Alzheimer’s Disease: A Suitable Case for Treatment with Precision Medicine?

Abstract Alzheimer’s disease (AD) is the most common cause of neurodegenerative impairment in elderly people. Clinical characteristics include short-term memory loss, confusion, hallucination, agitation, and behavioral disturbance. Owing to evolving research in biomarkers, AD can be discovered at ea...

Full description

Saved in:
Bibliographic Details
Published inMedical principles and practice Vol. 33; no. 4; pp. 301 - 309
Main Authors Pauwels, Ernest K.J., Boer, Gerard J.
Format Journal Article
LanguageEnglish
Published Basel, Switzerland S. Karger AG 01.08.2024
Subjects
Online AccessGet full text
ISSN1011-7571
1423-0151
1423-0151
DOI10.1159/000538251

Cover

Loading…
Abstract Abstract Alzheimer’s disease (AD) is the most common cause of neurodegenerative impairment in elderly people. Clinical characteristics include short-term memory loss, confusion, hallucination, agitation, and behavioral disturbance. Owing to evolving research in biomarkers, AD can be discovered at early onset, but the disease is currently considered a continuum, which suggests that pharmacotherapy is most efficacious in the preclinical phase, possibly 15–20 years before discernible onset. Present developments in AD therapy aim to respond to this understanding and go beyond the drug families that relieve clinical symptoms. Another important factor in this development is the emergence of precision medicine that aims to tailor treatment to specific patients or patient subgroups. This relatively new platform would categorize AD patients on the basis of parameters like clinical aspects, brain imaging, genetic profiling, clinical genetics, and epidemiological factors. This review enlarges on recent progress in the design and clinical use of antisense molecules, antibodies, antioxidants, small molecules, and gene editing to stop AD progress and possibly reverse the disease on the basis of relevant biomarkers. Highlights of the StudyThe heterogeneous and multifactorial nature of Alzheimer’s disease needs new therapeutic approaches.Precision medicine aims to tailor treatment to specific patients or patient subgroups.Various tailored approaches, especially genomic editing techniques, represent a promising new therapy for Alzheimer’s disease.It is highly likely that precision medicine is most efficacious at the preclinical stage of Alzheimer’s disease.
AbstractList Alzheimer's disease (AD) is the most common cause of neurodegenerative impairment in elderly people. Clinical characteristics include short-term memory loss, confusion, hallucination, agitation, and behavioural disturbance. Owing to evolving research in biomarkers AD can be discovered at early onset, but the disease is currently considered a continuum, which suggests that pharmacotherapy is most efficacious in the preclinical phase, possibly 15 - 20 years before discernible onset. Present developments in AD therapy aim to respond to this understanding and go beyond the drug families that relieve clinical symptoms. Another important factor in this development is the emergence of precision medicine that aims to tailor treatment to specific patients or patient subgroups. This relatively new platform would categorize AD patients on the basis of parameters like clinical aspects, brain imaging, genetic profiling, clinical genetics and epidemiological factors. This review enlarges on recent progress in the design and clinical use of antisense molecules, antibodies, antioxidants, small molecules and gene editing to stop AD progress and possibly reverse the disease on the basis of relevant biomarkers.
Alzheimer’s disease (AD) is the most common cause of neurodegenerative impairment in elderly people. Clinical characteristics include short-term memory loss, confusion, hallucination, agitation, and behavioral disturbance. Owing to evolving research in biomarkers, AD can be discovered at early onset, but the disease is currently considered a continuum, which suggests that pharmacotherapy is most efficacious in the preclinical phase, possibly 15–20 years before discernible onset. Present developments in AD therapy aim to respond to this understanding and go beyond the drug families that relieve clinical symptoms. Another important factor in this development is the emergence of precision medicine that aims to tailor treatment to specific patients or patient subgroups. This relatively new platform would categorize AD patients on the basis of parameters like clinical aspects, brain imaging, genetic profiling, clinical genetics, and epidemiological factors. This review enlarges on recent progress in the design and clinical use of antisense molecules, antibodies, antioxidants, small molecules, and gene editing to stop AD progress and possibly reverse the disease on the basis of relevant biomarkers.
Abstract Alzheimer’s disease (AD) is the most common cause of neurodegenerative impairment in elderly people. Clinical characteristics include short-term memory loss, confusion, hallucination, agitation, and behavioral disturbance. Owing to evolving research in biomarkers, AD can be discovered at early onset, but the disease is currently considered a continuum, which suggests that pharmacotherapy is most efficacious in the preclinical phase, possibly 15–20 years before discernible onset. Present developments in AD therapy aim to respond to this understanding and go beyond the drug families that relieve clinical symptoms. Another important factor in this development is the emergence of precision medicine that aims to tailor treatment to specific patients or patient subgroups. This relatively new platform would categorize AD patients on the basis of parameters like clinical aspects, brain imaging, genetic profiling, clinical genetics, and epidemiological factors. This review enlarges on recent progress in the design and clinical use of antisense molecules, antibodies, antioxidants, small molecules, and gene editing to stop AD progress and possibly reverse the disease on the basis of relevant biomarkers. Highlights of the StudyThe heterogeneous and multifactorial nature of Alzheimer’s disease needs new therapeutic approaches.Precision medicine aims to tailor treatment to specific patients or patient subgroups.Various tailored approaches, especially genomic editing techniques, represent a promising new therapy for Alzheimer’s disease.It is highly likely that precision medicine is most efficacious at the preclinical stage of Alzheimer’s disease.
To illustrate this, recent research in oncology has identified a drug that can inhibit special functional domains of a protein that is involved in cancer progression [4]. Regarding specific targeting, it is assumed that the ApoE4 protein is not just a risk factor but can open pathways to initiate AD. [...]the targeting of ApoE4 holds promise to improve AD symptoms and, on the longer run, diminish AD occurrence in (sub)groups [29]. At the initial stage of this trial, the dose-dependent study was carried out in different groups, and CSF total tau and p-181 tau were reduced by 60 percent in the higher-dose cohorts and stayed low for 6 months. Toward this goal and to increase the possibility of an efficacious engagement of small molecules with 3D-RNA, medicinal chemistry, including X-ray crystallography, NMR spectroscopy, cryo-electron microscopy, and computational molecular technology, has been shown to be indispensable [37, 38].
Alzheimer's disease (AD) is the most common cause of neurodegenerative impairment in elderly people. Clinical characteristics include short-term memory loss, confusion, hallucination, agitation, and behavioural disturbance. Owing to evolving research in biomarkers AD can be discovered at early onset, but the disease is currently considered a continuum, which suggests that pharmacotherapy is most efficacious in the preclinical phase, possibly 15 - 20 years before discernible onset. Present developments in AD therapy aim to respond to this understanding and go beyond the drug families that relieve clinical symptoms. Another important factor in this development is the emergence of precision medicine that aims to tailor treatment to specific patients or patient subgroups. This relatively new platform would categorize AD patients on the basis of parameters like clinical aspects, brain imaging, genetic profiling, clinical genetics and epidemiological factors. This review enlarges on recent progress in the design and clinical use of antisense molecules, antibodies, antioxidants, small molecules and gene editing to stop AD progress and possibly reverse the disease on the basis of relevant biomarkers.Alzheimer's disease (AD) is the most common cause of neurodegenerative impairment in elderly people. Clinical characteristics include short-term memory loss, confusion, hallucination, agitation, and behavioural disturbance. Owing to evolving research in biomarkers AD can be discovered at early onset, but the disease is currently considered a continuum, which suggests that pharmacotherapy is most efficacious in the preclinical phase, possibly 15 - 20 years before discernible onset. Present developments in AD therapy aim to respond to this understanding and go beyond the drug families that relieve clinical symptoms. Another important factor in this development is the emergence of precision medicine that aims to tailor treatment to specific patients or patient subgroups. This relatively new platform would categorize AD patients on the basis of parameters like clinical aspects, brain imaging, genetic profiling, clinical genetics and epidemiological factors. This review enlarges on recent progress in the design and clinical use of antisense molecules, antibodies, antioxidants, small molecules and gene editing to stop AD progress and possibly reverse the disease on the basis of relevant biomarkers.
