A system dynamics model integrating physiology and biochemical regulation predicts extent of crassulacean acid metabolism (CAM) phases

A system dynamics (SD) approach was taken to model crassulacean acid metabolism (CAM) expression from measured biochemical and physiological constants. SD emphasizes statedependent feedback interaction to describe the emergent properties of a complex system. These mechanisms maintain biological syst...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 200; no. 4; pp. 1116 - 1131
Main Authors Owen, Nick A., Griffiths, Howard
Format Journal Article
LanguageEnglish
Published England New Phytologist Trust 01.12.2013
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0028-646X
1469-8137
1469-8137
DOI10.1111/nph.12461

Cover

Loading…
Abstract A system dynamics (SD) approach was taken to model crassulacean acid metabolism (CAM) expression from measured biochemical and physiological constants. SD emphasizes statedependent feedback interaction to describe the emergent properties of a complex system. These mechanisms maintain biological systems with homeostatic limits on a temporal basis. Previous empirical studies on CAM have correlated biological constants (e.g. enzyme kinetic parameters) with expression over the CAM diel cycle. The SD model integrates these constants within the architecture of the CAM ‘system’. This allowed quantitative causal connections to be established between biological inputs and the four distinct phases of CAM delineated by gas exchange and malic acid accumulation traits. Regulation at flow junctions (e.g. stomatal and mesophyll conductance, and malic acid transport across the tonoplast) that are subject to feedback control (e.g. stomatal aperture, malic acid inhibition of phosphoenolpyruvate carboxylase, and enzyme kinetics) was simulated. Simulated expression for the leaf-succulent Kalanchoё daigremontiana and more succulent tissues of Agave tequilana showed strong correlation with measured gas exchange and malic acid accumulation (R 2 = 0.912 and 0.937, respectively, for K. daigremontiana and R 2 = 0.928 and 0.942, respectively, for A. tequilana). Sensitivity analyseswere conducted to quantitatively identify determinants of dielCO2 uptake. The transition in CAM expression from low to high volume/area tissues (elimination of phase II–IV carbon-uptake signatures)was achieved largely by themanipulation three input parameters.
AbstractList A system dynamics (SD) approach was taken to model crassulacean acid metabolism (CAM) expression from measured biochemical and physiological constants. SD emphasizes state-dependent feedback interaction to describe the emergent properties of a complex system. These mechanisms maintain biological systems with homeostatic limits on a temporal basis.Previous empirical studies on CAM have correlated biological constants (e.g. enzyme kinetic parameters) with expression over the CAM diel cycle. The SD model integrates these constants within the architecture of the CAM 'system'. This allowed quantitative causal connections to be established between biological inputs and the four distinct phases of CAM delineated by gas exchange and malic acid accumulation traits.Regulation at flow junctions (e.g. stomatal and mesophyll conductance, and malic acid transport across the tonoplast) that are subject to feedback control (e.g. stomatal aperture, malic acid inhibition of phosphoenolpyruvate carboxylase, and enzyme kinetics) was simulated. Simulated expression for the leaf-succulent Kalanchoee daigremontiana and more succulent tissues of Agave tequilana showed strong correlation with measured gas exchange and malic acid accumulation (R2 = 0.912 and 0.937, respectively, for K. daigremontiana and R2 = 0.928 and 0.942, respectively, for A. tequilana).Sensitivity analyses were conducted to quantitatively identify determinants of diel CO2 uptake. The transition in CAM expression from low to high volume/area tissues (elimination of phase II-IV carbon-uptake signatures) was achieved largely by the manipulation three input parameters. See also the Commentary by Borland and Yang
A system dynamics (SD) approach was taken to model crassulacean acid metabolism (CAM) expression from measured biochemical and physiological constants. SD emphasizes state‐dependent feedback interaction to describe the emergent properties of a complex system. These mechanisms maintain biological systems with homeostatic limits on a temporal basis. Previous empirical studies on CAM have correlated biological constants (e.g. enzyme kinetic parameters) with expression over the CAM diel cycle. The SD model integrates these constants within the architecture of the CAM ‘system’. This allowed quantitative causal connections to be established between biological inputs and the four distinct phases of CAM delineated by gas exchange and malic acid accumulation traits. Regulation at flow junctions (e.g. stomatal and mesophyll conductance, and malic acid transport across the tonoplast) that are subject to feedback control (e.g. stomatal aperture, malic acid inhibition of phosphoenolpyruvate carboxylase, and enzyme kinetics) was simulated. Simulated expression for the leaf‐succulent Kalanchoë daigremontiana and more succulent tissues of Agave tequilana showed strong correlation with measured gas exchange and malic acid accumulation (R² = 0.912 and 0.937, respectively, for K. daigremontiana and R² = 0.928 and 0.942, respectively, for A. tequilana). Sensitivity analyses were conducted to quantitatively identify determinants of diel CO₂ uptake. The transition in CAM expression from low to high volume/area tissues (elimination of phase II–IV carbon‐uptake signatures) was achieved largely by the manipulation three input parameters.
A system dynamics (SD) approach was taken to model crassulacean acid metabolism (CAM) expression from measured biochemical and physiological constants. SD emphasizes state‐dependent feedback interaction to describe the emergent properties of a complex system. These mechanisms maintain biological systems with homeostatic limits on a temporal basis.Previous empirical studies on CAM have correlated biological constants (e.g. enzyme kinetic parameters) with expression over the CAM diel cycle. The SD model integrates these constants within the architecture of the CAM ‘system’. This allowed quantitative causal connections to be established between biological inputs and the four distinct phases of CAM delineated by gas exchange and malic acid accumulation traits.Regulation at flow junctions (e.g. stomatal and mesophyll conductance, and malic acid transport across the tonoplast) that are subject to feedback control (e.g. stomatal aperture, malic acid inhibition of phosphoenolpyruvate carboxylase, and enzyme kinetics) was simulated. Simulated expression for the leaf‐succulent Kalanchoë daigremontiana and more succulent tissues of Agave tequilana showed strong correlation with measured gas exchange and malic acid accumulation (R2 = 0.912 and 0.937, respectively, for K. daigremontiana and R2 = 0.928 and 0.942, respectively, for A. tequilana).Sensitivity analyses were conducted to quantitatively identify determinants of diel CO2 uptake. The transition in CAM expression from low to high volume/area tissues (elimination of phase II–IV carbon‐uptake signatures) was achieved largely by the manipulation three input parameters.
Summary A system dynamics (SD) approach was taken to model crassulacean acid metabolism (CAM) expression from measured biochemical and physiological constants. SD emphasizes state-dependent feedback interaction to describe the emergent properties of a complex system. These mechanisms maintain biological systems with homeostatic limits on a temporal basis. Previous empirical studies on CAM have correlated biological constants (e.g. enzyme kinetic parameters) with expression over the CAM diel cycle. The SD model integrates these constants within the architecture of the CAM 'system'. This allowed quantitative causal connections to be established between biological inputs and the four distinct phases of CAM delineated by gas exchange and malic acid accumulation traits. Regulation at flow junctions (e.g. stomatal and mesophyll conductance, and malic acid transport across the tonoplast) that are subject to feedback control (e.g. stomatal aperture, malic acid inhibition of phosphoenolpyruvate carboxylase, and enzyme kinetics) was simulated. Simulated expression for the leaf-succulent Kalanchoë daigremontiana and more succulent tissues of Agave tequilana showed strong correlation with measured gas exchange and malic acid accumulation (R2 = 0.912 and 0.937, respectively, for K. daigremontiana and R2 = 0.928 and 0.942, respectively, for A. tequilana). Sensitivity analyses were conducted to quantitatively identify determinants of diel CO2 uptake. The transition in CAM expression from low to high volume/area tissues (elimination of phase II-IV carbon-uptake signatures) was achieved largely by the manipulation three input parameters. See also the Commentary by Borland and Yang [PUBLICATION ABSTRACT]
A system dynamics (SD) approach was taken to model crassulacean acid metabolism (CAM) expression from measured biochemical and physiological constants. SD emphasizes state-dependent feedback interaction to describe the emergent properties of a complex system. These mechanisms maintain biological systems with homeostatic limits on a temporal basis. Previous empirical studies on CAM have correlated biological constants (e.g. enzyme kinetic parameters) with expression over the CAM diel cycle. The SD model integrates these constants within the architecture of the CAM 'system'. This allowed quantitative causal connections to be established between biological inputs and the four distinct phases of CAM delineated by gas exchange and malic acid accumulation traits. Regulation at flow junctions (e.g. stomatal and mesophyll conductance, and malic acid transport across the tonoplast) that are subject to feedback control (e.g. stomatal aperture, malic acid inhibition of phosphoenolpyruvate carboxylase, and enzyme kinetics) was simulated. Simulated expression for the leaf-succulent Kalanchoë daigremontiana and more succulent tissues of Agave tequilana showed strong correlation with measured gas exchange and malic acid accumulation (R(2) = 0.912 and 0.937, respectively, for K. daigremontiana and R(2) = 0.928 and 0.942, respectively, for A. tequilana). Sensitivity analyses were conducted to quantitatively identify determinants of diel CO2 uptake. The transition in CAM expression from low to high volume/area tissues (elimination of phase II-IV carbon-uptake signatures) was achieved largely by the manipulation three input parameters.A system dynamics (SD) approach was taken to model crassulacean acid metabolism (CAM) expression from measured biochemical and physiological constants. SD emphasizes state-dependent feedback interaction to describe the emergent properties of a complex system. These mechanisms maintain biological systems with homeostatic limits on a temporal basis. Previous empirical studies on CAM have correlated biological constants (e.g. enzyme kinetic parameters) with expression over the CAM diel cycle. The SD model integrates these constants within the architecture of the CAM 'system'. This allowed quantitative causal connections to be established between biological inputs and the four distinct phases of CAM delineated by gas exchange and malic acid accumulation traits. Regulation at flow junctions (e.g. stomatal and mesophyll conductance, and malic acid transport across the tonoplast) that are subject to feedback control (e.g. stomatal aperture, malic acid inhibition of phosphoenolpyruvate carboxylase, and enzyme kinetics) was simulated. Simulated expression for the leaf-succulent Kalanchoë daigremontiana and more succulent tissues of Agave tequilana showed strong correlation with measured gas exchange and malic acid accumulation (R(2) = 0.912 and 0.937, respectively, for K. daigremontiana and R(2) = 0.928 and 0.942, respectively, for A. tequilana). Sensitivity analyses were conducted to quantitatively identify determinants of diel CO2 uptake. The transition in CAM expression from low to high volume/area tissues (elimination of phase II-IV carbon-uptake signatures) was achieved largely by the manipulation three input parameters.
A system dynamics (SD) approach was taken to model crassulacean acid metabolism (CAM) expression from measured biochemical and physiological constants. SD emphasizes state-dependent feedback interaction to describe the emergent properties of a complex system. These mechanisms maintain biological systems with homeostatic limits on a temporal basis. Previous empirical studies on CAM have correlated biological constants (e.g. enzyme kinetic parameters) with expression over the CAM diel cycle. The SD model integrates these constants within the architecture of the CAM 'system'. This allowed quantitative causal connections to be established between biological inputs and the four distinct phases of CAM delineated by gas exchange and malic acid accumulation traits. Regulation at flow junctions (e.g. stomatal and mesophyll conductance, and malic acid transport across the tonoplast) that are subject to feedback control (e.g. stomatal aperture, malic acid inhibition of phosphoenolpyruvate carboxylase, and enzyme kinetics) was simulated. Simulated expression for the leaf-succulent Kalanchoë daigremontiana and more succulent tissues of Agave tequilana showed strong correlation with measured gas exchange and malic acid accumulation (R(2)  = 0.912 and 0.937, respectively, for K. daigremontiana and R(2)  = 0.928 and 0.942, respectively, for A. tequilana). Sensitivity analyses were conducted to quantitatively identify determinants of diel CO2 uptake. The transition in CAM expression from low to high volume/area tissues (elimination of phase II-IV carbon-uptake signatures) was achieved largely by the manipulation three input parameters.
Summary A system dynamics (SD) approach was taken to model crassulacean acid metabolism (CAM) expression from measured biochemical and physiological constants. SD emphasizes state‐dependent feedback interaction to describe the emergent properties of a complex system. These mechanisms maintain biological systems with homeostatic limits on a temporal basis. Previous empirical studies on CAM have correlated biological constants (e.g. enzyme kinetic parameters) with expression over the CAM diel cycle. The SD model integrates these constants within the architecture of the CAM ‘system’. This allowed quantitative causal connections to be established between biological inputs and the four distinct phases of CAM delineated by gas exchange and malic acid accumulation traits. Regulation at flow junctions (e.g. stomatal and mesophyll conductance, and malic acid transport across the tonoplast) that are subject to feedback control (e.g. stomatal aperture, malic acid inhibition of phosphoenolpyruvate carboxylase, and enzyme kinetics) was simulated. Simulated expression for the leaf‐succulent Kalanchoë daigremontiana and more succulent tissues of Agave tequilana showed strong correlation with measured gas exchange and malic acid accumulation (R2 = 0.912 and 0.937, respectively, for K. daigremontiana and R2 = 0.928 and 0.942, respectively, for A. tequilana). Sensitivity analyses were conducted to quantitatively identify determinants of diel CO2 uptake. The transition in CAM expression from low to high volume/area tissues (elimination of phase II–IV carbon‐uptake signatures) was achieved largely by the manipulation three input parameters. See also the Commentary by Borland and Yang
A system dynamics (SD) approach was taken to model crassulacean acid metabolism (CAM) expression from measured biochemical and physiological constants. SD emphasizes statedependent feedback interaction to describe the emergent properties of a complex system. These mechanisms maintain biological systems with homeostatic limits on a temporal basis. Previous empirical studies on CAM have correlated biological constants (e.g. enzyme kinetic parameters) with expression over the CAM diel cycle. The SD model integrates these constants within the architecture of the CAM ‘system’. This allowed quantitative causal connections to be established between biological inputs and the four distinct phases of CAM delineated by gas exchange and malic acid accumulation traits. Regulation at flow junctions (e.g. stomatal and mesophyll conductance, and malic acid transport across the tonoplast) that are subject to feedback control (e.g. stomatal aperture, malic acid inhibition of phosphoenolpyruvate carboxylase, and enzyme kinetics) was simulated. Simulated expression for the leaf-succulent Kalanchoё daigremontiana and more succulent tissues of Agave tequilana showed strong correlation with measured gas exchange and malic acid accumulation (R 2 = 0.912 and 0.937, respectively, for K. daigremontiana and R 2 = 0.928 and 0.942, respectively, for A. tequilana). Sensitivity analyseswere conducted to quantitatively identify determinants of dielCO2 uptake. The transition in CAM expression from low to high volume/area tissues (elimination of phase II–IV carbon-uptake signatures)was achieved largely by themanipulation three input parameters.
A system dynamics ( SD ) approach was taken to model crassulacean acid metabolism ( CAM ) expression from measured biochemical and physiological constants. SD emphasizes state‐dependent feedback interaction to describe the emergent properties of a complex system. These mechanisms maintain biological systems with homeostatic limits on a temporal basis. Previous empirical studies on CAM have correlated biological constants (e.g. enzyme kinetic parameters) with expression over the CAM diel cycle. The SD model integrates these constants within the architecture of the CAM ‘system’. This allowed quantitative causal connections to be established between biological inputs and the four distinct phases of CAM delineated by gas exchange and malic acid accumulation traits. Regulation at flow junctions (e.g. stomatal and mesophyll conductance, and malic acid transport across the tonoplast) that are subject to feedback control (e.g. stomatal aperture, malic acid inhibition of phosphoenolpyruvate carboxylase, and enzyme kinetics) was simulated. Simulated expression for the leaf‐succulent Kalanchoë daigremontiana and more succulent tissues of Agave tequilana showed strong correlation with measured gas exchange and malic acid accumulation ( R 2  = 0.912 and 0.937, respectively, for K. daigremontiana and R 2  = 0.928 and 0.942, respectively, for A. tequilana ). Sensitivity analyses were conducted to quantitatively identify determinants of diel CO 2 uptake. The transition in CAM expression from low to high volume/area tissues (elimination of phase II – IV carbon‐uptake signatures) was achieved largely by the manipulation three input parameters. See also the Commentary by Borland and Yang
Author Howard Griffiths
Nick A. Owen
Author_xml – sequence: 1
  givenname: Nick A.
  surname: Owen
  fullname: Owen, Nick A.
  organization: University of Cambridge
– sequence: 2
  givenname: Howard
  surname: Griffiths
  fullname: Griffiths, Howard
  organization: University of Cambridge
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23992169$$D View this record in MEDLINE/PubMed
BookMark eNqFkstuEzEUhi1URC-w4AWQJTbtIqlv43iWUVQoUrksQGJneTxnEkczdrAdlXkBnhunSVhUQL3xwt__n3N8_nN04oMHhF5TMqXlXPvNakqZkPQZOqNC1hNF-ewEnRHC1EQK-f0Unae0JoTUlWQv0Cnjdc2orM_QrzlOY8ow4Hb0ZnA24SG00GPnMyyjyc4v8WY1Jhf6sByx8S1uXLArKKzpcYTlti9U8HgToXU2Jww_M_iMQ4dtNCmVdwvGY2NdiwfIpgm9SwO-XMw_XhVvkyC9RM870yd4dbgv0Ld3N18Xt5O7z-8_LOZ3E1sxSidgqrZhis2UNI1sTWU7OWss7xouofyE6Uyjuoq1zJCm5pVRktaCc6kaUSul-AW63PtuYvixhZT14JKFvjcewjZpVjHBlGCUP4nSivCqIjWRT6NCKj6TalYX9O0jdB220ZeZS23KCSld_peiQihWahJSqDcHatsM0OpNdIOJoz5utwDXe8DGkFKETluXH5aVo3G9pkTv8qNLfvRDfori6pHiaPo39uB-73oY_w3qT19uj4rpXrFOOcQ_Cg_3JWF5FzBXRmWEaLHzkPw3ySrkNg
CitedBy_id crossref_primary_10_1016_j_ccst_2023_100142
crossref_primary_10_1093_jxb_erac179
crossref_primary_10_1016_j_jtbi_2014_12_010
crossref_primary_10_1080_15384101_2018_1442622
crossref_primary_10_1093_jxb_erw303
crossref_primary_10_1042_BJ20140984
crossref_primary_10_1093_jxb_eru163
crossref_primary_10_1007_s11103_020_01016_9
crossref_primary_10_1111_nph_19128
crossref_primary_10_1111_nph_20032
crossref_primary_10_1093_aob_mcad039
crossref_primary_10_1093_biosci_biae057
crossref_primary_10_1111_pce_13918
crossref_primary_10_1071_FP22285
crossref_primary_10_1007_s11104_014_2064_2
crossref_primary_10_1111_pce_12610
crossref_primary_10_3389_fpls_2019_00659
crossref_primary_10_1016_j_ifacol_2015_11_011
crossref_primary_10_1038_s41467_017_01491_7
crossref_primary_10_1016_j_xplc_2023_100594
crossref_primary_10_1093_aob_mcad142
crossref_primary_10_1111_nph_13522
crossref_primary_10_1111_ppl_12386
crossref_primary_10_1016_j_ergon_2020_102984
crossref_primary_10_3389_fpls_2022_893095
crossref_primary_10_1093_aob_mcad109
crossref_primary_10_1111_nph_13393
crossref_primary_10_1093_jxb_erv087
crossref_primary_10_3390_cells10030582
crossref_primary_10_1093_jxb_eru038
crossref_primary_10_1016_j_ecolmodel_2018_06_012
crossref_primary_10_1016_j_scitotenv_2019_03_251
crossref_primary_10_1093_jxb_erz223
crossref_primary_10_1111_nph_16640
crossref_primary_10_1093_jxb_eru238
crossref_primary_10_1111_nph_17070
crossref_primary_10_1016_j_tplants_2014_01_006
crossref_primary_10_1007_s40484_017_0110_9
crossref_primary_10_1016_j_jaridenv_2019_01_016
crossref_primary_10_1186_s12864_018_4964_7
crossref_primary_10_1111_boj_12423
crossref_primary_10_1111_pce_12560
crossref_primary_10_34133_2020_3686791
crossref_primary_10_1093_jxb_ery383
crossref_primary_10_1007_s10265_015_0748_1
crossref_primary_10_1111_nph_12529
crossref_primary_10_1111_tpj_14691
crossref_primary_10_1016_j_plantsci_2018_06_012
Cites_doi 10.1007/s00425-002-0930-2
10.1093/jxb/erp036
10.1111/j.1469-8137.1991.tb01022.x
10.1093/jexbot/53.369.569
10.1093/aob/mch165
10.1071/PP97088
10.1104/pp.86.1.200
10.1111/gcbb.12094
10.1111/j.1757-1707.2010.01081.x
10.1093/jxb/erq006
10.1175/1520-0450(1967)006<0203:OTCOSV>2.0.CO;2
10.1104/pp.99.4.1348
10.1104/pp.106.2.493
10.1093/jxb/ert086
10.1104/pp.106.088302
10.1093/jxb/erp118
10.1046/j.1365-3040.2003.01094.x
10.1016/B978-0-12-380868-4.00004-1
10.1071/PP01244
10.1002/(SICI)1099-1727(199821)14:1<3::AID-SDR140>3.0.CO;2-K
10.1016/S1360-1385(99)01543-5
10.1093/jxb/err106
10.1111/j.1757-1707.2010.01078.x
10.1071/PP9820409
10.1071/PP01212
10.1007/s004250000408
10.1007/978-3-642-79060-7
10.1111/j.1757-1707.2010.01084.x
10.1046/j.1365-3040.1998.00379.x
10.1104/pp.95.4.981
10.1287/mnsc.14.7.398
10.1111/j.1365-3040.2012.02585.x
10.1046/j.1469-8137.2001.00155.x
10.1016/0168-1923(87)90024-4
10.1073/pnas.96.16.9438
10.1093/jxb/48.Special_Issue.623
10.1111/j.1365-3040.2007.01757.x
10.1104/pp.121.3.889
10.1007/s004250050079
10.1126/science.1069492
10.2307/1938497
10.1111/j.1757-1707.2010.01077.x
10.1104/pp.121.3.849
10.1046/j.1365-313X.1996.10061071.x
10.1039/c1ee01107c
10.1111/j.1365-3040.2012.02483.x
10.1042/BST20050945
10.1111/j.1469-8137.2005.01543.x
10.1007/BF00397441
10.1093/jxb/erh105
10.1111/pce.12075
10.1038/nature01254
10.1126/science.1069981
10.1093/jxb/erf081
10.1104/pp.58.4.576
10.1071/FP11028
10.1007/BF00193017
10.2307/2403334
10.1016/S1360-1385(00)01648-4
10.1093/jxb/ern085
10.1046/j.1365-3040.1998.00312.x
10.1104/pp.72.3.775
10.1017/CBO9780511896644.008
10.1111/j.1365-3040.2009.01951.x
10.1104/pp.71.1.71
10.1146/annurev.pp.29.060178.002115
10.1046/j.0016-8025.2001.00705.x
10.1007/BF00377535
ContentType Journal Article
Copyright 2013 New Phytologist Trust
2013 The Authors. New Phytologist © 2013 New Phytologist Trust
2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Copyright © 2013 New Phytologist Trust
Copyright_xml – notice: 2013 New Phytologist Trust
– notice: 2013 The Authors. New Phytologist © 2013 New Phytologist Trust
– notice: 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
– notice: Copyright © 2013 New Phytologist Trust
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/nph.12461
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Ecology Abstracts
AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
MEDLINE


CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 1131
ExternalDocumentID 3116387371
23992169
10_1111_nph_12461
NPH12461
newphytologist.200.4.1116
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Australian Rural Industries Research and Development Corporation (RIRDC)
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
29N
2WC
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZZTAW
~02
~IA
~KM
~WT
31~
AASVR
ABEFU
ABEML
ABGDZ
ACQPF
ADXHL
AGHNM
AS~
CAG
COF
GTFYD
HF~
HGD
HQ2
HTVGU
LPU
MVM
NEJ
RCA
WHG
XOL
YXE
ZCG
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c5211-ea5db282786ab6da5cf67bc3fb36e111afab8f52d2a0b935a861943368b498883
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Jul 11 18:29:22 EDT 2025
Fri Jul 11 15:23:03 EDT 2025
Thu Jul 10 18:31:04 EDT 2025
Fri Jul 25 12:13:46 EDT 2025
Fri Jul 25 10:22:47 EDT 2025
Thu Apr 03 06:52:25 EDT 2025
Tue Jul 01 03:09:15 EDT 2025
Thu Apr 24 23:13:09 EDT 2025
Wed Aug 20 07:25:48 EDT 2025
Thu Jul 03 22:54:53 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords CAM expression
system dynamics
model
stem and leaf succulents
enzyme kinetics
crassulacean acid metabolism (CAM)
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5211-ea5db282786ab6da5cf67bc3fb36e111afab8f52d2a0b935a861943368b498883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.12461
PMID 23992169
PQID 1448206300
PQPubID 2026848
PageCount 16
ParticipantIDs proquest_miscellaneous_2524284213
proquest_miscellaneous_1503550906
proquest_miscellaneous_1468376879
proquest_journals_2513008889
proquest_journals_1448206300
pubmed_primary_23992169
crossref_citationtrail_10_1111_nph_12461
crossref_primary_10_1111_nph_12461
wiley_primary_10_1111_nph_12461_NPH12461
jstor_primary_newphytologist_200_4_1116
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20131201
December 2013
2013-12-00
2013-Dec
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 20131201
  day: 1
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2013
Publisher New Phytologist Trust
Wiley Subscription Services, Inc
Publisher_xml – name: New Phytologist Trust
– name: Wiley Subscription Services, Inc
References 1968; 7
1984; 64
1984; 162
2002; 53
2000; 5
1997; 48
2007; 143
1983; 7
2013; 64
2011; 62
1991; 95
1990; 181
1999; 121
2008; 31
2000; 211
1985; 22
1992; 99
1987; 39
2010; 61
1991; 119
1994; 106
1982; 9
1978; 29
1999; 96
1988; 86
2005; 33
1998; 14
1988
2003; 216
2012
2010
2009; 60
2002; 295
2002b; 420
1997; 24
2008; 59
2007
1996
1983; 72
2004
1992
2011; 4
2012; 35
2011; 3
2002a; 295
1998; 21
2001; 24
1996; 10
1987; 170
2011; 7
1997; 201
1967; 6
2004; 55
2004; 94
2001; 151
1976; 58
2013; 36
2002; 29
2009; 32
2005; 168
1986; 67
2003; 26
2013
2001; 33
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_65_1
e_1_2_5_67_1
e_1_2_5_69_1
e_1_2_5_29_1
Nobel PS (e_1_2_5_54_1) 2001; 33
e_1_2_5_61_1
e_1_2_5_63_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_59_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_57_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_55_1
e_1_2_5_5_1
Bossel H (e_1_2_5_10_1) 2007
e_1_2_5_76_1
e_1_2_5_3_1
e_1_2_5_19_1
e_1_2_5_70_1
e_1_2_5_72_1
e_1_2_5_74_1
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_51_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_66_1
e_1_2_5_68_1
e_1_2_5_60_1
e_1_2_5_62_1
e_1_2_5_64_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_58_1
e_1_2_5_8_1
e_1_2_5_35_1
e_1_2_5_56_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
Nobel PS (e_1_2_5_52_1) 1988
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
Nimmo GA (e_1_2_5_45_1) 1987; 170
e_1_2_5_71_1
e_1_2_5_73_1
e_1_2_5_75_1
e_1_2_5_31_1
e_1_2_5_50_1
24571665 - New Phytol. 2013 Dec;200(4):946-9
References_xml – volume: 53
  start-page: 569
  year: 2002
  end-page: 580
  article-title: Crassulacean acid metabolism: plastic, fantastic
  publication-title: Journal of Experimental Botany
– volume: 60
  start-page: 2249
  year: 2009
  end-page: 2270
  article-title: Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field
  publication-title: Journal of Experimental Botany
– volume: 33
  start-page: 945
  year: 2005
  end-page: 948
  article-title: The co‐ordination of central plant metabolism by the circadian clock
  publication-title: Biochemical Society Transactions
– volume: 61
  start-page: 1375
  year: 2010
  end-page: 1383
  article-title: Contribution of carbon fixed by Rubisco and PEPC to phloem export in the Crassulacean acid metabolism plant
  publication-title: Journal of Experimental Botany
– volume: 72
  start-page: 775
  year: 1983
  end-page: 780
  article-title: Water relations, diurnal acidity changes, and productivity of a cultivated cactus,
  publication-title: Plant Physiology
– volume: 4
  start-page: 3110
  year: 2011
  end-page: 3121
  article-title: Life cycle energy and greenhouse gas analysis for ‐derived bioethanol
  publication-title: Energy & Environmental Science
– volume: 96
  start-page: 9438
  year: 1999
  end-page: 9443
  article-title: Mechanism of light regulation of Rubisco: a specific role for the larger Rubisco activase isoform involving reductive activation by thioredoxin‐f
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 181
  start-page: 604
  year: 1990
  end-page: 610
  article-title: Short‐term changes in carbon‐isotope discrimination identify transitions between C and C carboxylation during crassulacean acid metabolism
  publication-title: Planta
– volume: 36
  start-page: 733
  year: 2013
  end-page: 735
  article-title: Mesophyll conductance: internal insights of leaf carbon exchange
  publication-title: Plant, Cell & Environment
– volume: 64
  start-page: 2269
  year: 2013
  end-page: 2281
  article-title: Importance of leaf anatomy in determining mesophyll diffusion conductance to CO across species: quantitative limitations and scaling up by models
  publication-title: Journal of Experimental Botany
– volume: 21
  start-page: 775
  year: 1998
  end-page: 784
  article-title: Oscillatory model of crassulacean acid metabolism: structural analysis and stability boundaries with a discrete hysteresis switch
  publication-title: Plant, Cell & Environment
– volume: 59
  start-page: 1851
  year: 2008
  end-page: 1961
  article-title: Leaf succulence determines the interplay between carboxylase systems and light use during crassulacean acid metabolism in
  publication-title: Journal of Experimental Botany
– volume: 216
  start-page: 789
  year: 2003
  end-page: 797
  article-title: Integrating diel starch metabolism with the circadian and environmental regulation of Crassulacean acid metabolism in
  publication-title: Planta
– volume: 24
  start-page: 657
  year: 2001
  end-page: 662
  article-title: The role of epidermal turgor in stomatal interactions
  publication-title: Plant, Cell & Environment
– volume: 58
  start-page: 576
  year: 1976
  end-page: 582
  article-title: Water relations and photosynthesis of a desert CAM Plant,
  publication-title: Plant Physiology
– volume: 170
  start-page: 408
  year: 1987
  end-page: 415
  article-title: Persistent circadian rhythms in the phosphorylation state of phosphoenolpyruvate carboxylase from leaves and its sensitivity to inhibition by malate
  publication-title: Tracks A Journal of Artists Writings
– volume: 53
  start-page: 449
  year: 2002
  end-page: 475
  article-title: Rubisco: structure, regulatory interactions, and possibilities for a better enzyme
  publication-title: Annual Review of Plant Biology
– volume: 121
  start-page: 889
  year: 1999
  end-page: 896
  article-title: Metabolite control overrides circadian regulation of phosphoenolpyruvate carboxylase kinase and CO fixation in crassulacean acid metabolism
  publication-title: Plant Physiology
– volume: 7
  start-page: 398
  year: 1968
  end-page: 415
  article-title: Industrial dynamics – after the first decade
  publication-title: Management Science
– volume: 9
  start-page: 409
  year: 1982
  end-page: 422
  article-title: Purification and properties of Phosphoenolpyruvate carboxylase from plants with crassulacean acid metabolism
  publication-title: Australian Journal of Plant Physiology
– volume: 99
  start-page: 1348
  year: 1992
  end-page: 1353
  article-title: Dissociation of Ribulose‐1, 5‐Bisphosphate bound to Ribulose‐1, 5‐Bisphosphate Carboxylase/Oxygenase and its enhancement by Ribulose‐1,5‐Bisphosphate Carboxylase/Oxygenase Activase‐mediated hydrolysis of ATP
  publication-title: Plant Physiology
– volume: 62
  start-page: 4037
  year: 2011
  end-page: 4042
  article-title: Drought‐stress‐induced up‐regulation of CAM in seedlings of a tropical cactus, , operating predominantly in the C mode
  publication-title: Journal of Experimental Botany
– volume: 36
  start-page: 249
  year: 2013
  end-page: 261
  article-title: You're so vein: bundle sheath physiology, phylogeny and evolution in C and C plants
  publication-title: Plant, Cell & Environment
– volume: 3
  start-page: 37
  year: 2011
  end-page: 42
  article-title: Ethanol production from two varieties of henequen ( Lem)
  publication-title: GCB Bioenergy
– year: 2013
  article-title: Marginal land bioethanol yield potential of four crassulacean acid metabolism candidates ( , , and ) in Australia
  publication-title: GCB Bioenergy
– volume: 420
  start-page: 206
  year: 2002b
  end-page: 210
  article-title: Computational systems biology
  publication-title: Nature
– volume: 64
  start-page: 1
  year: 1984
  end-page: 7
  article-title: Productivity of : measurement by dry weight and monthly prediction using physiological responses to environmental parameters
  publication-title: Oecologia
– volume: 201
  start-page: 368
  year: 1997
  end-page: 378
  article-title: A comparative study on the regulation of C and C carboxylation processes in the constitutive crassulacean acid metabolism (CAM) plant and the C ‐CAM intermediate
  publication-title: Planta
– year: 2004
– volume: 48
  start-page: 623
  year: 1997
  end-page: 631
  article-title: Malate transport and vacuolar ion channels in CAM plants
  publication-title: Journal of Experimental Botany
– volume: 211
  start-page: 761
  year: 2000
  end-page: 769
  article-title: The tonoplast functioning as the master switch for circadian regulation of crassulacean acid metabolism
  publication-title: Planta
– volume: 5
  start-page: 258
  year: 2000
  end-page: 262
  article-title: Patchy stomatal conductance: emergent collective behaviour of stomata
  publication-title: Trends in Plant Science
– volume: 22
  start-page: 157
  year: 1985
  end-page: 173
  article-title: PAR, water, and temperature limitations on the productivity of cultivated (HENEQUEN)
  publication-title: Journal of Applied Ecology
– volume: 67
  start-page: 1
  year: 1986
  end-page: 11
  article-title: Environmental productivity indices for a Chihuahuan Desert CAM plant:
  publication-title: Ecology
– volume: 29
  start-page: 689
  year: 2002
  end-page: 696
  article-title: Regulation of Rubisco activity in crassulacean acid metabolism plants: better late than never
  publication-title: Functional Plant Biology
– volume: 26
  start-page: 1767
  year: 2003
  end-page: 1785
  article-title: A hydromechanical and biochemical model of stomatal conductance
  publication-title: Plant, Cell & Environment
– volume: 295
  start-page: 1664
  year: 2002
  end-page: 1669
  article-title: Reverse engineering of biological complexity
  publication-title: Science (New York, NY)
– volume: 29
  start-page: 379
  year: 1978
  end-page: 414
  article-title: Crassulacean acid metabolism: a curiosity in context
  publication-title: Annual Review Plant Physiology
– volume: 55
  start-page: 1255
  year: 2004
  end-page: 1265
  article-title: Synchronization of metabolic processes in plants with crassulacean acid metabolism
  publication-title: Journal of Experimental Botany
– volume: 295
  start-page: 1662
  year: 2002a
  end-page: 1664
  article-title: Systems biology: a brief overview
  publication-title: Science (New York, NY)
– volume: 53
  start-page: 2131
  year: 2002
  end-page: 2142
  article-title: CO ‐concentrating: consequences in crassulacean acid metabolism
  publication-title: Journal of Experimental Botany
– volume: 14
  start-page: 3
  year: 1998
  end-page: 29
  article-title: Mental models concepts for system dynamics research
  publication-title: Systems Dynamics Review
– volume: 119
  start-page: 183
  year: 1991
  end-page: 205
  article-title: Tansley Review No. 32. Achievable productivities of certain CAM plants: basis for high values compared with C and C plants
  publication-title: New Phytologist
– volume: 60
  start-page: 2879
  year: 2009
  end-page: 2896
  article-title: Exploiting the potential of plants with crassulacean acid metabolism for bioenergy production on marginal lands
  publication-title: Journal of Experimental Botany
– volume: 143
  start-page: 1055
  year: 2007
  end-page: 1067
  article-title: Discrimination in the dark. Resolving the interplay between metabolic and physical constraints to phosphoenolpyruvate carboxylase activity during the crassulacean acid metabolism cycle
  publication-title: Plant Physiology
– volume: 3
  start-page: 68
  year: 2011
  end-page: 78
  article-title: The global potential for as a biofuel feedstock
  publication-title: GCB Bioenergy
– volume: 6
  start-page: 203
  year: 1967
  end-page: 204
  article-title: On the computation of saturation vapour pressure
  publication-title: Applied Meteorology
– volume: 106
  start-page: 493
  year: 1994
  end-page: 501
  article-title: Carbon‐isotope composition of biochemical fractions and the regulation of carbon balance in leaves of the C ‐crassulacean acid metabolism intermediate L. growing in Trinidad
  publication-title: Plant Physiology
– volume: 33
  start-page: 312
  year: 2001
  end-page: 318
  article-title: Net CO uptake for in a warm and a temperate environment
  publication-title: Biotropica
– year: 2007
– volume: 3
  start-page: 43
  year: 2011
  end-page: 57
  article-title: for tequila and biofuels: an economic assessment and potential opportunities
  publication-title: GCB Bioenergy
– volume: 94
  start-page: 449
  year: 2004
  end-page: 455
  article-title: Day‐night changes of energy‐rich compounds in crassulacean acid metabolism (CAM) species utilizing hexose and starch
  publication-title: Annals of Botany
– volume: 35
  start-page: 1211
  year: 2012
  end-page: 1220
  article-title: Competing carboxylases: circadian and metabolic regulation of Rubisco in C and CAM
  publication-title: Plant, Cell & Environment
– volume: 7
  start-page: 71
  year: 1983
  end-page: 75
  article-title: Relationships between photosynthetically active radiation, nocturnal acid accumulation, and CO uptake for a crassulacean acid metabolism plant,
  publication-title: Plant Physiology
– year: 1996
– volume: 10
  start-page: 1071
  year: 1996
  end-page: 1078
  article-title: Higher plant phosphoenolpyruvate carboxylase kinase is regulated at the level of translatable mRNA in response to light or a circadian rhythm
  publication-title: Plant Journal
– volume: 95
  start-page: 981
  year: 1991
  end-page: 985
  article-title: Posttranslational regulation of phosphoenolpyruvate carboxylase in C and crassulacean acid metabolism plants
  publication-title: Plant Physiology
– volume: 39
  start-page: 319
  year: 1987
  end-page: 334
  article-title: Environmental responses and productivity of the CAM plant,
  publication-title: Agriculture and Forest Meteorology
– volume: 151
  start-page: 91
  year: 2001
  end-page: 97
  article-title: PEP carboxylase kinase is a novel protein kinase controlled at the level of expression
  publication-title: New Phytologist
– year: 2010
– year: 2012
– volume: 86
  start-page: 200
  year: 1988
  end-page: 203
  article-title: Do stomata respond to CO concentrations other than intercellular?
  publication-title: Plant Physiology
– start-page: 141
  year: 1992
  end-page: 167
– volume: 5
  start-page: 75
  year: 2000
  end-page: 80
  article-title: The regulation of phosphoenolpyruvate carboxylase in CAM plants
  publication-title: Trends in Plant Science
– volume: 162
  start-page: 204
  year: 1984
  end-page: 214
  article-title: A dynamic computer model of the metabolic and regulatory processes in Crassulacean acid metabolism
  publication-title: Planta
– volume: 32
  start-page: 567
  year: 2009
  end-page: 576
  article-title: Stomatal responses to CO during a diel crassulacean acid metabolism cycle in and
  publication-title: Plant, Cell & Environment
– volume: 3
  start-page: 4
  year: 2011
  end-page: 14
  article-title: Highlights for Agave productivity
  publication-title: GCB Bioenergy
– year: 1988
– volume: 7
  start-page: 576
  year: 2011
  end-page: 582
  article-title: Induction and reversal of crassulacean acid metabolism in : effects of soil moisture and nutrients
  publication-title: Functional Plant Biology
– volume: 31
  start-page: 602
  year: 2008
  end-page: 621
  article-title: Mesophyll conductance to CO : current knowledge and future prospects
  publication-title: Plant, Cell & Environment
– volume: 24
  start-page: 777
  year: 1997
  end-page: 786
  article-title: Is a low internal conductance to CO diffusion a consequence of succulence in plants with crassulacean acid metabolism?
  publication-title: Australian Journal of Plant Physiology
– volume: 121
  start-page: 849
  year: 1999
  end-page: 856
  article-title: Modulation of Rubisco activity during the diurnal phases of the crassulacean acid metabolism plant
  publication-title: Plant Physiology
– volume: 29
  start-page: 669
  year: 2002
  end-page: 678
  article-title: Environmental, hormonal and circadian regulation of crassulacean acid metabolism expression
  publication-title: Functional Plant Biology
– volume: 168
  start-page: 275
  year: 2005
  end-page: 292
  article-title: The control of stomata by water balance
  publication-title: New Phytologist
– volume: 39
  start-page: 319
  year: 1987
  end-page: 334
  article-title: Environmental responses of the CAM Plant,
  publication-title: Agricultural and Forest Meteorology
– ident: e_1_2_5_19_1
  doi: 10.1007/s00425-002-0930-2
– ident: e_1_2_5_44_1
  doi: 10.1093/jxb/erp036
– ident: e_1_2_5_53_1
  doi: 10.1111/j.1469-8137.1991.tb01022.x
– ident: e_1_2_5_18_1
  doi: 10.1093/jexbot/53.369.569
– ident: e_1_2_5_14_1
  doi: 10.1093/aob/mch165
– ident: e_1_2_5_39_1
  doi: 10.1071/PP97088
– ident: e_1_2_5_40_1
  doi: 10.1104/pp.86.1.200
– ident: e_1_2_5_63_1
  doi: 10.1111/gcbb.12094
– ident: e_1_2_5_37_1
  doi: 10.1111/j.1757-1707.2010.01081.x
– ident: e_1_2_5_71_1
  doi: 10.1093/jxb/erq006
– ident: e_1_2_5_43_1
  doi: 10.1175/1520-0450(1967)006<0203:OTCOSV>2.0.CO;2
– ident: e_1_2_5_70_1
  doi: 10.1104/pp.99.4.1348
– ident: e_1_2_5_5_1
  doi: 10.1104/pp.106.2.493
– ident: e_1_2_5_67_1
  doi: 10.1093/jxb/ert086
– ident: e_1_2_5_26_1
  doi: 10.1104/pp.106.088302
– ident: e_1_2_5_6_1
  doi: 10.1093/jxb/erp118
– ident: e_1_2_5_12_1
  doi: 10.1046/j.1365-3040.2003.01094.x
– volume: 33
  start-page: 312
  year: 2001
  ident: e_1_2_5_54_1
  article-title: Net CO2 uptake for Agave tequilana in a warm and a temperate environment
  publication-title: Biotropica
– volume: 170
  start-page: 408
  year: 1987
  ident: e_1_2_5_45_1
  article-title: Persistent circadian rhythms in the phosphorylation state of phosphoenolpyruvate carboxylase from Bryophyllum fedtschenkoi leaves and its sensitivity to inhibition by malate
  publication-title: Tracks A Journal of Artists Writings
– ident: e_1_2_5_61_1
  doi: 10.1016/B978-0-12-380868-4.00004-1
– ident: e_1_2_5_66_1
  doi: 10.1071/PP01244
– ident: e_1_2_5_20_1
  doi: 10.1002/(SICI)1099-1727(199821)14:1<3::AID-SDR140>3.0.CO;2-K
– ident: e_1_2_5_46_1
  doi: 10.1016/S1360-1385(99)01543-5
– ident: e_1_2_5_72_1
  doi: 10.1093/jxb/err106
– ident: e_1_2_5_23_1
  doi: 10.1111/j.1757-1707.2010.01078.x
– ident: e_1_2_5_58_1
  doi: 10.1071/PP9820409
– ident: e_1_2_5_24_1
  doi: 10.1071/PP01212
– ident: e_1_2_5_35_1
  doi: 10.1007/s004250000408
– ident: e_1_2_5_74_1
  doi: 10.1007/978-3-642-79060-7
– ident: e_1_2_5_59_1
  doi: 10.1111/j.1757-1707.2010.01084.x
– ident: e_1_2_5_65_1
  doi: 10.1046/j.1365-3040.1998.00379.x
– ident: e_1_2_5_32_1
  doi: 10.1104/pp.95.4.981
– ident: e_1_2_5_22_1
  doi: 10.1287/mnsc.14.7.398
– ident: e_1_2_5_29_1
  doi: 10.1111/j.1365-3040.2012.02585.x
– ident: e_1_2_5_47_1
  doi: 10.1046/j.1469-8137.2001.00155.x
– ident: e_1_2_5_51_1
  doi: 10.1016/0168-1923(87)90024-4
– volume-title: Environmental biology of Agaves and cacti
  year: 1988
  ident: e_1_2_5_52_1
– ident: e_1_2_5_68_1
– ident: e_1_2_5_76_1
  doi: 10.1073/pnas.96.16.9438
– ident: e_1_2_5_13_1
  doi: 10.1093/jxb/48.Special_Issue.623
– ident: e_1_2_5_21_1
  doi: 10.1111/j.1365-3040.2007.01757.x
– ident: e_1_2_5_7_1
  doi: 10.1104/pp.121.3.889
– ident: e_1_2_5_4_1
  doi: 10.1007/s004250050079
– ident: e_1_2_5_33_1
  doi: 10.1126/science.1069492
– ident: e_1_2_5_56_1
  doi: 10.2307/1938497
– ident: e_1_2_5_17_1
  doi: 10.1111/j.1757-1707.2010.01077.x
– ident: e_1_2_5_38_1
  doi: 10.1104/pp.121.3.849
– ident: e_1_2_5_31_1
  doi: 10.1046/j.1365-313X.1996.10061071.x
– ident: e_1_2_5_75_1
  doi: 10.1039/c1ee01107c
– ident: e_1_2_5_16_1
  doi: 10.1111/j.1365-3040.2012.02483.x
– ident: e_1_2_5_30_1
  doi: 10.1042/BST20050945
– ident: e_1_2_5_11_1
  doi: 10.1111/j.1469-8137.2005.01543.x
– ident: e_1_2_5_60_1
  doi: 10.1007/BF00397441
– ident: e_1_2_5_8_1
  doi: 10.1093/jxb/erh105
– ident: e_1_2_5_27_1
  doi: 10.1111/pce.12075
– ident: e_1_2_5_34_1
  doi: 10.1038/nature01254
– ident: e_1_2_5_15_1
  doi: 10.1126/science.1069981
– ident: e_1_2_5_36_1
  doi: 10.1093/jxb/erf081
– ident: e_1_2_5_48_1
  doi: 10.1104/pp.58.4.576
– ident: e_1_2_5_73_1
  doi: 10.1071/FP11028
– ident: e_1_2_5_25_1
  doi: 10.1007/BF00193017
– ident: e_1_2_5_50_1
  doi: 10.2307/2403334
– ident: e_1_2_5_9_1
– ident: e_1_2_5_41_1
  doi: 10.1016/S1360-1385(00)01648-4
– ident: e_1_2_5_28_1
  doi: 10.1093/jxb/ern085
– ident: e_1_2_5_57_1
  doi: 10.1016/0168-1923(87)90024-4
– ident: e_1_2_5_3_1
  doi: 10.1046/j.1365-3040.1998.00312.x
– ident: e_1_2_5_2_1
  doi: 10.1104/pp.72.3.775
– volume-title: System Zoo 1: simulation models
  year: 2007
  ident: e_1_2_5_10_1
– ident: e_1_2_5_64_1
  doi: 10.1017/CBO9780511896644.008
– ident: e_1_2_5_69_1
  doi: 10.1111/j.1365-3040.2009.01951.x
– ident: e_1_2_5_55_1
  doi: 10.1104/pp.71.1.71
– ident: e_1_2_5_62_1
  doi: 10.1146/annurev.pp.29.060178.002115
– ident: e_1_2_5_42_1
  doi: 10.1046/j.0016-8025.2001.00705.x
– ident: e_1_2_5_49_1
  doi: 10.1007/BF00377535
– reference: 24571665 - New Phytol. 2013 Dec;200(4):946-9
SSID ssj0009562
Score 2.324448
Snippet A system dynamics (SD) approach was taken to model crassulacean acid metabolism (CAM) expression from measured biochemical and physiological constants. SD...
Summary A system dynamics (SD) approach was taken to model crassulacean acid metabolism (CAM) expression from measured biochemical and physiological constants....
A system dynamics ( SD ) approach was taken to model crassulacean acid metabolism ( CAM ) expression from measured biochemical and physiological constants. SD...
Summary A system dynamics (SD) approach was taken to model crassulacean acid metabolism (CAM) expression from measured biochemical and physiological constants....
SourceID proquest
pubmed
crossref
wiley
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1116
SubjectTerms Accumulation
Acids
Agave
Agave - metabolism
Agave - physiology
Agave tequilana
Atmospherics
CAM expression
Carbon dioxide
Carbon Dioxide - metabolism
Complex systems
Computer Simulation
Conductance
Constants
Crassulacean acid metabolism
crassulacean acid metabolism (CAM)
Cytosol
Decarboxylation
dynamic models
Dynamics
Empirical analysis
Enzyme kinetics
Enzymes
Feedback
Feedback control
Gas exchange
Kalanchoe - metabolism
Kalanchoe - physiology
Kinetics
Malic acid
Mathematical models
Mesophyll
Metabolic Engineering
Metabolism
Model testing
Modeling
Models, Biological
Multivariate Analysis
Parameters
Phosphoenolpyruvate carboxylase
Photosynthesis - physiology
Physiological regulation
Physiology
Plant Stomata - physiology
Plants
Reproducibility of Results
Resistance
Sensitivity analysis
stem and leaf succulents
Stomata
stomatal movement
System dynamics
Systems Biology
Time Factors
Tissue
tonoplast
Uptake
Title A system dynamics model integrating physiology and biochemical regulation predicts extent of crassulacean acid metabolism (CAM) phases
URI https://www.jstor.org/stable/newphytologist.200.4.1116
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.12461
https://www.ncbi.nlm.nih.gov/pubmed/23992169
https://www.proquest.com/docview/1448206300
https://www.proquest.com/docview/2513008889
https://www.proquest.com/docview/1468376879
https://www.proquest.com/docview/1503550906
https://www.proquest.com/docview/2524284213
Volume 200
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBel9GEv27pPb93QxmDZg4Otr9jsKSsrYdAyxgp5GBhJlmlY64TYeWj_gP7dvZNs0450jL0FdLYj-U73u_Ppd4R84CrT4CXzmJtMxUJIB_ug1fEEwHgK_o05hwecj0_U7FR8m8v5Dvncn4UJ_BBDwg0tw-_XaODaNLeMvF6djVNkQ4P9F2u1EBD9YLcIdxXrGZiVUPOOVQireIYr7_iiUI64DWjexa3e8Rw9Ir_6vxzqTX6PN60Z26s_2Bz_c06PycMOkNJp0KB9suPqJ2TvyxJA4-VTcj2lgeuZlqF1fUN97xza00yA56M-O-LT81TXJTUL7MLlaQjoOrS6h5dPV2v8JtQ21OfdW7qsqF0DdN9gIl_XVNtFSS9cC1p5vmgu6OhwevwJ7g1utnlGTo--_jycxV3rhtgCHkhjp2VpIJqbZEobVWppKzUxlleGKwdz1ZU2WSVZyXRici51htkUDppjRA5BOX9Odutl7V4SmkvtlOG8FNZCLGmMBRSTVlWau7wqpYzIqH-Jhe14zbG9xnnRxzewqoVf1Yi8H0RXgcxjm9BHrwmDBIQ3sI6-mzBYHvbtLAReoyJy0OtK0Vl-A6GUQEp8niRbhwFOwhDMMI_Iu2EYTBq_0-jaLTd4C5XBvp9N_iYjE7CkJE_U_TJMAv7KBEt5RF4EVR4mhUeaWargCSOvkPevR3HyfeZ_vPp30dfkAcO2Ib7s54DstuuNewPgrTVvvZXeACJsQPo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VgkQvvB-BAgYhsRyySuLYm0hclopqge4KoVbaC4psxxGrttnVJnuAH8DvZsZ5qEVbhLhF8uRhZ8bzzdj-BuA1l4lCL5n6XCfSj2NhcR40yh8hGA_Rv0XW0gHn6UxOTuJPczHfgXfdWZiGH6JPuJFluPmaDJwS0hesvFx9H4ZEh3YNrlNFbxdQfY0uUO7KqONglrGct7xCtI-nv_WSN2o2JG6DmpeRq3M9h7fhW_fRzY6T0-Gm1kPz8w8-x__t1R241WJSNm6U6C7s2PIe3Hi_RNz44z78GrOG7pnlTfX6irnyOaxjmkDnx1yCxGXomSpzphdUiMsxEbB1U-0e_z9brWlZqK6YS73XbFkws0b0vqFcviqZMoucndsaFfNsUZ2zwcF4-hafjZ62egAnhx-ODyZ-W73BNwgJQt8qkWsM6EaJVFrmSphCjrThhebSYl9VoXRSiCiPVKBTLlRCCRWOyqPjFONy_hB2y2VpHwNLhbJSc57HxmA4qbVBIBMWRZjatMiF8GDQ_cXMtNTmVGHjLOtCHBzVzI2qB6960VXD57FN6I1ThV4CIxwcR1dQGI2PSndmMd0jPdjvlCVrjb_CaComVnweBFubEVFiE_Yw9eBl34xWTUs1qrTLDT1CJjj1J6O_yYgAjSlIA3m1TCQQgiVxFHIPHjW63HeKTjVHocQ3DJxGXj0e2ezLxF08-XfRF3Bzcjw9yo4-zj4_hb2Iqoi4XUD7sFuvN_YZYrlaP3cm-xsD3kUV
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zj9MwEB4tC0K8cB-BBQxCojykSuKjjngqu1Tl2GqFWKkPK0W244iK3bRq0gf4Afxuxs6hXdRFiLdInhx2ZjzfjO1vAF5RIRV6yTSkWoqQMW5xHjQqHCEYj9G_Jda6A86HMzE9Zh_nfL4Db7uzMA0_RJ9wc5bh52tn4Ku8OGfk5erbMHZsaFfgKhORdCp98CU5x7grko6CWTAxb2mF3Dae_tYLzqjZj7gNaV4Ert7zTG7BSffNzYaT78NNrYfm5x90jv_Zqdtws0WkZNyo0B3YseVduPZuiajxxz34NSYN2TPJm9r1FfHFc0jHM4Guj_j0iM_PE1XmRC9cGS7PQ0DWTa17_PtktXaLQnVFfOK9JsuCmDVi943L5KuSKLPIyZmtUS1PF9UZGeyPD9_gs9HPVvfhePL-6_40bGs3hAYBQRxaxXON4dxICqVFrrgpxEgbWmgqLPZVFUrLgid5oiKdUq6kS6dQVB3NUozK6QPYLZelfQQk5coKTWnOjMFgUmuDMCYuiji1aZFzHsCg-4mZaYnNXX2N06wLcHBUMz-qAbzsRVcNm8c2oddeE3oJjG9wHH05YTQ9V7gzY-4eEcBepytZa_oVxlLMceLTKNrajHgSm7CHaQAv-ma0abdQo0q73LhHCIkTvxz9TYZHaEpRGonLZRKOAEyyJKYBPGxUue-UO9OcxALfMPAKefl4ZLOjqb94_O-iz-H60cEk-_xh9ukJ3EhcCRG_BWgPduv1xj5FIFfrZ95gfwMlrUPN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+system+dynamics+model+integrating+physiology+and+biochemical+regulation+predicts+extent+of+crassulacean+acid+metabolism+%28CAM%29+phases&rft.jtitle=The+New+phytologist&rft.au=Owen%2C+Nick+A&rft.au=Griffiths%2C+Howard&rft.date=2013-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1469-8137&rft.volume=200&rft.issue=4&rft.spage=1116&rft.epage=1131&rft_id=info:doi/10.1111%2Fnph.12461&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon