Digital Twin Science of Metal Powder Bed Fusion Additive Manufacturing: A Selective Review of Simulations for Integrated Computational Materials Engineering and Science

A digital twin (DT) is a cyberspace replica of a system, such as manufacturing equipment. A DT consists of statistical models and computer simulations of physical phenomena occurring in the system. The modeling is adjusted to the system based on signals from sensors attached to the system and their...

Full description

Saved in:
Bibliographic Details
Published inISIJ International Vol. 62; no. 11; pp. 2183 - 2196
Main Authors Koizumi, Yuichiro, Okugawa, Masayuki
Format Journal Article
LanguageEnglish
Published The Iron and Steel Institute of Japan 15.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A digital twin (DT) is a cyberspace replica of a system, such as manufacturing equipment. A DT consists of statistical models and computer simulations of physical phenomena occurring in the system. The modeling is adjusted to the system based on signals from sensors attached to the system and their temporal changes. In general, a DT is utilized to (i) predict phenomena occurring in the system, (ii) optimize control parameters, and (iii) estimate part replacement schedules. We propose to use a DT to elucidate the unique solidification phenomena occurring in a type of metal 3D printing (i.e., additive manufacturing: AM) process. Thus, we propose that applications of DT that obtain scientific data be referred to as “digital twin science (DTS).” This paper first reviews the fundamental of the AM process, particularly powder bed fusion (PBF) and relevant computer simulations, and then studies on computer simulations conducted to elucidate the relationship between the extreme conditions characteristic of the PBF process and solidification microstructures. The findings achieved by the DTS approach indicate that the combination of experimental and simulation data aid the future development of techniques to obtain required microstructures exhibiting desired properties.
AbstractList A digital twin (DT) is a cyberspace replica of a system, such as manufacturing equipment. A DT consists of statistical models and computer simulations of physical phenomena occurring in the system. The modeling is adjusted to the system based on signals from sensors attached to the system and their temporal changes. In general, a DT is utilized to (i) predict phenomena occurring in the system, (ii) optimize control parameters, and (iii) estimate part replacement schedules. We propose to use a DT to elucidate the unique solidification phenomena occurring in a type of metal 3D printing (i.e., additive manufacturing: AM) process. Thus, we propose that applications of DT that obtain scientific data be referred to as “digital twin science (DTS).” This paper first reviews the fundamental of the AM process, particularly powder bed fusion (PBF) and relevant computer simulations, and then studies on computer simulations conducted to elucidate the relationship between the extreme conditions characteristic of the PBF process and solidification microstructures. The findings achieved by the DTS approach indicate that the combination of experimental and simulation data aid the future development of techniques to obtain required microstructures exhibiting desired properties.
ArticleNumber ISIJINT-2022-184
Author Okugawa, Masayuki
Koizumi, Yuichiro
Author_xml – sequence: 1
  orcidid: 0000-0001-7061-7135
  fullname: Koizumi, Yuichiro
  organization: Graduate School of Engineering, Osaka University
– sequence: 1
  orcidid: 0000-0002-6844-6856
  fullname: Okugawa, Masayuki
  organization: Anisotropic Design & Additive Manufacturing Research Center
BookMark eNqVkM1O3DAUha2KSh0o7-B1pYAdx8yku2H4SwVt1Zkuuooc-zpclHGQ7TDijXjMOsyUBbDpxle6V-fzOWef7LneASFfODvKhZTHGPAOXQTvVMTeqe6oWlbfqu-rLGd5nvFZ8YFMuCimmSxO2B6ZsJLLjEtZfiKHIWDDWF7MCsHFhDydYYtRdXS1QUeXGsFpoL2lNzBuf_YbA56egqEXQ0if0bkxGPEB6I1yg1U6Dh5d-5XO6RI60M-nX_CAsBkpS1wP3bPLQG3vaZVst17FxFv06_sh7hIkWsqDqgv03LXoAEYqVc788_SZfLTpDIe7eUB-X5yvFlfZ9Y_LajG_zrTMWcy0aKaNKqcgC9BlKTUHVhrL0mhEObOMidIwnXYglGZKW6ObXNukM1wxIQ7I6ZarfR-CB1vfe1wr_1hzVo_112_qr3f112P9dao_Qa5eQTRuo0avsPs_1J8t6i5E1cKLG-Uj6g7eQZwkIR_f16wXjb5VvgYn_gKx-MHD
CitedBy_id crossref_primary_10_1016_j_addlet_2023_100191
crossref_primary_10_7791_jspmee_12_180
crossref_primary_10_1016_j_commatsci_2025_113697
crossref_primary_10_3390_ma16010218
crossref_primary_10_1016_j_matchar_2024_114435
crossref_primary_10_2320_matertrans_MT_ME2022002
crossref_primary_10_1016_j_jmst_2023_08_050
crossref_primary_10_2497_jjspm_16P_T6_11
crossref_primary_10_2320_jinstmet_JA202402
crossref_primary_10_1088_1757_899X_1310_1_012013
crossref_primary_10_2320_jinstmet_JA202401
crossref_primary_10_1016_j_rineng_2024_103462
crossref_primary_10_3390_ma16155449
crossref_primary_10_1016_j_jmapro_2023_09_059
crossref_primary_10_1016_j_ijlmm_2024_06_004
crossref_primary_10_3390_ma16227228
crossref_primary_10_2320_matertrans_MT_ME2022006
crossref_primary_10_2497_jjspm_24_00032
crossref_primary_10_1016_j_addma_2024_104079
crossref_primary_10_1016_j_tsep_2024_102945
Cites_doi 10.1038/s41563-019-0408-2
10.1299/jsmecmd.2017.30.197
10.1016/j.addma.2017.10.004
10.1186/s40192-016-0047-2
10.3390/s20082425
10.1007/s11666-017-0523-z
10.1016/j.addma.2018.12.002
10.1016/j.ijheatmasstransfer.2016.10.006
10.1016/j.scriptamat.2018.09.017
10.1016/j.addma.2018.08.017
10.1179/1743284714Y.0000000728
10.7791/jspmee.10.208
10.1016/j.cma.2017.12.024
10.1016/j.addma.2018.12.018
10.1016/j.addma.2017.10.001
10.1016/j.jmatprotec.2021.117384
10.1016/j.actamat.2017.06.039
10.1016/0025-5416(84)90201-5
10.1007/s00466-015-1170-1
10.1088/1757-899X/276/1/012026
10.1007/s00170-019-03384-z
10.1016/j.jmatprotec.2010.12.016
10.1146/annurev-matsci-070115-032158
10.1109/TII.2018.2873186
10.1016/j.powtec.2021.01.058
10.1016/S0307-904X(01)00050-6
10.1016/j.actamat.2016.02.014
10.1007/s11837-015-1352-5
10.1016/j.ifacol.2019.11.685
10.1016/j.procir.2021.01.114
10.1007/BF02914650
10.1016/j.addma.2018.06.008
10.2320/matertrans.MT-MA2020005
10.1108/13552549510078113
10.1016/j.scriptamat.2016.12.038
10.1002/adem.200700025
10.1103/PhysRevApplied.11.014025
10.1016/j.jallcom.2022.165812
10.1007/s00170-014-6594-9
10.1016/j.matpr.2017.09.023
10.1016/j.addma.2016.10.007
10.1007/978-3-030-63307-3_1
10.1016/j.jmatprotec.2003.11.051
10.1016/j.ijheatmasstransfer.2021.121602
10.1007/s00170-020-05828-3
10.1016/j.commatsci.2018.12.016
10.1016/j.cad.2015.06.007
10.1016/j.actamat.2013.10.017
10.1016/j.commatsci.2016.07.005
10.1063/1.1713333
10.1016/j.actamat.2020.09.023
10.1007/s00170-019-03308-x
10.1016/j.compositesb.2017.07.054
10.1016/j.addma.2016.06.001
10.1177/0954405414567522
10.1016/j.powtec.2020.11.082
10.1557/opl.2013.391
10.1016/j.procs.2013.05.383
10.1016/j.addma.2016.11.001
10.1007/s40964-020-00109-7
10.1016/j.powtec.2015.10.035
10.1007/s00158-016-1551-x
10.1016/j.addma.2018.03.022
10.1007/s11837-020-04383-2
10.1016/j.addma.2014.09.004
10.1016/j.camwa.2013.10.001
10.1063/1.1713887
10.3390/s21051712
10.3390/cryst11080856
10.3390/met10050683
10.1080/14686996.2019.1671140
10.1080/23311916.2019.1662631
10.1007/s00466-017-1535-8
10.1016/j.jmatprotec.2014.05.002
10.3390/app11052300
10.1007/s00170-020-06158-0
10.1016/j.jallcom.2016.11.191
10.1016/j.procir.2016.04.150
10.1108/01445150510626433
10.3390/su12198211
10.2320/matertrans.MT-M2021009
10.1007/s11661-004-0064-1
10.1016/j.actamat.2014.11.012
10.1016/j.actamat.2010.02.004
10.1016/j.powtec.2018.02.026
10.2464/jilm.72.291
10.1007/s12008-018-0487-3
10.1016/j.actamat.2019.11.053
10.3844/jcssp.2021.525.538
10.1016/j.matpr.2017.01.163
10.1016/j.msea.2009.02.019
10.1016/j.addma.2019.03.013
10.1557/adv.2020.125
10.1007/s40194-018-0655-x
10.1201/9781482266498
10.1109/ACCESS.2020.2970143
ContentType Journal Article
Copyright 2022 The Iron and Steel Institute of Japan.
