Digital Twin Science of Metal Powder Bed Fusion Additive Manufacturing: A Selective Review of Simulations for Integrated Computational Materials Engineering and Science
A digital twin (DT) is a cyberspace replica of a system, such as manufacturing equipment. A DT consists of statistical models and computer simulations of physical phenomena occurring in the system. The modeling is adjusted to the system based on signals from sensors attached to the system and their...
Saved in:
Published in | ISIJ International Vol. 62; no. 11; pp. 2183 - 2196 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
The Iron and Steel Institute of Japan
15.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A digital twin (DT) is a cyberspace replica of a system, such as manufacturing equipment. A DT consists of statistical models and computer simulations of physical phenomena occurring in the system. The modeling is adjusted to the system based on signals from sensors attached to the system and their temporal changes. In general, a DT is utilized to (i) predict phenomena occurring in the system, (ii) optimize control parameters, and (iii) estimate part replacement schedules. We propose to use a DT to elucidate the unique solidification phenomena occurring in a type of metal 3D printing (i.e., additive manufacturing: AM) process. Thus, we propose that applications of DT that obtain scientific data be referred to as “digital twin science (DTS).” This paper first reviews the fundamental of the AM process, particularly powder bed fusion (PBF) and relevant computer simulations, and then studies on computer simulations conducted to elucidate the relationship between the extreme conditions characteristic of the PBF process and solidification microstructures. The findings achieved by the DTS approach indicate that the combination of experimental and simulation data aid the future development of techniques to obtain required microstructures exhibiting desired properties. |
---|---|
AbstractList | A digital twin (DT) is a cyberspace replica of a system, such as manufacturing equipment. A DT consists of statistical models and computer simulations of physical phenomena occurring in the system. The modeling is adjusted to the system based on signals from sensors attached to the system and their temporal changes. In general, a DT is utilized to (i) predict phenomena occurring in the system, (ii) optimize control parameters, and (iii) estimate part replacement schedules. We propose to use a DT to elucidate the unique solidification phenomena occurring in a type of metal 3D printing (i.e., additive manufacturing: AM) process. Thus, we propose that applications of DT that obtain scientific data be referred to as “digital twin science (DTS).” This paper first reviews the fundamental of the AM process, particularly powder bed fusion (PBF) and relevant computer simulations, and then studies on computer simulations conducted to elucidate the relationship between the extreme conditions characteristic of the PBF process and solidification microstructures. The findings achieved by the DTS approach indicate that the combination of experimental and simulation data aid the future development of techniques to obtain required microstructures exhibiting desired properties. |
ArticleNumber | ISIJINT-2022-184 |
Author | Okugawa, Masayuki Koizumi, Yuichiro |
Author_xml | – sequence: 1 orcidid: 0000-0001-7061-7135 fullname: Koizumi, Yuichiro organization: Graduate School of Engineering, Osaka University – sequence: 1 orcidid: 0000-0002-6844-6856 fullname: Okugawa, Masayuki organization: Anisotropic Design & Additive Manufacturing Research Center |
BookMark | eNqVkM1O3DAUha2KSh0o7-B1pYAdx8yku2H4SwVt1Zkuuooc-zpclHGQ7TDijXjMOsyUBbDpxle6V-fzOWef7LneASFfODvKhZTHGPAOXQTvVMTeqe6oWlbfqu-rLGd5nvFZ8YFMuCimmSxO2B6ZsJLLjEtZfiKHIWDDWF7MCsHFhDydYYtRdXS1QUeXGsFpoL2lNzBuf_YbA56egqEXQ0if0bkxGPEB6I1yg1U6Dh5d-5XO6RI60M-nX_CAsBkpS1wP3bPLQG3vaZVst17FxFv06_sh7hIkWsqDqgv03LXoAEYqVc788_SZfLTpDIe7eUB-X5yvFlfZ9Y_LajG_zrTMWcy0aKaNKqcgC9BlKTUHVhrL0mhEObOMidIwnXYglGZKW6ObXNukM1wxIQ7I6ZarfR-CB1vfe1wr_1hzVo_112_qr3f112P9dao_Qa5eQTRuo0avsPs_1J8t6i5E1cKLG-Uj6g7eQZwkIR_f16wXjb5VvgYn_gKx-MHD |
CitedBy_id | crossref_primary_10_1016_j_addlet_2023_100191 crossref_primary_10_7791_jspmee_12_180 crossref_primary_10_1016_j_commatsci_2025_113697 crossref_primary_10_3390_ma16010218 crossref_primary_10_1016_j_matchar_2024_114435 crossref_primary_10_2320_matertrans_MT_ME2022002 crossref_primary_10_1016_j_jmst_2023_08_050 crossref_primary_10_2497_jjspm_16P_T6_11 crossref_primary_10_2320_jinstmet_JA202402 crossref_primary_10_1088_1757_899X_1310_1_012013 crossref_primary_10_2320_jinstmet_JA202401 crossref_primary_10_1016_j_rineng_2024_103462 crossref_primary_10_3390_ma16155449 crossref_primary_10_1016_j_jmapro_2023_09_059 crossref_primary_10_1016_j_ijlmm_2024_06_004 crossref_primary_10_3390_ma16227228 crossref_primary_10_2320_matertrans_MT_ME2022006 crossref_primary_10_2497_jjspm_24_00032 crossref_primary_10_1016_j_addma_2024_104079 crossref_primary_10_1016_j_tsep_2024_102945 |
Cites_doi | 10.1038/s41563-019-0408-2 10.1299/jsmecmd.2017.30.197 10.1016/j.addma.2017.10.004 10.1186/s40192-016-0047-2 10.3390/s20082425 10.1007/s11666-017-0523-z 10.1016/j.addma.2018.12.002 10.1016/j.ijheatmasstransfer.2016.10.006 10.1016/j.scriptamat.2018.09.017 10.1016/j.addma.2018.08.017 10.1179/1743284714Y.0000000728 10.7791/jspmee.10.208 10.1016/j.cma.2017.12.024 10.1016/j.addma.2018.12.018 10.1016/j.addma.2017.10.001 10.1016/j.jmatprotec.2021.117384 10.1016/j.actamat.2017.06.039 10.1016/0025-5416(84)90201-5 10.1007/s00466-015-1170-1 10.1088/1757-899X/276/1/012026 10.1007/s00170-019-03384-z 10.1016/j.jmatprotec.2010.12.016 10.1146/annurev-matsci-070115-032158 10.1109/TII.2018.2873186 10.1016/j.powtec.2021.01.058 10.1016/S0307-904X(01)00050-6 10.1016/j.actamat.2016.02.014 10.1007/s11837-015-1352-5 10.1016/j.ifacol.2019.11.685 10.1016/j.procir.2021.01.114 10.1007/BF02914650 10.1016/j.addma.2018.06.008 10.2320/matertrans.MT-MA2020005 10.1108/13552549510078113 10.1016/j.scriptamat.2016.12.038 10.1002/adem.200700025 10.1103/PhysRevApplied.11.014025 10.1016/j.jallcom.2022.165812 10.1007/s00170-014-6594-9 10.1016/j.matpr.2017.09.023 10.1016/j.addma.2016.10.007 10.1007/978-3-030-63307-3_1 10.1016/j.jmatprotec.2003.11.051 10.1016/j.ijheatmasstransfer.2021.121602 10.1007/s00170-020-05828-3 10.1016/j.commatsci.2018.12.016 10.1016/j.cad.2015.06.007 10.1016/j.actamat.2013.10.017 10.1016/j.commatsci.2016.07.005 10.1063/1.1713333 10.1016/j.actamat.2020.09.023 10.1007/s00170-019-03308-x 10.1016/j.compositesb.2017.07.054 10.1016/j.addma.2016.06.001 10.1177/0954405414567522 10.1016/j.powtec.2020.11.082 10.1557/opl.2013.391 10.1016/j.procs.2013.05.383 10.1016/j.addma.2016.11.001 10.1007/s40964-020-00109-7 10.1016/j.powtec.2015.10.035 10.1007/s00158-016-1551-x 10.1016/j.addma.2018.03.022 10.1007/s11837-020-04383-2 10.1016/j.addma.2014.09.004 10.1016/j.camwa.2013.10.001 10.1063/1.1713887 10.3390/s21051712 10.3390/cryst11080856 10.3390/met10050683 10.1080/14686996.2019.1671140 10.1080/23311916.2019.1662631 10.1007/s00466-017-1535-8 10.1016/j.jmatprotec.2014.05.002 10.3390/app11052300 10.1007/s00170-020-06158-0 10.1016/j.jallcom.2016.11.191 10.1016/j.procir.2016.04.150 10.1108/01445150510626433 10.3390/su12198211 10.2320/matertrans.MT-M2021009 10.1007/s11661-004-0064-1 10.1016/j.actamat.2014.11.012 10.1016/j.actamat.2010.02.004 10.1016/j.powtec.2018.02.026 10.2464/jilm.72.291 10.1007/s12008-018-0487-3 10.1016/j.actamat.2019.11.053 10.3844/jcssp.2021.525.538 10.1016/j.matpr.2017.01.163 10.1016/j.msea.2009.02.019 10.1016/j.addma.2019.03.013 10.1557/adv.2020.125 10.1007/s40194-018-0655-x 10.1201/9781482266498 10.1109/ACCESS.2020.2970143 |
ContentType | Journal Article |
Copyright | 2022 The Iron and Steel Institute of Japan. |
Copyright_xml | – notice: 2022 The Iron and Steel Institute of Japan. |
DBID | AAYXX CITATION |
DOI | 10.2355/isijinternational.ISIJINT-2022-184 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1347-5460 |
EndPage | 2196 |
ExternalDocumentID | 10_2355_isijinternational_ISIJINT_2022_184 article_isijinternational_62_11_62_ISIJINT_2022_184_article_char_en |
GroupedDBID | 5GY AAFWJ ABEFU AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS EJD GROUPED_DOAJ HH5 JSF JSH KQ8 OK1 RJT RZJ SJN ~02 AAYXX CITATION |
ID | FETCH-LOGICAL-c520t-c3b7ba97e54ec995c1e09df01e0b398f0039d0c09de3ac0acfdcb2cfc3bd1a033 |
ISSN | 0915-1559 |
IngestDate | Tue Jul 01 02:06:11 EDT 2025 Thu Apr 24 23:44:13 EDT 2025 Wed Sep 03 06:31:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c520t-c3b7ba97e54ec995c1e09df01e0b398f0039d0c09de3ac0acfdcb2cfc3bd1a033 |
ORCID | 0000-0001-7061-7135 0000-0002-6844-6856 |
OpenAccessLink | http://dx.doi.org/10.2355/isijinternational.ISIJINT-2022-184 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_2355_isijinternational_ISIJINT_2022_184 crossref_citationtrail_10_2355_isijinternational_ISIJINT_2022_184 jstage_primary_article_isijinternational_62_11_62_ISIJINT_2022_184_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022/11/15 |
PublicationDateYYYYMMDD | 2022-11-15 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022/11/15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | ISIJ International |
PublicationTitleAlternate | ISIJ Int. |
PublicationYear | 2022 |
Publisher | The Iron and Steel Institute of Japan |
Publisher_xml | – name: The Iron and Steel Institute of Japan |
References | 59) ANSYS: Ansys Additive Suite, https://www.ansys.com/products/additive/ansys-additive-suite, (accessed 2021-08-29). 108) E. Coatanéa, H. P. N. Nagarajan, S. Panicker, R. Prod’hon, H. Mokhtarian, A. Chakraborti, H. Paris, I. F. Ituarte and K. R. Haapala: Int. J. Adv. Manuf. Technol., 115 (2021), 715. https://doi.org/10.1007/s00170-020-06158-0 98) S. Yamamoto, H. Azuma, S. Suzuki, S. Kajino, N. Sato, T. Okane, S. Nakano and T. Shimizu: Int. J. Adv. Manuf. Technol., 103 (2019), 4433. https://doi.org/10.1007/s00170-019-03384-z 73) H. Komen, M. Shigeta, M. Tanaka, M. Nakatani and Y. Abe: Weld. World, 62 (2018), 1323. https://doi.org/10.1007/s40194-018-0655-x 110) S. Lee, J. Peng, D. Shin and Y. S. Choi: Sci. Technol. Adv. Mater., 20 (2019), 972. https://doi.org/10.1080/14686996.2019.1671140 7) O. Masmoudi, M. Jaoua, A. Jaoua and S. Yacout: J. Comput. Sci., 17 (2021), 525. https://doi.org/10.3844/JCSSP.2021.525.538 106) K. Aoyagi, H. Wang, H. Sudo and A. Chiba: Addit. Manuf., 27 (2019), 353. https://doi.org/10.1016/j.addma.2019.03.013 91) J. Gockel and J. Beuth: 24th Annual Int. SFF Symp. - An Additive Manufacturing Conf. (SFF 2013), The University of Texas at Austin, Austin, (2013), 666. 52) X. Wang, P. Zhang, S. Ludwick, E. Belski and A. C. To: Addit. Manuf., 20 (2018), 189. 69) B. Cheng and K. Chou: Comput. Aided Des., 69 (2015), 102. https://doi.org/10.1016/j.cad.2015.06.007 77) M. Markl, R. Ammer, U. Rüde and C. Körner: Int. J. Adv. Manuf. Technol., 78 (2015), 239. https://doi.org/10.1007/s00170-014-6594-9 105) A. Rai, M. Markl and C. Körner: Comput. Mater. Sci., 124 (2016), 37. https://doi.org/10.1016/j.commatsci.2016.07.005 103) G. Boussinot, M. Apel, J. Zielinski, U. Hecht and J. H. Schleifenbaum: Phys. Rev. Appl., 11 (2019), 014025. https://doi.org/10.1103/PhysRevApplied.11.014025 17) Y. Zhao, Y. Koizumi, K. Aoyagi, K. Yamanaka and A. Chiba: Powder Technol., 381 (2021), 44. https://doi.org/10.1016/j.powtec.2020.11.082 43) S. Hällgren, L. Pejryd and J. Ekengren: Procedia CIRP, 50 (2016), 246. https://doi.org/10.1016/j.procir.2016.04.150 49) Y. T. Tang, C. Panwisawas, J. N. Ghoussoub, Y. Gong, J. W. G. Clark, A. A. N. Németh, D. G. McCartney and R. C. Reed: Acta Mater., 202 (2021), 417. https://doi.org/10.1016/j.actamat.2020.09.023 35) G. J. Gibbons and R. G. Hansell: Assem. Autom., 25 (2005), 300. https://doi.org/10.1108/01445150510626433 1) R. Rosen, J. Fischer and S. Boschert: IFAC-PapersOnLine, 52 (2019), 265. https://doi.org/10.1016/j.ifacol.2019.11.685 36) ISO 17269-2: 2015, Additive manufacturing — General principles — Part 2: Overview of process categories and feedstock. 13) T. DebRoy, T. Mukherjee, J. O. Milewski, J. W. Elmer, B. Ribic, J. J. Blecher and W. Zhang: Nat. Mater., 18 (2019), 1026. https://doi.org/10.1038/s41563-019-0408-2 62) A. Takezawa, X. Zhang and Y. Koizumi: Comput. Mater. Sci., 159 (2019), 202. 32) L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck and J. P. Kruth: Acta Mater., 58 (2010), 3303. https://doi.org/10.1016/j.actamat.2010.02.004 45) W. King, A. T. Anderson, R. M. Ferencz, N. E. Hodge, C. Kamath and S. A. Khairallah: Mater. Sci. Technol., 31 (2015), 957. https://doi.org/10.1179/1743284714Y.0000000728 74) A. Bauereiß, T. Scharowsky and C. Körner: J. Mater. Process. Technol., 214 (2014), 2522. https://doi.org/10.1016/j.jmatprotec.2014.05.002 38) L. Siva Rama Krishna, N. Mahesh and N. Sateesh: Mater. Today Proc., 4 (2017), 1414. https://doi.org/10.1016/j.matpr.2017.01.163 54) M. Okugawa, D. Izumikawa and Y. Koizumi: Proc. 25th Conf. on Computational Engineering and Science, JSCES, Tokyo, (2020), E-05-02. 24) M. Okugawa, Y. Isono, Y. Koizumi and T. Nakano: Mater. Trans., (in press). 81) R. Shi, S. A. Khairallah, T. T. Roehling, T. W. Heo, J. T. McKeown and M. J. Matthews: Acta Mater., 184 (2020), 284. https://doi.org/10.1016/j.actamat.2019.11.053 76) C. Körner, E. Attar and P. Heinl: J. Mater. Process. Technol., 211 (2011), 978. https://doi.org/10.1016/j.jmatprotec.2010.12.016 50) M. Okugawa, Y. Miyata, L. Wang, K. Nose, Y. Koizumi and T. Nakano: J. Smart Process., 10 (2021), 208. 75) A. Rai, H. Helmer and C. Körner: Addit. Manuf., 13 (2017), 124. https://doi.org/10.1016/j.addma.2016.10.007 6) A. Rasheed, O. San and T. Kvamsdal: IEEE Access, 8 (2020), 21980. https://doi.org/10.1109/ACCESS.2020.2970143 87) K. Hagihara, T. Nakano, M. Suzuki, T. Ishimoto, Suyalatu and S. H. Sun: J. Alloy. Compd., 696 (2017), 67. https://doi.org/10.1016/j.jallcom.2016.11.191 83) S. H. Sun, Y. Koizumi, S. Kurosu, Y. P. Li and A. Chiba: Acta Mater., 86 (2015), 305. https://doi.org/10.1016/j.actamat.2014.11.012 78) M. Markl, R. Ammer, U. Ljungblad, U. Rüde and C. Körner: Procedia Comput. Sci., 18 (2013), 2127. https://doi.org/10.1016/j.procs.2013.05.383 58) Quint: OPTISHAPE-TS, https://www.quint.co.jp/eng/pro/ots/index.htm, (accessed 2021-09-05). 66) Oqton: Geomagic Freeform, https://www.3dsystems.com/software/geomagic-freeform, (accessed 2022-07-16). 94) B. Schoinochoritis, D. Chantzis and K. Salonitis: Proc. Inst. Mech. Eng. B, 231 (2017), 96. https://doi.org/10.1177/0954405414567522 15) E. J. R. Parteli and T. Pöschel: Powder Technol., 288 (2016), 96. https://doi.org/10.1016/j.powtec.2015.10.035 84) S. H. Sun, Y. Koizumi, T. Saito, K. Yamanaka, Y. P. Li, Y. Cui and A. Chiba: Addit. Manuf., 23 (2018), 457. https://doi.org/10.1016/j.addma.2018.08.017 11) H. Zhu: Sensors, 21 (2021), 1712. https://doi.org/10.3390/s21051712 97) T. Furumoto, K. Oishi, S. Abe, K. Tsubouchi, M. Yamaguchi and A. T. Clare: J. Mater. Process. Technol., 299 (2022), 117384. https://doi.org/10.1016/j.jmatprotec.2021.117384 30) J. J. Beaman and C. R. Deckard: Selective Laser Sintering with Assisted Powder Handling, U.S. Patent US4938816A, (1990). 100) T. Campanella, C. Charbon and M. Rappaz: Metall. Mater. Trans. A, 35 (2004), 3201. https://doi.org/10.1007/s11661-004-0064-1 37) ISO/ASTM 52900: 2021, Additive manufacturing — General principles — Fundamentals and vocabulary. 4) F. Tao, H. Zhang, A. Liu and A. Y. C. Nee: IEEE Trans. Ind. Inform., 15 (2019), 2405. https://doi.org/10.1109/TII.2018.2873186 61) A. Takezawa, Y. Koizumi and M. Kobashi: Addit. Manuf., 18 (2017), 194. 88) M. Todai, T. Nakano, T. Liu, H. Y. Yasuda, K. Hagihara, K. Cho, M. Ueda and M. Takeyama: Addit. Manuf., 13 (2017), 61. https://doi.org/10.1016/j.addma.2016.11.001 33) J. P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts and B. Lauwers: J. Mater. Process. Technol., 149 (2004), 616. https://doi.org/10.1016/j.jmatprotec.2003.11.051 111) J. A. Dantzig and M. Rappaz: Solidification, 2nd ed., EPFL Press, Lausanne, (2016). 42) A. W. Gebisa and H. G. Lemu: IOP Conf. Ser. Mater. Sci. Eng., 276 (2017), 012026. https://doi.org/10.1088/1757-899X/276/1/012026 3) G. L. Knapp, T. Mukherjee, J. S. Zuback, H. L. Wei, T. A. Palmer, A. De and T. DebRoy: Acta Mater., 135 (2017), 390. https://doi.org/10.1016/j.actamat.2017.06.039 41) Y. Tang, G. Dong and Y. F. Zhao: Int. J. Adv. Manuf. Technol., 102 (2019), 4011. https://doi.org/10.1007/s00170-019-03308-x 57) Altair: OptiStruct, https://www.altair.com/optistruct/, (accessed 2022-06-08). 85) S. H. Sun, T. Ishimoto, K. Hagihara, Y. Tsutsumi, T. Hanawa and T. Nakano: Scr. Mater., 159 (2019), 89. https://doi.org/10.1016/j.scriptamat.2018.09.017 64) L. Cheng, J. Liu, X. Liang and A. C. To: Comput. Methods Appl. Mech. Eng., 332 (2018), 408. 27) W. Yan, J. Smith, W. Ge, F. Lin and W. K. Liu: Comput. Mech., 56 (2015), 265. https://doi.org/10.1007/s00466-015-1170-1 60) A. Takezawa, K. Yonekura, Y. Koizumi, X. Zhang and M. Kitamura: Addit. Manuf., 22 (2018), 634. 55) Y. Zhao, Y. Koizumi, K. Aoyagi, D. Wei, K. Yamanaka and A. Chiba: Addit. Manuf., 26 (2019), 202. https://doi.org/10.1016/j.addma.2018.12.002 5) M. Grieves: Digital Twin: Manufacturing Excellence through Virtual Factory Replication, White paper, 1 (2014), 1. 86) T. Ishimoto, K. Hagihara, K. Hisamoto, S. H. Sun and T. Nakano: Scr. Mater., 132 (2017), 34. https://doi.org/10.1016/j.scriptamat.2016.12.038 16) Y. Zhao, Y. Koizumi, K. Aoyagi, K. Yamanaka and A. Chiba: Proc. Visual-JW 2016, Joining and Welding Research Institute, Osaka University, Osaka, (2016), 48. 31) M. Agarwala, D. Bourell, J. Beaman, H. Marcus and J. Barlow: Rapid Prototyp. J., 1 (1995), 26. https://doi.org/10.1108/13552549510078113 22) M. Markl and C. Körner: Powder Technol., 330 (2018), 125. https://doi.org/10.1016/j.powtec.2018.02.026 70) F. Bellalouna: Procedia CIRP, 98 (2021), 342. https://doi.org/10.1016/j.procir.2021.01.114 9) Z. M. Çınar, A. A. Nuhu, Q. Zeeshan, O. Korhan, M. Asmael and B. Safaei: Sustainability, 12 (2020), 8211. https://doi.org/10.3390/su12198211 44) Z. Luo and Y. Zhao: Addit. Manuf., 21 (2018), 318. https://doi.org/10.1016/j.addma.2018.03.022 34) P. Heinl, A. Rottmair, C. Körner and R. F. Singer: Adv. Eng. Mater., 9 (2007), 360. https://doi.org/10.1002/adem.200700025 95) I. Zhirnov, C. Protasov, D. Kotoban, A. V. Gusarov and T. Tarasova: J. Therm. Spray Technol., 26 (2017), 648. https://doi.org/10.1007/s11666-017-0523-z 12) Koizumi Lab: Area of Materials Design and Process Engineering (Koizumi Laboratory) web page, http://www.mat.eng.osaka-u.ac.jp/msp3/, (accessed 2022-07-16). 80) S. A. Khairallah, A. T. Anderson, A. Rubenchik and W. E. King: Acta Mater., 108 (2016), 36. https://doi.org/10.1016/j.actamat.2016.02.014 67) M. E. Biancolini and P. P. Valentini: Int. J. Interact. Des. Manuf., 12 (2018), 1223. https://doi.org/10.1007/s12008-018-0487-3 46) X. Gong and K. Chou: JOM, 67 (2015), 1176. https://doi.org/10.1007/s11837-015-1352-5 53) Y. Koizumi, A. Okazaki, A. Chiba, T. Kato and A. Takezawa: Addit. Manuf., 12 (2016), 305. https://doi.org/10.1016/j.addma.2016.06.001 29) J. Kubo, Y. Koizumi, T. Ishimoto and T. Nakano: Mater. Trans., 62 (2021), 864. https://doi.org/10.2320/matertrans.MT-M2021009 23) Y. Zhao, Y. Koizumi, K. Aoyagi, K. Yamanaka and A. Chiba: Mater. Today Proc., 4 (2017), 11437. https://doi.org/10.1016/j.matpr.2017.09.023 104) Y. Shimono, M. Oba, S. Nomoto, Y. Koizumi and A. Chiba: Proc. 28th Annual Int. Solid Freeform Fab 88 89 110 111 112 113 90 91 92 93 94 95 96 97 10 98 11 99 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 100 101 102 103 104 105 106 80 107 81 108 82 109 83 84 85 86 87 |
References_xml | – reference: 16) Y. Zhao, Y. Koizumi, K. Aoyagi, K. Yamanaka and A. Chiba: Proc. Visual-JW 2016, Joining and Welding Research Institute, Osaka University, Osaka, (2016), 48. – reference: 76) C. Körner, E. Attar and P. Heinl: J. Mater. Process. Technol., 211 (2011), 978. https://doi.org/10.1016/j.jmatprotec.2010.12.016 – reference: 25) M. Okugawa, Y. Isono, Y. Koizumi and T. Nakano: J. Jpn. Inst. Light Met., 72 (2022), 291. – reference: 36) ISO 17269-2: 2015, Additive manufacturing — General principles — Part 2: Overview of process categories and feedstock. – reference: 73) H. Komen, M. Shigeta, M. Tanaka, M. Nakatani and Y. Abe: Weld. World, 62 (2018), 1323. https://doi.org/10.1007/s40194-018-0655-x – reference: 50) M. Okugawa, Y. Miyata, L. Wang, K. Nose, Y. Koizumi and T. Nakano: J. Smart Process., 10 (2021), 208. – reference: 66) Oqton: Geomagic Freeform, https://www.3dsystems.com/software/geomagic-freeform, (accessed 2022-07-16). – reference: 69) B. Cheng and K. Chou: Comput. Aided Des., 69 (2015), 102. https://doi.org/10.1016/j.cad.2015.06.007 – reference: 14) W. S. Rosenthal, F. C. Grogan, Y. Li, E. I. Barker, J. F. Christ, T. R. Pope, A. K. Battu, T. Varga, C. A. Barrett, M. G. Warner and A. Peles: MRS Adv., 5 (2020), 1593. https://doi.org/10.1557/adv.2020.125 – reference: 52) X. Wang, P. Zhang, S. Ludwick, E. Belski and A. C. To: Addit. Manuf., 20 (2018), 189. – reference: 72) P. W. Cleary and M. L. Sawley: Appl. Math. Model., 26 (2002), 89. https://doi.org/10.1016/S0307-904X(01)00050-6 – reference: 90) S. Bontha, N. W. Klingbeil, P. A. Kobryn and H. L. Fraser: Mater. Sci. Eng. A, 513–514 (2009), 311. https://doi.org/10.1016/j.msea.2009.02.019 – reference: 43) S. Hällgren, L. Pejryd and J. Ekengren: Procedia CIRP, 50 (2016), 246. https://doi.org/10.1016/j.procir.2016.04.150 – reference: 59) ANSYS: Ansys Additive Suite, https://www.ansys.com/products/additive/ansys-additive-suite, (accessed 2021-08-29). – reference: 74) A. Bauereiß, T. Scharowsky and C. Körner: J. Mater. Process. Technol., 214 (2014), 2522. https://doi.org/10.1016/j.jmatprotec.2014.05.002 – reference: 67) M. E. Biancolini and P. P. Valentini: Int. J. Interact. Des. Manuf., 12 (2018), 1223. https://doi.org/10.1007/s12008-018-0487-3 – reference: 53) Y. Koizumi, A. Okazaki, A. Chiba, T. Kato and A. Takezawa: Addit. Manuf., 12 (2016), 305. https://doi.org/10.1016/j.addma.2016.06.001 – reference: 99) Y. Miyata, M. Okugawa, Y. Koizumi and T. Nakano: Crystals, 11 (2021), 856. https://doi.org/10.3390/cryst11080856 – reference: 111) J. A. Dantzig and M. Rappaz: Solidification, 2nd ed., EPFL Press, Lausanne, (2016). – reference: 37) ISO/ASTM 52900: 2021, Additive manufacturing — General principles — Fundamentals and vocabulary. – reference: 95) I. Zhirnov, C. Protasov, D. Kotoban, A. V. Gusarov and T. Tarasova: J. Therm. Spray Technol., 26 (2017), 648. https://doi.org/10.1007/s11666-017-0523-z – reference: 106) K. Aoyagi, H. Wang, H. Sudo and A. Chiba: Addit. Manuf., 27 (2019), 353. https://doi.org/10.1016/j.addma.2019.03.013 – reference: 40) A. A. Al-Tamimi, H. Almeida and P. Bartolo: Prog. Addit. Manuf., 5 (2020), 95. https://doi.org/10.1007/s40964-020-00109-7 – reference: 2) M. Elsersy, A. Sherif, A. Darwsih and A. E. Hassanien: Digital Transformation and Emerging Technologies for Fighting COVID-19 Pandemic, ed. by A. E. Hassanien and A. Darwish, Springer International Publishing, Cham, (2021), 3. https://doi.org/10.1007/978-3-030-63307-3_1 – reference: 9) Z. M. Çınar, A. A. Nuhu, Q. Zeeshan, O. Korhan, M. Asmael and B. Safaei: Sustainability, 12 (2020), 8211. https://doi.org/10.3390/su12198211 – reference: 93) X. Ding, Y. Koizumi, D. Wei and A. Chiba: Addit. Manuf., 26 (2019), 215. https://doi.org/10.1016/j.addma.2018.12.018 – reference: 45) W. King, A. T. Anderson, R. M. Ferencz, N. E. Hodge, C. Kamath and S. A. Khairallah: Mater. Sci. Technol., 31 (2015), 957. https://doi.org/10.1179/1743284714Y.0000000728 – reference: 97) T. Furumoto, K. Oishi, S. Abe, K. Tsubouchi, M. Yamaguchi and A. T. Clare: J. Mater. Process. Technol., 299 (2022), 117384. https://doi.org/10.1016/j.jmatprotec.2021.117384 – reference: 22) M. Markl and C. Körner: Powder Technol., 330 (2018), 125. https://doi.org/10.1016/j.powtec.2018.02.026 – reference: 47) G. Boussinot, M. Apel, J. Zielinski, U. Hecht and J. H. Schleifenbaum: Phys. Rev. Appl., 11 (2019), 014025. https://doi.org/10.1103/PhysRevApplied.11.014025 – reference: 15) E. J. R. Parteli and T. Pöschel: Powder Technol., 288 (2016), 96. https://doi.org/10.1016/j.powtec.2015.10.035 – reference: 29) J. Kubo, Y. Koizumi, T. Ishimoto and T. Nakano: Mater. Trans., 62 (2021), 864. https://doi.org/10.2320/matertrans.MT-M2021009 – reference: 58) Quint: OPTISHAPE-TS, https://www.quint.co.jp/eng/pro/ots/index.htm, (accessed 2021-09-05). – reference: 103) G. Boussinot, M. Apel, J. Zielinski, U. Hecht and J. H. Schleifenbaum: Phys. Rev. Appl., 11 (2019), 014025. https://doi.org/10.1103/PhysRevApplied.11.014025 – reference: 56) M. Okugawa, D. Izumikawa and Y. Koizumi: Mater. Trans., 61 (2020), 2072. https://doi.org/10.2320/matertrans.MT-MA2020005 – reference: 18) M. Markl and C. Körner: Annu. Rev. Mater. Res., 46 (2016), 93. https://doi.org/10.1146/annurev-matsci-070115-032158 – reference: 31) M. Agarwala, D. Bourell, J. Beaman, H. Marcus and J. Barlow: Rapid Prototyp. J., 1 (1995), 26. https://doi.org/10.1108/13552549510078113 – reference: 10) S. Arena, I. Roda and F. Chiacchio: Appl. Sci., 11 (2021), 2300. https://doi.org/10.3390/app11052300 – reference: 38) L. Siva Rama Krishna, N. Mahesh and N. Sateesh: Mater. Today Proc., 4 (2017), 1414. https://doi.org/10.1016/j.matpr.2017.01.163 – reference: 109) S. Mondal, D. Gwynn, A. Ray and A. Basak: Metals, 10 (2020), 683. https://doi.org/10.3390/met10050683 – reference: 24) M. Okugawa, Y. Isono, Y. Koizumi and T. Nakano: Mater. Trans., (in press). – reference: 19) A. Chouhan, A. Aggarwal and A. Kumar: Int. J. Heat Mass Transf., 178 (2021), 121602. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121602 – reference: 55) Y. Zhao, Y. Koizumi, K. Aoyagi, D. Wei, K. Yamanaka and A. Chiba: Addit. Manuf., 26 (2019), 202. https://doi.org/10.1016/j.addma.2018.12.002 – reference: 21) M. Y. Shaheen, A. R. Thornton, S. Luding and T. Weinhart: Powder Technol., 383 (2021), 564. https://doi.org/10.1016/j.powtec.2021.01.058 – reference: 39) L. E. J. Thomas-Seale, J. C. Kirkman-Brown, S. Kanagalingam, M. M. Attallah, D. M. Espino and D. E. T. Shepherd: Cogent Eng., 6 (2019), 1662631. https://doi.org/10.1080/23311916.2019.1662631 – reference: 86) T. Ishimoto, K. Hagihara, K. Hisamoto, S. H. Sun and T. Nakano: Scr. Mater., 132 (2017), 34. https://doi.org/10.1016/j.scriptamat.2016.12.038 – reference: 77) M. Markl, R. Ammer, U. Rüde and C. Körner: Int. J. Adv. Manuf. Technol., 78 (2015), 239. https://doi.org/10.1007/s00170-014-6594-9 – reference: 49) Y. T. Tang, C. Panwisawas, J. N. Ghoussoub, Y. Gong, J. W. G. Clark, A. A. N. Németh, D. G. McCartney and R. C. Reed: Acta Mater., 202 (2021), 417. https://doi.org/10.1016/j.actamat.2020.09.023 – reference: 110) S. Lee, J. Peng, D. Shin and Y. S. Choi: Sci. Technol. Adv. Mater., 20 (2019), 972. https://doi.org/10.1080/14686996.2019.1671140 – reference: 7) O. Masmoudi, M. Jaoua, A. Jaoua and S. Yacout: J. Comput. Sci., 17 (2021), 525. https://doi.org/10.3844/JCSSP.2021.525.538 – reference: 6) A. Rasheed, O. San and T. Kvamsdal: IEEE Access, 8 (2020), 21980. https://doi.org/10.1109/ACCESS.2020.2970143 – reference: 100) T. Campanella, C. Charbon and M. Rappaz: Metall. Mater. Trans. A, 35 (2004), 3201. https://doi.org/10.1007/s11661-004-0064-1 – reference: 92) J. Gockel, J. Beuth and K. Taminger: Addit. Manuf., 1–4 (2014), 119. https://doi.org/10.1016/j.addma.2014.09.004 – reference: 85) S. H. Sun, T. Ishimoto, K. Hagihara, Y. Tsutsumi, T. Hanawa and T. Nakano: Scr. Mater., 159 (2019), 89. https://doi.org/10.1016/j.scriptamat.2018.09.017 – reference: 63) A. Takezawa and M. Kobashi: Compos. B: Eng., 131 (2017), 21. – reference: 64) L. Cheng, J. Liu, X. Liang and A. C. To: Comput. Methods Appl. Mech. Eng., 332 (2018), 408. – reference: 81) R. Shi, S. A. Khairallah, T. T. Roehling, T. W. Heo, J. T. McKeown and M. J. Matthews: Acta Mater., 184 (2020), 284. https://doi.org/10.1016/j.actamat.2019.11.053 – reference: 112) W. W. Mullins and R. F. Sekerka: J. Appl. Phys., 35 (1964), 444. https://doi.org/10.1063/1.1713333 – reference: 65) A. Takezawa, M. Kobashi, Y. Koizumi and M. Kitamura: Int. J. Heat Mass Transf., 105 (2017), 564. https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.006 – reference: 79) R. Ammer, M. Markl, U. Ljungblad, C. Körner and U. Rüde: Comput. Math. Appl., 67 (2014), 318. – reference: 33) J. P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts and B. Lauwers: J. Mater. Process. Technol., 149 (2004), 616. https://doi.org/10.1016/j.jmatprotec.2003.11.051 – reference: 44) Z. Luo and Y. Zhao: Addit. Manuf., 21 (2018), 318. https://doi.org/10.1016/j.addma.2018.03.022 – reference: 26) S. A. Khairallah, A. T. Anderson, A. Rubenchik and W. E. King: Acta Mater., 108 (2016), 36. https://doi.org/10.1016/j.actamat.2016.02.014 – reference: 20) M. Megahed, H. Mindt, N. N’Dri, H. Duan and O. Desmaison: Integr. Mater. Manuf. Innov., 5 (2016), 61. https://doi.org/10.1186/s40192-016-0047-2 – reference: 107) S. Srinivasan, B. Swick and M. A. Groeber: JOM, 72 (2020), 4393. https://doi.org/10.1007/s11837-020-04383-2 – reference: 27) W. Yan, J. Smith, W. Ge, F. Lin and W. K. Liu: Comput. Mech., 56 (2015), 265. https://doi.org/10.1007/s00466-015-1170-1 – reference: 23) Y. Zhao, Y. Koizumi, K. Aoyagi, K. Yamanaka and A. Chiba: Mater. Today Proc., 4 (2017), 11437. https://doi.org/10.1016/j.matpr.2017.09.023 – reference: 46) X. Gong and K. Chou: JOM, 67 (2015), 1176. https://doi.org/10.1007/s11837-015-1352-5 – reference: 75) A. Rai, H. Helmer and C. Körner: Addit. Manuf., 13 (2017), 124. https://doi.org/10.1016/j.addma.2016.10.007 – reference: 68) A. T. Gaynor and J. K. Guest: Struct. Multidiscip. Optim., 54 (2016), 1157. https://doi.org/10.1007/s00158-016-1551-x – reference: 61) A. Takezawa, Y. Koizumi and M. Kobashi: Addit. Manuf., 18 (2017), 194. – reference: 4) F. Tao, H. Zhang, A. Liu and A. Y. C. Nee: IEEE Trans. Ind. Inform., 15 (2019), 2405. https://doi.org/10.1109/TII.2018.2873186 – reference: 71) C. O’Sullivan: Particulate Discrete Element Modelling, A Geomechanics Perspective, CRC Press, Boca Raton, FL, (2011). – reference: 30) J. J. Beaman and C. R. Deckard: Selective Laser Sintering with Assisted Powder Handling, U.S. Patent US4938816A, (1990). – reference: 32) L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck and J. P. Kruth: Acta Mater., 58 (2010), 3303. https://doi.org/10.1016/j.actamat.2010.02.004 – reference: 48) T. Yamazaki, Y. Koizumi, A. Chiba, K. Hagihara, T. Nakano, K. Yuge, K. Kishida and H. Inui: MRS Online Proc. Libr., 1516 (2013), 145. https://doi.org/10.1557/opl.2013.391 – reference: 104) Y. Shimono, M. Oba, S. Nomoto, Y. Koizumi and A. Chiba: Proc. 28th Annual Int. Solid Freeform Fabrication Symp. - An Additive Manufacturing Conf. (SFF 2017), The University of Texas at Austin, Austin, (2017), 1048. – reference: 98) S. Yamamoto, H. Azuma, S. Suzuki, S. Kajino, N. Sato, T. Okane, S. Nakano and T. Shimizu: Int. J. Adv. Manuf. Technol., 103 (2019), 4433. https://doi.org/10.1007/s00170-019-03384-z – reference: 89) J. D. Hunt: Mater. Sci. Eng., 65 (1984), 75. https://doi.org/10.1016/0025-5416(84)90201-5 – reference: 84) S. H. Sun, Y. Koizumi, T. Saito, K. Yamanaka, Y. P. Li, Y. Cui and A. Chiba: Addit. Manuf., 23 (2018), 457. https://doi.org/10.1016/j.addma.2018.08.017 – reference: 96) Y. Wakai, T. Ogura, S. Nakano, N. Sato, S. Kajino and S. Suzuki: Int. J. Adv. Manuf. Technol., 110 (2020), 1047. https://doi.org/10.1007/s00170-020-05828-3 – reference: 13) T. DebRoy, T. Mukherjee, J. O. Milewski, J. W. Elmer, B. Ribic, J. J. Blecher and W. Zhang: Nat. Mater., 18 (2019), 1026. https://doi.org/10.1038/s41563-019-0408-2 – reference: 78) M. Markl, R. Ammer, U. Ljungblad, U. Rüde and C. Körner: Procedia Comput. Sci., 18 (2013), 2127. https://doi.org/10.1016/j.procs.2013.05.383 – reference: 82) S. H. Sun, Y. Koizumi, S. Kurosu, Y. P. Li, H. Matsumoto and A. Chiba: Acta Mater., 64 (2014), 154. https://doi.org/10.1016/j.actamat.2013.10.017 – reference: 88) M. Todai, T. Nakano, T. Liu, H. Y. Yasuda, K. Hagihara, K. Cho, M. Ueda and M. Takeyama: Addit. Manuf., 13 (2017), 61. https://doi.org/10.1016/j.addma.2016.11.001 – reference: 108) E. Coatanéa, H. P. N. Nagarajan, S. Panicker, R. Prod’hon, H. Mokhtarian, A. Chakraborti, H. Paris, I. F. Ituarte and K. R. Haapala: Int. J. Adv. Manuf. Technol., 115 (2021), 715. https://doi.org/10.1007/s00170-020-06158-0 – reference: 60) A. Takezawa, K. Yonekura, Y. Koizumi, X. Zhang and M. Kitamura: Addit. Manuf., 22 (2018), 634. – reference: 91) J. Gockel and J. Beuth: 24th Annual Int. SFF Symp. - An Additive Manufacturing Conf. (SFF 2013), The University of Texas at Austin, Austin, (2013), 666. – reference: 94) B. Schoinochoritis, D. Chantzis and K. Salonitis: Proc. Inst. Mech. Eng. B, 231 (2017), 96. https://doi.org/10.1177/0954405414567522 – reference: 113) R. F. Sekerka: J. Appl. Phys., 36 (1965), 264. – reference: 57) Altair: OptiStruct, https://www.altair.com/optistruct/, (accessed 2022-06-08). – reference: 34) P. Heinl, A. Rottmair, C. Körner and R. F. Singer: Adv. Eng. Mater., 9 (2007), 360. https://doi.org/10.1002/adem.200700025 – reference: 41) Y. Tang, G. Dong and Y. F. Zhao: Int. J. Adv. Manuf. Technol., 102 (2019), 4011. https://doi.org/10.1007/s00170-019-03308-x – reference: 42) A. W. Gebisa and H. G. Lemu: IOP Conf. Ser. Mater. Sci. Eng., 276 (2017), 012026. https://doi.org/10.1088/1757-899X/276/1/012026 – reference: 28) Y. Lian, S. Lin, W. Yan, W. K. Liu and G. J. Wagner: Comput. Mech., 61 (2018), 543. https://doi.org/10.1007/s00466-017-1535-8 – reference: 1) R. Rosen, J. Fischer and S. Boschert: IFAC-PapersOnLine, 52 (2019), 265. https://doi.org/10.1016/j.ifacol.2019.11.685 – reference: 12) Koizumi Lab: Area of Materials Design and Process Engineering (Koizumi Laboratory) web page, http://www.mat.eng.osaka-u.ac.jp/msp3/, (accessed 2022-07-16). – reference: 80) S. A. Khairallah, A. T. Anderson, A. Rubenchik and W. E. King: Acta Mater., 108 (2016), 36. https://doi.org/10.1016/j.actamat.2016.02.014 – reference: 17) Y. Zhao, Y. Koizumi, K. Aoyagi, K. Yamanaka and A. Chiba: Powder Technol., 381 (2021), 44. https://doi.org/10.1016/j.powtec.2020.11.082 – reference: 51) M. Okugawa, Y. Ohigashi, Y. Furishiro, Y. Koizumi and T. Nakano: J. Alloy. Compd., 919 (2022), 165812. https://doi.org/10.1016/j.jallcom.2022.165812 – reference: 3) G. L. Knapp, T. Mukherjee, J. S. Zuback, H. L. Wei, T. A. Palmer, A. De and T. DebRoy: Acta Mater., 135 (2017), 390. https://doi.org/10.1016/j.actamat.2017.06.039 – reference: 8) J. F. Olesen and H. R. Shaker: Sensors, 20 (2020), 2425. https://doi.org/10.3390/s20082425 – reference: 35) G. J. Gibbons and R. G. Hansell: Assem. Autom., 25 (2005), 300. https://doi.org/10.1108/01445150510626433 – reference: 70) F. Bellalouna: Procedia CIRP, 98 (2021), 342. https://doi.org/10.1016/j.procir.2021.01.114 – reference: 83) S. H. Sun, Y. Koizumi, S. Kurosu, Y. P. Li and A. Chiba: Acta Mater., 86 (2015), 305. https://doi.org/10.1016/j.actamat.2014.11.012 – reference: 101) A. Hellawell, S. Liu and S. Z. Lu: JOM, 49 (1997), 18. https://doi.org/10.1007/BF02914650 – reference: 102) M. Markl: Ph.D. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, (2015), https://opus4.kobv.de/opus4-fau/frontdoor/index/index/docId/6623, (accessed 2022-07-16). – reference: 105) A. Rai, M. Markl and C. Körner: Comput. Mater. Sci., 124 (2016), 37. https://doi.org/10.1016/j.commatsci.2016.07.005 – reference: 62) A. Takezawa, X. Zhang and Y. Koizumi: Comput. Mater. Sci., 159 (2019), 202. – reference: 87) K. Hagihara, T. Nakano, M. Suzuki, T. Ishimoto, Suyalatu and S. H. Sun: J. Alloy. Compd., 696 (2017), 67. https://doi.org/10.1016/j.jallcom.2016.11.191 – reference: 54) M. Okugawa, D. Izumikawa and Y. Koizumi: Proc. 25th Conf. on Computational Engineering and Science, JSCES, Tokyo, (2020), E-05-02. – reference: 11) H. Zhu: Sensors, 21 (2021), 1712. https://doi.org/10.3390/s21051712 – reference: 5) M. Grieves: Digital Twin: Manufacturing Excellence through Virtual Factory Replication, White paper, 1 (2014), 1. – ident: 102 – ident: 13 doi: 10.1038/s41563-019-0408-2 – ident: 104 doi: 10.1299/jsmecmd.2017.30.197 – ident: 61 doi: 10.1016/j.addma.2017.10.004 – ident: 20 doi: 10.1186/s40192-016-0047-2 – ident: 8 doi: 10.3390/s20082425 – ident: 95 doi: 10.1007/s11666-017-0523-z – ident: 55 doi: 10.1016/j.addma.2018.12.002 – ident: 65 doi: 10.1016/j.ijheatmasstransfer.2016.10.006 – ident: 85 doi: 10.1016/j.scriptamat.2018.09.017 – ident: 84 doi: 10.1016/j.addma.2018.08.017 – ident: 16 – ident: 45 doi: 10.1179/1743284714Y.0000000728 – ident: 50 doi: 10.7791/jspmee.10.208 – ident: 64 doi: 10.1016/j.cma.2017.12.024 – ident: 93 doi: 10.1016/j.addma.2018.12.018 – ident: 52 doi: 10.1016/j.addma.2017.10.001 – ident: 97 doi: 10.1016/j.jmatprotec.2021.117384 – ident: 3 doi: 10.1016/j.actamat.2017.06.039 – ident: 89 doi: 10.1016/0025-5416(84)90201-5 – ident: 27 doi: 10.1007/s00466-015-1170-1 – ident: 42 doi: 10.1088/1757-899X/276/1/012026 – ident: 59 – ident: 98 doi: 10.1007/s00170-019-03384-z – ident: 54 – ident: 76 doi: 10.1016/j.jmatprotec.2010.12.016 – ident: 18 doi: 10.1146/annurev-matsci-070115-032158 – ident: 4 doi: 10.1109/TII.2018.2873186 – ident: 21 doi: 10.1016/j.powtec.2021.01.058 – ident: 72 doi: 10.1016/S0307-904X(01)00050-6 – ident: 26 doi: 10.1016/j.actamat.2016.02.014 – ident: 46 doi: 10.1007/s11837-015-1352-5 – ident: 1 doi: 10.1016/j.ifacol.2019.11.685 – ident: 70 doi: 10.1016/j.procir.2021.01.114 – ident: 66 – ident: 91 – ident: 101 doi: 10.1007/BF02914650 – ident: 60 doi: 10.1016/j.addma.2018.06.008 – ident: 37 – ident: 80 doi: 10.1016/j.actamat.2016.02.014 – ident: 56 doi: 10.2320/matertrans.MT-MA2020005 – ident: 31 doi: 10.1108/13552549510078113 – ident: 86 doi: 10.1016/j.scriptamat.2016.12.038 – ident: 57 – ident: 24 – ident: 34 doi: 10.1002/adem.200700025 – ident: 103 doi: 10.1103/PhysRevApplied.11.014025 – ident: 51 doi: 10.1016/j.jallcom.2022.165812 – ident: 77 doi: 10.1007/s00170-014-6594-9 – ident: 23 doi: 10.1016/j.matpr.2017.09.023 – ident: 75 doi: 10.1016/j.addma.2016.10.007 – ident: 111 – ident: 2 doi: 10.1007/978-3-030-63307-3_1 – ident: 33 doi: 10.1016/j.jmatprotec.2003.11.051 – ident: 19 doi: 10.1016/j.ijheatmasstransfer.2021.121602 – ident: 96 doi: 10.1007/s00170-020-05828-3 – ident: 62 doi: 10.1016/j.commatsci.2018.12.016 – ident: 69 doi: 10.1016/j.cad.2015.06.007 – ident: 82 doi: 10.1016/j.actamat.2013.10.017 – ident: 105 doi: 10.1016/j.commatsci.2016.07.005 – ident: 112 doi: 10.1063/1.1713333 – ident: 12 – ident: 49 doi: 10.1016/j.actamat.2020.09.023 – ident: 41 doi: 10.1007/s00170-019-03308-x – ident: 63 doi: 10.1016/j.compositesb.2017.07.054 – ident: 53 doi: 10.1016/j.addma.2016.06.001 – ident: 94 doi: 10.1177/0954405414567522 – ident: 17 doi: 10.1016/j.powtec.2020.11.082 – ident: 48 doi: 10.1557/opl.2013.391 – ident: 78 doi: 10.1016/j.procs.2013.05.383 – ident: 88 doi: 10.1016/j.addma.2016.11.001 – ident: 40 doi: 10.1007/s40964-020-00109-7 – ident: 15 doi: 10.1016/j.powtec.2015.10.035 – ident: 47 doi: 10.1103/PhysRevApplied.11.014025 – ident: 68 doi: 10.1007/s00158-016-1551-x – ident: 44 doi: 10.1016/j.addma.2018.03.022 – ident: 107 doi: 10.1007/s11837-020-04383-2 – ident: 92 doi: 10.1016/j.addma.2014.09.004 – ident: 5 – ident: 79 doi: 10.1016/j.camwa.2013.10.001 – ident: 113 doi: 10.1063/1.1713887 – ident: 11 doi: 10.3390/s21051712 – ident: 99 doi: 10.3390/cryst11080856 – ident: 109 doi: 10.3390/met10050683 – ident: 110 doi: 10.1080/14686996.2019.1671140 – ident: 39 doi: 10.1080/23311916.2019.1662631 – ident: 28 doi: 10.1007/s00466-017-1535-8 – ident: 30 – ident: 74 doi: 10.1016/j.jmatprotec.2014.05.002 – ident: 10 doi: 10.3390/app11052300 – ident: 108 doi: 10.1007/s00170-020-06158-0 – ident: 58 – ident: 87 doi: 10.1016/j.jallcom.2016.11.191 – ident: 43 doi: 10.1016/j.procir.2016.04.150 – ident: 35 doi: 10.1108/01445150510626433 – ident: 9 doi: 10.3390/su12198211 – ident: 29 doi: 10.2320/matertrans.MT-M2021009 – ident: 100 doi: 10.1007/s11661-004-0064-1 – ident: 83 doi: 10.1016/j.actamat.2014.11.012 – ident: 32 doi: 10.1016/j.actamat.2010.02.004 – ident: 22 doi: 10.1016/j.powtec.2018.02.026 – ident: 25 doi: 10.2464/jilm.72.291 – ident: 67 doi: 10.1007/s12008-018-0487-3 – ident: 81 doi: 10.1016/j.actamat.2019.11.053 – ident: 7 doi: 10.3844/jcssp.2021.525.538 – ident: 38 doi: 10.1016/j.matpr.2017.01.163 – ident: 36 – ident: 90 doi: 10.1016/j.msea.2009.02.019 – ident: 106 doi: 10.1016/j.addma.2019.03.013 – ident: 14 doi: 10.1557/adv.2020.125 – ident: 73 doi: 10.1007/s40194-018-0655-x – ident: 71 doi: 10.1201/9781482266498 – ident: 6 doi: 10.1109/ACCESS.2020.2970143 |
SSID | ssib002484313 ssj0027274 |
Score | 2.468113 |
SecondaryResourceType | review_article |
Snippet | A digital twin (DT) is a cyberspace replica of a system, such as manufacturing equipment. A DT consists of statistical models and computer simulations of... |
SourceID | crossref jstage |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 2183 |
SubjectTerms | 3D printing additive manufacturing digital twin metal powder bed fusion |
Title | Digital Twin Science of Metal Powder Bed Fusion Additive Manufacturing: A Selective Review of Simulations for Integrated Computational Materials Engineering and Science |
URI | https://www.jstage.jst.go.jp/article/isijinternational/62/11/62_ISIJINT-2022-184/_article/-char/en |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | ISIJ International, 2022/11/15, Vol.62(11), pp.2183-2196 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfKQAgeEF8T42PyA09UGUmcOAs8VcC0DnWCrZPGU2Q7zsjGWrQlqthfxN_DX8RdnDjJqMQGqpRGrnw65345n6_3QcjLTHApecwdpfzICTSLHOlmzJGwN7tSyjT0MHd4ssu3D4Kdw_BwMPjViVoqC7mhLpbmlfyLVGEM5IpZsteQrCUKA3AP8oUrSBiuV5Lx-_wIe34Mp4u8fUsxpkXj6Kf5Iq0qIKbDrRKdYsNRmppQoYmYlZjSUOUomuT0_aohDv6412az5KdlEyuH4YjjprZEOjTdIBpP4kQUZr3d-oYmKtRw1bWBx_vjnapMhfVEWq0_zy_K0yq-4EuZq6_52dw6gU_KI7EQJr3oXPwoT_KuwwLOuhg0F3Y9j17o4L-hZgsyepcFkRMGprVAo5i53wWg11OzpvtNvWWD1uXLtgMfjCmQYX6eH_dWtYELHe9OHcOe6VHXr8V9aY-0kYtwZkKqyR80k5pmgjQToHmD3PTh6IJdNT5-7h7xNsFmY61TwDeVwpuHcpu8qjl__Xe-e8bUrWM4TzSxiJV5NL1P7tXnGjoyIH1ABnr2kNztoOER-VnDlSJcaQ0MOs9oBVdq4EoBrtTAlTZwpT24vqEjasFKDViRSgesFMBKW7DSHlipBSvtsEcBrA1Pj8nB1ofpu22nbhTiqNB3C0cxGUkRRzoMtIrjUHnajdPMhS_J4s0ME9BTV8GYZkK5QmWpkr7KYF7qCZexVbIym8_0E0K1ysIs4BI_gQeGm2CCgdbijMVcabVGRs0TT1RdRR-buXxLro6MNfLW0vhuaspca_aeEbSdW-ufJXM5zPDwepmInYO5naBKn_4XS8_InfZFf05WirNSvwBbvZDrlY9rvXoFfgPIffmd |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+Twin+Science+of+Metal+Powder+Bed+Fusion+Additive+Manufacturing%3A+A+Selective+Review+of+Simulations+for+Integrated+Computational+Materials+Engineering+and+Science&rft.jtitle=ISIJ+international&rft.au=Koizumi%2C+Yuichiro&rft.au=Okugawa%2C+Masayuki&rft.date=2022-11-15&rft.issn=0915-1559&rft.eissn=1347-5460&rft.volume=62&rft.issue=11&rft.spage=2183&rft.epage=2196&rft_id=info:doi/10.2355%2Fisijinternational.ISIJINT-2022-184&rft.externalDBID=n%2Fa&rft.externalDocID=10_2355_isijinternational_ISIJINT_2022_184 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0915-1559&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0915-1559&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0915-1559&client=summon |