Wild-Type PrP and a Mutant Associated with Prion Disease are Subject to Retrograde Transport and Proteasome Degradation
The cytoplasm seems to provide an environment that favors conversion of the prion protein (PrP) to a form with the physical characteristics of the PrPScconformation, which is associated with transmissible spongiform encephalopathies. However, it is not clear whether PrP would ever exist in the cytop...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 98; no. 26; pp. 14955 - 14960 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
18.12.2001
National Acad Sciences The National Academy of Sciences |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 |
DOI | 10.1073/pnas.011578098 |
Cover
Loading…
Abstract | The cytoplasm seems to provide an environment that favors conversion of the prion protein (PrP) to a form with the physical characteristics of the PrPScconformation, which is associated with transmissible spongiform encephalopathies. However, it is not clear whether PrP would ever exist in the cytoplasm under normal circumstances. We report that PrP accumulates in the cytoplasm when proteasome activity is compromised. The accumulated PrP seems to have been subjected to the normal proteolytic cleavage events associated with N- and C-terminal processing in the endoplasmic reticulum, suggesting that it arrives in the cytoplasm through retrograde transport. In the cytoplasm, PrP forms aggregates, often in association with Hsc70. With prolonged incubation, these aggregates accumulate in an "aggresome"-like state, surrounding the centrosome. A mutant (D177N), which is associated with a heritable and transmissible form of the spongiform encephalopathies, is less efficiently trafficked to the surface than wild-type PrP and accumulates in the cytoplasm even without proteasome inhibition. These results demonstrate that PrP can accumulate in the cytoplasm and is likely to enter this compartment through normal protein quality-control pathways. Its potential to accumulate in the cytoplasm has implications for pathogenesis. |
---|---|
AbstractList | The cytoplasm seems to provide an environment that favors
conversion of the prion protein (PrP) to a form with the physical
characteristics of the PrP
Sc
conformation, which is
associated with transmissible spongiform encephalopathies.
However, it is not clear whether PrP would ever exist in the cytoplasm
under normal circumstances. We report that PrP accumulates in the
cytoplasm when proteasome activity is compromised. The accumulated PrP
seems to have been subjected to the normal proteolytic cleavage events
associated with N- and C-terminal processing in the endoplasmic
reticulum, suggesting that it arrives in the cytoplasm through
retrograde transport. In the cytoplasm, PrP forms aggregates, often in
association with Hsc70. With prolonged incubation, these aggregates
accumulate in an “aggresome”-like state, surrounding the
centrosome. A mutant (D177N), which is associated with a heritable and
transmissible form of the spongiform encephalopathies, is less
efficiently trafficked to the surface than wild-type PrP and
accumulates in the cytoplasm even without proteasome inhibition. These
results demonstrate that PrP can accumulate in the cytoplasm and is
likely to enter this compartment through normal protein quality-control
pathways. Its potential to accumulate in the cytoplasm has implications
for pathogenesis. The cytoplasm seems to provide an environment that favors conversion of the prion protein (PrP) to a form with the physical characteristics of the PrP Sc conformation, which is associated with transmissible spongiform encephalopathies. However, it is not clear whether PrP would ever exist in the cytoplasm under normal circumstances. We report that PrP accumulates in the cytoplasm when proteasome activity is compromised. The accumulated PrP seems to have been subjected to the normal proteolytic cleavage events associated with N- and C-terminal processing in the endoplasmic reticulum, suggesting that it arrives in the cytoplasm through retrograde transport. In the cytoplasm, PrP forms aggregates, often in association with Hsc70. With prolonged incubation, these aggregates accumulate in an “aggresome”-like state, surrounding the centrosome. A mutant (D177N), which is associated with a heritable and transmissible form of the spongiform encephalopathies, is less efficiently trafficked to the surface than wild-type PrP and accumulates in the cytoplasm even without proteasome inhibition. These results demonstrate that PrP can accumulate in the cytoplasm and is likely to enter this compartment through normal protein quality-control pathways. Its potential to accumulate in the cytoplasm has implications for pathogenesis. The cytoplasm seems to provide an environment that favors conversion of the prion protein (PrP) to a form with the physical characteristics of the PrPScconformation, which is associated with transmissible spongiform encephalopathies. However, it is not clear whether PrP would ever exist in the cytoplasm under normal circumstances. We report that PrP accumulates in the cytoplasm when proteasome activity is compromised. The accumulated PrP seems to have been subjected to the normal proteolytic cleavage events associated with N- and C-terminal processing in the endoplasmic reticulum, suggesting that it arrives in the cytoplasm through retrograde transport. In the cytoplasm, PrP forms aggregates, often in association with Hsc70. With prolonged incubation, these aggregates accumulate in an "aggresome"-like state, surrounding the centrosome. A mutant (D177N), which is associated with a heritable and transmissible form of the spongiform encephalopathies, is less efficiently trafficked to the surface than wild-type PrP and accumulates in the cytoplasm even without proteasome inhibition. These results demonstrate that PrP can accumulate in the cytoplasm and is likely to enter this compartment through normal protein quality-control pathways. Its potential to accumulate in the cytoplasm has implications for pathogenesis. The cytoplasm seems to provide an environment that favors conversion of the prion protein (PrP) to a form with the physical characteristics of the PrPSc conformation, which is associated with transmissible spongiform encephalopathies. The cytoplasm seems to provide an environment that favors conversion of the prion protein (PrP) to a form with the physical characteristics of the PrP(Sc) conformation, which is associated with transmissible spongiform encephalopathies. However, it is not clear whether PrP would ever exist in the cytoplasm under normal circumstances. We report that PrP accumulates in the cytoplasm when proteasome activity is compromised. The accumulated PrP seems to have been subjected to the normal proteolytic cleavage events associated with N- and C-terminal processing in the endoplasmic reticulum, suggesting that it arrives in the cytoplasm through retrograde transport. In the cytoplasm, PrP forms aggregates, often in association with Hsc70. With prolonged incubation, these aggregates accumulate in an "aggresome"-like state, surrounding the centrosome. A mutant (D177N), which is associated with a heritable and transmissible form of the spongiform encephalopathies, is less efficiently trafficked to the surface than wild-type PrP and accumulates in the cytoplasm even without proteasome inhibition. These results demonstrate that PrP can accumulate in the cytoplasm and is likely to enter this compartment through normal protein quality-control pathways. Its potential to accumulate in the cytoplasm has implications for pathogenesis.The cytoplasm seems to provide an environment that favors conversion of the prion protein (PrP) to a form with the physical characteristics of the PrP(Sc) conformation, which is associated with transmissible spongiform encephalopathies. However, it is not clear whether PrP would ever exist in the cytoplasm under normal circumstances. We report that PrP accumulates in the cytoplasm when proteasome activity is compromised. The accumulated PrP seems to have been subjected to the normal proteolytic cleavage events associated with N- and C-terminal processing in the endoplasmic reticulum, suggesting that it arrives in the cytoplasm through retrograde transport. In the cytoplasm, PrP forms aggregates, often in association with Hsc70. With prolonged incubation, these aggregates accumulate in an "aggresome"-like state, surrounding the centrosome. A mutant (D177N), which is associated with a heritable and transmissible form of the spongiform encephalopathies, is less efficiently trafficked to the surface than wild-type PrP and accumulates in the cytoplasm even without proteasome inhibition. These results demonstrate that PrP can accumulate in the cytoplasm and is likely to enter this compartment through normal protein quality-control pathways. Its potential to accumulate in the cytoplasm has implications for pathogenesis. The cytoplasm seems to provide an environment that favors conversion of the prion protein (PrP) to a form with the physical characteristics of the PrP super(Sc) conformation, which is associated with transmissible spongiform encephalopathies. However, it is not clear whether PrP would ever exist in the cytoplasm under normal circumstances. We report that PrP accumulates in the cytoplasm when proteasome activity is compromised. The accumulated PrP seems to have been subjected to the normal proteolytic cleavage events associated with N- and C-terminal processing in the endoplasmic reticulum, suggesting that it arrives in the cytoplasm through retrograde transport. In the cytoplasm, PrP forms aggregates, often in association with Hsc70. With prolonged incubation, these aggregates accumulate in an "aggresome"-like state, surrounding the centrosome. A mutant (D177N), which is associated with a heritable and transmissible form of the spongiform encephalopathies, is less efficiently trafficked to the surface than wild-type PrP and accumulates in the cytoplasm even without proteasome inhibition. These results demonstrate that PrP can accumulate in the cytoplasm and is likely to enter this compartment through normal protein quality-control pathways. Its potential to accumulate in the cytoplasm has implications for pathogenesis. |
Author | Lindquist, Susan Ma, Jiyan |
AuthorAffiliation | Department of Molecular Genetics and Cell Biology, Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637 |
AuthorAffiliation_xml | – name: Department of Molecular Genetics and Cell Biology, Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637 |
Author_xml | – sequence: 1 givenname: Jiyan surname: Ma fullname: Ma, Jiyan – sequence: 2 givenname: Susan surname: Lindquist fullname: Lindquist, Susan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/11742063$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1vEzEQhleoiKaFKycEFgfEJWFs765tiUvV8iUVEUEQR8vdnW0dbeyt7aX03-M0aYBKwMWW7OedeefjoNhz3mFRPKYwoyD4q8GZOANKKyFByXvFhIKi07pUsFdMAJiYypKV-8VBjEsAUJWEB8U-paJkUPNJcfXN9u10cT0gmYc5Ma4lhnwck3GJHMXoG2sStuTKposMWO_IiY1oIhITkHwZz5bYJJI8-Ywp-PNgWiSLYFwcfEg34ebBpyzwKyQnuAZMymEeFvc700d8tL0Pi69v3yyO309PP737cHx0Om0qBimfYAzKXIOgwkhaMS672igGbV01soW2VZIZyhtUZcexyVWVNbYgyw5kV_LD4vUm7jCerbBt0KVgej0EuzLhWntj9Z8_zl7oc_9d5xbWVZa_2MqDvxwxJr2yscG-Nw79GLVgXAieXf0PpJJxltuewed3wKUfg8s90AwoF0wJlaGnv7ve2b2dWwZmG6AJPsaA3S8E9Hox9Hox9G4xsqC8I2hsuplErtr2f5e93BpZv9_mUFKzWtNSVZXuxr5P-CNl9Nm_0Uw82RDLmHzYIRwqwRXjPwHmx98C |
CitedBy_id | crossref_primary_10_15252_embj_2022112338 crossref_primary_10_1073_pnas_152313999 crossref_primary_10_1074_jbc_M309570200 crossref_primary_10_1093_nar_gku1342 crossref_primary_10_1146_annurev_pharmtox_010617_052745 crossref_primary_10_1523_JNEUROSCI_0957_07_2007 crossref_primary_10_1046_j_1460_9568_2002_02301_x crossref_primary_10_1371_journal_pone_0019876 crossref_primary_10_1016_j_mcn_2011_04_005 crossref_primary_10_1016_S0959_437X_03_00053_4 crossref_primary_10_1038_nn_3120 crossref_primary_10_1046_j_1471_4159_2003_02294_x crossref_primary_10_1016_j_bbadis_2009_02_014 crossref_primary_10_1074_jbc_M109_003566 crossref_primary_10_1038_labinvest_3700500 crossref_primary_10_1111_j_1750_3639_2010_00446_x crossref_primary_10_26508_lsa_202302456 crossref_primary_10_1007_s12192_007_0004_2 crossref_primary_10_1080_19336896_2018_1435936 crossref_primary_10_1083_jcb_202109010 crossref_primary_10_1007_s00109_004_0605_5 crossref_primary_10_1074_jbc_M602238200 crossref_primary_10_1292_jvms_10_0149 crossref_primary_10_1007_s12035_017_0512_8 crossref_primary_10_1074_jbc_M405652200 crossref_primary_10_1371_journal_pone_0197659 crossref_primary_10_1016_j_bbrc_2024_150807 crossref_primary_10_1074_jbc_M310249200 crossref_primary_10_1126_sciadv_abg3693 crossref_primary_10_1091_mbc_e03_05_0271 crossref_primary_10_1083_jcb_201602010 crossref_primary_10_1371_journal_pone_0270915 crossref_primary_10_1046_j_1471_4159_2003_01819_x crossref_primary_10_4161_pri_4_4_13435 crossref_primary_10_1016_j_jmb_2021_167368 crossref_primary_10_1016_j_mcn_2006_05_004 crossref_primary_10_1093_abbs_gmt020 crossref_primary_10_1016_j_toxlet_2012_09_008 crossref_primary_10_1007_s11062_005_0038_y crossref_primary_10_1016_S0166_2236_03_00143_7 crossref_primary_10_1128_JVI_00732_14 crossref_primary_10_1111_j_1601_183X_2004_00105_x crossref_primary_10_1016_j_jmb_2004_02_007 crossref_primary_10_1016_j_pneurobio_2012_01_003 crossref_primary_10_1016_S0969_9961_02_00014_1 crossref_primary_10_1111_1574_6976_12053 crossref_primary_10_1074_jbc_M202229200 crossref_primary_10_1186_1743_422X_11_175 crossref_primary_10_1128_JVI_02157_06 crossref_primary_10_1128_jvi_01262_24 crossref_primary_10_1007_s12031_010_9443_9 crossref_primary_10_1038_s41598_017_03969_2 crossref_primary_10_1074_jbc_M310994200 crossref_primary_10_1016_j_neulet_2004_10_044 crossref_primary_10_1074_jbc_M111_272617 crossref_primary_10_1074_jbc_M412441200 crossref_primary_10_1128_CMR_00046_15 crossref_primary_10_1016_j_ymeth_2010_12_002 crossref_primary_10_1111_j_1742_4658_2007_05633_x crossref_primary_10_1021_nl8032284 crossref_primary_10_1042_BCJ20190872 crossref_primary_10_1042_BJ20140129 crossref_primary_10_1242_jcs_077693 crossref_primary_10_1016_j_nbd_2004_05_005 crossref_primary_10_1007_s10571_009_9491_2 crossref_primary_10_1371_journal_pone_0013725 crossref_primary_10_1016_j_mcn_2004_09_006 crossref_primary_10_1016_j_bbadva_2021_100035 crossref_primary_10_1038_nrn1584 crossref_primary_10_1051_vetres_2008021 crossref_primary_10_1016_j_molbrainres_2004_01_006 crossref_primary_10_1007_s12035_020_01917_2 crossref_primary_10_1016_j_mce_2010_10_012 crossref_primary_10_1016_j_bbamcr_2008_05_022 crossref_primary_10_1016_j_molcel_2018_07_001 crossref_primary_10_1007_s00705_006_0907_8 crossref_primary_10_1046_j_1471_4159_2002_01234_x crossref_primary_10_1002_rmv_408 crossref_primary_10_1093_hmg_ddv630 crossref_primary_10_1074_jbc_M407360200 crossref_primary_10_1126_science_1073619 crossref_primary_10_1074_jbc_M512306200 crossref_primary_10_1034_j_1600_0854_2002_31106_x crossref_primary_10_1074_jbc_M605320200 crossref_primary_10_1002_jnr_10473 crossref_primary_10_1038_sj_emboj_7600462 crossref_primary_10_1074_jbc_M203159200 crossref_primary_10_1002_cbic_200300704 crossref_primary_10_1242_jcs_01094 crossref_primary_10_1080_1350_6120400000723 crossref_primary_10_1007_s00401_015_1508_y crossref_primary_10_1016_j_bbadis_2008_06_011 crossref_primary_10_1073_pnas_1232504100 crossref_primary_10_1016_j_febslet_2006_06_074 crossref_primary_10_1074_jbc_M306177200 crossref_primary_10_1016_j_virusres_2015_01_019 crossref_primary_10_1099_vir_0_80043_0 crossref_primary_10_1038_sj_cdd_4401629 crossref_primary_10_1038_srep04504 crossref_primary_10_1002_dneu_20555 crossref_primary_10_1016_j_virusres_2015_02_004 crossref_primary_10_1021_acschemneuro_2c00786 crossref_primary_10_1083_jcb_200911115 crossref_primary_10_1002_jcp_21147 crossref_primary_10_1007_s12035_024_04224_2 crossref_primary_10_1242_jcs_02768 crossref_primary_10_1046_j_1344_3941_2002_00077_x crossref_primary_10_1091_mbc_e06_01_0083 crossref_primary_10_1016_S1474_4422_04_00827_0 crossref_primary_10_1007_s12192_021_01191_8 crossref_primary_10_1093_brain_awad289 crossref_primary_10_5483_BMBRep_2009_42_7_444 crossref_primary_10_1111_j_1471_4159_2006_03837_x crossref_primary_10_3389_fnins_2022_966019 crossref_primary_10_1016_j_jmb_2014_10_024 crossref_primary_10_1074_jbc_M506600200 crossref_primary_10_1371_journal_pone_0015658 crossref_primary_10_1051_medsci_20031989778 crossref_primary_10_1126_science_1073725 crossref_primary_10_1038_s41419_018_0576_z crossref_primary_10_1007_s10495_010_0480_1 crossref_primary_10_1051_medsci_200218121267 crossref_primary_10_1074_jbc_M611909200 crossref_primary_10_1679_aohc_71_23 crossref_primary_10_1074_jbc_M307837200 crossref_primary_10_1016_j_neulet_2006_05_066 crossref_primary_10_1038_srep11028 crossref_primary_10_1093_cvr_cvu003 crossref_primary_10_1002_jnr_10864 crossref_primary_10_1016_j_jmb_2009_03_047 crossref_primary_10_1371_journal_pone_0092290 crossref_primary_10_1016_j_bbrc_2006_07_065 crossref_primary_10_1111_j_1471_4159_2004_02989_x crossref_primary_10_1152_physrev_00007_2007 crossref_primary_10_1091_mbc_e10_07_0638 crossref_primary_10_1016_j_nbd_2005_11_012 crossref_primary_10_1371_journal_pone_0019339 crossref_primary_10_3390_cancers13020170 crossref_primary_10_1073_pnas_0403015101 crossref_primary_10_4161_pri_4_4_13394 crossref_primary_10_1093_bmb_66_1_43 crossref_primary_10_1146_annurev_micro_57_030502_090836 crossref_primary_10_1016_j_bbrc_2012_07_153 crossref_primary_10_1016_j_chembiol_2008_03_020 crossref_primary_10_1080_14728222_2023_2199923 crossref_primary_10_1016_S0006_291X_03_00052_4 crossref_primary_10_1016_S0167_7799_03_00026_X crossref_primary_10_1002_path_1555 crossref_primary_10_1016_S0301_472X_02_01011_1 crossref_primary_10_4049_jimmunol_172_2_1083 crossref_primary_10_1371_journal_ppat_1000479 crossref_primary_10_4161_pri_1_4_5551 crossref_primary_10_1016_j_cell_2009_03_042 crossref_primary_10_1111_j_1751_0813_2004_tb12709_x crossref_primary_10_1038_nrm723 crossref_primary_10_1007_s12031_007_0023_6 crossref_primary_10_1091_mbc_e09_10_0910 crossref_primary_10_1159_000367694 crossref_primary_10_1046_j_1471_4159_2003_02199_x crossref_primary_10_1091_mbc_e08_01_0087 crossref_primary_10_1074_jbc_M205110200 crossref_primary_10_1111_j_1471_4159_2006_04439_x crossref_primary_10_1111_j_1471_4159_2008_05851_x crossref_primary_10_1080_19336896_2016_1244593 crossref_primary_10_1074_jbc_M114_635565 crossref_primary_10_3390_ijms19103081 crossref_primary_10_4161_cib_4_3_15019 crossref_primary_10_1152_physrev_00006_2009 crossref_primary_10_1099_vir_0_010082_0 crossref_primary_10_1101_cshperspect_a023523 crossref_primary_10_1002_dneu_20366 crossref_primary_10_1038_sj_emboj_7601930 crossref_primary_10_1074_jbc_M410649200 crossref_primary_10_1016_j_nbd_2014_03_013 crossref_primary_10_1074_jbc_M213247200 crossref_primary_10_1111_j_1348_0421_2010_00272_x crossref_primary_10_1074_jbc_M307833200 crossref_primary_10_1093_bmb_66_1_71 crossref_primary_10_4161_auto_25381 crossref_primary_10_1007_s00018_011_0847_7 crossref_primary_10_1016_j_bbrc_2006_06_078 crossref_primary_10_1074_jbc_M209942200 crossref_primary_10_1074_jbc_M609597200 crossref_primary_10_1016_S0962_8924_03_00125_9 crossref_primary_10_1038_srep24970 crossref_primary_10_1083_jcb_200804157 crossref_primary_10_1016_j_brainresbull_2005_12_005 crossref_primary_10_1002_jcb_22698 crossref_primary_10_1002_ana_10512 crossref_primary_10_1371_journal_pone_0007300 crossref_primary_10_1016_j_tcb_2004_10_006 crossref_primary_10_1016_j_molcel_2007_04_001 crossref_primary_10_1016_j_tibs_2009_03_001 crossref_primary_10_1093_jnen_63_7_775 crossref_primary_10_1111_j_1600_0854_2004_0175_x crossref_primary_10_1074_jbc_M117_787283 crossref_primary_10_1038_s41576_018_0011_4 crossref_primary_10_1016_j_hoc_2010_08_013 crossref_primary_10_1038_onc_2017_200 crossref_primary_10_3389_fmolb_2014_00023 crossref_primary_10_1007_s00401_010_0760_4 crossref_primary_10_1017_S0317167100005953 crossref_primary_10_1097_NEN_0b013e318248aa70 crossref_primary_10_1016_j_brainres_2016_04_009 crossref_primary_10_1016_j_freeradbiomed_2011_03_035 |
Cites_doi | 10.1016/S0962-8924(96)10054-4 10.1073/pnas.96.18.10403 10.1073/pnas.95.23.13363 10.1074/jbc.M005543200 10.1093/emboj/20.19.5383 10.1083/jcb.145.3.481 10.1073/pnas.94.25.13452 10.1146/annurev.biochem.69.1.69 10.1074/jbc.274.33.23396 10.1091/mbc.12.4.881 10.1074/jbc.272.34.21479 10.1016/S0014-5793(97)00920-4 10.1016/S0092-8674(00)81881-4 10.1126/science.283.5409.1935 10.1073/pnas.97.18.10168 10.1016/1074-5521(95)90087-X 10.1046/j.1440-1789.2000.00285.x 10.1016/0962-8924(94)90032-9 10.1074/jbc.M006763200 10.1016/S0968-0004(99)01420-6 10.1016/0092-8674(94)90554-1 10.1006/bbrc.1993.1447 10.1074/jbc.273.51.34586 10.1146/annurev.cellbio.14.1.19 10.1083/jcb.149.5.1039 10.1083/jcb.143.7.1883 10.1083/jcb.146.6.1239 10.1021/bi982330q 10.1016/1011-1344(93)80128-V 10.1038/14053 10.1074/jbc.M106928200 10.1038/383685a0 10.1126/science.279.5352.827 10.1073/pnas.84.7.1921 |
ContentType | Journal Article |
Copyright | Copyright 1993-2001 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Dec 18, 2001 Copyright © 2001, The National Academy of Sciences 2001 |
Copyright_xml | – notice: Copyright 1993-2001 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Dec 18, 2001 – notice: Copyright © 2001, The National Academy of Sciences 2001 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.011578098 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Virology and AIDS Abstracts MEDLINE - Academic AIDS and Cancer Research Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 14960 |
ExternalDocumentID | PMC64965 105822661 11742063 10_1073_pnas_011578098 98_26_14955 3057392 |
Genre | Research Support, U.S. Gov't, P.H.S Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM AS~ BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HGD HH5 HQ3 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NEJ N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH W8F WH7 WHG WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ZCG ~02 ~KM - 02 08R 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AFDAS AJYGW AS ASUFR DNJUQ DOOOF DWIUU DZ F20 GJ JSODD KM OHM PQEST RHF VQA X XFK XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM VXZ YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c520t-c50aae8842717a815238f6a920d65c8d0dd982a13ce94f3ec20646ed084f08f43 |
ISSN | 0027-8424 |
IngestDate | Thu Aug 21 14:01:15 EDT 2025 Fri Jul 11 01:15:23 EDT 2025 Fri Jul 11 12:45:20 EDT 2025 Mon Jun 30 08:34:04 EDT 2025 Wed Feb 19 01:19:37 EST 2025 Thu Apr 24 22:59:40 EDT 2025 Tue Jul 01 04:10:50 EDT 2025 Thu May 30 15:49:59 EDT 2019 Wed Nov 11 00:30:05 EST 2020 Thu May 29 08:42:34 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c520t-c50aae8842717a815238f6a920d65c8d0dd982a13ce94f3ec20646ed084f08f43 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Contributed by Susan Lindquist To whom reprint requests should be sent at the present address: Whitehead Institute for Biomedical Research/Massachusetts Institute of Technology, Nine Cambridge Center, Cambridge, MA 02142. E-mail: lindquist_admin@wi.mit.edu. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/64965 |
PMID | 11742063 |
PQID | 201372979 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pnas_primary_98_26_14955 pubmedcentral_primary_oai_pubmedcentral_nih_gov_64965 proquest_miscellaneous_72377352 proquest_journals_201372979 crossref_citationtrail_10_1073_pnas_011578098 pnas_primary_98_26_14955_fulltext jstor_primary_3057392 proquest_miscellaneous_18232117 crossref_primary_10_1073_pnas_011578098 pubmed_primary_11742063 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2001-12-18 |
PublicationDateYYYYMMDD | 2001-12-18 |
PublicationDate_xml | – month: 12 year: 2001 text: 2001-12-18 day: 18 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2001 |
Publisher | National Academy of Sciences National Acad Sciences The National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences – name: The National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_2_2 e_1_3_4_1_2 e_1_3_4_9_2 e_1_3_4_8_2 e_1_3_4_6_2 e_1_3_4_5_2 e_1_3_4_4_2 Harris D A (e_1_3_4_7_2) 1996; 207 e_1_3_4_22_2 e_1_3_4_23_2 e_1_3_4_20_2 e_1_3_4_21_2 e_1_3_4_26_2 e_1_3_4_27_2 e_1_3_4_24_2 e_1_3_4_25_2 e_1_3_4_28_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_32_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_15_2 e_1_3_4_16_2 e_1_3_4_13_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_18_2 10963679 - Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):10168-72 3550801 - Proc Natl Acad Sci U S A. 1987 Apr;84(7):1921-5 10491388 - J Cell Biol. 1999 Sep 20;146(6):1239-54 11294893 - Mol Biol Cell. 2001 Apr;12(4):881-9 8575208 - Curr Top Microbiol Immunol. 1996;207:77-93 10970892 - J Biol Chem. 2000 Dec 8;275(49):38699-704 11053411 - J Biol Chem. 2001 Jan 19;276(3):2212-20 8807814 - Chem Biol. 1995 Dec;2(12):807-17 9891777 - Annu Rev Cell Dev Biol. 1998;14:19-57 17708907 - Trends Cell Biol. 1997 Feb;7(2):56-62 9864362 - J Cell Biol. 1998 Dec 28;143(7):1883-98 10468620 - Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10403-8 10438517 - J Biol Chem. 1999 Aug 13;274(33):23396-404 10390615 - Trends Biochem Sci. 1999 Jul;24(7):266-70 10831608 - J Cell Biol. 2000 May 29;149(5):1039-52 10082469 - Science. 1999 Mar 19;283(5409):1935-7 9452375 - Science. 1998 Feb 6;279(5352):827-34 10200178 - Biochemistry. 1999 Apr 13;38(15):4885-95 10225950 - J Cell Biol. 1999 May 3;145(3):481-90 8229466 - J Photochem Photobiol B. 1993 Sep;20(1):23-35 11527974 - J Biol Chem. 2001 Nov 9;276(45):42409-21 10559963 - Nat Cell Biol. 1999 Oct;1(6):358-61 9391046 - Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13452-7 10935449 - Neuropathology. 2000 Jun;20(2):124-33 14731823 - Trends Cell Biol. 1994 Jan;4(1):10-4 9280298 - FEBS Lett. 1997 Aug 18;413(2):282-8 8878476 - Nature. 1996 Oct 24;383(6602):685-90 7954833 - Cell. 1994 Nov 18;79(4):695-703 9852130 - J Biol Chem. 1998 Dec 18;273(51):34586-93 9038332 - Cell. 1997 Feb 21;88(4):427-30 9811807 - Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13363-83 11574470 - EMBO J. 2001 Oct 1;20(19):5383-91 8097911 - Biochem Biophys Res Commun. 1993 Apr 30;192(2):525-31 9261166 - J Biol Chem. 1997 Aug 22;272(34):21479-87 10966453 - Annu Rev Biochem. 2000;69:69-93 |
References_xml | – ident: e_1_3_4_3_2 doi: 10.1016/S0962-8924(96)10054-4 – ident: e_1_3_4_24_2 doi: 10.1073/pnas.96.18.10403 – ident: e_1_3_4_1_2 doi: 10.1073/pnas.95.23.13363 – ident: e_1_3_4_15_2 doi: 10.1074/jbc.M005543200 – ident: e_1_3_4_35_2 doi: 10.1093/emboj/20.19.5383 – ident: e_1_3_4_27_2 doi: 10.1083/jcb.145.3.481 – ident: e_1_3_4_30_2 doi: 10.1073/pnas.94.25.13452 – ident: e_1_3_4_32_2 doi: 10.1146/annurev.biochem.69.1.69 – ident: e_1_3_4_14_2 doi: 10.1074/jbc.274.33.23396 – ident: e_1_3_4_16_2 doi: 10.1091/mbc.12.4.881 – ident: e_1_3_4_33_2 doi: 10.1074/jbc.272.34.21479 – ident: e_1_3_4_4_2 doi: 10.1016/S0014-5793(97)00920-4 – ident: e_1_3_4_11_2 doi: 10.1016/S0092-8674(00)81881-4 – ident: e_1_3_4_18_2 doi: 10.1126/science.283.5409.1935 – volume: 207 start-page: 77 year: 1996 ident: e_1_3_4_7_2 publication-title: Curr Top Microbiol Immunol – ident: e_1_3_4_6_2 doi: 10.1073/pnas.97.18.10168 – ident: e_1_3_4_28_2 doi: 10.1016/1074-5521(95)90087-X – ident: e_1_3_4_34_2 doi: 10.1046/j.1440-1789.2000.00285.x – ident: e_1_3_4_2_2 doi: 10.1016/0962-8924(94)90032-9 – ident: e_1_3_4_9_2 doi: 10.1074/jbc.M006763200 – ident: e_1_3_4_13_2 doi: 10.1016/S0968-0004(99)01420-6 – ident: e_1_3_4_5_2 doi: 10.1016/0092-8674(94)90554-1 – ident: e_1_3_4_17_2 doi: 10.1006/bbrc.1993.1447 – ident: e_1_3_4_29_2 doi: 10.1074/jbc.273.51.34586 – ident: e_1_3_4_12_2 doi: 10.1146/annurev.cellbio.14.1.19 – ident: e_1_3_4_31_2 doi: 10.1083/jcb.149.5.1039 – ident: e_1_3_4_25_2 doi: 10.1083/jcb.143.7.1883 – ident: e_1_3_4_26_2 doi: 10.1083/jcb.146.6.1239 – ident: e_1_3_4_23_2 doi: 10.1021/bi982330q – ident: e_1_3_4_20_2 doi: 10.1016/1011-1344(93)80128-V – ident: e_1_3_4_19_2 doi: 10.1038/14053 – ident: e_1_3_4_10_2 doi: 10.1074/jbc.M106928200 – ident: e_1_3_4_22_2 doi: 10.1038/383685a0 – ident: e_1_3_4_8_2 doi: 10.1126/science.279.5352.827 – ident: e_1_3_4_21_2 doi: 10.1073/pnas.84.7.1921 – reference: 10970892 - J Biol Chem. 2000 Dec 8;275(49):38699-704 – reference: 17708907 - Trends Cell Biol. 1997 Feb;7(2):56-62 – reference: 9811807 - Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13363-83 – reference: 8575208 - Curr Top Microbiol Immunol. 1996;207:77-93 – reference: 10963679 - Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):10168-72 – reference: 10390615 - Trends Biochem Sci. 1999 Jul;24(7):266-70 – reference: 8878476 - Nature. 1996 Oct 24;383(6602):685-90 – reference: 10225950 - J Cell Biol. 1999 May 3;145(3):481-90 – reference: 10831608 - J Cell Biol. 2000 May 29;149(5):1039-52 – reference: 10935449 - Neuropathology. 2000 Jun;20(2):124-33 – reference: 9864362 - J Cell Biol. 1998 Dec 28;143(7):1883-98 – reference: 3550801 - Proc Natl Acad Sci U S A. 1987 Apr;84(7):1921-5 – reference: 7954833 - Cell. 1994 Nov 18;79(4):695-703 – reference: 9280298 - FEBS Lett. 1997 Aug 18;413(2):282-8 – reference: 9452375 - Science. 1998 Feb 6;279(5352):827-34 – reference: 10082469 - Science. 1999 Mar 19;283(5409):1935-7 – reference: 11527974 - J Biol Chem. 2001 Nov 9;276(45):42409-21 – reference: 11053411 - J Biol Chem. 2001 Jan 19;276(3):2212-20 – reference: 9038332 - Cell. 1997 Feb 21;88(4):427-30 – reference: 10200178 - Biochemistry. 1999 Apr 13;38(15):4885-95 – reference: 10438517 - J Biol Chem. 1999 Aug 13;274(33):23396-404 – reference: 14731823 - Trends Cell Biol. 1994 Jan;4(1):10-4 – reference: 11574470 - EMBO J. 2001 Oct 1;20(19):5383-91 – reference: 8807814 - Chem Biol. 1995 Dec;2(12):807-17 – reference: 9261166 - J Biol Chem. 1997 Aug 22;272(34):21479-87 – reference: 10559963 - Nat Cell Biol. 1999 Oct;1(6):358-61 – reference: 10966453 - Annu Rev Biochem. 2000;69:69-93 – reference: 9891777 - Annu Rev Cell Dev Biol. 1998;14:19-57 – reference: 8097911 - Biochem Biophys Res Commun. 1993 Apr 30;192(2):525-31 – reference: 11294893 - Mol Biol Cell. 2001 Apr;12(4):881-9 – reference: 8229466 - J Photochem Photobiol B. 1993 Sep;20(1):23-35 – reference: 9391046 - Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13452-7 – reference: 10468620 - Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10403-8 – reference: 10491388 - J Cell Biol. 1999 Sep 20;146(6):1239-54 – reference: 9852130 - J Biol Chem. 1998 Dec 18;273(51):34586-93 |
SSID | ssj0009580 |
Score | 2.2062986 |
Snippet | The cytoplasm seems to provide an environment that favors conversion of the prion protein (PrP) to a form with the physical characteristics of the... The cytoplasm seems to provide an environment that favors conversion of the prion protein (PrP) to a form with the physical characteristics of the PrP Sc... The cytoplasm seems to provide an environment that favors conversion of the prion protein (PrP) to a form with the physical characteristics of the PrP Sc... The cytoplasm seems to provide an environment that favors conversion of the prion protein (PrP) to a form with the physical characteristics of the PrP(Sc)... The cytoplasm seems to provide an environment that favors conversion of the prion protein (PrP) to a form with the physical characteristics of the PrPSc... The cytoplasm seems to provide an environment that favors conversion of the prion protein (PrP) to a form with the physical characteristics of the PrP... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14955 |
SubjectTerms | Antibodies Base Sequence Biological Sciences Cell aggregates Cell Line COS cells Cultured cells Cysteine Endopeptidases - metabolism Cysteine Proteinase Inhibitors - pharmacology Cytoplasm Disease DNA Primers Fluorescent Antibody Technique Hydrolysis Multienzyme Complexes - metabolism Mutagenesis, Site-Directed Neurons Prion diseases Prion Diseases - genetics Prion Diseases - metabolism Prions Proteasome Endopeptidase Complex Protein Transport Proteins PrPSc Proteins - genetics PrPSc Proteins - metabolism Transfection |
Title | Wild-Type PrP and a Mutant Associated with Prion Disease are Subject to Retrograde Transport and Proteasome Degradation |
URI | https://www.jstor.org/stable/3057392 http://www.pnas.org/content/98/26/14955.abstract https://www.ncbi.nlm.nih.gov/pubmed/11742063 https://www.proquest.com/docview/201372979 https://www.proquest.com/docview/18232117 https://www.proquest.com/docview/72377352 https://pubmed.ncbi.nlm.nih.gov/PMC64965 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcuGCKBRqymORkABFLuv1a32MKqBCapRDK-Vmbey1iNQ4IbaF4Ifx-5jZXT8CDYJeLMee2PLM55nZ9cy3hLyWPCsKiKQuK1joBtgmI4QUbsGyEKJhsYg5diNfTKPzq-DzPJyPRj8HVUtNvTjNftzYV3Ibq8IxsCt2yf6HZbuLwgHYB_vCFiwM23-yMbzSuasnUWfbmaFdHa8aXBd4LK3a2-ryzRbtbD_HjLHcq2oWOAeDyedW1bpMK1e4ZIQhO7cMAmsAQbVeYXcVCvR2tAntrAuAVVtuMG3nFyd9t4p1IdXYHc-mk8E8uEbR8vugMmhZ5l-bpWlF6WuG2okJD4s8rC9tW9v-dsOhV-YQKQPTS32qjCOGPMaNArOUaOupEzFAJB_6XRznhYMgDr_NMgV_RAhwabiscSmrU8yGY8HMVQdw2aw0XjwYrHFm3e8uJ_fs4ixCov075C6H4QkGhE9zb0D2LEzrk32uliw09t_v3hgpa-1ddvIiUxqLfLsgftPY5_cS3kFOdPmA3LeDGToxyDwkI1U-JIet6ulby2n-7hH51kGVAlQpYItKaqBKe6hShCrVUKUWqhSgSi1Uab2mPVRpB1V9uR6qdADVI3L18cPl2blr1_xws5CzGrZMSiVAa7EXSwHZpS-KSCac5VGYiZzleSK49PxMJUHhqwx0F0QqZyIomCgC_zE5KNelOiY05FFWyAX6GwVpawYKXzCJjGmRX4SBcojbajzNLCE-rstynerCjNhPUftpZyyHvOnkN4YKZq_kkTZgJ-Yj7WjCHXKsBdvDiUh5lGrsOuTVvlNpYcvAHHLSAiG1XqhKOXKG8iROHPKyOwshAr_7yVKtmyr1BAybAGf7JWLuxzEMxRzyxMCqf0ALT4eEO4DrBJCefvdMufyiaer1G_L0lv87Ifd6n_KMHNTbRj2H9L9evNDv2i-2AAqd |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wild-type+PrP+and+a+mutant+associated+with+prion+disease+are+subject+to+retrograde+transport+and+proteasome+degradation&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Ma%2C+Jiyan&rft.au=Lindquist%2C+Susan&rft.date=2001-12-18&rft.pub=The+National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=98&rft.issue=26&rft.spage=14955&rft.epage=14960&rft_id=info:doi/10.1073%2Fpnas.011578098&rft_id=info%3Apmid%2F11742063&rft.externalDocID=PMC64965 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F98%2F26.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F98%2F26.cover.gif |