Copyright_xml – notice: 2022 The Iron and Steel Institute of Japan.
DBID AAYXX
CITATION
DOI 10.2355/isijinternational.ISIJINT-2022-184
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1347-5460
EndPage 2196
ExternalDocumentID 10_2355_isijinternational_ISIJINT_2022_184
article_isijinternational_62_11_62_ISIJINT_2022_184_article_char_en
GroupedDBID 5GY
AAFWJ
ABEFU
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
EJD
GROUPED_DOAJ
HH5
JSF
JSH
KQ8
OK1
RJT
RZJ
SJN
~02
AAYXX
CITATION
ID FETCH-LOGICAL-c520t-c3b7ba97e54ec995c1e09df01e0b398f0039d0c09de3ac0acfdcb2cfc3bd1a033
ISSN 0915-1559
IngestDate Tue Jul 01 02:06:11 EDT 2025
Thu Apr 24 23:44:13 EDT 2025
Wed Sep 03 06:31:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c520t-c3b7ba97e54ec995c1e09df01e0b398f0039d0c09de3ac0acfdcb2cfc3bd1a033
ORCID 0000-0001-7061-7135
0000-0002-6844-6856
OpenAccessLink http://dx.doi.org/10.2355/isijinternational.ISIJINT-2022-184
PageCount 14
ParticipantIDs crossref_primary_10_2355_isijinternational_ISIJINT_2022_184
crossref_citationtrail_10_2355_isijinternational_ISIJINT_2022_184
jstage_primary_article_isijinternational_62_11_62_ISIJINT_2022_184_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022/11/15
PublicationDateYYYYMMDD 2022-11-15
PublicationDate_xml – month: 11
  year: 2022
  text: 2022/11/15
  day: 15
PublicationDecade 2020
PublicationTitle ISIJ International
PublicationTitleAlternate ISIJ Int.
PublicationYear 2022
Publisher The Iron and Steel Institute of Japan
Publisher_xml – name: The Iron and Steel Institute of Japan
References 59) ANSYS: Ansys Additive Suite, https://www.ansys.com/products/additive/ansys-additive-suite, (accessed 2021-08-29).
108) E. Coatanéa, H. P. N. Nagarajan, S. Panicker, R. Prod’hon, H. Mokhtarian, A. Chakraborti, H. Paris, I. F. Ituarte and K. R. Haapala: Int. J. Adv. Manuf. Technol., 115 (2021), 715. https://doi.org/10.1007/s00170-020-06158-0
98) S. Yamamoto, H. Azuma, S. Suzuki, S. Kajino, N. Sato, T. Okane, S. Nakano and T. Shimizu: Int. J. Adv. Manuf. Technol., 103 (2019), 4433. https://doi.org/10.1007/s00170-019-03384-z
73) H. Komen, M. Shigeta, M. Tanaka, M. Nakatani and Y. Abe: Weld. World, 62 (2018), 1323. https://doi.org/10.1007/s40194-018-0655-x
110) S. Lee, J. Peng, D. Shin and Y. S. Choi: Sci. Technol. Adv. Mater., 20 (2019), 972. https://doi.org/10.1080/14686996.2019.1671140
7) O. Masmoudi, M. Jaoua, A. Jaoua and S. Yacout: J. Comput. Sci., 17 (2021), 525. https://doi.org/10.3844/JCSSP.2021.525.538
106) K. Aoyagi, H. Wang, H. Sudo and A. Chiba: Addit. Manuf., 27 (2019), 353. https://doi.org/10.1016/j.addma.2019.03.013
91) J. Gockel and J. Beuth: 24th Annual Int. SFF Symp. - An Additive Manufacturing Conf. (SFF 2013), The University of Texas at Austin, Austin, (2013), 666.
52) X. Wang, P. Zhang, S. Ludwick, E. Belski and A. C. To: Addit. Manuf., 20 (2018), 189.
69) B. Cheng and K. Chou: Comput. Aided Des., 69 (2015), 102. https://doi.org/10.1016/j.cad.2015.06.007
77) M. Markl, R. Ammer, U. Rüde and C. Körner: Int. J. Adv. Manuf. Technol., 78 (2015), 239. https://doi.org/10.1007/s00170-014-6594-9
105) A. Rai, M. Markl and C. Körner: Comput. Mater. Sci., 124 (2016), 37. https://doi.org/10.1016/j.commatsci.2016.07.005
103) G. Boussinot, M. Apel, J. Zielinski, U. Hecht and J. H. Schleifenbaum: Phys. Rev. Appl., 11 (2019), 014025. https://doi.org/10.1103/PhysRevApplied.11.014025
17) Y. Zhao, Y. Koizumi, K. Aoyagi, K. Yamanaka and A. Chiba: Powder Technol., 381 (2021), 44. https://doi.org/10.1016/j.powtec.2020.11.082
43) S. Hällgren, L. Pejryd and J. Ekengren: Procedia CIRP, 50 (2016), 246. https://doi.org/10.1016/j.procir.2016.04.150
49) Y. T. Tang, C. Panwisawas, J. N. Ghoussoub, Y. Gong, J. W. G. Clark, A. A. N. Németh, D. G. McCartney and R. C. Reed: Acta Mater., 202 (2021), 417. https://doi.org/10.1016/j.actamat.2020.09.023
35) G. J. Gibbons and R. G. Hansell: Assem. Autom., 25 (2005), 300. https://doi.org/10.1108/01445150510626433
1) R. Rosen, J. Fischer and S. Boschert: IFAC-PapersOnLine, 52 (2019), 265. https://doi.org/10.1016/j.ifacol.2019.11.685
36) ISO 17269-2: 2015, Additive manufacturing — General principles — Part 2: Overview of process categories and feedstock.
