Elevation in cerebral blood flow velocity with aerobic fitness throughout healthy human ageing

It is known that cerebral blood flow declines with age in sedentary adults, although previous studies have involved small sample sizes, making the exact estimate of decline imprecise and the effects of possible moderator variables unknown. Animal studies indicate that aerobic exercise can elevate ce...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of physiology Vol. 586; no. 16; pp. 4005 - 4010
Main Authors Ainslie, Philip N., Cotter, James D., George, Keith P., Lucas, Sam, Murrell, Carissa, Shave, Rob, Thomas, Kate N., Williams, Michael J. A., Atkinson, Greg
Format Journal Article
LanguageEnglish
Published Oxford, UK The Physiological Society 15.08.2008
Blackwell Publishing Ltd
Blackwell Science Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It is known that cerebral blood flow declines with age in sedentary adults, although previous studies have involved small sample sizes, making the exact estimate of decline imprecise and the effects of possible moderator variables unknown. Animal studies indicate that aerobic exercise can elevate cerebral blood flow; however, this possibility has not been examined in humans. We examined how regular aerobic exercise affects the age-related decline in blood flow velocity in the middle cerebral artery (MCAv) in healthy humans. Maximal oxygen consumption, body mass index (BMI), blood pressure and MCAv were measured in healthy sedentary ( n = 153) and endurance-trained ( n = 154) men aged between 18 and 79 years. The relationships between age, training status, BMI and MCAv were examined using analysis of covariance methods. Mean ± s.e.m. estimates of regression coefficients and 95% confidence intervals (95% CI) were calculated. The age-related decline in MCAv was −0.76 ± 0.04 cm s −1 year −1 (95% CI = −0.69 to −0.83, r 2 = 0.66, P < 0.0005) and was independent of training status ( P = 0.65). Nevertheless, MCAv was consistently elevated by 9.1 ± 3.3 cm s −1 (CI = 2.7–15.6, P = 0.006) in endurance-trained men throughout the age range. This ∼17% difference between trained and sedentary men amounted to an approximate 10 year reduction in MCAv ‘age’ and was robust to between-group differences in BMI and blood pressure. Regular aerobic-endurance exercise is associated with higher MCAv in men aged 18–79 years. The persistence of this finding in older endurance-trained men may therefore help explain why there is a lower risk of cerebrovascular disease in this population.
AbstractList It is known that cerebral blood flow declines with age in sedentary adults, although previous studies have involved small sample sizes, making the exact estimate of decline imprecise and the effects of possible moderator variables unknown. Animal studies indicate that aerobic exercise can elevate cerebral blood flow; however, this possibility has not been examined in humans. We examined how regular aerobic exercise affects the age-related decline in blood flow velocity in the middle cerebral artery (MCAv) in healthy humans. Maximal oxygen consumption, body mass index (BMI), blood pressure and MCAv were measured in healthy sedentary (n = 153) and endurance-trained (n = 154) men aged between 18 and 79 years. The relationships between age, training status, BMI and MCAv were examined using analysis of covariance methods. Mean +/- s.e.m. estimates of regression coefficients and 95% confidence intervals (95% CI) were calculated. The age-related decline in MCAv was -0.76 +/- 0.04 cm s(-1) year(-1) (95% CI = -0.69 to -0.83, r(2) = 0.66, P < 0.0005) and was independent of training status (P = 0.65). Nevertheless, MCAv was consistently elevated by 9.1 +/- 3.3 cm s(-1) (CI = 2.7-15.6, P = 0.006) in endurance-trained men throughout the age range. This approximately 17% difference between trained and sedentary men amounted to an approximate 10 year reduction in MCAv 'age' and was robust to between-group differences in BMI and blood pressure. Regular aerobic-endurance exercise is associated with higher MCAv in men aged 18-79 years. The persistence of this finding in older endurance-trained men may therefore help explain why there is a lower risk of cerebrovascular disease in this population.
It is known that cerebral blood flow declines with age in sedentary adults, although previous studies have involved small sample sizes, making the exact estimate of decline imprecise and the effects of possible moderator variables unknown. Animal studies indicate that aerobic exercise can elevate cerebral blood flow; however, this possibility has not been examined in humans. We examined how regular aerobic exercise affects the age‐related decline in blood flow velocity in the middle cerebral artery (MCAv) in healthy humans. Maximal oxygen consumption, body mass index (BMI), blood pressure and MCAv were measured in healthy sedentary ( n = 153) and endurance‐trained ( n = 154) men aged between 18 and 79 years. The relationships between age, training status, BMI and MCAv were examined using analysis of covariance methods. Mean ± s.e.m. estimates of regression coefficients and 95% confidence intervals (95% CI) were calculated. The age‐related decline in MCAv was −0.76 ± 0.04 cm s −1 year −1 (95% CI =−0.69 to −0.83, r 2 = 0.66, P < 0.0005) and was independent of training status ( P = 0.65). Nevertheless, MCAv was consistently elevated by 9.1 ± 3.3 cm s −1 (CI = 2.7–15.6, P = 0.006) in endurance‐trained men throughout the age range. This ∼17% difference between trained and sedentary men amounted to an approximate 10 year reduction in MCAv ‘age’ and was robust to between‐group differences in BMI and blood pressure. Regular aerobic‐endurance exercise is associated with higher MCAv in men aged 18–79 years. The persistence of this finding in older endurance‐trained men may therefore help explain why there is a lower risk of cerebrovascular disease in this population.
It is known that cerebral blood flow declines with age in sedentary adults, although previous studies have involved small sample sizes, making the exact estimate of decline imprecise and the effects of possible moderator variables unknown. Animal studies indicate that aerobic exercise can elevate cerebral blood flow; however, this possibility has not been examined in humans. We examined how regular aerobic exercise affects the age‐related decline in blood flow velocity in the middle cerebral artery (MCAv) in healthy humans. Maximal oxygen consumption, body mass index (BMI), blood pressure and MCAv were measured in healthy sedentary (n= 153) and endurance‐trained (n= 154) men aged between 18 and 79 years. The relationships between age, training status, BMI and MCAv were examined using analysis of covariance methods. Mean ±s.e.m. estimates of regression coefficients and 95% confidence intervals (95% CI) were calculated. The age‐related decline in MCAv was −0.76 ± 0.04 cm s−1 year−1 (95% CI =−0.69 to −0.83, r2= 0.66, P < 0.0005) and was independent of training status (P= 0.65). Nevertheless, MCAv was consistently elevated by 9.1 ± 3.3 cm s−1 (CI = 2.7–15.6, P= 0.006) in endurance‐trained men throughout the age range. This ∼17% difference between trained and sedentary men amounted to an approximate 10 year reduction in MCAv ‘age’ and was robust to between‐group differences in BMI and blood pressure. Regular aerobic‐endurance exercise is associated with higher MCAv in men aged 18–79 years. The persistence of this finding in older endurance‐trained men may therefore help explain why there is a lower risk of cerebrovascular disease in this population.
It is known that cerebral blood flow declines with age in sedentary adults, although previous studies have involved small sample sizes, making the exact estimate of decline imprecise and the effects of possible moderator variables unknown. Animal studies indicate that aerobic exercise can elevate cerebral blood flow; however, this possibility has not been examined in humans. We examined how regular aerobic exercise affects the age-related decline in blood flow velocity in the middle cerebral artery (MCAv) in healthy humans. Maximal oxygen consumption, body mass index (BMI), blood pressure and MCAv were measured in healthy sedentary (n = 153) and endurance-trained (n = 154) men aged between 18 and 79 years. The relationships between age, training status, BMI and MCAv were examined using analysis of covariance methods. Mean +/- s.e.m. estimates of regression coefficients and 95% confidence intervals (95% CI) were calculated. The age-related decline in MCAv was -0.76 +/- 0.04 cm s(-1) year(-1) (95% CI = -0.69 to -0.83, r(2) = 0.66, P < 0.0005) and was independent of training status (P = 0.65). Nevertheless, MCAv was consistently elevated by 9.1 +/- 3.3 cm s(-1) (CI = 2.7-15.6, P = 0.006) in endurance-trained men throughout the age range. This approximately 17% difference between trained and sedentary men amounted to an approximate 10 year reduction in MCAv 'age' and was robust to between-group differences in BMI and blood pressure. Regular aerobic-endurance exercise is associated with higher MCAv in men aged 18-79 years. The persistence of this finding in older endurance-trained men may therefore help explain why there is a lower risk of cerebrovascular disease in this population.It is known that cerebral blood flow declines with age in sedentary adults, although previous studies have involved small sample sizes, making the exact estimate of decline imprecise and the effects of possible moderator variables unknown. Animal studies indicate that aerobic exercise can elevate cerebral blood flow; however, this possibility has not been examined in humans. We examined how regular aerobic exercise affects the age-related decline in blood flow velocity in the middle cerebral artery (MCAv) in healthy humans. Maximal oxygen consumption, body mass index (BMI), blood pressure and MCAv were measured in healthy sedentary (n = 153) and endurance-trained (n = 154) men aged between 18 and 79 years. The relationships between age, training status, BMI and MCAv were examined using analysis of covariance methods. Mean +/- s.e.m. estimates of regression coefficients and 95% confidence intervals (95% CI) were calculated. The age-related decline in MCAv was -0.76 +/- 0.04 cm s(-1) year(-1) (95% CI = -0.69 to -0.83, r(2) = 0.66, P < 0.0005) and was independent of training status (P = 0.65). Nevertheless, MCAv was consistently elevated by 9.1 +/- 3.3 cm s(-1) (CI = 2.7-15.6, P = 0.006) in endurance-trained men throughout the age range. This approximately 17% difference between trained and sedentary men amounted to an approximate 10 year reduction in MCAv 'age' and was robust to between-group differences in BMI and blood pressure. Regular aerobic-endurance exercise is associated with higher MCAv in men aged 18-79 years. The persistence of this finding in older endurance-trained men may therefore help explain why there is a lower risk of cerebrovascular disease in this population.
It is known that cerebral blood flow declines with age in sedentary adults, although previous studies have involved small sample sizes, making the exact estimate of decline imprecise and the effects of possible moderator variables unknown. Animal studies indicate that aerobic exercise can elevate cerebral blood flow; however, this possibility has not been examined in humans. We examined how regular aerobic exercise affects the age-related decline in blood flow velocity in the middle cerebral artery (MCAv) in healthy humans. Maximal oxygen consumption, body mass index (BMI), blood pressure and MCAv were measured in healthy sedentary ( n = 153) and endurance-trained ( n = 154) men aged between 18 and 79 years. The relationships between age, training status, BMI and MCAv were examined using analysis of covariance methods. Mean ± s.e.m. estimates of regression coefficients and 95% confidence intervals (95% CI) were calculated. The age-related decline in MCAv was −0.76 ± 0.04 cm s −1 year −1 (95% CI = −0.69 to −0.83, r 2 = 0.66, P < 0.0005) and was independent of training status ( P = 0.65). Nevertheless, MCAv was consistently elevated by 9.1 ± 3.3 cm s −1 (CI = 2.7–15.6, P = 0.006) in endurance-trained men throughout the age range. This ∼17% difference between trained and sedentary men amounted to an approximate 10 year reduction in MCAv ‘age’ and was robust to between-group differences in BMI and blood pressure. Regular aerobic-endurance exercise is associated with higher MCAv in men aged 18–79 years. The persistence of this finding in older endurance-trained men may therefore help explain why there is a lower risk of cerebrovascular disease in this population.
It is known that cerebral blood flow declines with age in sedentary adults, although previous studies have involved small sample sizes, making the exact estimate of decline imprecise and the effects of possible moderator variables unknown. Animal studies indicate that aerobic exercise can elevate cerebral blood flow; however, this possibility has not been examined in humans. We examined how regular aerobic exercise affects the age-related decline in blood flow velocity in the middle cerebral artery (MCAv) in healthy humans. Maximal oxygen consumption, body mass index (BMI), blood pressure and MCAv were measured in healthy sedentary (n= 153) and endurance-trained (n= 154) men aged between 18 and 79 years. The relationships between age, training status, BMI and MCAv were examined using analysis of covariance methods. Mean plus or minus s.e.m. estimates of regression coefficients and 95% confidence intervals (95% CI) were calculated. The age-related decline in MCAv was -0.76 plus or minus 0.04 cm s super(-1) year super(-1) (95% CI =-0.69 to -0.83, r super(2)= 0.66, P < 0.0005) and was independent of training status (P= 0.65). Nevertheless, MCAv was consistently elevated by 9.1 plus or minus 3.3 cm s super(-1) (CI = 2.7-15.6, P= 0.006) in endurance-trained men throughout the age range. This similar to 17% difference between trained and sedentary men amounted to an approximate 10 year reduction in MCAv 'age' and was robust to between-group differences in BMI and blood pressure. Regular aerobic-endurance exercise is associated with higher MCAv in men aged 18-79 years. The persistence of this finding in older endurance-trained men may therefore help explain why there is a lower risk of cerebrovascular disease in this population.
Author Greg Atkinson
James D. Cotter
Philip N. Ainslie
Sam Lucas
Keith P. George
Carissa Murrell
Michael J. A. Williams
Kate N. Thomas
Rob Shave
Author_xml – sequence: 1
  givenname: Philip N.
  surname: Ainslie
  fullname: Ainslie, Philip N.
– sequence: 2
  givenname: James D.
  surname: Cotter
  fullname: Cotter, James D.
– sequence: 3
  givenname: Keith P.
  surname: George
  fullname: George, Keith P.
– sequence: 4
  givenname: Sam
  surname: Lucas
  fullname: Lucas, Sam
– sequence: 5
  givenname: Carissa
  surname: Murrell
  fullname: Murrell, Carissa
– sequence: 6
  givenname: Rob
  surname: Shave
  fullname: Shave, Rob
– sequence: 7
  givenname: Kate N.
  surname: Thomas
  fullname: Thomas, Kate N.
– sequence: 8
  givenname: Michael J. A.
  surname: Williams
  fullname: Williams, Michael J. A.
– sequence: 9
  givenname: Greg
  surname: Atkinson
  fullname: Atkinson, Greg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18635643$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhi1URLeFf4CQT0gcsvg7MQekqipfqgSHcsVynMnGlTdeYmdX-fdkSVsBB-Bkafw-r2bmnTN00sceEHpOyZpSyl_f7rop-RjWjJBqTWXFSv0IrahQuihLzU_QihDGCl5KeorOUrolhHKi9RN0SivFpRJ8hb5dBdjb7GOPfY8dDFAPNuA6xNjgNsQD3kOIzucJH3zusIUh1t7h1uceUsK5G-K46eKYcQc25G7C3bi1PbYb8P3mKXrc2pDg2d17jr6-u7q5_FBcf37_8fLiunCSUVnwRtW6sbZynJKqcrUUkoFuBYGaKUptWQppQTWVYMK2NRdONU7MVQJ0rvBz9Hbx3Y31FhoHfZ7HMLvBb-0wmWi9-f2n953ZxL1hkleak9ng5Z3BEL-PkLLZ-uQgBNtDHJNRWvBSK_lPIaNEKlIdhS9-bemhl_vdz4I3i8ANMaUBWjOv-WcUc4c-GErMMWhzH7Q5Bm2WoGdY_AE_-P8d0wt28AGm_2LMzacvnNDjQK8WtvOb7uAHMIs6zecBeTKyUoYqIwiR_Af3NdJW
CitedBy_id crossref_primary_10_1038_jcbfm_2014_44
crossref_primary_10_1111_sms_12082
crossref_primary_10_1002_brb3_2126
crossref_primary_10_3389_fmed_2019_00057
crossref_primary_10_1152_ajpheart_00348_2018
crossref_primary_10_3390_biom11081077
crossref_primary_10_1016_j_genhosppsych_2017_06_002
crossref_primary_10_1152_japplphysiol_00292_2021
crossref_primary_10_1186_s12877_022_03306_x
crossref_primary_10_1152_japplphysiol_00926_2020
crossref_primary_10_1177_1545968314562116
crossref_primary_10_17116_jnevro201611691111_115
crossref_primary_10_1007_s41465_024_00308_y
crossref_primary_10_1152_physiol_00052_2010
crossref_primary_10_18632_aging_206112
crossref_primary_10_3233_BPL_180075
crossref_primary_10_3389_fcvm_2023_1117449
crossref_primary_10_3389_fphys_2021_656746
crossref_primary_10_1007_s11357_012_9414_x
crossref_primary_10_1038_jcbfm_2013_66
crossref_primary_10_1007_s11357_023_00790_w
crossref_primary_10_1113_EP091279
crossref_primary_10_3390_ijerph182010789
crossref_primary_10_1113_EP092245
crossref_primary_10_1016_j_brainres_2014_09_003
crossref_primary_10_1371_journal_pone_0122878
crossref_primary_10_3233_JAD_181079
crossref_primary_10_3390_healthcare12050576
crossref_primary_10_1152_japplphysiol_00712_2011
crossref_primary_10_3390_nu10050530
crossref_primary_10_1152_japplphysiol_00630_2021
crossref_primary_10_3389_fneur_2022_804187
crossref_primary_10_3233_CH_170332
crossref_primary_10_1249_MSS_0000000000001904
crossref_primary_10_1186_s12885_020_07295_1
crossref_primary_10_3389_fnhum_2015_00066
crossref_primary_10_1016_j_healun_2012_04_003
crossref_primary_10_1177_0271678X231201472
crossref_primary_10_1161_STROKEAHA_115_011532
crossref_primary_10_1016_j_mhpa_2018_10_005
crossref_primary_10_1152_ajpregu_91008_2008
crossref_primary_10_1152_japplphysiol_00001_2019
crossref_primary_10_3389_fnhum_2020_561877
crossref_primary_10_1249_MSS_0000000000002685
crossref_primary_10_1002_alz_13122
crossref_primary_10_1152_japplphysiol_00823_2020
crossref_primary_10_1097_PHM_0b013e3181d3e9f6
crossref_primary_10_1007_s11682_019_00148_x
crossref_primary_10_1249_MSS_0000000000001230
crossref_primary_10_1161_STROKEAHA_113_002589
crossref_primary_10_1152_japplphysiol_00310_2018
crossref_primary_10_1097_MD_0000000000039550
crossref_primary_10_1007_s11886_019_1089_9
crossref_primary_10_1152_physrev_00022_2020
crossref_primary_10_1016_j_cardfail_2014_12_010
crossref_primary_10_1152_ajpregu_00213_2017
crossref_primary_10_1016_j_jshs_2020_01_004
crossref_primary_10_1177_1747493020984090
crossref_primary_10_1007_s00421_020_04393_7
crossref_primary_10_1016_j_jesf_2022_01_003
crossref_primary_10_1113_JP282998
crossref_primary_10_1093_braincomms_fcab228
crossref_primary_10_1080_23328940_2022_2102375
crossref_primary_10_3390_brainsci3010101
crossref_primary_10_1016_j_rbce_2018_03_026
crossref_primary_10_3390_ijerph16060962
crossref_primary_10_3390_jcm8071015
crossref_primary_10_1093_geronb_gbab216
crossref_primary_10_14814_phy2_14268
crossref_primary_10_1007_s11682_016_9509_6
crossref_primary_10_1097_NPT_0000000000000289
crossref_primary_10_1016_j_jbc_2021_100944
crossref_primary_10_1113_EP087675
crossref_primary_10_3389_fphys_2022_838450
crossref_primary_10_1371_journal_pone_0095721
crossref_primary_10_1016_j_irbm_2015_01_016
crossref_primary_10_1002_14651858_CD011706
crossref_primary_10_1002_14651858_CD011704
crossref_primary_10_1002_14651858_CD011705
crossref_primary_10_1007_s00421_010_1534_3
crossref_primary_10_1186_s12877_016_0315_1
crossref_primary_10_1002_gps_6110
crossref_primary_10_1249_MSS_0000000000000717
crossref_primary_10_1007_s00421_022_05123_x
crossref_primary_10_1007_s00234_015_1571_z
crossref_primary_10_1016_j_cct_2024_107672
crossref_primary_10_1152_japplphysiol_00604_2019
crossref_primary_10_3389_fpubh_2023_1298316
crossref_primary_10_3389_fphys_2020_00360
crossref_primary_10_1016_j_jesf_2022_12_001
crossref_primary_10_14814_phy2_14185
crossref_primary_10_1007_s12282_023_01484_z
crossref_primary_10_1161_JAHA_120_017821
crossref_primary_10_1515_teb_2024_0038
crossref_primary_10_1177_02692155231208578
crossref_primary_10_1249_MSS_0000000000002462
crossref_primary_10_12677_ACM_2020_1011380
crossref_primary_10_1186_1471_2318_13_21
crossref_primary_10_1007_s00421_009_1298_9
crossref_primary_10_4103_jdmimsu_jdmimsu_515_22
crossref_primary_10_1177_15353702231209416
crossref_primary_10_1159_000490005
crossref_primary_10_1371_journal_pone_0241248
crossref_primary_10_1113_EP087883
crossref_primary_10_3389_fnagi_2022_803332
crossref_primary_10_1152_japplphysiol_00402_2012
crossref_primary_10_1152_japplphysiol_01258_2012
crossref_primary_10_1097_GME_0000000000001442
crossref_primary_10_1016_j_ijnurstu_2023_104592
crossref_primary_10_3390_brainsci10020081
crossref_primary_10_1016_j_arr_2010_04_002
crossref_primary_10_14814_phy2_15384
crossref_primary_10_1139_apnm_2020_0562
crossref_primary_10_1152_japplphysiol_00137_2019
crossref_primary_10_3390_ijerph14050454
crossref_primary_10_3390_brainsci11060730
crossref_primary_10_1249_MSS_0000000000001924
crossref_primary_10_3389_fphys_2021_653603
crossref_primary_10_3233_JAD_230741
crossref_primary_10_1016_j_niox_2008_10_004
crossref_primary_10_4103_hm_hm_50_22
crossref_primary_10_1016_j_rehab_2020_03_010
crossref_primary_10_1152_japplphysiol_00129_2015
crossref_primary_10_1007_s00421_022_04933_3
crossref_primary_10_1007_s11357_011_9258_9
crossref_primary_10_1177_0271678X211009382
crossref_primary_10_1016_j_artres_2012_05_003
crossref_primary_10_3389_fnagi_2022_892343
crossref_primary_10_1038_s41598_018_37544_0
crossref_primary_10_1007_s00421_016_3468_x
crossref_primary_10_1016_j_ijnurstu_2019_02_019
crossref_primary_10_1016_j_conctc_2020_100584
crossref_primary_10_1096_fj_202001387R
crossref_primary_10_1152_japplphysiol_00446_2021
crossref_primary_10_1152_japplphysiol_00667_2015
crossref_primary_10_1371_journal_pone_0085163
crossref_primary_10_1152_ajpheart_00129_2018
crossref_primary_10_1186_1471_2466_14_99
crossref_primary_10_20310_2658_7688_2020_2_4_8__52_58
crossref_primary_10_1016_j_cophys_2019_04_005
crossref_primary_10_1159_000526297
crossref_primary_10_1152_ajpheart_00230_2021
crossref_primary_10_1212_WNL_0000000000200701
crossref_primary_10_2991_artres_k_191212_001
crossref_primary_10_1016_j_bbadis_2022_166511
crossref_primary_10_3389_fpsyg_2020_01106
crossref_primary_10_1152_japplphysiol_00264_2015
crossref_primary_10_1016_j_nmd_2016_10_005
crossref_primary_10_1152_japplphysiol_00573_2009
crossref_primary_10_1007_s00424_019_02253_8
crossref_primary_10_1152_ajpheart_00177_2014
crossref_primary_10_1152_japplphysiol_00371_2022
crossref_primary_10_1152_japplphysiol_00872_2021
crossref_primary_10_14814_phy2_15158
crossref_primary_10_1007_s11357_011_9250_4
crossref_primary_10_1016_j_jad_2022_05_043
crossref_primary_10_1016_j_arr_2011_05_002
crossref_primary_10_1152_japplphysiol_00995_2016
crossref_primary_10_1001_jamanetworkopen_2022_6744
crossref_primary_10_1016_j_pneurobio_2011_09_008
crossref_primary_10_1177_0271678X19855875
crossref_primary_10_1042_CS20150694
crossref_primary_10_1152_japplphysiol_00158_2021
crossref_primary_10_1038_s41598_023_33063_9
crossref_primary_10_1152_japplphysiol_00758_2022
crossref_primary_10_1001_jamanetworkopen_2022_15385
crossref_primary_10_2147_NSS_S482276
crossref_primary_10_1155_2014_230791
crossref_primary_10_3758_s13423_012_0345_4
crossref_primary_10_1159_000113216
crossref_primary_10_3389_fphys_2021_642850
crossref_primary_10_1152_japplphysiol_00688_2022
crossref_primary_10_1177_13872877251321118
crossref_primary_10_1007_s12126_022_09491_9
crossref_primary_10_1152_ajpheart_00034_2017
crossref_primary_10_3390_jcm13247841
crossref_primary_10_1113_EP089102
crossref_primary_10_1016_j_bbr_2019_112422
crossref_primary_10_1007_s00421_023_05154_y
crossref_primary_10_1186_s11556_015_0151_x
crossref_primary_10_1161_HYPERTENSIONAHA_110_168070
crossref_primary_10_1177_13872877241305828
crossref_primary_10_14814_phy2_14539
crossref_primary_10_3389_fnagi_2014_00059
crossref_primary_10_1088_2516_1091_accc62
crossref_primary_10_1371_journal_pbio_1002279
crossref_primary_10_1111_pcn_12464
crossref_primary_10_1152_japplphysiol_01497_2010
crossref_primary_10_1016_j_neuroimage_2015_12_010
crossref_primary_10_31083_j_jin2103098
crossref_primary_10_3389_fphys_2018_01096
crossref_primary_10_1152_ajpheart_00880_2020
crossref_primary_10_1016_j_kjms_2018_05_007
crossref_primary_10_1111_psyp_12394
crossref_primary_10_3389_fphys_2018_01657
crossref_primary_10_1016_j_neuroimage_2015_05_063
crossref_primary_10_14814_phy2_13681
crossref_primary_10_1016_j_ijpsycho_2021_03_007
crossref_primary_10_3389_fnagi_2020_590530
crossref_primary_10_1016_j_brainres_2023_148355
crossref_primary_10_1111_ejn_15241
crossref_primary_10_1177_0271678X16669514
crossref_primary_10_1016_j_ijnurstu_2018_01_002
crossref_primary_10_1080_13825585_2015_1080213
crossref_primary_10_12659_MSM_893935
crossref_primary_10_1007_s00421_019_04118_5
crossref_primary_10_1097_JES_0b013e3181aa5aee
crossref_primary_10_1016_j_cjca_2015_12_021
crossref_primary_10_1159_000362535
crossref_primary_10_1016_j_resp_2014_10_009
crossref_primary_10_1017_S1355617715000880
crossref_primary_10_1016_j_neuroimage_2024_120570
crossref_primary_10_1186_1471_2377_13_197
crossref_primary_10_1016_j_expneurol_2020_113494
crossref_primary_10_3389_fneur_2020_577312
crossref_primary_10_1016_j_arr_2020_101108
crossref_primary_10_1007_s41105_015_0002_1
crossref_primary_10_1212_WNL_0000000000213374
crossref_primary_10_1111_jgs_13123
crossref_primary_10_3389_fpsyg_2023_1242190
crossref_primary_10_3390_ijerph17041406
crossref_primary_10_1016_j_resp_2019_01_013
crossref_primary_10_3389_fnhum_2023_1274151
crossref_primary_10_1113_JP271456
crossref_primary_10_1186_s12868_021_00670_z
crossref_primary_10_1113_JP275021
crossref_primary_10_1111_cpf_12568
crossref_primary_10_1113_EP092060
crossref_primary_10_1007_s13668_020_00306_4
crossref_primary_10_1186_s12889_025_22321_2
crossref_primary_10_1051_sm_2019023
crossref_primary_10_1152_physiol_00003_2011
crossref_primary_10_1016_j_jshs_2017_01_005
crossref_primary_10_1136_bmjopen_2018_028117
crossref_primary_10_14814_phy2_14421
crossref_primary_10_1152_japplphysiol_00782_2021
crossref_primary_10_1007_s12035_023_03492_8
crossref_primary_10_1177_0271678X19865449
crossref_primary_10_1038_s41598_025_91833_z
crossref_primary_10_1136_svn_2016_000021
crossref_primary_10_1093_cvr_cvr050
crossref_primary_10_1253_circj_CJ_16_0423
crossref_primary_10_1111_psyp_13796
crossref_primary_10_1152_japplphysiol_00817_2016
crossref_primary_10_1249_MSS_0000000000002183
crossref_primary_10_1016_j_nutres_2018_03_009
crossref_primary_10_3390_cells11050872
crossref_primary_10_3390_nu9111263
crossref_primary_10_1007_s12603_013_0384_1
crossref_primary_10_3389_fnagi_2017_00381
crossref_primary_10_14814_phy2_12163
crossref_primary_10_1111_jgs_19049
crossref_primary_10_1111_psyg_13056
crossref_primary_10_1212_WNL_0000000000002329
crossref_primary_10_1113_jphysiol_2012_244905
crossref_primary_10_14814_phy2_13486
crossref_primary_10_1161_STROKEAHA_108_534321
crossref_primary_10_1007_s00134_023_07165_x
crossref_primary_10_1186_s13063_021_05355_w
crossref_primary_10_1007_s11357_023_00893_4
crossref_primary_10_1111_sms_12674
crossref_primary_10_3390_brainsci10110796
crossref_primary_10_3390_jcm7090272
crossref_primary_10_3390_ijerph192416926
crossref_primary_10_1097_GME_0000000000000625
crossref_primary_10_1113_JP271081
crossref_primary_10_1113_EP091195
crossref_primary_10_3389_fnagi_2014_00272
crossref_primary_10_1007_s00421_011_1968_2
crossref_primary_10_1113_JP280118
crossref_primary_10_1016_j_exger_2011_12_002
crossref_primary_10_1111_ggi_12245
crossref_primary_10_1177_0271678X251318922
crossref_primary_10_1152_japplphysiol_00281_2015
crossref_primary_10_1101_cshperspect_a029736
crossref_primary_10_1038_jhh_2014_56
crossref_primary_10_3390_brainsci12060683
crossref_primary_10_1016_j_exger_2021_111433
crossref_primary_10_1016_j_nicl_2018_09_003
crossref_primary_10_1177_0271678X17702156
crossref_primary_10_1016_j_maturitas_2021_04_004
crossref_primary_10_1016_j_psychsport_2018_08_015
crossref_primary_10_1152_ajpheart_00754_2020
crossref_primary_10_1152_japplphysiol_00241_2022
crossref_primary_10_1155_2020_1407896
crossref_primary_10_12677_ACM_2019_912215
crossref_primary_10_1177_0271678X231219568
crossref_primary_10_1016_j_autneu_2022_102945
crossref_primary_10_3389_fpubh_2022_1013734
crossref_primary_10_1016_j_nbas_2021_100019
crossref_primary_10_3389_fnmol_2023_1270393
crossref_primary_10_1159_000347061
crossref_primary_10_1093_gerona_glae257
crossref_primary_10_1016_j_exger_2019_110679
crossref_primary_10_3390_nu12020397
crossref_primary_10_1177_0271678X16676826
crossref_primary_10_3390_ijms23073610
crossref_primary_10_1038_jcbfm_2014_142
crossref_primary_10_1152_japplphysiol_00463_2012
crossref_primary_10_1177_0271678X231167753
crossref_primary_10_1113_EP091719
crossref_primary_10_1016_j_exger_2023_112112
crossref_primary_10_3233_JAD_180958
crossref_primary_10_1177_0271678X20957807
crossref_primary_10_1186_1471_2202_14_103
crossref_primary_10_1111_sms_14031
crossref_primary_10_1016_j_neuroscience_2019_12_008
crossref_primary_10_1016_j_physbeh_2021_113621
crossref_primary_10_1152_ajpheart_00199_2019
crossref_primary_10_1096_fj_11_193508
crossref_primary_10_1016_j_ijpsycho_2018_10_007
crossref_primary_10_14814_phy2_14596
crossref_primary_10_1016_j_wneu_2020_07_039
crossref_primary_10_1161_STROKEAHA_114_008030
crossref_primary_10_1590_1414_431x202010098
crossref_primary_10_3233_BPL_190096
crossref_primary_10_1016_j_neuropsychologia_2019_01_011
crossref_primary_10_1186_s12974_023_02753_6
crossref_primary_10_3390_life14070855
crossref_primary_10_3389_fnins_2024_1453582
crossref_primary_10_1152_japplphysiol_00478_2023
crossref_primary_10_1007_s00421_017_3651_8
crossref_primary_10_3389_fnagi_2015_00152
crossref_primary_10_1152_ajpheart_00086_2014
crossref_primary_10_1007_s11357_019_00139_2
crossref_primary_10_1152_advan_00101_2014
crossref_primary_10_1016_j_neuroimage_2024_120910
crossref_primary_10_1152_japplphysiol_00050_2018
Cites_doi 10.1093/brain/93.3.475
10.1111/j.1460-9568.2004.03720.x
10.1148/radiology.209.3.9844657
10.1161/01.STR.31.7.1672
10.1161/01.STR.0000254517.04275.3f
10.1161/01.STR.29.5.963
10.1042/CS20030229
10.1227/00006123-199305000-00006
10.1038/sj.jcbfm.9600462
10.1113/jphysiol.2007.137075
10.1161/01.CIR.101.25.2896
10.3171/jns.1982.57.6.0769
10.1016/S0735-1097(99)00036-4
10.1002/ana.10722
10.1016/S0197-4580(00)00212-8
10.1161/01.STR.31.1.147
10.1161/01.CIR.102.12.1351
10.1152/ajpheart.00486.2004
10.1016/0006-8993(67)90134-5
10.1161/01.RES.0000250175.14861.77
10.1152/jappl.2000.88.2.761
10.1177/096228029900800204
10.1093/gerona/58.2.M176
10.1038/22682
10.1161/01.CIR.100.11.1194
10.1161/01.CIR.99.7.963
10.1152/ajpheart.00014.2006
10.1523/JNEUROSCI.20-08-02926.2000
10.1016/0301-5629(86)90139-0
10.1113/expphysiol.2006.036814
10.1016/j.tins.2004.03.009
10.1093/gerona/61.11.1166
10.1161/STROKEAHA.106.477109
ContentType Journal Article
Copyright 2008 The Author. Journal compilation © 2008 The Physiological Society
2008 The Authors. Journal compilation © 2008 The Physiological Society 2008
Copyright_xml – notice: 2008 The Author. Journal compilation © 2008 The Physiological Society
– notice: 2008 The Authors. Journal compilation © 2008 The Physiological Society 2008
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
DOI 10.1113/jphysiol.2008.158279
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef

MEDLINE - Academic

Neurosciences Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-7793
EndPage 4010
ExternalDocumentID PMC2538930
18635643
10_1113_jphysiol_2008_158279
TJP3015
586_16_4005
Genre rapidPublication
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
05W
0R
0YM
10A
123
1OB
1OC
24P
29L
2WC
31
33P
3N
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
55
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAONW
AAVGM
AAZKR
ABCUV
ABFLS
ABHUG
ABITZ
ABIVO
ABOCM
ABPPZ
ABPTK
ABPVW
ABUFD
ABWRO
ACAHQ
ACFBH
ACGFS
ACIWK
ACMXC
ACNCT
ACPOU
ACPRK
ACXME
ACXQS
ADACO
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADXAS
ADZMN
AEIMD
AEUQT
AFBPY
AFFNX
AFPWT
AFZJQ
AGJLS
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ATUGU
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C1A
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DZ
E3Z
EBS
EJD
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GA
GODZA
GX1
H.X
H13
HZ
HZI
IA
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LI0
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NEJ
NF
O0-
O66
O9-
OHT
OK1
OVD
P2P
P2W
P2X
P2Z
P4A
P4B
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RPM
RX1
SUPJJ
TLM
TN5
UB1
UNR
UPT
UQL
V8K
VH1
W8V
W99
WBKPD
WH7
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WRC
WT
WXI
WYISQ
X
X7M
XG1
Y3
YZZ
ZA5
ZZTAW
---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
0R~
18M
31~
36B
3EH
AAFWJ
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
ABCQN
ABEML
ABJNI
ABQWH
ABXGK
ACCFJ
ACCZN
ACGFO
ACGOF
ACSCC
ACXBN
ADBTR
ADKYN
ADMGS
ADOZA
AEEZP
AEGXH
AEIGN
AEQDE
AEUYR
AFEBI
AFFPM
AFGKR
AFWVQ
AHBTC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALVPJ
AMYDB
AOIJS
CHEAL
EMOBN
FA8
HF~
HGLYW
HZ~
H~9
IPNFZ
KBYEO
LH4
MVM
NF~
OIG
SAMSI
TEORI
TR2
UKR
W8F
WHG
WXSBR
XOL
YBU
YHG
YKV
YQT
YSK
YXB
YYP
ZGI
ZXP
~IA
~WT
AAYXX
AEYWJ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
ID FETCH-LOGICAL-c5215-3d6b9daa8c31088cb5452e9f40eb2611a7745ae6d8424afb34c6dc47740e124a3
IEDL.DBID DR2
ISSN 0022-3751
1469-7793
IngestDate Thu Aug 21 13:37:26 EDT 2025
Fri Jul 11 04:55:19 EDT 2025
Fri Jul 11 09:18:14 EDT 2025
Mon Jul 21 06:03:07 EDT 2025
Tue Jul 01 04:28:51 EDT 2025
Thu Apr 24 23:01:24 EDT 2025
Wed Jan 22 17:04:39 EST 2025
Fri Jan 15 01:58:37 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5215-3d6b9daa8c31088cb5452e9f40eb2611a7745ae6d8424afb34c6dc47740e124a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1113/jphysiol.2008.158279
PMID 18635643
PQID 21056085
PQPubID 23462
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2538930
proquest_miscellaneous_69437965
proquest_miscellaneous_21056085
pubmed_primary_18635643
crossref_citationtrail_10_1113_jphysiol_2008_158279
crossref_primary_10_1113_jphysiol_2008_158279
wiley_primary_10_1113_jphysiol_2008_158279_TJP3015
highwire_physiosociety_586_16_4005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-08-15
PublicationDateYYYYMMDD 2008-08-15
PublicationDate_xml – month: 08
  year: 2008
  text: 2008-08-15
  day: 15
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
PublicationTitle The Journal of physiology
PublicationTitleAlternate J Physiol
PublicationYear 2008
Publisher The Physiological Society
Blackwell Publishing Ltd
Blackwell Science Inc
Publisher_xml – name: The Physiological Society
– name: Blackwell Publishing Ltd
– name: Blackwell Science Inc
References 1982; 57
2004; 287
1998; 29
2004; 20
2004; 27
2006; 99
1986; 12
2007; 584
2000; 88
2000; 20
2003; 58
2007; 92
2005
2006; 291
1999; 400
1999; 100
1970; 93
1999; 8
2001; 22
2004; 106
2003; 54
2007; 38
1999
1967; 6
2006; 61
2000; 102
1993; 32
2000; 31
1997; 18
1998; 209
1999; 33
1999; 99
2000; 101
1994; 54
2007; 27
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
Valdueza JM (e_1_2_5_36_1) 1997; 18
e_1_2_5_29_1
e_1_2_5_15_1
Zar JH (e_1_2_5_38_1) 1999
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
Field A (e_1_2_5_14_1) 2005
e_1_2_5_3_1
e_1_2_5_2_1
Kashimada A (e_1_2_5_20_1) 1994; 54
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_30_1
e_1_2_5_31_1
9596243 - Stroke. 1998 May;29(5):963-7
14595647 - Ann Neurol. 2003 Nov;54(5):582-90
10484540 - Circulation. 1999 Sep 14;100(11):1194-202
17204686 - Stroke. 2007 Feb;38(2):308-12
10658048 - J Appl Physiol (1985). 2000 Feb;88(2):761-6
16766649 - Am J Physiol Heart Circ Physiol. 2006 Oct;291(4):H1856-61
10501650 - Stat Methods Med Res. 1999 Jun;8(2):135-60
15111011 - Trends Neurosci. 2004 May;27(5):283-9
17384117 - Exp Physiol. 2007 Jul;92(4):769-77
8492848 - Neurosurgery. 1993 May;32(5):737-41; discussion 741-2
11164274 - Neurobiol Aging. 2001 Jan-Feb;22(1):35-8
10027821 - Circulation. 1999 Feb 23;99(7):963-72
3083551 - Ultrasound Med Biol. 1986 Jan;12(1):15-21
9403456 - AJNR Am J Neuroradiol. 1997 Nov-Dec;18(10):1929-34
9844657 - Radiology. 1998 Dec;209(3):667-74
14588072 - Clin Sci (Lond). 2004 Mar;106(3):329-35
7143059 - J Neurosurg. 1982 Dec;57(6):769-74
10193742 - J Am Coll Cardiol. 1999 Apr;33(5):1379-85
10625730 - Stroke. 2000 Jan;31(1):147-50
12586857 - J Gerontol A Biol Sci Med Sci. 2003 Feb;58(2):176-80
17311079 - J Cereb Blood Flow Metab. 2007 Sep;27(9):1563-72
10884472 - Stroke. 2000 Jul;31(7):1672-8
9261191 - Nihon Igaku Hoshasen Gakkai Zasshi. 1994 Oct 25;54(12):1116-25
10751445 - J Neurosci. 2000 Apr 15;20(8):2926-33
10993851 - Circulation. 2000 Sep 19;102(12):1351-7
10440369 - Nature. 1999 Jul 29;400(6743):418-9
17038638 - Circ Res. 2006 Nov 10;99(10):1132-40
10869260 - Circulation. 2000 Jun 27;101(25):2896-901
15475526 - Am J Physiol Heart Circ Physiol. 2004 Nov;287(5):H1895-905
15548201 - Eur J Neurosci. 2004 Nov;20(10):2580-90
17690148 - J Physiol. 2007 Oct 1;584(Pt 1):347-57
4097005 - Brain. 1970;93(3):475-90
6080228 - Brain Res. 1967 Dec;6(4):773-6
17167157 - J Gerontol A Biol Sci Med Sci. 2006 Nov;61(11):1166-70
17510458 - Stroke. 2007 Jun;38(6):1766-73
References_xml – volume: 29
  start-page: 963
  year: 1998
  end-page: 967
  article-title: Age and sex differences in cerebral hemodynamics: a transcranial Doppler study
  publication-title: Stroke
– volume: 584
  start-page: 347
  year: 2007
  end-page: 357
  article-title: Human cerebrovascular and ventilatory CO reactivity to end‐tidal, arterial and internal jugular vein
  publication-title: J Physiol
– year: 2005
– volume: 93
  start-page: 475
  year: 1970
  end-page: 490
  article-title: Innervation of intracranial arteries
  publication-title: Brain
– volume: 20
  start-page: 2580
  year: 2004
  end-page: 2590
  article-title: Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition
  publication-title: Eur J Neurosci
– volume: 6
  start-page: 773
  year: 1967
  end-page: 776
  article-title: Adrenergic innervation of pial arteries related to the circle of Willis in the cat
  publication-title: Brain Res
– volume: 20
  start-page: 2926
  year: 2000
  end-page: 2933
  article-title: Circulating insulin‐like growth factor I mediates effects of exercise on the brain
  publication-title: J Neurosci
– volume: 400
  start-page: 418
  year: 1999
  end-page: 419
  article-title: Ageing, fitness and neurocognitive function
  publication-title: Nature
– volume: 88
  start-page: 761
  year: 2000
  end-page: 766
  article-title: Enhanced endothelium‐dependent vasodilation in older endurance‐trained men
  publication-title: J Appl Physiol
– volume: 18
  start-page: 1929
  year: 1997
  end-page: 1934
  article-title: Changes in blood flow velocity and diameter of the middle cerebral artery during hyperventilation: assessment with MR and transcranial Doppler sonography
  publication-title: AJNR Am J Neuroradiol
– volume: 8
  start-page: 135
  year: 1999
  end-page: 160
  article-title: Measuring agreement in method comparison studies
  publication-title: Stat Meth Med Res
– volume: 99
  start-page: 1132
  year: 2006
  end-page: 1140
  article-title: Physical activity improves long‐term stroke outcome via endothelial nitric oxide synthase‐dependent augmentation of neovascularization and cerebral blood flow
  publication-title: Circ Res
– volume: 291
  start-page: H1856
  year: 2006
  end-page: H1861
  article-title: Impaired cerebral CO vasoreactivity: association with endothelial dysfunction
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 99
  start-page: 963
  year: 1999
  end-page: 972
  article-title: Exercise as cardiovascular therapy
  publication-title: Circulation
– volume: 57
  start-page: 769
  year: 1982
  end-page: 774
  article-title: Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries
  publication-title: J Neurosurg
– volume: 287
  start-page: H1895
  year: 2004
  end-page: H1905
  article-title: Collateral damage: cardiovascular consequnces of chronic sympathetic activation with human aging
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 31
  start-page: 1672
  year: 2000
  end-page: 1678
  article-title: MRI measures of middle cerebral artery diameter in conscious humans during simulated orthostasis
  publication-title: Stroke
– volume: 54
  start-page: 582
  year: 2003
  end-page: 590
  article-title: Mechanisms of stroke protection by physical activity
  publication-title: Ann Neurol
– volume: 54
  start-page: 1116
  year: 1994
  end-page: 1125
  article-title: [Measurement of cerebral blood flow in normal subjects by phase contrast MR imaging] (in Japanese)
  publication-title: Nippon Igaku Hoshasen Gakkai Zasshi
– volume: 22
  start-page: 35
  year: 2001
  end-page: 38
  article-title: Age‐related reduction in visually evoked cerebral blood flow responses
  publication-title: Neurobiol Aging
– volume: 58
  start-page: 176
  year: 2003
  end-page: 180
  article-title: Aerobic fitness reduces brain tissue loss in aging humans
  publication-title: J Gerontol A Biol Sci Med Sci
– volume: 27
  start-page: 283
  year: 2004
  end-page: 289
  article-title: Targeting eNOS for stroke protection
  publication-title: Trends Neurosci
– volume: 33
  start-page: 1379
  year: 1999
  end-page: 1385
  article-title: Exercise training enhances endothelial function in young men
  publication-title: J Am Coll Cardiol
– volume: 100
  start-page: 1194
  year: 1999
  end-page: 1202
  article-title: Regular aerobic exercise augments endothelium‐dependent vascular relaxation in normotensive as well as hypertensive subjects: role of endothelium‐derived nitric oxide
  publication-title: Circulation
– volume: 27
  start-page: 1563
  year: 2007
  end-page: 1572
  article-title: Aging effects on cerebral blood and cerebrospinal fluid flows
  publication-title: J Cereb Blood Flow Metab
– volume: 32
  start-page: 737
  year: 1993
  end-page: 741
  article-title: Cerebral arterial diameters during changes in blood pressure and carbon dioxide during craniotomy
  publication-title: Neurosurgery
– volume: 92
  start-page: 769
  year: 2007
  end-page: 777
  article-title: Early morning impairment in cerebral autoregulation and cerebrovascular CO reactivity in healthy humans: relation to endothelial function
  publication-title: Exp Physiol
– volume: 38
  start-page: 1766
  year: 2007
  end-page: 1773
  article-title: Longitudinal changes in cerebral blood flow in the older hypertensive brain
  publication-title: Stroke
– volume: 209
  start-page: 667
  year: 1998
  end-page: 674
  article-title: Effect of age on cerebral blood flow: measurement with ungated two‐dimensional phase‐contrast MR angiography in 250 adults
  publication-title: Radiology
– volume: 101
  start-page: 2896
  year: 2000
  end-page: 2901
  article-title: Physical activity prevents age‐related impairment in nitric oxide availability in elderly athletes
  publication-title: Circulation
– volume: 61
  start-page: 1166
  year: 2006
  end-page: 1170
  article-title: Aerobic exercise training increases brain volume in aging humans
  publication-title: J Gerontol A Biol Sci Med Sci
– volume: 102
  start-page: 1351
  year: 2000
  end-page: 1357
  article-title: Regular aerobic exercise prevents and restores age‐related declines in endothelium‐dependent vasodilation in healthy men
  publication-title: Circulation
– volume: 12
  start-page: 15
  year: 1986
  end-page: 21
  article-title: Transcranial measurement of blood velocities in the basal cerebral arteries using pulsed Doppler ultrasound: velocity as an index of flow
  publication-title: Ultrasound Med Biol
– volume: 106
  start-page: 329
  year: 2004
  end-page: 335
  article-title: Effects of age and physical fitness on microcirculatory function
  publication-title: Clin Sci (Lond)
– volume: 38
  start-page: 308
  year: 2007
  end-page: 312
  article-title: Endothelial function and white matter hyperintensities in older adults with cardiovascular disease
  publication-title: Stroke
– volume: 31
  start-page: 147
  year: 2000
  end-page: 150
  article-title: Color duplex measurement of cerebral blood flow volume in healthy adults
  publication-title: Stroke
– year: 1999
– ident: e_1_2_5_25_1
  doi: 10.1093/brain/93.3.475
– ident: e_1_2_5_37_1
  doi: 10.1111/j.1460-9568.2004.03720.x
– ident: e_1_2_5_6_1
  doi: 10.1148/radiology.209.3.9844657
– ident: e_1_2_5_32_1
  doi: 10.1161/01.STR.31.7.1672
– ident: e_1_2_5_19_1
  doi: 10.1161/01.STR.0000254517.04275.3f
– volume: 54
  start-page: 1116
  year: 1994
  ident: e_1_2_5_20_1
  article-title: [Measurement of cerebral blood flow in normal subjects by phase contrast MR imaging] (in Japanese)
  publication-title: Nippon Igaku Hoshasen Gakkai Zasshi
– ident: e_1_2_5_24_1
  doi: 10.1161/01.STR.29.5.963
– volume-title: Discovering Statistics Using SPSS
  year: 2005
  ident: e_1_2_5_14_1
– ident: e_1_2_5_15_1
  doi: 10.1042/CS20030229
– ident: e_1_2_5_17_1
  doi: 10.1227/00006123-199305000-00006
– ident: e_1_2_5_34_1
  doi: 10.1038/sj.jcbfm.9600462
– ident: e_1_2_5_28_1
  doi: 10.1113/jphysiol.2007.137075
– ident: e_1_2_5_35_1
  doi: 10.1161/01.CIR.101.25.2896
– ident: e_1_2_5_2_1
  doi: 10.3171/jns.1982.57.6.0769
– ident: e_1_2_5_8_1
  doi: 10.1016/S0735-1097(99)00036-4
– ident: e_1_2_5_12_1
  doi: 10.1002/ana.10722
– ident: e_1_2_5_26_1
  doi: 10.1016/S0197-4580(00)00212-8
– ident: e_1_2_5_30_1
  doi: 10.1161/01.STR.31.1.147
– ident: e_1_2_5_11_1
  doi: 10.1161/01.CIR.102.12.1351
– ident: e_1_2_5_31_1
  doi: 10.1152/ajpheart.00486.2004
– ident: e_1_2_5_27_1
  doi: 10.1016/0006-8993(67)90134-5
– ident: e_1_2_5_16_1
  doi: 10.1161/01.RES.0000250175.14861.77
– ident: e_1_2_5_29_1
  doi: 10.1152/jappl.2000.88.2.761
– ident: e_1_2_5_5_1
  doi: 10.1177/096228029900800204
– ident: e_1_2_5_9_1
  doi: 10.1093/gerona/58.2.M176
– ident: e_1_2_5_22_1
  doi: 10.1038/22682
– ident: e_1_2_5_18_1
  doi: 10.1161/01.CIR.100.11.1194
– ident: e_1_2_5_33_1
  doi: 10.1161/01.CIR.99.7.963
– ident: e_1_2_5_23_1
  doi: 10.1152/ajpheart.00014.2006
– volume-title: Biostatistical Analysis
  year: 1999
  ident: e_1_2_5_38_1
– ident: e_1_2_5_7_1
  doi: 10.1523/JNEUROSCI.20-08-02926.2000
– ident: e_1_2_5_21_1
  doi: 10.1016/0301-5629(86)90139-0
– ident: e_1_2_5_3_1
  doi: 10.1113/expphysiol.2006.036814
– ident: e_1_2_5_13_1
  doi: 10.1016/j.tins.2004.03.009
– volume: 18
  start-page: 1929
  year: 1997
  ident: e_1_2_5_36_1
  article-title: Changes in blood flow velocity and diameter of the middle cerebral artery during hyperventilation: assessment with MR and transcranial Doppler sonography
  publication-title: AJNR Am J Neuroradiol
– ident: e_1_2_5_10_1
  doi: 10.1093/gerona/61.11.1166
– ident: e_1_2_5_4_1
  doi: 10.1161/STROKEAHA.106.477109
– reference: 9596243 - Stroke. 1998 May;29(5):963-7
– reference: 17311079 - J Cereb Blood Flow Metab. 2007 Sep;27(9):1563-72
– reference: 9844657 - Radiology. 1998 Dec;209(3):667-74
– reference: 11164274 - Neurobiol Aging. 2001 Jan-Feb;22(1):35-8
– reference: 12586857 - J Gerontol A Biol Sci Med Sci. 2003 Feb;58(2):176-80
– reference: 9403456 - AJNR Am J Neuroradiol. 1997 Nov-Dec;18(10):1929-34
– reference: 14595647 - Ann Neurol. 2003 Nov;54(5):582-90
– reference: 17167157 - J Gerontol A Biol Sci Med Sci. 2006 Nov;61(11):1166-70
– reference: 14588072 - Clin Sci (Lond). 2004 Mar;106(3):329-35
– reference: 15111011 - Trends Neurosci. 2004 May;27(5):283-9
– reference: 10993851 - Circulation. 2000 Sep 19;102(12):1351-7
– reference: 10658048 - J Appl Physiol (1985). 2000 Feb;88(2):761-6
– reference: 10751445 - J Neurosci. 2000 Apr 15;20(8):2926-33
– reference: 10027821 - Circulation. 1999 Feb 23;99(7):963-72
– reference: 17690148 - J Physiol. 2007 Oct 1;584(Pt 1):347-57
– reference: 10501650 - Stat Methods Med Res. 1999 Jun;8(2):135-60
– reference: 16766649 - Am J Physiol Heart Circ Physiol. 2006 Oct;291(4):H1856-61
– reference: 10440369 - Nature. 1999 Jul 29;400(6743):418-9
– reference: 6080228 - Brain Res. 1967 Dec;6(4):773-6
– reference: 10193742 - J Am Coll Cardiol. 1999 Apr;33(5):1379-85
– reference: 10484540 - Circulation. 1999 Sep 14;100(11):1194-202
– reference: 4097005 - Brain. 1970;93(3):475-90
– reference: 10869260 - Circulation. 2000 Jun 27;101(25):2896-901
– reference: 17510458 - Stroke. 2007 Jun;38(6):1766-73
– reference: 9261191 - Nihon Igaku Hoshasen Gakkai Zasshi. 1994 Oct 25;54(12):1116-25
– reference: 17038638 - Circ Res. 2006 Nov 10;99(10):1132-40
– reference: 17384117 - Exp Physiol. 2007 Jul;92(4):769-77
– reference: 15475526 - Am J Physiol Heart Circ Physiol. 2004 Nov;287(5):H1895-905
– reference: 8492848 - Neurosurgery. 1993 May;32(5):737-41; discussion 741-2
– reference: 3083551 - Ultrasound Med Biol. 1986 Jan;12(1):15-21
– reference: 7143059 - J Neurosurg. 1982 Dec;57(6):769-74
– reference: 10884472 - Stroke. 2000 Jul;31(7):1672-8
– reference: 10625730 - Stroke. 2000 Jan;31(1):147-50
– reference: 15548201 - Eur J Neurosci. 2004 Nov;20(10):2580-90
– reference: 17204686 - Stroke. 2007 Feb;38(2):308-12
SSID ssj0013099
Score 2.4500961
Snippet It is known that cerebral blood flow declines with age in sedentary adults, although previous studies have involved small sample sizes, making the exact...
It is known that cerebral blood flow declines with age in sedentary adults, although previous studies have involved small sample sizes, making the exact...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4005
SubjectTerms Adolescent
Adult
Aged
Aging - physiology
Blood Flow Velocity - physiology
Cerebrovascular Circulation - physiology
Exercise - physiology
Humans
Integrative
Male
Middle Aged
Oxygen - metabolism
Physical Fitness - physiology
Title Elevation in cerebral blood flow velocity with aerobic fitness throughout healthy human ageing
URI http://jp.physoc.org/content/586/16/4005.abstract
https://onlinelibrary.wiley.com/doi/abs/10.1113%2Fjphysiol.2008.158279
https://www.ncbi.nlm.nih.gov/pubmed/18635643
https://www.proquest.com/docview/21056085
https://www.proquest.com/docview/69437965
https://pubmed.ncbi.nlm.nih.gov/PMC2538930
Volume 586
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqnnrhVR7h0VoIcUtJ4kfsY1V1VVUCVaiVesJyHLsshAS1WaHl1zMTJ9suVIDgGttR7MzY34xnviHkVSgBRjNWpDoolnIwvlKd8ZB6lxW6ylTNLPoh376TR2f8-Fycb5DZlAsT-SFWDjfUjGG_RgW31ViFJEeygU-D6d81MR4yF6ooMY8Pw7YQG70vri8TMq1XpOGlyMcMOnjNm9tesn5CTazBtyHQXwMpbwLc4YSa3SUX09xiYMrnvUVf7bnvP9E-_v_k75E7I4il-1Hq7pMN3z4g2_stGPBflvQ1PYnDuovlNvlw2Pjo9qXzljp_iTfVDR0C5mloum8Uo5YcGAMUfcLUemSGcjTMe9yF6VhIqFv0NOZsLulQV5DCRgjH7kNyNjs8PThKx6IOqQOkIFJWy0rX1ioHwFIpV2GRc68Dz8DGl3luAY8K62WteMFtqBh3snYcnmYesIhlj8hm27X-CaEABqXTQSgVAtelr4JlIfeBFzarAIgkhE0_0riR8RwLbzQmWj7MTMsYi3HGZUxIuhr1NTJ-_KH_y0lGTGy-ivG2RihpcmlglxQJ2Z2kx4D-4qWMbX23uDJgcgPoVL_pITVyRkro8ThK2_VnKWQX5Cwh5Zocrjogd_h6Szv_OHCIFwKRapaQYhCzv5qpOT0-gfNAPP2XQc_IVgy1UWkunpPN_nLhXwCe66udQVt3BkfbD666Sas
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VcoALr0IJr1oIcUtJYjuxjxW0LKWtKrSVesJyHJsuTRPU7gotv55xnGxZqAAhrrEdxc7M-Jvx-BuAF65AGE1pFksnaMzQ-YplwlxsTZLJMhEV1T4OuX-Qj47Y7jE_XoG3w12YwA-xCLh5zejstVdwH5DutdyzDXzufP-2DgmRKRdZIa_BdV_c25Pov_mQXR4nJFIuaMMLnvZ36PA9r656y_IeNfAGX4VBf02l_BHidnvUzm04GWYXUlNON2fTctN8-4n48T9M_w7c6nEs2QqCdxdWbHMP1rYa9OHP5uQlOQzD2k_zNfi4XdsQ-SWThhh77g-ra9LlzBNXt1-JT1wy6A8QHxYm2npyKEPcZOoNMelrCbWzKQnXNuekKy1I0Bbiznsfjna2x69HcV_XITYIFnhMq7yUldbCILYUwpS-zrmVjiXo5udpqhGScm3zSrCMaVdSZvLKMHyaWIQjmj6A1aZt7EMgiAdzIx0XwjkmC1s6TV1qHct0UiIWiYAOf1KZnvTc196oVXB-qBqWMdTjDMsYQbwY9SWQfvyh__NBSFRovggpt4qLXKW5QkPJI9gYxEehCvtzGd3Ydnah0OtG3Cl-0yOXnjYyxx7rQdwuP0t4gkFGIyiWBHHRwdOHL7c0k5OORjzjHqwmEWSdnP3VTNV49xC3BP7oXwZtwI3ReH9P7b07eP8YbobMGxGn_AmsTs9n9inCu2n5rFPd70mNTLc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIiEuvMojvGohxC0liR9rHyvaVSlQrVAr9YTlOHZZWJKqzQotv55xnGxZqADBNR5HsTPj-cYefwPw3I8QRlNapMpLmjIMvlKVMZ86mxWqzGRFTdiHfHcg9o7Y_jE_XoPxcBcm8kMsN9yCZXTrdTDw08r3Rh7IBj51oX8zi_mQOZfFSF2Bq0xkKpRw2HlfXJwmZEotWcNHPO-v0OF7Xl72llUXNdAGXwZBf82k_BHhdi5qfBNOhsHFzJTPW_O23LLffuJ9_P_R34IbPYol21HtbsOaq-_AxnaNEfyXBXlBJrFbc7LYgA-7Mxf3fcm0JtadhaPqGeky5omfNV9JSFuyGA2QsClMjAvUUJb4aRuWYdJXEmrmLYmXNhekKyxIcCVEv3sXjsa7h6_20r6qQ2oRKvCUVqJUlTHSIrKU0pahyrlTnmUY5Is8NwhIuXGikqxgxpeUWVFZhk8zh2DE0HuwXje1ewAE0aCwynMpvWdq5EpvqM-dZ4XJSkQiCdDhR2rbU56HyhszHUMfqodpjNU44zQmkC57nUbKjz_IPxt0RMfm85hwq7kUOhcal0mewOagPRoNOJzKmNo183ONMTeiTvkbCaECaaRAiftR2y4-SwZ6QUYTGK3o4VIgkIevttTTjx2JeMEDVM0SKDo1-6uR6sP9CToE_vBfOm3CtcnOWL99ffDmEVyPaTcyzfljWG_P5u4JYru2fNoZ7nc2Rktm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elevation+in+cerebral+blood+flow+velocity+with+aerobic+fitness+throughout+healthy+human+ageing&rft.jtitle=The+Journal+of+physiology&rft.au=Ainslie%2C+Philip+N.&rft.au=Cotter%2C+James+D.&rft.au=George%2C+Keith+P.&rft.au=Lucas%2C+Sam&rft.date=2008-08-15&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0022-3751&rft.eissn=1469-7793&rft.volume=586&rft.issue=16&rft.spage=4005&rft.epage=4010&rft_id=info:doi/10.1113%2Fjphysiol.2008.158279&rft.externalDBID=10.1113%252Fjphysiol.2008.158279&rft.externalDocID=TJP3015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3751&client=summon