Author Pauwels, Ernest K.J.
Boer, Gerard J.
Author_xml – sequence: 1
  givenname: Ernest K.J.
  surname: Pauwels
  fullname: Pauwels, Ernest K.J.
  email: *Ernest K.J. Pauwels, ernestpauwels@gmail.com
– sequence: 2
  givenname: Gerard J.
  surname: Boer
  fullname: Boer, Gerard J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38471490$$D View this record in MEDLINE/PubMed
BookMark eNptkU1v1DAQhi3UirYLB-4IWeICh9DxVz64VKsFWqSuWIlythxn0nVJ4sVOQHDib_D3-CW42mUFVU8eeZ559c68J-Rg8AMS8oTBK8ZUdQoASpRcsQfkmEkuMmCKHaQaGMsKVbAjchLjTcJKIeAhORKlLJis4Jgs592PNboew--fvyJ94yKaiK_pnH6c3GjqDukifdDWB3oV0Iw9DiP95sY1XQW0Ljo_0CU2zroBzx6Rw9Z0ER_v3hn59O7t1eIiu_xw_n4xv8ys4jBm1qCUCEqysja5NHXRtKqWheSgKhRNycrCWsmgqhqouRRFW2FrVAsgRN0qMSNnW93NVPfY2OQpmE5vgutN-K69cfr_zuDW-tp_1YwJLjnPk8KLnULwXyaMo-5dtNh1ZkA_Rc0rledlzgtI6PM76I2fwpD20wIqwRTIZGtGnv1rae_l76kT8HIL2OBjDNjuEQb6Nka9jzGxp3dYm8IY063TNq67d2Jn8rMJ1xj22svVakvoTdMm6um91E7kDxuuslA
CitedBy_id crossref_primary_10_1016_j_arr_2024_102556
crossref_primary_10_3390_ijms25126488
Cites_doi 10.1016/j.jalz.2014.06.015
10.5603/FHC.a2022.0007
10.1038/ng.2802
10.1038/s41587-023-02078-y
10.1016/j.apsb.2021.10.002
10.1186/s13195-019-0520-1
10.1039/c3cs60460h
10.3389/fnagi.2023.1199434
10.1159/000534400
10.3389/fneur.2023.1158366
10.3390/genes13030425
10.17179/excli2023-6155
10.3390/jcm9062004
10.1080/13697137.2017.1287866
10.1126/scitranslmed.3002156
10.1073/pnas.2307793120
10.1038/s41591-018-0004-z
10.1017/S136898001400007X
10.1093/braincomms/fcab308
10.1111/bpa.13208
10.3390/ijms24032285
10.1001/jama.278.16.1349
10.3390/ijms21176336
10.1056/nejmoa1304839
10.1038/gim.2015.117
10.1016/j.omtn.2021.02.032
10.1017/S0007114511000109
10.1016/j.bbalip.2017.07.004
10.3389/fneur.2023.1147757
10.1002/trc2.12417
10.2174/1567205016666191210094435
10.3233/JAD-230710
10.3389/fnagi.2022.1019412
10.1038/s41587-021-01133-w
10.1016/j.crphar.2022.100149
10.5582/irdr.2023.01091
10.1016/j.omtn.2022.03.022
10.1038/s41586-019-1711-4
10.3390/brainsci13060938
10.1007/978-3-030-78787-5_50
10.1177/23982128231191046
10.1056/NEJMoa2308719
10.3390/ijms241310494
10.1002/pro.2597
10.1186/s12910-023-00951-8
10.1016/j.celrep.2017.09.032
10.1016/j.ebiom.2023.104511
10.1126/scitranslmed.aag0481
10.1186/s13195-022-01132-2
10.1038/s41580-022-00491-w
10.1177/20406223221081605
10.3390/cells12192348
10.1016/j.neuron.2022.03.004
10.3390/ijms241914455
10.3389/fneur.2018.00701
10.1038/s41573-022-00521-4
10.1056/NEJMoa2212948
10.1016/j.biopsych.2020.02.001
10.1080/17460441.2022.2134852
10.1002/pro.2379
10.3174/ajnr.A3601
10.1038/s41591-023-02326-3
10.1038/s41380-023-02170-4
10.1038/d41586-023-03931-5
10.09.561413
10.14283/jpad.2023.123
10.1016/j.jare.2021.07.001
10.1038/s41582-022-00645-6
10.1016/j.ebiom.2021.103691
10.1212/wnl.42.2.447
10.3390/cells11223616
10.3390/biomedicines11020335
10.1038/s41582-019-0228-7
10.1038/s41583-021-00533-w
10.3389/fpubh.2023.1023907
10.1186/s13195-023-01277-8
10.1021/acs.jmedchem.1c00160
10.1242/dmm.050279
ContentType Journal Article
Copyright 2024 The Author(s). Published by S. Karger AG, Basel
The Author(s). Published by S. Karger AG, Basel.
2024 The Author(s). Published by S. Karger AG, Basel. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at: https://uk.sagepub.com/en-gb/eur/reusing-open-access-and-sage-choice-content
2024 The Author(s). Published by S. Karger AG, Basel 2024
Copyright_xml – notice: 2024 The Author(s). Published by S. Karger AG, Basel
– notice: The Author(s). Published by S. Karger AG, Basel.
– notice: 2024 The Author(s). Published by S. Karger AG, Basel. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at: https://uk.sagepub.com/en-gb/eur/reusing-open-access-and-sage-choice-content
– notice: 2024 The Author(s). Published by S. Karger AG, Basel 2024
DBID M--
AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1159/000538251
DatabaseName Karger Open Access Journals
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
ProQuest Health & Medical Research Collection
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed


CrossRef
ProQuest One Academic Middle East (New)
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: M--
  name: Karger Open Access Journals
  url: https://www.karger.com/OpenAccess
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Precision Medicine for Alzheimer’s Disease?
EISSN 1423-0151
EndPage 309
ExternalDocumentID PMC11324226
38471490
10_1159_000538251
538251
Genre Journal Article
Review
GroupedDBID ---
0R~
0~B
326
36B
3O.
4.4
53G
5GY
7X7
88E
8FI
8FJ
8UI
AAWTL
AAYIC
ABBTS
ABPAZ
ABUWG
ABWCG
ACGFS
ADBBV
AENEX
AEYAO
AFKRA
AHFRZ
AHMBA
ALDHI
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZPMC
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CS3
DIK
DU5
E0A
E3Z
EBS
EMB
EMOBN
F5P
FB.
FYUFA
GROUPED_DOAJ
HMCUK
HYE
HZ~
IAO
IHR
ITC
KUZGX
M--
M1P
MK0
O1H
O9-
OK1
P2P
PHGZT
PQQKQ
PROAC
PSQYO
RKO
RNS
RPM
SV3
UJ6
UKHRP
30W
AAYXX
ACQXL
ADAGL
AFJJK
AFSIO
AIOBO
CAG
CITATION
COF
CYUIP
EJD
PHGZM
RIG
RXVBD
TR2
3V.
NPM
7XB
8FK
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c520t-cae44e05418ba64ab7df5b4742059e3d8187cc41099d0b2437f9efa5f0033bf53
IEDL.DBID M--
ISSN 1011-7571
1423-0151
IngestDate Thu Aug 21 18:34:27 EDT 2025
Fri Jul 11 06:36:26 EDT 2025
Wed Aug 13 06:41:53 EDT 2025
Wed Feb 19 02:02:19 EST 2025
Thu Apr 24 22:57:50 EDT 2025
Tue Jul 01 05:09:11 EDT 2025
Fri Apr 25 05:07:44 EDT 2025
Fri Apr 25 05:07:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Antioxidants
Antibodies
Therapy
Small molecules
Alzheimer's disease
Gene editing
Language English
License This article is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC). Usage and distribution for commercial purposes requires written permission.
https://creativecommons.org/licenses/by-nc/4.0
The Author(s). Published by S. Karger AG, Basel.
This article is licensed under the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC) (http://www.karger.com/Services/OpenAccessLicense). Usage and distribution for commercial purposes requires written permission.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c520t-cae44e05418ba64ab7df5b4742059e3d8187cc41099d0b2437f9efa5f0033bf53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://karger.com/doi/10.1159/000538251
PMID 38471490
PQID 3093150403
PQPubID 2047984
PageCount 9
ParticipantIDs karger_primary_538251
proquest_miscellaneous_2956686270
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11324226
crossref_citationtrail_10_1159_000538251
proquest_journals_3093150403
pubmed_primary_38471490
crossref_primary_10_1159_000538251
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel, Switzerland
PublicationPlace_xml – name: Basel, Switzerland
– name: Switzerland
– name: Basel
PublicationTitle Medical principles and practice
PublicationTitleAlternate Med Princ Pract
PublicationYear 2024
Publisher S. Karger AG
Publisher_xml – name: S. Karger AG
References Edwards AL, Collins JA, Junge C, Kordasiewicz H, Mignon L, Wu S, . Exploratory tau biomarker results from a multiple ascending-dose study of BIIB080 in Alzheimer disease: a randomized clinical trial. JAMA Neurol. 2023:e233861.
Mummery CJ, Börjesson-Hanson A, Blackburn DJ, Vijverberg EG, de Deyn PP, Ducharme S, . Tau-targeting antisense oligonucleotide MAPTRx in mild Alzheimer’s disease: a phase 1b, randomized, placebo-controlled trial. Nat Med. 2023;29(6):1437–47.
Anzalone AV, Gao XD, Podracky CJ, Nelson AT, Koblan LW, Raguram A, . Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat Biotechnol. 2022;40(5):731–40.
Cason SE, Holzbaur ELF. Selective motor activation in organelle transport along axons. Nat Rev Mol Cel Biol. 2022;23(11):699–714.
Hampel H, Vassar R, De Strooper B, Hardy J, Willem M, Singh N, . The β-secretase BACE1 in Alzheimer’s disease. Biol Psychiatry. 2021;89(8):745–56.
Troutwine BR, Hamid L, Lysaker CR, Strope TA, Wilkins HM. Apolipoprotein E and Alzheimer’s disease. Acta Pharm Sin B. 2022;12(2):496–510.
Arbabi Zaboli K, Rahimi H, Thekkiniath J, Taromchi AH, Kaboli S. Plasmid-based CRISPR-Cas9 system efficacy for introducing targeted mutations in CD81 gene of MDA-MB-231 cell line. Folia Histochem Cytobiol. 2022;60(1):13–23.
Skoufou-Papoutsaki N, Adler S, D’Santos P, Mannion L, Mehmed S, Kemp R, . Efficient genetic editing of human intestinal organoids using ribonucleoprotein-based CRISPR. Dis Model Mech. 2023;16(10):dmm050279.
Andrews SJ, Renton AE, Fulton-Howard B, Podleśny-Drabiniok A, Marcora E, Goate AM. The complex genetic architecture of Alzheimer’s disease: novel insights and future directions. EBioMedicine. 2023;90:104511.
Lazar AN, Hanbouch L, Boussicaut L, Fourmaux B, Daira P, Millan MJ, . Lipid dys-homeostasis contributes to APOE4-associated AD pathology. Cells. 2022;11(22):3616.
Morishita EC. Discovery of RNA-targeted small molecules through the merging of experimental and computational technologies. Expert Opin Drug Discov. 2023;18(2):207–26.
Dhuri K, Bechtold C, Quijano E, Pham H, Gupta A, Vikram A, . Antisense oligonucleotides: an emerging area in drug discovery and development. J Clin Med. 2020;9(6):2004.
Van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, . Lecanemab in early Alzheimer’s disease. N Engl J Med. 2023;388(1):9–21.
Arafah A, Khatoon S, Rasool I, Khan A, Rather MA, Abujabal KA, . The future of precision medicine in the cure of Alzheimer’s disease. Biomedicines. 2023;11(2):335.
Selin C, Lambert L, Morain S, Nelson JP, Barlevy D, Farooque M, . Researching the future: scenarios to explore the future of human genome editing. BMC Med Ethics. 2023;24(1):72.
Zhang L, Xia Y, Gui Y. Neuronal ApoE4 in Alzheimer’s disease and potential therapeutic targets. Front Aging Neurosci. 2023;15:1199434.
Childs-Disney JL, Yang X, Gibaut QMR, Tong Y, Batey RT, Disney MD. Targeting RNA structures with small molecules. Nat Rev Drug Discov. 2022;21(10):736–62.
Yamazaki Y, Zhao N, Caulfield TR, Liu CC, Bu G. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat Rev Neurol. 2019;15(9):501–18.
Tagami S, Yanagida K, Kodama TS, Takami M, Mizuta N, Oyama H, . Semagacestat is a pseudo-inhibitor of γ-secretase. Cell Rep. 2017;21(1):259–73.
Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, . Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014;370(4):322–33.
Pauwels EK, Boer GJ. Friends and foes in Alzheimer’s disease. Med Princ Pract. 2023;32(6):313–22. Epub ahead of print.
Nouri Nojadeh J, Bildiren Eryilmaz NS, Ergüder BI. CRISPR/Cas9 genome editing for neurodegenerative diseases. EXCLI J. 2023;22:567–82.
Aslam MM, Fan KH, Lawrence E, Bedison MA, Snitz BE, DeKosky ST, . Genome-wide analysis identifies novel loci influencing plasma apolipoprotein E concentration and Alzheimer’s disease risk. Mol Psychiatry. 2023;28(10):4451–62. Epub ahead of print.
Ferreira- Vieirra T, Guimaraes IM, Silva FR, Ribeiro F. Alzheimer’s disease: targeting the cholinergic system. Curr Neuropharmacol. 2016;14(1):101–5.
Davies C, Tulloch J, Yip E, Currie L, Colom-Cadena M, Wegmann S, . Apolipoprotein E isoform does not influence trans-synaptic spread of tau pathology in a mouse model. Brain Neurosci Adv. 2023;7:23982128231191046.
Strafella C, Caputo V, Galota MR, Zampatti S, Marella G, Mauriello S, . Application of precision medicine in neurodegenerative diseases. Front Neurol. 2018;9:701.
Aisen PS, Jimenez-Maggiora GA, Rafii MS, Walter S, Raman R. Early-stage Alzheimer disease: getting trial-ready. Nat Rev Neurol. 2022;18(7):389–99.
Nock TG, Chouinard-Watkins R, Plourde M. Carriers of an apolipoprotein E epsilon 4 allele are more vulnerable to a dietary deficiency in omega-3 fatty acids and cognitive decline. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;(Oct;1862(10 Pt A):1068–78.
Konstantinidis E, Molisak A, Perrin F, Streubel-Gallasch L, Fayad S, Kim DY, . CRISPR-Cas9 treatment partially restores amyloid-β 42/40 in human fibroblasts with the Alzheimer’s disease PSEN1 M146L mutation. Mol Ther Nucleic Acids. 2022;28:450–61.
Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA. 1997;278(16):1349–56.
Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, . Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013;45(12):1452–8.
Grabowska-Pyrzewicz W, Want A, Leszek J, Wojda U. Antisense oligonucleotides for Alzheimer’s disease therapy: from the mRNA to miRNA paradigm. EBioMedicine. 2021;74:103691.
Xiao L, Fang L, Kool ET. RNA Infrastructure profiling illuminates transcriptome structure in crowded spaces; 2023; p. 2023. bioRxiv [Preprint].
Yao W, Yang H, Yang J. Small-molecule drugs development for Alzheimer’s disease. Front Aging Neurosci. 2022;14:1019412.
Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, . Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576(7785):149–57.
Zhang W, Li Y, Ren W, Liu B. Artificial intelligence technology in Alzheimer’s disease research. Intractable Rare Dis Res. 2023;12(4):208–12.
Vecchio FL, Bisceglia P, Imbimbo BP, Lozupone M, Latino RR, Resta E, . Are apolipoprotein E fragments a promising new therapeutic target for Alzheimer’s disease. Ther Adv Chronic Dis. 2022;13:20406223221081605.
Lin FT, Liu K, Garan LAW, Folly-Kossi H, Song Y, Lin SJ, . A small-molecule inhibitor of TopBP1 exerts anti-MYC activity and synergy with PARP inhibitors. Proc Natl Acad Sci U S A. 2023;120(44):e2307793120.
Cohen S, van Dyck CH, Gee M, Doherty T, Kanekiyo M, Dhadda S, . Lecanemab Clarity AD: quality-of-life results from a randomized, double-blind phase 3 trial in early Alzheimer’s disease. J Prev Alzheimers Dis. 2023;10(4):771–7.
Saha S, Saso L. Pharmacological modulation of oxidative stress. Int J Mol Sci. 2023;24(19):14455.
Holland D, Desikan RS, Dale AM, McEvoy LK; Alzheimer’s Disease Neuroimaging Initiative. Higher rates of decline for women and apolipoprotein E ε4 carriers. AJNR Am J Neuroradiol. 2013;34(12):2287–93.
Frieden C. ApoE: the role of conserved residues in defining function. Protein Sci. 2015;24(1):138–44.
Hao Y, Dong M, Sun Y, Duan X, Niu W. Effectiveness and safety of monoclonal antibodies against amyloid-beta vis-à-vis placebo in mild or moderate Alzheimer’s disease. Front Neurol. 2023;14:1147757.
Wang C, Najm R, Xu Q, Jeong DE, Walker D, Balestra ME, . Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat Med. 2018;24(5):647–57.
Bhardwaj S, Kesari KK, Rachamalla M, Mani S, Ashraf GM, Jha SK, . CRISPR/Cas9 gene editing: new hope for Alzheimer’s disease therapeutics. J Adv Res. 2022;40:207–21.
Ghosh AK, Osswald HL. BACE1 (β-secretase) inhibitors for the treatment of Alzheimer’s disease. Chem Soc Rev. 2014;43(19):6765–813.
Kantor B, Rittiner J, Odonovan B, Chiba-Falek O. APOE-targeted epigenome therapy for late onset Alzheimer’s disease. Presented at: 2022 Alzheimer’s Association International Conference; July 16 to July 20; Amsterdam, the Netherlands. Abstract 80698.
McGeer PL, Rogers J. Anti-inflammatory agents as a therapeutic approach to Alzheimer’s disease. Neurology. 1992;42(2):447–9.
Martens YA, Zhao N, Liu CC, Kanekiyo T, Yang AJ, Goate AM, . ApoE Cascade hypothesis in the pathogenesis of Alzheimer’s disease and related dementias. Neuron. 2022;110(8):1304–17.
Thompson T. How CRISPR gene editing could help treat Alzheimer’s. Nature. 2024;625(7993):13–4.
DeVos SL, Miller RL, Schoch KM, Holmes BB, Kebodeaux CS, Wegener AJ, . Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Sci Transl Med. 2017;9(374):eaag0481
Sagar R, Pathak P, Pandur B, Kim SJ, Li J, Mahairaki V. Biomarkers and precision medicine in Alzheimer’s disease. Adv Exp Med Biol. 2021;1339:403–8.
Van Cauwenberghe C, Van Broeckhoven C, Sleegers K. The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet Med. 2016;18(5):421–30.
Vasileva L, Gaynanova G, Valeeva F, Belyaev G, Zueva I, Bushmeleva K, . Mitochondria-targeted delivery strategy of dual-loaded liposomes for Alzheimer’s disease therapy. Int J Mol Sci. 2023;24(13):10494.
An M, Raguram A, Du SW, Banskota S, Davis JR, Newby GA, . Engineered virus-like particles for transient delivery of prime editor ribonucleoprotein complexes in vivo. Nat Biotechnol. 2024. Epub ahead of print.
Lu TT, Wan C, Yang W, Cai Z. Role of Cdk5 in amyloid-beta pathology of Alzheimer’s disease. Curr Alzheimer Res. 2019;16(13):1206–15.
Guyon A, Rousseau J, Bégin FG, Bertin T, Lamothe G, Tremblay JP. Base editing strategy for insertion of the A673T mutation in the APP gene to prevent the development of AD in vi
ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref78
ref37
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
ref76
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – reference: Yao H, Uras G, Zhang P, Xu S, Yin Y, Liu J, . Discovery of novel tacrine-pyrimidone hybrids as potent dual AChE/GSK-3 inhibitors for the treatment of Alzheimer’s disease. J Med Chem. 2021;64(11):7483–506.
– reference: Morishita EC. Discovery of RNA-targeted small molecules through the merging of experimental and computational technologies. Expert Opin Drug Discov. 2023;18(2):207–26.
– reference: Tagami S, Yanagida K, Kodama TS, Takami M, Mizuta N, Oyama H, . Semagacestat is a pseudo-inhibitor of γ-secretase. Cell Rep. 2017;21(1):259–73.
– reference: Puri S, Shaheen M, Grover B. Nutrition and cognitive health: a life course approach. Front Public Health. 2023;11:1023907.
– reference: Lazar AN, Hanbouch L, Boussicaut L, Fourmaux B, Daira P, Millan MJ, . Lipid dys-homeostasis contributes to APOE4-associated AD pathology. Cells. 2022;11(22):3616.
– reference: Ferreira- Vieirra T, Guimaraes IM, Silva FR, Ribeiro F. Alzheimer’s disease: targeting the cholinergic system. Curr Neuropharmacol. 2016;14(1):101–5.
– reference: Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, . Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013;45(12):1452–8.
– reference: Edwards AL, Collins JA, Junge C, Kordasiewicz H, Mignon L, Wu S, . Exploratory tau biomarker results from a multiple ascending-dose study of BIIB080 in Alzheimer disease: a randomized clinical trial. JAMA Neurol. 2023:e233861.
– reference: Vecchio FL, Bisceglia P, Imbimbo BP, Lozupone M, Latino RR, Resta E, . Are apolipoprotein E fragments a promising new therapeutic target for Alzheimer’s disease. Ther Adv Chronic Dis. 2022;13:20406223221081605.
– reference: Rani V, Verma R, Kumar K, Chawla R. Role of pro-inflammatory cytokines in Alzheimer’s disease and neuroprotective effects of pegylated self-assembled nanoscaffolds. Curr Res Pharmacol Drug Discov. 2023;4:100149.
– reference: Bhardwaj S, Kesari KK, Rachamalla M, Mani S, Ashraf GM, Jha SK, . CRISPR/Cas9 gene editing: new hope for Alzheimer’s disease therapeutics. J Adv Res. 2022;40:207–21.
– reference: Frieden C. ApoE: the role of conserved residues in defining function. Protein Sci. 2015;24(1):138–44.
– reference: Cohen S, van Dyck CH, Gee M, Doherty T, Kanekiyo M, Dhadda S, . Lecanemab Clarity AD: quality-of-life results from a randomized, double-blind phase 3 trial in early Alzheimer’s disease. J Prev Alzheimers Dis. 2023;10(4):771–7.
– reference: Martens YA, Zhao N, Liu CC, Kanekiyo T, Yang AJ, Goate AM, . ApoE Cascade hypothesis in the pathogenesis of Alzheimer’s disease and related dementias. Neuron. 2022;110(8):1304–17.
– reference: Dhuri K, Bechtold C, Quijano E, Pham H, Gupta A, Vikram A, . Antisense oligonucleotides: an emerging area in drug discovery and development. J Clin Med. 2020;9(6):2004.
– reference: Yang M, Chung SJ, Chung CE, Kim DO, Song WO, Koo SI, . Estimation of total antioxidant capacity from diet and supplements in US adults. Br J Nutr. 2011;106(2):254–63.
– reference: An M, Raguram A, Du SW, Banskota S, Davis JR, Newby GA, . Engineered virus-like particles for transient delivery of prime editor ribonucleoprotein complexes in vivo. Nat Biotechnol. 2024. Epub ahead of print.
– reference: Aslam MM, Fan KH, Lawrence E, Bedison MA, Snitz BE, DeKosky ST, . Genome-wide analysis identifies novel loci influencing plasma apolipoprotein E concentration and Alzheimer’s disease risk. Mol Psychiatry. 2023;28(10):4451–62. Epub ahead of print.
– reference: Aisen PS, Jimenez-Maggiora GA, Rafii MS, Walter S, Raman R. Early-stage Alzheimer disease: getting trial-ready. Nat Rev Neurol. 2022;18(7):389–99.
– reference: Rofo F, Metzendorf NG, Saubi C, Suominen L, Godec A, Sehlin D, . Blood–brain barrier penetrating neprilysin degrades monomeric amyloid-beta in a mouse model of Alzheimer’s disease. Alz Res Ther. 2022;14(1):180.
– reference: Zhang W, Li Y, Ren W, Liu B. Artificial intelligence technology in Alzheimer’s disease research. Intractable Rare Dis Res. 2023;12(4):208–12.
– reference: Xiao L, Fang L, Kool ET. RNA Infrastructure profiling illuminates transcriptome structure in crowded spaces; 2023; p. 2023. bioRxiv [Preprint].
– reference: Roy B, Lee E, Li T, Rampersaud M. Role of miRNAs in neurodegeneration: from disease cause to tools of biomarker discovery and therapeutics. Genes. 2022;13(3):425.
– reference: Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, . Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014;370(4):322–33.
– reference: Konstantinidis E, Molisak A, Perrin F, Streubel-Gallasch L, Fayad S, Kim DY, . CRISPR-Cas9 treatment partially restores amyloid-β 42/40 in human fibroblasts with the Alzheimer’s disease PSEN1 M146L mutation. Mol Ther Nucleic Acids. 2022;28:450–61.
– reference: Childs-Disney JL, Yang X, Gibaut QMR, Tong Y, Batey RT, Disney MD. Targeting RNA structures with small molecules. Nat Rev Drug Discov. 2022;21(10):736–62.
– reference: Yao W, Yang H, Yang J. Small-molecule drugs development for Alzheimer’s disease. Front Aging Neurosci. 2022;14:1019412.
– reference: Selin C, Lambert L, Morain S, Nelson JP, Barlevy D, Farooque M, . Researching the future: scenarios to explore the future of human genome editing. BMC Med Ethics. 2023;24(1):72.
– reference: Michaelson DM. Apoe ε4: the most prevalent yet understudied risk factor for Alzheimer’s disease. Alzheimers Dement. 2014;10(6):861–8.
– reference: Hao Y, Dong M, Sun Y, Duan X, Niu W. Effectiveness and safety of monoclonal antibodies against amyloid-beta vis-à-vis placebo in mild or moderate Alzheimer’s disease. Front Neurol. 2023;14:1147757.
– reference: Nouri Nojadeh J, Bildiren Eryilmaz NS, Ergüder BI. CRISPR/Cas9 genome editing for neurodegenerative diseases. EXCLI J. 2023;22:567–82.
– reference: Sagar R, Pathak P, Pandur B, Kim SJ, Li J, Mahairaki V. Biomarkers and precision medicine in Alzheimer’s disease. Adv Exp Med Biol. 2021;1339:403–8.
– reference: Van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, . Lecanemab in early Alzheimer’s disease. N Engl J Med. 2023;388(1):9–21.
– reference: Skoufou-Papoutsaki N, Adler S, D’Santos P, Mannion L, Mehmed S, Kemp R, . Efficient genetic editing of human intestinal organoids using ribonucleoprotein-based CRISPR. Dis Model Mech. 2023;16(10):dmm050279.
– reference: Karlsson IK, Escott-Price V, Gatz M, Hardy J, Pedersen NL, Shoai M, . Measuring heritable contributions to Alzheimer’s disease: polygenic risk score analysis with twins. Brain Commun. 2022;4(1):fcab308.
– reference: Rezai AR, D’Haese PF, Finomore V, Carpenter J, Ranjan M, Wilhelmsen K, . Ultrasound blood-brain barrier opening and Aducanumab in Alzheimer’s disease. N Engl J Med. 2024;390(1):55–62.
– reference: Wang C, Najm R, Xu Q, Jeong DE, Walker D, Balestra ME, . Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat Med. 2018;24(5):647–57.
– reference: Cason SE, Holzbaur ELF. Selective motor activation in organelle transport along axons. Nat Rev Mol Cel Biol. 2022;23(11):699–714.
– reference: Zhang Q, Li Q, Zhao H, Shu M, Luo M, Li Y, . Neurodegenerative disease and antioxidant biomarkers: a bidirectional Mendelian randomization study. Front Neurol. 2023;14:1158366.
– reference: Ji XY, Peng XY, Tang HL, Pan H, Wang T, Wu J, . Alzheimer’s disease phenotype based upon the carrier status of the apolipoprotein E ε4 allele. Brain Pathol. 2024;34(1):e13208.
– reference: Kantor B, Rittiner J, Odonovan B, Chiba-Falek O. APOE-targeted epigenome therapy for late onset Alzheimer’s disease. Presented at: 2022 Alzheimer’s Association International Conference; July 16 to July 20; Amsterdam, the Netherlands. Abstract 80698.
– reference: Saha S, Saso L. Pharmacological modulation of oxidative stress. Int J Mol Sci. 2023;24(19):14455.
– reference: Arbabi Zaboli K, Rahimi H, Thekkiniath J, Taromchi AH, Kaboli S. Plasmid-based CRISPR-Cas9 system efficacy for introducing targeted mutations in CD81 gene of MDA-MB-231 cell line. Folia Histochem Cytobiol. 2022;60(1):13–23.
– reference: Makhaeva GF, Kovaleva NV, Rudakova EV, Boltneva NP, Grishchenko MV, Lushchekina SV, . Conjugates of tacrine and salicylic acid derivatives as new promising multitarget agents for Alzheimer’s disease. Int J Mol Sci. 2023;24(3):2285.
– reference: Pauwels EK, Boer GJ. Friends and foes in Alzheimer’s disease. Med Princ Pract. 2023;32(6):313–22. Epub ahead of print.
– reference: Lanfranco MF, Ng CA, Rebeck GW. ApoE lipidation as a therapeutic target in Alzheimer’s disease. Int J Mol Sci. 2020;21(17):6336.
– reference: Frisoni GB, Altomare D, Thal DR, Ribaldi F, van der Kant R, Ossenkoppele R, . The probabilistic model of Alzheimer disease: the amyloid hypothesis revised. Nat Rev Neurosci. 2022;23(1):53–66.
– reference: Nock TG, Chouinard-Watkins R, Plourde M. Carriers of an apolipoprotein E epsilon 4 allele are more vulnerable to a dietary deficiency in omega-3 fatty acids and cognitive decline. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;(Oct;1862(10 Pt A):1068–78.
– reference: Egan MF, Mukai Y, Voss T, Kost J, Stone J, Furtek C, . Further analyses of the safety of verubecestat in the phase 3 EPOCH trial of mild-to-moderate Alzheimer’s disease. Alzheimers Res Ther. 2019;11(1):68.
– reference: Vasileva L, Gaynanova G, Valeeva F, Belyaev G, Zueva I, Bushmeleva K, . Mitochondria-targeted delivery strategy of dual-loaded liposomes for Alzheimer’s disease therapy. Int J Mol Sci. 2023;24(13):10494.
– reference: Andrews SJ, Renton AE, Fulton-Howard B, Podleśny-Drabiniok A, Marcora E, Goate AM. The complex genetic architecture of Alzheimer’s disease: novel insights and future directions. EBioMedicine. 2023;90:104511.
– reference: Frieden C, Garai K. Concerning the structure of apoE. Protein Sci. 2013;22(12):1820–5.
– reference: Nguyen SA, Oughli HA, Lavretsky H. Use of complementary and integrative medicine for Alzheimer’s disease and cognitive decline. J Alzheimers Dis. 2024;97(2):523–40.
– reference: Grabowska-Pyrzewicz W, Want A, Leszek J, Wojda U. Antisense oligonucleotides for Alzheimer’s disease therapy: from the mRNA to miRNA paradigm. EBioMedicine. 2021;74:103691.
– reference: Li J, Chen L, Liu S, Sun Y, Zhen L, Zhu Z, . Hydrocortisone mitigates Alzheimer’s-related cognitive decline through modulating oxidative stress and neuroinflammation. Cells. 2023;12(19):2348.
– reference: Yang M, Chun OK. Consumptions of plain water, moisture in foods and beverages, and total water in relation to dietary micronutrient intakes and serum nutrient profiles among US adults. Public Health Nutr. 2015;18(7):1180–6.
– reference: Hampel H, Vassar R, De Strooper B, Hardy J, Willem M, Singh N, . The β-secretase BACE1 in Alzheimer’s disease. Biol Psychiatry. 2021;89(8):745–56.
– reference: Guyon A, Rousseau J, Bégin FG, Bertin T, Lamothe G, Tremblay JP. Base editing strategy for insertion of the A673T mutation in the APP gene to prevent the development of AD in vitro. Mol Ther Nucleic Acids. 2021;24:253–63.
– reference: Stefano GB. Artificial intelligence as a tool for the diagnosis and treatment of neurodegenerative diseases. Brain Sci. 2023;13(6):938.
– reference: DeVos SL, Miller RL, Schoch KM, Holmes BB, Kebodeaux CS, Wegener AJ, . Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Sci Transl Med. 2017;9(374):eaag0481,
– reference: Lin FT, Liu K, Garan LAW, Folly-Kossi H, Song Y, Lin SJ, . A small-molecule inhibitor of TopBP1 exerts anti-MYC activity and synergy with PARP inhibitors. Proc Natl Acad Sci U S A. 2023;120(44):e2307793120.
– reference: Van Cauwenberghe C, Van Broeckhoven C, Sleegers K. The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet Med. 2016;18(5):421–30.
– reference: Stocker H, Trares K, Beyer L, Perna L, Rujescu D, Holleczek B, . Alzheimer’s polygenic risk scores, APOE, Alzheimer’s disease risk, and dementia-related blood biomarker levels in a population-based cohort study followed over 17 years. Alzheimers Res Ther. 2023;15(1):129.
– reference: Castellano JM, Kim J, Stewart FR, Jiang H, DeMattos RB, Patterson BW, . Human apoE isoforms differentially regulate brain amyloid-β peptide clearance. Sci Transl Med. 2011;3(89):89ra57.
– reference: Lu TT, Wan C, Yang W, Cai Z. Role of Cdk5 in amyloid-beta pathology of Alzheimer’s disease. Curr Alzheimer Res. 2019;16(13):1206–15.
– reference: Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA. 1997;278(16):1349–56.
– reference: Yamazaki Y, Zhao N, Caulfield TR, Liu CC, Bu G. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat Rev Neurol. 2019;15(9):501–18.
– reference: Davies C, Tulloch J, Yip E, Currie L, Colom-Cadena M, Wegmann S, . Apolipoprotein E isoform does not influence trans-synaptic spread of tau pathology in a mouse model. Brain Neurosci Adv. 2023;7:23982128231191046.
– reference: Mummery CJ, Börjesson-Hanson A, Blackburn DJ, Vijverberg EG, de Deyn PP, Ducharme S, . Tau-targeting antisense oligonucleotide MAPTRx in mild Alzheimer’s disease: a phase 1b, randomized, placebo-controlled trial. Nat Med. 2023;29(6):1437–47.
– reference: Sukoff Rizzo SJ, Homanics G, Schaeffer DJ, Schaeffer L, Park JE, Oluoch J, . Bridging the rodent to human translational gap: marmosets as model systems for the study of Alzheimer’s disease. Alzheimers Dement. 2023;9(3):e12417.
– reference: Strafella C, Caputo V, Galota MR, Zampatti S, Marella G, Mauriello S, . Application of precision medicine in neurodegenerative diseases. Front Neurol. 2018;9:701.
– reference: Arafah A, Khatoon S, Rasool I, Khan A, Rather MA, Abujabal KA, . The future of precision medicine in the cure of Alzheimer’s disease. Biomedicines. 2023;11(2):335.
– reference: Thompson T. How CRISPR gene editing could help treat Alzheimer’s. Nature. 2024;625(7993):13–4.
– reference: McGeer PL, Rogers J. Anti-inflammatory agents as a therapeutic approach to Alzheimer’s disease. Neurology. 1992;42(2):447–9.
– reference: Ghosh AK, Osswald HL. BACE1 (β-secretase) inhibitors for the treatment of Alzheimer’s disease. Chem Soc Rev. 2014;43(19):6765–813.
– reference: Anzalone AV, Gao XD, Podracky CJ, Nelson AT, Koblan LW, Raguram A, . Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat Biotechnol. 2022;40(5):731–40.
– reference: Zhang L, Xia Y, Gui Y. Neuronal ApoE4 in Alzheimer’s disease and potential therapeutic targets. Front Aging Neurosci. 2023;15:1199434.
– reference: Hampel H, O’Bryant SE, Durrleman S, Younesi E, Rojkova K, Escott-Price V, . A Precision Medicine Initiative for Alzheimer’s disease: the road ahead to biomarker-guided integrative disease modeling. Climacteric. 2017;20(2):107–18.
– reference: Holland D, Desikan RS, Dale AM, McEvoy LK; Alzheimer’s Disease Neuroimaging Initiative. Higher rates of decline for women and apolipoprotein E ε4 carriers. AJNR Am J Neuroradiol. 2013;34(12):2287–93.
– reference: Troutwine BR, Hamid L, Lysaker CR, Strope TA, Wilkins HM. Apolipoprotein E and Alzheimer’s disease. Acta Pharm Sin B. 2022;12(2):496–510.
– reference: Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, . Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576(7785):149–57.
– ident: ref12
  doi: 10.1016/j.jalz.2014.06.015
– ident: ref56
  doi: 10.5603/FHC.a2022.0007
– ident: ref20
  doi: 10.1038/ng.2802
– ident: ref75
  doi: 10.1038/s41587-023-02078-y
– ident: ref18
  doi: 10.1016/j.apsb.2021.10.002
– ident: ref42
  doi: 10.1186/s13195-019-0520-1
– ident: ref40
  doi: 10.1039/c3cs60460h
– ident: ref30
  doi: 10.3389/fnagi.2023.1199434
– ident: ref51
  doi: 10.1159/000534400
– ident: ref69
  doi: 10.3389/fneur.2023.1158366
– ident: ref33
  doi: 10.3390/genes13030425
– ident: ref55
  doi: 10.17179/excli2023-6155
– ident: ref31
  doi: 10.3390/jcm9062004
– ident: ref3
  doi: 10.1080/13697137.2017.1287866
– ident: ref19
  doi: 10.1126/scitranslmed.3002156
– ident: ref4
  doi: 10.1073/pnas.2307793120
– ident: ref71
  doi: 10.1038/s41591-018-0004-z
– ident: ref68
  doi: 10.1017/S136898001400007X
– ident: ref15
  doi: 10.1093/braincomms/fcab308
– ident: ref16
  doi: 10.1111/bpa.13208
– ident: ref47
  doi: 10.3390/ijms24032285
– ident: ref7
  doi: 10.1001/jama.278.16.1349
– ident: ref21
  doi: 10.3390/ijms21176336
– ident: ref50
  doi: 10.1056/nejmoa1304839
– ident: ref17
  doi: 10.1038/gim.2015.117
– ident: ref60
  doi: 10.1016/j.omtn.2021.02.032
– ident: ref67
  doi: 10.1017/S0007114511000109
– ident: ref27
  doi: 10.1016/j.bbalip.2017.07.004
– ident: ref49
  doi: 10.3389/fneur.2023.1147757
– ident: ref44
  doi: 10.1002/trc2.12417
– ident: ref34
  doi: 10.2174/1567205016666191210094435
– ident: ref78
  doi: 10.3233/JAD-230710
– ident: ref41
  doi: 10.3389/fnagi.2022.1019412
– ident: ref74
  doi: 10.1038/s41587-021-01133-w
– ident: ref65
  doi: 10.1016/j.crphar.2022.100149
– ident: ref76
  doi: 10.5582/irdr.2023.01091
– ident: ref58
  doi: 10.1016/j.omtn.2022.03.022
– ident: ref73
  doi: 10.1038/s41586-019-1711-4
– ident: ref77
  doi: 10.3390/brainsci13060938
– ident: ref2
  doi: 10.1007/978-3-030-78787-5_50
– ident: ref29
  doi: 10.1177/23982128231191046
– ident: ref54
  doi: 10.1056/NEJMoa2308719
– ident: ref25
  doi: 10.3390/ijms241310494
– ident: ref14
  doi: 10.1002/pro.2597
– ident: ref61
  doi: 10.1186/s12910-023-00951-8
– ident: ref43
  doi: 10.1016/j.celrep.2017.09.032
– ident: ref11
  doi: 10.1016/j.ebiom.2023.104511
– ident: ref36
  doi: 10.1126/scitranslmed.aag0481
– ident: ref23
  doi: 10.1186/s13195-022-01132-2
– ident: ref6
  doi: 10.1038/s41580-022-00491-w
– ident: ref24
  doi: 10.1177/20406223221081605
– ident: ref63
  doi: 10.3390/cells12192348
– ident: ref9
  doi: 10.1016/j.neuron.2022.03.004
– ident: ref62
  doi: 10.3390/ijms241914455
– ident: ref5
  doi: 10.3389/fneur.2018.00701
– ident: ref45
  doi: 10.1038/s41573-022-00521-4
– ident: ref52
  doi: 10.1056/NEJMoa2212948
– ident: ref39
  doi: 10.1016/j.biopsych.2020.02.001
– ident: ref37
  doi: 10.1080/17460441.2022.2134852
– ident: ref13
  doi: 10.1002/pro.2379
– ident: ref26
  doi: 10.3174/ajnr.A3601
– ident: ref35
  doi: 10.1038/s41591-023-02326-3
– ident: ref8
  doi: 10.1038/s41380-023-02170-4
– ident: ref59
  doi: 10.1038/d41586-023-03931-5
– ident: ref38
  doi: 10.09.561413
– ident: ref53
  doi: 10.14283/jpad.2023.123
– ident: ref72
  doi: 10.1016/j.jare.2021.07.001
– ident: ref66
  doi: 10.1038/s41582-022-00645-6
– ident: ref32
  doi: 10.1016/j.ebiom.2021.103691
– ident: ref64
  doi: 10.1212/wnl.42.2.447
– ident: ref22
  doi: 10.3390/cells11223616
– ident: ref1
  doi: 10.3390/biomedicines11020335
– ident: ref10
  doi: 10.1038/s41582-019-0228-7
– ident: ref48
  doi: 10.1038/s41583-021-00533-w
– ident: ref70
  doi: 10.3389/fpubh.2023.1023907
– ident: ref28
  doi: 10.1186/s13195-023-01277-8
– ident: ref46
  doi: 10.1021/acs.jmedchem.1c00160
– ident: ref57
  doi: 10.1242/dmm.050279
SSID ssj0008330
Score 2.3484793
SecondaryResourceType review_article
Snippet Abstract Alzheimer’s disease (AD) is the most common cause of neurodegenerative impairment in elderly people. Clinical characteristics include short-term...
Alzheimer’s disease (AD) is the most common cause of neurodegenerative impairment in elderly people. Clinical characteristics include short-term memory loss,...
Alzheimer's disease (AD) is the most common cause of neurodegenerative impairment in elderly people. Clinical characteristics include short-term memory loss,...
To illustrate this, recent research in oncology has identified a drug that can inhibit special functional domains of a protein that is involved in cancer...
SourceID pubmedcentral
proquest
pubmed
crossref
karger
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 301
SubjectTerms Alzheimer's disease
Apolipoproteins
Biomarkers
Brain research
Cyclin-dependent kinases
Design
Drug dosages
Enzymes
Health risk assessment
Kinases
Lipids
Pathogenesis
Patients
Peptides
Precision medicine
Proteins
Review
SummonAdditionalLinks – databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZaqCouqBRallJkEIderMaJnQcXtIIiVGnRSgVpb5Ff0a4K2WUfF078Df4ev4SZxAksQkg5eUZJ5LE9nz3jbwg5lDLBwcCZijPLhOWG6UJFzFhldZpxlVYEpr2L-PxK_B3IgT9wm_m0ymZNrBZqOzZ4Rv4bI3YAXkQQHU9uGVaNwuiqL6HxkawidRmmdCWDdsMF6CKq2Qg4Z4lMuGcWAg9e1bKL8Nrmkj_69B_Tr6dvoc3XSZMvvNDZF7Lu4SPt1vbeIB9c-ZV87vkA-Sbpda_vhm5046aP9w8zelqHX45ol_5bjOZ4TYqeQAMFqEovmxxzioextD_15XZo87rjLXJ19ufy5Jz5ignMyDCYM6OcEA5QGE-1ioXSiS2kFrD9BRTlIgveOTFGYDTMBhq5CIvMFUoWWNJNFzL6RlbKcem2CTUmDZ3TIoNHCCG10mBvawOTGsAAcYf8avotN55OHKtaXOfVtkJmedvFHXLQqk5qDo23lLbqzm9VmvbdV-29fr8W5RNbgLgxVe5n3yx_Hisdst-KYd5gMESVbryY5SFsDPF2TBJ0yPfasu0XInTZIgNJumTzVgE5uZcl5WhYcXNzjgg1jHfe_68fZC0EdFRnEu6Slfl04X4CupnrvWoIPwFlIPgM
  priority: 102
  providerName: ProQuest
Title Alzheimer’s Disease: A Suitable Case for Treatment with Precision Medicine?
URI https://karger.com/doi/10.1159/000538251
https://www.ncbi.nlm.nih.gov/pubmed/38471490
https://www.proquest.com/docview/3093150403
https://www.proquest.com/docview/2956686270
https://pubmed.ncbi.nlm.nih.gov/PMC11324226
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LT9wwEB4VqBAX1Adt09KVW_XQi6U4tvPgUm0pCFUKWrUg7S3yKwJ1G9A-Lpz4G_17_BLGcRKxiEo52ZNY8diebzz2NwBfpMz8YGBUpYWlwjJDda04NVZZnRdM5S2BaXmanpyLn1M57fY7_F2YP_78c0uNOnALoMFtU89xf8tyA7bQj-KeJb-kdFhzc84D7wBjNJMZ6ziE1l7dgW3u12Lh198HRuh5aPMpiPn4pOQD03P8AnY7zEjGQckv4ZlrXsF22UXFX0M5nt1cuMu_bn53-29BfoSYywEZk98rdP31zJFDLCCIT8lZf7Cc-B1YMpl3OXZI_7lve3B-fHR2eEK7NAnUyCReUqOcEA6hF8u1SoXSma2lFujzInRy3KJJzowRPgRmY-0JCOvC1UrWPo-briV_A5vNVePeATEmT5zTosBHCCG10qhka2OTGzT8aQRf-36rTMch7lNZzKrWl5BFNfR2BJ8H0etAnPGU0F7o_EGkL99_VF5OJqGqurY1Vveqqropt6h8SBfRrYh5BJ-GapwsPgKiGne1WlQJeoP-SkwWR_A2aHZooR8bEeRrOh8EPBH3ek1zedEScjPmYWmSvv_P73yAnQSxUDg3uA-by_nKfUQss9Qj2Mim2Qi2vh-dTn6N2h2BUTu07wFAcPAg
linkProvider Karger AG
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9RADLaqLYK-II4CCwUGBBIvEZlkciGhaumhLW1WK9hKfQtzRV21ZJc9hOCJv8Gf4EfxS7BzwVYVb5XyNLaSyOPxfB57bIAXQRCRMnBHholxhOHaUbn0HW2kUXHCZVwWME0HYf9YvD8JTtbgV3MXhtIqG5tYGmoz0XRG_poidghehOtvT7841DWKoqtNC41KLQ7tt6_oss3fHuzi_L70vP290U7fqbsKODrw3IWjpRXCIlLhsZKhkCoyeaAEuoiINKxvcAeLtBYUMTKuonp9eWJzGeTU9kzl1CUCTf668NGV6cD6u73B8ENr-2Pfr-ofcO5EQcTrWkaIGcrueT5dFF3ZAa-dUcL37DJ8ezFN8599b_8W3KwBK-tVGnYb1mxxB66ndUj-LqS98--ndvzZzn7_-Dlnu1XA5w3rsY_L8YIuZrEdHGAIjtmoyWpndPzLhrO6wQ9rXre9CcdXIs170CkmhX0ATOvYs1aJBB8hRKCkQg0zxtWxRtQRduFVI7dM1wXMqY_GeVY6MkGStSLuwvOWdVpV7biMabMSfsvSjG9dGE-Hw4qUTU2O5Gaqsnq9z7O_2tmFZy0ZVyqFX2RhJ8t55qErSvdxIrcL96uZbb_gE0gQCVLilTlvGagK-CqlGJ-W1cA5J0zshQ___19P4UZ_lB5lRweDw0ew4SE2q_IYt6CzmC3tY8RWC_WkVmgGn656Df0BBG82Cg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB5KleKLeKm6WnUUBV-GZpKZXAQpS9eltW5ZsIV9i3MLu1iz614QffJv-Ff8Of4Sz8kkabcU3wp5mjMkYc45M9-ZcyPklZQJCgNnKs4sE5YbpgsVMWOV1WnGVVoVMB0cxwen4sNIjjbInyYXBsMqmz2x2qjt1OAd-S567AC8iCDaLeqwiGGvvzf7xrCDFHpam3YaXkSO3I_vYL4t3h32gNevw7D__mT_gNUdBpiRYbBkRjkhHKAWnmoVC6UTW0gtwFwE1OEiC6dZYoxA75ENNNbuKzJXKFlgCzRdYMcI2P5vJJHkqGPJqDX2ANlEvhIC5yyRCa-rGgF6qProRZgyunYW3vyCod_zq5Du5YDNCydg_w65XUNX2vWydpdsuPIe2RrUzvn7ZNA9-zl2k69u_vfX7wXtedfPW9qln1aTJaZo0X0YoACT6UkT307xIpgO53WrH9q8bm-bnF7LWj4gm-W0dI8INSYNndMig0cIIbXSIGvWBiY1gD_iDnnTrFtu6lLm2FHjLK9MGpnl7RJ3yMt26szX77hq0rZf_HZKM75zaXwwHHpSPrMFkBtW5bXmL_JzOe2QFy0ZdBYdMap009UiD8EoxcycJOiQh56z7RcihAsiA0q6xvN2AtYDX6eUk3FVF5xzRMdh_Pj___WcbIHm5B8Pj4-ekFshgDQf0LhDNpfzlXsKIGupn1XSTMnn61affxgMONo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alzheimer%E2%80%99s+Disease%3A+A+Suitable+Case+for+Treatment+with+Precision+Medicine%3F&rft.jtitle=Medical+principles+and+practice&rft.au=Pauwels%2C+Ernest+K.J.&rft.au=Boer%2C+Gerard+J.&rft.date=2024-08-01&rft.issn=1011-7571&rft.eissn=1423-0151&rft.volume=33&rft.issue=4&rft.spage=301&rft.epage=309&rft_id=info:doi/10.1159%2F000538251&rft_id=info%3Apmid%2F38471490&rft.externalDocID=538251
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1011-7571&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1011-7571&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1011-7571&client=summon