13) T. DebRoy, T. Mukherjee, J. O. Milewski, J. W. Elmer, B. Ribic, J. J. Blecher and W. Zhang: Nat. Mater., 18 (2019), 1026. https://doi.org/10.1038/s41563-019-0408-2
62) A. Takezawa, X. Zhang and Y. Koizumi: Comput. Mater. Sci., 159 (2019), 202.
32) L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck and J. P. Kruth: Acta Mater., 58 (2010), 3303. https://doi.org/10.1016/j.actamat.2010.02.004
45) W. King, A. T. Anderson, R. M. Ferencz, N. E. Hodge, C. Kamath and S. A. Khairallah: Mater. Sci. Technol., 31 (2015), 957. https://doi.org/10.1179/1743284714Y.0000000728
74) A. Bauereiß, T. Scharowsky and C. Körner: J. Mater. Process. Technol., 214 (2014), 2522. https://doi.org/10.1016/j.jmatprotec.2014.05.002
38) L. Siva Rama Krishna, N. Mahesh and N. Sateesh: Mater. Today Proc., 4 (2017), 1414. https://doi.org/10.1016/j.matpr.2017.01.163
54) M. Okugawa, D. Izumikawa and Y. Koizumi: Proc. 25th Conf. on Computational Engineering and Science, JSCES, Tokyo, (2020), E-05-02.
24) M. Okugawa, Y. Isono, Y. Koizumi and T. Nakano: Mater. Trans., (in press).
81) R. Shi, S. A. Khairallah, T. T. Roehling, T. W. Heo, J. T. McKeown and M. J. Matthews: Acta Mater., 184 (2020), 284. https://doi.org/10.1016/j.actamat.2019.11.053
76) C. Körner, E. Attar and P. Heinl: J. Mater. Process. Technol., 211 (2011), 978. https://doi.org/10.1016/j.jmatprotec.2010.12.016
50) M. Okugawa, Y. Miyata, L. Wang, K. Nose, Y. Koizumi and T. Nakano: J. Smart Process., 10 (2021), 208.
75) A. Rai, H. Helmer and C. Körner: Addit. Manuf., 13 (2017), 124. https://doi.org/10.1016/j.addma.2016.10.007
6) A. Rasheed, O. San and T. Kvamsdal: IEEE Access, 8 (2020), 21980. https://doi.org/10.1109/ACCESS.2020.2970143
87) K. Hagihara, T. Nakano, M. Suzuki, T. Ishimoto, Suyalatu and S. H. Sun: J. Alloy. Compd., 696 (2017), 67. https://doi.org/10.1016/j.jallcom.2016.11.191
83) S. H. Sun, Y. Koizumi, S. Kurosu, Y. P. Li and A. Chiba: Acta Mater., 86 (2015), 305. https://doi.org/10.1016/j.actamat.2014.11.012
78) M. Markl, R. Ammer, U. Ljungblad, U. Rüde and C. Körner: Procedia Comput. Sci., 18 (2013), 2127. https://doi.org/10.1016/j.procs.2013.05.383
58) Quint: OPTISHAPE-TS, https://www.quint.co.jp/eng/pro/ots/index.htm, (accessed 2021-09-05).
66) Oqton: Geomagic Freeform, https://www.3dsystems.com/software/geomagic-freeform, (accessed 2022-07-16).
94) B. Schoinochoritis, D. Chantzis and K. Salonitis: Proc. Inst. Mech. Eng. B, 231 (2017), 96. https://doi.org/10.1177/0954405414567522
15) E. J. R. Parteli and T. Pöschel: Powder Technol., 288 (2016), 96. https://doi.org/10.1016/j.powtec.2015.10.035
84) S. H. Sun, Y. Koizumi, T. Saito, K. Yamanaka, Y. P. Li, Y. Cui and A. Chiba: Addit. Manuf., 23 (2018), 457. https://doi.org/10.1016/j.addma.2018.08.017
11) H. Zhu: Sensors, 21 (2021), 1712. https://doi.org/10.3390/s21051712
97) T. Furumoto, K. Oishi, S. Abe, K. Tsubouchi, M. Yamaguchi and A. T. Clare: J. Mater. Process. Technol., 299 (2022), 117384. https://doi.org/10.1016/j.jmatprotec.2021.117384
30) J. J. Beaman and C. R. Deckard: Selective Laser Sintering with Assisted Powder Handling, U.S. Patent US4938816A, (1990).
100) T. Campanella, C. Charbon and M. Rappaz: Metall. Mater. Trans. A, 35 (2004), 3201. https://doi.org/10.1007/s11661-004-0064-1
37) ISO/ASTM 52900: 2021, Additive manufacturing — General principles — Fundamentals and vocabulary.
4) F. Tao, H. Zhang, A. Liu and A. Y. C. Nee: IEEE Trans. Ind. Inform., 15 (2019), 2405. https://doi.org/10.1109/TII.2018.2873186
61) A. Takezawa, Y. Koizumi and M. Kobashi: Addit. Manuf., 18 (2017), 194.
88) M. Todai, T. Nakano, T. Liu, H. Y. Yasuda, K. Hagihara, K. Cho, M. Ueda and M. Takeyama: Addit. Manuf., 13 (2017), 61. https://doi.org/10.1016/j.addma.2016.11.001
33) J. P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts and B. Lauwers: J. Mater. Process. Technol., 149 (2004), 616. https://doi.org/10.1016/j.jmatprotec.2003.11.051
111) J. A. Dantzig and M. Rappaz: Solidification, 2nd ed., EPFL Press, Lausanne, (2016).
42) A. W. Gebisa and H. G. Lemu: IOP Conf. Ser. Mater. Sci. Eng., 276 (2017), 012026. https://doi.org/10.1088/1757-899X/276/1/012026
3) G. L. Knapp, T. Mukherjee, J. S. Zuback, H. L. Wei, T. A. Palmer, A. De and T. DebRoy: Acta Mater., 135 (2017), 390. https://doi.org/10.1016/j.actamat.2017.06.039
41) Y. Tang, G. Dong and Y. F. Zhao: Int. J. Adv. Manuf. Technol., 102 (2019), 4011. https://doi.org/10.1007/s00170-019-03308-x
57) Altair: OptiStruct, https://www.altair.com/optistruct/, (accessed 2022-06-08).
85) S. H. Sun, T. Ishimoto, K. Hagihara, Y. Tsutsumi, T. Hanawa and T. Nakano: Scr. Mater., 159 (2019), 89. https://doi.org/10.1016/j.scriptamat.2018.09.017
64) L. Cheng, J. Liu, X. Liang and A. C. To: Comput. Methods Appl. Mech. Eng., 332 (2018), 408.
27) W. Yan, J. Smith, W. Ge, F. Lin and W. K. Liu: Comput. Mech., 56 (2015), 265. https://doi.org/10.1007/s00466-015-1170-1
60) A. Takezawa, K. Yonekura, Y. Koizumi, X. Zhang and M. Kitamura: Addit. Manuf., 22 (2018), 634.
55) Y. Zhao, Y. Koizumi, K. Aoyagi, D. Wei, K. Yamanaka and A. Chiba: Addit. Manuf., 26 (2019), 202. https://doi.org/10.1016/j.addma.2018.12.002
5) M. Grieves: Digital Twin: Manufacturing Excellence through Virtual Factory Replication, White paper, 1 (2014), 1.
86) T. Ishimoto, K. Hagihara, K. Hisamoto, S. H. Sun and T. Nakano: Scr. Mater., 132 (2017), 34. https://doi.org/10.1016/j.scriptamat.2016.12.038
16) Y. Zhao, Y. Koizumi, K. Aoyagi, K. Yamanaka and A. Chiba: Proc. Visual-JW 2016, Joining and Welding Research Institute, Osaka University, Osaka, (2016), 48.
31) M. Agarwala, D. Bourell, J. Beaman, H. Marcus and J. Barlow: Rapid Prototyp. J., 1 (1995), 26. https://doi.org/10.1108/13552549510078113
22) M. Markl and C. Körner: Powder Technol., 330 (2018), 125. https://doi.org/10.1016/j.powtec.2018.02.026
70) F. Bellalouna: Procedia CIRP, 98 (2021), 342. https://doi.org/10.1016/j.procir.2021.01.114
9) Z. M. Çınar, A. A. Nuhu, Q. Zeeshan, O. Korhan, M. Asmael and B. Safaei: Sustainability, 12 (2020), 8211. https://doi.org/10.3390/su12198211
44) Z. Luo and Y. Zhao: Addit. Manuf., 21 (2018), 318. https://doi.org/10.1016/j.addma.2018.03.022
34) P. Heinl, A. Rottmair, C. Körner and R. F. Singer: Adv. Eng. Mater., 9 (2007), 360. https://doi.org/10.1002/adem.200700025
95) I. Zhirnov, C. Protasov, D. Kotoban, A. V. Gusarov and T. Tarasova: J. Therm. Spray Technol., 26 (2017), 648. https://doi.org/10.1007/s11666-017-0523-z
12) Koizumi Lab: Area of Materials Design and Process Engineering (Koizumi Laboratory) web page, http://www.mat.eng.osaka-u.ac.jp/msp3/, (accessed 2022-07-16).
80) S. A. Khairallah, A. T. Anderson, A. Rubenchik and W. E. King: Acta Mater., 108 (2016), 36. https://doi.org/10.1016/j.actamat.2016.02.014
67) M. E. Biancolini and P. P. Valentini: Int. J. Interact. Des. Manuf., 12 (2018), 1223. https://doi.org/10.1007/s12008-018-0487-3
46) X. Gong and K. Chou: JOM, 67 (2015), 1176. https://doi.org/10.1007/s11837-015-1352-5
53) Y. Koizumi, A. Okazaki, A. Chiba, T. Kato and A. Takezawa: Addit. Manuf., 12 (2016), 305. https://doi.org/10.1016/j.addma.2016.06.001
29) J. Kubo, Y. Koizumi, T. Ishimoto and T. Nakano: Mater. Trans., 62 (2021), 864. https://doi.org/10.2320/matertrans.MT-M2021009
23) Y. Zhao, Y. Koizumi, K. Aoyagi, K. Yamanaka and A. Chiba: Mater. Today Proc., 4 (2017), 11437. https://doi.org/10.1016/j.matpr.2017.09.023
104) Y. Shimono, M. Oba, S. Nomoto, Y. Koizumi and A. Chiba: Proc. 28th Annual Int. Solid Freeform Fab
88
89
110
111
112
113
90
91
92
93
94
95
96
97
10
98
11
99
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
100
101
102
103
104
105
106
80
107
81
108
82
109
83
84
85
86
87
References_xml – reference: 16) Y. Zhao, Y. Koizumi, K. Aoyagi, K. Yamanaka and A. Chiba: Proc. Visual-JW 2016, Joining and Welding Research Institute, Osaka University, Osaka, (2016), 48.
– reference: 76) C. Körner, E. Attar and P. Heinl: J. Mater. Process. Technol., 211 (2011), 978. https://doi.org/10.1016/j.jmatprotec.2010.12.016
– reference: 25) M. Okugawa, Y. Isono, Y. Koizumi and T. Nakano: J. Jpn. Inst. Light Met., 72 (2022), 291.
– reference: 36) ISO 17269-2: 2015, Additive manufacturing — General principles — Part 2: Overview of process categories and feedstock.
– reference: 73) H. Komen, M. Shigeta, M. Tanaka, M. Nakatani and Y. Abe: Weld. World, 62 (2018), 1323. https://doi.org/10.1007/s40194-018-0655-x
– reference: 50) M. Okugawa, Y. Miyata, L. Wang, K. Nose, Y. Koizumi and T. Nakano: J. Smart Process., 10 (2021), 208.
– reference: 66) Oqton: Geomagic Freeform, https://www.3dsystems.com/software/geomagic-freeform, (accessed 2022-07-16).
– reference: 69) B. Cheng and K. Chou: Comput. Aided Des., 69 (2015), 102. https://doi.org/10.1016/j.cad.2015.06.007
– reference: 14) W. S. Rosenthal, F. C. Grogan, Y. Li, E. I. Barker, J. F. Christ, T. R. Pope, A. K. Battu, T. Varga, C. A. Barrett, M. G. Warner and A. Peles: MRS Adv., 5 (2020), 1593. https://doi.org/10.1557/adv.2020.125
– reference: 52) X. Wang, P. Zhang, S. Ludwick, E. Belski and A. C. To: Addit. Manuf., 20 (2018), 189.
– reference: 72) P. W. Cleary and M. L. Sawley: Appl. Math. Model., 26 (2002), 89. https://doi.org/10.1016/S0307-904X(01)00050-6
– reference: 90) S. Bontha, N. W. Klingbeil, P. A. Kobryn and H. L. Fraser: Mater. Sci. Eng. A, 513–514 (2009), 311. https://doi.org/10.1016/j.msea.2009.02.019
– reference: 43) S. Hällgren, L. Pejryd and J. Ekengren: Procedia CIRP, 50 (2016), 246. https://doi.org/10.1016/j.procir.2016.04.150
– reference: 59) ANSYS: Ansys Additive Suite, https://www.ansys.com/products/additive/ansys-additive-suite, (accessed 2021-08-29).
– reference: 74) A. Bauereiß, T. Scharowsky and C. Körner: J. Mater. Process. Technol., 214 (2014), 2522. https://doi.org/10.1016/j.jmatprotec.2014.05.002
– reference: 67) M. E. Biancolini and P. P. Valentini: Int. J. Interact. Des. Manuf., 12 (2018), 1223. https://doi.org/10.1007/s12008-018-0487-3
– reference: 53) Y. Koizumi, A. Okazaki, A. Chiba, T. Kato and A. Takezawa: Addit. Manuf., 12 (2016), 305. https://doi.org/10.1016/j.addma.2016.06.001
– reference: 99) Y. Miyata, M. Okugawa, Y. Koizumi and T. Nakano: Crystals, 11 (2021), 856. https://doi.org/10.3390/cryst11080856
– reference: 111) J. A. Dantzig and M. Rappaz: Solidification, 2nd ed., EPFL Press, Lausanne, (2016).
– reference: 37) ISO/ASTM 52900: 2021, Additive manufacturing — General principles — Fundamentals and vocabulary.
– reference: 95) I. Zhirnov, C. Protasov, D. Kotoban, A. V. Gusarov and T. Tarasova: J. Therm. Spray Technol., 26 (2017), 648. https://doi.org/10.1007/s11666-017-0523-z
– reference: 106) K. Aoyagi, H. Wang, H. Sudo and A. Chiba: Addit. Manuf., 27 (2019), 353. https://doi.org/10.1016/j.addma.2019.03.013
– reference: 40) A. A. Al-Tamimi, H. Almeida and P. Bartolo: Prog. Addit. Manuf., 5 (2020), 95. https://doi.org/10.1007/s40964-020-00109-7
– reference: 2) M. Elsersy, A. Sherif, A. Darwsih and A. E. Hassanien: Digital Transformation and Emerging Technologies for Fighting COVID-19 Pandemic, ed. by A. E. Hassanien and A. Darwish, Springer International Publishing, Cham, (2021), 3. https://doi.org/10.1007/978-3-030-63307-3_1
– reference: 9) Z. M. Çınar, A. A. Nuhu, Q. Zeeshan, O. Korhan, M. Asmael and B. Safaei: Sustainability, 12 (2020), 8211. https://doi.org/10.3390/su12198211
– reference: 93) X. Ding, Y. Koizumi, D. Wei and A. Chiba: Addit. Manuf., 26 (2019), 215. https://doi.org/10.1016/j.addma.2018.12.018
– reference: 45) W. King, A. T. Anderson, R. M. Ferencz, N. E. Hodge, C. Kamath and S. A. Khairallah: Mater. Sci. Technol., 31 (2015), 957. https://doi.org/10.1179/1743284714Y.0000000728
– reference: 97) T. Furumoto, K. Oishi, S. Abe, K. Tsubouchi, M. Yamaguchi and A. T. Clare: J. Mater. Process. Technol., 299 (2022), 117384. https://doi.org/10.1016/j.jmatprotec.2021.117384
– reference: 22) M. Markl and C. Körner: Powder Technol., 330 (2018), 125. https://doi.org/10.1016/j.powtec.2018.02.026
– reference: 47) G. Boussinot, M. Apel, J. Zielinski, U. Hecht and J. H. Schleifenbaum: Phys. Rev. Appl., 11 (2019), 014025. https://doi.org/10.1103/PhysRevApplied.11.014025
– reference: 15) E. J. R. Parteli and T. Pöschel: Powder Technol., 288 (2016), 96. https://doi.org/10.1016/j.powtec.2015.10.035
– reference: 29) J. Kubo, Y. Koizumi, T. Ishimoto and T. Nakano: Mater. Trans., 62 (2021), 864. https://doi.org/10.2320/matertrans.MT-M2021009
– reference: 58) Quint: OPTISHAPE-TS, https://www.quint.co.jp/eng/pro/ots/index.htm, (accessed 2021-09-05).
– reference: 103) G. Boussinot, M. Apel, J. Zielinski, U. Hecht and J. H. Schleifenbaum: Phys. Rev. Appl., 11 (2019), 014025. https://doi.org/10.1103/PhysRevApplied.11.014025
– reference: 56) M. Okugawa, D. Izumikawa and Y. Koizumi: Mater. Trans., 61 (2020), 2072. https://doi.org/10.2320/matertrans.MT-MA2020005
– reference: 18) M. Markl and C. Körner: Annu. Rev. Mater. Res., 46 (2016), 93. https://doi.org/10.1146/annurev-matsci-070115-032158
– reference: 31) M. Agarwala, D. Bourell, J. Beaman, H. Marcus and J. Barlow: Rapid Prototyp. J., 1 (1995), 26. https://doi.org/10.1108/13552549510078113
– reference: 10) S. Arena, I. Roda and F. Chiacchio: Appl. Sci., 11 (2021), 2300. https://doi.org/10.3390/app11052300
– reference: 38) L. Siva Rama Krishna, N. Mahesh and N. Sateesh: Mater. Today Proc., 4 (2017), 1414. https://doi.org/10.1016/j.matpr.2017.01.163
– reference: 109) S. Mondal, D. Gwynn, A. Ray and A. Basak: Metals, 10 (2020), 683. https://doi.org/10.3390/met10050683
– reference: 24) M. Okugawa, Y. Isono, Y. Koizumi and T. Nakano: Mater. Trans., (in press).
– reference: 19) A. Chouhan, A. Aggarwal and A. Kumar: Int. J. Heat Mass Transf., 178 (2021), 121602. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121602
– reference: 55) Y. Zhao, Y. Koizumi, K. Aoyagi, D. Wei, K. Yamanaka and A. Chiba: Addit. Manuf., 26 (2019), 202. https://doi.org/10.1016/j.addma.2018.12.002
– reference: 21) M. Y. Shaheen, A. R. Thornton, S. Luding and T. Weinhart: Powder Technol., 383 (2021), 564. https://doi.org/10.1016/j.powtec.2021.01.058
– reference: 39) L. E. J. Thomas-Seale, J. C. Kirkman-Brown, S. Kanagalingam, M. M. Attallah, D. M. Espino and D. E. T. Shepherd: Cogent Eng., 6 (2019), 1662631. https://doi.org/10.1080/23311916.2019.1662631
– reference: 86) T. Ishimoto, K. Hagihara, K. Hisamoto, S. H. Sun and T. Nakano: Scr. Mater., 132 (2017), 34. https://doi.org/10.1016/j.scriptamat.2016.12.038
– reference: 77) M. Markl, R. Ammer, U. Rüde and C. Körner: Int. J. Adv. Manuf. Technol., 78 (2015), 239. https://doi.org/10.1007/s00170-014-6594-9
– reference: 49) Y. T. Tang, C. Panwisawas, J. N. Ghoussoub, Y. Gong, J. W. G. Clark, A. A. N. Németh, D. G. McCartney and R. C. Reed: Acta Mater., 202 (2021), 417. https://doi.org/10.1016/j.actamat.2020.09.023
– reference: 110) S. Lee, J. Peng, D. Shin and Y. S. Choi: Sci. Technol. Adv. Mater., 20 (2019), 972. https://doi.org/10.1080/14686996.2019.1671140
– reference: 7) O. Masmoudi, M. Jaoua, A. Jaoua and S. Yacout: J. Comput. Sci., 17 (2021), 525. https://doi.org/10.3844/JCSSP.2021.525.538
– reference: 6) A. Rasheed, O. San and T. Kvamsdal: IEEE Access, 8 (2020), 21980. https://doi.org/10.1109/ACCESS.2020.2970143
– reference: 100) T. Campanella, C. Charbon and M. Rappaz: Metall. Mater. Trans. A, 35 (2004), 3201. https://doi.org/10.1007/s11661-004-0064-1
– reference: 92) J. Gockel, J. Beuth and K. Taminger: Addit. Manuf., 1–4 (2014), 119. https://doi.org/10.1016/j.addma.2014.09.004
– reference: 85) S. H. Sun, T. Ishimoto, K. Hagihara, Y. Tsutsumi, T. Hanawa and T. Nakano: Scr. Mater., 159 (2019), 89. https://doi.org/10.1016/j.scriptamat.2018.09.017
– reference: 63) A. Takezawa and M. Kobashi: Compos. B: Eng., 131 (2017), 21.
– reference: 64) L. Cheng, J. Liu, X. Liang and A. C. To: Comput. Methods Appl. Mech. Eng., 332 (2018), 408.
– reference: 81) R. Shi, S. A. Khairallah, T. T. Roehling, T. W. Heo, J. T. McKeown and M. J. Matthews: Acta Mater., 184 (2020), 284. https://doi.org/10.1016/j.actamat.2019.11.053
– reference: 112) W. W. Mullins and R. F. Sekerka: J. Appl. Phys., 35 (1964), 444. https://doi.org/10.1063/1.1713333
– reference: 65) A. Takezawa, M. Kobashi, Y. Koizumi and M. Kitamura: Int. J. Heat Mass Transf., 105 (2017), 564. https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.006
– reference: 79) R. Ammer, M. Markl, U. Ljungblad, C. Körner and U. Rüde: Comput. Math. Appl., 67 (2014), 318.
– reference: 33) J. P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts and B. Lauwers: J. Mater. Process. Technol., 149 (2004), 616. https://doi.org/10.1016/j.jmatprotec.2003.11.051
– reference: 44) Z. Luo and Y. Zhao: Addit. Manuf., 21 (2018), 318. https://doi.org/10.1016/j.addma.2018.03.022
– reference: 26) S. A. Khairallah, A. T. Anderson, A. Rubenchik and W. E. King: Acta Mater., 108 (2016), 36. https://doi.org/10.1016/j.actamat.2016.02.014
– reference: 20) M. Megahed, H. Mindt, N. N’Dri, H. Duan and O. Desmaison: Integr. Mater. Manuf. Innov., 5 (2016), 61. https://doi.org/10.1186/s40192-016-0047-2
– reference: 107) S. Srinivasan, B. Swick and M. A. Groeber: JOM, 72 (2020), 4393. https://doi.org/10.1007/s11837-020-04383-2
– reference: 27) W. Yan, J. Smith, W. Ge, F. Lin and W. K. Liu: Comput. Mech., 56 (2015), 265. https://doi.org/10.1007/s00466-015-1170-1
– reference: 23) Y. Zhao, Y. Koizumi, K. Aoyagi, K. Yamanaka and A. Chiba: Mater. Today Proc., 4 (2017), 11437. https://doi.org/10.1016/j.matpr.2017.09.023
– reference: 46) X. Gong and K. Chou: JOM, 67 (2015), 1176. https://doi.org/10.1007/s11837-015-1352-5
– reference: 75) A. Rai, H. Helmer and C. Körner: Addit. Manuf., 13 (2017), 124. https://doi.org/10.1016/j.addma.2016.10.007
– reference: 68) A. T. Gaynor and J. K. Guest: Struct. Multidiscip. Optim., 54 (2016), 1157. https://doi.org/10.1007/s00158-016-1551-x
– reference: 61) A. Takezawa, Y. Koizumi and M. Kobashi: Addit. Manuf., 18 (2017), 194.
– reference: 4) F. Tao, H. Zhang, A. Liu and A. Y. C. Nee: IEEE Trans. Ind. Inform., 15 (2019), 2405. https://doi.org/10.1109/TII.2018.2873186
– reference: 71) C. O’Sullivan: Particulate Discrete Element Modelling, A Geomechanics Perspective, CRC Press, Boca Raton, FL, (2011).
– reference: 30) J. J. Beaman and C. R. Deckard: Selective Laser Sintering with Assisted Powder Handling, U.S. Patent US4938816A, (1990).
– reference: 32) L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck and J. P. Kruth: Acta Mater., 58 (2010), 3303. https://doi.org/10.1016/j.actamat.2010.02.004
– reference: 48) T. Yamazaki, Y. Koizumi, A. Chiba, K. Hagihara, T. Nakano, K. Yuge, K. Kishida and H. Inui: MRS Online Proc. Libr., 1516 (2013), 145. https://doi.org/10.1557/opl.2013.391
– reference: 104) Y. Shimono, M. Oba, S. Nomoto, Y. Koizumi and A. Chiba: Proc. 28th Annual Int. Solid Freeform Fabrication Symp. - An Additive Manufacturing Conf. (SFF 2017), The University of Texas at Austin, Austin, (2017), 1048.
– reference: 98) S. Yamamoto, H. Azuma, S. Suzuki, S. Kajino, N. Sato, T. Okane, S. Nakano and T. Shimizu: Int. J. Adv. Manuf. Technol., 103 (2019), 4433. https://doi.org/10.1007/s00170-019-03384-z
– reference: 89) J. D. Hunt: Mater. Sci. Eng., 65 (1984), 75. https://doi.org/10.1016/0025-5416(84)90201-5
– reference: 84) S. H. Sun, Y. Koizumi, T. Saito, K. Yamanaka, Y. P. Li, Y. Cui and A. Chiba: Addit. Manuf., 23 (2018), 457. https://doi.org/10.1016/j.addma.2018.08.017
– reference: 96) Y. Wakai, T. Ogura, S. Nakano, N. Sato, S. Kajino and S. Suzuki: Int. J. Adv. Manuf. Technol., 110 (2020), 1047. https://doi.org/10.1007/s00170-020-05828-3
– reference: 13) T. DebRoy, T. Mukherjee, J. O. Milewski, J. W. Elmer, B. Ribic, J. J. Blecher and W. Zhang: Nat. Mater., 18 (2019), 1026. https://doi.org/10.1038/s41563-019-0408-2
– reference: 78) M. Markl, R. Ammer, U. Ljungblad, U. Rüde and C. Körner: Procedia Comput. Sci., 18 (2013), 2127. https://doi.org/10.1016/j.procs.2013.05.383
– reference: 82) S. H. Sun, Y. Koizumi, S. Kurosu, Y. P. Li, H. Matsumoto and A. Chiba: Acta Mater., 64 (2014), 154. https://doi.org/10.1016/j.actamat.2013.10.017
– reference: 88) M. Todai, T. Nakano, T. Liu, H. Y. Yasuda, K. Hagihara, K. Cho, M. Ueda and M. Takeyama: Addit. Manuf., 13 (2017), 61. https://doi.org/10.1016/j.addma.2016.11.001
– reference: 108) E. Coatanéa, H. P. N. Nagarajan, S. Panicker, R. Prod’hon, H. Mokhtarian, A. Chakraborti, H. Paris, I. F. Ituarte and K. R. Haapala: Int. J. Adv. Manuf. Technol., 115 (2021), 715. https://doi.org/10.1007/s00170-020-06158-0
– reference: 60) A. Takezawa, K. Yonekura, Y. Koizumi, X. Zhang and M. Kitamura: Addit. Manuf., 22 (2018), 634.
– reference: 91) J. Gockel and J. Beuth: 24th Annual Int. SFF Symp. - An Additive Manufacturing Conf. (SFF 2013), The University of Texas at Austin, Austin, (2013), 666.
– reference: 94) B. Schoinochoritis, D. Chantzis and K. Salonitis: Proc. Inst. Mech. Eng. B, 231 (2017), 96. https://doi.org/10.1177/0954405414567522
– reference: 113) R. F. Sekerka: J. Appl. Phys., 36 (1965), 264.
– reference: 57) Altair: OptiStruct, https://www.altair.com/optistruct/, (accessed 2022-06-08).
– reference: 34) P. Heinl, A. Rottmair, C. Körner and R. F. Singer: Adv. Eng. Mater., 9 (2007), 360. https://doi.org/10.1002/adem.200700025
– reference: 41) Y. Tang, G. Dong and Y. F. Zhao: Int. J. Adv. Manuf. Technol., 102 (2019), 4011. https://doi.org/10.1007/s00170-019-03308-x
– reference: 42) A. W. Gebisa and H. G. Lemu: IOP Conf. Ser. Mater. Sci. Eng., 276 (2017), 012026. https://doi.org/10.1088/1757-899X/276/1/012026
– reference: 28) Y. Lian, S. Lin, W. Yan, W. K. Liu and G. J. Wagner: Comput. Mech., 61 (2018), 543. https://doi.org/10.1007/s00466-017-1535-8
– reference: 1) R. Rosen, J. Fischer and S. Boschert: IFAC-PapersOnLine, 52 (2019), 265. https://doi.org/10.1016/j.ifacol.2019.11.685
– reference: 12) Koizumi Lab: Area of Materials Design and Process Engineering (Koizumi Laboratory) web page, http://www.mat.eng.osaka-u.ac.jp/msp3/, (accessed 2022-07-16).
– reference: 80) S. A. Khairallah, A. T. Anderson, A. Rubenchik and W. E. King: Acta Mater., 108 (2016), 36. https://doi.org/10.1016/j.actamat.2016.02.014
– reference: 17) Y. Zhao, Y. Koizumi, K. Aoyagi, K. Yamanaka and A. Chiba: Powder Technol., 381 (2021), 44. https://doi.org/10.1016/j.powtec.2020.11.082
– reference: 51) M. Okugawa, Y. Ohigashi, Y. Furishiro, Y. Koizumi and T. Nakano: J. Alloy. Compd., 919 (2022), 165812. https://doi.org/10.1016/j.jallcom.2022.165812
– reference: 3) G. L. Knapp, T. Mukherjee, J. S. Zuback, H. L. Wei, T. A. Palmer, A. De and T. DebRoy: Acta Mater., 135 (2017), 390. https://doi.org/10.1016/j.actamat.2017.06.039
– reference: 8) J. F. Olesen and H. R. Shaker: Sensors, 20 (2020), 2425. https://doi.org/10.3390/s20082425
– reference: 35) G. J. Gibbons and R. G. Hansell: Assem. Autom., 25 (2005), 300. https://doi.org/10.1108/01445150510626433
– reference: 70) F. Bellalouna: Procedia CIRP, 98 (2021), 342. https://doi.org/10.1016/j.procir.2021.01.114
– reference: 83) S. H. Sun, Y. Koizumi, S. Kurosu, Y. P. Li and A. Chiba: Acta Mater., 86 (2015), 305. https://doi.org/10.1016/j.actamat.2014.11.012
– reference: 101) A. Hellawell, S. Liu and S. Z. Lu: JOM, 49 (1997), 18. https://doi.org/10.1007/BF02914650
– reference: 102) M. Markl: Ph.D. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, (2015), https://opus4.kobv.de/opus4-fau/frontdoor/index/index/docId/6623, (accessed 2022-07-16).
– reference: 105) A. Rai, M. Markl and C. Körner: Comput. Mater. Sci., 124 (2016), 37. https://doi.org/10.1016/j.commatsci.2016.07.005
– reference: 62) A. Takezawa, X. Zhang and Y. Koizumi: Comput. Mater. Sci., 159 (2019), 202.
– reference: 87) K. Hagihara, T. Nakano, M. Suzuki, T. Ishimoto, Suyalatu and S. H. Sun: J. Alloy. Compd., 696 (2017), 67. https://doi.org/10.1016/j.jallcom.2016.11.191
– reference: 54) M. Okugawa, D. Izumikawa and Y. Koizumi: Proc. 25th Conf. on Computational Engineering and Science, JSCES, Tokyo, (2020), E-05-02.
– reference: 11) H. Zhu: Sensors, 21 (2021), 1712. https://doi.org/10.3390/s21051712
– reference: 5) M. Grieves: Digital Twin: Manufacturing Excellence through Virtual Factory Replication, White paper, 1 (2014), 1.
– ident: 102
– ident: 13
  doi: 10.1038/s41563-019-0408-2
– ident: 104
  doi: 10.1299/jsmecmd.2017.30.197
– ident: 61
  doi: 10.1016/j.addma.2017.10.004
– ident: 20
  doi: 10.1186/s40192-016-0047-2
– ident: 8
  doi: 10.3390/s20082425
– ident: 95
  doi: 10.1007/s11666-017-0523-z
– ident: 55
  doi: 10.1016/j.addma.2018.12.002
– ident: 65
  doi: 10.1016/j.ijheatmasstransfer.2016.10.006
– ident: 85
  doi: 10.1016/j.scriptamat.2018.09.017
– ident: 84
  doi: 10.1016/j.addma.2018.08.017
– ident: 16
– ident: 45
  doi: 10.1179/1743284714Y.0000000728
– ident: 50
  doi: 10.7791/jspmee.10.208
– ident: 64
  doi: 10.1016/j.cma.2017.12.024
– ident: 93
  doi: 10.1016/j.addma.2018.12.018
– ident: 52
  doi: 10.1016/j.addma.2017.10.001
– ident: 97
  doi: 10.1016/j.jmatprotec.2021.117384
– ident: 3
  doi: 10.1016/j.actamat.2017.06.039
– ident: 89
  doi: 10.1016/0025-5416(84)90201-5
– ident: 27
  doi: 10.1007/s00466-015-1170-1
– ident: 42
  doi: 10.1088/1757-899X/276/1/012026
– ident: 59
– ident: 98
  doi: 10.1007/s00170-019-03384-z
– ident: 54
– ident: 76
  doi: 10.1016/j.jmatprotec.2010.12.016
– ident: 18
  doi: 10.1146/annurev-matsci-070115-032158
– ident: 4
  doi: 10.1109/TII.2018.2873186
– ident: 21
  doi: 10.1016/j.powtec.2021.01.058
– ident: 72
  doi: 10.1016/S0307-904X(01)00050-6
– ident: 26
  doi: 10.1016/j.actamat.2016.02.014
– ident: 46
  doi: 10.1007/s11837-015-1352-5
– ident: 1
  doi: 10.1016/j.ifacol.2019.11.685
– ident: 70
  doi: 10.1016/j.procir.2021.01.114
– ident: 66
– ident: 91
– ident: 101
  doi: 10.1007/BF02914650
– ident: 60
  doi: 10.1016/j.addma.2018.06.008
– ident: 37
– ident: 80
  doi: 10.1016/j.actamat.2016.02.014
– ident: 56
  doi: 10.2320/matertrans.MT-MA2020005
– ident: 31
  doi: 10.1108/13552549510078113
– ident: 86
  doi: 10.1016/j.scriptamat.2016.12.038
– ident: 57
– ident: 24
– ident: 34
  doi: 10.1002/adem.200700025
– ident: 103
  doi: 10.1103/PhysRevApplied.11.014025
– ident: 51
  doi: 10.1016/j.jallcom.2022.165812
– ident: 77
  doi: 10.1007/s00170-014-6594-9
– ident: 23
  doi: 10.1016/j.matpr.2017.09.023
– ident: 75
  doi: 10.1016/j.addma.2016.10.007
– ident: 111
– ident: 2
  doi: 10.1007/978-3-030-63307-3_1
– ident: 33
  doi: 10.1016/j.jmatprotec.2003.11.051
– ident: 19
  doi: 10.1016/j.ijheatmasstransfer.2021.121602
– ident: 96
  doi: 10.1007/s00170-020-05828-3
– ident: 62
  doi: 10.1016/j.commatsci.2018.12.016
– ident: 69
  doi: 10.1016/j.cad.2015.06.007
– ident: 82
  doi: 10.1016/j.actamat.2013.10.017
– ident: 105
  doi: 10.1016/j.commatsci.2016.07.005
– ident: 112
  doi: 10.1063/1.1713333
– ident: 12
– ident: 49
  doi: 10.1016/j.actamat.2020.09.023
– ident: 41
  doi: 10.1007/s00170-019-03308-x
– ident: 63
  doi: 10.1016/j.compositesb.2017.07.054
– ident: 53
  doi: 10.1016/j.addma.2016.06.001
– ident: 94
  doi: 10.1177/0954405414567522
– ident: 17
  doi: 10.1016/j.powtec.2020.11.082
– ident: 48
  doi: 10.1557/opl.2013.391
– ident: 78
  doi: 10.1016/j.procs.2013.05.383
– ident: 88
  doi: 10.1016/j.addma.2016.11.001
– ident: 40
  doi: 10.1007/s40964-020-00109-7
– ident: 15
  doi: 10.1016/j.powtec.2015.10.035
– ident: 47
  doi: 10.1103/PhysRevApplied.11.014025
– ident: 68
  doi: 10.1007/s00158-016-1551-x
– ident: 44
  doi: 10.1016/j.addma.2018.03.022
– ident: 107
  doi: 10.1007/s11837-020-04383-2
– ident: 92
  doi: 10.1016/j.addma.2014.09.004
– ident: 5
– ident: 79
  doi: 10.1016/j.camwa.2013.10.001
– ident: 113
  doi: 10.1063/1.1713887
– ident: 11
  doi: 10.3390/s21051712
– ident: 99
  doi: 10.3390/cryst11080856
– ident: 109
  doi: 10.3390/met10050683
– ident: 110
  doi: 10.1080/14686996.2019.1671140
– ident: 39
  doi: 10.1080/23311916.2019.1662631
– ident: 28
  doi: 10.1007/s00466-017-1535-8
– ident: 30
– ident: 74
  doi: 10.1016/j.jmatprotec.2014.05.002
– ident: 10
  doi: 10.3390/app11052300
– ident: 108
  doi: 10.1007/s00170-020-06158-0
– ident: 58
– ident: 87
  doi: 10.1016/j.jallcom.2016.11.191
– ident: 43
  doi: 10.1016/j.procir.2016.04.150
– ident: 35
  doi: 10.1108/01445150510626433
– ident: 9
  doi: 10.3390/su12198211
– ident: 29
  doi: 10.2320/matertrans.MT-M2021009
– ident: 100
  doi: 10.1007/s11661-004-0064-1
– ident: 83
  doi: 10.1016/j.actamat.2014.11.012
– ident: 32
  doi: 10.1016/j.actamat.2010.02.004
– ident: 22
  doi: 10.1016/j.powtec.2018.02.026
– ident: 25
  doi: 10.2464/jilm.72.291
– ident: 67
  doi: 10.1007/s12008-018-0487-3
– ident: 81
  doi: 10.1016/j.actamat.2019.11.053
– ident: 7
  doi: 10.3844/jcssp.2021.525.538
– ident: 38
  doi: 10.1016/j.matpr.2017.01.163
– ident: 36
– ident: 90
  doi: 10.1016/j.msea.2009.02.019
– ident: 106
  doi: 10.1016/j.addma.2019.03.013
– ident: 14
  doi: 10.1557/adv.2020.125
– ident: 73
  doi: 10.1007/s40194-018-0655-x
– ident: 71
  doi: 10.1201/9781482266498
– ident: 6
  doi: 10.1109/ACCESS.2020.2970143
SSID ssib002484313
ssj0027274
Score 2.468113
SecondaryResourceType review_article
Snippet A digital twin (DT) is a cyberspace replica of a system, such as manufacturing equipment. A DT consists of statistical models and computer simulations of...
SourceID crossref
jstage
SourceType Enrichment Source
Index Database
Publisher
StartPage 2183
SubjectTerms 3D printing
additive manufacturing
digital twin
metal powder bed fusion
Title Digital Twin Science of Metal Powder Bed Fusion Additive Manufacturing: A Selective Review of Simulations for Integrated Computational Materials Engineering and Science
URI https://www.jstage.jst.go.jp/article/isijinternational/62/11/62_ISIJINT-2022-184/_article/-char/en
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX ISIJ International, 2022/11/15, Vol.62(11), pp.2183-2196
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfKQAgeEF8T42PyA09UGUmcOAs8VcC0DnWCrZPGU2Q7zsjGWrQlqthfxN_DX8RdnDjJqMQGqpRGrnw65345n6_3QcjLTHApecwdpfzICTSLHOlmzJGwN7tSyjT0MHd4ssu3D4Kdw_BwMPjViVoqC7mhLpbmlfyLVGEM5IpZsteQrCUKA3AP8oUrSBiuV5Lx-_wIe34Mp4u8fUsxpkXj6Kf5Iq0qIKbDrRKdYsNRmppQoYmYlZjSUOUomuT0_aohDv6412az5KdlEyuH4YjjprZEOjTdIBpP4kQUZr3d-oYmKtRw1bWBx_vjnapMhfVEWq0_zy_K0yq-4EuZq6_52dw6gU_KI7EQJr3oXPwoT_KuwwLOuhg0F3Y9j17o4L-hZgsyepcFkRMGprVAo5i53wWg11OzpvtNvWWD1uXLtgMfjCmQYX6eH_dWtYELHe9OHcOe6VHXr8V9aY-0kYtwZkKqyR80k5pmgjQToHmD3PTh6IJdNT5-7h7xNsFmY61TwDeVwpuHcpu8qjl__Xe-e8bUrWM4TzSxiJV5NL1P7tXnGjoyIH1ABnr2kNztoOER-VnDlSJcaQ0MOs9oBVdq4EoBrtTAlTZwpT24vqEjasFKDViRSgesFMBKW7DSHlipBSvtsEcBrA1Pj8nB1ofpu22nbhTiqNB3C0cxGUkRRzoMtIrjUHnajdPMhS_J4s0ME9BTV8GYZkK5QmWpkr7KYF7qCZexVbIym8_0E0K1ysIs4BI_gQeGm2CCgdbijMVcabVGRs0TT1RdRR-buXxLro6MNfLW0vhuaspca_aeEbSdW-ufJXM5zPDwepmInYO5naBKn_4XS8_InfZFf05WirNSvwBbvZDrlY9rvXoFfgPIffmd
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+Twin+Science+of+Metal+Powder+Bed+Fusion+Additive+Manufacturing%3A+A+Selective+Review+of+Simulations+for+Integrated+Computational+Materials+Engineering+and+Science&rft.jtitle=ISIJ+international&rft.au=Koizumi%2C+Yuichiro&rft.au=Okugawa%2C+Masayuki&rft.date=2022-11-15&rft.issn=0915-1559&rft.eissn=1347-5460&rft.volume=62&rft.issue=11&rft.spage=2183&rft.epage=2196&rft_id=info:doi/10.2355%2Fisijinternational.ISIJINT-2022-184&rft.externalDBID=n%2Fa&rft.externalDocID=10_2355_isijinternational_ISIJINT_2022_184
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0915-1559&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0915-1559&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0915-1559&client=summon