Stimulation in primary and secondary metabolism by elevated carbon dioxide alters green tea quality in Camellia sinensis L

Rising CO 2 concentration, a driving force of climate change, is impacting global food security by affecting plant physiology. Nevertheless, the effects of elevated CO 2 on primary and secondary metabolism in tea plants ( Camellia sinensis L.) still remain largely unknown. Here we showed that exposu...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 7; no. 1; pp. 7937 - 12
Main Authors Li, Xin, Zhang, Lan, Ahammed, Golam Jalal, Li, Zhi-Xin, Wei, Ji-Peng, Shen, Chen, Yan, Peng, Zhang, Li-Ping, Han, Wen-Yan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 11.08.2017
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rising CO 2 concentration, a driving force of climate change, is impacting global food security by affecting plant physiology. Nevertheless, the effects of elevated CO 2 on primary and secondary metabolism in tea plants ( Camellia sinensis L.) still remain largely unknown. Here we showed that exposure of tea plants to elevated CO 2 (800 µmol mol −1 for 24 d) remarkably improved both photosynthesis and respiration in tea leaves. Furthermore, elevated CO 2 increased the concentrations of soluble sugar, starch and total carbon, but decreased the total nitrogen concentration, resulting in an increased carbon to nitrogen ratio in tea leaves. Among the tea quality parameters, tea polyphenol, free amino acid and theanine concentrations increased, while the caffeine concentration decreased after CO 2 enrichment. The concentrations of individual catechins were altered differentially resulting in an increased total catechins concentration under elevated CO 2 condition. Real-time qPCR analysis revealed that the expression levels of catechins and theanine biosynthetic genes were up-regulated, while that of caffeine synthetic genes were down-regulated in tea leaves when grown under elevated CO 2 condition. These results unveiled profound effects of CO 2 enrichment on photosynthesis and respiration in tea plants, which eventually modulated the biosynthesis of key secondary metabolites towards production of a quality green tea.
AbstractList Rising CO 2 concentration, a driving force of climate change, is impacting global food security by affecting plant physiology. Nevertheless, the effects of elevated CO 2 on primary and secondary metabolism in tea plants ( Camellia sinensis L.) still remain largely unknown. Here we showed that exposure of tea plants to elevated CO 2 (800 µmol mol −1 for 24 d) remarkably improved both photosynthesis and respiration in tea leaves. Furthermore, elevated CO 2 increased the concentrations of soluble sugar, starch and total carbon, but decreased the total nitrogen concentration, resulting in an increased carbon to nitrogen ratio in tea leaves. Among the tea quality parameters, tea polyphenol, free amino acid and theanine concentrations increased, while the caffeine concentration decreased after CO 2 enrichment. The concentrations of individual catechins were altered differentially resulting in an increased total catechins concentration under elevated CO 2 condition. Real-time qPCR analysis revealed that the expression levels of catechins and theanine biosynthetic genes were up-regulated, while that of caffeine synthetic genes were down-regulated in tea leaves when grown under elevated CO 2 condition. These results unveiled profound effects of CO 2 enrichment on photosynthesis and respiration in tea plants, which eventually modulated the biosynthesis of key secondary metabolites towards production of a quality green tea.
Rising CO concentration, a driving force of climate change, is impacting global food security by affecting plant physiology. Nevertheless, the effects of elevated CO on primary and secondary metabolism in tea plants (Camellia sinensis L.) still remain largely unknown. Here we showed that exposure of tea plants to elevated CO (800 µmol mol for 24 d) remarkably improved both photosynthesis and respiration in tea leaves. Furthermore, elevated CO increased the concentrations of soluble sugar, starch and total carbon, but decreased the total nitrogen concentration, resulting in an increased carbon to nitrogen ratio in tea leaves. Among the tea quality parameters, tea polyphenol, free amino acid and theanine concentrations increased, while the caffeine concentration decreased after CO enrichment. The concentrations of individual catechins were altered differentially resulting in an increased total catechins concentration under elevated CO condition. Real-time qPCR analysis revealed that the expression levels of catechins and theanine biosynthetic genes were up-regulated, while that of caffeine synthetic genes were down-regulated in tea leaves when grown under elevated CO condition. These results unveiled profound effects of CO enrichment on photosynthesis and respiration in tea plants, which eventually modulated the biosynthesis of key secondary metabolites towards production of a quality green tea.
Rising CO2 concentration, a driving force of climate change, is impacting global food security by affecting plant physiology. Nevertheless, the effects of elevated CO2 on primary and secondary metabolism in tea plants (Camellia sinensis L.) still remain largely unknown. Here we showed that exposure of tea plants to elevated CO2 (800 µmol mol−1 for 24 d) remarkably improved both photosynthesis and respiration in tea leaves. Furthermore, elevated CO2 increased the concentrations of soluble sugar, starch and total carbon, but decreased the total nitrogen concentration, resulting in an increased carbon to nitrogen ratio in tea leaves. Among the tea quality parameters, tea polyphenol, free amino acid and theanine concentrations increased, while the caffeine concentration decreased after CO2 enrichment. The concentrations of individual catechins were altered differentially resulting in an increased total catechins concentration under elevated CO2 condition. Real-time qPCR analysis revealed that the expression levels of catechins and theanine biosynthetic genes were up-regulated, while that of caffeine synthetic genes were down-regulated in tea leaves when grown under elevated CO2 condition. These results unveiled profound effects of CO2 enrichment on photosynthesis and respiration in tea plants, which eventually modulated the biosynthesis of key secondary metabolites towards production of a quality green tea.
Abstract Rising CO2 concentration, a driving force of climate change, is impacting global food security by affecting plant physiology. Nevertheless, the effects of elevated CO2 on primary and secondary metabolism in tea plants (Camellia sinensis L.) still remain largely unknown. Here we showed that exposure of tea plants to elevated CO2 (800 µmol mol−1 for 24 d) remarkably improved both photosynthesis and respiration in tea leaves. Furthermore, elevated CO2 increased the concentrations of soluble sugar, starch and total carbon, but decreased the total nitrogen concentration, resulting in an increased carbon to nitrogen ratio in tea leaves. Among the tea quality parameters, tea polyphenol, free amino acid and theanine concentrations increased, while the caffeine concentration decreased after CO2 enrichment. The concentrations of individual catechins were altered differentially resulting in an increased total catechins concentration under elevated CO2 condition. Real-time qPCR analysis revealed that the expression levels of catechins and theanine biosynthetic genes were up-regulated, while that of caffeine synthetic genes were down-regulated in tea leaves when grown under elevated CO2 condition. These results unveiled profound effects of CO2 enrichment on photosynthesis and respiration in tea plants, which eventually modulated the biosynthesis of key secondary metabolites towards production of a quality green tea.
Rising CO2 concentration, a driving force of climate change, is impacting global food security by affecting plant physiology. Nevertheless, the effects of elevated CO2 on primary and secondary metabolism in tea plants (Camellia sinensis L.) still remain largely unknown. Here we showed that exposure of tea plants to elevated CO2 (800 µmol mol-1 for 24 d) remarkably improved both photosynthesis and respiration in tea leaves. Furthermore, elevated CO2 increased the concentrations of soluble sugar, starch and total carbon, but decreased the total nitrogen concentration, resulting in an increased carbon to nitrogen ratio in tea leaves. Among the tea quality parameters, tea polyphenol, free amino acid and theanine concentrations increased, while the caffeine concentration decreased after CO2 enrichment. The concentrations of individual catechins were altered differentially resulting in an increased total catechins concentration under elevated CO2 condition. Real-time qPCR analysis revealed that the expression levels of catechins and theanine biosynthetic genes were up-regulated, while that of caffeine synthetic genes were down-regulated in tea leaves when grown under elevated CO2 condition. These results unveiled profound effects of CO2 enrichment on photosynthesis and respiration in tea plants, which eventually modulated the biosynthesis of key secondary metabolites towards production of a quality green tea.Rising CO2 concentration, a driving force of climate change, is impacting global food security by affecting plant physiology. Nevertheless, the effects of elevated CO2 on primary and secondary metabolism in tea plants (Camellia sinensis L.) still remain largely unknown. Here we showed that exposure of tea plants to elevated CO2 (800 µmol mol-1 for 24 d) remarkably improved both photosynthesis and respiration in tea leaves. Furthermore, elevated CO2 increased the concentrations of soluble sugar, starch and total carbon, but decreased the total nitrogen concentration, resulting in an increased carbon to nitrogen ratio in tea leaves. Among the tea quality parameters, tea polyphenol, free amino acid and theanine concentrations increased, while the caffeine concentration decreased after CO2 enrichment. The concentrations of individual catechins were altered differentially resulting in an increased total catechins concentration under elevated CO2 condition. Real-time qPCR analysis revealed that the expression levels of catechins and theanine biosynthetic genes were up-regulated, while that of caffeine synthetic genes were down-regulated in tea leaves when grown under elevated CO2 condition. These results unveiled profound effects of CO2 enrichment on photosynthesis and respiration in tea plants, which eventually modulated the biosynthesis of key secondary metabolites towards production of a quality green tea.
ArticleNumber 7937
Author Yan, Peng
Zhang, Li-Ping
Han, Wen-Yan
Zhang, Lan
Wei, Ji-Peng
Ahammed, Golam Jalal
Li, Zhi-Xin
Shen, Chen
Li, Xin
Author_xml – sequence: 1
  givenname: Xin
  surname: Li
  fullname: Li, Xin
  organization: Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road
– sequence: 2
  givenname: Lan
  surname: Zhang
  fullname: Zhang, Lan
  organization: Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road
– sequence: 3
  givenname: Golam Jalal
  orcidid: 0000-0001-9621-8431
  surname: Ahammed
  fullname: Ahammed, Golam Jalal
  organization: Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road, Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866
– sequence: 4
  givenname: Zhi-Xin
  surname: Li
  fullname: Li, Zhi-Xin
  organization: Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road, Graduate School of Chinese Academy of Agricultural Sciences
– sequence: 5
  givenname: Ji-Peng
  surname: Wei
  fullname: Wei, Ji-Peng
  organization: Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road, Graduate School of Chinese Academy of Agricultural Sciences
– sequence: 6
  givenname: Chen
  surname: Shen
  fullname: Shen, Chen
  organization: Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road, Graduate School of Chinese Academy of Agricultural Sciences
– sequence: 7
  givenname: Peng
  surname: Yan
  fullname: Yan, Peng
  organization: Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road
– sequence: 8
  givenname: Li-Ping
  surname: Zhang
  fullname: Zhang, Li-Ping
  organization: Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road
– sequence: 9
  givenname: Wen-Yan
  surname: Han
  fullname: Han, Wen-Yan
  email: hanwy@tricaas.com
  organization: Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28801632$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNUREvpH2CBLLFhE7Bv4sTeIKERj0ojsQDWluPcDB4ldms7FcOvxzOZomkl8Mavcz4dX9_nxZnzDoviJaNvGa3Eu1gzLkVJWVtSUTe8ZE-KC6A1L6ECODtZnxdXMW5pHhxkzeSz4hyEoKyp4KL4_S3ZaR51st4R68hNsJMOO6JdTyIa7_r9bsKkOz_aOJFuR3DEO52wJ0aHLtt663_ZHokeE4ZINgHRkYSa3M56tGm35670hONoNYnWoYs2kvWL4umgx4hXx_my-PHp4_fVl3L99fP16sO6NBwYKxuAQfC2YtAJDi0TMDA5aG4a0NCwgTUoOhw4GtkhSGiGphGV5KyuB9l2bXVZXC_c3uutOj5QeW3V4cCHjdIhWTOiMiAZamqoMFVt2NAx09G-5wYlFaB1Zr1fWDdzN2Fv0KWgxwfQhzfO_lQbf6c45zUImQFvjoDgb2eMSU02mlwa7dDPUTEJgrOGV02Wvn4k3fo5uFyqrOIt0IqLverVaaK_Ue6_OAvEIjDBxxhwUMamw3_ngHZUjKp9Q6mloVRuKHVoKMWyFR5Z7-n_NVWLKWax22A4if1v1x-jKN47
CitedBy_id crossref_primary_10_1016_j_plaphy_2019_10_023
crossref_primary_10_3390_molecules24020362
crossref_primary_10_1111_tpj_17133
crossref_primary_10_3389_fpls_2021_680376
crossref_primary_10_3389_fpls_2020_609031
crossref_primary_10_1016_j_jplph_2020_153273
crossref_primary_10_1016_j_jhazmat_2020_123922
crossref_primary_10_1016_j_biocontrol_2022_105019
crossref_primary_10_1016_j_mec_2020_e00151
crossref_primary_10_3389_fpls_2018_01016
crossref_primary_10_3389_fpls_2019_00939
crossref_primary_10_3390_ijms25073990
crossref_primary_10_1080_10408398_2022_2078787
crossref_primary_10_1016_j_plaphy_2020_03_008
crossref_primary_10_1016_j_coesh_2020_10_004
crossref_primary_10_3389_fnut_2021_760578
crossref_primary_10_1016_j_indcrop_2020_112124
crossref_primary_10_3390_horticulturae8020173
crossref_primary_10_1016_j_cropro_2021_105711
crossref_primary_10_3390_plants14030492
crossref_primary_10_1016_j_envexpbot_2023_105299
crossref_primary_10_3390_f12060660
crossref_primary_10_1016_j_scienta_2020_109205
crossref_primary_10_1016_j_scienta_2020_109644
crossref_primary_10_1016_j_pbi_2022_102244
crossref_primary_10_1007_s00299_021_02738_w
crossref_primary_10_1007_s11240_020_01981_5
crossref_primary_10_3389_fpls_2024_1542793
crossref_primary_10_3389_fpls_2021_708013
crossref_primary_10_1016_j_envpol_2021_118475
crossref_primary_10_2337_db20_1210
crossref_primary_10_3390_agronomy11030478
crossref_primary_10_1080_10408398_2021_1984871
crossref_primary_10_1007_s11240_021_02203_2
crossref_primary_10_1007_s10725_022_00810_3
crossref_primary_10_1007_s00374_023_01700_0
crossref_primary_10_1016_j_lwt_2023_114496
crossref_primary_10_1016_j_envexpbot_2022_105025
crossref_primary_10_1016_j_scienta_2020_109579
