Alzheimer’s Disease: A Suitable Case for Treatment with Precision Medicine?
Abstract Alzheimer’s disease (AD) is the most common cause of neurodegenerative impairment in elderly people. Clinical characteristics include short-term memory loss, confusion, hallucination, agitation, and behavioral disturbance. Owing to evolving research in biomarkers, AD can be discovered at ea...
Saved in:
Published in | Medical principles and practice Vol. 33; no. 4; pp. 301 - 309 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel, Switzerland
S. Karger AG
01.08.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1011-7571 1423-0151 1423-0151 |
DOI | 10.1159/000538251 |
Cover
Loading…
Abstract | Abstract
Alzheimer’s disease (AD) is the most common cause of neurodegenerative impairment in elderly people. Clinical characteristics include short-term memory loss, confusion, hallucination, agitation, and behavioral disturbance. Owing to evolving research in biomarkers, AD can be discovered at early onset, but the disease is currently considered a continuum, which suggests that pharmacotherapy is most efficacious in the preclinical phase, possibly 15–20 years before discernible onset. Present developments in AD therapy aim to respond to this understanding and go beyond the drug families that relieve clinical symptoms. Another important factor in this development is the emergence of precision medicine that aims to tailor treatment to specific patients or patient subgroups. This relatively new platform would categorize AD patients on the basis of parameters like clinical aspects, brain imaging, genetic profiling, clinical genetics, and epidemiological factors. This review enlarges on recent progress in the design and clinical use of antisense molecules, antibodies, antioxidants, small molecules, and gene editing to stop AD progress and possibly reverse the disease on the basis of relevant biomarkers.
Highlights of the StudyThe heterogeneous and multifactorial nature of Alzheimer’s disease needs new therapeutic approaches.Precision medicine aims to tailor treatment to specific patients or patient subgroups.Various tailored approaches, especially genomic editing techniques, represent a promising new therapy for Alzheimer’s disease.It is highly likely that precision medicine is most efficacious at the preclinical stage of Alzheimer’s disease. |
---|---|
AbstractList | Alzheimer's disease (AD) is the most common cause of neurodegenerative impairment in elderly people. Clinical characteristics include short-term memory loss, confusion, hallucination, agitation, and behavioural disturbance. Owing to evolving research in biomarkers AD can be discovered at early onset, but the disease is currently considered a continuum, which suggests that pharmacotherapy is most efficacious in the preclinical phase, possibly 15 - 20 years before discernible onset. Present developments in AD therapy aim to respond to this understanding and go beyond the drug families that relieve clinical symptoms. Another important factor in this development is the emergence of precision medicine that aims to tailor treatment to specific patients or patient subgroups. This relatively new platform would categorize AD patients on the basis of parameters like clinical aspects, brain imaging, genetic profiling, clinical genetics and epidemiological factors. This review enlarges on recent progress in the design and clinical use of antisense molecules, antibodies, antioxidants, small molecules and gene editing to stop AD progress and possibly reverse the disease on the basis of relevant biomarkers. Alzheimer’s disease (AD) is the most common cause of neurodegenerative impairment in elderly people. Clinical characteristics include short-term memory loss, confusion, hallucination, agitation, and behavioral disturbance. Owing to evolving research in biomarkers, AD can be discovered at early onset, but the disease is currently considered a continuum, which suggests that pharmacotherapy is most efficacious in the preclinical phase, possibly 15–20 years before discernible onset. Present developments in AD therapy aim to respond to this understanding and go beyond the drug families that relieve clinical symptoms. Another important factor in this development is the emergence of precision medicine that aims to tailor treatment to specific patients or patient subgroups. This relatively new platform would categorize AD patients on the basis of parameters like clinical aspects, brain imaging, genetic profiling, clinical genetics, and epidemiological factors. This review enlarges on recent progress in the design and clinical use of antisense molecules, antibodies, antioxidants, small molecules, and gene editing to stop AD progress and possibly reverse the disease on the basis of relevant biomarkers. Abstract Alzheimer’s disease (AD) is the most common cause of neurodegenerative impairment in elderly people. Clinical characteristics include short-term memory loss, confusion, hallucination, agitation, and behavioral disturbance. Owing to evolving research in biomarkers, AD can be discovered at early onset, but the disease is currently considered a continuum, which suggests that pharmacotherapy is most efficacious in the preclinical phase, possibly 15–20 years before discernible onset. Present developments in AD therapy aim to respond to this understanding and go beyond the drug families that relieve clinical symptoms. Another important factor in this development is the emergence of precision medicine that aims to tailor treatment to specific patients or patient subgroups. This relatively new platform would categorize AD patients on the basis of parameters like clinical aspects, brain imaging, genetic profiling, clinical genetics, and epidemiological factors. This review enlarges on recent progress in the design and clinical use of antisense molecules, antibodies, antioxidants, small molecules, and gene editing to stop AD progress and possibly reverse the disease on the basis of relevant biomarkers. Highlights of the StudyThe heterogeneous and multifactorial nature of Alzheimer’s disease needs new therapeutic approaches.Precision medicine aims to tailor treatment to specific patients or patient subgroups.Various tailored approaches, especially genomic editing techniques, represent a promising new therapy for Alzheimer’s disease.It is highly likely that precision medicine is most efficacious at the preclinical stage of Alzheimer’s disease. To illustrate this, recent research in oncology has identified a drug that can inhibit special functional domains of a protein that is involved in cancer progression [4]. Regarding specific targeting, it is assumed that the ApoE4 protein is not just a risk factor but can open pathways to initiate AD. [...]the targeting of ApoE4 holds promise to improve AD symptoms and, on the longer run, diminish AD occurrence in (sub)groups [29]. At the initial stage of this trial, the dose-dependent study was carried out in different groups, and CSF total tau and p-181 tau were reduced by 60 percent in the higher-dose cohorts and stayed low for 6 months. Toward this goal and to increase the possibility of an efficacious engagement of small molecules with 3D-RNA, medicinal chemistry, including X-ray crystallography, NMR spectroscopy, cryo-electron microscopy, and computational molecular technology, has been shown to be indispensable [37, 38]. Alzheimer's disease (AD) is the most common cause of neurodegenerative impairment in elderly people. Clinical characteristics include short-term memory loss, confusion, hallucination, agitation, and behavioural disturbance. Owing to evolving research in biomarkers AD can be discovered at early onset, but the disease is currently considered a continuum, which suggests that pharmacotherapy is most efficacious in the preclinical phase, possibly 15 - 20 years before discernible onset. Present developments in AD therapy aim to respond to this understanding and go beyond the drug families that relieve clinical symptoms. Another important factor in this development is the emergence of precision medicine that aims to tailor treatment to specific patients or patient subgroups. This relatively new platform would categorize AD patients on the basis of parameters like clinical aspects, brain imaging, genetic profiling, clinical genetics and epidemiological factors. This review enlarges on recent progress in the design and clinical use of antisense molecules, antibodies, antioxidants, small molecules and gene editing to stop AD progress and possibly reverse the disease on the basis of relevant biomarkers.Alzheimer's disease (AD) is the most common cause of neurodegenerative impairment in elderly people. Clinical characteristics include short-term memory loss, confusion, hallucination, agitation, and behavioural disturbance. Owing to evolving research in biomarkers AD can be discovered at early onset, but the disease is currently considered a continuum, which suggests that pharmacotherapy is most efficacious in the preclinical phase, possibly 15 - 20 years before discernible onset. Present developments in AD therapy aim to respond to this understanding and go beyond the drug families that relieve clinical symptoms. Another important factor in this development is the emergence of precision medicine that aims to tailor treatment to specific patients or patient subgroups. This relatively new platform would categorize AD patients on the basis of parameters like clinical aspects, brain imaging, genetic profiling, clinical genetics and epidemiological factors. This review enlarges on recent progress in the design and clinical use of antisense molecules, antibodies, antioxidants, small molecules and gene editing to stop AD progress and possibly reverse the disease on the basis of relevant biomarkers. |
Author | Pauwels, Ernest K.J. Boer, Gerard J. |
Author_xml | – sequence: 1 givenname: Ernest K.J. surname: Pauwels fullname: Pauwels, Ernest K.J. email: *Ernest K.J. Pauwels, ernestpauwels@gmail.com – sequence: 2 givenname: Gerard J. surname: Boer fullname: Boer, Gerard J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38471490$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU1v1DAQhi3UirYLB-4IWeICh9DxVz64VKsFWqSuWIlythxn0nVJ4sVOQHDib_D3-CW42mUFVU8eeZ559c68J-Rg8AMS8oTBK8ZUdQoASpRcsQfkmEkuMmCKHaQaGMsKVbAjchLjTcJKIeAhORKlLJis4Jgs592PNboew--fvyJ94yKaiK_pnH6c3GjqDukifdDWB3oV0Iw9DiP95sY1XQW0Ljo_0CU2zroBzx6Rw9Z0ER_v3hn59O7t1eIiu_xw_n4xv8ys4jBm1qCUCEqysja5NHXRtKqWheSgKhRNycrCWsmgqhqouRRFW2FrVAsgRN0qMSNnW93NVPfY2OQpmE5vgutN-K69cfr_zuDW-tp_1YwJLjnPk8KLnULwXyaMo-5dtNh1ZkA_Rc0rledlzgtI6PM76I2fwpD20wIqwRTIZGtGnv1rae_l76kT8HIL2OBjDNjuEQb6Nka9jzGxp3dYm8IY063TNq67d2Jn8rMJ1xj22svVakvoTdMm6um91E7kDxuuslA |
CitedBy_id | crossref_primary_10_1016_j_arr_2024_102556 crossref_primary_10_3390_ijms25126488 |
Cites_doi | 10.1016/j.jalz.2014.06.015 10.5603/FHC.a2022.0007 10.1038/ng.2802 10.1038/s41587-023-02078-y 10.1016/j.apsb.2021.10.002 10.1186/s13195-019-0520-1 10.1039/c3cs60460h 10.3389/fnagi.2023.1199434 10.1159/000534400 10.3389/fneur.2023.1158366 10.3390/genes13030425 10.17179/excli2023-6155 10.3390/jcm9062004 10.1080/13697137.2017.1287866 10.1126/scitranslmed.3002156 10.1073/pnas.2307793120 10.1038/s41591-018-0004-z 10.1017/S136898001400007X 10.1093/braincomms/fcab308 10.1111/bpa.13208 10.3390/ijms24032285 10.1001/jama.278.16.1349 10.3390/ijms21176336 10.1056/nejmoa1304839 10.1038/gim.2015.117 10.1016/j.omtn.2021.02.032 10.1017/S0007114511000109 10.1016/j.bbalip.2017.07.004 10.3389/fneur.2023.1147757 10.1002/trc2.12417 10.2174/1567205016666191210094435 10.3233/JAD-230710 10.3389/fnagi.2022.1019412 10.1038/s41587-021-01133-w 10.1016/j.crphar.2022.100149 10.5582/irdr.2023.01091 10.1016/j.omtn.2022.03.022 10.1038/s41586-019-1711-4 10.3390/brainsci13060938 10.1007/978-3-030-78787-5_50 10.1177/23982128231191046 10.1056/NEJMoa2308719 10.3390/ijms241310494 10.1002/pro.2597 10.1186/s12910-023-00951-8 10.1016/j.celrep.2017.09.032 10.1016/j.ebiom.2023.104511 10.1126/scitranslmed.aag0481 10.1186/s13195-022-01132-2 10.1038/s41580-022-00491-w 10.1177/20406223221081605 10.3390/cells12192348 10.1016/j.neuron.2022.03.004 10.3390/ijms241914455 10.3389/fneur.2018.00701 10.1038/s41573-022-00521-4 10.1056/NEJMoa2212948 10.1016/j.biopsych.2020.02.001 10.1080/17460441.2022.2134852 10.1002/pro.2379 10.3174/ajnr.A3601 10.1038/s41591-023-02326-3 10.1038/s41380-023-02170-4 10.1038/d41586-023-03931-5 10.09.561413 10.14283/jpad.2023.123 10.1016/j.jare.2021.07.001 10.1038/s41582-022-00645-6 10.1016/j.ebiom.2021.103691 10.1212/wnl.42.2.447 10.3390/cells11223616 10.3390/biomedicines11020335 10.1038/s41582-019-0228-7 10.1038/s41583-021-00533-w 10.3389/fpubh.2023.1023907 10.1186/s13195-023-01277-8 10.1021/acs.jmedchem.1c00160 10.1242/dmm.050279 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Published by S. Karger AG, Basel The Author(s). Published by S. Karger AG, Basel. 2024 The Author(s). Published by S. Karger AG, Basel. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at: https://uk.sagepub.com/en-gb/eur/reusing-open-access-and-sage-choice-content 2024 The Author(s). Published by S. Karger AG, Basel 2024 |
Copyright_xml | – notice: 2024 The Author(s). Published by S. Karger AG, Basel – notice: The Author(s). Published by S. Karger AG, Basel. – notice: 2024 The Author(s). Published by S. Karger AG, Basel. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at: https://uk.sagepub.com/en-gb/eur/reusing-open-access-and-sage-choice-content – notice: 2024 The Author(s). Published by S. Karger AG, Basel 2024 |
DBID | M-- AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1159/000538251 |
DatabaseName | Karger Open Access Journals CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central ProQuest One ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete ProQuest Health & Medical Research Collection Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef ProQuest One Academic Middle East (New) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: M-- name: Karger Open Access Journals url: https://www.karger.com/OpenAccess sourceTypes: Enrichment Source Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Precision Medicine for Alzheimer’s Disease? |
EISSN | 1423-0151 |
EndPage | 309 |
ExternalDocumentID | PMC11324226 38471490 10_1159_000538251 538251 |
Genre | Journal Article Review |
GroupedDBID | --- 0R~ 0~B 326 36B 3O. 4.4 53G 5GY 7X7 88E 8FI 8FJ 8UI AAWTL AAYIC ABBTS ABPAZ ABUWG ABWCG ACGFS ADBBV AENEX AEYAO AFKRA AHFRZ AHMBA ALDHI ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZPMC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CS3 DIK DU5 E0A E3Z EBS EMB EMOBN F5P FB. FYUFA GROUPED_DOAJ HMCUK HYE HZ~ IAO IHR ITC KUZGX M-- M1P MK0 O1H O9- OK1 P2P PHGZT PQQKQ PROAC PSQYO RKO RNS RPM SV3 UJ6 UKHRP 30W AAYXX ACQXL ADAGL AFJJK AFSIO AIOBO CAG CITATION COF CYUIP EJD PHGZM RIG RXVBD TR2 3V. NPM 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c520t-cae44e05418ba64ab7df5b4742059e3d8187cc41099d0b2437f9efa5f0033bf53 |
IEDL.DBID | M-- |
ISSN | 1011-7571 1423-0151 |
IngestDate | Thu Aug 21 18:34:27 EDT 2025 Fri Jul 11 06:36:26 EDT 2025 Wed Aug 13 06:41:53 EDT 2025 Wed Feb 19 02:02:19 EST 2025 Thu Apr 24 22:57:50 EDT 2025 Tue Jul 01 05:09:11 EDT 2025 Fri Apr 25 05:07:44 EDT 2025 Fri Apr 25 05:07:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Antioxidants Antibodies Therapy Small molecules Alzheimer's disease Gene editing |
Language | English |
License | This article is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC). Usage and distribution for commercial purposes requires written permission. https://creativecommons.org/licenses/by-nc/4.0 The Author(s). Published by S. Karger AG, Basel. This article is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC) (http://www.karger.com/Services/OpenAccessLicense). Usage and distribution for commercial purposes requires written permission. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c520t-cae44e05418ba64ab7df5b4742059e3d8187cc41099d0b2437f9efa5f0033bf53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://karger.com/doi/10.1159/000538251 |
PMID | 38471490 |
PQID | 3093150403 |
PQPubID | 2047984 |
PageCount | 9 |
ParticipantIDs | karger_primary_538251 proquest_miscellaneous_2956686270 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11324226 crossref_citationtrail_10_1159_000538251 proquest_journals_3093150403 pubmed_primary_38471490 crossref_primary_10_1159_000538251 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel, Switzerland |
PublicationPlace_xml | – name: Basel, Switzerland – name: Switzerland – name: Basel |
PublicationTitle | Medical principles and practice |
PublicationTitleAlternate | Med Princ Pract |
PublicationYear | 2024 |
Publisher | S. Karger AG |
Publisher_xml | – name: S. Karger AG |
References | Edwards AL, Collins JA, Junge C, Kordasiewicz H, Mignon L, Wu S, . Exploratory tau biomarker results from a multiple ascending-dose study of BIIB080 in Alzheimer disease: a randomized clinical trial. JAMA Neurol. 2023:e233861. Mummery CJ, Börjesson-Hanson A, Blackburn DJ, Vijverberg EG, de Deyn PP, Ducharme S, . Tau-targeting antisense oligonucleotide MAPTRx in mild Alzheimer’s disease: a phase 1b, randomized, placebo-controlled trial. Nat Med. 2023;29(6):1437–47. Anzalone AV, Gao XD, Podracky CJ, Nelson AT, Koblan LW, Raguram A, . Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat Biotechnol. 2022;40(5):731–40. Cason SE, Holzbaur ELF. Selective motor activation in organelle transport along axons. Nat Rev Mol Cel Biol. 2022;23(11):699–714. Hampel H, Vassar R, De Strooper B, Hardy J, Willem M, Singh N, . The β-secretase BACE1 in Alzheimer’s disease. Biol Psychiatry. 2021;89(8):745–56. Troutwine BR, Hamid L, Lysaker CR, Strope TA, Wilkins HM. Apolipoprotein E and Alzheimer’s disease. Acta Pharm Sin B. 2022;12(2):496–510. Arbabi Zaboli K, Rahimi H, Thekkiniath J, Taromchi AH, Kaboli S. Plasmid-based CRISPR-Cas9 system efficacy for introducing targeted mutations in CD81 gene of MDA-MB-231 cell line. Folia Histochem Cytobiol. 2022;60(1):13–23. Skoufou-Papoutsaki N, Adler S, D’Santos P, Mannion L, Mehmed S, Kemp R, . Efficient genetic editing of human intestinal organoids using ribonucleoprotein-based CRISPR. Dis Model Mech. 2023;16(10):dmm050279. Andrews SJ, Renton AE, Fulton-Howard B, Podleśny-Drabiniok A, Marcora E, Goate AM. The complex genetic architecture of Alzheimer’s disease: novel insights and future directions. EBioMedicine. 2023;90:104511. Lazar AN, Hanbouch L, Boussicaut L, Fourmaux B, Daira P, Millan MJ, . Lipid dys-homeostasis contributes to APOE4-associated AD pathology. Cells. 2022;11(22):3616. Morishita EC. Discovery of RNA-targeted small molecules through the merging of experimental and computational technologies. Expert Opin Drug Discov. 2023;18(2):207–26. Dhuri K, Bechtold C, Quijano E, Pham H, Gupta A, Vikram A, . Antisense oligonucleotides: an emerging area in drug discovery and development. J Clin Med. 2020;9(6):2004. Van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, . Lecanemab in early Alzheimer’s disease. N Engl J Med. 2023;388(1):9–21. Arafah A, Khatoon S, Rasool I, Khan A, Rather MA, Abujabal KA, . The future of precision medicine in the cure of Alzheimer’s disease. Biomedicines. 2023;11(2):335. Selin C, Lambert L, Morain S, Nelson JP, Barlevy D, Farooque M, . Researching the future: scenarios to explore the future of human genome editing. BMC Med Ethics. 2023;24(1):72. Zhang L, Xia Y, Gui Y. Neuronal ApoE4 in Alzheimer’s disease and potential therapeutic targets. Front Aging Neurosci. 2023;15:1199434. Childs-Disney JL, Yang X, Gibaut QMR, Tong Y, Batey RT, Disney MD. Targeting RNA structures with small molecules. Nat Rev Drug Discov. 2022;21(10):736–62. Yamazaki Y, Zhao N, Caulfield TR, Liu CC, Bu G. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat Rev Neurol. 2019;15(9):501–18. Tagami S, Yanagida K, Kodama TS, Takami M, Mizuta N, Oyama H, . Semagacestat is a pseudo-inhibitor of γ-secretase. Cell Rep. 2017;21(1):259–73. Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, . Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014;370(4):322–33. Pauwels EK, Boer GJ. Friends and foes in Alzheimer’s disease. Med Princ Pract. 2023;32(6):313–22. Epub ahead of print. Nouri Nojadeh J, Bildiren Eryilmaz NS, Ergüder BI. CRISPR/Cas9 genome editing for neurodegenerative diseases. EXCLI J. 2023;22:567–82. Aslam MM, Fan KH, Lawrence E, Bedison MA, Snitz BE, DeKosky ST, . Genome-wide analysis identifies novel loci influencing plasma apolipoprotein E concentration and Alzheimer’s disease risk. Mol Psychiatry. 2023;28(10):4451–62. Epub ahead of print. Ferreira- Vieirra T, Guimaraes IM, Silva FR, Ribeiro F. Alzheimer’s disease: targeting the cholinergic system. Curr Neuropharmacol. 2016;14(1):101–5. Davies C, Tulloch J, Yip E, Currie L, Colom-Cadena M, Wegmann S, . Apolipoprotein E isoform does not influence trans-synaptic spread of tau pathology in a mouse model. Brain Neurosci Adv. 2023;7:23982128231191046. Strafella C, Caputo V, Galota MR, Zampatti S, Marella G, Mauriello S, . Application of precision medicine in neurodegenerative diseases. Front Neurol. 2018;9:701. Aisen PS, Jimenez-Maggiora GA, Rafii MS, Walter S, Raman R. Early-stage Alzheimer disease: getting trial-ready. Nat Rev Neurol. 2022;18(7):389–99. Nock TG, Chouinard-Watkins R, Plourde M. Carriers of an apolipoprotein E epsilon 4 allele are more vulnerable to a dietary deficiency in omega-3 fatty acids and cognitive decline. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;(Oct;1862(10 Pt A):1068–78. Konstantinidis E, Molisak A, Perrin F, Streubel-Gallasch L, Fayad S, Kim DY, . CRISPR-Cas9 treatment partially restores amyloid-β 42/40 in human fibroblasts with the Alzheimer’s disease PSEN1 M146L mutation. Mol Ther Nucleic Acids. 2022;28:450–61. Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA. 1997;278(16):1349–56. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, . Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013;45(12):1452–8. Grabowska-Pyrzewicz W, Want A, Leszek J, Wojda U. Antisense oligonucleotides for Alzheimer’s disease therapy: from the mRNA to miRNA paradigm. EBioMedicine. 2021;74:103691. Xiao L, Fang L, Kool ET. RNA Infrastructure profiling illuminates transcriptome structure in crowded spaces; 2023; p. 2023. bioRxiv [Preprint]. Yao W, Yang H, Yang J. Small-molecule drugs development for Alzheimer’s disease. Front Aging Neurosci. 2022;14:1019412. Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, . Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576(7785):149–57. Zhang W, Li Y, Ren W, Liu B. Artificial intelligence technology in Alzheimer’s disease research. Intractable Rare Dis Res. 2023;12(4):208–12. Vecchio FL, Bisceglia P, Imbimbo BP, Lozupone M, Latino RR, Resta E, . Are apolipoprotein E fragments a promising new therapeutic target for Alzheimer’s disease. Ther Adv Chronic Dis. 2022;13:20406223221081605. Lin FT, Liu K, Garan LAW, Folly-Kossi H, Song Y, Lin SJ, . A small-molecule inhibitor of TopBP1 exerts anti-MYC activity and synergy with PARP inhibitors. Proc Natl Acad Sci U S A. 2023;120(44):e2307793120. Cohen S, van Dyck CH, Gee M, Doherty T, Kanekiyo M, Dhadda S, . Lecanemab Clarity AD: quality-of-life results from a randomized, double-blind phase 3 trial in early Alzheimer’s disease. J Prev Alzheimers Dis. 2023;10(4):771–7. Saha S, Saso L. Pharmacological modulation of oxidative stress. Int J Mol Sci. 2023;24(19):14455. Holland D, Desikan RS, Dale AM, McEvoy LK; Alzheimer’s Disease Neuroimaging Initiative. Higher rates of decline for women and apolipoprotein E ε4 carriers. AJNR Am J Neuroradiol. 2013;34(12):2287–93. Frieden C. ApoE: the role of conserved residues in defining function. Protein Sci. 2015;24(1):138–44. Hao Y, Dong M, Sun Y, Duan X, Niu W. Effectiveness and safety of monoclonal antibodies against amyloid-beta vis-à-vis placebo in mild or moderate Alzheimer’s disease. Front Neurol. 2023;14:1147757. Wang C, Najm R, Xu Q, Jeong DE, Walker D, Balestra ME, . Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat Med. 2018;24(5):647–57. Bhardwaj S, Kesari KK, Rachamalla M, Mani S, Ashraf GM, Jha SK, . CRISPR/Cas9 gene editing: new hope for Alzheimer’s disease therapeutics. J Adv Res. 2022;40:207–21. Ghosh AK, Osswald HL. BACE1 (β-secretase) inhibitors for the treatment of Alzheimer’s disease. Chem Soc Rev. 2014;43(19):6765–813. Kantor B, Rittiner J, Odonovan B, Chiba-Falek O. APOE-targeted epigenome therapy for late onset Alzheimer’s disease. Presented at: 2022 Alzheimer’s Association International Conference; July 16 to July 20; Amsterdam, the Netherlands. Abstract 80698. McGeer PL, Rogers J. Anti-inflammatory agents as a therapeutic approach to Alzheimer’s disease. Neurology. 1992;42(2):447–9. Martens YA, Zhao N, Liu CC, Kanekiyo T, Yang AJ, Goate AM, . ApoE Cascade hypothesis in the pathogenesis of Alzheimer’s disease and related dementias. Neuron. 2022;110(8):1304–17. Thompson T. How CRISPR gene editing could help treat Alzheimer’s. Nature. 2024;625(7993):13–4. DeVos SL, Miller RL, Schoch KM, Holmes BB, Kebodeaux CS, Wegener AJ, . Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Sci Transl Med. 2017;9(374):eaag0481 Sagar R, Pathak P, Pandur B, Kim SJ, Li J, Mahairaki V. Biomarkers and precision medicine in Alzheimer’s disease. Adv Exp Med Biol. 2021;1339:403–8. Van Cauwenberghe C, Van Broeckhoven C, Sleegers K. The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet Med. 2016;18(5):421–30. Vasileva L, Gaynanova G, Valeeva F, Belyaev G, Zueva I, Bushmeleva K, . Mitochondria-targeted delivery strategy of dual-loaded liposomes for Alzheimer’s disease therapy. Int J Mol Sci. 2023;24(13):10494. An M, Raguram A, Du SW, Banskota S, Davis JR, Newby GA, . Engineered virus-like particles for transient delivery of prime editor ribonucleoprotein complexes in vivo. Nat Biotechnol. 2024. Epub ahead of print. Lu TT, Wan C, Yang W, Cai Z. Role of Cdk5 in amyloid-beta pathology of Alzheimer’s disease. Curr Alzheimer Res. 2019;16(13):1206–15. Guyon A, Rousseau J, Bégin FG, Bertin T, Lamothe G, Tremblay JP. Base editing strategy for insertion of the A673T mutation in the APP gene to prevent the development of AD in vi ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref32 ref76 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – reference: Yao H, Uras G, Zhang P, Xu S, Yin Y, Liu J, . Discovery of novel tacrine-pyrimidone hybrids as potent dual AChE/GSK-3 inhibitors for the treatment of Alzheimer’s disease. J Med Chem. 2021;64(11):7483–506. – reference: Morishita EC. Discovery of RNA-targeted small molecules through the merging of experimental and computational technologies. Expert Opin Drug Discov. 2023;18(2):207–26. – reference: Tagami S, Yanagida K, Kodama TS, Takami M, Mizuta N, Oyama H, . Semagacestat is a pseudo-inhibitor of γ-secretase. Cell Rep. 2017;21(1):259–73. – reference: Puri S, Shaheen M, Grover B. Nutrition and cognitive health: a life course approach. Front Public Health. 2023;11:1023907. – reference: Lazar AN, Hanbouch L, Boussicaut L, Fourmaux B, Daira P, Millan MJ, . Lipid dys-homeostasis contributes to APOE4-associated AD pathology. Cells. 2022;11(22):3616. – reference: Ferreira- Vieirra T, Guimaraes IM, Silva FR, Ribeiro F. Alzheimer’s disease: targeting the cholinergic system. Curr Neuropharmacol. 2016;14(1):101–5. – reference: Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, . Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013;45(12):1452–8. – reference: Edwards AL, Collins JA, Junge C, Kordasiewicz H, Mignon L, Wu S, . Exploratory tau biomarker results from a multiple ascending-dose study of BIIB080 in Alzheimer disease: a randomized clinical trial. JAMA Neurol. 2023:e233861. – reference: Vecchio FL, Bisceglia P, Imbimbo BP, Lozupone M, Latino RR, Resta E, . Are apolipoprotein E fragments a promising new therapeutic target for Alzheimer’s disease. Ther Adv Chronic Dis. 2022;13:20406223221081605. – reference: Rani V, Verma R, Kumar K, Chawla R. Role of pro-inflammatory cytokines in Alzheimer’s disease and neuroprotective effects of pegylated self-assembled nanoscaffolds. Curr Res Pharmacol Drug Discov. 2023;4:100149. – reference: Bhardwaj S, Kesari KK, Rachamalla M, Mani S, Ashraf GM, Jha SK, . CRISPR/Cas9 gene editing: new hope for Alzheimer’s disease therapeutics. J Adv Res. 2022;40:207–21. – reference: Frieden C. ApoE: the role of conserved residues in defining function. Protein Sci. 2015;24(1):138–44. – reference: Cohen S, van Dyck CH, Gee M, Doherty T, Kanekiyo M, Dhadda S, . Lecanemab Clarity AD: quality-of-life results from a randomized, double-blind phase 3 trial in early Alzheimer’s disease. J Prev Alzheimers Dis. 2023;10(4):771–7. – reference: Martens YA, Zhao N, Liu CC, Kanekiyo T, Yang AJ, Goate AM, . ApoE Cascade hypothesis in the pathogenesis of Alzheimer’s disease and related dementias. Neuron. 2022;110(8):1304–17. – reference: Dhuri K, Bechtold C, Quijano E, Pham H, Gupta A, Vikram A, . Antisense oligonucleotides: an emerging area in drug discovery and development. J Clin Med. 2020;9(6):2004. – reference: Yang M, Chung SJ, Chung CE, Kim DO, Song WO, Koo SI, . Estimation of total antioxidant capacity from diet and supplements in US adults. Br J Nutr. 2011;106(2):254–63. – reference: An M, Raguram A, Du SW, Banskota S, Davis JR, Newby GA, . Engineered virus-like particles for transient delivery of prime editor ribonucleoprotein complexes in vivo. Nat Biotechnol. 2024. Epub ahead of print. – reference: Aslam MM, Fan KH, Lawrence E, Bedison MA, Snitz BE, DeKosky ST, . Genome-wide analysis identifies novel loci influencing plasma apolipoprotein E concentration and Alzheimer’s disease risk. Mol Psychiatry. 2023;28(10):4451–62. Epub ahead of print. – reference: Aisen PS, Jimenez-Maggiora GA, Rafii MS, Walter S, Raman R. Early-stage Alzheimer disease: getting trial-ready. Nat Rev Neurol. 2022;18(7):389–99. – reference: Rofo F, Metzendorf NG, Saubi C, Suominen L, Godec A, Sehlin D, . Blood–brain barrier penetrating neprilysin degrades monomeric amyloid-beta in a mouse model of Alzheimer’s disease. Alz Res Ther. 2022;14(1):180. – reference: Zhang W, Li Y, Ren W, Liu B. Artificial intelligence technology in Alzheimer’s disease research. Intractable Rare Dis Res. 2023;12(4):208–12. – reference: Xiao L, Fang L, Kool ET. RNA Infrastructure profiling illuminates transcriptome structure in crowded spaces; 2023; p. 2023. bioRxiv [Preprint]. – reference: Roy B, Lee E, Li T, Rampersaud M. Role of miRNAs in neurodegeneration: from disease cause to tools of biomarker discovery and therapeutics. Genes. 2022;13(3):425. – reference: Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, . Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014;370(4):322–33. – reference: Konstantinidis E, Molisak A, Perrin F, Streubel-Gallasch L, Fayad S, Kim DY, . CRISPR-Cas9 treatment partially restores amyloid-β 42/40 in human fibroblasts with the Alzheimer’s disease PSEN1 M146L mutation. Mol Ther Nucleic Acids. 2022;28:450–61. – reference: Childs-Disney JL, Yang X, Gibaut QMR, Tong Y, Batey RT, Disney MD. Targeting RNA structures with small molecules. Nat Rev Drug Discov. 2022;21(10):736–62. – reference: Yao W, Yang H, Yang J. Small-molecule drugs development for Alzheimer’s disease. Front Aging Neurosci. 2022;14:1019412. – reference: Selin C, Lambert L, Morain S, Nelson JP, Barlevy D, Farooque M, . Researching the future: scenarios to explore the future of human genome editing. BMC Med Ethics. 2023;24(1):72. – reference: Michaelson DM. Apoe ε4: the most prevalent yet understudied risk factor for Alzheimer’s disease. Alzheimers Dement. 2014;10(6):861–8. – reference: Hao Y, Dong M, Sun Y, Duan X, Niu W. Effectiveness and safety of monoclonal antibodies against amyloid-beta vis-à-vis placebo in mild or moderate Alzheimer’s disease. Front Neurol. 2023;14:1147757. – reference: Nouri Nojadeh J, Bildiren Eryilmaz NS, Ergüder BI. CRISPR/Cas9 genome editing for neurodegenerative diseases. EXCLI J. 2023;22:567–82. – reference: Sagar R, Pathak P, Pandur B, Kim SJ, Li J, Mahairaki V. Biomarkers and precision medicine in Alzheimer’s disease. Adv Exp Med Biol. 2021;1339:403–8. – reference: Van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, . Lecanemab in early Alzheimer’s disease. N Engl J Med. 2023;388(1):9–21. – reference: Skoufou-Papoutsaki N, Adler S, D’Santos P, Mannion L, Mehmed S, Kemp R, . Efficient genetic editing of human intestinal organoids using ribonucleoprotein-based CRISPR. Dis Model Mech. 2023;16(10):dmm050279. – reference: Karlsson IK, Escott-Price V, Gatz M, Hardy J, Pedersen NL, Shoai M, . Measuring heritable contributions to Alzheimer’s disease: polygenic risk score analysis with twins. Brain Commun. 2022;4(1):fcab308. – reference: Rezai AR, D’Haese PF, Finomore V, Carpenter J, Ranjan M, Wilhelmsen K, . Ultrasound blood-brain barrier opening and Aducanumab in Alzheimer’s disease. N Engl J Med. 2024;390(1):55–62. – reference: Wang C, Najm R, Xu Q, Jeong DE, Walker D, Balestra ME, . Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat Med. 2018;24(5):647–57. – reference: Cason SE, Holzbaur ELF. Selective motor activation in organelle transport along axons. Nat Rev Mol Cel Biol. 2022;23(11):699–714. – reference: Zhang Q, Li Q, Zhao H, Shu M, Luo M, Li Y, . Neurodegenerative disease and antioxidant biomarkers: a bidirectional Mendelian randomization study. Front Neurol. 2023;14:1158366. – reference: Ji XY, Peng XY, Tang HL, Pan H, Wang T, Wu J, . Alzheimer’s disease phenotype based upon the carrier status of the apolipoprotein E ε4 allele. Brain Pathol. 2024;34(1):e13208. – reference: Kantor B, Rittiner J, Odonovan B, Chiba-Falek O. APOE-targeted epigenome therapy for late onset Alzheimer’s disease. Presented at: 2022 Alzheimer’s Association International Conference; July 16 to July 20; Amsterdam, the Netherlands. Abstract 80698. – reference: Saha S, Saso L. Pharmacological modulation of oxidative stress. Int J Mol Sci. 2023;24(19):14455. – reference: Arbabi Zaboli K, Rahimi H, Thekkiniath J, Taromchi AH, Kaboli S. Plasmid-based CRISPR-Cas9 system efficacy for introducing targeted mutations in CD81 gene of MDA-MB-231 cell line. Folia Histochem Cytobiol. 2022;60(1):13–23. – reference: Makhaeva GF, Kovaleva NV, Rudakova EV, Boltneva NP, Grishchenko MV, Lushchekina SV, . Conjugates of tacrine and salicylic acid derivatives as new promising multitarget agents for Alzheimer’s disease. Int J Mol Sci. 2023;24(3):2285. – reference: Pauwels EK, Boer GJ. Friends and foes in Alzheimer’s disease. Med Princ Pract. 2023;32(6):313–22. Epub ahead of print. – reference: Lanfranco MF, Ng CA, Rebeck GW. ApoE lipidation as a therapeutic target in Alzheimer’s disease. Int J Mol Sci. 2020;21(17):6336. – reference: Frisoni GB, Altomare D, Thal DR, Ribaldi F, van der Kant R, Ossenkoppele R, . The probabilistic model of Alzheimer disease: the amyloid hypothesis revised. Nat Rev Neurosci. 2022;23(1):53–66. – reference: Nock TG, Chouinard-Watkins R, Plourde M. Carriers of an apolipoprotein E epsilon 4 allele are more vulnerable to a dietary deficiency in omega-3 fatty acids and cognitive decline. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;(Oct;1862(10 Pt A):1068–78. – reference: Egan MF, Mukai Y, Voss T, Kost J, Stone J, Furtek C, . Further analyses of the safety of verubecestat in the phase 3 EPOCH trial of mild-to-moderate Alzheimer’s disease. Alzheimers Res Ther. 2019;11(1):68. – reference: Vasileva L, Gaynanova G, Valeeva F, Belyaev G, Zueva I, Bushmeleva K, . Mitochondria-targeted delivery strategy of dual-loaded liposomes for Alzheimer’s disease therapy. Int J Mol Sci. 2023;24(13):10494. – reference: Andrews SJ, Renton AE, Fulton-Howard B, Podleśny-Drabiniok A, Marcora E, Goate AM. The complex genetic architecture of Alzheimer’s disease: novel insights and future directions. EBioMedicine. 2023;90:104511. – reference: Frieden C, Garai K. Concerning the structure of apoE. Protein Sci. 2013;22(12):1820–5. – reference: Nguyen SA, Oughli HA, Lavretsky H. Use of complementary and integrative medicine for Alzheimer’s disease and cognitive decline. J Alzheimers Dis. 2024;97(2):523–40. – reference: Grabowska-Pyrzewicz W, Want A, Leszek J, Wojda U. Antisense oligonucleotides for Alzheimer’s disease therapy: from the mRNA to miRNA paradigm. EBioMedicine. 2021;74:103691. – reference: Li J, Chen L, Liu S, Sun Y, Zhen L, Zhu Z, . Hydrocortisone mitigates Alzheimer’s-related cognitive decline through modulating oxidative stress and neuroinflammation. Cells. 2023;12(19):2348. – reference: Yang M, Chun OK. Consumptions of plain water, moisture in foods and beverages, and total water in relation to dietary micronutrient intakes and serum nutrient profiles among US adults. Public Health Nutr. 2015;18(7):1180–6. – reference: Hampel H, Vassar R, De Strooper B, Hardy J, Willem M, Singh N, . The β-secretase BACE1 in Alzheimer’s disease. Biol Psychiatry. 2021;89(8):745–56. – reference: Guyon A, Rousseau J, Bégin FG, Bertin T, Lamothe G, Tremblay JP. Base editing strategy for insertion of the A673T mutation in the APP gene to prevent the development of AD in vitro. Mol Ther Nucleic Acids. 2021;24:253–63. – reference: Stefano GB. Artificial intelligence as a tool for the diagnosis and treatment of neurodegenerative diseases. Brain Sci. 2023;13(6):938. – reference: DeVos SL, Miller RL, Schoch KM, Holmes BB, Kebodeaux CS, Wegener AJ, . Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Sci Transl Med. 2017;9(374):eaag0481, – reference: Lin FT, Liu K, Garan LAW, Folly-Kossi H, Song Y, Lin SJ, . A small-molecule inhibitor of TopBP1 exerts anti-MYC activity and synergy with PARP inhibitors. Proc Natl Acad Sci U S A. 2023;120(44):e2307793120. – reference: Van Cauwenberghe C, Van Broeckhoven C, Sleegers K. The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet Med. 2016;18(5):421–30. – reference: Stocker H, Trares K, Beyer L, Perna L, Rujescu D, Holleczek B, . Alzheimer’s polygenic risk scores, APOE, Alzheimer’s disease risk, and dementia-related blood biomarker levels in a population-based cohort study followed over 17 years. Alzheimers Res Ther. 2023;15(1):129. – reference: Castellano JM, Kim J, Stewart FR, Jiang H, DeMattos RB, Patterson BW, . Human apoE isoforms differentially regulate brain amyloid-β peptide clearance. Sci Transl Med. 2011;3(89):89ra57. – reference: Lu TT, Wan C, Yang W, Cai Z. Role of Cdk5 in amyloid-beta pathology of Alzheimer’s disease. Curr Alzheimer Res. 2019;16(13):1206–15. – reference: Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA. 1997;278(16):1349–56. – reference: Yamazaki Y, Zhao N, Caulfield TR, Liu CC, Bu G. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat Rev Neurol. 2019;15(9):501–18. – reference: Davies C, Tulloch J, Yip E, Currie L, Colom-Cadena M, Wegmann S, . Apolipoprotein E isoform does not influence trans-synaptic spread of tau pathology in a mouse model. Brain Neurosci Adv. 2023;7:23982128231191046. – reference: Mummery CJ, Börjesson-Hanson A, Blackburn DJ, Vijverberg EG, de Deyn PP, Ducharme S, . Tau-targeting antisense oligonucleotide MAPTRx in mild Alzheimer’s disease: a phase 1b, randomized, placebo-controlled trial. Nat Med. 2023;29(6):1437–47. – reference: Sukoff Rizzo SJ, Homanics G, Schaeffer DJ, Schaeffer L, Park JE, Oluoch J, . Bridging the rodent to human translational gap: marmosets as model systems for the study of Alzheimer’s disease. Alzheimers Dement. 2023;9(3):e12417. – reference: Strafella C, Caputo V, Galota MR, Zampatti S, Marella G, Mauriello S, . Application of precision medicine in neurodegenerative diseases. Front Neurol. 2018;9:701. – reference: Arafah A, Khatoon S, Rasool I, Khan A, Rather MA, Abujabal KA, . The future of precision medicine in the cure of Alzheimer’s disease. Biomedicines. 2023;11(2):335. – reference: Thompson T. How CRISPR gene editing could help treat Alzheimer’s. Nature. 2024;625(7993):13–4. – reference: McGeer PL, Rogers J. Anti-inflammatory agents as a therapeutic approach to Alzheimer’s disease. Neurology. 1992;42(2):447–9. – reference: Ghosh AK, Osswald HL. BACE1 (β-secretase) inhibitors for the treatment of Alzheimer’s disease. Chem Soc Rev. 2014;43(19):6765–813. – reference: Anzalone AV, Gao XD, Podracky CJ, Nelson AT, Koblan LW, Raguram A, . Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat Biotechnol. 2022;40(5):731–40. – reference: Zhang L, Xia Y, Gui Y. Neuronal ApoE4 in Alzheimer’s disease and potential therapeutic targets. Front Aging Neurosci. 2023;15:1199434. – reference: Hampel H, O’Bryant SE, Durrleman S, Younesi E, Rojkova K, Escott-Price V, . A Precision Medicine Initiative for Alzheimer’s disease: the road ahead to biomarker-guided integrative disease modeling. Climacteric. 2017;20(2):107–18. – reference: Holland D, Desikan RS, Dale AM, McEvoy LK; Alzheimer’s Disease Neuroimaging Initiative. Higher rates of decline for women and apolipoprotein E ε4 carriers. AJNR Am J Neuroradiol. 2013;34(12):2287–93. – reference: Troutwine BR, Hamid L, Lysaker CR, Strope TA, Wilkins HM. Apolipoprotein E and Alzheimer’s disease. Acta Pharm Sin B. 2022;12(2):496–510. – reference: Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, . Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576(7785):149–57. – ident: ref12 doi: 10.1016/j.jalz.2014.06.015 – ident: ref56 doi: 10.5603/FHC.a2022.0007 – ident: ref20 doi: 10.1038/ng.2802 – ident: ref75 doi: 10.1038/s41587-023-02078-y – ident: ref18 doi: 10.1016/j.apsb.2021.10.002 – ident: ref42 doi: 10.1186/s13195-019-0520-1 – ident: ref40 doi: 10.1039/c3cs60460h – ident: ref30 doi: 10.3389/fnagi.2023.1199434 – ident: ref51 doi: 10.1159/000534400 – ident: ref69 doi: 10.3389/fneur.2023.1158366 – ident: ref33 doi: 10.3390/genes13030425 – ident: ref55 doi: 10.17179/excli2023-6155 – ident: ref31 doi: 10.3390/jcm9062004 – ident: ref3 doi: 10.1080/13697137.2017.1287866 – ident: ref19 doi: 10.1126/scitranslmed.3002156 – ident: ref4 doi: 10.1073/pnas.2307793120 – ident: ref71 doi: 10.1038/s41591-018-0004-z – ident: ref68 doi: 10.1017/S136898001400007X – ident: ref15 doi: 10.1093/braincomms/fcab308 – ident: ref16 doi: 10.1111/bpa.13208 – ident: ref47 doi: 10.3390/ijms24032285 – ident: ref7 doi: 10.1001/jama.278.16.1349 – ident: ref21 doi: 10.3390/ijms21176336 – ident: ref50 doi: 10.1056/nejmoa1304839 – ident: ref17 doi: 10.1038/gim.2015.117 – ident: ref60 doi: 10.1016/j.omtn.2021.02.032 – ident: ref67 doi: 10.1017/S0007114511000109 – ident: ref27 doi: 10.1016/j.bbalip.2017.07.004 – ident: ref49 doi: 10.3389/fneur.2023.1147757 – ident: ref44 doi: 10.1002/trc2.12417 – ident: ref34 doi: 10.2174/1567205016666191210094435 – ident: ref78 doi: 10.3233/JAD-230710 – ident: ref41 doi: 10.3389/fnagi.2022.1019412 – ident: ref74 doi: 10.1038/s41587-021-01133-w – ident: ref65 doi: 10.1016/j.crphar.2022.100149 – ident: ref76 doi: 10.5582/irdr.2023.01091 – ident: ref58 doi: 10.1016/j.omtn.2022.03.022 – ident: ref73 doi: 10.1038/s41586-019-1711-4 – ident: ref77 doi: 10.3390/brainsci13060938 – ident: ref2 doi: 10.1007/978-3-030-78787-5_50 – ident: ref29 doi: 10.1177/23982128231191046 – ident: ref54 doi: 10.1056/NEJMoa2308719 – ident: ref25 doi: 10.3390/ijms241310494 – ident: ref14 doi: 10.1002/pro.2597 – ident: ref61 doi: 10.1186/s12910-023-00951-8 – ident: ref43 doi: 10.1016/j.celrep.2017.09.032 – ident: ref11 doi: 10.1016/j.ebiom.2023.104511 – ident: ref36 doi: 10.1126/scitranslmed.aag0481 – ident: ref23 doi: 10.1186/s13195-022-01132-2 – ident: ref6 doi: 10.1038/s41580-022-00491-w – ident: ref24 doi: 10.1177/20406223221081605 – ident: ref63 doi: 10.3390/cells12192348 – ident: ref9 doi: 10.1016/j.neuron.2022.03.004 – ident: ref62 doi: 10.3390/ijms241914455 – ident: ref5 doi: 10.3389/fneur.2018.00701 – ident: ref45 doi: 10.1038/s41573-022-00521-4 – ident: ref52 doi: 10.1056/NEJMoa2212948 – ident: ref39 doi: 10.1016/j.biopsych.2020.02.001 – ident: ref37 doi: 10.1080/17460441.2022.2134852 – ident: ref13 doi: 10.1002/pro.2379 – ident: ref26 doi: 10.3174/ajnr.A3601 – ident: ref35 doi: 10.1038/s41591-023-02326-3 – ident: ref8 doi: 10.1038/s41380-023-02170-4 – ident: ref59 doi: 10.1038/d41586-023-03931-5 – ident: ref38 doi: 10.09.561413 – ident: ref53 doi: 10.14283/jpad.2023.123 – ident: ref72 doi: 10.1016/j.jare.2021.07.001 – ident: ref66 doi: 10.1038/s41582-022-00645-6 – ident: ref32 doi: 10.1016/j.ebiom.2021.103691 – ident: ref64 doi: 10.1212/wnl.42.2.447 – ident: ref22 doi: 10.3390/cells11223616 – ident: ref1 doi: 10.3390/biomedicines11020335 – ident: ref10 doi: 10.1038/s41582-019-0228-7 – ident: ref48 doi: 10.1038/s41583-021-00533-w – ident: ref70 doi: 10.3389/fpubh.2023.1023907 – ident: ref28 doi: 10.1186/s13195-023-01277-8 – ident: ref46 doi: 10.1021/acs.jmedchem.1c00160 – ident: ref57 doi: 10.1242/dmm.050279 |
SSID | ssj0008330 |
Score | 2.3484793 |
SecondaryResourceType | review_article |
Snippet | Abstract
Alzheimer’s disease (AD) is the most common cause of neurodegenerative impairment in elderly people. Clinical characteristics include short-term... Alzheimer’s disease (AD) is the most common cause of neurodegenerative impairment in elderly people. Clinical characteristics include short-term memory loss,... Alzheimer's disease (AD) is the most common cause of neurodegenerative impairment in elderly people. Clinical characteristics include short-term memory loss,... To illustrate this, recent research in oncology has identified a drug that can inhibit special functional domains of a protein that is involved in cancer... |
SourceID | pubmedcentral proquest pubmed crossref karger |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 301 |
SubjectTerms | Alzheimer's disease Apolipoproteins Biomarkers Brain research Cyclin-dependent kinases Design Drug dosages Enzymes Health risk assessment Kinases Lipids Pathogenesis Patients Peptides Precision medicine Proteins Review |
SummonAdditionalLinks | – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZaqCouqBRallJkEIderMaJnQcXtIIiVGnRSgVpb5Ff0a4K2WUfF078Df4ev4SZxAksQkg5eUZJ5LE9nz3jbwg5lDLBwcCZijPLhOWG6UJFzFhldZpxlVYEpr2L-PxK_B3IgT9wm_m0ymZNrBZqOzZ4Rv4bI3YAXkQQHU9uGVaNwuiqL6HxkawidRmmdCWDdsMF6CKq2Qg4Z4lMuGcWAg9e1bKL8Nrmkj_69B_Tr6dvoc3XSZMvvNDZF7Lu4SPt1vbeIB9c-ZV87vkA-Sbpda_vhm5046aP9w8zelqHX45ol_5bjOZ4TYqeQAMFqEovmxxzioextD_15XZo87rjLXJ19ufy5Jz5ignMyDCYM6OcEA5QGE-1ioXSiS2kFrD9BRTlIgveOTFGYDTMBhq5CIvMFUoWWNJNFzL6RlbKcem2CTUmDZ3TIoNHCCG10mBvawOTGsAAcYf8avotN55OHKtaXOfVtkJmedvFHXLQqk5qDo23lLbqzm9VmvbdV-29fr8W5RNbgLgxVe5n3yx_Hisdst-KYd5gMESVbryY5SFsDPF2TBJ0yPfasu0XInTZIgNJumTzVgE5uZcl5WhYcXNzjgg1jHfe_68fZC0EdFRnEu6Slfl04X4CupnrvWoIPwFlIPgM priority: 102 providerName: ProQuest |
Title | Alzheimer’s Disease: A Suitable Case for Treatment with Precision Medicine? |
URI | https://karger.com/doi/10.1159/000538251 https://www.ncbi.nlm.nih.gov/pubmed/38471490 https://www.proquest.com/docview/3093150403 https://www.proquest.com/docview/2956686270 https://pubmed.ncbi.nlm.nih.gov/PMC11324226 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LT9wwEB4VqBAX1Adt09KVW_XQi6U4tvPgUm0pCFUKWrUg7S3yKwJ1G9A-Lpz4G_17_BLGcRKxiEo52ZNY8diebzz2NwBfpMz8YGBUpYWlwjJDda04NVZZnRdM5S2BaXmanpyLn1M57fY7_F2YP_78c0uNOnALoMFtU89xf8tyA7bQj-KeJb-kdFhzc84D7wBjNJMZ6ziE1l7dgW3u12Lh198HRuh5aPMpiPn4pOQD03P8AnY7zEjGQckv4ZlrXsF22UXFX0M5nt1cuMu_bn53-29BfoSYywEZk98rdP31zJFDLCCIT8lZf7Cc-B1YMpl3OXZI_7lve3B-fHR2eEK7NAnUyCReUqOcEA6hF8u1SoXSma2lFujzInRy3KJJzowRPgRmY-0JCOvC1UrWPo-briV_A5vNVePeATEmT5zTosBHCCG10qhka2OTGzT8aQRf-36rTMch7lNZzKrWl5BFNfR2BJ8H0etAnPGU0F7o_EGkL99_VF5OJqGqurY1Vveqqropt6h8SBfRrYh5BJ-GapwsPgKiGne1WlQJeoP-SkwWR_A2aHZooR8bEeRrOh8EPBH3ek1zedEScjPmYWmSvv_P73yAnQSxUDg3uA-by_nKfUQss9Qj2Mim2Qi2vh-dTn6N2h2BUTu07wFAcPAg |
linkProvider | Karger AG |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9RADLaqLYK-II4CCwUGBBIvEZlkciGhaumhLW1WK9hKfQtzRV21ZJc9hOCJv8Gf4EfxS7BzwVYVb5XyNLaSyOPxfB57bIAXQRCRMnBHholxhOHaUbn0HW2kUXHCZVwWME0HYf9YvD8JTtbgV3MXhtIqG5tYGmoz0XRG_poidghehOtvT7841DWKoqtNC41KLQ7tt6_oss3fHuzi_L70vP290U7fqbsKODrw3IWjpRXCIlLhsZKhkCoyeaAEuoiINKxvcAeLtBYUMTKuonp9eWJzGeTU9kzl1CUCTf668NGV6cD6u73B8ENr-2Pfr-ofcO5EQcTrWkaIGcrueT5dFF3ZAa-dUcL37DJ8ezFN8599b_8W3KwBK-tVGnYb1mxxB66ndUj-LqS98--ndvzZzn7_-Dlnu1XA5w3rsY_L8YIuZrEdHGAIjtmoyWpndPzLhrO6wQ9rXre9CcdXIs170CkmhX0ATOvYs1aJBB8hRKCkQg0zxtWxRtQRduFVI7dM1wXMqY_GeVY6MkGStSLuwvOWdVpV7biMabMSfsvSjG9dGE-Hw4qUTU2O5Gaqsnq9z7O_2tmFZy0ZVyqFX2RhJ8t55qErSvdxIrcL96uZbb_gE0gQCVLilTlvGagK-CqlGJ-W1cA5J0zshQ___19P4UZ_lB5lRweDw0ew4SE2q_IYt6CzmC3tY8RWC_WkVmgGn656Df0BBG82Cg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB5KleKLeKm6WnUUBV-GZpKZXAQpS9eltW5ZsIV9i3MLu1iz614QffJv-Ff8Of4Sz8kkabcU3wp5mjMkYc45M9-ZcyPklZQJCgNnKs4sE5YbpgsVMWOV1WnGVVoVMB0cxwen4sNIjjbInyYXBsMqmz2x2qjt1OAd-S567AC8iCDaLeqwiGGvvzf7xrCDFHpam3YaXkSO3I_vYL4t3h32gNevw7D__mT_gNUdBpiRYbBkRjkhHKAWnmoVC6UTW0gtwFwE1OEiC6dZYoxA75ENNNbuKzJXKFlgCzRdYMcI2P5vJJHkqGPJqDX2ANlEvhIC5yyRCa-rGgF6qProRZgyunYW3vyCod_zq5Du5YDNCydg_w65XUNX2vWydpdsuPIe2RrUzvn7ZNA9-zl2k69u_vfX7wXtedfPW9qln1aTJaZo0X0YoACT6UkT307xIpgO53WrH9q8bm-bnF7LWj4gm-W0dI8INSYNndMig0cIIbXSIGvWBiY1gD_iDnnTrFtu6lLm2FHjLK9MGpnl7RJ3yMt26szX77hq0rZf_HZKM75zaXwwHHpSPrMFkBtW5bXmL_JzOe2QFy0ZdBYdMap009UiD8EoxcycJOiQh56z7RcihAsiA0q6xvN2AtYDX6eUk3FVF5xzRMdh_Pj___WcbIHm5B8Pj4-ekFshgDQf0LhDNpfzlXsKIGupn1XSTMnn61affxgMONo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alzheimer%E2%80%99s+Disease%3A+A+Suitable+Case+for+Treatment+with+Precision+Medicine%3F&rft.jtitle=Medical+principles+and+practice&rft.au=Pauwels%2C+Ernest+K.J.&rft.au=Boer%2C+Gerard+J.&rft.date=2024-08-01&rft.issn=1011-7571&rft.eissn=1423-0151&rft.volume=33&rft.issue=4&rft.spage=301&rft.epage=309&rft_id=info:doi/10.1159%2F000538251&rft_id=info%3Apmid%2F38471490&rft.externalDocID=538251 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1011-7571&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1011-7571&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1011-7571&client=summon |