ESBR Nanocomposites Filled with Monodisperse Silica Modified with Si747: The Effects of Amount and pH on Performance
To prepare silica/rubber composites for low roll resistance tires, a novel strategy was proposed in this study, in which autonomous monodisperse silica (AS) was prepared and modified using 3-mercaptopropyloxy-methoxyl-bis(nonane-pentaethoxy) siloxane (Si747), after which silica/emulsion styrene buta...
Saved in:
Published in | Polymers Vol. 15; no. 4; p. 981 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
16.02.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | To prepare silica/rubber composites for low roll resistance tires, a novel strategy was proposed in this study, in which autonomous monodisperse silica (AS) was prepared and modified using 3-mercaptopropyloxy-methoxyl-bis(nonane-pentaethoxy) siloxane (Si747), after which silica/emulsion styrene butadiene rubber (ESBR) master batches were produced using the latex compounding technique. Meanwhile, the commercial precipitated silica (PS) was introduced as a control. In this study, the effects of amount of Si747 and pH value on the properties of the silica/ESBR composites were systematically analyzed. Thermal gravimetric analysis (TGA) and Fourier transform infrared (FTIR) results indicated that Si747 reduced the silanol group by chemical grafting and physical shielding, and the optimum amounts of Si747 for AS and PS modification were confirmed to be 15% and 20%, respectively. Under a pH of 9, ESBR/modified AS (MAS) composites with 15% Si747 presented better silica dispersion and a weaker Payne effect, compared with ESBR/modified PS (MPS) composites with 20% Si747. Meanwhile, in terms of dynamic properties, the ESBR/MAS composites exhibited a better balance of lower rolling resistance and higher wet skid resistance than the ESBR/MPS composites. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym15040981 |