crossref_primary_10_3389_fpls_2020_00305
crossref_primary_10_1093_jxb_erae248
crossref_primary_10_1016_j_heliyon_2021_e07709
crossref_primary_10_1016_j_plaphy_2022_07_010
crossref_primary_10_3390_plants10010011
crossref_primary_10_3390_jof9121154
crossref_primary_10_1016_j_plaphy_2022_06_021
crossref_primary_10_1088_1748_9326_ab70be
crossref_primary_10_3390_fermentation8030131
crossref_primary_10_3389_fpls_2020_00339
crossref_primary_10_3390_beverages7020025
crossref_primary_10_3390_plants8110484
Cites_doi 10.1111/j.1365-3040.2004.01140.x
10.1016/j.plaphy.2016.06.027
10.1111/j.1365-2486.1995.tb00025.x
10.1126/science.348.6238.953
10.1016/j.agwat.2009.10.015
10.1111/j.1365-3040.2010.02118.x
10.3390/molecules16053761
10.1016/j.phytol.2008.06.002
10.1016/j.plaphy.2015.10.026
10.2134/asaspecpub61.c2
10.1023/A:1005587725704
10.1016/j.plaphy.2014.02.017
10.1111/plb.12211
10.1007/BF00384257
10.1016/j.foodchem.2005.02.046
10.1016/S0955-2863(01)00203-0
10.1093/jexbot/53.371.1081
10.1111/j.1365-3040.2008.01874.x
10.1021/jf0525232
10.1080/07352689.2012.747384
10.1016/j.biotechadv.2015.04.004
10.1046/j.1365-3040.2001.00728.x
10.1016/j.phytochem.2007.10.029
10.1094/PHYTO-12-15-0336-R
10.1016/j.nut.2010.08.004
10.3390/ijms12021101
10.1016/S0304-4165(89)80016-9
10.1006/meth.2001.1262
10.1111/j.1365-3040.2005.01406.x
10.4236/fns.2015.611105
10.1016/S0308-8146(03)00062-1
10.1093/jxb/eru538
10.1016/j.envexpbot.2013.10.021
10.1016/j.plaphy.2012.04.003
10.1007/BF00392238
10.1016/j.plaphy.2013.06.019
10.1038/srep03433
10.1093/jxb/44.10.1627
10.1016/j.gene.2011.12.029
10.2307/3544308
ContentType Journal Article
Copyright The Author(s) 2017
2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2017
– notice: 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-017-08465-1
DatabaseName Springer Nature OA/Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

PubMed

Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 12
ExternalDocumentID oai_doaj_org_article_c291ea0c08c34c1fb1cb0dd5ce9082aa
PMC5554289
28801632
10_1038_s41598_017_08465_1
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5211-622f857312b8527182f19fa5c62a261f16e8bef5ec9be2926f668395144f97b73
IEDL.DBID DOA
ISSN 2045-2322
IngestDate Wed Aug 27 01:27:17 EDT 2025
Thu Aug 21 18:29:50 EDT 2025
Fri Jul 11 02:04:45 EDT 2025
Wed Aug 13 10:59:13 EDT 2025
Wed Feb 19 02:34:40 EST 2025
Thu Apr 24 23:06:59 EDT 2025
Tue Jul 01 01:33:32 EDT 2025
Fri Feb 21 02:39:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5211-622f857312b8527182f19fa5c62a261f16e8bef5ec9be2926f668395144f97b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9621-8431
OpenAccessLink https://doaj.org/article/c291ea0c08c34c1fb1cb0dd5ce9082aa
PMID 28801632
PQID 1957203586
PQPubID 2041939
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_c291ea0c08c34c1fb1cb0dd5ce9082aa
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5554289
proquest_miscellaneous_1928516536
proquest_journals_1957203586
pubmed_primary_28801632
crossref_citationtrail_10_1038_s41598_017_08465_1
crossref_primary_10_1038_s41598_017_08465_1
springer_journals_10_1038_s41598_017_08465_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170811
PublicationDateYYYYMMDD 2017-08-11
PublicationDate_xml – month: 8
  year: 2017
  text: 20170811
  day: 11
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References KanekoSKumazawaKMasudaHHenzeAHofmannTMolecular and sensory studies on the umami taste of Japanese green teaJ. Agric. Food Chem.200654268826941:CAS:528:DC%2BD28XitFOitbs%3D10.1021/jf052523216569062
GladeMJCaffeine-Not just a stimulantNutrition2010269329381:CAS:528:DC%2BC3cXht1eqtLbK10.1016/j.nut.2010.08.00420888549
DengW-WOgitaSAshiharaHBiosynthesis of theanine (γ-ethylamino-l-glutamic acid) in seedlings of Camellia sinensisPhytochem. Lett.200811151191:CAS:528:DC%2BD1MXnsF2qtr0%3D10.1016/j.phytol.2008.06.002
ChenXHPhotosynthesis, yield, and chemical composition of Tieguanyin tea plants (Camellia sinensis (L.) O. Kuntze) in response to irrigation treatmentsAgric. Water Manage.2010974194252010flf..book.....C10.1016/j.agwat.2009.10.015
MatrosAGrowth at elevated CO2 concentrations leads to modified profiles of secondary metabolites in tobacco cv. SamsunNN and to increased resistance against infection with potato virus YPlant Cell Environ.2006291261371:CAS:528:DC%2BD28XitFWisb8%3D10.1111/j.1365-3040.2005.01406.x17086759
WangHFTsaiYSLinMLOuASMComparison of bioactive components in GABA tea and green tea produced in TaiwanFood Chem.2006966486531:CAS:528:DC%2BD2MXht1Kksb%2FO10.1016/j.foodchem.2005.02.046
LiXStimulated leaf dark respiration in tomato in an elevated carbon dioxide atmosphereSci. Rep.20133343310.1038/srep03433385214124305603
GhasemzadehAJaafarHZEffect of CO2 enrichment on synthesis of some primary and secondary metabolites in ginger (Zingiber officinale Roscoe)Int. J. Mol. Sci.201112110111141:CAS:528:DC%2BC3MXitlSntbs%3D10.3390/ijms12021101308369321541046
TounektiTJoubertEHernándezIMunné-BoschSImproving the polyphenol content of teaCrit. Rev. Plant Sci.2013321922151:CAS:528:DC%2BC38XhvVCktLbN10.1080/07352689.2012.747384
EthierGJLivingstonNJOn the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis modelPlant Cell Environ.2004271371531:CAS:528:DC%2BD2cXisFKru7Y%3D10.1111/j.1365-3040.2004.01140.x
TooJCKinyanjuiTWanyokoJKWachiraFNEffect of sunlight exposure and different withering durations on theanine levels in tea (Camellia sinensis)Food. Nutr. Sci.201506101410211:CAS:528:DC%2BC28XkvVOjsbk%3D10.4236/fns.2015.611105
RaniASinghKAhujaPSKumarSMolecular regulation of catechins biosynthesis in tea [Camellia sinensis (L.) O. Kuntze]Gene20124952052101:CAS:528:DC%2BC38XitVCnu78%3D10.1016/j.gene.2011.12.02922226811
SuYLLeungLKHuangYChenZYStability of tea theaflavins and catechinsFood Chem.2003831891951:CAS:528:DC%2BD3sXmsVSluro%3D10.1016/S0308-8146(03)00062-1
von CaemmererSFarquharGDSome Relationships between the biochemistry of photosynthesis and the gas-exchange of leavesPlanta198115337638710.1007/BF00384257
AshiharaHSanoHCrozierACaffeine and related purine alkaloids: biosynthesis, catabolism, function and genetic engineeringPhytochemistry2008698418561:CAS:528:DC%2BD1cXhslGrsrc%3D10.1016/j.phytochem.2007.10.02918068204
LivakKJSchmittgenTDAnalysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT methodMethods2001254024081:CAS:528:DC%2BD38XhtFelt7s%3D10.1006/meth.2001.126211846609
BordoniAGreen tea protection of hypoxia/reoxygenation injury in cultured cardiac cellsJ. Nutr. Biochem.2002131031111:CAS:528:DC%2BD38XovFCiug%3D%3D10.1016/S0955-2863(01)00203-011834226
XiongLDynamic changes in catechin levels and catechin biosynthesis-related gene expression in albino tea plants (Camellia sinensis L.)Plant Physiol. Biochem.2013711321431:CAS:528:DC%2BC3sXhsFemtb%2FJ10.1016/j.plaphy.2013.06.01923911731
Z., S. et al. Antagonism between phytohormone signalling underlies the variation in disease susceptibility of tomato plants under elevated CO2. J. Exp. Bot. 66, 1951–1963 (2015).
MillenaarFFGonzalez‐MelerMASiedowJNWagnerAM& Lambers, H. Role of sugars and organic acids in regulating the concentration and activity of the alternative oxidase in Poa annua rootsJ. Exp. Bot.200253108110881:CAS:528:DC%2BD38XjsFagu7c%3D10.1093/jexbot/53.371.108111971919
LiPArabidopsis transcript and metabolite profiles: ecotype-specific responses to open-air elevated [CO2]Plant Cell Environ.2008311673168710.1111/j.1365-3040.2008.01874.x18721265
FilhoOMazzaferaPCaffeine does not protect coffee against the leaf miner Perileucoptera coffeellaJ. Chem. Ecol.2000261447146410.1023/A:1005587725704
LarsonCReading the tea leaves for effects of climate changeScience20153489539542015Sci...348..953L1:CAS:528:DC%2BC2MXhtVehtbzI10.1126/science.348.6238.95326023112
BrooksAFarquharGDEffect of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light. Estimates from gas-exchange measurements on spinachPlanta19851653974061:CAS:528:DyaL2MXltlyrsLc%3D10.1007/BF0039223824241146
DengWWWangSChenQZhangZZHuXYEffect of salt treatment on theanine biosynthesis in Camellia sinensis seedlingsPlant Physiol. Biochem.20125635401:CAS:528:DC%2BC38XotVakur0%3D10.1016/j.plaphy.2012.04.00322579942
SunYCaoHYinJKangLEGeFElevated CO2 changes the interactions between nematode and tomato genotypes differing in the JA pathwayPlant Cell Environ.2010337297391:CAS:528:DC%2BC3cXmtFOhu7k%3D10.1111/j.1365-3040.2010.02118.x20519018
HongGBiosynthesis of catechin components is differentially regulated in dark-treated tea (Camellia sinensis L.)Plant Physiol. Biochem.20147849521:CAS:528:DC%2BC2cXlt1Clsb0%3D10.1016/j.plaphy.2014.02.01724632491
Amthor, J.S. Plant respiratory responses to elevated carbon dioxide partial pressure. Adv. Carbon Dioxide Eff. Res. 35–77 (1997).
GentyBBriantaisJMBakerNRThe relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescenceBiochim. Biophys. Acta-Gen. Subj.198999087921:CAS:528:DyaL1MXhsFWntL4%3D10.1016/S0304-4165(89)80016-9
LiZ-XDevelopmental changes in carbon and nitrogen metabolism affect tea quality in different leaf positionPlant Physiol. Biochem.20161063273351:CAS:528:DC%2BC28XhsVyksbnP10.1016/j.plaphy.2016.06.02727380366
BuysseJMerckxRAn improved colorimetric method to quantify sugar content of plant tissueJ. Exp. Bot.199344162716291:CAS:528:DyaK2cXkvFeiuw%3D%3D10.1093/jxb/44.10.1627
FanKFanDDingZSuYWangXCs-miR156 is involved in the nitrogen form regulation of catechins accumulation in tea plant (Camellia sinensis L.)Plant Physiol. Biochem.2015973503601:CAS:528:DC%2BC2MXhslGmtrjP10.1016/j.plaphy.2015.10.02626520678
ISO 14502-1. Determination of substances characteristic of green and black tea. Part 1: Content of total polyphenols in tea. Colorimetric method using Folin-Ciocalteu reagent. Switzerland (2005).
Li, X. et al. Decreased biosynthesis of jasmonic acid via lipoxygenase pathway compromised caffeine-induced resistance to Colletotrichum gloeosporioides under elevated CO2 in tea seedlings. Phytopathology (2016).
BryantJPChapinFSKleinDRCarbon/nutrient balance of boreal plants in relation to vertebrate herbivoryOikos198340357681:CAS:528:DyaL3sXltVahsr0%3D10.2307/3544308
AmthorJSTerrestrial higher-plant response to increasing atmospheric CO2 in relation to the global carbon cycleGlob. Change Biol.1995124327410.1111/j.1365-2486.1995.tb00025.x
LewisCENoctorGCaustonDFoyerCHRegulation of assimilate partitioning in leavesAust. J. Plant Physiol.2000275075191:STN:280:DC%2BD283ktF2qsA%3D%3D
LiXCarbon dioxide enrichment alleviates heat stress by improving cellular redox homeostasis through an ABA-independent process in tomato plantsPlant Biol.20151781891:CAS:528:DC%2BC2MXlt1Cruw%3D%3D10.1111/plb.1221124985337
MuWZhangTJiangBAn overview of biological production of L-theanineBiotechnol. Advan.2015333353421:CAS:528:DC%2BC2MXmslynurs%3D10.1016/j.biotechadv.2015.04.004
GoufoPRice (Oryza sativa L.) phenolic compounds under elevated carbon dioxide (CO2) concentrationEnviron. Exp. Bot.20149928371:CAS:528:DC%2BC2cXislOhsL0%3D10.1016/j.envexpbot.2013.10.021
IbrahimMHJaafarHZEnhancement of leaf gas exchange and primary metabolites under carbon dioxide enrichment up-regulates the production of secondary metabolites in Labisia pumila seedlingsMolecules201116376137771:CAS:528:DC%2BC3MXmtFKht7k%3D10.3390/molecules1605376121544039
IPCC. Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Solomon, S., Qin, D., Manning, M.,Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., Miller, H. L. (Eds). Cambridge University Press, Cambridge, UK (2007).
NoguchiKNakajimaNTerashimaIAcclimation of leaf respiratory properties in Alocasia odora following reciprocal transfers of plants between high- and low-light environmentsPlant Cell Environ.2001248318391:CAS:528:DC%2BD3MXmsFCmu70%3D10.1046/j.1365-3040.2001.00728.x
MJ Glade (8465_CR22) 2010; 26
XH Chen (8465_CR39) 2010; 97
Y Sun (8465_CR11) 2010; 33
MH Ibrahim (8465_CR26) 2011; 16
G Hong (8465_CR28) 2014; 78
S Kaneko (8465_CR17) 2006; 54
8465_CR38
A Brooks (8465_CR9) 1985; 165
FF Millenaar (8465_CR36) 2002; 53
W Mu (8465_CR13) 2015; 33
JC Too (8465_CR19) 2015; 06
K Noguchi (8465_CR37) 2001; 24
A Rani (8465_CR25) 2012; 495
Z-X Li (8465_CR21) 2016; 106
HF Wang (8465_CR41) 2006; 96
A Matros (8465_CR10) 2006; 29
X Li (8465_CR2) 2015; 17
J Buysse (8465_CR42) 1993; 44
8465_CR1
S von Caemmerer (8465_CR33) 1981; 153
GJ Ethier (8465_CR34) 2004; 27
A Bordoni (8465_CR18) 2002; 13
YL Su (8465_CR40) 2003; 83
8465_CR3
8465_CR4
L Xiong (8465_CR29) 2013; 71
8465_CR8
KJ Livak (8465_CR43) 2001; 25
O Filho (8465_CR20) 2000; 26
JP Bryant (8465_CR32) 1983; 40
T Tounekti (8465_CR14) 2013; 32
A Ghasemzadeh (8465_CR15) 2011; 12
W-W Deng (8465_CR30) 2008; 1
P Li (8465_CR16) 2008; 31
X Li (8465_CR5) 2013; 3
H Ashihara (8465_CR12) 2008; 69
K Fan (8465_CR27) 2015; 97
B Genty (8465_CR35) 1989; 990
JS Amthor (8465_CR6) 1995; 1
CE Lewis (8465_CR7) 2000; 27
WW Deng (8465_CR31) 2012; 56
C Larson (8465_CR23) 2015; 348
P Goufo (8465_CR24) 2014; 99
References_xml – reference: LivakKJSchmittgenTDAnalysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT methodMethods2001254024081:CAS:528:DC%2BD38XhtFelt7s%3D10.1006/meth.2001.126211846609
– reference: FilhoOMazzaferaPCaffeine does not protect coffee against the leaf miner Perileucoptera coffeellaJ. Chem. Ecol.2000261447146410.1023/A:1005587725704
– reference: IbrahimMHJaafarHZEnhancement of leaf gas exchange and primary metabolites under carbon dioxide enrichment up-regulates the production of secondary metabolites in Labisia pumila seedlingsMolecules201116376137771:CAS:528:DC%2BC3MXmtFKht7k%3D10.3390/molecules1605376121544039
– reference: LewisCENoctorGCaustonDFoyerCHRegulation of assimilate partitioning in leavesAust. J. Plant Physiol.2000275075191:STN:280:DC%2BD283ktF2qsA%3D%3D
– reference: LarsonCReading the tea leaves for effects of climate changeScience20153489539542015Sci...348..953L1:CAS:528:DC%2BC2MXhtVehtbzI10.1126/science.348.6238.95326023112
– reference: AmthorJSTerrestrial higher-plant response to increasing atmospheric CO2 in relation to the global carbon cycleGlob. Change Biol.1995124327410.1111/j.1365-2486.1995.tb00025.x
– reference: von CaemmererSFarquharGDSome Relationships between the biochemistry of photosynthesis and the gas-exchange of leavesPlanta198115337638710.1007/BF00384257
– reference: BuysseJMerckxRAn improved colorimetric method to quantify sugar content of plant tissueJ. Exp. Bot.199344162716291:CAS:528:DyaK2cXkvFeiuw%3D%3D10.1093/jxb/44.10.1627
– reference: GhasemzadehAJaafarHZEffect of CO2 enrichment on synthesis of some primary and secondary metabolites in ginger (Zingiber officinale Roscoe)Int. J. Mol. Sci.201112110111141:CAS:528:DC%2BC3MXitlSntbs%3D10.3390/ijms12021101308369321541046
– reference: KanekoSKumazawaKMasudaHHenzeAHofmannTMolecular and sensory studies on the umami taste of Japanese green teaJ. Agric. Food Chem.200654268826941:CAS:528:DC%2BD28XitFOitbs%3D10.1021/jf052523216569062
– reference: FanKFanDDingZSuYWangXCs-miR156 is involved in the nitrogen form regulation of catechins accumulation in tea plant (Camellia sinensis L.)Plant Physiol. Biochem.2015973503601:CAS:528:DC%2BC2MXhslGmtrjP10.1016/j.plaphy.2015.10.02626520678
– reference: EthierGJLivingstonNJOn the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis modelPlant Cell Environ.2004271371531:CAS:528:DC%2BD2cXisFKru7Y%3D10.1111/j.1365-3040.2004.01140.x
– reference: GentyBBriantaisJMBakerNRThe relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescenceBiochim. Biophys. Acta-Gen. Subj.198999087921:CAS:528:DyaL1MXhsFWntL4%3D10.1016/S0304-4165(89)80016-9
– reference: LiXStimulated leaf dark respiration in tomato in an elevated carbon dioxide atmosphereSci. Rep.20133343310.1038/srep03433385214124305603
– reference: NoguchiKNakajimaNTerashimaIAcclimation of leaf respiratory properties in Alocasia odora following reciprocal transfers of plants between high- and low-light environmentsPlant Cell Environ.2001248318391:CAS:528:DC%2BD3MXmsFCmu70%3D10.1046/j.1365-3040.2001.00728.x
– reference: HongGBiosynthesis of catechin components is differentially regulated in dark-treated tea (Camellia sinensis L.)Plant Physiol. Biochem.20147849521:CAS:528:DC%2BC2cXlt1Clsb0%3D10.1016/j.plaphy.2014.02.01724632491
– reference: AshiharaHSanoHCrozierACaffeine and related purine alkaloids: biosynthesis, catabolism, function and genetic engineeringPhytochemistry2008698418561:CAS:528:DC%2BD1cXhslGrsrc%3D10.1016/j.phytochem.2007.10.02918068204
– reference: BordoniAGreen tea protection of hypoxia/reoxygenation injury in cultured cardiac cellsJ. Nutr. Biochem.2002131031111:CAS:528:DC%2BD38XovFCiug%3D%3D10.1016/S0955-2863(01)00203-011834226
– reference: MillenaarFFGonzalez‐MelerMASiedowJNWagnerAM& Lambers, H. Role of sugars and organic acids in regulating the concentration and activity of the alternative oxidase in Poa annua rootsJ. Exp. Bot.200253108110881:CAS:528:DC%2BD38XjsFagu7c%3D10.1093/jexbot/53.371.108111971919
– reference: WangHFTsaiYSLinMLOuASMComparison of bioactive components in GABA tea and green tea produced in TaiwanFood Chem.2006966486531:CAS:528:DC%2BD2MXht1Kksb%2FO10.1016/j.foodchem.2005.02.046
– reference: MatrosAGrowth at elevated CO2 concentrations leads to modified profiles of secondary metabolites in tobacco cv. SamsunNN and to increased resistance against infection with potato virus YPlant Cell Environ.2006291261371:CAS:528:DC%2BD28XitFWisb8%3D10.1111/j.1365-3040.2005.01406.x17086759
– reference: DengWWWangSChenQZhangZZHuXYEffect of salt treatment on theanine biosynthesis in Camellia sinensis seedlingsPlant Physiol. Biochem.20125635401:CAS:528:DC%2BC38XotVakur0%3D10.1016/j.plaphy.2012.04.00322579942
– reference: TounektiTJoubertEHernándezIMunné-BoschSImproving the polyphenol content of teaCrit. Rev. Plant Sci.2013321922151:CAS:528:DC%2BC38XhvVCktLbN10.1080/07352689.2012.747384
– reference: LiPArabidopsis transcript and metabolite profiles: ecotype-specific responses to open-air elevated [CO2]Plant Cell Environ.2008311673168710.1111/j.1365-3040.2008.01874.x18721265
– reference: ChenXHPhotosynthesis, yield, and chemical composition of Tieguanyin tea plants (Camellia sinensis (L.) O. Kuntze) in response to irrigation treatmentsAgric. Water Manage.2010974194252010flf..book.....C10.1016/j.agwat.2009.10.015
– reference: LiXCarbon dioxide enrichment alleviates heat stress by improving cellular redox homeostasis through an ABA-independent process in tomato plantsPlant Biol.20151781891:CAS:528:DC%2BC2MXlt1Cruw%3D%3D10.1111/plb.1221124985337
– reference: Z., S. et al. Antagonism between phytohormone signalling underlies the variation in disease susceptibility of tomato plants under elevated CO2. J. Exp. Bot. 66, 1951–1963 (2015).
– reference: SuYLLeungLKHuangYChenZYStability of tea theaflavins and catechinsFood Chem.2003831891951:CAS:528:DC%2BD3sXmsVSluro%3D10.1016/S0308-8146(03)00062-1
– reference: BryantJPChapinFSKleinDRCarbon/nutrient balance of boreal plants in relation to vertebrate herbivoryOikos198340357681:CAS:528:DyaL3sXltVahsr0%3D10.2307/3544308
– reference: BrooksAFarquharGDEffect of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light. Estimates from gas-exchange measurements on spinachPlanta19851653974061:CAS:528:DyaL2MXltlyrsLc%3D10.1007/BF0039223824241146
– reference: TooJCKinyanjuiTWanyokoJKWachiraFNEffect of sunlight exposure and different withering durations on theanine levels in tea (Camellia sinensis)Food. Nutr. Sci.201506101410211:CAS:528:DC%2BC28XkvVOjsbk%3D10.4236/fns.2015.611105
– reference: IPCC. Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Solomon, S., Qin, D., Manning, M.,Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., Miller, H. L. (Eds). Cambridge University Press, Cambridge, UK (2007).
– reference: DengW-WOgitaSAshiharaHBiosynthesis of theanine (γ-ethylamino-l-glutamic acid) in seedlings of Camellia sinensisPhytochem. Lett.200811151191:CAS:528:DC%2BD1MXnsF2qtr0%3D10.1016/j.phytol.2008.06.002
– reference: RaniASinghKAhujaPSKumarSMolecular regulation of catechins biosynthesis in tea [Camellia sinensis (L.) O. Kuntze]Gene20124952052101:CAS:528:DC%2BC38XitVCnu78%3D10.1016/j.gene.2011.12.02922226811
– reference: GoufoPRice (Oryza sativa L.) phenolic compounds under elevated carbon dioxide (CO2) concentrationEnviron. Exp. Bot.20149928371:CAS:528:DC%2BC2cXislOhsL0%3D10.1016/j.envexpbot.2013.10.021
– reference: MuWZhangTJiangBAn overview of biological production of L-theanineBiotechnol. Advan.2015333353421:CAS:528:DC%2BC2MXmslynurs%3D10.1016/j.biotechadv.2015.04.004
– reference: LiZ-XDevelopmental changes in carbon and nitrogen metabolism affect tea quality in different leaf positionPlant Physiol. Biochem.20161063273351:CAS:528:DC%2BC28XhsVyksbnP10.1016/j.plaphy.2016.06.02727380366
– reference: GladeMJCaffeine-Not just a stimulantNutrition2010269329381:CAS:528:DC%2BC3cXht1eqtLbK10.1016/j.nut.2010.08.00420888549
– reference: Li, X. et al. Decreased biosynthesis of jasmonic acid via lipoxygenase pathway compromised caffeine-induced resistance to Colletotrichum gloeosporioides under elevated CO2 in tea seedlings. Phytopathology (2016).
– reference: SunYCaoHYinJKangLEGeFElevated CO2 changes the interactions between nematode and tomato genotypes differing in the JA pathwayPlant Cell Environ.2010337297391:CAS:528:DC%2BC3cXmtFOhu7k%3D10.1111/j.1365-3040.2010.02118.x20519018
– reference: Amthor, J.S. Plant respiratory responses to elevated carbon dioxide partial pressure. Adv. Carbon Dioxide Eff. Res. 35–77 (1997).
– reference: XiongLDynamic changes in catechin levels and catechin biosynthesis-related gene expression in albino tea plants (Camellia sinensis L.)Plant Physiol. Biochem.2013711321431:CAS:528:DC%2BC3sXhsFemtb%2FJ10.1016/j.plaphy.2013.06.01923911731
– reference: ISO 14502-1. Determination of substances characteristic of green and black tea. Part 1: Content of total polyphenols in tea. Colorimetric method using Folin-Ciocalteu reagent. Switzerland (2005).
– volume: 27
  start-page: 137
  year: 2004
  ident: 8465_CR34
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2004.01140.x
– volume: 106
  start-page: 327
  year: 2016
  ident: 8465_CR21
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2016.06.027
– volume: 1
  start-page: 243
  year: 1995
  ident: 8465_CR6
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.1995.tb00025.x
– volume: 348
  start-page: 953
  year: 2015
  ident: 8465_CR23
  publication-title: Science
  doi: 10.1126/science.348.6238.953
– volume: 97
  start-page: 419
  year: 2010
  ident: 8465_CR39
  publication-title: Agric. Water Manage.
  doi: 10.1016/j.agwat.2009.10.015
– volume: 33
  start-page: 729
  year: 2010
  ident: 8465_CR11
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2010.02118.x
– volume: 16
  start-page: 3761
  year: 2011
  ident: 8465_CR26
  publication-title: Molecules
  doi: 10.3390/molecules16053761
– volume: 1
  start-page: 115
  year: 2008
  ident: 8465_CR30
  publication-title: Phytochem. Lett.
  doi: 10.1016/j.phytol.2008.06.002
– volume: 97
  start-page: 350
  year: 2015
  ident: 8465_CR27
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2015.10.026
– ident: 8465_CR8
  doi: 10.2134/asaspecpub61.c2
– volume: 26
  start-page: 1447
  year: 2000
  ident: 8465_CR20
  publication-title: J. Chem. Ecol.
  doi: 10.1023/A:1005587725704
– volume: 78
  start-page: 49
  year: 2014
  ident: 8465_CR28
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2014.02.017
– volume: 17
  start-page: 81
  year: 2015
  ident: 8465_CR2
  publication-title: Plant Biol.
  doi: 10.1111/plb.12211
– volume: 153
  start-page: 376
  year: 1981
  ident: 8465_CR33
  publication-title: Planta
  doi: 10.1007/BF00384257
– volume: 96
  start-page: 648
  year: 2006
  ident: 8465_CR41
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2005.02.046
– volume: 13
  start-page: 103
  year: 2002
  ident: 8465_CR18
  publication-title: J. Nutr. Biochem.
  doi: 10.1016/S0955-2863(01)00203-0
– volume: 53
  start-page: 1081
  year: 2002
  ident: 8465_CR36
  publication-title: J. Exp. Bot.
  doi: 10.1093/jexbot/53.371.1081
– volume: 31
  start-page: 1673
  year: 2008
  ident: 8465_CR16
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2008.01874.x
– volume: 54
  start-page: 2688
  year: 2006
  ident: 8465_CR17
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf0525232
– volume: 32
  start-page: 192
  year: 2013
  ident: 8465_CR14
  publication-title: Crit. Rev. Plant Sci.
  doi: 10.1080/07352689.2012.747384
– volume: 27
  start-page: 507
  year: 2000
  ident: 8465_CR7
  publication-title: Aust. J. Plant Physiol.
– volume: 33
  start-page: 335
  year: 2015
  ident: 8465_CR13
  publication-title: Biotechnol. Advan.
  doi: 10.1016/j.biotechadv.2015.04.004
– volume: 24
  start-page: 831
  year: 2001
  ident: 8465_CR37
  publication-title: Plant Cell Environ.
  doi: 10.1046/j.1365-3040.2001.00728.x
– volume: 69
  start-page: 841
  year: 2008
  ident: 8465_CR12
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2007.10.029
– ident: 8465_CR4
  doi: 10.1094/PHYTO-12-15-0336-R
– volume: 26
  start-page: 932
  year: 2010
  ident: 8465_CR22
  publication-title: Nutrition
  doi: 10.1016/j.nut.2010.08.004
– ident: 8465_CR1
– volume: 12
  start-page: 1101
  year: 2011
  ident: 8465_CR15
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms12021101
– volume: 990
  start-page: 87
  year: 1989
  ident: 8465_CR35
  publication-title: Biochim. Biophys. Acta-Gen. Subj.
  doi: 10.1016/S0304-4165(89)80016-9
– volume: 25
  start-page: 402
  year: 2001
  ident: 8465_CR43
  publication-title: Methods
  doi: 10.1006/meth.2001.1262
– volume: 29
  start-page: 126
  year: 2006
  ident: 8465_CR10
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2005.01406.x
– volume: 06
  start-page: 1014
  year: 2015
  ident: 8465_CR19
  publication-title: Food. Nutr. Sci.
  doi: 10.4236/fns.2015.611105
– volume: 83
  start-page: 189
  year: 2003
  ident: 8465_CR40
  publication-title: Food Chem.
  doi: 10.1016/S0308-8146(03)00062-1
– ident: 8465_CR3
  doi: 10.1093/jxb/eru538
– volume: 99
  start-page: 28
  year: 2014
  ident: 8465_CR24
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2013.10.021
– volume: 56
  start-page: 35
  year: 2012
  ident: 8465_CR31
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2012.04.003
– volume: 165
  start-page: 397
  year: 1985
  ident: 8465_CR9
  publication-title: Planta
  doi: 10.1007/BF00392238
– volume: 71
  start-page: 132
  year: 2013
  ident: 8465_CR29
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2013.06.019
– volume: 3
  start-page: 3433
  year: 2013
  ident: 8465_CR5
  publication-title: Sci. Rep.
  doi: 10.1038/srep03433
– ident: 8465_CR38
– volume: 44
  start-page: 1627
  year: 1993
  ident: 8465_CR42
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/44.10.1627
– volume: 495
  start-page: 205
  year: 2012
  ident: 8465_CR25
  publication-title: Gene
  doi: 10.1016/j.gene.2011.12.029
– volume: 40
  start-page: 357
  year: 1983
  ident: 8465_CR32
  publication-title: Oikos
  doi: 10.2307/3544308
SSID ssj0000529419
Score 2.4905052
Snippet Rising CO 2 concentration, a driving force of climate change, is impacting global food security by affecting plant physiology. Nevertheless, the effects of...
Rising CO concentration, a driving force of climate change, is impacting global food security by affecting plant physiology. Nevertheless, the effects of...
Rising CO2 concentration, a driving force of climate change, is impacting global food security by affecting plant physiology. Nevertheless, the effects of...
Abstract Rising CO2 concentration, a driving force of climate change, is impacting global food security by affecting plant physiology. Nevertheless, the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7937
SubjectTerms 38/39
38/77
631/158/2165
631/158/2455
631/449/1736
631/449/2668
Amino acids
Biosynthesis
Caffeine
Camellia sinensis
Carbon dioxide
Climate change
Food plants
Food security
Green tea
Humanities and Social Sciences
Leaves
Metabolism
Metabolites
multidisciplinary
Nitrogen
Photosynthesis
Plant physiology
Respiration
Science
Science (multidisciplinary)
Secondary metabolites
Starch
Sugar
Tea
Theanine
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1KQUbiBlFjJ3biE4KKqkKIC1Tam-VnidRNymYrsf31zCTewPLoMbEdOZ4Zzzee8Qwhr0ppOLcVz4vAVV45X-ZWcJM7E1UoK-5jGKMtPsuT0-rjQizSgduQwiq3e-K4Ufve4Rn5IVMCPYaikW8vvudYNQq9q6mExk1yC1OXYUhXvajnMxb0YlVMpbsyRdkcDqCv8E4ZbM0FaF6Rsx19NKbt_xfW_Dtk8g-_6aiOju-RuwlH0ncT4e-TG6F7QG5PlSU3D8nVl3W7TJW5aNvRiympBDWdpwPawB6flmENPHDeDktqNxRvmgPy9NSZlYVhvu1_tD7Q0aE-0DOM0KHAE3S6iLnB7x6ZJWb0NBTD57uhHeinR-T0-MPXo5M8lVnIHehulkvOYyPqknHbCA66ikemohFOcgP2VWQyNDZEEZyyQFAuo5QAqwBpVVHVti4fk72u78JTQmVwIoINVgvnK2EKW7NomYzKKWOsqjLCtoutXcpBjqUwzvXoCy8bPRFIA4H0SCDNMvJ6HpMW69re75GGc0_Mnj2-6FdnOgmjdlyxYApXNK6sHE7R2cJ74QIWgDcmIwdbDtBJpAf9iwEz8nJuBmFED4vpQn-JfTggWClK6PNkYph5Jhx2SgC_PCP1DivtTHW3pWu_jQm_BWA-MIwz8mbLdL9N679LsX_9Xzwjd_gkBzljB2RvvboMzwFgre2LUYp-AoIZJFs
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFA7LiuCLeLe6SgTftNqcJmnzIKKLyyLqiw7sW8h1Lcx0dDoLO_56T3oZHB198rFtUsK55HyHcyPkaSkNgOWQFwFUzp0vcyvA5M5EFUoOPoY-2-KTPJ3x92fi7IBM445GAnZ7Xbs0T2q2mr-4_L55jQr_aigZr192aIRSoRjetwWaU5GjN3QFLVOVFPXjCPeHXt-gOFNj7cz-rTv2qW_jvw97_plC-VsctTdPJzfI9RFX0jeDINwkB6G9Ra4OkyY3t8mPz-tmMU7qok1Lvw1NJqhpPe2ST-zT0yKsUSbmTbegdkNT5TkiUU-dWVnc5pvlZeMD7QPsHT1PGTsUZYQOhZmb9N9js0gdPg1N6fRt13T0wx0yO3n35fg0H8cu5A5tOcslQKxFVTKwtQC0XRCZikY4CQb9rchkqG2IIjhlkcEgo5QIsxB58agqW5V3yWG7bMN9QmVwIqJPVgnnuTCFrVi0TEbllDFW8YywidjajT3J02iMue5j42WtBwZpZJDuGaRZRp5t94zE-ufqt4mH25Wpm3b_Yrk616NyageKBVO4onYld-mIzhbeCxfSQHhjMnI0SYCeJFQzJVIIW9QyI0-2n1E5U8TFtGF5kdYAIlopSlxzbxCY7UkAb04Ew5CRakeUdo66-6VtvvYNwAViQHSUM_J8ErpfjvVXUjz4H6R4SK7BoC05Y0fkcL26CI8Qlq3t417XfgKl8TU2
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA/Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF9Ki-CLtH6mVlnBNw1mJ9lN9lEPSxHxRQt9W_azBno5uVzB61_f2c0HnlbBx1xmw7Azu_Obmy9CXpdCA5gK8sKDzCvrytxw0LnVQfqyAhd8yrb4Is7Oq08X_GKPwFQLk5L2U0vLdE1P2WHvejQ0sRgM79QCTSbP0eM5iK3bo1YvxGL-XyVGriomx_qYomzuWLpjg1Kr_rvw5Z9pkr_FSpMJOj0kD0bsSN8P3B6RPd89JPeGaZLbR-Tm66ZdjtO4aNvRH0MjCao7R_vo97r4tPQblPtV2y-p2dJYXY5o01Gr1waXuXb1s3WepiB6Ty9jVg5FPaBD8eU2fnehl7GLp6YxZb7r255-fkzOTz9-W5zl42iF3KK9ZrkACA2vSwam4YD2CQKTQXMrQKNPFZjwjfGBeysNChFEEAKhFKKrKsja1OUTst-tOv-MUOEtD-h31dy6iuvC1CwYJoK0Umsjq4ywabOVHfuOx_EXVyrFv8tGDQJSKCCVBKRYRt7Ma8bN-if1hyjDmTJ2zE4_rNaXatQgZUEyrwtbNLasbGTRmsI5bn0c-q51Rk4mDVDjMe4VkzyGqXkjMvJqfo0HMEZVdOdX15EGELUKXiLN00FhZk4Ab0cEvJCRekeVdljdfdO131OTb444D53hjLydlO4Xtv66Fcf_R_6c3IfhXOSMnZD9zfrav0CQtTEv06m6BcZ9Iik
  priority: 102
  providerName: Springer Nature
Title Stimulation in primary and secondary metabolism by elevated carbon dioxide alters green tea quality in Camellia sinensis L
URI https://link.springer.com/article/10.1038/s41598-017-08465-1
https://www.ncbi.nlm.nih.gov/pubmed/28801632
https://www.proquest.com/docview/1957203586
https://www.proquest.com/docview/1928516536
https://pubmed.ncbi.nlm.nih.gov/PMC5554289
https://doaj.org/article/c291ea0c08c34c1fb1cb0dd5ce9082aa
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBdbx2AvY99z1wUN9raZWrIkW49paClhK2NdIW9CkqXV0DijTmHpX7-T5IRkny97sbE-jLg76X7Hne4QelsKTalhNC8clTmzTZkbTnVutZeuZLTxLkZbnInTCzad8dlWqa8QE5bSAyfCHVoqidOFLWpbMku8IdYUTcOtC8W6dYRGoPO2jKmU1ZtKRuRwS6Yo68MeNFW4TQaHcgE6l-dkRxPFhP2_Q5m_Bkv-5DGNiujkEXo4IEg8Tit_jO647gm6n2pKrp6i2_NlOx9qcuG2w99SOgmsuwb3wfptwtfcLYH7V20_x2aFwx1zwJwNtvrawLSmXXxvG4ejK73HX0NsDgZpwOkK5ir8d6LnIZenxiFwvuvbHn94hi5Ojr9MTvOhwEJuQWuTXFDqa16VhJqaU9BS1BPpNbeCarCsPBGuNs5zZ6UBVlLhhQBABRiLeVmZqnyO9rpF514iLJzlHqyvituGcV2YKrBKeGml1kayDJE1sZUdso-HIhhXKnrBy1olBilgkIoMUiRD7zZzBmL9dfRR4OFmZMibHRtAmtQgTepf0pShg7UEqGEz94pIHpzVvBYZerPphm0YfCu6c4ubMIYCdhW8hDEvksBsVkLhjATYSzNU7YjSzlJ3e7r2Mqb65oD2wCTO0Pu10G0t64-k2P8fpHiFHtC0W3JCDtDe8vrGvQYAtjQjdLeaVSN0bzyenk_hfXR89ukztE7EZBT3ITw_svoH9bAz9A
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw1CpTIbggdgIFjAQniBo7sRMfEKKl1ZQOIwSt1JvxWiJ1MmUyFQwfxTfynGVgWHrrMYkTvfjtfhtCT1OuKNUZjRNHRZwZm8aaURUb5YVLM2q9a7Itxnx4mL09Ykdr6EdfCxPSKnuZ2AhqOzXhjHyTCBYihqzgr06_xGFqVIiu9iM0WrLYd4uv4LLVL_feAH6fUbq7c7A9jLupArEBVUViTqkvWJ4SqgtGQTRTT4RXzHCqwJ3whLtCO8-cERrgp9xzDlYEGBaZF7nOU_juJbSepeDKDND61s74_YflqU6Im2VEdNU5SVps1qAhQxUbKIMEdD2LyYoGbAYF_Mu6_TtJ849IbaMAd6-ja53lil-3pHYDrbnqJrrczrJc3ELfP87LSTcLDJcVPm3bWGBVWVwHr9uGq4mbA9WdlPUE6wUOte1g61ps1EzDa7acfiutw00Iv8bHIScIAxXitvRzEb67rSahh6jCIWG_qssaj26jwwtBwR00qKaVu4cwd4Z58PpyZmzGVKJz4jXhXhihlBZZhEi_2dJ0Xc_D8I0T2UTf00K2CJKAINkgSJIIPV--023Wuau3Ag6XK0O_7ubGdHYsO_aXhgriVGKSwqSZCSAanVjLjAsj55WK0EZPAbITIrX8RfIRerJ8DOwfYjqqctOzsIaCzcxZCmvutgSzhISCbAZzm0YoXyGlFVBXn1Tl56bFOAMrE1zxCL3oie43sP67FffP_4vH6Mrw4N1IjvbG-w_QVdryREzIBhrMZ2fuIZh3c_2o4ymMPl00G_8E9thgOA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYgLYi2BAkaCE0QTO7ETHxCCllFLqwoJKvVmbMcukTqZMpkKhp_Gr-O9LAPD0luPM3Eix-97W95GyNNUGs5txuPEcxVnrkxjK7iJnQnKpxkvg2-zLQ7kzmH27kgcrZEfQy0MplUOMrEV1OXU4TfyEVMCI4aikKPQp0W83x6_Ov0S4wQpjLQO4zQ6iOz5xVdw35qXu9tA62ecj99-3NqJ-wkDsQO1xWLJeShEnjJuC8FBTPPAVDDCSW7AtQhM-sL6ILxTFt6FyyAlWBRgZGRB5TZP4bmXyOU8FQx5LD_Kl993MIKWMdXX6SRpMWpAV2I9G6iFBLS-iNmKLmxHBvzLzv07XfOPmG2rCsc3yPXehqWvO9DdJGu-vkWudFMtF7fJ9w_zatJPBaNVTU-7hhbU1CVt0P8u8dfEzwF_J1UzoXZBscodrN6SOjOzcFtZTb9VpadtML-hx5gdRAGPtCsCXeBzt8wEu4kaiqn7dVM1dP8OObwQAtwl6_W09vcIld6JAP5fLlyZCZPYnAXLZFBOGWNVFhE2HLZ2ff9zHMNxots4fFrojkAaCKRbAmkWkefLe_rDOnf1G6ThciV27m7_mM6OdS8ItOOKeZO4pHBp5nCLziZlKZzH4fPGRGRzQIDuxUmjf4E_Ik-Wl0EQYHTH1H56hms4WM9SpLBmowPMciccpDQY3jwi-QqUVra6eqWuPrfNxgXYm-CUR-TFALrftvXfo7h__ls8JleBefX-7sHeA3KNdywRM7ZJ1uezM_8Q7Ly5fdQyFCWfLpqDfwKGjmMI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stimulation+in+primary+and+secondary+metabolism+by+elevated+carbon+dioxide+alters+green+tea+quality+in+Camellia+sinensis+L&rft.jtitle=Scientific+reports&rft.au=Xin+Li&rft.au=Lan+Zhang&rft.au=Golam+Jalal+Ahammed&rft.au=Zhi-Xin+Li&rft.date=2017-08-11&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=7&rft.issue=1&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1038%2Fs41598-017-08465-1&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c291ea0c08c34c1fb1cb0dd5ce9082aa
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon