Stimulation in primary and secondary metabolism by elevated carbon dioxide alters green tea quality in Camellia sinensis L
Rising CO 2 concentration, a driving force of climate change, is impacting global food security by affecting plant physiology. Nevertheless, the effects of elevated CO 2 on primary and secondary metabolism in tea plants ( Camellia sinensis L.) still remain largely unknown. Here we showed that exposu...
Saved in:
Published in | Scientific reports Vol. 7; no. 1; pp. 7937 - 12 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
11.08.2017
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rising CO
2
concentration, a driving force of climate change, is impacting global food security by affecting plant physiology. Nevertheless, the effects of elevated CO
2
on primary and secondary metabolism in tea plants (
Camellia sinensis
L.) still remain largely unknown. Here we showed that exposure of tea plants to elevated CO
2
(800 µmol mol
−1
for 24 d) remarkably improved both photosynthesis and respiration in tea leaves. Furthermore, elevated CO
2
increased the concentrations of soluble sugar, starch and total carbon, but decreased the total nitrogen concentration, resulting in an increased carbon to nitrogen ratio in tea leaves. Among the tea quality parameters, tea polyphenol, free amino acid and theanine concentrations increased, while the caffeine concentration decreased after CO
2
enrichment. The concentrations of individual catechins were altered differentially resulting in an increased total catechins concentration under elevated CO
2
condition. Real-time qPCR analysis revealed that the expression levels of catechins and theanine biosynthetic genes were up-regulated, while that of caffeine synthetic genes were down-regulated in tea leaves when grown under elevated CO
2
condition. These results unveiled profound effects of CO
2
enrichment on photosynthesis and respiration in tea plants, which eventually modulated the biosynthesis of key secondary metabolites towards production of a quality green tea. |
---|---|
AbstractList | Rising CO
2
concentration, a driving force of climate change, is impacting global food security by affecting plant physiology. Nevertheless, the effects of elevated CO
2
on primary and secondary metabolism in tea plants (
Camellia sinensis
L.) still remain largely unknown. Here we showed that exposure of tea plants to elevated CO
2
(800 µmol mol
−1
for 24 d) remarkably improved both photosynthesis and respiration in tea leaves. Furthermore, elevated CO
2
increased the concentrations of soluble sugar, starch and total carbon, but decreased the total nitrogen concentration, resulting in an increased carbon to nitrogen ratio in tea leaves. Among the tea quality parameters, tea polyphenol, free amino acid and theanine concentrations increased, while the caffeine concentration decreased after CO
2
enrichment. The concentrations of individual catechins were altered differentially resulting in an increased total catechins concentration under elevated CO
2
condition. Real-time qPCR analysis revealed that the expression levels of catechins and theanine biosynthetic genes were up-regulated, while that of caffeine synthetic genes were down-regulated in tea leaves when grown under elevated CO
2
condition. These results unveiled profound effects of CO
2
enrichment on photosynthesis and respiration in tea plants, which eventually modulated the biosynthesis of key secondary metabolites towards production of a quality green tea. Rising CO concentration, a driving force of climate change, is impacting global food security by affecting plant physiology. Nevertheless, the effects of elevated CO on primary and secondary metabolism in tea plants (Camellia sinensis L.) still remain largely unknown. Here we showed that exposure of tea plants to elevated CO (800 µmol mol for 24 d) remarkably improved both photosynthesis and respiration in tea leaves. Furthermore, elevated CO increased the concentrations of soluble sugar, starch and total carbon, but decreased the total nitrogen concentration, resulting in an increased carbon to nitrogen ratio in tea leaves. Among the tea quality parameters, tea polyphenol, free amino acid and theanine concentrations increased, while the caffeine concentration decreased after CO enrichment. The concentrations of individual catechins were altered differentially resulting in an increased total catechins concentration under elevated CO condition. Real-time qPCR analysis revealed that the expression levels of catechins and theanine biosynthetic genes were up-regulated, while that of caffeine synthetic genes were down-regulated in tea leaves when grown under elevated CO condition. These results unveiled profound effects of CO enrichment on photosynthesis and respiration in tea plants, which eventually modulated the biosynthesis of key secondary metabolites towards production of a quality green tea. Rising CO2 concentration, a driving force of climate change, is impacting global food security by affecting plant physiology. Nevertheless, the effects of elevated CO2 on primary and secondary metabolism in tea plants (Camellia sinensis L.) still remain largely unknown. Here we showed that exposure of tea plants to elevated CO2 (800 µmol mol−1 for 24 d) remarkably improved both photosynthesis and respiration in tea leaves. Furthermore, elevated CO2 increased the concentrations of soluble sugar, starch and total carbon, but decreased the total nitrogen concentration, resulting in an increased carbon to nitrogen ratio in tea leaves. Among the tea quality parameters, tea polyphenol, free amino acid and theanine concentrations increased, while the caffeine concentration decreased after CO2 enrichment. The concentrations of individual catechins were altered differentially resulting in an increased total catechins concentration under elevated CO2 condition. Real-time qPCR analysis revealed that the expression levels of catechins and theanine biosynthetic genes were up-regulated, while that of caffeine synthetic genes were down-regulated in tea leaves when grown under elevated CO2 condition. These results unveiled profound effects of CO2 enrichment on photosynthesis and respiration in tea plants, which eventually modulated the biosynthesis of key secondary metabolites towards production of a quality green tea. Abstract Rising CO2 concentration, a driving force of climate change, is impacting global food security by affecting plant physiology. Nevertheless, the effects of elevated CO2 on primary and secondary metabolism in tea plants (Camellia sinensis L.) still remain largely unknown. Here we showed that exposure of tea plants to elevated CO2 (800 µmol mol−1 for 24 d) remarkably improved both photosynthesis and respiration in tea leaves. Furthermore, elevated CO2 increased the concentrations of soluble sugar, starch and total carbon, but decreased the total nitrogen concentration, resulting in an increased carbon to nitrogen ratio in tea leaves. Among the tea quality parameters, tea polyphenol, free amino acid and theanine concentrations increased, while the caffeine concentration decreased after CO2 enrichment. The concentrations of individual catechins were altered differentially resulting in an increased total catechins concentration under elevated CO2 condition. Real-time qPCR analysis revealed that the expression levels of catechins and theanine biosynthetic genes were up-regulated, while that of caffeine synthetic genes were down-regulated in tea leaves when grown under elevated CO2 condition. These results unveiled profound effects of CO2 enrichment on photosynthesis and respiration in tea plants, which eventually modulated the biosynthesis of key secondary metabolites towards production of a quality green tea. Rising CO2 concentration, a driving force of climate change, is impacting global food security by affecting plant physiology. Nevertheless, the effects of elevated CO2 on primary and secondary metabolism in tea plants (Camellia sinensis L.) still remain largely unknown. Here we showed that exposure of tea plants to elevated CO2 (800 µmol mol-1 for 24 d) remarkably improved both photosynthesis and respiration in tea leaves. Furthermore, elevated CO2 increased the concentrations of soluble sugar, starch and total carbon, but decreased the total nitrogen concentration, resulting in an increased carbon to nitrogen ratio in tea leaves. Among the tea quality parameters, tea polyphenol, free amino acid and theanine concentrations increased, while the caffeine concentration decreased after CO2 enrichment. The concentrations of individual catechins were altered differentially resulting in an increased total catechins concentration under elevated CO2 condition. Real-time qPCR analysis revealed that the expression levels of catechins and theanine biosynthetic genes were up-regulated, while that of caffeine synthetic genes were down-regulated in tea leaves when grown under elevated CO2 condition. These results unveiled profound effects of CO2 enrichment on photosynthesis and respiration in tea plants, which eventually modulated the biosynthesis of key secondary metabolites towards production of a quality green tea.Rising CO2 concentration, a driving force of climate change, is impacting global food security by affecting plant physiology. Nevertheless, the effects of elevated CO2 on primary and secondary metabolism in tea plants (Camellia sinensis L.) still remain largely unknown. Here we showed that exposure of tea plants to elevated CO2 (800 µmol mol-1 for 24 d) remarkably improved both photosynthesis and respiration in tea leaves. Furthermore, elevated CO2 increased the concentrations of soluble sugar, starch and total carbon, but decreased the total nitrogen concentration, resulting in an increased carbon to nitrogen ratio in tea leaves. Among the tea quality parameters, tea polyphenol, free amino acid and theanine concentrations increased, while the caffeine concentration decreased after CO2 enrichment. The concentrations of individual catechins were altered differentially resulting in an increased total catechins concentration under elevated CO2 condition. Real-time qPCR analysis revealed that the expression levels of catechins and theanine biosynthetic genes were up-regulated, while that of caffeine synthetic genes were down-regulated in tea leaves when grown under elevated CO2 condition. These results unveiled profound effects of CO2 enrichment on photosynthesis and respiration in tea plants, which eventually modulated the biosynthesis of key secondary metabolites towards production of a quality green tea. |
ArticleNumber | 7937 |
Author | Yan, Peng Zhang, Li-Ping Han, Wen-Yan Zhang, Lan Wei, Ji-Peng Ahammed, Golam Jalal Li, Zhi-Xin Shen, Chen Li, Xin |
Author_xml | – sequence: 1 givenname: Xin surname: Li fullname: Li, Xin organization: Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road – sequence: 2 givenname: Lan surname: Zhang fullname: Zhang, Lan organization: Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road – sequence: 3 givenname: Golam Jalal orcidid: 0000-0001-9621-8431 surname: Ahammed fullname: Ahammed, Golam Jalal organization: Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road, Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866 – sequence: 4 givenname: Zhi-Xin surname: Li fullname: Li, Zhi-Xin organization: Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road, Graduate School of Chinese Academy of Agricultural Sciences – sequence: 5 givenname: Ji-Peng surname: Wei fullname: Wei, Ji-Peng organization: Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road, Graduate School of Chinese Academy of Agricultural Sciences – sequence: 6 givenname: Chen surname: Shen fullname: Shen, Chen organization: Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road, Graduate School of Chinese Academy of Agricultural Sciences – sequence: 7 givenname: Peng surname: Yan fullname: Yan, Peng organization: Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road – sequence: 8 givenname: Li-Ping surname: Zhang fullname: Zhang, Li-Ping organization: Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road – sequence: 9 givenname: Wen-Yan surname: Han fullname: Han, Wen-Yan email: hanwy@tricaas.com organization: Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28801632$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhSNUREvpH2CBLLFhE7Bv4sTeIKERj0ojsQDWluPcDB4ldms7FcOvxzOZomkl8Mavcz4dX9_nxZnzDoviJaNvGa3Eu1gzLkVJWVtSUTe8ZE-KC6A1L6ECODtZnxdXMW5pHhxkzeSz4hyEoKyp4KL4_S3ZaR51st4R68hNsJMOO6JdTyIa7_r9bsKkOz_aOJFuR3DEO52wJ0aHLtt663_ZHokeE4ZINgHRkYSa3M56tGm35670hONoNYnWoYs2kvWL4umgx4hXx_my-PHp4_fVl3L99fP16sO6NBwYKxuAQfC2YtAJDi0TMDA5aG4a0NCwgTUoOhw4GtkhSGiGphGV5KyuB9l2bXVZXC_c3uutOj5QeW3V4cCHjdIhWTOiMiAZamqoMFVt2NAx09G-5wYlFaB1Zr1fWDdzN2Fv0KWgxwfQhzfO_lQbf6c45zUImQFvjoDgb2eMSU02mlwa7dDPUTEJgrOGV02Wvn4k3fo5uFyqrOIt0IqLverVaaK_Ue6_OAvEIjDBxxhwUMamw3_ngHZUjKp9Q6mloVRuKHVoKMWyFR5Z7-n_NVWLKWax22A4if1v1x-jKN47 |
CitedBy_id | crossref_primary_10_1016_j_plaphy_2019_10_023 crossref_primary_10_3390_molecules24020362 crossref_primary_10_1111_tpj_17133 crossref_primary_10_3389_fpls_2021_680376 crossref_primary_10_3389_fpls_2020_609031 crossref_primary_10_1016_j_jplph_2020_153273 crossref_primary_10_1016_j_jhazmat_2020_123922 crossref_primary_10_1016_j_biocontrol_2022_105019 crossref_primary_10_1016_j_mec_2020_e00151 crossref_primary_10_3389_fpls_2018_01016 crossref_primary_10_3389_fpls_2019_00939 crossref_primary_10_3390_ijms25073990 crossref_primary_10_1080_10408398_2022_2078787 crossref_primary_10_1016_j_plaphy_2020_03_008 crossref_primary_10_1016_j_coesh_2020_10_004 crossref_primary_10_3389_fnut_2021_760578 crossref_primary_10_1016_j_indcrop_2020_112124 crossref_primary_10_3390_horticulturae8020173 crossref_primary_10_1016_j_cropro_2021_105711 crossref_primary_10_3390_plants14030492 crossref_primary_10_1016_j_envexpbot_2023_105299 crossref_primary_10_3390_f12060660 crossref_primary_10_1016_j_scienta_2020_109205 crossref_primary_10_1016_j_scienta_2020_109644 crossref_primary_10_1016_j_pbi_2022_102244 crossref_primary_10_1007_s00299_021_02738_w crossref_primary_10_1007_s11240_020_01981_5 crossref_primary_10_3389_fpls_2024_1542793 crossref_primary_10_3389_fpls_2021_708013 crossref_primary_10_1016_j_envpol_2021_118475 crossref_primary_10_2337_db20_1210 crossref_primary_10_3390_agronomy11030478 crossref_primary_10_1080_10408398_2021_1984871 crossref_primary_10_1007_s11240_021_02203_2 crossref_primary_10_1007_s10725_022_00810_3 crossref_primary_10_1007_s00374_023_01700_0 crossref_primary_10_1016_j_lwt_2023_114496 crossref_primary_10_1016_j_envexpbot_2022_105025 crossref_primary_10_1016_j_scienta_2020_109579 crossref_primary_10_3389_fpls_2020_00305 crossref_primary_10_1093_jxb_erae248 crossref_primary_10_1016_j_heliyon_2021_e07709 crossref_primary_10_1016_j_plaphy_2022_07_010 crossref_primary_10_3390_plants10010011 crossref_primary_10_3390_jof9121154 crossref_primary_10_1016_j_plaphy_2022_06_021 crossref_primary_10_1088_1748_9326_ab70be crossref_primary_10_3390_fermentation8030131 crossref_primary_10_3389_fpls_2020_00339 crossref_primary_10_3390_beverages7020025 crossref_primary_10_3390_plants8110484 |
Cites_doi | 10.1111/j.1365-3040.2004.01140.x 10.1016/j.plaphy.2016.06.027 10.1111/j.1365-2486.1995.tb00025.x 10.1126/science.348.6238.953 10.1016/j.agwat.2009.10.015 10.1111/j.1365-3040.2010.02118.x 10.3390/molecules16053761 10.1016/j.phytol.2008.06.002 10.1016/j.plaphy.2015.10.026 10.2134/asaspecpub61.c2 10.1023/A:1005587725704 10.1016/j.plaphy.2014.02.017 10.1111/plb.12211 10.1007/BF00384257 10.1016/j.foodchem.2005.02.046 10.1016/S0955-2863(01)00203-0 10.1093/jexbot/53.371.1081 10.1111/j.1365-3040.2008.01874.x 10.1021/jf0525232 10.1080/07352689.2012.747384 10.1016/j.biotechadv.2015.04.004 10.1046/j.1365-3040.2001.00728.x 10.1016/j.phytochem.2007.10.029 10.1094/PHYTO-12-15-0336-R 10.1016/j.nut.2010.08.004 10.3390/ijms12021101 10.1016/S0304-4165(89)80016-9 10.1006/meth.2001.1262 10.1111/j.1365-3040.2005.01406.x 10.4236/fns.2015.611105 10.1016/S0308-8146(03)00062-1 10.1093/jxb/eru538 10.1016/j.envexpbot.2013.10.021 10.1016/j.plaphy.2012.04.003 10.1007/BF00392238 10.1016/j.plaphy.2013.06.019 10.1038/srep03433 10.1093/jxb/44.10.1627 10.1016/j.gene.2011.12.029 10.2307/3544308 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2017 – notice: 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-017-08465-1 |
DatabaseName | Springer Nature OA/Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_c291ea0c08c34c1fb1cb0dd5ce9082aa PMC5554289 28801632 10_1038_s41598_017_08465_1 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5211-622f857312b8527182f19fa5c62a261f16e8bef5ec9be2926f668395144f97b73 |
IEDL.DBID | DOA |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:27:17 EDT 2025 Thu Aug 21 18:29:50 EDT 2025 Fri Jul 11 02:04:45 EDT 2025 Wed Aug 13 10:59:13 EDT 2025 Wed Feb 19 02:34:40 EST 2025 Thu Apr 24 23:06:59 EDT 2025 Tue Jul 01 01:33:32 EDT 2025 Fri Feb 21 02:39:25 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5211-622f857312b8527182f19fa5c62a261f16e8bef5ec9be2926f668395144f97b73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9621-8431 |
OpenAccessLink | https://doaj.org/article/c291ea0c08c34c1fb1cb0dd5ce9082aa |
PMID | 28801632 |
PQID | 1957203586 |
PQPubID | 2041939 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c291ea0c08c34c1fb1cb0dd5ce9082aa pubmedcentral_primary_oai_pubmedcentral_nih_gov_5554289 proquest_miscellaneous_1928516536 proquest_journals_1957203586 pubmed_primary_28801632 crossref_citationtrail_10_1038_s41598_017_08465_1 crossref_primary_10_1038_s41598_017_08465_1 springer_journals_10_1038_s41598_017_08465_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170811 |
PublicationDateYYYYMMDD | 2017-08-11 |
PublicationDate_xml | – month: 8 year: 2017 text: 20170811 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | KanekoSKumazawaKMasudaHHenzeAHofmannTMolecular and sensory studies on the umami taste of Japanese green teaJ. Agric. Food Chem.200654268826941:CAS:528:DC%2BD28XitFOitbs%3D10.1021/jf052523216569062 GladeMJCaffeine-Not just a stimulantNutrition2010269329381:CAS:528:DC%2BC3cXht1eqtLbK10.1016/j.nut.2010.08.00420888549 DengW-WOgitaSAshiharaHBiosynthesis of theanine (γ-ethylamino-l-glutamic acid) in seedlings of Camellia sinensisPhytochem. Lett.200811151191:CAS:528:DC%2BD1MXnsF2qtr0%3D10.1016/j.phytol.2008.06.002 ChenXHPhotosynthesis, yield, and chemical composition of Tieguanyin tea plants (Camellia sinensis (L.) O. Kuntze) in response to irrigation treatmentsAgric. Water Manage.2010974194252010flf..book.....C10.1016/j.agwat.2009.10.015 MatrosAGrowth at elevated CO2 concentrations leads to modified profiles of secondary metabolites in tobacco cv. SamsunNN and to increased resistance against infection with potato virus YPlant Cell Environ.2006291261371:CAS:528:DC%2BD28XitFWisb8%3D10.1111/j.1365-3040.2005.01406.x17086759 WangHFTsaiYSLinMLOuASMComparison of bioactive components in GABA tea and green tea produced in TaiwanFood Chem.2006966486531:CAS:528:DC%2BD2MXht1Kksb%2FO10.1016/j.foodchem.2005.02.046 LiXStimulated leaf dark respiration in tomato in an elevated carbon dioxide atmosphereSci. Rep.20133343310.1038/srep03433385214124305603 GhasemzadehAJaafarHZEffect of CO2 enrichment on synthesis of some primary and secondary metabolites in ginger (Zingiber officinale Roscoe)Int. J. Mol. Sci.201112110111141:CAS:528:DC%2BC3MXitlSntbs%3D10.3390/ijms12021101308369321541046 TounektiTJoubertEHernándezIMunné-BoschSImproving the polyphenol content of teaCrit. Rev. Plant Sci.2013321922151:CAS:528:DC%2BC38XhvVCktLbN10.1080/07352689.2012.747384 EthierGJLivingstonNJOn the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis modelPlant Cell Environ.2004271371531:CAS:528:DC%2BD2cXisFKru7Y%3D10.1111/j.1365-3040.2004.01140.x TooJCKinyanjuiTWanyokoJKWachiraFNEffect of sunlight exposure and different withering durations on theanine levels in tea (Camellia sinensis)Food. Nutr. Sci.201506101410211:CAS:528:DC%2BC28XkvVOjsbk%3D10.4236/fns.2015.611105 RaniASinghKAhujaPSKumarSMolecular regulation of catechins biosynthesis in tea [Camellia sinensis (L.) O. Kuntze]Gene20124952052101:CAS:528:DC%2BC38XitVCnu78%3D10.1016/j.gene.2011.12.02922226811 SuYLLeungLKHuangYChenZYStability of tea theaflavins and catechinsFood Chem.2003831891951:CAS:528:DC%2BD3sXmsVSluro%3D10.1016/S0308-8146(03)00062-1 von CaemmererSFarquharGDSome Relationships between the biochemistry of photosynthesis and the gas-exchange of leavesPlanta198115337638710.1007/BF00384257 AshiharaHSanoHCrozierACaffeine and related purine alkaloids: biosynthesis, catabolism, function and genetic engineeringPhytochemistry2008698418561:CAS:528:DC%2BD1cXhslGrsrc%3D10.1016/j.phytochem.2007.10.02918068204 LivakKJSchmittgenTDAnalysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT methodMethods2001254024081:CAS:528:DC%2BD38XhtFelt7s%3D10.1006/meth.2001.126211846609 BordoniAGreen tea protection of hypoxia/reoxygenation injury in cultured cardiac cellsJ. Nutr. Biochem.2002131031111:CAS:528:DC%2BD38XovFCiug%3D%3D10.1016/S0955-2863(01)00203-011834226 XiongLDynamic changes in catechin levels and catechin biosynthesis-related gene expression in albino tea plants (Camellia sinensis L.)Plant Physiol. Biochem.2013711321431:CAS:528:DC%2BC3sXhsFemtb%2FJ10.1016/j.plaphy.2013.06.01923911731 Z., S. et al. Antagonism between phytohormone signalling underlies the variation in disease susceptibility of tomato plants under elevated CO2. J. Exp. Bot. 66, 1951–1963 (2015). MillenaarFFGonzalez‐MelerMASiedowJNWagnerAM& Lambers, H. Role of sugars and organic acids in regulating the concentration and activity of the alternative oxidase in Poa annua rootsJ. Exp. Bot.200253108110881:CAS:528:DC%2BD38XjsFagu7c%3D10.1093/jexbot/53.371.108111971919 LiPArabidopsis transcript and metabolite profiles: ecotype-specific responses to open-air elevated [CO2]Plant Cell Environ.2008311673168710.1111/j.1365-3040.2008.01874.x18721265 FilhoOMazzaferaPCaffeine does not protect coffee against the leaf miner Perileucoptera coffeellaJ. Chem. Ecol.2000261447146410.1023/A:1005587725704 LarsonCReading the tea leaves for effects of climate changeScience20153489539542015Sci...348..953L1:CAS:528:DC%2BC2MXhtVehtbzI10.1126/science.348.6238.95326023112 BrooksAFarquharGDEffect of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light. Estimates from gas-exchange measurements on spinachPlanta19851653974061:CAS:528:DyaL2MXltlyrsLc%3D10.1007/BF0039223824241146 DengWWWangSChenQZhangZZHuXYEffect of salt treatment on theanine biosynthesis in Camellia sinensis seedlingsPlant Physiol. Biochem.20125635401:CAS:528:DC%2BC38XotVakur0%3D10.1016/j.plaphy.2012.04.00322579942 SunYCaoHYinJKangLEGeFElevated CO2 changes the interactions between nematode and tomato genotypes differing in the JA pathwayPlant Cell Environ.2010337297391:CAS:528:DC%2BC3cXmtFOhu7k%3D10.1111/j.1365-3040.2010.02118.x20519018 HongGBiosynthesis of catechin components is differentially regulated in dark-treated tea (Camellia sinensis L.)Plant Physiol. Biochem.20147849521:CAS:528:DC%2BC2cXlt1Clsb0%3D10.1016/j.plaphy.2014.02.01724632491 Amthor, J.S. Plant respiratory responses to elevated carbon dioxide partial pressure. Adv. Carbon Dioxide Eff. Res. 35–77 (1997). GentyBBriantaisJMBakerNRThe relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescenceBiochim. Biophys. Acta-Gen. Subj.198999087921:CAS:528:DyaL1MXhsFWntL4%3D10.1016/S0304-4165(89)80016-9 LiZ-XDevelopmental changes in carbon and nitrogen metabolism affect tea quality in different leaf positionPlant Physiol. Biochem.20161063273351:CAS:528:DC%2BC28XhsVyksbnP10.1016/j.plaphy.2016.06.02727380366 BuysseJMerckxRAn improved colorimetric method to quantify sugar content of plant tissueJ. Exp. Bot.199344162716291:CAS:528:DyaK2cXkvFeiuw%3D%3D10.1093/jxb/44.10.1627 FanKFanDDingZSuYWangXCs-miR156 is involved in the nitrogen form regulation of catechins accumulation in tea plant (Camellia sinensis L.)Plant Physiol. Biochem.2015973503601:CAS:528:DC%2BC2MXhslGmtrjP10.1016/j.plaphy.2015.10.02626520678 ISO 14502-1. Determination of substances characteristic of green and black tea. Part 1: Content of total polyphenols in tea. Colorimetric method using Folin-Ciocalteu reagent. Switzerland (2005). Li, X. et al. Decreased biosynthesis of jasmonic acid via lipoxygenase pathway compromised caffeine-induced resistance to Colletotrichum gloeosporioides under elevated CO2 in tea seedlings. Phytopathology (2016). BryantJPChapinFSKleinDRCarbon/nutrient balance of boreal plants in relation to vertebrate herbivoryOikos198340357681:CAS:528:DyaL3sXltVahsr0%3D10.2307/3544308 AmthorJSTerrestrial higher-plant response to increasing atmospheric CO2 in relation to the global carbon cycleGlob. Change Biol.1995124327410.1111/j.1365-2486.1995.tb00025.x LewisCENoctorGCaustonDFoyerCHRegulation of assimilate partitioning in leavesAust. J. Plant Physiol.2000275075191:STN:280:DC%2BD283ktF2qsA%3D%3D LiXCarbon dioxide enrichment alleviates heat stress by improving cellular redox homeostasis through an ABA-independent process in tomato plantsPlant Biol.20151781891:CAS:528:DC%2BC2MXlt1Cruw%3D%3D10.1111/plb.1221124985337 MuWZhangTJiangBAn overview of biological production of L-theanineBiotechnol. Advan.2015333353421:CAS:528:DC%2BC2MXmslynurs%3D10.1016/j.biotechadv.2015.04.004 GoufoPRice (Oryza sativa L.) phenolic compounds under elevated carbon dioxide (CO2) concentrationEnviron. Exp. Bot.20149928371:CAS:528:DC%2BC2cXislOhsL0%3D10.1016/j.envexpbot.2013.10.021 IbrahimMHJaafarHZEnhancement of leaf gas exchange and primary metabolites under carbon dioxide enrichment up-regulates the production of secondary metabolites in Labisia pumila seedlingsMolecules201116376137771:CAS:528:DC%2BC3MXmtFKht7k%3D10.3390/molecules1605376121544039 IPCC. Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Solomon, S., Qin, D., Manning, M.,Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., Miller, H. L. (Eds). Cambridge University Press, Cambridge, UK (2007). NoguchiKNakajimaNTerashimaIAcclimation of leaf respiratory properties in Alocasia odora following reciprocal transfers of plants between high- and low-light environmentsPlant Cell Environ.2001248318391:CAS:528:DC%2BD3MXmsFCmu70%3D10.1046/j.1365-3040.2001.00728.x MJ Glade (8465_CR22) 2010; 26 XH Chen (8465_CR39) 2010; 97 Y Sun (8465_CR11) 2010; 33 MH Ibrahim (8465_CR26) 2011; 16 G Hong (8465_CR28) 2014; 78 S Kaneko (8465_CR17) 2006; 54 8465_CR38 A Brooks (8465_CR9) 1985; 165 FF Millenaar (8465_CR36) 2002; 53 W Mu (8465_CR13) 2015; 33 JC Too (8465_CR19) 2015; 06 K Noguchi (8465_CR37) 2001; 24 A Rani (8465_CR25) 2012; 495 Z-X Li (8465_CR21) 2016; 106 HF Wang (8465_CR41) 2006; 96 A Matros (8465_CR10) 2006; 29 X Li (8465_CR2) 2015; 17 J Buysse (8465_CR42) 1993; 44 8465_CR1 S von Caemmerer (8465_CR33) 1981; 153 GJ Ethier (8465_CR34) 2004; 27 A Bordoni (8465_CR18) 2002; 13 YL Su (8465_CR40) 2003; 83 8465_CR3 8465_CR4 L Xiong (8465_CR29) 2013; 71 8465_CR8 KJ Livak (8465_CR43) 2001; 25 O Filho (8465_CR20) 2000; 26 JP Bryant (8465_CR32) 1983; 40 T Tounekti (8465_CR14) 2013; 32 A Ghasemzadeh (8465_CR15) 2011; 12 W-W Deng (8465_CR30) 2008; 1 P Li (8465_CR16) 2008; 31 X Li (8465_CR5) 2013; 3 H Ashihara (8465_CR12) 2008; 69 K Fan (8465_CR27) 2015; 97 B Genty (8465_CR35) 1989; 990 JS Amthor (8465_CR6) 1995; 1 CE Lewis (8465_CR7) 2000; 27 WW Deng (8465_CR31) 2012; 56 C Larson (8465_CR23) 2015; 348 P Goufo (8465_CR24) 2014; 99 |
References_xml | – reference: LivakKJSchmittgenTDAnalysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT methodMethods2001254024081:CAS:528:DC%2BD38XhtFelt7s%3D10.1006/meth.2001.126211846609 – reference: FilhoOMazzaferaPCaffeine does not protect coffee against the leaf miner Perileucoptera coffeellaJ. Chem. Ecol.2000261447146410.1023/A:1005587725704 – reference: IbrahimMHJaafarHZEnhancement of leaf gas exchange and primary metabolites under carbon dioxide enrichment up-regulates the production of secondary metabolites in Labisia pumila seedlingsMolecules201116376137771:CAS:528:DC%2BC3MXmtFKht7k%3D10.3390/molecules1605376121544039 – reference: LewisCENoctorGCaustonDFoyerCHRegulation of assimilate partitioning in leavesAust. J. Plant Physiol.2000275075191:STN:280:DC%2BD283ktF2qsA%3D%3D – reference: LarsonCReading the tea leaves for effects of climate changeScience20153489539542015Sci...348..953L1:CAS:528:DC%2BC2MXhtVehtbzI10.1126/science.348.6238.95326023112 – reference: AmthorJSTerrestrial higher-plant response to increasing atmospheric CO2 in relation to the global carbon cycleGlob. Change Biol.1995124327410.1111/j.1365-2486.1995.tb00025.x – reference: von CaemmererSFarquharGDSome Relationships between the biochemistry of photosynthesis and the gas-exchange of leavesPlanta198115337638710.1007/BF00384257 – reference: BuysseJMerckxRAn improved colorimetric method to quantify sugar content of plant tissueJ. Exp. Bot.199344162716291:CAS:528:DyaK2cXkvFeiuw%3D%3D10.1093/jxb/44.10.1627 – reference: GhasemzadehAJaafarHZEffect of CO2 enrichment on synthesis of some primary and secondary metabolites in ginger (Zingiber officinale Roscoe)Int. J. Mol. Sci.201112110111141:CAS:528:DC%2BC3MXitlSntbs%3D10.3390/ijms12021101308369321541046 – reference: KanekoSKumazawaKMasudaHHenzeAHofmannTMolecular and sensory studies on the umami taste of Japanese green teaJ. Agric. Food Chem.200654268826941:CAS:528:DC%2BD28XitFOitbs%3D10.1021/jf052523216569062 – reference: FanKFanDDingZSuYWangXCs-miR156 is involved in the nitrogen form regulation of catechins accumulation in tea plant (Camellia sinensis L.)Plant Physiol. Biochem.2015973503601:CAS:528:DC%2BC2MXhslGmtrjP10.1016/j.plaphy.2015.10.02626520678 – reference: EthierGJLivingstonNJOn the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis modelPlant Cell Environ.2004271371531:CAS:528:DC%2BD2cXisFKru7Y%3D10.1111/j.1365-3040.2004.01140.x – reference: GentyBBriantaisJMBakerNRThe relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescenceBiochim. Biophys. Acta-Gen. Subj.198999087921:CAS:528:DyaL1MXhsFWntL4%3D10.1016/S0304-4165(89)80016-9 – reference: LiXStimulated leaf dark respiration in tomato in an elevated carbon dioxide atmosphereSci. Rep.20133343310.1038/srep03433385214124305603 – reference: NoguchiKNakajimaNTerashimaIAcclimation of leaf respiratory properties in Alocasia odora following reciprocal transfers of plants between high- and low-light environmentsPlant Cell Environ.2001248318391:CAS:528:DC%2BD3MXmsFCmu70%3D10.1046/j.1365-3040.2001.00728.x – reference: HongGBiosynthesis of catechin components is differentially regulated in dark-treated tea (Camellia sinensis L.)Plant Physiol. Biochem.20147849521:CAS:528:DC%2BC2cXlt1Clsb0%3D10.1016/j.plaphy.2014.02.01724632491 – reference: AshiharaHSanoHCrozierACaffeine and related purine alkaloids: biosynthesis, catabolism, function and genetic engineeringPhytochemistry2008698418561:CAS:528:DC%2BD1cXhslGrsrc%3D10.1016/j.phytochem.2007.10.02918068204 – reference: BordoniAGreen tea protection of hypoxia/reoxygenation injury in cultured cardiac cellsJ. Nutr. Biochem.2002131031111:CAS:528:DC%2BD38XovFCiug%3D%3D10.1016/S0955-2863(01)00203-011834226 – reference: MillenaarFFGonzalez‐MelerMASiedowJNWagnerAM& Lambers, H. Role of sugars and organic acids in regulating the concentration and activity of the alternative oxidase in Poa annua rootsJ. Exp. Bot.200253108110881:CAS:528:DC%2BD38XjsFagu7c%3D10.1093/jexbot/53.371.108111971919 – reference: WangHFTsaiYSLinMLOuASMComparison of bioactive components in GABA tea and green tea produced in TaiwanFood Chem.2006966486531:CAS:528:DC%2BD2MXht1Kksb%2FO10.1016/j.foodchem.2005.02.046 – reference: MatrosAGrowth at elevated CO2 concentrations leads to modified profiles of secondary metabolites in tobacco cv. SamsunNN and to increased resistance against infection with potato virus YPlant Cell Environ.2006291261371:CAS:528:DC%2BD28XitFWisb8%3D10.1111/j.1365-3040.2005.01406.x17086759 – reference: DengWWWangSChenQZhangZZHuXYEffect of salt treatment on theanine biosynthesis in Camellia sinensis seedlingsPlant Physiol. Biochem.20125635401:CAS:528:DC%2BC38XotVakur0%3D10.1016/j.plaphy.2012.04.00322579942 – reference: TounektiTJoubertEHernándezIMunné-BoschSImproving the polyphenol content of teaCrit. Rev. Plant Sci.2013321922151:CAS:528:DC%2BC38XhvVCktLbN10.1080/07352689.2012.747384 – reference: LiPArabidopsis transcript and metabolite profiles: ecotype-specific responses to open-air elevated [CO2]Plant Cell Environ.2008311673168710.1111/j.1365-3040.2008.01874.x18721265 – reference: ChenXHPhotosynthesis, yield, and chemical composition of Tieguanyin tea plants (Camellia sinensis (L.) O. Kuntze) in response to irrigation treatmentsAgric. Water Manage.2010974194252010flf..book.....C10.1016/j.agwat.2009.10.015 – reference: LiXCarbon dioxide enrichment alleviates heat stress by improving cellular redox homeostasis through an ABA-independent process in tomato plantsPlant Biol.20151781891:CAS:528:DC%2BC2MXlt1Cruw%3D%3D10.1111/plb.1221124985337 – reference: Z., S. et al. Antagonism between phytohormone signalling underlies the variation in disease susceptibility of tomato plants under elevated CO2. J. Exp. Bot. 66, 1951–1963 (2015). – reference: SuYLLeungLKHuangYChenZYStability of tea theaflavins and catechinsFood Chem.2003831891951:CAS:528:DC%2BD3sXmsVSluro%3D10.1016/S0308-8146(03)00062-1 – reference: BryantJPChapinFSKleinDRCarbon/nutrient balance of boreal plants in relation to vertebrate herbivoryOikos198340357681:CAS:528:DyaL3sXltVahsr0%3D10.2307/3544308 – reference: BrooksAFarquharGDEffect of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light. Estimates from gas-exchange measurements on spinachPlanta19851653974061:CAS:528:DyaL2MXltlyrsLc%3D10.1007/BF0039223824241146 – reference: TooJCKinyanjuiTWanyokoJKWachiraFNEffect of sunlight exposure and different withering durations on theanine levels in tea (Camellia sinensis)Food. Nutr. Sci.201506101410211:CAS:528:DC%2BC28XkvVOjsbk%3D10.4236/fns.2015.611105 – reference: IPCC. Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Solomon, S., Qin, D., Manning, M.,Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., Miller, H. L. (Eds). Cambridge University Press, Cambridge, UK (2007). – reference: DengW-WOgitaSAshiharaHBiosynthesis of theanine (γ-ethylamino-l-glutamic acid) in seedlings of Camellia sinensisPhytochem. Lett.200811151191:CAS:528:DC%2BD1MXnsF2qtr0%3D10.1016/j.phytol.2008.06.002 – reference: RaniASinghKAhujaPSKumarSMolecular regulation of catechins biosynthesis in tea [Camellia sinensis (L.) O. Kuntze]Gene20124952052101:CAS:528:DC%2BC38XitVCnu78%3D10.1016/j.gene.2011.12.02922226811 – reference: GoufoPRice (Oryza sativa L.) phenolic compounds under elevated carbon dioxide (CO2) concentrationEnviron. Exp. Bot.20149928371:CAS:528:DC%2BC2cXislOhsL0%3D10.1016/j.envexpbot.2013.10.021 – reference: MuWZhangTJiangBAn overview of biological production of L-theanineBiotechnol. Advan.2015333353421:CAS:528:DC%2BC2MXmslynurs%3D10.1016/j.biotechadv.2015.04.004 – reference: LiZ-XDevelopmental changes in carbon and nitrogen metabolism affect tea quality in different leaf positionPlant Physiol. Biochem.20161063273351:CAS:528:DC%2BC28XhsVyksbnP10.1016/j.plaphy.2016.06.02727380366 – reference: GladeMJCaffeine-Not just a stimulantNutrition2010269329381:CAS:528:DC%2BC3cXht1eqtLbK10.1016/j.nut.2010.08.00420888549 – reference: Li, X. et al. Decreased biosynthesis of jasmonic acid via lipoxygenase pathway compromised caffeine-induced resistance to Colletotrichum gloeosporioides under elevated CO2 in tea seedlings. Phytopathology (2016). – reference: SunYCaoHYinJKangLEGeFElevated CO2 changes the interactions between nematode and tomato genotypes differing in the JA pathwayPlant Cell Environ.2010337297391:CAS:528:DC%2BC3cXmtFOhu7k%3D10.1111/j.1365-3040.2010.02118.x20519018 – reference: Amthor, J.S. Plant respiratory responses to elevated carbon dioxide partial pressure. Adv. Carbon Dioxide Eff. Res. 35–77 (1997). – reference: XiongLDynamic changes in catechin levels and catechin biosynthesis-related gene expression in albino tea plants (Camellia sinensis L.)Plant Physiol. Biochem.2013711321431:CAS:528:DC%2BC3sXhsFemtb%2FJ10.1016/j.plaphy.2013.06.01923911731 – reference: ISO 14502-1. Determination of substances characteristic of green and black tea. Part 1: Content of total polyphenols in tea. Colorimetric method using Folin-Ciocalteu reagent. Switzerland (2005). – volume: 27 start-page: 137 year: 2004 ident: 8465_CR34 publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2004.01140.x – volume: 106 start-page: 327 year: 2016 ident: 8465_CR21 publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2016.06.027 – volume: 1 start-page: 243 year: 1995 ident: 8465_CR6 publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.1995.tb00025.x – volume: 348 start-page: 953 year: 2015 ident: 8465_CR23 publication-title: Science doi: 10.1126/science.348.6238.953 – volume: 97 start-page: 419 year: 2010 ident: 8465_CR39 publication-title: Agric. Water Manage. doi: 10.1016/j.agwat.2009.10.015 – volume: 33 start-page: 729 year: 2010 ident: 8465_CR11 publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2010.02118.x – volume: 16 start-page: 3761 year: 2011 ident: 8465_CR26 publication-title: Molecules doi: 10.3390/molecules16053761 – volume: 1 start-page: 115 year: 2008 ident: 8465_CR30 publication-title: Phytochem. Lett. doi: 10.1016/j.phytol.2008.06.002 – volume: 97 start-page: 350 year: 2015 ident: 8465_CR27 publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2015.10.026 – ident: 8465_CR8 doi: 10.2134/asaspecpub61.c2 – volume: 26 start-page: 1447 year: 2000 ident: 8465_CR20 publication-title: J. Chem. Ecol. doi: 10.1023/A:1005587725704 – volume: 78 start-page: 49 year: 2014 ident: 8465_CR28 publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2014.02.017 – volume: 17 start-page: 81 year: 2015 ident: 8465_CR2 publication-title: Plant Biol. doi: 10.1111/plb.12211 – volume: 153 start-page: 376 year: 1981 ident: 8465_CR33 publication-title: Planta doi: 10.1007/BF00384257 – volume: 96 start-page: 648 year: 2006 ident: 8465_CR41 publication-title: Food Chem. doi: 10.1016/j.foodchem.2005.02.046 – volume: 13 start-page: 103 year: 2002 ident: 8465_CR18 publication-title: J. Nutr. Biochem. doi: 10.1016/S0955-2863(01)00203-0 – volume: 53 start-page: 1081 year: 2002 ident: 8465_CR36 publication-title: J. Exp. Bot. doi: 10.1093/jexbot/53.371.1081 – volume: 31 start-page: 1673 year: 2008 ident: 8465_CR16 publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2008.01874.x – volume: 54 start-page: 2688 year: 2006 ident: 8465_CR17 publication-title: J. Agric. Food Chem. doi: 10.1021/jf0525232 – volume: 32 start-page: 192 year: 2013 ident: 8465_CR14 publication-title: Crit. Rev. Plant Sci. doi: 10.1080/07352689.2012.747384 – volume: 27 start-page: 507 year: 2000 ident: 8465_CR7 publication-title: Aust. J. Plant Physiol. – volume: 33 start-page: 335 year: 2015 ident: 8465_CR13 publication-title: Biotechnol. Advan. doi: 10.1016/j.biotechadv.2015.04.004 – volume: 24 start-page: 831 year: 2001 ident: 8465_CR37 publication-title: Plant Cell Environ. doi: 10.1046/j.1365-3040.2001.00728.x – volume: 69 start-page: 841 year: 2008 ident: 8465_CR12 publication-title: Phytochemistry doi: 10.1016/j.phytochem.2007.10.029 – ident: 8465_CR4 doi: 10.1094/PHYTO-12-15-0336-R – volume: 26 start-page: 932 year: 2010 ident: 8465_CR22 publication-title: Nutrition doi: 10.1016/j.nut.2010.08.004 – ident: 8465_CR1 – volume: 12 start-page: 1101 year: 2011 ident: 8465_CR15 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms12021101 – volume: 990 start-page: 87 year: 1989 ident: 8465_CR35 publication-title: Biochim. Biophys. Acta-Gen. Subj. doi: 10.1016/S0304-4165(89)80016-9 – volume: 25 start-page: 402 year: 2001 ident: 8465_CR43 publication-title: Methods doi: 10.1006/meth.2001.1262 – volume: 29 start-page: 126 year: 2006 ident: 8465_CR10 publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2005.01406.x – volume: 06 start-page: 1014 year: 2015 ident: 8465_CR19 publication-title: Food. Nutr. Sci. doi: 10.4236/fns.2015.611105 – volume: 83 start-page: 189 year: 2003 ident: 8465_CR40 publication-title: Food Chem. doi: 10.1016/S0308-8146(03)00062-1 – ident: 8465_CR3 doi: 10.1093/jxb/eru538 – volume: 99 start-page: 28 year: 2014 ident: 8465_CR24 publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2013.10.021 – volume: 56 start-page: 35 year: 2012 ident: 8465_CR31 publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2012.04.003 – volume: 165 start-page: 397 year: 1985 ident: 8465_CR9 publication-title: Planta doi: 10.1007/BF00392238 – volume: 71 start-page: 132 year: 2013 ident: 8465_CR29 publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2013.06.019 – volume: 3 start-page: 3433 year: 2013 ident: 8465_CR5 publication-title: Sci. Rep. doi: 10.1038/srep03433 – ident: 8465_CR38 – volume: 44 start-page: 1627 year: 1993 ident: 8465_CR42 publication-title: J. Exp. Bot. doi: 10.1093/jxb/44.10.1627 – volume: 495 start-page: 205 year: 2012 ident: 8465_CR25 publication-title: Gene doi: 10.1016/j.gene.2011.12.029 – volume: 40 start-page: 357 year: 1983 ident: 8465_CR32 publication-title: Oikos doi: 10.2307/3544308 |
SSID | ssj0000529419 |
Score | 2.4905052 |
Snippet | Rising CO
2
concentration, a driving force of climate change, is impacting global food security by affecting plant physiology. Nevertheless, the effects of... Rising CO concentration, a driving force of climate change, is impacting global food security by affecting plant physiology. Nevertheless, the effects of... Rising CO2 concentration, a driving force of climate change, is impacting global food security by affecting plant physiology. Nevertheless, the effects of... Abstract Rising CO2 concentration, a driving force of climate change, is impacting global food security by affecting plant physiology. Nevertheless, the... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7937 |
SubjectTerms | 38/39 38/77 631/158/2165 631/158/2455 631/449/1736 631/449/2668 Amino acids Biosynthesis Caffeine Camellia sinensis Carbon dioxide Climate change Food plants Food security Green tea Humanities and Social Sciences Leaves Metabolism Metabolites multidisciplinary Nitrogen Photosynthesis Plant physiology Respiration Science Science (multidisciplinary) Secondary metabolites Starch Sugar Tea Theanine |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1KQUbiBlFjJ3biE4KKqkKIC1Tam-VnidRNymYrsf31zCTewPLoMbEdOZ4Zzzee8Qwhr0ppOLcVz4vAVV45X-ZWcJM7E1UoK-5jGKMtPsuT0-rjQizSgduQwiq3e-K4Ufve4Rn5IVMCPYaikW8vvudYNQq9q6mExk1yC1OXYUhXvajnMxb0YlVMpbsyRdkcDqCv8E4ZbM0FaF6Rsx19NKbt_xfW_Dtk8g-_6aiOju-RuwlH0ncT4e-TG6F7QG5PlSU3D8nVl3W7TJW5aNvRiympBDWdpwPawB6flmENPHDeDktqNxRvmgPy9NSZlYVhvu1_tD7Q0aE-0DOM0KHAE3S6iLnB7x6ZJWb0NBTD57uhHeinR-T0-MPXo5M8lVnIHehulkvOYyPqknHbCA66ikemohFOcgP2VWQyNDZEEZyyQFAuo5QAqwBpVVHVti4fk72u78JTQmVwIoINVgvnK2EKW7NomYzKKWOsqjLCtoutXcpBjqUwzvXoCy8bPRFIA4H0SCDNMvJ6HpMW69re75GGc0_Mnj2-6FdnOgmjdlyxYApXNK6sHE7R2cJ74QIWgDcmIwdbDtBJpAf9iwEz8nJuBmFED4vpQn-JfTggWClK6PNkYph5Jhx2SgC_PCP1DivtTHW3pWu_jQm_BWA-MIwz8mbLdL9N679LsX_9Xzwjd_gkBzljB2RvvboMzwFgre2LUYp-AoIZJFs priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFA7LiuCLeLe6SgTftNqcJmnzIKKLyyLqiw7sW8h1Lcx0dDoLO_56T3oZHB198rFtUsK55HyHcyPkaSkNgOWQFwFUzp0vcyvA5M5EFUoOPoY-2-KTPJ3x92fi7IBM445GAnZ7Xbs0T2q2mr-4_L55jQr_aigZr192aIRSoRjetwWaU5GjN3QFLVOVFPXjCPeHXt-gOFNj7cz-rTv2qW_jvw97_plC-VsctTdPJzfI9RFX0jeDINwkB6G9Ra4OkyY3t8mPz-tmMU7qok1Lvw1NJqhpPe2ST-zT0yKsUSbmTbegdkNT5TkiUU-dWVnc5pvlZeMD7QPsHT1PGTsUZYQOhZmb9N9js0gdPg1N6fRt13T0wx0yO3n35fg0H8cu5A5tOcslQKxFVTKwtQC0XRCZikY4CQb9rchkqG2IIjhlkcEgo5QIsxB58agqW5V3yWG7bMN9QmVwIqJPVgnnuTCFrVi0TEbllDFW8YywidjajT3J02iMue5j42WtBwZpZJDuGaRZRp5t94zE-ufqt4mH25Wpm3b_Yrk616NyageKBVO4onYld-mIzhbeCxfSQHhjMnI0SYCeJFQzJVIIW9QyI0-2n1E5U8TFtGF5kdYAIlopSlxzbxCY7UkAb04Ew5CRakeUdo66-6VtvvYNwAViQHSUM_J8ErpfjvVXUjz4H6R4SK7BoC05Y0fkcL26CI8Qlq3t417XfgKl8TU2 priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA/Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF9Ki-CLtH6mVlnBNw1mJ9lN9lEPSxHxRQt9W_azBno5uVzB61_f2c0HnlbBx1xmw7Azu_Obmy9CXpdCA5gK8sKDzCvrytxw0LnVQfqyAhd8yrb4Is7Oq08X_GKPwFQLk5L2U0vLdE1P2WHvejQ0sRgM79QCTSbP0eM5iK3bo1YvxGL-XyVGriomx_qYomzuWLpjg1Kr_rvw5Z9pkr_FSpMJOj0kD0bsSN8P3B6RPd89JPeGaZLbR-Tm66ZdjtO4aNvRH0MjCao7R_vo97r4tPQblPtV2y-p2dJYXY5o01Gr1waXuXb1s3WepiB6Ty9jVg5FPaBD8eU2fnehl7GLp6YxZb7r255-fkzOTz9-W5zl42iF3KK9ZrkACA2vSwam4YD2CQKTQXMrQKNPFZjwjfGBeysNChFEEAKhFKKrKsja1OUTst-tOv-MUOEtD-h31dy6iuvC1CwYJoK0Umsjq4ywabOVHfuOx_EXVyrFv8tGDQJSKCCVBKRYRt7Ma8bN-if1hyjDmTJ2zE4_rNaXatQgZUEyrwtbNLasbGTRmsI5bn0c-q51Rk4mDVDjMe4VkzyGqXkjMvJqfo0HMEZVdOdX15EGELUKXiLN00FhZk4Ab0cEvJCRekeVdljdfdO131OTb444D53hjLydlO4Xtv66Fcf_R_6c3IfhXOSMnZD9zfrav0CQtTEv06m6BcZ9Iik priority: 102 providerName: Springer Nature |
Title | Stimulation in primary and secondary metabolism by elevated carbon dioxide alters green tea quality in Camellia sinensis L |
URI | https://link.springer.com/article/10.1038/s41598-017-08465-1 https://www.ncbi.nlm.nih.gov/pubmed/28801632 https://www.proquest.com/docview/1957203586 https://www.proquest.com/docview/1928516536 https://pubmed.ncbi.nlm.nih.gov/PMC5554289 https://doaj.org/article/c291ea0c08c34c1fb1cb0dd5ce9082aa |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBdbx2AvY99z1wUN9raZWrIkW49paClhK2NdIW9CkqXV0DijTmHpX7-T5IRkny97sbE-jLg76X7Hne4QelsKTalhNC8clTmzTZkbTnVutZeuZLTxLkZbnInTCzad8dlWqa8QE5bSAyfCHVoqidOFLWpbMku8IdYUTcOtC8W6dYRGoPO2jKmU1ZtKRuRwS6Yo68MeNFW4TQaHcgE6l-dkRxPFhP2_Q5m_Bkv-5DGNiujkEXo4IEg8Tit_jO647gm6n2pKrp6i2_NlOx9qcuG2w99SOgmsuwb3wfptwtfcLYH7V20_x2aFwx1zwJwNtvrawLSmXXxvG4ejK73HX0NsDgZpwOkK5ir8d6LnIZenxiFwvuvbHn94hi5Ojr9MTvOhwEJuQWuTXFDqa16VhJqaU9BS1BPpNbeCarCsPBGuNs5zZ6UBVlLhhQBABRiLeVmZqnyO9rpF514iLJzlHqyvituGcV2YKrBKeGml1kayDJE1sZUdso-HIhhXKnrBy1olBilgkIoMUiRD7zZzBmL9dfRR4OFmZMibHRtAmtQgTepf0pShg7UEqGEz94pIHpzVvBYZerPphm0YfCu6c4ubMIYCdhW8hDEvksBsVkLhjATYSzNU7YjSzlJ3e7r2Mqb65oD2wCTO0Pu10G0t64-k2P8fpHiFHtC0W3JCDtDe8vrGvQYAtjQjdLeaVSN0bzyenk_hfXR89ukztE7EZBT3ITw_svoH9bAz9A |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw1CpTIbggdgIFjAQniBo7sRMfEKKl1ZQOIwSt1JvxWiJ1MmUyFQwfxTfynGVgWHrrMYkTvfjtfhtCT1OuKNUZjRNHRZwZm8aaURUb5YVLM2q9a7Itxnx4mL09Ykdr6EdfCxPSKnuZ2AhqOzXhjHyTCBYihqzgr06_xGFqVIiu9iM0WrLYd4uv4LLVL_feAH6fUbq7c7A9jLupArEBVUViTqkvWJ4SqgtGQTRTT4RXzHCqwJ3whLtCO8-cERrgp9xzDlYEGBaZF7nOU_juJbSepeDKDND61s74_YflqU6Im2VEdNU5SVps1qAhQxUbKIMEdD2LyYoGbAYF_Mu6_TtJ849IbaMAd6-ja53lil-3pHYDrbnqJrrczrJc3ELfP87LSTcLDJcVPm3bWGBVWVwHr9uGq4mbA9WdlPUE6wUOte1g61ps1EzDa7acfiutw00Iv8bHIScIAxXitvRzEb67rSahh6jCIWG_qssaj26jwwtBwR00qKaVu4cwd4Z58PpyZmzGVKJz4jXhXhihlBZZhEi_2dJ0Xc_D8I0T2UTf00K2CJKAINkgSJIIPV--023Wuau3Ag6XK0O_7ubGdHYsO_aXhgriVGKSwqSZCSAanVjLjAsj55WK0EZPAbITIrX8RfIRerJ8DOwfYjqqctOzsIaCzcxZCmvutgSzhISCbAZzm0YoXyGlFVBXn1Tl56bFOAMrE1zxCL3oie43sP67FffP_4vH6Mrw4N1IjvbG-w_QVdryREzIBhrMZ2fuIZh3c_2o4ymMPl00G_8E9thgOA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYgLYi2BAkaCE0QTO7ETHxCCllFLqwoJKvVmbMcukTqZMpkKhp_Gr-O9LAPD0luPM3Eix-97W95GyNNUGs5txuPEcxVnrkxjK7iJnQnKpxkvg2-zLQ7kzmH27kgcrZEfQy0MplUOMrEV1OXU4TfyEVMCI4aikKPQp0W83x6_Ov0S4wQpjLQO4zQ6iOz5xVdw35qXu9tA62ecj99-3NqJ-wkDsQO1xWLJeShEnjJuC8FBTPPAVDDCSW7AtQhM-sL6ILxTFt6FyyAlWBRgZGRB5TZP4bmXyOU8FQx5LD_Kl993MIKWMdXX6SRpMWpAV2I9G6iFBLS-iNmKLmxHBvzLzv07XfOPmG2rCsc3yPXehqWvO9DdJGu-vkWudFMtF7fJ9w_zatJPBaNVTU-7hhbU1CVt0P8u8dfEzwF_J1UzoXZBscodrN6SOjOzcFtZTb9VpadtML-hx5gdRAGPtCsCXeBzt8wEu4kaiqn7dVM1dP8OObwQAtwl6_W09vcIld6JAP5fLlyZCZPYnAXLZFBOGWNVFhE2HLZ2ff9zHMNxots4fFrojkAaCKRbAmkWkefLe_rDOnf1G6ThciV27m7_mM6OdS8ItOOKeZO4pHBp5nCLziZlKZzH4fPGRGRzQIDuxUmjf4E_Ik-Wl0EQYHTH1H56hms4WM9SpLBmowPMciccpDQY3jwi-QqUVra6eqWuPrfNxgXYm-CUR-TFALrftvXfo7h__ls8JleBefX-7sHeA3KNdywRM7ZJ1uezM_8Q7Ly5fdQyFCWfLpqDfwKGjmMI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stimulation+in+primary+and+secondary+metabolism+by+elevated+carbon+dioxide+alters+green+tea+quality+in+Camellia+sinensis+L&rft.jtitle=Scientific+reports&rft.au=Xin+Li&rft.au=Lan+Zhang&rft.au=Golam+Jalal+Ahammed&rft.au=Zhi-Xin+Li&rft.date=2017-08-11&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=7&rft.issue=1&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1038%2Fs41598-017-08465-1&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c291ea0c08c34c1fb1cb0dd5ce9082aa |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |