Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence

Summary Growth of bacteria and fungi on fatty acid substrates requires the catabolic β‐oxidation cycle and the anaplerotic glyoxylate cycle. Propionyl‐CoA generated by β‐oxidation of odd‐chain fatty acids is metabolized via the methylcitrate cycle. Mycobacterium tuberculosis possesses homologues of...

Full description

Saved in:
Bibliographic Details
Published inMolecular microbiology Vol. 60; no. 5; pp. 1109 - 1122
Main Authors Muñoz‐Elías, Ernesto J., Upton, Anna M., Cherian, Joseph, McKinney, John D.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.06.2006
Blackwell Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Growth of bacteria and fungi on fatty acid substrates requires the catabolic β‐oxidation cycle and the anaplerotic glyoxylate cycle. Propionyl‐CoA generated by β‐oxidation of odd‐chain fatty acids is metabolized via the methylcitrate cycle. Mycobacterium tuberculosis possesses homologues of methylcitrate synthase (MCS) and methylcitrate dehydratase (MCD) but not 2‐methylisocitrate lyase (MCL). Although MCLs share limited homology with isocitrate lyases (ICLs) of the glyoxylate cycle, these enzymes are thought to be functionally non‐overlapping. Previously we reported that the M. tuberculosis ICL isoforms 1 and 2 are jointly required for growth on fatty acids, in macrophages, and in mice. ICL‐deficient bacteria could not grow on propionate, suggesting that in M. tuberculosis ICL1 and ICL2 might function as ICLs in the glyoxylate cycle and as MCLs in the methylcitrate cycle. Here we provide biochemical and genetic evidence supporting this interpretation. The role of the methylcitrate cycle in M. tuberculosis metabolism was further evaluated by constructing a mutant strain in which prpC (encoding MCS) and prpD (encoding MCD) were deleted. The ΔprpDC strain could not grow on propionate media in vitro or in murine bone marrow‐derived macrophages infected ex vivo; growth under these conditions was restored by complementation with a plasmid containing prpDC. Paradoxically, bacterial growth and persistence, and tissue pathology, were indistinguishable in mice infected with wild‐type or ΔprpDC bacteria.
AbstractList Summary Growth of bacteria and fungi on fatty acid substrates requires the catabolic β‐oxidation cycle and the anaplerotic glyoxylate cycle. Propionyl‐CoA generated by β‐oxidation of odd‐chain fatty acids is metabolized via the methylcitrate cycle. Mycobacterium tuberculosis possesses homologues of methylcitrate synthase (MCS) and methylcitrate dehydratase (MCD) but not 2‐methylisocitrate lyase (MCL). Although MCLs share limited homology with isocitrate lyases (ICLs) of the glyoxylate cycle, these enzymes are thought to be functionally non‐overlapping. Previously we reported that the M. tuberculosis ICL isoforms 1 and 2 are jointly required for growth on fatty acids, in macrophages, and in mice. ICL‐deficient bacteria could not grow on propionate, suggesting that in M. tuberculosis ICL1 and ICL2 might function as ICLs in the glyoxylate cycle and as MCLs in the methylcitrate cycle. Here we provide biochemical and genetic evidence supporting this interpretation. The role of the methylcitrate cycle in M. tuberculosis metabolism was further evaluated by constructing a mutant strain in which prpC (encoding MCS) and prpD (encoding MCD) were deleted. The ΔprpDC strain could not grow on propionate media in vitro or in murine bone marrow‐derived macrophages infected ex vivo; growth under these conditions was restored by complementation with a plasmid containing prpDC. Paradoxically, bacterial growth and persistence, and tissue pathology, were indistinguishable in mice infected with wild‐type or ΔprpDC bacteria.
Growth of bacteria and fungi on fatty acid substrates requires the catabolic beta-oxidation cycle and the anaplerotic glyoxylate cycle. Propionyl-CoA generated by beta-oxidation of odd-chain fatty acids is metabolized via the methylcitrate cycle. Mycobacterium tuberculosis possesses homologues of methylcitrate synthase (MCS) and methylcitrate dehydratase (MCD) but not 2-methylisocitrate lyase (MCL). Although MCLs share limited homology with isocitrate lyases (ICLs) of the glyoxylate cycle, these enzymes are thought to be functionally non-overlapping. Previously we reported that the M. tuberculosis ICL isoforms 1 and 2 are jointly required for growth on fatty acids, in macrophages, and in mice. ICL-deficient bacteria could not grow on propionate, suggesting that in M. tuberculosis ICL1 and ICL2 might function as ICLs in the glyoxylate cycle and as MCLs in the methylcitrate cycle. Here we provide biochemical and genetic evidence supporting this interpretation. The role of the methylcitrate cycle in M. tuberculosis metabolism was further evaluated by constructing a mutant strain in which prpC (encoding MCS) and prpD (encoding MCD) were deleted. The DeltaprpDC strain could not grow on propionate media in vitro or in murine bone marrow-derived macrophages infected ex vivo; growth under these conditions was restored by complementation with a plasmid containing prpDC. Paradoxically, bacterial growth and persistence, and tissue pathology, were indistinguishable in mice infected with wild-type or DeltaprpDC bacteria.
Growth of bacteria and fungi on fatty acid substrates requires the catabolic beta -oxidation cycle and the anaplerotic glyoxylate cycle. Propionyl-CoA generated by beta -oxidation of odd-chain fatty acids is metabolized via the methylcitrate cycle. Mycobacterium tuberculosis possesses homologues of methylcitrate synthase (MCS) and methylcitrate dehydratase (MCD) but not 2-methylisocitrate lyase (MCL). Although MCLs share limited homology with isocitrate lyases (ICLs) of the glyoxylate cycle, these enzymes are thought to be functionally non-overlapping. Previously we reported that the M. tuberculosis ICL isoforms 1 and 2 are jointly required for growth on fatty acids, in macrophages, and in mice. ICL-deficient bacteria could not grow on propionate, suggesting that in M. tuberculosis ICL1 and ICL2 might function as ICLs in the glyoxylate cycle and as MCLs in the methylcitrate cycle. Here we provide biochemical and genetic evidence supporting this interpretation. The role of the methylcitrate cycle in M. tuberculosis metabolism was further evaluated by constructing a mutant strain in which prpC (encoding MCS) and prpD (encoding MCD) were deleted. The Delta prpDC strain could not grow on propionate media in vitro or in murine bone marrow-derived macrophages infected ex vivo; growth under these conditions was restored by complementation with a plasmid containing prpDC. Paradoxically, bacterial growth and persistence, and tissue pathology, were indistinguishable in mice infected with wild-type or Delta prpDC bacteria.
Growth of bacteria and fungi on fatty acid substrates requires the catabolic β‐oxidation cycle and the anaplerotic glyoxylate cycle. Propionyl‐CoA generated by β‐oxidation of odd‐chain fatty acids is metabolized via the methylcitrate cycle. Mycobacterium tuberculosis possesses homologues of methylcitrate synthase (MCS) and methylcitrate dehydratase (MCD) but not 2‐methylisocitrate lyase (MCL). Although MCLs share limited homology with isocitrate lyases (ICLs) of the glyoxylate cycle, these enzymes are thought to be functionally non‐overlapping. Previously we reported that the M. tuberculosis ICL isoforms 1 and 2 are jointly required for growth on fatty acids, in macrophages, and in mice. ICL‐deficient bacteria could not grow on propionate, suggesting that in M. tuberculosis ICL1 and ICL2 might function as ICLs in the glyoxylate cycle and as MCLs in the methylcitrate cycle. Here we provide biochemical and genetic evidence supporting this interpretation. The role of the methylcitrate cycle in M. tuberculosis metabolism was further evaluated by constructing a mutant strain in which prpC (encoding MCS) and prpD (encoding MCD) were deleted. The Δ prpDC strain could not grow on propionate media in vitro or in murine bone marrow‐derived macrophages infected ex vivo ; growth under these conditions was restored by complementation with a plasmid containing prpDC . Paradoxically, bacterial growth and persistence, and tissue pathology, were indistinguishable in mice infected with wild‐type or Δ prpDC bacteria.
Growth of bacteria and fungi on fatty acid substrates requires the catabolic β-oxidation cycle and the anaplerotic glyoxylate cycle. Propionyl-CoA generated by β-oxidation of odd-chain fatty acids is metabolized via the methylcitrate cycle. Mycobacterium tuberculosis possesses homologues of methylcitrate synthase (MCS) and methylcitrate dehydratase (MCD) but not 2-methylisocitrate lyase (MCL). Although MCLs share limited homology with isocitrate lyases (ICLs) of the glyoxylate cycle, these enzymes are thought to be functionally non-overlapping. Previously we reported that the M. tuberculosis ICL isoforms 1 and 2 are jointly required for growth on fatty acids, in macrophages, and in mice. ICL-deficient bacteria could not grow on propionate, suggesting that in M. tuberculosis ICL1 and ICL2 might function as ICLs in the glyoxylate cycle and as MCLs in the methylcitrate cycle. Here we provide biochemical and genetic evidence supporting this interpretation. The role of the methylcitrate cycle in M. tuberculosis metabolism was further evaluated by constructing a mutant strain in which prpC (encoding MCS) and prpD (encoding MCD) were deleted.The ΔprpDC strain could not grow on propionate media in vitro or in murine bone marrow-derived macrophages infected ex vivo; growth under these conditions was restored by complementation with a plasmid containing prpDC. Paradoxically, bacterial growth and persistence, and tissue pathology, were indistinguishable in mice infected with wild-type or ΔprpDC bacteria. [PUBLICATION ABSTRACT]
Author McKinney, John D.
Muñoz‐Elías, Ernesto J.
Upton, Anna M.
Cherian, Joseph
Author_xml – sequence: 1
  givenname: Ernesto J.
  surname: Muñoz‐Elías
  fullname: Muñoz‐Elías, Ernesto J.
– sequence: 2
  givenname: Anna M.
  surname: Upton
  fullname: Upton, Anna M.
– sequence: 3
  givenname: Joseph
  surname: Cherian
  fullname: Cherian, Joseph
– sequence: 4
  givenname: John D.
  surname: McKinney
  fullname: McKinney, John D.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17775241$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16689789$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9rFDEchoNU7Lb6FSQIeuqMSWby7-BBitpCF0EUvIVMJuNmyUxqMrGdb2_GXVrworkkIc_74w3PGTiZwmQBgBjVuKy3-xo3jFZEUlEThFiNKKa0vn8CNg8PJ2CDJEVVI8j3U3CW0h4h3CDWPAOnmDEhuZAbMH4J3sIwwHln4Wjn3eKNm6OeLTSLKU9ugtvFhE6b2UaXRzjnzkaTfUgurQndBe_SeFHIkjPW--x1hD9iuJt3F1BPPfzlYvZ2MvY5eDpon-yL434Ovn388PXyqrr5_On68v1NZSjBtJK65U0nMZNs6PjQEzSwhmuOBOGMaGsMNW0vWNcyScodtwWQEmGB-4EZ25yDN4e5tzH8zDbNanRpraYnG3JSjEsqBWX_BDEnGHFKCvjqL3AfcpzKJxSWrLQWGBdIHCATQ0rRDuo2ulHHRWGkVnFqr1Y_avWjVnHqjzh1X6Ivj_NzN9r-MXg0VYDXR0Ano_0Q9WRceuQ4LzXbtcO7A3fnvF3-u4Dabq_XU_Mb3fm2Ug
CitedBy_id crossref_primary_10_1186_s43008_020_00029_9
crossref_primary_10_3390_microorganisms9061158
crossref_primary_10_1111_j_1574_6976_2012_00331_x
crossref_primary_10_1021_acschembio_8b00213
crossref_primary_10_1128_JB_00099_19
crossref_primary_10_1128_msystems_00699_22
crossref_primary_10_1146_annurev_micro_090817_062257
crossref_primary_10_1111_j_1600_065X_2007_00547_x
crossref_primary_10_1073_pnas_2007332117
crossref_primary_10_1096_fba_2018_00039
crossref_primary_10_1016_S1995_7645_14_60181_4
crossref_primary_10_1186_s43556_022_00106_y
crossref_primary_10_1371_journal_ppat_1000545
crossref_primary_10_1016_j_chembiol_2011_12_016
crossref_primary_10_1111_j_1365_2958_2010_07399_x
crossref_primary_10_3389_fmicb_2024_1371717
crossref_primary_10_1128_JB_00259_15
crossref_primary_10_1128_JB_00402_15
crossref_primary_10_1128_JB_00402_21
crossref_primary_10_3389_fmicb_2021_619387
crossref_primary_10_3390_microorganisms11102505
crossref_primary_10_1074_mcp_M113_034082
crossref_primary_10_1038_s41598_018_26950_z
crossref_primary_10_53879_id_52_12_10470
crossref_primary_10_1074_jbc_M115_687269
crossref_primary_10_1021_pr101054m
crossref_primary_10_1038_ni_1781
crossref_primary_10_1016_j_vaccine_2013_11_065
crossref_primary_10_1126_sciadv_add4220
crossref_primary_10_1016_j_mib_2012_11_007
crossref_primary_10_1093_mmy_myz063
crossref_primary_10_2217_fmb_14_29
crossref_primary_10_1111_mmi_14362
crossref_primary_10_1590_0037_8682_0230_2016
crossref_primary_10_1021_pr2003352
crossref_primary_10_1371_journal_ppat_1002813
crossref_primary_10_1186_1752_0509_3_92
crossref_primary_10_1038_s41598_021_91812_0
crossref_primary_10_7554_eLife_80218
crossref_primary_10_3389_fcimb_2018_00385
crossref_primary_10_1016_j_tube_2019_05_002
crossref_primary_10_1128_JB_00867_13
crossref_primary_10_1111_j_1600_065X_2010_00984_x
crossref_primary_10_1016_j_drudis_2017_04_012
crossref_primary_10_1099_mic_0_030858_0
crossref_primary_10_1099_mic_0_2007_011726_0
crossref_primary_10_5808_gi_22006
crossref_primary_10_1111_imr_12952
crossref_primary_10_1016_j_tube_2021_102079
crossref_primary_10_1038_srep44826
crossref_primary_10_1371_journal_ppat_1004679
crossref_primary_10_1073_pnas_1000715107
crossref_primary_10_1128_JB_00459_10
crossref_primary_10_1371_journal_pone_0056037
crossref_primary_10_1038_npjmgrav_2016_38
crossref_primary_10_1111_mmi_13701
crossref_primary_10_1186_s12859_017_1480_8
crossref_primary_10_1128_microbiolspec_VMBF_0001_2014
crossref_primary_10_1038_s41467_021_22760_6
crossref_primary_10_1002_hlca_202300005
crossref_primary_10_1111_mmi_15030
crossref_primary_10_1016_j_coisb_2021_100384
crossref_primary_10_1038_s41598_017_00529_6
crossref_primary_10_1073_pnas_1003219107
crossref_primary_10_1128_JB_00510_09
crossref_primary_10_3389_fimmu_2022_909904
crossref_primary_10_1038_nrmicro2351
crossref_primary_10_1128_IAI_02699_14
crossref_primary_10_1038_s41564_024_01697_8
crossref_primary_10_1128_mbio_02541_22
crossref_primary_10_1021_bi9005418
crossref_primary_10_1038_nrmicro2236
crossref_primary_10_1111_nyas_12459
crossref_primary_10_1007_s00018_023_04914_5
crossref_primary_10_1371_journal_pone_0003496
crossref_primary_10_1128_mBio_02712_19
crossref_primary_10_1021_acs_biochem_7b00778
crossref_primary_10_1371_journal_pcbi_1000489
crossref_primary_10_1016_j_jip_2021_107669
crossref_primary_10_1128_AEM_02353_19
crossref_primary_10_1016_j_tube_2013_05_004
crossref_primary_10_1016_j_cbpa_2018_05_012
crossref_primary_10_1128_mSystems_00057_17
crossref_primary_10_1111_mmi_12664
crossref_primary_10_3109_10409238_2014_895700
crossref_primary_10_1007_s00018_018_2784_1
crossref_primary_10_1128_mBio_00042_17
crossref_primary_10_1016_j_micpath_2023_106078
crossref_primary_10_3389_fmicb_2021_603835
crossref_primary_10_1111_mmi_12546
crossref_primary_10_1016_j_micpath_2020_104250
crossref_primary_10_1016_j_jprot_2011_08_020
crossref_primary_10_1371_journal_pone_0155522
crossref_primary_10_2217_fmb_13_113
crossref_primary_10_1039_c1mb05106g
crossref_primary_10_1371_journal_pcbi_1004741
crossref_primary_10_1128_microbiolspec_TBTB2_0025_2016
crossref_primary_10_1084_jem_20180118
crossref_primary_10_3389_fimmu_2019_02909
crossref_primary_10_1073_pnas_1400390111
crossref_primary_10_3390_metabo11020088
crossref_primary_10_2174_0929866529666221006121831
crossref_primary_10_1080_1061186X_2016_1258705
crossref_primary_10_3390_pathogens7040088
crossref_primary_10_1371_journal_pone_0087834
crossref_primary_10_1371_journal_ppat_1005949
crossref_primary_10_3390_proteomes11040039
crossref_primary_10_1128_JB_01055_12
crossref_primary_10_1128_mSystems_00855_20
crossref_primary_10_1128_IAI_00072_16
crossref_primary_10_1111_mmi_12368
crossref_primary_10_1371_journal_pcbi_1007533
crossref_primary_10_3389_fimmu_2021_775326
crossref_primary_10_1016_j_ijmm_2017_10_004
crossref_primary_10_1128_JB_00628_15
crossref_primary_10_3390_jof9010108
crossref_primary_10_1371_journal_ppat_1003097
crossref_primary_10_1099_mic_0_034538_0
crossref_primary_10_1371_journal_ppat_1006363
crossref_primary_10_1021_acs_jpcb_5b04732
crossref_primary_10_1038_s41564_018_0218_3
crossref_primary_10_3389_fimmu_2020_00910
crossref_primary_10_1099_mic_0_001458
crossref_primary_10_1002_iub_2466
crossref_primary_10_1186_s12934_020_1285_8
crossref_primary_10_1074_jbc_M112_445056
crossref_primary_10_1099_mic_0_070466_0
crossref_primary_10_1038_s41467_020_19959_4
crossref_primary_10_1139_W09_018
crossref_primary_10_1093_mmy_myt006
crossref_primary_10_1107_S1744309110007256
crossref_primary_10_3389_fmicb_2021_742867
crossref_primary_10_1007_s13238_010_0057_3
crossref_primary_10_1099_mic_0_2008_022269_0
crossref_primary_10_1371_journal_pone_0015667
crossref_primary_10_1099_mic_0_054759_0
crossref_primary_10_1039_D0MD00301H
crossref_primary_10_1186_1471_2164_13_141
crossref_primary_10_1371_journal_ppat_1009061
crossref_primary_10_1080_21505594_2021_1990660
crossref_primary_10_1128_microbiolspec_BAI_0001_2019
crossref_primary_10_1038_s41467_024_46449_8
crossref_primary_10_1007_s00044_020_02691_5
crossref_primary_10_1128_mbio_03559_21
crossref_primary_10_1007_s00248_016_0883_9
crossref_primary_10_1128_MMBR_00010_14
crossref_primary_10_1021_acsinfecdis_3c00237
crossref_primary_10_1371_journal_ppat_1004601
crossref_primary_10_1371_journal_pone_0171512
crossref_primary_10_1016_j_mib_2008_08_001
crossref_primary_10_1111_1462_2920_14901
crossref_primary_10_1007_s11306_020_1645_8
crossref_primary_10_1128_msphere_00104_22
crossref_primary_10_1007_s11418_016_1005_1
crossref_primary_10_15252_msb_20188584
crossref_primary_10_3389_fmicb_2021_642487
crossref_primary_10_1007_s11274_023_03551_1
crossref_primary_10_1016_j_jbiotec_2008_02_009
crossref_primary_10_1016_j_jbiotec_2010_07_001
crossref_primary_10_1371_journal_ppat_1002091
crossref_primary_10_1038_ismej_2013_201
crossref_primary_10_1073_pnas_1218599110
crossref_primary_10_1093_femspd_fty021
crossref_primary_10_1038_nm0307_284
crossref_primary_10_1002_bab_1137
crossref_primary_10_1371_journal_ppat_1002769
crossref_primary_10_1016_j_celrep_2019_12_033
crossref_primary_10_1093_nar_gkz724
crossref_primary_10_1038_s42003_022_03650_z
crossref_primary_10_1111_mmi_14998
crossref_primary_10_1128_CMR_00159_19
crossref_primary_10_1128_JB_01009_09
crossref_primary_10_3390_microorganisms7060177
crossref_primary_10_1016_j_ijbiomac_2019_09_038
crossref_primary_10_1080_17460441_2020_1707801
crossref_primary_10_1039_c003757p
crossref_primary_10_1371_journal_ppat_1010705
crossref_primary_10_1099_mic_0_000850
crossref_primary_10_1126_science_1184784
crossref_primary_10_1074_jbc_M111_313643
crossref_primary_10_1128_mSystems_00424_19
crossref_primary_10_1128_microbiolspec_TBTB2_0031_2016
crossref_primary_10_1016_j_ddtec_2012_04_007
crossref_primary_10_1021_pr4007359
crossref_primary_10_1074_jbc_M113_463992
crossref_primary_10_1007_s11306_016_1053_2
crossref_primary_10_1128_JB_01767_07
crossref_primary_10_1038_s41396_018_0318_3
crossref_primary_10_1016_j_jmgm_2016_05_010
crossref_primary_10_1155_2014_124218
crossref_primary_10_1016_j_gene_2012_06_033
crossref_primary_10_1016_j_tips_2017_01_004
crossref_primary_10_4049_jimmunol_1003226
crossref_primary_10_1271_bbb_130139
crossref_primary_10_1186_1755_8794_1_18
crossref_primary_10_1016_j_ijmm_2017_11_001
crossref_primary_10_1002_iub_1737
crossref_primary_10_1080_1061186X_2020_1853733
crossref_primary_10_7554_eLife_26969
crossref_primary_10_1099_mic_0_000604
crossref_primary_10_1016_j_biotechadv_2021_107860
crossref_primary_10_4161_viru_22329
crossref_primary_10_1371_journal_pone_0092798
crossref_primary_10_1111_imr_12256
crossref_primary_10_1186_s13099_024_00609_9
crossref_primary_10_1080_1040841X_2024_2370979
crossref_primary_10_1111_imr_12254
crossref_primary_10_1186_s12864_017_4322_1
crossref_primary_10_1128_IAI_00609_09
crossref_primary_10_1371_journal_pone_0052673
crossref_primary_10_1089_omi_2012_0028
crossref_primary_10_3390_pathogens12091109
crossref_primary_10_1016_j_cellsig_2013_04_003
crossref_primary_10_1371_journal_pone_0103034
crossref_primary_10_1515_tjb_2016_0019
crossref_primary_10_1021_acschembio_0c00740
crossref_primary_10_1098_rsob_120175
crossref_primary_10_1093_femspd_fty048
crossref_primary_10_1128_mbio_01672_22
crossref_primary_10_1371_journal_pone_0022810
crossref_primary_10_3389_fnins_2020_00296
crossref_primary_10_1099_mic_0_001042
crossref_primary_10_1038_s41598_019_51486_1
crossref_primary_10_1128_spectrum_04685_22
crossref_primary_10_1371_journal_pone_0141076
crossref_primary_10_1016_j_jprot_2019_103576
crossref_primary_10_1080_00498250903089829
crossref_primary_10_3389_fmicb_2018_01311
crossref_primary_10_1371_journal_pone_0161467
crossref_primary_10_1111_j_1365_2958_2006_05297_x
crossref_primary_10_1073_pnas_0610634104
crossref_primary_10_1111_j_1462_5822_2007_01025_x
crossref_primary_10_1111_bph_13694
crossref_primary_10_3389_fcimb_2022_958555
crossref_primary_10_1021_acsomega_1c05923
crossref_primary_10_1021_acsinfecdis_1c00067
crossref_primary_10_3389_fmicb_2021_640931
crossref_primary_10_1134_S0026893318030020
crossref_primary_10_1016_j_chom_2010_06_002
crossref_primary_10_1016_j_vetpar_2024_110193
crossref_primary_10_1371_journal_pone_0188130
crossref_primary_10_1371_journal_ppat_1008270
crossref_primary_10_1111_mmi_12139
crossref_primary_10_1371_journal_pone_0269847
crossref_primary_10_1073_pnas_1617655114
crossref_primary_10_1111_1462_2920_15249
crossref_primary_10_3389_fmolb_2015_00006
Cites_doi 10.7883/yoken1952.23.315
10.1128/br.32.1.1-26.1968
10.1128/JB.181.23.7161-7167.1999
10.1038/31159
10.1099/00221287-146-8-1969
10.1073/pnas.012363899
10.1128/JB.184.19.5479-5490.2002
10.1016/S0021-9258(19)41073-9
10.1126/science.1088063
10.1016/S0378-1097(03)00722-5
10.1128/AEM.68.1.271-279.2002
10.1016/0076-6879(69)13005-0
10.1074/jbc.M100244200
10.1271/bbb1961.39.1049
10.1128/JB.181.18.5615-5623.1999
10.1128/JB.184.14.4025-4032.2002
10.1046/j.1365-2958.2000.01737.x
10.1128/IAI.73.6.3754-3757.2005
10.1038/nm1252
10.1128/JB.181.11.3562-3570.1999
10.1038/82142
10.1128/AEM.71.9.5465-5475.2005
10.1016/S1286-4579(03)00090-X
10.1038/431899a
10.1073/pnas.2436197100
10.1073/pnas.0501605102
10.1146/annurev.cellbio.20.010403.114015
10.1046/j.1365-2958.2001.02525.x
10.1128/IAI.65.1.305-308.1997
10.1074/jbc.M209248200
10.1099/00221287-147-8-2203
10.1128/JB.182.24.7007-7013.2000
10.1111/j.1462-5822.2005.00648.x
10.1038/35021074
10.1038/35059006
10.1128/jb.72.2.132-141.1956
10.1006/mpat.1999.0311
10.1038/351456a0
10.1038/179988a0
10.1007/s002030050518
10.1038/nrmicro1065
10.1073/pnas.1130426100
10.1046/j.1432-1327.2001.02262.x
10.1038/77964
10.1098/rstb.2000.0597
10.1016/0005-2760(66)90133-0
10.1093/bib/5.2.150
10.1016/j.tube.2003.12.011
10.1111/j.1432-1033.2004.04255.x
10.1073/pnas.96.20.11554
10.1128/JB.181.16.4780-4789.1999
10.1016/S0022-2836(03)00358-9
10.1016/0003-9861(69)90213-6
10.1128/JB.184.10.2728-2739.2002
10.1128/JB.185.16.4837-4843.2003
10.1021/bi0479712
10.1093/oxfordjournals.jbchem.a135340
10.1128/JB.180.14.3495-3502.1998
10.1016/S0021-9258(19)77145-2
10.1073/pnas.0307888101
10.1084/jem.20030846
10.1271/bbb1961.40.1863
10.1038/nrmicro727
10.1016/S1074-5521(02)00142-4
ContentType Journal Article
Copyright 2006 INIST-CNRS
Copyright Blackwell Publishing Jun 2006
Copyright_xml – notice: 2006 INIST-CNRS
– notice: Copyright Blackwell Publishing Jun 2006
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
DOI 10.1111/j.1365-2958.2006.05155.x
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Bacteriology Abstracts (Microbiology B)
CrossRef
Virology and AIDS Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1365-2958
EndPage 1122
ExternalDocumentID 1066177091
10_1111_j_1365_2958_2006_05155_x
16689789
17775241
MMI5155
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: AI046392
GroupedDBID ---
-DZ
.3N
.55
.GA
.GJ
.HR
.Y3
05W
0R~
10A
123
1OB
1OC
24P
29M
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAKAS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FIJ
FSRTE
FZ0
G-S
G.N
GODZA
GX1
H.T
H.X
HF~
HGLYW
HH5
HVGLF
HZI
HZ~
IH2
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBC
OBS
OEB
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TR2
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXSBR
WYISQ
X7M
XG1
Y6R
YFH
YUY
ZGI
ZXP
ZY4
ZZTAW
~IA
~KM
~WT
AAJUZ
AAPBV
AAUGY
ABCVL
ABHUG
ABPTK
ABWRO
ACSMX
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
AKALU
IQODW
XFK
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
ACRPL
ACYXJ
CITATION
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c5215-9a473b91696fb7fd20f637a7082762aecc5c4d86b46922ae140f6990181df6ce3
IEDL.DBID DR2
ISSN 0950-382X
IngestDate Wed Dec 04 09:45:01 EST 2024
Tue Dec 03 23:50:39 EST 2024
Thu Oct 10 16:25:56 EDT 2024
Fri Dec 06 04:41:24 EST 2024
Sat Sep 28 07:45:45 EDT 2024
Sun Oct 22 16:08:45 EDT 2023
Sat Aug 24 00:55:51 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Microbiology
Mycobacterium tuberculosis
Mycobacteriales
Virulence
Mycobacteriaceae
Bacteria
Actinomycetes
Intracellular
Metabolism
Language English
License CC BY 4.0
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5215-9a473b91696fb7fd20f637a7082762aecc5c4d86b46922ae140f6990181df6ce3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 16689789
PQID 196521811
PQPubID 35968
PageCount 14
ParticipantIDs proquest_miscellaneous_67959856
proquest_miscellaneous_17210752
proquest_journals_196521811
crossref_primary_10_1111_j_1365_2958_2006_05155_x
pubmed_primary_16689789
pascalfrancis_primary_17775241
wiley_primary_10_1111_j_1365_2958_2006_05155_x_MMI5155
PublicationCentury 2000
PublicationDate June 2006
PublicationDateYYYYMMDD 2006-06-01
PublicationDate_xml – month: 06
  year: 2006
  text: June 2006
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
PublicationTitle Molecular microbiology
PublicationTitleAlternate Mol Microbiol
PublicationYear 2006
Publisher Blackwell Publishing Ltd
Blackwell Science
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell Science
References 1991; 351
2004; 20
1970; 245
2000; 6
1966; 116
2002; 99
2000; 7
2004; 5
1964; 89
1969; 129
2003; 278
1998; 393
2001; 147
2001; 268
2001; 41
2003; 198
2003; 328
2002; 184
2005; 102
1999; 181
2000; 406
2005; 73
1970; 23
1988; 134
2003; 5
1999; 96
2005; 71
2003; 1
1985; 98
2004; 101
1998; 180
1976; 40
2004; 84
2002; 9
1956; 72
2000; 355
1997; 65
1975; 39
1999; 27
1975; 250
2006; 8
1996
2001; 409
2005; 44
1987; 59
2001; 276
2004; 431
1997; 168
1976; 13
2003; 228
2000; 146
2000; 35
1957; 179
2002; 68
2004; 271
2000; 182
2005; 3
2003; 302
2003; 100
2005; 11
1969
1968; 32
2003; 185
Plaut (e_1_2_6_48_1) 1975; 250
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
Peekhaus (e_1_2_6_47_1) 1998; 180
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
Wheeler P.R. (e_1_2_6_69_1) 1988; 134
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_55_1
e_1_2_6_15_1
Cronan J.E. (e_1_2_6_17_1) 1996
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
Seshadri R. (e_1_2_6_51_1) 1976; 13
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
Ashworth J.M. (e_1_2_6_2_1) 1964; 89
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
London R.E. (e_1_2_6_33_1) 1999; 181
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
Wegener W.S. (e_1_2_6_67_1) 1968; 32
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
Bharadwaj V.P. (e_1_2_6_4_1) 1987; 59
e_1_2_6_6_1
Pavelka M.S. (e_1_2_6_46_1) 1999; 181
e_1_2_6_25_1
e_1_2_6_23_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
References_xml – volume: 406
  start-page: 735
  year: 2000
  end-page: 758
  article-title: Persistence of in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase
  publication-title: Nature
– volume: 68
  start-page: 271
  year: 2002
  end-page: 279
  article-title: Identification of the 2‐methylcitrate pathway involved in the catabolism of propionate in the polyhydroxyalkanoate‐producing strain IPT101T and analysis of a mutant accumulating a copolyester with higher 3‐hydroxyvalerate content
  publication-title: Appl Environ Microbiol
– volume: 8
  start-page: 10
  year: 2006
  end-page: 22
  article-title: Carbon metabolism of intracellular bacteria
  publication-title: Cell Microbiol
– volume: 181
  start-page: 5615
  year: 1999
  end-page: 5623
  article-title: LT2 catabolizes propionate via the 2‐methylcitric acid cycle
  publication-title: J Bacteriol
– volume: 276
  start-page: 19094
  year: 2001
  end-page: 19101
  article-title: Studies of propionate toxicity in identify 2‐methylcitrate as a potent inhibitor of cell growth
  publication-title: J Biol Chem
– volume: 181
  start-page: 3562
  year: 1999
  end-page: 3570
  article-title: Carbon‐13 nuclear magnetic resonance study of metabolism of propionate by
  publication-title: J Bacteriol
– volume: 355
  start-page: 551
  year: 2000
  end-page: 564
  article-title: Questions about the behaviour of bacterial pathogens
  publication-title: Philos Trans R Soc Lond B Biol Sci
– volume: 96
  start-page: 11554
  year: 1999
  end-page: 11559
  article-title: Identification of RNAs synthesized selectively in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS)
  publication-title: Proc Natl Acad Sci USA
– volume: 245
  start-page: 1675
  year: 1970
  end-page: 1681
  article-title: Catalysis of both oxidation and reduction of glyoxylate by pig heart lactate dehydrogenase isozyme 1
  publication-title: J Biol Chem
– volume: 3
  start-page: 70
  year: 2005
  end-page: 80
  article-title: Tuberculosis – metabolism and respiration in the absence of growth
  publication-title: Nat Rev Microbiol
– volume: 39
  start-page: 1049
  year: 1975
  end-page: 1054
  article-title: The production of 2‐methylisocitric acid from odd‐carbon n‐alkanes by a mutant of
  publication-title: Agr Biol Chem
– volume: 147
  start-page: 2203
  year: 2001
  end-page: 2214
  article-title: The methylcitric acid pathway in : new genes identified involved in propionate metabolism
  publication-title: Microbiology
– volume: 99
  start-page: 431
  year: 2002
  end-page: 436
  article-title: Hpt, a bacterial homolog of the microsomal glucose‐6‐phosphate translocase, mediates rapid intracellular proliferation in
  publication-title: Proc Natl Acad Sci USA
– volume: 278
  start-page: 1735
  year: 2003
  end-page: 1743
  article-title: Biochemical and structural studies of malate synthase from
  publication-title: J Biol Chem
– volume: 35
  start-page: 961
  year: 2000
  end-page: 973
  article-title: Methylcitrate synthase from : implications for propionate as an antifungal agent
  publication-title: Mol Microbiol
– volume: 184
  start-page: 5479
  year: 2002
  end-page: 5490
  article-title: Whole‐genome comparison of clinical and laboratory strains
  publication-title: J Bacteriol
– volume: 5
  start-page: 150
  year: 2004
  end-page: 163
  article-title: MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment
  publication-title: Brief Bioinform
– volume: 84
  start-page: 205
  year: 2004
  end-page: 217
  article-title: The influence of reduced oxygen availability on pathogenicity and gene expression in
  publication-title: Tuberculosis
– volume: 11
  start-page: 638
  year: 2005
  end-page: 644
  article-title: isocitrate lyases 1 and 2 are jointly required for growth and virulence
  publication-title: Nat Med
– volume: 65
  start-page: 305
  year: 1997
  end-page: 308
  article-title: Sequestration of in tight vacuoles in lung macrophages of mice infected by the respiratory route
  publication-title: Infect Immun
– volume: 72
  start-page: 132
  year: 1956
  end-page: 141
  article-title: Biochemical differentiation of grown and
  publication-title: J Bacteriol
– volume: 5
  start-page: 629
  year: 2003
  end-page: 637
  article-title: gene expression in macrophages
  publication-title: Microbes Infect
– volume: 73
  start-page: 3754
  year: 2005
  end-page: 3757
  article-title: Responses of to growth in the mouse lung
  publication-title: Infect Immun
– volume: 116
  start-page: 593
  year: 1966
  end-page: 596
  article-title: Propionate incorporation into mycocerosic acid by resting cells of
  publication-title: Biochim Biophys Acta
– start-page: 206
  year: 1996
  end-page: 216
– volume: 100
  start-page: 14321
  year: 2003
  end-page: 14326
  article-title: Differential expression of iron‐, carbon‐, and oxygen‐responsive mycobacterial genes in the lungs of chronically infected mice and tuberculosis patients
  publication-title: Proc Natl Acad Sci USA
– start-page: 3
  year: 1969
  end-page: 11
– volume: 198
  start-page: 693
  year: 2003
  end-page: 704
  article-title: Transcriptional adaptation of within macrophages: insights into the phagosomal environment
  publication-title: J Exp Med
– volume: 1
  start-page: 65
  year: 2003
  end-page: 70
  article-title: Where will new antibiotics come from?
  publication-title: Nat Rev Microbiol
– volume: 146
  start-page: 1969
  year: 2000
  end-page: 1975
  article-title: Use of a flexible cassette method to generate a double unmarked mutant by gene replacement
  publication-title: Microbiology
– volume: 181
  start-page: 7161
  year: 1999
  end-page: 7167
  article-title: Characterization of activity and expression of isocitrate lyase in and
  publication-title: J Bacteriol
– volume: 184
  start-page: 2728
  year: 2002
  end-page: 2739
  article-title: Identification of two gene clusters in and their involvement in propionate degradation via the 2‐methylcitrate cycle
  publication-title: J Bacteriol
– volume: 7
  start-page: 663
  year: 2000
  end-page: 668
  article-title: Structure of isocitrate lyase, a persistence factor of
  publication-title: Nat Struct Biol
– volume: 101
  start-page: 7427
  year: 2004
  end-page: 7432
  article-title: Carbon nutrition of in the mouse intestine
  publication-title: Proc Natl Acad Sci USA
– volume: 271
  start-page: 3227
  year: 2004
  end-page: 3241
  article-title: On the mechanism of action of the antifungal agent propionate
  publication-title: Eur J Biochem
– volume: 89
  start-page: 383
  year: 1964
  end-page: 384
  article-title: The role of isocitrate lyase in
  publication-title: Biochim Biophys Acta
– volume: 268
  start-page: 3577
  year: 2001
  end-page: 3586
  article-title: 2‐Methylisocitrate lyases from the bacterium and the filamentous fungus : characterization and comparison of both enzymes
  publication-title: Eur J Biochem
– volume: 409
  start-page: 1007
  year: 2001
  end-page: 1011
  article-title: Massive gene decay in the leprosy bacillus
  publication-title: Nature
– volume: 393
  start-page: 537
  year: 1998
  end-page: 543
  article-title: Deciphering the biology of from the complete genome sequence
  publication-title: Nature
– volume: 40
  start-page: 1863
  year: 1976
  end-page: 1869
  article-title: Distinction between isocitrate lyase and methylisocitrate lyase in
  publication-title: Agr Biol Chem
– volume: 184
  start-page: 4025
  year: 2002
  end-page: 4032
  article-title: Microarray analysis of the transcriptional response to the acidic conditions found in phagosomes
  publication-title: J Bacteriol
– volume: 9
  start-page: 545
  year: 2002
  end-page: 553
  article-title: The methyl‐branched fortifications of
  publication-title: Chem Biol
– volume: 179
  start-page: 988
  year: 1957
  end-page: 991
  article-title: Synthesis of cell constituents from C2‐units by a modified tricarboxylic acid cycle
  publication-title: Nature
– volume: 250
  start-page: 6351
  year: 1975
  end-page: 6354
  article-title: Alpha‐methylisocitrate. A selective inhibitor of TPN‐linked isocitrate dehydrogenase from bovine heart and rat liver
  publication-title: J Biol Chem
– volume: 32
  start-page: 1
  year: 1968
  end-page: 26
  article-title: Alternate pathways of metabolism of short‐chain fatty acids
  publication-title: Bacteriol Rev
– volume: 180
  start-page: 3495
  year: 1998
  end-page: 3502
  article-title: What’s for dinner? Entner‐Doudoroff metabolism in
  publication-title: J Bacteriol
– volume: 185
  start-page: 4837
  year: 2003
  end-page: 4843
  article-title: Residues C123 and D58 of the 2‐methylisocitrate lyase (PrpB) enzyme of are essential for catalysis
  publication-title: J Bacteriol
– volume: 59
  start-page: 158
  year: 1987
  end-page: 162
  article-title: Metabolic studies on mycobacteria. IV. Assay of isocitrate lyase and malate synthase activity in
  publication-title: Indian J Lepr
– volume: 41
  start-page: 423
  year: 2001
  end-page: 437
  article-title: The ECF sigma factor σ : role in global gene expression and survival in macrophages
  publication-title: Mol Microbiol
– volume: 431
  start-page: 899
  year: 2004
  end-page: 902
  article-title: Antibiotics at the crossroads
  publication-title: Nature
– volume: 102
  start-page: 10670
  year: 2005
  end-page: 10675
  article-title: Variant tricarboxylic acid cycle in : identification of α‐ketoglutarate decarboxylase
  publication-title: Proc Natl Acad Sci USA
– volume: 129
  start-page: 545
  year: 1969
  end-page: 553
  article-title: Propionate metabolism. V. The physiological significance of isocitrate lyase during growth of on propionate
  publication-title: Arch Biochem Biophys
– volume: 134
  start-page: 2111
  year: 1988
  end-page: 2121
  article-title: Use of carbon sources for lipid biosynthesis in : a comparison with other pathogenic mycobacteria
  publication-title: J General Microbiol
– volume: 302
  start-page: 654
  year: 2003
  end-page: 659
  article-title: Immune control of tuberculosis by IFN‐γ‐inducible LRG‐47
  publication-title: Science
– volume: 20
  start-page: 367
  year: 2004
  end-page: 394
  article-title: Cell biology of phagosome
  publication-title: Annu Rev Cell Dev Biol
– volume: 328
  start-page: 609
  year: 2003
  end-page: 621
  article-title: Crystal structure of 2‐methylisocitrate lyase (PrpB) from and modelling of its ligand bound active centre
  publication-title: J Mol Biol
– volume: 181
  start-page: 4780
  year: 1999
  end-page: 4789
  article-title: Comparison of the construction of unmarked deletion mutations in , bacillus Calmette‐Guerin, and H37Rv by allelic exchange
  publication-title: J Bacteriol
– volume: 6
  start-page: 1330
  year: 2000
  end-page: 1333
  article-title: : the search for TB drug targets goes live
  publication-title: Nat Med
– volume: 351
  start-page: 456
  year: 1991
  end-page: 460
  article-title: New use of BCG for recombinant vaccines
  publication-title: Nature
– volume: 98
  start-page: 819
  year: 1985
  end-page: 824
  article-title: Mechanisms of growth inhibition by propionate and restoration of the growth by sodium bicarbonate or acetate in S
  publication-title: J Biochem (Tokyo)
– volume: 13
  start-page: 95
  year: 1976
  end-page: 96
  article-title: Isocitrate lyase in mycobacteria
  publication-title: Indian J Biochem Biophys
– volume: 168
  start-page: 428
  year: 1997
  end-page: 436
  article-title: Propionate oxidation in : evidence for operation of a methylcitrate cycle in bacteria
  publication-title: Arch Microbiol
– volume: 71
  start-page: 5465
  year: 2005
  end-page: 5475
  article-title: Generation and phenotypic characterization of methylisocitrate lyase deletion mutants: methylisocitrate inhibits growth and conidiation
  publication-title: Appl Environ Microbiol
– volume: 228
  start-page: 63
  year: 2003
  end-page: 71
  article-title: The glyoxylate bypass of
  publication-title: FEMS Microbiol Lett
– volume: 27
  start-page: 369
  year: 1999
  end-page: 376
  article-title: The locus; required during infection of macrophages and amoebae
  publication-title: Microb Pathog
– volume: 100
  start-page: 7877
  year: 2003
  end-page: 7882
  article-title: The complete genome sequence of
  publication-title: Proc Natl Acad Sci USA
– volume: 23
  start-page: 315
  year: 1970
  end-page: 326
  article-title: Analysis of host‐originated lipids associated with ‘ grown tubercle bacilli’
  publication-title: Jpn J Med Sci Biol
– volume: 182
  start-page: 7007
  year: 2000
  end-page: 7013
  article-title: The ICL2 gene encodes a mitochondrial 2‐methylisocitrate lyase involved in propionyl‐coenzyme A metabolism
  publication-title: J Bacteriol
– volume: 44
  start-page: 2949
  year: 2005
  end-page: 2962
  article-title: Crystal structures of 2‐methylisocitrate lyase in complex with product and with isocitrate inhibitor provide insight into lyase substrate specificity, catalysis and evolution
  publication-title: Biochemistry
– ident: e_1_2_6_29_1
  doi: 10.7883/yoken1952.23.315
– volume: 32
  start-page: 1
  year: 1968
  ident: e_1_2_6_67_1
  article-title: Alternate pathways of metabolism of short‐chain fatty acids
  publication-title: Bacteriol Rev
  doi: 10.1128/br.32.1.1-26.1968
  contributor:
    fullname: Wegener W.S.
– ident: e_1_2_6_26_1
  doi: 10.1128/JB.181.23.7161-7167.1999
– ident: e_1_2_6_15_1
  doi: 10.1038/31159
– ident: e_1_2_6_45_1
  doi: 10.1099/00221287-146-8-1969
– ident: e_1_2_6_13_1
  doi: 10.1073/pnas.012363899
– ident: e_1_2_6_21_1
  doi: 10.1128/JB.184.19.5479-5490.2002
– volume: 250
  start-page: 6351
  year: 1975
  ident: e_1_2_6_48_1
  article-title: Alpha‐methylisocitrate. A selective inhibitor of TPN‐linked isocitrate dehydrogenase from bovine heart and rat liver
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)41073-9
  contributor:
    fullname: Plaut
– ident: e_1_2_6_37_1
  doi: 10.1126/science.1088063
– ident: e_1_2_6_65_1
  doi: 10.1016/S0378-1097(03)00722-5
– ident: e_1_2_6_7_1
  doi: 10.1128/AEM.68.1.271-279.2002
– ident: e_1_2_6_55_1
  doi: 10.1016/0076-6879(69)13005-0
– ident: e_1_2_6_28_1
  doi: 10.1074/jbc.M100244200
– ident: e_1_2_6_59_1
  doi: 10.1271/bbb1961.39.1049
– ident: e_1_2_6_27_1
  doi: 10.1128/JB.181.18.5615-5623.1999
– ident: e_1_2_6_20_1
  doi: 10.1128/JB.184.14.4025-4032.2002
– ident: e_1_2_6_10_1
  doi: 10.1046/j.1365-2958.2000.01737.x
– ident: e_1_2_6_19_1
  doi: 10.1128/IAI.73.6.3754-3757.2005
– ident: e_1_2_6_42_1
  doi: 10.1038/nm1252
– volume: 181
  start-page: 3562
  year: 1999
  ident: e_1_2_6_33_1
  article-title: Carbon‐13 nuclear magnetic resonance study of metabolism of propionate by Escherichia coli
  publication-title: J Bacteriol
  doi: 10.1128/JB.181.11.3562-3570.1999
  contributor:
    fullname: London R.E.
– ident: e_1_2_6_35_1
  doi: 10.1038/82142
– ident: e_1_2_6_8_1
  doi: 10.1128/AEM.71.9.5465-5475.2005
– ident: e_1_2_6_18_1
  doi: 10.1016/S1286-4579(03)00090-X
– ident: e_1_2_6_44_1
  doi: 10.1038/431899a
– ident: e_1_2_6_62_1
  doi: 10.1073/pnas.2436197100
– ident: e_1_2_6_61_1
  doi: 10.1073/pnas.0501605102
– ident: e_1_2_6_63_1
  doi: 10.1146/annurev.cellbio.20.010403.114015
– start-page: 206
  volume-title: Escherichia coli and Salmonella: Cellular and Molecular Biology.
  year: 1996
  ident: e_1_2_6_17_1
  contributor:
    fullname: Cronan J.E.
– ident: e_1_2_6_38_1
  doi: 10.1046/j.1365-2958.2001.02525.x
– ident: e_1_2_6_41_1
  doi: 10.1128/IAI.65.1.305-308.1997
– ident: e_1_2_6_54_1
  doi: 10.1074/jbc.M209248200
– ident: e_1_2_6_6_1
  doi: 10.1099/00221287-147-8-2203
– ident: e_1_2_6_34_1
  doi: 10.1128/JB.182.24.7007-7013.2000
– ident: e_1_2_6_43_1
  doi: 10.1111/j.1462-5822.2005.00648.x
– volume: 13
  start-page: 95
  year: 1976
  ident: e_1_2_6_51_1
  article-title: Isocitrate lyase in mycobacteria
  publication-title: Indian J Biochem Biophys
  contributor:
    fullname: Seshadri R.
– ident: e_1_2_6_36_1
  doi: 10.1038/35021074
– ident: e_1_2_6_16_1
  doi: 10.1038/35059006
– volume: 134
  start-page: 2111
  year: 1988
  ident: e_1_2_6_69_1
  article-title: Use of carbon sources for lipid biosynthesis in Mycobacterium leprae: a comparison with other pathogenic mycobacteria
  publication-title: J General Microbiol
  contributor:
    fullname: Wheeler P.R.
– ident: e_1_2_6_50_1
  doi: 10.1128/jb.72.2.132-141.1956
– ident: e_1_2_6_56_1
  doi: 10.1006/mpat.1999.0311
– ident: e_1_2_6_57_1
  doi: 10.1038/351456a0
– ident: e_1_2_6_30_1
  doi: 10.1038/179988a0
– ident: e_1_2_6_60_1
  doi: 10.1007/s002030050518
– ident: e_1_2_6_5_1
  doi: 10.1038/nrmicro1065
– ident: e_1_2_6_22_1
  doi: 10.1073/pnas.1130426100
– ident: e_1_2_6_11_1
  doi: 10.1046/j.1432-1327.2001.02262.x
– ident: e_1_2_6_52_1
  doi: 10.1038/77964
– ident: e_1_2_6_53_1
  doi: 10.1098/rstb.2000.0597
– ident: e_1_2_6_70_1
  doi: 10.1016/0005-2760(66)90133-0
– ident: e_1_2_6_31_1
  doi: 10.1093/bib/5.2.150
– volume: 89
  start-page: 383
  year: 1964
  ident: e_1_2_6_2_1
  article-title: The role of isocitrate lyase in Escherichia coli
  publication-title: Biochim Biophys Acta
  contributor:
    fullname: Ashworth J.M.
– ident: e_1_2_6_3_1
  doi: 10.1016/j.tube.2003.12.011
– ident: e_1_2_6_9_1
  doi: 10.1111/j.1432-1033.2004.04255.x
– ident: e_1_2_6_23_1
  doi: 10.1073/pnas.96.20.11554
– volume: 181
  start-page: 4780
  year: 1999
  ident: e_1_2_6_46_1
  article-title: Comparison of the construction of unmarked deletion mutations in Mycobacterium smegmatis, Mycobacterium bovis bacillus Calmette‐Guerin, and Mycobacterium tuberculosis H37Rv by allelic exchange
  publication-title: J Bacteriol
  doi: 10.1128/JB.181.16.4780-4789.1999
  contributor:
    fullname: Pavelka M.S.
– ident: e_1_2_6_25_1
  doi: 10.1016/S0022-2836(03)00358-9
– ident: e_1_2_6_68_1
  doi: 10.1016/0003-9861(69)90213-6
– ident: e_1_2_6_14_1
  doi: 10.1128/JB.184.10.2728-2739.2002
– ident: e_1_2_6_24_1
  doi: 10.1128/JB.185.16.4837-4843.2003
– ident: e_1_2_6_32_1
  doi: 10.1021/bi0479712
– volume: 59
  start-page: 158
  year: 1987
  ident: e_1_2_6_4_1
  article-title: Metabolic studies on mycobacteria. IV. Assay of isocitrate lyase and malate synthase activity in M. leprae
  publication-title: Indian J Lepr
  contributor:
    fullname: Bharadwaj V.P.
– ident: e_1_2_6_39_1
  doi: 10.1093/oxfordjournals.jbchem.a135340
– volume: 180
  start-page: 3495
  year: 1998
  ident: e_1_2_6_47_1
  article-title: What’s for dinner? Entner‐Doudoroff metabolism in Escherichia coli
  publication-title: J Bacteriol
  doi: 10.1128/JB.180.14.3495-3502.1998
  contributor:
    fullname: Peekhaus
– ident: e_1_2_6_66_1
  doi: 10.1016/S0021-9258(19)77145-2
– ident: e_1_2_6_12_1
  doi: 10.1073/pnas.0307888101
– ident: e_1_2_6_49_1
  doi: 10.1084/jem.20030846
– ident: e_1_2_6_58_1
  doi: 10.1271/bbb1961.40.1863
– ident: e_1_2_6_64_1
  doi: 10.1038/nrmicro727
– ident: e_1_2_6_40_1
  doi: 10.1016/S1074-5521(02)00142-4
SSID ssj0013063
Score 2.405603
Snippet Summary Growth of bacteria and fungi on fatty acid substrates requires the catabolic β‐oxidation cycle and the anaplerotic glyoxylate cycle. Propionyl‐CoA...
Growth of bacteria and fungi on fatty acid substrates requires the catabolic beta-oxidation cycle and the anaplerotic glyoxylate cycle. Propionyl-CoA generated...
Growth of bacteria and fungi on fatty acid substrates requires the catabolic β‐oxidation cycle and the anaplerotic glyoxylate cycle. Propionyl‐CoA generated by...
Growth of bacteria and fungi on fatty acid substrates requires the catabolic β-oxidation cycle and the anaplerotic glyoxylate cycle. Propionyl-CoA generated by...
Growth of bacteria and fungi on fatty acid substrates requires the catabolic beta -oxidation cycle and the anaplerotic glyoxylate cycle. Propionyl-CoA...
SourceID proquest
crossref
pubmed
pascalfrancis
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 1109
SubjectTerms Animals
Bacteria
Biological and medical sciences
Bone Marrow Cells - cytology
Bone Marrow Cells - metabolism
Carbon-Carbon Lyases - classification
Carbon-Carbon Lyases - genetics
Carbon-Carbon Lyases - metabolism
Cells, Cultured
Citrate (si)-Synthase - genetics
Citrate (si)-Synthase - metabolism
Citric Acid - chemistry
Citric Acid - metabolism
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Fatty acids
Female
Fundamental and applied biological sciences. Psychology
Fungi
Genes
Hydro-Lyases - genetics
Hydro-Lyases - metabolism
Isocitrate Lyase - classification
Isocitrate Lyase - genetics
Isocitrate Lyase - metabolism
Isoenzymes - classification
Isoenzymes - genetics
Isoenzymes - metabolism
Macrophages - cytology
Macrophages - metabolism
Male
Metabolism
Mice
Mice, Inbred C57BL
Microbiology
Molecular Sequence Data
Molecular Structure
Mycobacterium tuberculosis
Mycobacterium tuberculosis - genetics
Mycobacterium tuberculosis - physiology
Pathogens
Phylogeny
Propionates - metabolism
Title Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2958.2006.05155.x
https://www.ncbi.nlm.nih.gov/pubmed/16689789
https://www.proquest.com/docview/196521811
https://search.proquest.com/docview/17210752
https://search.proquest.com/docview/67959856
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RT9swELYmJKRJ02BjQCljfuCRVDiO7eQRwTo2qXtAQ-pb5DjxFtEmqEk2yq_nzknpMjFpQnuJEtnnyOc7-zv7fEfIsbFGJZwxT_PAeBiRygu5sV5khDQZ57Bk4j7k5Ku8vA6-TMW083_CuzBtfIjHDTfUDDdfo4LrpOorufPQikTYnSlgtpIR4knGFXr3XVz56wOFLqlaJDCcrD_tO_U82VBvpXp1qytgmm2zXTwFR_vo1i1P4y1ys-pY65VyM2rqZGTu_4j5-H96vk1edyiWnrVi94a8yIq3ZLPNa7ncIfOrcpbR0lJAlxRzVC9nJndhcKlZAgHNCzpZGphKXKjoZk7rJskWppmVVV4hBYjmLK_mJ1AT6PB0Ad1l6fdF-av-cUJ1kdKf-aJxN6bekevxx2_nl16X18EzABaEF-lA8QRwaSRtomzqn1rJlVaARmBq1iBUwgRpKBMw3X34BhvQSjy_A2xtUYJ2yUZRFtk-oTqUUqtU8pTxIBNWQxNByLhmlrEoYAPCVmMY37bhO-LfzB5gY4xsxGScMnZsjO8G5Kg32GtCpZTwsdHhavTjTuOrGCMzIlyC0g-PpaCqyCFdZGUDVcDaBoTm_72GxMzvoZADstcK1frfUoZg8EcDIp1o_HNv4snkM74dPJdwSF62206483RINupFk70HIFYnR07F4Plpyh4AhC8ldg
link.rule.ids 314,780,784,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9QwDI_QJgQS4vvjGGx54HE9kaZN2scJmG6w7mHapHuL0rQZFb12urbA7a-fnfZ2FA0JId5aNU4Vx05-dhybkHfGGplyxjzNA-NhRiov4sZ6sQmFyTmHLRP9kMmJmJ0Hn-fhfCgHhHdh-vwQNw431Ay3XqOCo0N6rOUuRCsOo-FQAcuVTAFQboP2M4zv-njqb44UhrJqcYgJZf35OKzn1p5Ge9WDS90A22xf7-I2QDrGt26DOnxEyvXQ-riUb9OuTafm6resj_9p7I_JwwHI0oNe8p6QO3n1lNztS1uunpHFaV3mtLYUACbFMtWr0hQuEy41KyCgRUWTlYHVxGWL7ha07dJ8abqybooGKUA6y6JZ7ENLoMMDBoyYpRfL-kf7dZ_qKqPfi2XnLk09J-eHn84-zLyhtINnAC-EXqwDyVOAprGwqbSZ_94KLrUEQAKrswa5Ck2QRSIF692HdzADrcAjPIDXFoXoBdmq6ip_RaiOhNAyEzxjPMhDq6GLIGJcM8tYHLAJYetJVJd9Bg_1i-UDbFTIRqzHKZRjo_o5Ibuj2d4QSilDHzvdWU-_GpS-UZicERETfN27-QraihzSVV530AQMbgBp_p9bCCz-HoViQl72UrX5txAR2PzxhAgnG389GpUkR_j0-l8J98i92VlyrI6PTr7skPu9FwodUW_IVrvs8reAy9p01-nbNQCEKKY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQEAgJ8f1RBpsfeFwqHMd28ogY1QZ0QhOT-mY5TgzR2qRqko3y13PnpCtBQ0KIt0bxufL5zv6dffkdIa-tsyrljAWGRzZARqog5tYFiRXS5pzDlonnkNMTeXQWfZiJWZ__hN_CdPwQVwdu6Bl-vUYHX2Zu6OQ-QysRcX-ngNVKxoAnb0YyTJBH__A03N4o9FXVEoF8suFsmNVzbU-Dreru0tSgNdeVu7gOjw7hrd-fJvfJ-WZkXVrK-bht0rH98Rvp4_8Z-gNyr4ex9G1ndw_Jjbx8RG51hS3Xj8nitJrntHIU4CXFItXruS08Dy61axCgRUmnawtrieeKbhe0adN8Zdt5VRc1SoBtzot6cQAtQQ6vFzBfln5dVZfNtwNqyoxeFKvWfzL1hJxN3n95dxT0hR0CC2hBBImJFE8BmCbSpcpl4RsnuTIK4AiszQasStgoi2UKsXsIzxAEOokXeACuHZrQU7JTVmX-nFATS2lUJnnGeJQLZ6CLKGbcMMdYErERYZs51MuOv0P_EveAGjWqEatxSu3VqL-PyN5gsreCSikRYqe7m9nXvcvXGqkZES_B2_2rt-CrqCFT5lULTSDcBogW_rmFxNLvsZAj8qwzqu1_SxlDxJ-MiPSm8dej0dPpMf568a-C--T258OJ_nR88nGX3OmOoPAU6iXZaVZt_gpAWZPueW_7CVdKJ1U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+the+methylcitrate+cycle+in+Mycobacterium+tuberculosis+metabolism%2C+intracellular+growth%2C+and+virulence&rft.jtitle=Molecular+microbiology&rft.au=Mu%C3%B1oz%E2%80%90El%C3%ADas%2C+Ernesto+J.&rft.au=Upton%2C+Anna+M.&rft.au=Cherian%2C+Joseph&rft.au=McKinney%2C+John+D.&rft.date=2006-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0950-382X&rft.eissn=1365-2958&rft.volume=60&rft.issue=5&rft.spage=1109&rft.epage=1122&rft_id=info:doi/10.1111%2Fj.1365-2958.2006.05155.x&rft.externalDBID=10.1111%252Fj.1365-2958.2006.05155.x&rft.externalDocID=MMI5155
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-382X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-382X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-382X&client=summon