Elevation in cerebral blood flow velocity with aerobic fitness throughout healthy human ageing
It is known that cerebral blood flow declines with age in sedentary adults, although previous studies have involved small sample sizes, making the exact estimate of decline imprecise and the effects of possible moderator variables unknown. Animal studies indicate that aerobic exercise can elevate ce...
Saved in:
Published in | The Journal of physiology Vol. 586; no. 16; pp. 4005 - 4010 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
The Physiological Society
15.08.2008
Blackwell Publishing Ltd Blackwell Science Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It is known that cerebral blood flow declines with age in sedentary adults, although previous studies have involved small
sample sizes, making the exact estimate of decline imprecise and the effects of possible moderator variables unknown. Animal
studies indicate that aerobic exercise can elevate cerebral blood flow; however, this possibility has not been examined in
humans. We examined how regular aerobic exercise affects the age-related decline in blood flow velocity in the middle cerebral
artery (MCAv) in healthy humans. Maximal oxygen consumption, body mass index (BMI), blood pressure and MCAv were measured
in healthy sedentary ( n = 153) and endurance-trained ( n = 154) men aged between 18 and 79 years. The relationships between age, training status, BMI and MCAv were examined using
analysis of covariance methods. Mean ± s.e.m. estimates of regression coefficients and 95% confidence intervals (95% CI) were calculated. The age-related decline in MCAv
was â0.76 ± 0.04 cm s â1 year â1 (95% CI = â0.69 to â0.83, r 2 = 0.66, P < 0.0005) and was independent of training status ( P = 0.65). Nevertheless, MCAv was consistently elevated by 9.1 ± 3.3 cm s â1 (CI = 2.7â15.6, P = 0.006) in endurance-trained men throughout the age range. This â¼17% difference between trained and sedentary men amounted
to an approximate 10 year reduction in MCAv âageâ and was robust to between-group differences in BMI and blood pressure. Regular
aerobic-endurance exercise is associated with higher MCAv in men aged 18â79 years. The persistence of this finding in older
endurance-trained men may therefore help explain why there is a lower risk of cerebrovascular disease in this population. |
---|---|
AbstractList | It is known that cerebral blood flow declines with age in sedentary adults, although previous studies have involved small sample sizes, making the exact estimate of decline imprecise and the effects of possible moderator variables unknown. Animal studies indicate that aerobic exercise can elevate cerebral blood flow; however, this possibility has not been examined in humans. We examined how regular aerobic exercise affects the age-related decline in blood flow velocity in the middle cerebral artery (MCAv) in healthy humans. Maximal oxygen consumption, body mass index (BMI), blood pressure and MCAv were measured in healthy sedentary (n = 153) and endurance-trained (n = 154) men aged between 18 and 79 years. The relationships between age, training status, BMI and MCAv were examined using analysis of covariance methods. Mean +/- s.e.m. estimates of regression coefficients and 95% confidence intervals (95% CI) were calculated. The age-related decline in MCAv was -0.76 +/- 0.04 cm s(-1) year(-1) (95% CI = -0.69 to -0.83, r(2) = 0.66, P < 0.0005) and was independent of training status (P = 0.65). Nevertheless, MCAv was consistently elevated by 9.1 +/- 3.3 cm s(-1) (CI = 2.7-15.6, P = 0.006) in endurance-trained men throughout the age range. This approximately 17% difference between trained and sedentary men amounted to an approximate 10 year reduction in MCAv 'age' and was robust to between-group differences in BMI and blood pressure. Regular aerobic-endurance exercise is associated with higher MCAv in men aged 18-79 years. The persistence of this finding in older endurance-trained men may therefore help explain why there is a lower risk of cerebrovascular disease in this population. It is known that cerebral blood flow declines with age in sedentary adults, although previous studies have involved small sample sizes, making the exact estimate of decline imprecise and the effects of possible moderator variables unknown. Animal studies indicate that aerobic exercise can elevate cerebral blood flow; however, this possibility has not been examined in humans. We examined how regular aerobic exercise affects the age‐related decline in blood flow velocity in the middle cerebral artery (MCAv) in healthy humans. Maximal oxygen consumption, body mass index (BMI), blood pressure and MCAv were measured in healthy sedentary ( n = 153) and endurance‐trained ( n = 154) men aged between 18 and 79 years. The relationships between age, training status, BMI and MCAv were examined using analysis of covariance methods. Mean ± s.e.m. estimates of regression coefficients and 95% confidence intervals (95% CI) were calculated. The age‐related decline in MCAv was −0.76 ± 0.04 cm s −1 year −1 (95% CI =−0.69 to −0.83, r 2 = 0.66, P < 0.0005) and was independent of training status ( P = 0.65). Nevertheless, MCAv was consistently elevated by 9.1 ± 3.3 cm s −1 (CI = 2.7–15.6, P = 0.006) in endurance‐trained men throughout the age range. This ∼17% difference between trained and sedentary men amounted to an approximate 10 year reduction in MCAv ‘age’ and was robust to between‐group differences in BMI and blood pressure. Regular aerobic‐endurance exercise is associated with higher MCAv in men aged 18–79 years. The persistence of this finding in older endurance‐trained men may therefore help explain why there is a lower risk of cerebrovascular disease in this population. It is known that cerebral blood flow declines with age in sedentary adults, although previous studies have involved small sample sizes, making the exact estimate of decline imprecise and the effects of possible moderator variables unknown. Animal studies indicate that aerobic exercise can elevate cerebral blood flow; however, this possibility has not been examined in humans. We examined how regular aerobic exercise affects the age‐related decline in blood flow velocity in the middle cerebral artery (MCAv) in healthy humans. Maximal oxygen consumption, body mass index (BMI), blood pressure and MCAv were measured in healthy sedentary (n= 153) and endurance‐trained (n= 154) men aged between 18 and 79 years. The relationships between age, training status, BMI and MCAv were examined