic_0_001458 crossref_primary_10_1002_iub_2466 crossref_primary_10_1186_s12934_020_1285_8 crossref_primary_10_1074_jbc_M112_445056 crossref_primary_10_1099_mic_0_070466_0 crossref_primary_10_1038_s41467_020_19959_4 crossref_primary_10_1139_W09_018 crossref_primary_10_1093_mmy_myt006 crossref_primary_10_1107_S1744309110007256 crossref_primary_10_3389_fmicb_2021_742867 crossref_primary_10_1007_s13238_010_0057_3 crossref_primary_10_1099_mic_0_2008_022269_0 crossref_primary_10_1371_journal_pone_0015667 crossref_primary_10_1099_mic_0_054759_0 crossref_primary_10_1039_D0MD00301H crossref_primary_10_1186_1471_2164_13_141 crossref_primary_10_1371_journal_ppat_1009061 crossref_primary_10_1080_21505594_2021_1990660 crossref_primary_10_1128_microbiolspec_BAI_0001_2019 crossref_primary_10_1038_s41467_024_46449_8 crossref_primary_10_1007_s00044_020_02691_5 crossref_primary_10_1128_mbio_03559_21 crossref_primary_10_1007_s00248_016_0883_9 crossref_primary_10_1128_MMBR_00010_14 crossref_primary_10_1021_acsinfecdis_3c00237 crossref_primary_10_1371_journal_ppat_1004601 crossref_primary_10_1371_journal_pone_0171512 crossref_primary_10_1016_j_mib_2008_08_001 crossref_primary_10_1111_1462_2920_14901 crossref_primary_10_1007_s11306_020_1645_8 crossref_primary_10_1128_msphere_00104_22 crossref_primary_10_1007_s11418_016_1005_1 crossref_primary_10_15252_msb_20188584 crossref_primary_10_3389_fmicb_2021_642487 crossref_primary_10_1007_s11274_023_03551_1 crossref_primary_10_1016_j_jbiotec_2008_02_009 crossref_primary_10_1016_j_jbiotec_2010_07_001 crossref_primary_10_1371_journal_ppat_1002091 crossref_primary_10_1038_ismej_2013_201 crossref_primary_10_1073_pnas_1218599110 crossref_primary_10_1093_femspd_fty021 crossref_primary_10_1038_nm0307_284 crossref_primary_10_1002_bab_1137 crossref_primary_10_1371_journal_ppat_1002769 crossref_primary_10_1016_j_celrep_2019_12_033 crossref_primary_10_1093_nar_gkz724 crossref_primary_10_1038_s42003_022_03650_z crossref_primary_10_1111_mmi_14998 crossref_primary_10_1128_CMR_00159_19 crossref_primary_10_1128_JB_01009_09 crossref_primary_10_3390_microorganisms7060177 crossref_primary_10_1016_j_ijbiomac_2019_09_038 crossref_primary_10_1080_17460441_2020_1707801 crossref_primary_10_1039_c003757p crossref_primary_10_1371_journal_ppat_1010705 crossref_primary_10_1099_mic_0_000850 crossref_primary_10_1126_science_1184784 crossref_primary_10_1074_jbc_M111_313643 crossref_primary_10_1128_mSystems_00424_19 crossref_primary_10_1128_microbiolspec_TBTB2_0031_2016 crossref_primary_10_1016_j_ddtec_2012_04_007 crossref_primary_10_1021_pr4007359 crossref_primary_10_1074_jbc_M113_463992 crossref_primary_10_1007_s11306_016_1053_2 crossref_primary_10_1128_JB_01767_07 crossref_primary_10_1038_s41396_018_0318_3 crossref_primary_10_1016_j_jmgm_2016_05_010 crossref_primary_10_1155_2014_124218 crossref_primary_10_1016_j_gene_2012_06_033 crossref_primary_10_1016_j_tips_2017_01_004 crossref_primary_10_4049_jimmunol_1003226 crossref_primary_10_1271_bbb_130139 crossref_primary_10_1186_1755_8794_1_18 crossref_primary_10_1016_j_ijmm_2017_11_001 crossref_primary_10_1002_iub_1737 crossref_primary_10_1080_1061186X_2020_1853733 crossref_primary_10_7554_eLife_26969 crossref_primary_10_1099_mic_0_000604 crossref_primary_10_1016_j_biotechadv_2021_107860 crossref_primary_10_4161_viru_22329 crossref_primary_10_1371_journal_pone_0092798 crossref_primary_10_1111_imr_12256 crossref_primary_10_1186_s13099_024_00609_9 crossref_primary_10_1080_1040841X_2024_2370979 crossref_primary_10_1111_imr_12254 crossref_primary_10_1186_s12864_017_4322_1 crossref_primary_10_1128_IAI_00609_09 crossref_primary_10_1371_journal_pone_0052673 crossref_primary_10_1089_omi_2012_0028 crossref_primary_10_3390_pathogens12091109 crossref_primary_10_1016_j_cellsig_2013_04_003 crossref_primary_10_1371_journal_pone_0103034 crossref_primary_10_1515_tjb_2016_0019 crossref_primary_10_1021_acschembio_0c00740 crossref_primary_10_1098_rsob_120175 crossref_primary_10_1093_femspd_fty048 crossref_primary_10_1128_mbio_01672_22 crossref_primary_10_1371_journal_pone_0022810 crossref_primary_10_3389_fnins_2020_00296 crossref_primary_10_1099_mic_0_001042 crossref_primary_10_1038_s41598_019_51486_1 crossref_primary_10_1128_spectrum_04685_22 crossref_primary_10_1371_journal_pone_0141076 crossref_primary_10_1016_j_jprot_2019_103576 crossref_primary_10_1080_00498250903089829 crossref_primary_10_3389_fmicb_2018_01311 crossref_primary_10_1371_journal_pone_0161467 crossref_primary_10_1111_j_1365_2958_2006_05297_x crossref_primary_10_1073_pnas_0610634104 crossref_primary_10_1111_j_1462_5822_2007_01025_x crossref_primary_10_1111_bph_13694 crossref_primary_10_3389_fcimb_2022_958555 crossref_primary_10_1021_acsomega_1c05923 crossref_primary_10_1021_acsinfecdis_1c00067 crossref_primary_10_3389_fmicb_2021_640931 crossref_primary_10_1134_S0026893318030020 crossref_primary_10_1016_j_chom_2010_06_002 crossref_primary_10_1016_j_vetpar_2024_110193 crossref_primary_10_1371_journal_pone_0188130 crossref_primary_10_1371_journal_ppat_1008270 crossref_primary_10_1111_mmi_12139 crossref_primary_10_1371_journal_pone_0269847 crossref_primary_10_1073_pnas_1617655114 crossref_primary_10_1111_1462_2920_15249 crossref_primary_10_3389_fmolb_2015_00006 |
Cites_doi | 10.7883/yoken1952.23.315 10.1128/br.32.1.1-26.1968 10.1128/JB.181.23.7161-7167.1999 10.1038/31159 10.1099/00221287-146-8-1969 10.1073/pnas.012363899 10.1128/JB.184.19.5479-5490.2002 10.1016/S0021-9258(19)41073-9 10.1126/science.1088063 10.1016/S0378-1097(03)00722-5 10.1128/AEM.68.1.271-279.2002 10.1016/0076-6879(69)13005-0 10.1074/jbc.M100244200 10.1271/bbb1961.39.1049 10.1128/JB.181.18.5615-5623.1999 10.1128/JB.184.14.4025-4032.2002 10.1046/j.1365-2958.2000.01737.x 10.1128/IAI.73.6.3754-3757.2005 10.1038/nm1252 10.1128/JB.181.11.3562-3570.1999 10.1038/82142 10.1128/AEM.71.9.5465-5475.2005 10.1016/S1286-4579(03)00090-X 10.1038/431899a 10.1073/pnas.2436197100 10.1073/pnas.0501605102 10.1146/annurev.cellbio.20.010403.114015 10.1046/j.1365-2958.2001.02525.x 10.1128/IAI.65.1.305-308.1997 10.1074/jbc.M209248200 10.1099/00221287-147-8-2203 10.1128/JB.182.24.7007-7013.2000 10.1111/j.1462-5822.2005.00648.x 10.1038/35021074 10.1038/35059006 10.1128/jb.72.2.132-141.1956 10.1006/mpat.1999.0311 10.1038/351456a0 10.1038/179988a0 10.1007/s002030050518 10.1038/nrmicro1065 10.1073/pnas.1130426100 10.1046/j.1432-1327.2001.02262.x 10.1038/77964 10.1098/rstb.2000.0597 10.1016/0005-2760(66)90133-0 10.1093/bib/5.2.150 10.1016/j.tube.2003.12.011 10.1111/j.1432-1033.2004.04255.x 10.1073/pnas.96.20.11554 10.1128/JB.181.16.4780-4789.1999 10.1016/S0022-2836(03)00358-9 10.1016/0003-9861(69)90213-6 10.1128/JB.184.10.2728-2739.2002 10.1128/JB.185.16.4837-4843.2003 10.1021/bi0479712 10.1093/oxfordjournals.jbchem.a135340 10.1128/JB.180.14.3495-3502.1998 10.1016/S0021-9258(19)77145-2 10.1073/pnas.0307888101 10.1084/jem.20030846 10.1271/bbb1961.40.1863 10.1038/nrmicro727 10.1016/S1074-5521(02)00142-4 |
ContentType | Journal Article |
Copyright | 2006 INIST-CNRS Copyright Blackwell Publishing Jun 2006 |
Copyright_xml | – notice: 2006 INIST-CNRS – notice: Copyright Blackwell Publishing Jun 2006 |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 |
DOI | 10.1111/j.1365-2958.2006.05155.x |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Bacteriology Abstracts (Microbiology B) CrossRef Virology and AIDS Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1365-2958 |
EndPage | 1122 |
ExternalDocumentID | 1066177091 10_1111_j_1365_2958_2006_05155_x 16689789 17775241 MMI5155 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: AI046392 |
GroupedDBID | --- -DZ .3N .55 .GA .GJ .HR .Y3 05W 0R~ 10A 123 1OB 1OC 24P 29M 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAKAS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZCM ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRSTM E3Z EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FIJ FSRTE FZ0 G-S G.N GODZA GX1 H.T H.X HF~ HGLYW HH5 HVGLF HZI HZ~ IH2 IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBC OBS OEB OIG OK1 OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TR2 UB1 V8K W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WOW WQJ WRC WUP WXSBR WYISQ X7M XG1 Y6R YFH YUY ZGI ZXP ZY4 ZZTAW ~IA ~KM ~WT AAJUZ AAPBV AAUGY ABCVL ABHUG ABPTK ABWRO ACSMX ACXME ADAWD ADDAD AFVGU AGJLS AKALU IQODW XFK CGR CUY CVF ECM EIF NPM AAMNL AAYXX ACRPL ACYXJ CITATION 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c5215-9a473b91696fb7fd20f637a7082762aecc5c4d86b46922ae140f6990181df6ce3 |
IEDL.DBID | DR2 |
ISSN | 0950-382X |
IngestDate | Wed Dec 04 09:45:01 EST 2024 Tue Dec 03 23:50:39 EST 2024 Thu Oct 10 16:25:56 EDT 2024 Fri Dec 06 04:41:24 EST 2024 Sat Sep 28 07:45:45 EDT 2024 Sun Oct 22 16:08:45 EDT 2023 Sat Aug 24 00:55:51 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Microbiology Mycobacterium tuberculosis Mycobacteriales Virulence Mycobacteriaceae Bacteria Actinomycetes Intracellular Metabolism |
Language | English |
License | CC BY 4.0 http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5215-9a473b91696fb7fd20f637a7082762aecc5c4d86b46922ae140f6990181df6ce3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 16689789 |
PQID | 196521811 |
PQPubID | 35968 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_67959856 proquest_miscellaneous_17210752 proquest_journals_196521811 crossref_primary_10_1111_j_1365_2958_2006_05155_x pubmed_primary_16689789 pascalfrancis_primary_17775241 wiley_primary_10_1111_j_1365_2958_2006_05155_x_MMI5155 |
PublicationCentury | 2000 |
PublicationDate | June 2006 |
PublicationDateYYYYMMDD | 2006-06-01 |
PublicationDate_xml | – month: 06 year: 2006 text: June 2006 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England |
PublicationTitle | Molecular microbiology |
PublicationTitleAlternate | Mol Microbiol |
PublicationYear | 2006 |
Publisher | Blackwell Publishing Ltd Blackwell Science |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell Science |
References | 1991; 351 2004; 20 1970; 245 2000; 6 1966; 116 2002; 99 2000; 7 2004; 5 1964; 89 1969; 129 2003; 278 1998; 393 2001; 147 2001; 268 2001; 41 2003; 198 2003; 328 2002; 184 2005; 102 1999; 181 2000; 406 2005; 73 1970; 23 1988; 134 2003; 5 1999; 96 2005; 71 2003; 1 1985; 98 2004; 101 1998; 180 1976; 40 2004; 84 2002; 9 1956; 72 2000; 355 1997; 65 1975; 39 1999; 27 1975; 250 2006; 8 1996 2001; 409 2005; 44 1987; 59 2001; 276 2004; 431 1997; 168 1976; 13 2003; 228 2000; 146 2000; 35 1957; 179 2002; 68 2004; 271 2000; 182 2005; 3 2003; 302 2003; 100 2005; 11 1969 1968; 32 2003; 185 Plaut (e_1_2_6_48_1) 1975; 250 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_30_1 Peekhaus (e_1_2_6_47_1) 1998; 180 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 Wheeler P.R. (e_1_2_6_69_1) 1988; 134 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_55_1 e_1_2_6_15_1 Cronan J.E. (e_1_2_6_17_1) 1996 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 Seshadri R. (e_1_2_6_51_1) 1976; 13 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 Ashworth J.M. (e_1_2_6_2_1) 1964; 89 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 London R.E. (e_1_2_6_33_1) 1999; 181 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 Wegener W.S. (e_1_2_6_67_1) 1968; 32 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 Bharadwaj V.P. (e_1_2_6_4_1) 1987; 59 e_1_2_6_6_1 Pavelka M.S. (e_1_2_6_46_1) 1999; 181 e_1_2_6_25_1 e_1_2_6_23_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 |
References_xml | – volume: 406 start-page: 735 year: 2000 end-page: 758 article-title: Persistence of in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase publication-title: Nature – volume: 68 start-page: 271 year: 2002 end-page: 279 article-title: Identification of the 2‐methylcitrate pathway involved in the catabolism of propionate in the polyhydroxyalkanoate‐producing strain IPT101T and analysis of a mutant accumulating a copolyester with higher 3‐hydroxyvalerate content publication-title: Appl Environ Microbiol – volume: 8 start-page: 10 year: 2006 end-page: 22 article-title: Carbon metabolism of intracellular bacteria publication-title: Cell Microbiol – volume: 181 start-page: 5615 year: 1999 end-page: 5623 article-title: LT2 catabolizes propionate via the 2‐methylcitric acid cycle publication-title: J Bacteriol – volume: 276 start-page: 19094 year: 2001 end-page: 19101 article-title: Studies of propionate toxicity in identify 2‐methylcitrate as a potent inhibitor of cell growth publication-title: J Biol Chem – volume: 181 start-page: 3562 year: 1999 end-page: 3570 article-title: Carbon‐13 nuclear magnetic resonance study of metabolism of propionate by publication-title: J Bacteriol – volume: 355 start-page: 551 year: 2000 end-page: 564 article-title: Questions about the behaviour of bacterial pathogens publication-title: Philos Trans R Soc Lond B Biol Sci – volume: 96 start-page: 11554 year: 1999 end-page: 11559 article-title: Identification of RNAs synthesized selectively in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS) publication-title: Proc Natl Acad Sci USA – volume: 245 start-page: 1675 year: 1970 end-page: 1681 article-title: Catalysis of both oxidation and reduction of glyoxylate by pig heart lactate dehydrogenase isozyme 1 publication-title: J Biol Chem – volume: 3 start-page: 70 year: 2005 end-page: 80 article-title: Tuberculosis – metabolism and respiration in the absence of growth publication-title: Nat Rev Microbiol – volume: 39 start-page: 1049 year: 1975 end-page: 1054 article-title: The production of 2‐methylisocitric acid from odd‐carbon n‐alkanes by a mutant of publication-title: Agr Biol Chem – volume: 147 start-page: 2203 year: 2001 end-page: 2214 article-title: The methylcitric acid pathway in : new genes identified involved in propionate metabolism publication-title: Microbiology – volume: 99 start-page: 431 year: 2002 end-page: 436 article-title: Hpt, a bacterial homolog of the microsomal glucose‐6‐phosphate translocase, mediates rapid intracellular proliferation in publication-title: Proc Natl Acad Sci USA – volume: 278 start-page: 1735 year: 2003 end-page: 1743 article-title: Biochemical and structural studies of malate synthase from publication-title: J Biol Chem – volume: 35 start-page: 961 year: 2000 end-page: 973 article-title: Methylcitrate synthase from : implications for propionate as an antifungal agent publication-title: Mol Microbiol – volume: 184 start-page: 5479 year: 2002 end-page: 5490 article-title: Whole‐genome comparison of clinical and laboratory strains publication-title: J Bacteriol – volume: 5 start-page: 150 year: 2004 end-page: 163 article-title: MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment publication-title: Brief Bioinform – volume: 84 start-page: 205 year: 2004 end-page: 217 article-title: The influence of reduced oxygen availability on pathogenicity and gene expression in publication-title: Tuberculosis – volume: 11 start-page: 638 year: 2005 end-page: 644 article-title: isocitrate lyases 1 and 2 are jointly required for growth and virulence publication-title: Nat Med – volume: 65 start-page: 305 year: 1997 end-page: 308 article-title: Sequestration of in tight vacuoles in lung macrophages of mice infected by the respiratory route publication-title: Infect Immun – volume: 72 start-page: 132 year: 1956 end-page: 141 article-title: Biochemical differentiation of grown and publication-title: J Bacteriol – volume: 5 start-page: 629 year: 2003 end-page: 637 article-title: gene expression in macrophages publication-title: Microbes Infect – volume: 73 start-page: 3754 year: 2005 end-page: 3757 article-title: Responses of to growth in the mouse lung publication-title: Infect Immun – volume: 116 start-page: 593 year: 1966 end-page: 596 article-title: Propionate incorporation into mycocerosic acid by resting cells of publication-title: Biochim Biophys Acta – start-page: 206 year: 1996 end-page: 216 – volume: 100 start-page: 14321 year: 2003 end-page: 14326 article-title: Differential expression of iron‐, carbon‐, and oxygen‐responsive mycobacterial genes in the lungs of chronically infected mice and tuberculosis patients publication-title: Proc Natl Acad Sci USA – start-page: 3 year: 1969 end-page: 11 – volume: 198 start-page: 693 year: 2003 end-page: 704 article-title: Transcriptional adaptation of within macrophages: insights into the phagosomal environment publication-title: J Exp Med – volume: 1 start-page: 65 year: 2003 end-page: 70 article-title: Where will new antibiotics come from? publication-title: Nat Rev Microbiol – volume: 146 start-page: 1969 year: 2000 end-page: 1975 article-title: Use of a flexible cassette method to generate a double unmarked mutant by gene replacement publication-title: Microbiology – volume: 181 start-page: 7161 year: 1999 end-page: 7167 article-title: Characterization of activity and expression of isocitrate lyase in and publication-title: J Bacteriol – volume: 184 start-page: 2728 year: 2002 end-page: 2739 article-title: Identification of two gene clusters in and their involvement in propionate degradation via the 2‐methylcitrate cycle publication-title: J Bacteriol – volume: 7 start-page: 663 year: 2000 end-page: 668 article-title: Structure of isocitrate lyase, a persistence factor of publication-title: Nat Struct Biol – volume: 101 start-page: 7427 year: 2004 end-page: 7432 article-title: Carbon nutrition of in the mouse intestine publication-title: Proc Natl Acad Sci USA – volume: 271 start-page: 3227 year: 2004 end-page: 3241 article-title: On the mechanism of action of the antifungal agent propionate publication-title: Eur J Biochem – volume: 89 start-page: 383 year: 1964 end-page: 384 article-title: The role of isocitrate lyase in publication-title: Biochim Biophys Acta – volume: 268 start-page: 3577 year: 2001 end-page: 3586 article-title: 2‐Methylisocitrate lyases from the bacterium and the filamentous fungus : characterization and comparison of both enzymes publication-title: Eur J Biochem – volume: 409 start-page: 1007 year: 2001 end-page: 1011 article-title: Massive gene decay in the leprosy bacillus publication-title: Nature – volume: 393 start-page: 537 year: 1998 end-page: 543 article-title: Deciphering the biology of from the complete genome sequence publication-title: Nature – volume: 40 start-page: 1863 year: 1976 end-page: 1869 article-title: Distinction between isocitrate lyase and methylisocitrate lyase in publication-title: Agr Biol Chem – volume: 184 start-page: 4025 year: 2002 end-page: 4032 article-title: Microarray analysis of the transcriptional response to the acidic conditions found in phagosomes publication-title: J Bacteriol – volume: 9 start-page: 545 year: 2002 end-page: 553 article-title: The methyl‐branched fortifications of publication-title: Chem Biol – volume: 179 start-page: 988 year: 1957 end-page: 991 article-title: Synthesis of cell constituents from C2‐units by a modified tricarboxylic acid cycle publication-title: Nature – volume: 250 start-page: 6351 year: 1975 end-page: 6354 article-title: Alpha‐methylisocitrate. A selective inhibitor of TPN‐linked isocitrate dehydrogenase from bovine heart and rat liver publication-title: J Biol Chem – volume: 32 start-page: 1 year: 1968 end-page: 26 article-title: Alternate pathways of metabolism of short‐chain fatty acids publication-title: Bacteriol Rev – volume: 180 start-page: 3495 year: 1998 end-page: 3502 article-title: What’s for dinner? Entner‐Doudoroff metabolism in publication-title: J Bacteriol – volume: 185 start-page: 4837 year: 2003 end-page: 4843 article-title: Residues C123 and D58 of the 2‐methylisocitrate lyase (PrpB) enzyme of are essential for catalysis publication-title: J Bacteriol – volume: 59 start-page: 158 year: 1987 end-page: 162 article-title: Metabolic studies on mycobacteria. IV. Assay of isocitrate lyase and malate synthase activity in publication-title: Indian J Lepr – volume: 41 start-page: 423 year: 2001 end-page: 437 article-title: The ECF sigma factor σ : role in global gene expression and survival in macrophages publication-title: Mol Microbiol – volume: 431 start-page: 899 year: 2004 end-page: 902 article-title: Antibiotics at the crossroads publication-title: Nature – volume: 102 start-page: 10670 year: 2005 end-page: 10675 article-title: Variant tricarboxylic acid cycle in : identification of α‐ketoglutarate decarboxylase publication-title: Proc Natl Acad Sci USA – volume: 129 start-page: 545 year: 1969 end-page: 553 article-title: Propionate metabolism. V. The physiological significance of isocitrate lyase during growth of on propionate publication-title: Arch Biochem Biophys – volume: 134 start-page: 2111 year: 1988 end-page: 2121 article-title: Use of carbon sources for lipid biosynthesis in : a comparison with other pathogenic mycobacteria publication-title: J General Microbiol – volume: 302 start-page: 654 year: 2003 end-page: 659 article-title: Immune control of tuberculosis by IFN‐γ‐inducible LRG‐47 publication-title: Science – volume: 20 start-page: 367 year: 2004 end-page: 394 article-title: Cell biology of phagosome publication-title: Annu Rev Cell Dev Biol – volume: 328 start-page: 609 year: 2003 end-page: 621 article-title: Crystal structure of 2‐methylisocitrate lyase (PrpB) from and modelling of its ligand bound active centre publication-title: J Mol Biol – volume: 181 start-page: 4780 year: 1999 end-page: 4789 article-title: Comparison of the construction of unmarked deletion mutations in , bacillus Calmette‐Guerin, and H37Rv by allelic exchange publication-title: J Bacteriol – volume: 6 start-page: 1330 year: 2000 end-page: 1333 article-title: : the search for TB drug targets goes live publication-title: Nat Med – volume: 351 start-page: 456 year: 1991 end-page: 460 article-title: New use of BCG for recombinant vaccines publication-title: Nature – volume: 98 start-page: 819 year: 1985 end-page: 824 article-title: Mechanisms of growth inhibition by propionate and restoration of the growth by sodium bicarbonate or acetate in S publication-title: J Biochem (Tokyo) – volume: 13 start-page: 95 year: 1976 end-page: 96 article-title: Isocitrate lyase in mycobacteria publication-title: Indian J Biochem Biophys – volume: 168 start-page: 428 year: 1997 end-page: 436 article-title: Propionate oxidation in : evidence for operation of a methylcitrate cycle in bacteria publication-title: Arch Microbiol – volume: 71 start-page: 5465 year: 2005 end-page: 5475 article-title: Generation and phenotypic characterization of methylisocitrate lyase deletion mutants: methylisocitrate inhibits growth and conidiation publication-title: Appl Environ Microbiol – volume: 228 start-page: 63 year: 2003 end-page: 71 article-title: The glyoxylate bypass of publication-title: FEMS Microbiol Lett – volume: 27 start-page: 369 year: 1999 end-page: 376 article-title: The locus; required during infection of macrophages and amoebae publication-title: Microb Pathog – volume: 100 start-page: 7877 year: 2003 end-page: 7882 article-title: The complete genome sequence of publication-title: Proc Natl Acad Sci USA – volume: 23 start-page: 315 year: 1970 end-page: 326 article-title: Analysis of host‐originated lipids associated with ‘ grown tubercle bacilli’ publication-title: Jpn J Med Sci Biol – volume: 182 start-page: 7007 year: 2000 end-page: 7013 article-title: The ICL2 gene encodes a mitochondrial 2‐methylisocitrate lyase involved in propionyl‐coenzyme A metabolism publication-title: J Bacteriol – volume: 44 start-page: 2949 year: 2005 end-page: 2962 article-title: Crystal structures of 2‐methylisocitrate lyase in complex with product and with isocitrate inhibitor provide insight into lyase substrate specificity, catalysis and evolution publication-title: Biochemistry – ident: e_1_2_6_29_1 doi: 10.7883/yoken1952.23.315 – volume: 32 start-page: 1 year: 1968 ident: e_1_2_6_67_1 article-title: Alternate pathways of metabolism of short‐chain fatty acids publication-title: Bacteriol Rev doi: 10.1128/br.32.1.1-26.1968 contributor: fullname: Wegener W.S. – ident: e_1_2_6_26_1 doi: 10.1128/JB.181.23.7161-7167.1999 – ident: e_1_2_6_15_1 doi: 10.1038/31159 – ident: e_1_2_6_45_1 doi: 10.1099/00221287-146-8-1969 – ident: e_1_2_6_13_1 doi: 10.1073/pnas.012363899 – ident: e_1_2_6_21_1 doi: 10.1128/JB.184.19.5479-5490.2002 – volume: 250 start-page: 6351 year: 1975 ident: e_1_2_6_48_1 article-title: Alpha‐methylisocitrate. A selective inhibitor of TPN‐linked isocitrate dehydrogenase from bovine heart and rat liver publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)41073-9 contributor: fullname: Plaut – ident: e_1_2_6_37_1 doi: 10.1126/science.1088063 – ident: e_1_2_6_65_1 doi: 10.1016/S0378-1097(03)00722-5 – ident: e_1_2_6_7_1 doi: 10.1128/AEM.68.1.271-279.2002 – ident: e_1_2_6_55_1 doi: 10.1016/0076-6879(69)13005-0 – ident: e_1_2_6_28_1 doi: 10.1074/jbc.M100244200 – ident: e_1_2_6_59_1 doi: 10.1271/bbb1961.39.1049 – ident: e_1_2_6_27_1 doi: 10.1128/JB.181.18.5615-5623.1999 – ident: e_1_2_6_20_1 doi: 10.1128/JB.184.14.4025-4032.2002 – ident: e_1_2_6_10_1 doi: 10.1046/j.1365-2958.2000.01737.x – ident: e_1_2_6_19_1 doi: 10.1128/IAI.73.6.3754-3757.2005 – ident: e_1_2_6_42_1 doi: 10.1038/nm1252 – volume: 181 start-page: 3562 year: 1999 ident: e_1_2_6_33_1 article-title: Carbon‐13 nuclear magnetic resonance study of metabolism of propionate by Escherichia coli publication-title: J Bacteriol doi: 10.1128/JB.181.11.3562-3570.1999 contributor: fullname: London R.E. – ident: e_1_2_6_35_1 doi: 10.1038/82142 – ident: e_1_2_6_8_1 doi: 10.1128/AEM.71.9.5465-5475.2005 – ident: e_1_2_6_18_1 doi: 10.1016/S1286-4579(03)00090-X – ident: e_1_2_6_44_1 doi: 10.1038/431899a – ident: e_1_2_6_62_1 doi: 10.1073/pnas.2436197100 – ident: e_1_2_6_61_1 doi: 10.1073/pnas.0501605102 – ident: e_1_2_6_63_1 doi: 10.1146/annurev.cellbio.20.010403.114015 – start-page: 206 volume-title: Escherichia coli and Salmonella: Cellular and Molecular Biology. year: 1996 ident: e_1_2_6_17_1 contributor: fullname: Cronan J.E. – ident: e_1_2_6_38_1 doi: 10.1046/j.1365-2958.2001.02525.x – ident: e_1_2_6_41_1 doi: 10.1128/IAI.65.1.305-308.1997 – ident: e_1_2_6_54_1 doi: 10.1074/jbc.M209248200 – ident: e_1_2_6_6_1 doi: 10.1099/00221287-147-8-2203 – ident: e_1_2_6_34_1 doi: 10.1128/JB.182.24.7007-7013.2000 – ident: e_1_2_6_43_1 doi: 10.1111/j.1462-5822.2005.00648.x – volume: 13 start-page: 95 year: 1976 ident: e_1_2_6_51_1 article-title: Isocitrate lyase in mycobacteria publication-title: Indian J Biochem Biophys contributor: fullname: Seshadri R. – ident: e_1_2_6_36_1 doi: 10.1038/35021074 – ident: e_1_2_6_16_1 doi: 10.1038/35059006 – volume: 134 start-page: 2111 year: 1988 ident: e_1_2_6_69_1 article-title: Use of carbon sources for lipid biosynthesis in Mycobacterium leprae: a comparison with other pathogenic mycobacteria publication-title: J General Microbiol contributor: fullname: Wheeler P.R. – ident: e_1_2_6_50_1 doi: 10.1128/jb.72.2.132-141.1956 – ident: e_1_2_6_56_1 doi: 10.1006/mpat.1999.0311 – ident: e_1_2_6_57_1 doi: 10.1038/351456a0 – ident: e_1_2_6_30_1 doi: 10.1038/179988a0 – ident: e_1_2_6_60_1 doi: 10.1007/s002030050518 – ident: e_1_2_6_5_1 doi: 10.1038/nrmicro1065 – ident: e_1_2_6_22_1 doi: 10.1073/pnas.1130426100 – ident: e_1_2_6_11_1 doi: 10.1046/j.1432-1327.2001.02262.x – ident: e_1_2_6_52_1 doi: 10.1038/77964 – ident: e_1_2_6_53_1 doi: 10.1098/rstb.2000.0597 – ident: e_1_2_6_70_1 doi: 10.1016/0005-2760(66)90133-0 – ident: e_1_2_6_31_1 doi: 10.1093/bib/5.2.150 – volume: 89 start-page: 383 year: 1964 ident: e_1_2_6_2_1 article-title: The role of isocitrate lyase in Escherichia coli publication-title: Biochim Biophys Acta contributor: fullname: Ashworth J.M. – ident: e_1_2_6_3_1 doi: 10.1016/j.tube.2003.12.011 – ident: e_1_2_6_9_1 doi: 10.1111/j.1432-1033.2004.04255.x – ident: e_1_2_6_23_1 doi: 10.1073/pnas.96.20.11554 – volume: 181 start-page: 4780 year: 1999 ident: e_1_2_6_46_1 article-title: Comparison of the construction of unmarked deletion mutations in Mycobacterium smegmatis, Mycobacterium bovis bacillus Calmette‐Guerin, and Mycobacterium tuberculosis H37Rv by allelic exchange publication-title: J Bacteriol doi: 10.1128/JB.181.16.4780-4789.1999 contributor: fullname: Pavelka M.S. – ident: e_1_2_6_25_1 doi: 10.1016/S0022-2836(03)00358-9 – ident: e_1_2_6_68_1 doi: 10.1016/0003-9861(69)90213-6 – ident: e_1_2_6_14_1 doi: 10.1128/JB.184.10.2728-2739.2002 – ident: e_1_2_6_24_1 doi: 10.1128/JB.185.16.4837-4843.2003 – ident: e_1_2_6_32_1 doi: 10.1021/bi0479712 – volume: 59 start-page: 158 year: 1987 ident: e_1_2_6_4_1 article-title: Metabolic studies on mycobacteria. IV. Assay of isocitrate lyase and malate synthase activity in M. leprae publication-title: Indian J Lepr contributor: fullname: Bharadwaj V.P. – ident: e_1_2_6_39_1 doi: 10.1093/oxfordjournals.jbchem.a135340 – volume: 180 start-page: 3495 year: 1998 ident: e_1_2_6_47_1 article-title: What’s for dinner? Entner‐Doudoroff metabolism in Escherichia coli publication-title: J Bacteriol doi: 10.1128/JB.180.14.3495-3502.1998 contributor: fullname: Peekhaus – ident: e_1_2_6_66_1 doi: 10.1016/S0021-9258(19)77145-2 – ident: e_1_2_6_12_1 doi: 10.1073/pnas.0307888101 – ident: e_1_2_6_49_1 doi: 10.1084/jem.20030846 – ident: e_1_2_6_58_1 doi: 10.1271/bbb1961.40.1863 – ident: e_1_2_6_64_1 doi: 10.1038/nrmicro727 – ident: e_1_2_6_40_1 doi: 10.1016/S1074-5521(02)00142-4 |
SSID | ssj0013063 |
Score | 2.405603 |
Snippet | Summary
Growth of bacteria and fungi on fatty acid substrates requires the catabolic β‐oxidation cycle and the anaplerotic glyoxylate cycle. Propionyl‐CoA... Growth of bacteria and fungi on fatty acid substrates requires the catabolic beta-oxidation cycle and the anaplerotic glyoxylate cycle. Propionyl-CoA generated... Growth of bacteria and fungi on fatty acid substrates requires the catabolic β‐oxidation cycle and the anaplerotic glyoxylate cycle. Propionyl‐CoA generated by... Growth of bacteria and fungi on fatty acid substrates requires the catabolic β-oxidation cycle and the anaplerotic glyoxylate cycle. Propionyl-CoA generated by... Growth of bacteria and fungi on fatty acid substrates requires the catabolic beta -oxidation cycle and the anaplerotic glyoxylate cycle. Propionyl-CoA... |
SourceID | proquest crossref pubmed pascalfrancis wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1109 |
SubjectTerms | Animals Bacteria Biological and medical sciences Bone Marrow Cells - cytology Bone Marrow Cells - metabolism Carbon-Carbon Lyases - classification Carbon-Carbon Lyases - genetics Carbon-Carbon Lyases - metabolism Cells, Cultured Citrate (si)-Synthase - genetics Citrate (si)-Synthase - metabolism Citric Acid - chemistry Citric Acid - metabolism Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Fatty acids Female Fundamental and applied biological sciences. Psychology Fungi Genes Hydro-Lyases - genetics Hydro-Lyases - metabolism Isocitrate Lyase - classification Isocitrate Lyase - genetics Isocitrate Lyase - metabolism Isoenzymes - classification Isoenzymes - genetics Isoenzymes - metabolism Macrophages - cytology Macrophages - metabolism Male Metabolism Mice Mice, Inbred C57BL Microbiology Molecular Sequence Data Molecular Structure Mycobacterium tuberculosis Mycobacterium tuberculosis - genetics Mycobacterium tuberculosis - physiology Pathogens Phylogeny Propionates - metabolism |
Title | Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2958.2006.05155.x https://www.ncbi.nlm.nih.gov/pubmed/16689789 https://www.proquest.com/docview/196521811 https://search.proquest.com/docview/17210752 https://search.proquest.com/docview/67959856 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RT9swELYmJKRJ02BjQCljfuCRVDiO7eQRwTo2qXtAQ-pb5DjxFtEmqEk2yq_nzknpMjFpQnuJEtnnyOc7-zv7fEfIsbFGJZwxT_PAeBiRygu5sV5khDQZ57Bk4j7k5Ku8vA6-TMW083_CuzBtfIjHDTfUDDdfo4LrpOorufPQikTYnSlgtpIR4knGFXr3XVz56wOFLqlaJDCcrD_tO_U82VBvpXp1qytgmm2zXTwFR_vo1i1P4y1ys-pY65VyM2rqZGTu_4j5-H96vk1edyiWnrVi94a8yIq3ZLPNa7ncIfOrcpbR0lJAlxRzVC9nJndhcKlZAgHNCzpZGphKXKjoZk7rJskWppmVVV4hBYjmLK_mJ1AT6PB0Ad1l6fdF-av-cUJ1kdKf-aJxN6bekevxx2_nl16X18EzABaEF-lA8QRwaSRtomzqn1rJlVaARmBq1iBUwgRpKBMw3X34BhvQSjy_A2xtUYJ2yUZRFtk-oTqUUqtU8pTxIBNWQxNByLhmlrEoYAPCVmMY37bhO-LfzB5gY4xsxGScMnZsjO8G5Kg32GtCpZTwsdHhavTjTuOrGCMzIlyC0g-PpaCqyCFdZGUDVcDaBoTm_72GxMzvoZADstcK1frfUoZg8EcDIp1o_HNv4snkM74dPJdwSF62206483RINupFk70HIFYnR07F4Plpyh4AhC8ldg |
link.rule.ids | 314,780,784,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9QwDI_QJgQS4vvjGGx54HE9kaZN2scJmG6w7mHapHuL0rQZFb12urbA7a-fnfZ2FA0JId5aNU4Vx05-dhybkHfGGplyxjzNA-NhRiov4sZ6sQmFyTmHLRP9kMmJmJ0Hn-fhfCgHhHdh-vwQNw431Ay3XqOCo0N6rOUuRCsOo-FQAcuVTAFQboP2M4zv-njqb44UhrJqcYgJZf35OKzn1p5Ge9WDS90A22xf7-I2QDrGt26DOnxEyvXQ-riUb9OuTafm6resj_9p7I_JwwHI0oNe8p6QO3n1lNztS1uunpHFaV3mtLYUACbFMtWr0hQuEy41KyCgRUWTlYHVxGWL7ha07dJ8abqybooGKUA6y6JZ7ENLoMMDBoyYpRfL-kf7dZ_qKqPfi2XnLk09J-eHn84-zLyhtINnAC-EXqwDyVOAprGwqbSZ_94KLrUEQAKrswa5Ck2QRSIF692HdzADrcAjPIDXFoXoBdmq6ip_RaiOhNAyEzxjPMhDq6GLIGJcM8tYHLAJYetJVJd9Bg_1i-UDbFTIRqzHKZRjo_o5Ibuj2d4QSilDHzvdWU-_GpS-UZicERETfN27-QraihzSVV530AQMbgBp_p9bCCz-HoViQl72UrX5txAR2PzxhAgnG389GpUkR_j0-l8J98i92VlyrI6PTr7skPu9FwodUW_IVrvs8reAy9p01-nbNQCEKKY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQEAgJ8f1RBpsfeFwqHMd28ogY1QZ0QhOT-mY5TgzR2qRqko3y13PnpCtBQ0KIt0bxufL5zv6dffkdIa-tsyrljAWGRzZARqog5tYFiRXS5pzDlonnkNMTeXQWfZiJWZ__hN_CdPwQVwdu6Bl-vUYHX2Zu6OQ-QysRcX-ngNVKxoAnb0YyTJBH__A03N4o9FXVEoF8suFsmNVzbU-Dreru0tSgNdeVu7gOjw7hrd-fJvfJ-WZkXVrK-bht0rH98Rvp4_8Z-gNyr4ex9G1ndw_Jjbx8RG51hS3Xj8nitJrntHIU4CXFItXruS08Dy61axCgRUmnawtrieeKbhe0adN8Zdt5VRc1SoBtzot6cQAtQQ6vFzBfln5dVZfNtwNqyoxeFKvWfzL1hJxN3n95dxT0hR0CC2hBBImJFE8BmCbSpcpl4RsnuTIK4AiszQasStgoi2UKsXsIzxAEOokXeACuHZrQU7JTVmX-nFATS2lUJnnGeJQLZ6CLKGbcMMdYErERYZs51MuOv0P_EveAGjWqEatxSu3VqL-PyN5gsreCSikRYqe7m9nXvcvXGqkZES_B2_2rt-CrqCFT5lULTSDcBogW_rmFxNLvsZAj8qwzqu1_SxlDxJ-MiPSm8dej0dPpMf568a-C--T258OJ_nR88nGX3OmOoPAU6iXZaVZt_gpAWZPueW_7CVdKJ1U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+the+methylcitrate+cycle+in+Mycobacterium+tuberculosis+metabolism%2C+intracellular+growth%2C+and+virulence&rft.jtitle=Molecular+microbiology&rft.au=Mu%C3%B1oz%E2%80%90El%C3%ADas%2C+Ernesto+J.&rft.au=Upton%2C+Anna+M.&rft.au=Cherian%2C+Joseph&rft.au=McKinney%2C+John+D.&rft.date=2006-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0950-382X&rft.eissn=1365-2958&rft.volume=60&rft.issue=5&rft.spage=1109&rft.epage=1122&rft_id=info:doi/10.1111%2Fj.1365-2958.2006.05155.x&rft.externalDBID=10.1111%252Fj.1365-2958.2006.05155.x&rft.externalDocID=MMI5155 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-382X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-382X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-382X&client=summon |