using analysis of covariance methods. Mean ±s.e.m. estimates of regression coefficients and 95% confidence intervals (95% CI) were calculated. The age‐related decline in MCAv was −0.76 ± 0.04 cm s−1 year−1 (95% CI =−0.69 to −0.83, r2= 0.66, P < 0.0005) and was independent of training status (P= 0.65). Nevertheless, MCAv was consistently elevated by 9.1 ± 3.3 cm s−1 (CI = 2.7–15.6, P= 0.006) in endurance‐trained men throughout the age range. This ∼17% difference between trained and sedentary men amounted to an approximate 10 year reduction in MCAv ‘age’ and was robust to between‐group differences in BMI and blood pressure. Regular aerobic‐endurance exercise is associated with higher MCAv in men aged 18–79 years. The persistence of this finding in older endurance‐trained men may therefore help explain why there is a lower risk of cerebrovascular disease in this population. It is known that cerebral blood flow declines with age in sedentary adults, although previous studies have involved small sample sizes, making the exact estimate of decline imprecise and the effects of possible moderator variables unknown. Animal studies indicate that aerobic exercise can elevate cerebral blood flow; however, this possibility has not been examined in humans. We examined how regular aerobic exercise affects the age-related decline in blood flow velocity in the middle cerebral artery (MCAv) in healthy humans. Maximal oxygen consumption, body mass index (BMI), blood pressure and MCAv were measured in healthy sedentary (n = 153) and endurance-trained (n = 154) men aged between 18 and 79 years. The relationships between age, training status, BMI and MCAv were examined using analysis of covariance methods. Mean +/- s.e.m. estimates of regression coefficients and 95% confidence intervals (95% CI) were calculated. The age-related decline in MCAv was -0.76 +/- 0.04 cm s(-1) year(-1) (95% CI = -0.69 to -0.83, r(2) = 0.66, P < 0.0005) and was independent of training status (P = 0.65). Nevertheless, MCAv was consistently elevated by 9.1 +/- 3.3 cm s(-1) (CI = 2.7-15.6, P = 0.006) in endurance-trained men throughout the age range. This approximately 17% difference between trained and sedentary men amounted to an approximate 10 year reduction in MCAv 'age' and was robust to between-group differences in BMI and blood pressure. Regular aerobic-endurance exercise is associated with higher MCAv in men aged 18-79 years. The persistence of this finding in older endurance-trained men may therefore help explain why there is a lower risk of cerebrovascular disease in this population.It is known that cerebral blood flow declines with age in sedentary adults, although previous studies have involved small sample sizes, making the exact estimate of decline imprecise and the effects of possible moderator variables unknown. Animal studies indicate that aerobic exercise can elevate cerebral blood flow; however, this possibility has not been examined in humans. We examined how regular aerobic exercise affects the age-related decline in blood flow velocity in the middle cerebral artery (MCAv) in healthy humans. Maximal oxygen consumption, body mass index (BMI), blood pressure and MCAv were measured in healthy sedentary (n = 153) and endurance-trained (n = 154) men aged between 18 and 79 years. The relationships between age, training status, BMI and MCAv were examined using analysis of covariance methods. Mean +/- s.e.m. estimates of regression coefficients and 95% confidence intervals (95% CI) were calculated. The age-related decline in MCAv was -0.76 +/- 0.04 cm s(-1) year(-1) (95% CI = -0.69 to -0.83, r(2) = 0.66, P < 0.0005) and was independent of training status (P = 0.65). Nevertheless, MCAv was consistently elevated by 9.1 +/- 3.3 cm s(-1) (CI = 2.7-15.6, P = 0.006) in endurance-trained men throughout the age range. This approximately 17% difference between trained and sedentary men amounted to an approximate 10 year reduction in MCAv 'age' and was robust to between-group differences in BMI and blood pressure. Regular aerobic-endurance exercise is associated with higher MCAv in men aged 18-79 years. The persistence of this finding in older endurance-trained men may therefore help explain why there is a lower risk of cerebrovascular disease in this population. It is known that cerebral blood flow declines with age in sedentary adults, although previous studies have involved small sample sizes, making the exact estimate of decline imprecise and the effects of possible moderator variables unknown. Animal studies indicate that aerobic exercise can elevate cerebral blood flow; however, this possibility has not been examined in humans. We examined how regular aerobic exercise affects the age-related decline in blood flow velocity in the middle cerebral artery (MCAv) in healthy humans. Maximal oxygen consumption, body mass index (BMI), blood pressure and MCAv were measured in healthy sedentary ( n = 153) and endurance-trained ( n = 154) men aged between 18 and 79 years. The relationships between age, training status, BMI and MCAv were examined using analysis of covariance methods. Mean ± s.e.m. estimates of regression coefficients and 95% confidence intervals (95% CI) were calculated. The age-related decline in MCAv was â0.76 ± 0.04 cm s â1 year â1 (95% CI = â0.69 to â0.83, r 2 = 0.66, P < 0.0005) and was independent of training status ( P = 0.65). Nevertheless, MCAv was consistently elevated by 9.1 ± 3.3 cm s â1 (CI = 2.7â15.6, P = 0.006) in endurance-trained men throughout the age range. This â¼17% difference between trained and sedentary men amounted to an approximate 10 year reduction in MCAv âageâ and was robust to between-group differences in BMI and blood pressure. Regular aerobic-endurance exercise is associated with higher MCAv in men aged 18â79 years. The persistence of this finding in older endurance-trained men may therefore help explain why there is a lower risk of cerebrovascular disease in this population. It is known that cerebral blood flow declines with age in sedentary adults, although previous studies have involved small sample sizes, making the exact estimate of decline imprecise and the effects of possible moderator variables unknown. Animal studies indicate that aerobic exercise can elevate cerebral blood flow; however, this possibility has not been examined in humans. We examined how regular aerobic exercise affects the age-related decline in blood flow velocity in the middle cerebral artery (MCAv) in healthy humans. Maximal oxygen consumption, body mass index (BMI), blood pressure and MCAv were measured in healthy sedentary (n= 153) and endurance-trained (n= 154) men aged between 18 and 79 years. The relationships between age, training status, BMI and MCAv were examined using analysis of covariance methods. Mean plus or minus s.e.m. estimates of regression coefficients and 95% confidence intervals (95% CI) were calculated. The age-related decline in MCAv was -0.76 plus or minus 0.04 cm s super(-1) year super(-1) (95% CI =-0.69 to -0.83, r super(2)= 0.66, P < 0.0005) and was independent of training status (P= 0.65). Nevertheless, MCAv was consistently elevated by 9.1 plus or minus 3.3 cm s super(-1) (CI = 2.7-15.6, P= 0.006) in endurance-trained men throughout the age range. This similar to 17% difference between trained and sedentary men amounted to an approximate 10 year reduction in MCAv 'age' and was robust to between-group differences in BMI and blood pressure. Regular aerobic-endurance exercise is associated with higher MCAv in men aged 18-79 years. The persistence of this finding in older endurance-trained men may therefore help explain why there is a lower risk of cerebrovascular disease in this population. |
Author | Greg Atkinson James D. Cotter Philip N. Ainslie Sam Lucas Keith P. George Carissa Murrell Michael J. A. Williams Kate N. Thomas Rob Shave |
Author_xml | – sequence: 1 givenname: Philip N. surname: Ainslie fullname: Ainslie, Philip N. – sequence: 2 givenname: James D. surname: Cotter fullname: Cotter, James D. – sequence: 3 givenname: Keith P. surname: George fullname: George, Keith P. – sequence: 4 givenname: Sam surname: Lucas fullname: Lucas, Sam – sequence: 5 givenname: Carissa surname: Murrell fullname: Murrell, Carissa – sequence: 6 givenname: Rob surname: Shave fullname: Shave, Rob – sequence: 7 givenname: Kate N. surname: Thomas fullname: Thomas, Kate N. – sequence: 8 givenname: Michael J. A. surname: Williams fullname: Williams, Michael J. A. – sequence: 9 givenname: Greg surname: Atkinson fullname: Atkinson, Greg |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18635643$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v1DAQhi1URLeFf4CQT0gcsvg7MQekqipfqgSHcsVynMnGlTdeYmdX-fdkSVsBB-Bkafw-r2bmnTN00sceEHpOyZpSyl_f7rop-RjWjJBqTWXFSv0IrahQuihLzU_QihDGCl5KeorOUrolhHKi9RN0SivFpRJ8hb5dBdjb7GOPfY8dDFAPNuA6xNjgNsQD3kOIzucJH3zusIUh1t7h1uceUsK5G-K46eKYcQc25G7C3bi1PbYb8P3mKXrc2pDg2d17jr6-u7q5_FBcf37_8fLiunCSUVnwRtW6sbZynJKqcrUUkoFuBYGaKUptWQppQTWVYMK2NRdONU7MVQJ0rvBz9Hbx3Y31FhoHfZ7HMLvBb-0wmWi9-f2n953ZxL1hkleak9ng5Z3BEL-PkLLZ-uQgBNtDHJNRWvBSK_lPIaNEKlIdhS9-bemhl_vdz4I3i8ANMaUBWjOv-WcUc4c-GErMMWhzH7Q5Bm2WoGdY_AE_-P8d0wt28AGm_2LMzacvnNDjQK8WtvOb7uAHMIs6zecBeTKyUoYqIwiR_Af3NdJW |
CitedBy_id | crossref_primary_10_1038_jcbfm_2014_44 crossref_primary_10_1111_sms_12082 crossref_primary_10_1002_brb3_2126 crossref_primary_10_3389_fmed_2019_00057 crossref_primary_10_1152_ajpheart_00348_2018 crossref_primary_10_3390_biom11081077 crossref_primary_10_1016_j_genhosppsych_2017_06_002 crossref_primary_10_1152_japplphysiol_00292_2021 crossref_primary_10_1186_s12877_022_03306_x crossref_primary_10_1152_japplphysiol_00926_2020 crossref_primary_10_1177_1545968314562116 crossref_primary_10_17116_jnevro201611691111_115 crossref_primary_10_1007_s41465_024_00308_y crossref_primary_10_1152_physiol_00052_2010 crossref_primary_10_18632_aging_206112 crossref_primary_10_3233_BPL_180075 crossref_primary_10_3389_fcvm_2023_1117449 crossref_primary_10_3389_fphys_2021_656746 crossref_primary_10_1007_s11357_012_9414_x crossref_primary_10_1038_jcbfm_2013_66 crossref_primary_10_1007_s11357_023_00790_w crossref_primary_10_1113_EP091279 crossref_primary_10_3390_ijerph182010789 crossref_primary_10_1113_EP092245 crossref_primary_10_1016_j_brainres_2014_09_003 crossref_primary_10_1371_journal_pone_0122878 crossref_primary_10_3233_JAD_181079 crossref_primary_10_3390_healthcare12050576 crossref_primary_10_1152_japplphysiol_00712_2011 crossref_primary_10_3390_nu10050530 crossref_primary_10_1152_japplphysiol_00630_2021 crossref_primary_10_3389_fneur_2022_804187 crossref_primary_10_3233_CH_170332 crossref_primary_10_1249_MSS_0000000000001904 crossref_primary_10_1186_s12885_020_07295_1 crossref_primary_10_3389_fnhum_2015_00066 crossref_primary_10_1016_j_healun_2012_04_003 crossref_primary_10_1177_0271678X231201472 crossref_primary_10_1161_STROKEAHA_115_011532 crossref_primary_10_1016_j_mhpa_2018_10_005 crossref_primary_10_1152_ajpregu_91008_2008 crossref_primary_10_1152_japplphysiol_00001_2019 crossref_primary_10_3389_fnhum_2020_561877 crossref_primary_10_1249_MSS_0000000000002685 crossref_primary_10_1002_alz_13122 crossref_primary_10_1152_japplphysiol_00823_2020 crossref_primary_10_1097_PHM_0b013e3181d3e9f6 crossref_primary_10_1007_s11682_019_00148_x crossref_primary_10_1249_MSS_0000000000001230 crossref_primary_10_1161_STROKEAHA_113_002589 crossref_primary_10_1152_japplphysiol_00310_2018 crossref_primary_10_1097_MD_0000000000039550 crossref_primary_10_1007_s11886_019_1089_9 crossref_primary_10_1152_physrev_00022_2020 crossref_primary_10_1016_j_cardfail_2014_12_010 crossref_primary_10_1152_ajpregu_00213_2017 crossref_primary_10_1016_j_jshs_2020_01_004 crossref_primary_10_1177_1747493020984090 crossref_primary_10_1007_s00421_020_04393_7 crossref_primary_10_1016_j_jesf_2022_01_003 crossref_primary_10_1113_JP282998 crossref_primary_10_1093_braincomms_fcab228 crossref_primary_10_1080_23328940_2022_2102375 crossref_primary_10_3390_brainsci3010101 crossref_primary_10_1016_j_rbce_2018_03_026 crossref_primary_10_3390_ijerph16060962 crossref_primary_10_3390_jcm8071015 crossref_primary_10_1093_geronb_gbab216 crossref_primary_10_14814_phy2_14268 crossref_primary_10_1007_s11682_016_9509_6 crossref_primary_10_1097_NPT_0000000000000289 crossref_primary_10_1016_j_jbc_2021_100944 crossref_primary_10_1113_EP087675 crossref_primary_10_3389_fphys_2022_838450 crossref_primary_10_1371_journal_pone_0095721 crossref_primary_10_1016_j_irbm_2015_01_016 crossref_primary_10_1002_14651858_CD011706 crossref_primary_10_1002_14651858_CD011704 crossref_primary_10_1002_14651858_CD011705 crossref_primary_10_1007_s00421_010_1534_3 crossref_primary_10_1186_s12877_016_0315_1 crossref_primary_10_1002_gps_6110 crossref_primary_10_1249_MSS_0000000000000717 crossref_primary_10_1007_s00421_022_05123_x crossref_primary_10_1007_s00234_015_1571_z crossref_primary_10_1016_j_cct_2024_107672 crossref_primary_10_1152_japplphysiol_00604_2019 crossref_primary_10_3389_fpubh_2023_1298316 crossref_primary_10_3389_fphys_2020_00360 crossref_primary_10_1016_j_jesf_2022_12_001 crossref_primary_10_14814_phy2_14185 crossref_primary_10_1007_s12282_023_01484_z crossref_primary_10_1161_JAHA_120_017821 crossref_primary_10_1515_teb_2024_0038 crossref_primary_10_1177_02692155231208578 crossref_primary_10_1249_MSS_0000000000002462 crossref_primary_10_12677_ACM_2020_1011380 crossref_primary_10_1186_1471_2318_13_21 crossref_primary_10_1007_s00421_009_1298_9 crossref_primary_10_4103_jdmimsu_jdmimsu_515_22 crossref_primary_10_1177_15353702231209416 crossref_primary_10_1159_000490005 crossref_primary_10_1371_journal_pone_0241248 crossref_primary_10_1113_EP087883 crossref_primary_10_3389_fnagi_2022_803332 crossref_primary_10_1152_japplphysiol_00402_2012 crossref_primary_10_1152_japplphysiol_01258_2012 crossref_primary_10_1097_GME_0000000000001442 crossref_primary_10_1016_j_ijnurstu_2023_104592 crossref_primary_10_3390_brainsci10020081 crossref_primary_10_1016_j_arr_2010_04_002 crossref_primary_10_14814_phy2_15384 crossref_primary_10_1139_apnm_2020_0562 crossref_primary_10_1152_japplphysiol_00137_2019 crossref_primary_10_3390_ijerph14050454 crossref_primary_10_3390_brainsci11060730 crossref_primary_10_1249_MSS_0000000000001924 crossref_primary_10_3389_fphys_2021_653603 crossref_primary_10_3233_JAD_230741 crossref_primary_10_1016_j_niox_2008_10_004 crossref_primary_10_4103_hm_hm_50_22 crossref_primary_10_1016_j_rehab_2020_03_010 crossref_primary_10_1152_japplphysiol_00129_2015 crossref_primary_10_1007_s00421_022_04933_3 crossref_primary_10_1007_s11357_011_9258_9 crossref_primary_10_1177_0271678X211009382 crossref_primary_10_1016_j_artres_2012_05_003 crossref_primary_10_3389_fnagi_2022_892343 crossref_primary_10_1038_s41598_018_37544_0 crossref_primary_10_1007_s00421_016_3468_x crossref_primary_10_1016_j_ijnurstu_2019_02_019 crossref_primary_10_1016_j_conctc_2020_100584 crossref_primary_10_1096_fj_202001387R crossref_primary_10_1152_japplphysiol_00446_2021 crossref_primary_10_1152_japplphysiol_00667_2015 crossref_primary_10_1371_journal_pone_0085163 crossref_primary_10_1152_ajpheart_00129_2018 crossref_primary_10_1186_1471_2466_14_99 crossref_primary_10_20310_2658_7688_2020_2_4_8__52_58 crossref_primary_10_1016_j_cophys_2019_04_005 crossref_primary_10_1159_000526297 crossref_primary_10_1152_ajpheart_00230_2021 crossref_primary_10_1212_WNL_0000000000200701 crossref_primary_10_2991_artres_k_191212_001 crossref_primary_10_1016_j_bbadis_2022_166511 crossref_primary_10_3389_fpsyg_2020_01106 crossref_primary_10_1152_japplphysiol_00264_2015 crossref_primary_10_1016_j_nmd_2016_10_005 crossref_primary_10_1152_japplphysiol_00573_2009 crossref_primary_10_1007_s00424_019_02253_8 crossref_primary_10_1152_ajpheart_00177_2014 crossref_primary_10_1152_japplphysiol_00371_2022 crossref_primary_10_1152_japplphysiol_00872_2021 crossref_primary_10_14814_phy2_15158 crossref_primary_10_1007_s11357_011_9250_4 crossref_primary_10_1016_j_jad_2022_05_043 crossref_primary_10_1016_j_arr_2011_05_002 crossref_primary_10_1152_japplphysiol_00995_2016 crossref_primary_10_1001_jamanetworkopen_2022_6744 crossref_primary_10_1016_j_pneurobio_2011_09_008 crossref_primary_10_1177_0271678X19855875 crossref_primary_10_1042_CS20150694 crossref_primary_10_1152_japplphysiol_00158_2021 crossref_primary_10_1038_s41598_023_33063_9 crossref_primary_10_1152_japplphysiol_00758_2022 crossref_primary_10_1001_jamanetworkopen_2022_15385 crossref_primary_10_2147_NSS_S482276 crossref_primary_10_1155_2014_230791 crossref_primary_10_3758_s13423_012_0345_4 crossref_primary_10_1159_000113216 crossref_primary_10_3389_fphys_2021_642850 crossref_primary_10_1152_japplphysiol_00688_2022 crossref_primary_10_1177_13872877251321118 crossref_primary_10_1007_s12126_022_09491_9 crossref_primary_10_1152_ajpheart_00034_2017 crossref_primary_10_3390_jcm13247841 crossref_primary_10_1113_EP089102 crossref_primary_10_1016_j_bbr_2019_112422 crossref_primary_10_1007_s00421_023_05154_y crossref_primary_10_1186_s11556_015_0151_x crossref_primary_10_1161_HYPERTENSIONAHA_110_168070 crossref_primary_10_1177_13872877241305828 crossref_primary_10_14814_phy2_14539 crossref_primary_10_3389_fnagi_2014_00059 crossref_primary_10_1088_2516_1091_accc62 crossref_primary_10_1371_journal_pbio_1002279 crossref_primary_10_1111_pcn_12464 crossref_primary_10_1152_japplphysiol_01497_2010 crossref_primary_10_1016_j_neuroimage_2015_12_010 crossref_primary_10_31083_j_jin2103098 crossref_primary_10_3389_fphys_2018_01096 crossref_primary_10_1152_ajpheart_00880_2020 crossref_primary_10_1016_j_kjms_2018_05_007 crossref_primary_10_1111_psyp_12394 crossref_primary_10_3389_fphys_2018_01657 crossref_primary_10_1016_j_neuroimage_2015_05_063 crossref_primary_10_14814_phy2_13681 crossref_primary_10_1016_j_ijpsycho_2021_03_007 crossref_primary_10_3389_fnagi_2020_590530 crossref_primary_10_1016_j_brainres_2023_148355 crossref_primary_10_1111_ejn_15241 crossref_primary_10_1177_0271678X16669514 crossref_primary_10_1016_j_ijnurstu_2018_01_002 crossref_primary_10_1080_13825585_2015_1080213 crossref_primary_10_12659_MSM_893935 crossref_primary_10_1007_s00421_019_04118_5 crossref_primary_10_1097_JES_0b013e3181aa5aee crossref_primary_10_1016_j_cjca_2015_12_021 crossref_primary_10_1159_000362535 crossref_primary_10_1016_j_resp_2014_10_009 crossref_primary_10_1017_S1355617715000880 crossref_primary_10_1016_j_neuroimage_2024_120570 crossref_primary_10_1186_1471_2377_13_197 crossref_primary_10_1016_j_expneurol_2020_113494 crossref_primary_10_3389_fneur_2020_577312 crossref_primary_10_1016_j_arr_2020_101108 crossref_primary_10_1007_s41105_015_0002_1 crossref_primary_10_1212_WNL_0000000000213374 crossref_primary_10_1111_jgs_13123 crossref_primary_10_3389_fpsyg_2023_1242190 crossref_primary_10_3390_ijerph17041406 crossref_primary_10_1016_j_resp_2019_01_013 crossref_primary_10_3389_fnhum_2023_1274151 crossref_primary_10_1113_JP271456 crossref_primary_10_1186_s12868_021_00670_z crossref_primary_10_1113_JP275021 crossref_primary_10_1111_cpf_12568 crossref_primary_10_1113_EP092060 crossref_primary_10_1007_s13668_020_00306_4 crossref_primary_10_1186_s12889_025_22321_2 crossref_primary_10_1051_sm_2019023 crossref_primary_10_1152_physiol_00003_2011 crossref_primary_10_1016_j_jshs_2017_01_005 crossref_primary_10_1136_bmjopen_2018_028117 crossref_primary_10_14814_phy2_14421 crossref_primary_10_1152_japplphysiol_00782_2021 crossref_primary_10_1007_s12035_023_03492_8 crossref_primary_10_1177_0271678X19865449 crossref_primary_10_1038_s41598_025_91833_z crossref_primary_10_1136_svn_2016_000021 crossref_primary_10_1093_cvr_cvr050 crossref_primary_10_1253_circj_CJ_16_0423 crossref_primary_10_1111_psyp_13796 crossref_primary_10_1152_japplphysiol_00817_2016 crossref_primary_10_1249_MSS_0000000000002183 crossref_primary_10_1016_j_nutres_2018_03_009 crossref_primary_10_3390_cells11050872 crossref_primary_10_3390_nu9111263 crossref_primary_10_1007_s12603_013_0384_1 crossref_primary_10_3389_fnagi_2017_00381 crossref_primary_10_14814_phy2_12163 crossref_primary_10_1111_jgs_19049 crossref_primary_10_1111_psyg_13056 crossref_primary_10_1212_WNL_0000000000002329 crossref_primary_10_1113_jphysiol_2012_244905 crossref_primary_10_14814_phy2_13486 crossref_primary_10_1161_STROKEAHA_108_534321 crossref_primary_10_1007_s00134_023_07165_x crossref_primary_10_1186_s13063_021_05355_w crossref_primary_10_1007_s11357_023_00893_4 crossref_primary_10_1111_sms_12674 crossref_primary_10_3390_brainsci10110796 crossref_primary_10_3390_jcm7090272 crossref_primary_10_3390_ijerph192416926 crossref_primary_10_1097_GME_0000000000000625 crossref_primary_10_1113_JP271081 crossref_primary_10_1113_EP091195 crossref_primary_10_3389_fnagi_2014_00272 crossref_primary_10_1007_s00421_011_1968_2 crossref_primary_10_1113_JP280118 crossref_primary_10_1016_j_exger_2011_12_002 crossref_primary_10_1111_ggi_12245 crossref_primary_10_1177_0271678X251318922 crossref_primary_10_1152_japplphysiol_00281_2015 crossref_primary_10_1101_cshperspect_a029736 crossref_primary_10_1038_jhh_2014_56 crossref_primary_10_3390_brainsci12060683 crossref_primary_10_1016_j_exger_2021_111433 crossref_primary_10_1016_j_nicl_2018_09_003 crossref_primary_10_1177_0271678X17702156 crossref_primary_10_1016_j_maturitas_2021_04_004 crossref_primary_10_1016_j_psychsport_2018_08_015 crossref_primary_10_1152_ajpheart_00754_2020 crossref_primary_10_1152_japplphysiol_00241_2022 crossref_primary_10_1155_2020_1407896 crossref_primary_10_12677_ACM_2019_912215 crossref_primary_10_1177_0271678X231219568 crossref_primary_10_1016_j_autneu_2022_102945 crossref_primary_10_3389_fpubh_2022_1013734 crossref_primary_10_1016_j_nbas_2021_100019 crossref_primary_10_3389_fnmol_2023_1270393 crossref_primary_10_1159_000347061 crossref_primary_10_1093_gerona_glae257 crossref_primary_10_1016_j_exger_2019_110679 crossref_primary_10_3390_nu12020397 crossref_primary_10_1177_0271678X16676826 crossref_primary_10_3390_ijms23073610 crossref_primary_10_1038_jcbfm_2014_142 crossref_primary_10_1152_japplphysiol_00463_2012 crossref_primary_10_1177_0271678X231167753 crossref_primary_10_1113_EP091719 crossref_primary_10_1016_j_exger_2023_112112 crossref_primary_10_3233_JAD_180958 crossref_primary_10_1177_0271678X20957807 crossref_primary_10_1186_1471_2202_14_103 crossref_primary_10_1111_sms_14031 crossref_primary_10_1016_j_neuroscience_2019_12_008 crossref_primary_10_1016_j_physbeh_2021_113621 crossref_primary_10_1152_ajpheart_00199_2019 crossref_primary_10_1096_fj_11_193508 crossref_primary_10_1016_j_ijpsycho_2018_10_007 crossref_primary_10_14814_phy2_14596 crossref_primary_10_1016_j_wneu_2020_07_039 crossref_primary_10_1161_STROKEAHA_114_008030 crossref_primary_10_1590_1414_431x202010098 crossref_primary_10_3233_BPL_190096 crossref_primary_10_1016_j_neuropsychologia_2019_01_011 crossref_primary_10_1186_s12974_023_02753_6 crossref_primary_10_3390_life14070855 crossref_primary_10_3389_fnins_2024_1453582 crossref_primary_10_1152_japplphysiol_00478_2023 crossref_primary_10_1007_s00421_017_3651_8 crossref_primary_10_3389_fnagi_2015_00152 crossref_primary_10_1152_ajpheart_00086_2014 crossref_primary_10_1007_s11357_019_00139_2 crossref_primary_10_1152_advan_00101_2014 crossref_primary_10_1016_j_neuroimage_2024_120910 crossref_primary_10_1152_japplphysiol_00050_2018 |
Cites_doi | 10.1093/brain/93.3.475 10.1111/j.1460-9568.2004.03720.x 10.1148/radiology.209.3.9844657 10.1161/01.STR.31.7.1672 10.1161/01.STR.0000254517.04275.3f 10.1161/01.STR.29.5.963 10.1042/CS20030229 10.1227/00006123-199305000-00006 10.1038/sj.jcbfm.9600462 10.1113/jphysiol.2007.137075 10.1161/01.CIR.101.25.2896 10.3171/jns.1982.57.6.0769 10.1016/S0735-1097(99)00036-4 10.1002/ana.10722 10.1016/S0197-4580(00)00212-8 10.1161/01.STR.31.1.147 10.1161/01.CIR.102.12.1351 10.1152/ajpheart.00486.2004 10.1016/0006-8993(67)90134-5 10.1161/01.RES.0000250175.14861.77 10.1152/jappl.2000.88.2.761 10.1177/096228029900800204 10.1093/gerona/58.2.M176 10.1038/22682 10.1161/01.CIR.100.11.1194 10.1161/01.CIR.99.7.963 10.1152/ajpheart.00014.2006 10.1523/JNEUROSCI.20-08-02926.2000 10.1016/0301-5629(86)90139-0 10.1113/expphysiol.2006.036814 10.1016/j.tins.2004.03.009 10.1093/gerona/61.11.1166 10.1161/STROKEAHA.106.477109 |
ContentType | Journal Article |
Copyright | 2008 The Author. Journal compilation © 2008 The Physiological Society 2008 The Authors. Journal compilation © 2008 The Physiological Society 2008 |
Copyright_xml | – notice: 2008 The Author. Journal compilation © 2008 The Physiological Society – notice: 2008 The Authors. Journal compilation © 2008 The Physiological Society 2008 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
DOI | 10.1113/jphysiol.2008.158279 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1469-7793 |
EndPage | 4010 |
ExternalDocumentID | PMC2538930 18635643 10_1113_jphysiol_2008_158279 TJP3015 586_16_4005 |
Genre | rapidPublication Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 05W 0R 0YM 10A 123 1OB 1OC 24P 29L 2WC 31 33P 3N 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 55 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAONW AAVGM AAZKR ABCUV ABFLS ABHUG ABITZ ABIVO ABOCM ABPPZ ABPTK ABPVW ABUFD ABWRO ACAHQ ACFBH ACGFS ACIWK ACMXC ACNCT ACPOU ACPRK ACXME ACXQS ADACO ADAWD ADBBV ADDAD ADEOM ADIZJ ADXAS ADZMN AEIMD AEUQT AFBPY AFFNX AFPWT AFZJQ AGJLS ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ATUGU AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMXJE BROTX BRXPI BY8 C1A C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DZ E3Z EBS EJD EX3 F00 F01 F04 F5P FIJ FUBAC G-S G.N GA GODZA GX1 H.X H13 HZ HZI IA IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LI0 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NEJ NF O0- O66 O9- OHT OK1 OVD P2P P2W P2X P2Z P4A P4B P4D Q.N Q11 QB0 R.K RIG ROL RPM RX1 SUPJJ TLM TN5 UB1 UNR UPT UQL V8K VH1 W8V W99 WBKPD WH7 WIH WIJ WIK WIN WNSPC WOHZO WOQ WOW WQJ WRC WT WXI WYISQ X X7M XG1 Y3 YZZ ZA5 ZZTAW --- -DZ -~X .3N .55 .GA .GJ .Y3 0R~ 18M 31~ 36B 3EH AAFWJ AAHHS AAHQN AAIPD AAMNL AANLZ AASGY AAXRX AAYCA AAYJJ ABCQN ABEML ABJNI ABQWH ABXGK ACCFJ ACCZN ACGFO ACGOF ACSCC ACXBN ADBTR ADKYN ADMGS ADOZA AEEZP AEGXH AEIGN AEQDE AEUYR AFEBI AFFPM AFGKR AFWVQ AHBTC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALVPJ AMYDB AOIJS CHEAL EMOBN FA8 HF~ HGLYW HZ~ H~9 IPNFZ KBYEO LH4 MVM NF~ OIG SAMSI TEORI TR2 UKR W8F WHG WXSBR XOL YBU YHG YKV YQT YSK YXB YYP ZGI ZXP ~IA ~WT AAYXX AEYWJ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
ID | FETCH-LOGICAL-c5215-3d6b9daa8c31088cb5452e9f40eb2611a7745ae6d8424afb34c6dc47740e124a3 |
IEDL.DBID | DR2 |
ISSN | 0022-3751 1469-7793 |
IngestDate | Thu Aug 21 13:37:26 EDT 2025 Fri Jul 11 04:55:19 EDT 2025 Fri Jul 11 09:18:14 EDT 2025 Mon Jul 21 06:03:07 EDT 2025 Tue Jul 01 04:28:51 EDT 2025 Thu Apr 24 23:01:24 EDT 2025 Wed Jan 22 17:04:39 EST 2025 Fri Jan 15 01:58:37 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5215-3d6b9daa8c31088cb5452e9f40eb2611a7745ae6d8424afb34c6dc47740e124a3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1113/jphysiol.2008.158279 |
PMID | 18635643 |
PQID | 21056085 |
PQPubID | 23462 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2538930 proquest_miscellaneous_69437965 proquest_miscellaneous_21056085 pubmed_primary_18635643 crossref_citationtrail_10_1113_jphysiol_2008_158279 crossref_primary_10_1113_jphysiol_2008_158279 wiley_primary_10_1113_jphysiol_2008_158279_TJP3015 highwire_physiosociety_586_16_4005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-08-15 |
PublicationDateYYYYMMDD | 2008-08-15 |
PublicationDate_xml | – month: 08 year: 2008 text: 2008-08-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England |
PublicationTitle | The Journal of physiology |
PublicationTitleAlternate | J Physiol |
PublicationYear | 2008 |
Publisher | The Physiological Society Blackwell Publishing Ltd Blackwell Science Inc |
Publisher_xml | – name: The Physiological Society – name: Blackwell Publishing Ltd – name: Blackwell Science Inc |
References | 1982; 57 2004; 287 1998; 29 2004; 20 2004; 27 2006; 99 1986; 12 2007; 584 2000; 88 2000; 20 2003; 58 2007; 92 2005 2006; 291 1999; 400 1999; 100 1970; 93 1999; 8 2001; 22 2004; 106 2003; 54 2007; 38 1999 1967; 6 2006; 61 2000; 102 1993; 32 2000; 31 1997; 18 1998; 209 1999; 33 1999; 99 2000; 101 1994; 54 2007; 27 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 Valdueza JM (e_1_2_5_36_1) 1997; 18 e_1_2_5_29_1 e_1_2_5_15_1 Zar JH (e_1_2_5_38_1) 1999 e_1_2_5_17_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 Field A (e_1_2_5_14_1) 2005 e_1_2_5_3_1 e_1_2_5_2_1 Kashimada A (e_1_2_5_20_1) 1994; 54 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_30_1 e_1_2_5_31_1 9596243 - Stroke. 1998 May;29(5):963-7 14595647 - Ann Neurol. 2003 Nov;54(5):582-90 10484540 - Circulation. 1999 Sep 14;100(11):1194-202 17204686 - Stroke. 2007 Feb;38(2):308-12 10658048 - J Appl Physiol (1985). 2000 Feb;88(2):761-6 16766649 - Am J Physiol Heart Circ Physiol. 2006 Oct;291(4):H1856-61 10501650 - Stat Methods Med Res. 1999 Jun;8(2):135-60 15111011 - Trends Neurosci. 2004 May;27(5):283-9 17384117 - Exp Physiol. 2007 Jul;92(4):769-77 8492848 - Neurosurgery. 1993 May;32(5):737-41; discussion 741-2 11164274 - Neurobiol Aging. 2001 Jan-Feb;22(1):35-8 10027821 - Circulation. 1999 Feb 23;99(7):963-72 3083551 - Ultrasound Med Biol. 1986 Jan;12(1):15-21 9403456 - AJNR Am J Neuroradiol. 1997 Nov-Dec;18(10):1929-34 9844657 - Radiology. 1998 Dec;209(3):667-74 14588072 - Clin Sci (Lond). 2004 Mar;106(3):329-35 7143059 - J Neurosurg. 1982 Dec;57(6):769-74 10193742 - J Am Coll Cardiol. 1999 Apr;33(5):1379-85 10625730 - Stroke. 2000 Jan;31(1):147-50 12586857 - J Gerontol A Biol Sci Med Sci. 2003 Feb;58(2):176-80 17311079 - J Cereb Blood Flow Metab. 2007 Sep;27(9):1563-72 10884472 - Stroke. 2000 Jul;31(7):1672-8 9261191 - Nihon Igaku Hoshasen Gakkai Zasshi. 1994 Oct 25;54(12):1116-25 10751445 - J Neurosci. 2000 Apr 15;20(8):2926-33 10993851 - Circulation. 2000 Sep 19;102(12):1351-7 10440369 - Nature. 1999 Jul 29;400(6743):418-9 17038638 - Circ Res. 2006 Nov 10;99(10):1132-40 10869260 - Circulation. 2000 Jun 27;101(25):2896-901 15475526 - Am J Physiol Heart Circ Physiol. 2004 Nov;287(5):H1895-905 15548201 - Eur J Neurosci. 2004 Nov;20(10):2580-90 17690148 - J Physiol. 2007 Oct 1;584(Pt 1):347-57 4097005 - Brain. 1970;93(3):475-90 6080228 - Brain Res. 1967 Dec;6(4):773-6 17167157 - J Gerontol A Biol Sci Med Sci. 2006 Nov;61(11):1166-70 17510458 - Stroke. 2007 Jun;38(6):1766-73 |
References_xml | – volume: 29 start-page: 963 year: 1998 end-page: 967 article-title: Age and sex differences in cerebral hemodynamics: a transcranial Doppler study publication-title: Stroke – volume: 584 start-page: 347 year: 2007 end-page: 357 article-title: Human cerebrovascular and ventilatory CO reactivity to end‐tidal, arterial and internal jugular vein publication-title: J Physiol – year: 2005 – volume: 93 start-page: 475 year: 1970 end-page: 490 article-title: Innervation of intracranial arteries publication-title: Brain – volume: 20 start-page: 2580 year: 2004 end-page: 2590 article-title: Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition publication-title: Eur J Neurosci – volume: 6 start-page: 773 year: 1967 end-page: 776 article-title: Adrenergic innervation of pial arteries related to the circle of Willis in the cat publication-title: Brain Res – volume: 20 start-page: 2926 year: 2000 end-page: 2933 article-title: Circulating insulin‐like growth factor I mediates effects of exercise on the brain publication-title: J Neurosci – volume: 400 start-page: 418 year: 1999 end-page: 419 article-title: Ageing, fitness and neurocognitive function publication-title: Nature – volume: 88 start-page: 761 year: 2000 end-page: 766 article-title: Enhanced endothelium‐dependent vasodilation in older endurance‐trained men publication-title: J Appl Physiol – volume: 18 start-page: 1929 year: 1997 end-page: 1934 article-title: Changes in blood flow velocity and diameter of the middle cerebral artery during hyperventilation: assessment with MR and transcranial Doppler sonography publication-title: AJNR Am J Neuroradiol – volume: 8 start-page: 135 year: 1999 end-page: 160 article-title: Measuring agreement in method comparison studies publication-title: Stat Meth Med Res – volume: 99 start-page: 1132 year: 2006 end-page: 1140 article-title: Physical activity improves long‐term stroke outcome via endothelial nitric oxide synthase‐dependent augmentation of neovascularization and cerebral blood flow publication-title: Circ Res – volume: 291 start-page: H1856 year: 2006 end-page: H1861 article-title: Impaired cerebral CO vasoreactivity: association with endothelial dysfunction publication-title: Am J Physiol Heart Circ Physiol – volume: 99 start-page: 963 year: 1999 end-page: 972 article-title: Exercise as cardiovascular therapy publication-title: Circulation – volume: 57 start-page: 769 year: 1982 end-page: 774 article-title: Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries publication-title: J Neurosurg – volume: 287 start-page: H1895 year: 2004 end-page: H1905 article-title: Collateral damage: cardiovascular consequnces of chronic sympathetic activation with human aging publication-title: Am J Physiol Heart Circ Physiol – volume: 31 start-page: 1672 year: 2000 end-page: 1678 article-title: MRI measures of middle cerebral artery diameter in conscious humans during simulated orthostasis publication-title: Stroke – volume: 54 start-page: 582 year: 2003 end-page: 590 article-title: Mechanisms of stroke protection by physical activity publication-title: Ann Neurol – volume: 54 start-page: 1116 year: 1994 end-page: 1125 article-title: [Measurement of cerebral blood flow in normal subjects by phase contrast MR imaging] (in Japanese) publication-title: Nippon Igaku Hoshasen Gakkai Zasshi – volume: 22 start-page: 35 year: 2001 end-page: 38 article-title: Age‐related reduction in visually evoked cerebral blood flow responses publication-title: Neurobiol Aging – volume: 58 start-page: 176 year: 2003 end-page: 180 article-title: Aerobic fitness reduces brain tissue loss in aging humans publication-title: J Gerontol A Biol Sci Med Sci – volume: 27 start-page: 283 year: 2004 end-page: 289 article-title: Targeting eNOS for stroke protection publication-title: Trends Neurosci – volume: 33 start-page: 1379 year: 1999 end-page: 1385 article-title: Exercise training enhances endothelial function in young men publication-title: J Am Coll Cardiol – volume: 100 start-page: 1194 year: 1999 end-page: 1202 article-title: Regular aerobic exercise augments endothelium‐dependent vascular relaxation in normotensive as well as hypertensive subjects: role of endothelium‐derived nitric oxide publication-title: Circulation – volume: 27 start-page: 1563 year: 2007 end-page: 1572 article-title: Aging effects on cerebral blood and cerebrospinal fluid flows publication-title: J Cereb Blood Flow Metab – volume: 32 start-page: 737 year: 1993 end-page: 741 article-title: Cerebral arterial diameters during changes in blood pressure and carbon dioxide during craniotomy publication-title: Neurosurgery – volume: 92 start-page: 769 year: 2007 end-page: 777 article-title: Early morning impairment in cerebral autoregulation and cerebrovascular CO reactivity in healthy humans: relation to endothelial function publication-title: Exp Physiol – volume: 38 start-page: 1766 year: 2007 end-page: 1773 article-title: Longitudinal changes in cerebral blood flow in the older hypertensive brain publication-title: Stroke – volume: 209 start-page: 667 year: 1998 end-page: 674 article-title: Effect of age on cerebral blood flow: measurement with ungated two‐dimensional phase‐contrast MR angiography in 250 adults publication-title: Radiology – volume: 101 start-page: 2896 year: 2000 end-page: 2901 article-title: Physical activity prevents age‐related impairment in nitric oxide availability in elderly athletes publication-title: Circulation – volume: 61 start-page: 1166 year: 2006 end-page: 1170 article-title: Aerobic exercise training increases brain volume in aging humans publication-title: J Gerontol A Biol Sci Med Sci – volume: 102 start-page: 1351 year: 2000 end-page: 1357 article-title: Regular aerobic exercise prevents and restores age‐related declines in endothelium‐dependent vasodilation in healthy men publication-title: Circulation – volume: 12 start-page: 15 year: 1986 end-page: 21 article-title: Transcranial measurement of blood velocities in the basal cerebral arteries using pulsed Doppler ultrasound: velocity as an index of flow publication-title: Ultrasound Med Biol – volume: 106 start-page: 329 year: 2004 end-page: 335 article-title: Effects of age and physical fitness on microcirculatory function publication-title: Clin Sci (Lond) – volume: 38 start-page: 308 year: 2007 end-page: 312 article-title: Endothelial function and white matter hyperintensities in older adults with cardiovascular disease publication-title: Stroke – volume: 31 start-page: 147 year: 2000 end-page: 150 article-title: Color duplex measurement of cerebral blood flow volume in healthy adults publication-title: Stroke – year: 1999 – ident: e_1_2_5_25_1 doi: 10.1093/brain/93.3.475 – ident: e_1_2_5_37_1 doi: 10.1111/j.1460-9568.2004.03720.x – ident: e_1_2_5_6_1 doi: 10.1148/radiology.209.3.9844657 – ident: e_1_2_5_32_1 doi: 10.1161/01.STR.31.7.1672 – ident: e_1_2_5_19_1 doi: 10.1161/01.STR.0000254517.04275.3f – volume: 54 start-page: 1116 year: 1994 ident: e_1_2_5_20_1 article-title: [Measurement of cerebral blood flow in normal subjects by phase contrast MR imaging] (in Japanese) publication-title: Nippon Igaku Hoshasen Gakkai Zasshi – ident: e_1_2_5_24_1 doi: 10.1161/01.STR.29.5.963 – volume-title: Discovering Statistics Using SPSS year: 2005 ident: e_1_2_5_14_1 – ident: e_1_2_5_15_1 doi: 10.1042/CS20030229 – ident: e_1_2_5_17_1 doi: 10.1227/00006123-199305000-00006 – ident: e_1_2_5_34_1 doi: 10.1038/sj.jcbfm.9600462 – ident: e_1_2_5_28_1 doi: 10.1113/jphysiol.2007.137075 – ident: e_1_2_5_35_1 doi: 10.1161/01.CIR.101.25.2896 – ident: e_1_2_5_2_1 doi: 10.3171/jns.1982.57.6.0769 – ident: e_1_2_5_8_1 doi: 10.1016/S0735-1097(99)00036-4 – ident: e_1_2_5_12_1 doi: 10.1002/ana.10722 – ident: e_1_2_5_26_1 doi: 10.1016/S0197-4580(00)00212-8 – ident: e_1_2_5_30_1 doi: 10.1161/01.STR.31.1.147 – ident: e_1_2_5_11_1 doi: 10.1161/01.CIR.102.12.1351 – ident: e_1_2_5_31_1 doi: 10.1152/ajpheart.00486.2004 – ident: e_1_2_5_27_1 doi: 10.1016/0006-8993(67)90134-5 – ident: e_1_2_5_16_1 doi: 10.1161/01.RES.0000250175.14861.77 – ident: e_1_2_5_29_1 doi: 10.1152/jappl.2000.88.2.761 – ident: e_1_2_5_5_1 doi: 10.1177/096228029900800204 – ident: e_1_2_5_9_1 doi: 10.1093/gerona/58.2.M176 – ident: e_1_2_5_22_1 doi: 10.1038/22682 – ident: e_1_2_5_18_1 doi: 10.1161/01.CIR.100.11.1194 – ident: e_1_2_5_33_1 doi: 10.1161/01.CIR.99.7.963 – ident: e_1_2_5_23_1 doi: 10.1152/ajpheart.00014.2006 – volume-title: Biostatistical Analysis year: 1999 ident: e_1_2_5_38_1 – ident: e_1_2_5_7_1 doi: 10.1523/JNEUROSCI.20-08-02926.2000 – ident: e_1_2_5_21_1 doi: 10.1016/0301-5629(86)90139-0 – ident: e_1_2_5_3_1 doi: 10.1113/expphysiol.2006.036814 – ident: e_1_2_5_13_1 doi: 10.1016/j.tins.2004.03.009 – volume: 18 start-page: 1929 year: 1997 ident: e_1_2_5_36_1 article-title: Changes in blood flow velocity and diameter of the middle cerebral artery during hyperventilation: assessment with MR and transcranial Doppler sonography publication-title: AJNR Am J Neuroradiol – ident: e_1_2_5_10_1 doi: 10.1093/gerona/61.11.1166 – ident: e_1_2_5_4_1 doi: 10.1161/STROKEAHA.106.477109 – reference: 9596243 - Stroke. 1998 May;29(5):963-7 – reference: 17311079 - J Cereb Blood Flow Metab. 2007 Sep;27(9):1563-72 – reference: 9844657 - Radiology. 1998 Dec;209(3):667-74 – reference: 11164274 - Neurobiol Aging. 2001 Jan-Feb;22(1):35-8 – reference: 12586857 - J Gerontol A Biol Sci Med Sci. 2003 Feb;58(2):176-80 – reference: 9403456 - AJNR Am J Neuroradiol. 1997 Nov-Dec;18(10):1929-34 – reference: 14595647 - Ann Neurol. 2003 Nov;54(5):582-90 – reference: 17167157 - J Gerontol A Biol Sci Med Sci. 2006 Nov;61(11):1166-70 – reference: 14588072 - Clin Sci (Lond). 2004 Mar;106(3):329-35 – reference: 15111011 - Trends Neurosci. 2004 May;27(5):283-9 – reference: 10993851 - Circulation. 2000 Sep 19;102(12):1351-7 – reference: 10658048 - J Appl Physiol (1985). 2000 Feb;88(2):761-6 – reference: 10751445 - J Neurosci. 2000 Apr 15;20(8):2926-33 – reference: 10027821 - Circulation. 1999 Feb 23;99(7):963-72 – reference: 17690148 - J Physiol. 2007 Oct 1;584(Pt 1):347-57 – reference: 10501650 - Stat Methods Med Res. 1999 Jun;8(2):135-60 – reference: 16766649 - Am J Physiol Heart Circ Physiol. 2006 Oct;291(4):H1856-61 – reference: 10440369 - Nature. 1999 Jul 29;400(6743):418-9 – reference: 6080228 - Brain Res. 1967 Dec;6(4):773-6 – reference: 10193742 - J Am Coll Cardiol. 1999 Apr;33(5):1379-85 – reference: 10484540 - Circulation. 1999 Sep 14;100(11):1194-202 – reference: 4097005 - Brain. 1970;93(3):475-90 – reference: 10869260 - Circulation. 2000 Jun 27;101(25):2896-901 – reference: 17510458 - Stroke. 2007 Jun;38(6):1766-73 – reference: 9261191 - Nihon Igaku Hoshasen Gakkai Zasshi. 1994 Oct 25;54(12):1116-25 – reference: 17038638 - Circ Res. 2006 Nov 10;99(10):1132-40 – reference: 17384117 - Exp Physiol. 2007 Jul;92(4):769-77 – reference: 15475526 - Am J Physiol Heart Circ Physiol. 2004 Nov;287(5):H1895-905 – reference: 8492848 - Neurosurgery. 1993 May;32(5):737-41; discussion 741-2 – reference: 3083551 - Ultrasound Med Biol. 1986 Jan;12(1):15-21 – reference: 7143059 - J Neurosurg. 1982 Dec;57(6):769-74 – reference: 10884472 - Stroke. 2000 Jul;31(7):1672-8 – reference: 10625730 - Stroke. 2000 Jan;31(1):147-50 – reference: 15548201 - Eur J Neurosci. 2004 Nov;20(10):2580-90 – reference: 17204686 - Stroke. 2007 Feb;38(2):308-12 |
SSID | ssj0013099 |
Score | 2.4500961 |
Snippet | It is known that cerebral blood flow declines with age in sedentary adults, although previous studies have involved small
sample sizes, making the exact... It is known that cerebral blood flow declines with age in sedentary adults, although previous studies have involved small sample sizes, making the exact... |
SourceID | pubmedcentral proquest pubmed crossref wiley highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4005 |
SubjectTerms | Adolescent Adult Aged Aging - physiology Blood Flow Velocity - physiology Cerebrovascular Circulation - physiology Exercise - physiology Humans Integrative Male Middle Aged Oxygen - metabolism Physical Fitness - physiology |
Title | Elevation in cerebral blood flow velocity with aerobic fitness throughout healthy human ageing |
URI | http://jp.physoc.org/content/586/16/4005.abstract https://onlinelibrary.wiley.com/doi/abs/10.1113%2Fjphysiol.2008.158279 https://www.ncbi.nlm.nih.gov/pubmed/18635643 https://www.proquest.com/docview/21056085 https://www.proquest.com/docview/69437965 https://pubmed.ncbi.nlm.nih.gov/PMC2538930 |
Volume | 586 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqnnrhVR7h0VoIcUtJ4kfsY1V1VVUCVaiVesJyHLsshAS1WaHl1zMTJ9suVIDgGttR7MzY34xnviHkVSgBRjNWpDoolnIwvlKd8ZB6lxW6ylTNLPoh376TR2f8-Fycb5DZlAsT-SFWDjfUjGG_RgW31ViFJEeygU-D6d81MR4yF6ooMY8Pw7YQG70vri8TMq1XpOGlyMcMOnjNm9tesn5CTazBtyHQXwMpbwLc4YSa3SUX09xiYMrnvUVf7bnvP9E-_v_k75E7I4il-1Hq7pMN3z4g2_stGPBflvQ1PYnDuovlNvlw2Pjo9qXzljp_iTfVDR0C5mloum8Uo5YcGAMUfcLUemSGcjTMe9yF6VhIqFv0NOZsLulQV5DCRgjH7kNyNjs8PThKx6IOqQOkIFJWy0rX1ioHwFIpV2GRc68Dz8DGl3luAY8K62WteMFtqBh3snYcnmYesIhlj8hm27X-CaEABqXTQSgVAtelr4JlIfeBFzarAIgkhE0_0riR8RwLbzQmWj7MTMsYi3HGZUxIuhr1NTJ-_KH_y0lGTGy-ivG2RihpcmlglxQJ2Z2kx4D-4qWMbX23uDJgcgPoVL_pITVyRkro8ThK2_VnKWQX5Cwh5Zocrjogd_h6Szv_OHCIFwKRapaQYhCzv5qpOT0-gfNAPP2XQc_IVgy1UWkunpPN_nLhXwCe66udQVt3BkfbD666Sas |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VcoALr0IJr1oIcUtJYjuxjxW0LKWtKrSVesJyHJsuTRPU7gotv55xnGxZqAAhrrEdxc7M-Jvx-BuAF65AGE1pFksnaMzQ-YplwlxsTZLJMhEV1T4OuX-Qj47Y7jE_XoG3w12YwA-xCLh5zejstVdwH5DutdyzDXzufP-2DgmRKRdZIa_BdV_c25Pov_mQXR4nJFIuaMMLnvZ36PA9r656y_IeNfAGX4VBf02l_BHidnvUzm04GWYXUlNON2fTctN8-4n48T9M_w7c6nEs2QqCdxdWbHMP1rYa9OHP5uQlOQzD2k_zNfi4XdsQ-SWThhh77g-ra9LlzBNXt1-JT1wy6A8QHxYm2npyKEPcZOoNMelrCbWzKQnXNuekKy1I0Bbiznsfjna2x69HcV_XITYIFnhMq7yUldbCILYUwpS-zrmVjiXo5udpqhGScm3zSrCMaVdSZvLKMHyaWIQjmj6A1aZt7EMgiAdzIx0XwjkmC1s6TV1qHct0UiIWiYAOf1KZnvTc196oVXB-qBqWMdTjDMsYQbwY9SWQfvyh__NBSFRovggpt4qLXKW5QkPJI9gYxEehCvtzGd3Ydnah0OtG3Cl-0yOXnjYyxx7rQdwuP0t4gkFGIyiWBHHRwdOHL7c0k5OORjzjHqwmEWSdnP3VTNV49xC3BP7oXwZtwI3ReH9P7b07eP8YbobMGxGn_AmsTs9n9inCu2n5rFPd70mNTLc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIiEuvMojvGohxC0liR9rHyvaVSlQrVAr9YTlOHZZWJKqzQotv55xnGxZqADBNR5HsTPj-cYefwPw3I8QRlNapMpLmjIMvlKVMZ86mxWqzGRFTdiHfHcg9o7Y_jE_XoPxcBcm8kMsN9yCZXTrdTDw08r3Rh7IBj51oX8zi_mQOZfFSF2Bq0xkKpRw2HlfXJwmZEotWcNHPO-v0OF7Xl72llUXNdAGXwZBf82k_BHhdi5qfBNOhsHFzJTPW_O23LLffuJ9_P_R34IbPYol21HtbsOaq-_AxnaNEfyXBXlBJrFbc7LYgA-7Mxf3fcm0JtadhaPqGeky5omfNV9JSFuyGA2QsClMjAvUUJb4aRuWYdJXEmrmLYmXNhekKyxIcCVEv3sXjsa7h6_20r6qQ2oRKvCUVqJUlTHSIrKU0pahyrlTnmUY5Is8NwhIuXGikqxgxpeUWVFZhk8zh2DE0HuwXje1ewAE0aCwynMpvWdq5EpvqM-dZ4XJSkQiCdDhR2rbU56HyhszHUMfqodpjNU44zQmkC57nUbKjz_IPxt0RMfm85hwq7kUOhcal0mewOagPRoNOJzKmNo183ONMTeiTvkbCaECaaRAiftR2y4-SwZ6QUYTGK3o4VIgkIevttTTjx2JeMEDVM0SKDo1-6uR6sP9CToE_vBfOm3CtcnOWL99ffDmEVyPaTcyzfljWG_P5u4JYru2fNoZ7nc2Rktm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elevation+in+cerebral+blood+flow+velocity+with+aerobic+fitness+throughout+healthy+human+ageing&rft.jtitle=The+Journal+of+physiology&rft.au=Ainslie%2C+Philip+N.&rft.au=Cotter%2C+James+D.&rft.au=George%2C+Keith+P.&rft.au=Lucas%2C+Sam&rft.date=2008-08-15&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=586&rft.issue=16&rft.spage=4005&rft.epage=4010&rft_id=info:doi/10.1113%2Fjphysiol.2008.158279&rft.externalDBID=10.1113%252Fjphysiol.2008.158279&rft.externalDocID=TJP3015 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon |