Three-dimensional DNA nanostructures to improve the hyperbranched hybridization chain reaction

Nonenzymatic nucleic acid amplification techniques ( e.g. the hybridization chain reaction, HCR) have shown promising potential for amplified detection of biomarkers. However, the traditional HCR occurs through random diffusion of DNA hairpins, making the kinetics and efficiency quite low. By assemb...

Full description

Saved in:
Bibliographic Details
Published inChemical science (Cambridge) Vol. 1; no. 42; pp. 9758 - 9767
Main Authors Wang, Jing, Wang, Dong-Xia, Ma, Jia-Yi, Wang, Ya-Xin, Kong, De-Ming
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 14.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nonenzymatic nucleic acid amplification techniques ( e.g. the hybridization chain reaction, HCR) have shown promising potential for amplified detection of biomarkers. However, the traditional HCR occurs through random diffusion of DNA hairpins, making the kinetics and efficiency quite low. By assembling DNA hairpins at the vertexes of tetrahedral DNA nanostructures (TDNs), the reaction kinetics of the HCR is greatly accelerated due to the synergetic contributions of multiple reaction orientations, increased collision probability and enhanced local concentrations. The proposed quadrivalent TDN (qTDN)-mediated hyperbranched HCR has a ∼70-fold faster reaction rate than the traditional HCR. The approximately 76% fluorescence resonance energy transfer (FRET) efficiency obtained is the highest in the reported DNA-based FRET sensing systems as far as we know. Moreover, qTDNs modified by hairpins can easily load drugs, freely traverse plasma membranes and be rapidly cross-linked via the target-triggered HCR in live cells. The reduced freedom of movement as a result of the large crosslinked structure might constrain the hyperbranched HCR in a confined environment, thus making it a promising candidate for in situ imaging and photodynamic therapy. Hence, we present a paradigm of perfect integration of DNA nanotechnology with nucleic acid amplification, thus paving a promising way to the improved performance of nucleic acid amplification techniques and their wider application. Nonenzymatic nucleic acid amplification techniques ( e.g. the hybridization chain reaction, HCR) have shown promising potential for amplified detection of biomarkers.
AbstractList Nonenzymatic nucleic acid amplification techniques ( the hybridization chain reaction, HCR) have shown promising potential for amplified detection of biomarkers. However, the traditional HCR occurs through random diffusion of DNA hairpins, making the kinetics and efficiency quite low. By assembling DNA hairpins at the vertexes of tetrahedral DNA nanostructures (TDNs), the reaction kinetics of the HCR is greatly accelerated due to the synergetic contributions of multiple reaction orientations, increased collision probability and enhanced local concentrations. The proposed quadrivalent TDN (qTDN)-mediated hyperbranched HCR has a ∼70-fold faster reaction rate than the traditional HCR. The approximately 76% fluorescence resonance energy transfer (FRET) efficiency obtained is the highest in the reported DNA-based FRET sensing systems as far as we know. Moreover, qTDNs modified by hairpins can easily load drugs, freely traverse plasma membranes and be rapidly cross-linked the target-triggered HCR in live cells. The reduced freedom of movement as a result of the large crosslinked structure might constrain the hyperbranched HCR in a confined environment, thus making it a promising candidate for imaging and photodynamic therapy. Hence, we present a paradigm of perfect integration of DNA nanotechnology with nucleic acid amplification, thus paving a promising way to the improved performance of nucleic acid amplification techniques and their wider application.
Nonenzymatic nucleic acid amplification techniques ( e.g. the hybridization chain reaction, HCR) have shown promising potential for amplified detection of biomarkers. However, the traditional HCR occurs through random diffusion of DNA hairpins, making the kinetics and efficiency quite low. By assembling DNA hairpins at the vertexes of tetrahedral DNA nanostructures (TDNs), the reaction kinetics of the HCR is greatly accelerated due to the synergetic contributions of multiple reaction orientations, increased collision probability and enhanced local concentrations. The proposed quadrivalent TDN (qTDN)-mediated hyperbranched HCR has a ∼70-fold faster reaction rate than the traditional HCR. The approximately 76% fluorescence resonance energy transfer (FRET) efficiency obtained is the highest in the reported DNA-based FRET sensing systems as far as we know. Moreover, qTDNs modified by hairpins can easily load drugs, freely traverse plasma membranes and be rapidly cross-linked via the target-triggered HCR in live cells. The reduced freedom of movement as a result of the large crosslinked structure might constrain the hyperbranched HCR in a confined environment, thus making it a promising candidate for in situ imaging and photodynamic therapy. Hence, we present a paradigm of perfect integration of DNA nanotechnology with nucleic acid amplification, thus paving a promising way to the improved performance of nucleic acid amplification techniques and their wider application. Nonenzymatic nucleic acid amplification techniques ( e.g. the hybridization chain reaction, HCR) have shown promising potential for amplified detection of biomarkers.
Nonenzymatic nucleic acid amplification techniques (e.g. the hybridization chain reaction, HCR) have shown promising potential for amplified detection of biomarkers. However, the traditional HCR occurs through random diffusion of DNA hairpins, making the kinetics and efficiency quite low. By assembling DNA hairpins at the vertexes of tetrahedral DNA nanostructures (TDNs), the reaction kinetics of the HCR is greatly accelerated due to the synergetic contributions of multiple reaction orientations, increased collision probability and enhanced local concentrations. The proposed quadrivalent TDN (qTDN)-mediated hyperbranched HCR has a ∼70-fold faster reaction rate than the traditional HCR. The approximately 76% fluorescence resonance energy transfer (FRET) efficiency obtained is the highest in the reported DNA-based FRET sensing systems as far as we know. Moreover, qTDNs modified by hairpins can easily load drugs, freely traverse plasma membranes and be rapidly cross-linked via the target-triggered HCR in live cells. The reduced freedom of movement as a result of the large crosslinked structure might constrain the hyperbranched HCR in a confined environment, thus making it a promising candidate for in situ imaging and photodynamic therapy. Hence, we present a paradigm of perfect integration of DNA nanotechnology with nucleic acid amplification, thus paving a promising way to the improved performance of nucleic acid amplification techniques and their wider application.
Nonenzymatic nucleic acid amplification techniques ( e.g. the hybridization chain reaction, HCR) have shown promising potential for amplified detection of biomarkers. Nonenzymatic nucleic acid amplification techniques ( e.g. the hybridization chain reaction, HCR) have shown promising potential for amplified detection of biomarkers. However, the traditional HCR occurs through random diffusion of DNA hairpins, making the kinetics and efficiency quite low. By assembling DNA hairpins at the vertexes of tetrahedral DNA nanostructures (TDNs), the reaction kinetics of the HCR is greatly accelerated due to the synergetic contributions of multiple reaction orientations, increased collision probability and enhanced local concentrations. The proposed quadrivalent TDN (qTDN)-mediated hyperbranched HCR has a ∼70-fold faster reaction rate than the traditional HCR. The approximately 76% fluorescence resonance energy transfer (FRET) efficiency obtained is the highest in the reported DNA-based FRET sensing systems as far as we know. Moreover, qTDNs modified by hairpins can easily load drugs, freely traverse plasma membranes and be rapidly cross-linked via the target-triggered HCR in live cells. The reduced freedom of movement as a result of the large crosslinked structure might constrain the hyperbranched HCR in a confined environment, thus making it a promising candidate for in situ imaging and photodynamic therapy. Hence, we present a paradigm of perfect integration of DNA nanotechnology with nucleic acid amplification, thus paving a promising way to the improved performance of nucleic acid amplification techniques and their wider application.
Nonenzymatic nucleic acid amplification techniques (e.g. the hybridization chain reaction, HCR) have shown promising potential for amplified detection of biomarkers. However, the traditional HCR occurs through random diffusion of DNA hairpins, making the kinetics and efficiency quite low. By assembling DNA hairpins at the vertexes of tetrahedral DNA nanostructures (TDNs), the reaction kinetics of the HCR is greatly accelerated due to the synergetic contributions of multiple reaction orientations, increased collision probability and enhanced local concentrations. The proposed quadrivalent TDN (qTDN)-mediated hyperbranched HCR has a ∼70-fold faster reaction rate than the traditional HCR. The approximately 76% fluorescence resonance energy transfer (FRET) efficiency obtained is the highest in the reported DNA-based FRET sensing systems as far as we know. Moreover, qTDNs modified by hairpins can easily load drugs, freely traverse plasma membranes and be rapidly cross-linked via the target-triggered HCR in live cells. The reduced freedom of movement as a result of the large crosslinked structure might constrain the hyperbranched HCR in a confined environment, thus making it a promising candidate for in situ imaging and photodynamic therapy. Hence, we present a paradigm of perfect integration of DNA nanotechnology with nucleic acid amplification, thus paving a promising way to the improved performance of nucleic acid amplification techniques and their wider application.Nonenzymatic nucleic acid amplification techniques (e.g. the hybridization chain reaction, HCR) have shown promising potential for amplified detection of biomarkers. However, the traditional HCR occurs through random diffusion of DNA hairpins, making the kinetics and efficiency quite low. By assembling DNA hairpins at the vertexes of tetrahedral DNA nanostructures (TDNs), the reaction kinetics of the HCR is greatly accelerated due to the synergetic contributions of multiple reaction orientations, increased collision probability and enhanced local concentrations. The proposed quadrivalent TDN (qTDN)-mediated hyperbranched HCR has a ∼70-fold faster reaction rate than the traditional HCR. The approximately 76% fluorescence resonance energy transfer (FRET) efficiency obtained is the highest in the reported DNA-based FRET sensing systems as far as we know. Moreover, qTDNs modified by hairpins can easily load drugs, freely traverse plasma membranes and be rapidly cross-linked via the target-triggered HCR in live cells. The reduced freedom of movement as a result of the large crosslinked structure might constrain the hyperbranched HCR in a confined environment, thus making it a promising candidate for in situ imaging and photodynamic therapy. Hence, we present a paradigm of perfect integration of DNA nanotechnology with nucleic acid amplification, thus paving a promising way to the improved performance of nucleic acid amplification techniques and their wider application.
Nonenzymatic nucleic acid amplification techniques ( e.g. the hybridization chain reaction, HCR) have shown promising potential for amplified detection of biomarkers. However, the traditional HCR occurs through random diffusion of DNA hairpins, making the kinetics and efficiency quite low. By assembling DNA hairpins at the vertexes of tetrahedral DNA nanostructures (TDNs), the reaction kinetics of the HCR is greatly accelerated due to the synergetic contributions of multiple reaction orientations, increased collision probability and enhanced local concentrations. The proposed quadrivalent TDN (qTDN)-mediated hyperbranched HCR has a ∼70-fold faster reaction rate than the traditional HCR. The approximately 76% fluorescence resonance energy transfer (FRET) efficiency obtained is the highest in the reported DNA-based FRET sensing systems as far as we know. Moreover, qTDNs modified by hairpins can easily load drugs, freely traverse plasma membranes and be rapidly cross-linked via the target-triggered HCR in live cells. The reduced freedom of movement as a result of the large crosslinked structure might constrain the hyperbranched HCR in a confined environment, thus making it a promising candidate for in situ imaging and photodynamic therapy. Hence, we present a paradigm of perfect integration of DNA nanotechnology with nucleic acid amplification, thus paving a promising way to the improved performance of nucleic acid amplification techniques and their wider application.
Author Ma, Jia-Yi
Wang, Ya-Xin
Kong, De-Ming
Wang, Dong-Xia
Wang, Jing
AuthorAffiliation Nankai University
State Key Laboratory of Medicinal Chemical Biology
College of Chemistry
Research Centre for Analytical Sciences
Tianjin Key Laboratory of Biosensing and Molecular Recognition
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
AuthorAffiliation_xml – name: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– name: Tianjin Key Laboratory of Biosensing and Molecular Recognition
– name: Research Centre for Analytical Sciences
– name: College of Chemistry
– name: State Key Laboratory of Medicinal Chemical Biology
– name: Nankai University
– name: b Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin , 300071 , P. R. China
– name: a State Key Laboratory of Medicinal Chemical Biology , Tianjin Key Laboratory of Biosensing and Molecular Recognition , Research Centre for Analytical Sciences , College of Chemistry , Nankai University , Tianjin 300071 , P. R. China . Email: kongdem@nankai.edu.cn
Author_xml – sequence: 1
  givenname: Jing
  surname: Wang
  fullname: Wang, Jing
– sequence: 2
  givenname: Dong-Xia
  surname: Wang
  fullname: Wang, Dong-Xia
– sequence: 3
  givenname: Jia-Yi
  surname: Ma
  fullname: Ma, Jia-Yi
– sequence: 4
  givenname: Ya-Xin
  surname: Wang
  fullname: Wang, Ya-Xin
– sequence: 5
  givenname: De-Ming
  surname: Kong
  fullname: Kong, De-Ming
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32055345$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1TAQhS3UipbSDXtQEBuEFPAjTuINUhUerVTBgrLFcpwxcZXYwXYqlV-Pb2-50ArhjT2ab47OzPgR2nPeAUJPCH5NMBNvtIgaU9oS_QAdUlyRsuZM7O3eFB-g4xgvcT6MEU6bh-iAUcw5q_gh-nYxBoBysDO4aL1TU_Hu00nhlPMxhVWnNUAski_svAR_BUUaoRivFwh9UE6PMOSoD3awP1XK9YUelXVFAKU34WO0b9QU4fj2PkJfP7y_6E7L888fz7qT81Jng6nsBasbwZVRnJqmZRoDHZqa9vVgdE7otue4bxtMhDaUUTCCtrWpRFtppuqBHaG3W91l7WcYNLgU1CSXYGcVrqVXVt7NODvK7_5K1kKwpqqzwMtbgeB_rBCTnG3UME3KgV-jpIxzURFCmoy-uIde-jXkyW0ognndtq3I1LO_He2s_B59Bl5tAR18jAHMDiFYblYrO_Glu1ltl2F8D9Y23Qw8d2Onf5c835aEqHfSf36LXAaTmaf_Y9gvMZq8DA
CitedBy_id crossref_primary_10_1021_acsnano_0c10844
crossref_primary_10_1016_j_snb_2023_133660
crossref_primary_10_1016_j_talanta_2021_122422
crossref_primary_10_1039_D1SC00587A
crossref_primary_10_1016_j_bioactmat_2023_10_025
crossref_primary_10_1016_j_scitotenv_2021_147212
crossref_primary_10_1016_j_cclet_2022_05_020
crossref_primary_10_1002_admt_202400504
crossref_primary_10_2139_ssrn_4002174
crossref_primary_10_1002_ange_202001123
crossref_primary_10_1016_j_jhazmat_2024_135115
crossref_primary_10_1016_j_cej_2022_136838
crossref_primary_10_1039_D1AN00275A
crossref_primary_10_1039_D0BM00931H
crossref_primary_10_1039_D3SC01960H
crossref_primary_10_1016_j_trac_2023_116960
crossref_primary_10_1021_acs_nanolett_1c04818
crossref_primary_10_1002_smll_202007355
crossref_primary_10_1021_acs_analchem_4c03012
crossref_primary_10_1039_D3AN00689A
crossref_primary_10_1016_j_aca_2021_338908
crossref_primary_10_1007_s00604_023_05848_2
crossref_primary_10_1021_acs_analchem_3c02014
crossref_primary_10_1039_D0CC08172H
crossref_primary_10_1039_D4CC04534C
crossref_primary_10_1002_asia_202101315
crossref_primary_10_1021_acs_analchem_4c06879
crossref_primary_10_1021_acsami_1c09000
crossref_primary_10_1016_j_bios_2022_114183
crossref_primary_10_1016_j_snb_2024_135797
crossref_primary_10_1016_j_cbpa_2021_102104
crossref_primary_10_1016_j_foodchem_2023_135891
crossref_primary_10_2139_ssrn_4022154
crossref_primary_10_1002_adfm_202401711
crossref_primary_10_3390_chemistry5020098
crossref_primary_10_1016_j_snb_2020_129335
crossref_primary_10_1016_j_snb_2022_132955
crossref_primary_10_1002_cnma_202200459
crossref_primary_10_1021_acs_jafc_2c05831
crossref_primary_10_1007_s11426_024_2294_x
crossref_primary_10_1021_acs_analchem_2c00190
crossref_primary_10_1021_jacs_0c12970
crossref_primary_10_1038_s41378_024_00861_8
crossref_primary_10_1039_D3CC02427J
crossref_primary_10_1039_D1AN01371H
crossref_primary_10_1016_j_bios_2022_114152
crossref_primary_10_1039_D2SC05568F
crossref_primary_10_2174_1574888X15666200422103415
crossref_primary_10_1016_j_talanta_2023_124871
crossref_primary_10_1039_D1NJ03913J
crossref_primary_10_1039_D2AN00080F
crossref_primary_10_1021_acs_analchem_2c00974
crossref_primary_10_1021_acs_analchem_9b05648
crossref_primary_10_13103_JFHS_2023_38_5_279
crossref_primary_10_1016_j_bios_2022_114836
crossref_primary_10_1007_s44211_023_00304_w
crossref_primary_10_1016_j_bios_2021_113739
crossref_primary_10_1039_D4RA08325C
crossref_primary_10_1021_acssensors_0c01453
crossref_primary_10_1002_adhm_202302652
crossref_primary_10_1016_j_bios_2021_113731
crossref_primary_10_1016_j_trac_2023_116933
crossref_primary_10_1016_j_aca_2021_339018
crossref_primary_10_1007_s12010_024_05022_1
crossref_primary_10_1016_j_aca_2021_338681
crossref_primary_10_1016_j_talanta_2023_124645
crossref_primary_10_1021_cbe_4c00164
crossref_primary_10_1016_j_bios_2024_116601
crossref_primary_10_1021_acs_analchem_1c00873
crossref_primary_10_1021_acsnano_1c06117
crossref_primary_10_1021_acsami_3c06626
crossref_primary_10_1039_D3TB02947F
crossref_primary_10_1002_adsr_202200102
crossref_primary_10_1016_j_talanta_2024_126665
crossref_primary_10_1021_acsami_3c06742
crossref_primary_10_1021_acs_analchem_2c02110
crossref_primary_10_1021_acs_analchem_4c01438
crossref_primary_10_3389_fchem_2023_1134863
crossref_primary_10_1021_acsnano_3c01374
crossref_primary_10_1016_j_bios_2021_113205
crossref_primary_10_1016_j_cej_2024_152840
crossref_primary_10_1016_j_cej_2023_148212
crossref_primary_10_1039_D0CC01626H
crossref_primary_10_1021_acs_nanolett_4c03099
crossref_primary_10_1002_anse_202400009
crossref_primary_10_1039_D1QM00141H
crossref_primary_10_1016_j_bioelechem_2024_108797
crossref_primary_10_1016_j_talanta_2023_125465
crossref_primary_10_1021_acs_analchem_5c00173
crossref_primary_10_1016_j_aca_2020_10_035
crossref_primary_10_1021_acs_analchem_3c00701
crossref_primary_10_1016_j_talanta_2021_122637
crossref_primary_10_1039_D1SC04229G
crossref_primary_10_1039_D2TB02663E
crossref_primary_10_1016_j_semcancer_2021_12_012
crossref_primary_10_1016_j_snb_2025_137431
crossref_primary_10_1016_j_aca_2020_12_050
crossref_primary_10_1016_j_cej_2020_127258
crossref_primary_10_1016_j_microc_2022_107989
crossref_primary_10_1002_anie_202014798
crossref_primary_10_1021_acs_analchem_0c04483
crossref_primary_10_1016_j_bios_2022_114009
crossref_primary_10_1016_j_bios_2020_112814
crossref_primary_10_1016_j_bios_2021_113708
crossref_primary_10_1021_acs_analchem_9b03659
crossref_primary_10_1016_j_talanta_2021_122846
crossref_primary_10_1016_j_talanta_2022_123219
crossref_primary_10_1002_admi_202000292
crossref_primary_10_1002_smll_202404641
crossref_primary_10_1021_acsmaterialslett_4c00650
crossref_primary_10_1039_D1CC02455H
crossref_primary_10_1149_2754_2726_ace068
crossref_primary_10_2139_ssrn_4165890
crossref_primary_10_1016_j_bios_2021_113783
crossref_primary_10_1016_j_snb_2022_132997
crossref_primary_10_1002_agt2_166
crossref_primary_10_1016_j_ab_2021_114260
crossref_primary_10_1039_D1SC01269J
crossref_primary_10_1002_ange_202014798
crossref_primary_10_1016_j_bios_2022_114077
crossref_primary_10_1021_acs_bioconjchem_1c00375
crossref_primary_10_1002_smll_202204108
crossref_primary_10_1021_acs_analchem_4c00754
crossref_primary_10_1039_D0TB02315A
crossref_primary_10_1080_10739149_2020_1781162
crossref_primary_10_1021_acs_analchem_3c02822
crossref_primary_10_1002_anie_202001123
crossref_primary_10_1021_acs_nanolett_2c02934
crossref_primary_10_1016_j_scitotenv_2021_152629
crossref_primary_10_1088_2050_6120_aba357
crossref_primary_10_1016_j_bios_2022_115051
crossref_primary_10_1016_j_snb_2024_135656
crossref_primary_10_1016_j_snb_2021_130387
crossref_primary_10_1021_acs_analchem_1c04113
Cites_doi 10.1021/ja300721s
10.1021/jacs.7b11311
10.1016/j.bios.2016.12.061
10.1002/adma.201802378
10.1021/acsnano.8b06322
10.1002/anie.201501457
10.1021/mp800115t
10.1039/C8SC01001C
10.1002/cncr.11753
10.1073/pnas.0407024101
10.1021/ac900598d
10.1002/anie.201804741
10.1016/j.trac.2017.06.011
10.1039/C5BM00467E
10.1093/nar/gkp117
10.1002/anie.201500478
10.1016/j.bios.2016.07.083
10.1021/acsnano.7b06699
10.1002/anie.201802701
10.1021/bi800773f
10.1021/jacs.7b09789
10.1039/C8SC01981A
10.1039/b600213g
10.1016/j.mvr.2018.05.007
10.1038/nrc1739
10.1039/C5CS00645G
10.1021/ja5101307
10.1016/j.dyepig.2011.09.016
10.1021/jacs.8b06146
10.1021/ja4023978
10.1021/ac0719305
10.1039/C5CC08907G
10.1021/jacs.8b08442
10.1021/acs.analchem.5b01634
10.1038/nnano.2017.127
10.1021/ja300984b
10.1021/acs.analchem.8b00722
10.1039/C6CC02571D
10.1016/S1389-0352(01)00039-3
10.1021/jacs.8b04648
10.1039/C7CS00055C
10.1021/acsnano.7b00725
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry 2019.
Copyright Royal Society of Chemistry 2019
This journal is © The Royal Society of Chemistry 2019 2019
Copyright_xml – notice: This journal is © The Royal Society of Chemistry 2019.
– notice: Copyright Royal Society of Chemistry 2019
– notice: This journal is © The Royal Society of Chemistry 2019 2019
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1039/c9sc02281c
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed

Materials Research Database

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2041-6539
EndPage 9767
ExternalDocumentID PMC6993746
32055345
10_1039_C9SC02281C
c9sc02281c
Genre Journal Article
GroupedDBID 0-7
0R
705
7~J
AAGNR
AAIWI
AAPBV
ABGFH
ACGFS
ACIWK
ADBBV
ADMRA
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AUDPV
AZFZN
BCNDV
BLAPV
BSQNT
C6K
CKLOX
D0L
EE0
EF-
F5P
GROUPED_DOAJ
HYE
HZ
H~N
JG
O-G
O9-
OK1
R7C
R7D
RCNCU
ROYLF
RPM
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
SMJ
0R~
53G
AAEMU
AAFWJ
AAJAE
AARTK
AAXHV
AAYXX
ABEMK
ABIQK
ABPDG
ABXOH
AEFDR
AESAV
AFLYV
AFPKN
AGEGJ
AGRSR
AHGCF
AKBGW
ANUXI
APEMP
CITATION
H13
HZ~
PGMZT
RAOCF
RNS
-JG
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c520t-b936795afa52f783c0e2d762b6dfc795c8b50b87019cf232ef9286f4984c3a6d3
ISSN 2041-6520
IngestDate Thu Aug 21 18:30:36 EDT 2025
Fri Jul 11 16:11:36 EDT 2025
Fri Jul 25 08:06:16 EDT 2025
Thu Jan 02 22:59:58 EST 2025
Thu Apr 24 23:05:31 EDT 2025
Tue Jul 01 03:46:30 EDT 2025
Sat Jan 08 04:36:59 EST 2022
Wed Nov 11 00:25:30 EST 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 42
Language English
License This journal is © The Royal Society of Chemistry 2019.
This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0)
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c520t-b936795afa52f783c0e2d762b6dfc795c8b50b87019cf232ef9286f4984c3a6d3
Notes 10.1039/c9sc02281c
This work is dedicated to 100th anniversary of Nankai University.
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9216-8040
OpenAccessLink http://dx.doi.org/10.1039/c9sc02281c
PMID 32055345
PQID 2310568889
PQPubID 2047492
PageCount 1
ParticipantIDs pubmed_primary_32055345
proquest_journals_2310568889
crossref_citationtrail_10_1039_C9SC02281C
proquest_miscellaneous_2355941117
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6993746
crossref_primary_10_1039_C9SC02281C
rsc_primary_c9sc02281c
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-14
PublicationDateYYYYMMDD 2019-11-14
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-14
  day: 14
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical science (Cambridge)
PublicationTitleAlternate Chem Sci
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Li (C9SC02281C-(cit3)/*[position()=1]) 2009; 81
Engelen (C9SC02281C-(cit18)/*[position()=1]) 2018; 140
Ogawa (C9SC02281C-(cit27)/*[position()=1]) 2009; 6
Bui (C9SC02281C-(cit17)/*[position()=1]) 2018; 12
Ang (C9SC02281C-(cit31)/*[position()=1]) 2018; 90
Xue (C9SC02281C-(cit35)/*[position()=1]) 2018; 57
Wickramasinghe (C9SC02281C-(cit36)/*[position()=1]) 2009; 37
Liu (C9SC02281C-(cit22)/*[position()=1]) 2018; 12
Dirks (C9SC02281C-(cit8)/*[position()=1]) 2004; 101
Iqbal (C9SC02281C-(cit33)/*[position()=1]) 2008; 47
Kim (C9SC02281C-(cit39)/*[position()=1]) 2016; 4
Yang (C9SC02281C-(cit9)/*[position()=1]) 2017; 94
Liu (C9SC02281C-(cit23)/*[position()=1]) 2015; 137
Huang (C9SC02281C-(cit13)/*[position()=1]) 2018; 9
He (C9SC02281C-(cit34)/*[position()=1]) 2017; 11
Liang (C9SC02281C-(cit20)/*[position()=1]) 2018; 140
Wang (C9SC02281C-(cit37)/*[position()=1]) 2018; 120
Li (C9SC02281C-(cit19)/*[position()=1]) 2018; 140
Zhang (C9SC02281C-(cit42)/*[position()=1]) 2016; 52
Jiang (C9SC02281C-(cit14)/*[position()=1]) 2013; 135
Cissell (C9SC02281C-(cit25)/*[position()=1]) 2007; 79
Meng (C9SC02281C-(cit2)/*[position()=1]) 2016; 45
Ludwig (C9SC02281C-(cit1)/*[position()=1]) 2005; 5
He (C9SC02281C-(cit21)/*[position()=1]) 2018; 140
Liu (C9SC02281C-(cit24)/*[position()=1]) 2018; 57
Bi (C9SC02281C-(cit12)/*[position()=1]) 2017; 46
Santin (C9SC02281C-(cit7)/*[position()=1]) 2003; 98
Yin (C9SC02281C-(cit6)/*[position()=1]) 2012; 134
Dietrich (C9SC02281C-(cit32)/*[position()=1]) 2002; 82
Wang (C9SC02281C-(cit10)/*[position()=1]) 2018; 9
Jockusch (C9SC02281C-(cit28)/*[position()=1]) 2006; 5
Wang (C9SC02281C-(cit30)/*[position()=1]) 2015; 87
Du (C9SC02281C-(cit5)/*[position()=1]) 2016; 86
Ang (C9SC02281C-(cit29)/*[position()=1]) 2016; 52
Liu (C9SC02281C-(cit40)/*[position()=1]) 2015; 54
Zhai (C9SC02281C-(cit41)/*[position()=1]) 2018; 30
Hossain (C9SC02281C-(cit38)/*[position()=1]) 2012; 92
Huang (C9SC02281C-(cit4)/*[position()=1]) 2017; 91
Li (C9SC02281C-(cit15)/*[position()=1]) 2012; 134
Chatterjee (C9SC02281C-(cit16)/*[position()=1]) 2017; 12
Zhang (C9SC02281C-(cit26)/*[position()=1]) 2018; 140
Bi (C9SC02281C-(cit11)/*[position()=1]) 2015; 54
References_xml – volume: 134
  start-page: 5064
  year: 2012
  ident: C9SC02281C-(cit6)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja300721s
– volume: 140
  start-page: 4186
  year: 2018
  ident: C9SC02281C-(cit20)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11311
– volume: 91
  start-page: 417
  year: 2017
  ident: C9SC02281C-(cit4)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2016.12.061
– volume: 30
  start-page: 1802378
  year: 2018
  ident: C9SC02281C-(cit41)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802378
– volume: 12
  start-page: 12357
  year: 2018
  ident: C9SC02281C-(cit22)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b06322
– volume: 54
  start-page: 8144
  year: 2015
  ident: C9SC02281C-(cit11)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201501457
– volume: 6
  start-page: 386
  year: 2009
  ident: C9SC02281C-(cit27)/*[position()=1]
  publication-title: Mol. Pharm.
  doi: 10.1021/mp800115t
– volume: 9
  start-page: 4892
  year: 2018
  ident: C9SC02281C-(cit13)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC01001C
– volume: 98
  start-page: 1898
  year: 2003
  ident: C9SC02281C-(cit7)/*[position()=1]
  publication-title: Cancer
  doi: 10.1002/cncr.11753
– volume: 101
  start-page: 15275
  year: 2004
  ident: C9SC02281C-(cit8)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0407024101
– volume: 81
  start-page: 5446
  year: 2009
  ident: C9SC02281C-(cit3)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac900598d
– volume: 57
  start-page: 9739
  year: 2018
  ident: C9SC02281C-(cit35)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201804741
– volume: 94
  start-page: 1
  year: 2017
  ident: C9SC02281C-(cit9)/*[position()=1]
  publication-title: TrAC, Trends Anal. Chem.
  doi: 10.1016/j.trac.2017.06.011
– volume: 4
  start-page: 605
  year: 2016
  ident: C9SC02281C-(cit39)/*[position()=1]
  publication-title: Biomater. Sci.
  doi: 10.1039/C5BM00467E
– volume: 37
  start-page: 2584
  year: 2009
  ident: C9SC02281C-(cit36)/*[position()=1]
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp117
– volume: 54
  start-page: 8105
  year: 2015
  ident: C9SC02281C-(cit40)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201500478
– volume: 86
  start-page: 811
  year: 2016
  ident: C9SC02281C-(cit5)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2016.07.083
– volume: 12
  start-page: 1146
  year: 2018
  ident: C9SC02281C-(cit17)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b06699
– volume: 57
  start-page: 7131
  year: 2018
  ident: C9SC02281C-(cit24)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201802701
– volume: 47
  start-page: 7857
  year: 2008
  ident: C9SC02281C-(cit33)/*[position()=1]
  publication-title: Biochemistry
  doi: 10.1021/bi800773f
– volume: 140
  start-page: 258
  year: 2018
  ident: C9SC02281C-(cit21)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b09789
– volume: 9
  start-page: 5842
  year: 2018
  ident: C9SC02281C-(cit10)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC01981A
– volume: 5
  start-page: 493
  year: 2006
  ident: C9SC02281C-(cit28)/*[position()=1]
  publication-title: Photochem. Photobiol. Sci.
  doi: 10.1039/b600213g
– volume: 120
  start-page: 21
  year: 2018
  ident: C9SC02281C-(cit37)/*[position()=1]
  publication-title: Microvasc. Res.
  doi: 10.1016/j.mvr.2018.05.007
– volume: 5
  start-page: 845
  year: 2005
  ident: C9SC02281C-(cit1)/*[position()=1]
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1739
– volume: 45
  start-page: 2583
  year: 2016
  ident: C9SC02281C-(cit2)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00645G
– volume: 137
  start-page: 1730
  year: 2015
  ident: C9SC02281C-(cit23)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5101307
– volume: 92
  start-page: 1376
  year: 2012
  ident: C9SC02281C-(cit38)/*[position()=1]
  publication-title: Dyes Pigm.
  doi: 10.1016/j.dyepig.2011.09.016
– volume: 140
  start-page: 9758
  year: 2018
  ident: C9SC02281C-(cit18)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b06146
– volume: 135
  start-page: 7430
  year: 2013
  ident: C9SC02281C-(cit14)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4023978
– volume: 79
  start-page: 4754
  year: 2007
  ident: C9SC02281C-(cit25)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac0719305
– volume: 52
  start-page: 4219
  year: 2016
  ident: C9SC02281C-(cit29)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC08907G
– volume: 140
  start-page: 16589
  year: 2018
  ident: C9SC02281C-(cit19)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b08442
– volume: 87
  start-page: 6470
  year: 2015
  ident: C9SC02281C-(cit30)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.5b01634
– volume: 12
  start-page: 920
  year: 2017
  ident: C9SC02281C-(cit16)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.127
– volume: 134
  start-page: 13918
  year: 2012
  ident: C9SC02281C-(cit15)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja300984b
– volume: 90
  start-page: 6193
  year: 2018
  ident: C9SC02281C-(cit31)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b00722
– volume: 52
  start-page: 7939
  year: 2016
  ident: C9SC02281C-(cit42)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC02571D
– volume: 82
  start-page: 211
  year: 2002
  ident: C9SC02281C-(cit32)/*[position()=1]
  publication-title: Rev. Mol. Biotechnol.
  doi: 10.1016/S1389-0352(01)00039-3
– volume: 140
  start-page: 9361
  year: 2018
  ident: C9SC02281C-(cit26)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b04648
– volume: 46
  start-page: 4281
  year: 2017
  ident: C9SC02281C-(cit12)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00055C
– volume: 11
  start-page: 4060
  year: 2017
  ident: C9SC02281C-(cit34)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b00725
SSID ssj0000331527
Score 2.5995533
Snippet Nonenzymatic nucleic acid amplification techniques ( e.g. the hybridization chain reaction, HCR) have shown promising potential for amplified detection of...
Nonenzymatic nucleic acid amplification techniques ( the hybridization chain reaction, HCR) have shown promising potential for amplified detection of...
Nonenzymatic nucleic acid amplification techniques (e.g. the hybridization chain reaction, HCR) have shown promising potential for amplified detection of...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9758
SubjectTerms Amplification
Biomarkers
Chemistry
Collision dynamics
Confined spaces
Crosslinking
Deoxyribonucleic acid
DNA
Energy transfer
Fluorescence
Nanostructure
Nanotechnology
Photodynamic therapy
Reaction kinetics
Title Three-dimensional DNA nanostructures to improve the hyperbranched hybridization chain reaction
URI https://www.ncbi.nlm.nih.gov/pubmed/32055345
https://www.proquest.com/docview/2310568889
https://www.proquest.com/docview/2355941117
https://pubmed.ncbi.nlm.nih.gov/PMC6993746
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9MwGLZYd4AL4muQMSYjuKApkPgr8XHqQNOk7QArtBei2IlpJZROXXfYfj2v48RJaJGAS1TZb53W72P79cfzGKG3lKkYul4ZxmkZhcxoEiqeJyFXhlMdac6EJTifX4jTCTub8ml3bKxml6zVe323lVfyP16FNPCrZcn-g2d9oZAAn8G_8AQPw_Mvfbwqy7CwAv1OXOPo5OL4qMqrpZOFvVk5AYdFvXJQ1kHmHCaeK2Wv05hDrDm_tYythotpWcA1vcWRHfpxq9cVaGlAdvO3pXv1VhO-NcvPZ-2I2Es7WVY_wunCjwPn7pjuIg9ni99tZzlYVv0liVhabp6jgrqei0QsDgUnbsOl7Kc55SLf9fYQ5kS2mn5UJk7QvRmTIWZKtvb3EbVyqVpea6vjE-tuVPNnDbvMHbRLYDJBRmj389fJdObX4iJKm9t9_S9vlWyp_NAVMIxdNiYkm-dqd1btNTJ1uHL5CD1s5hn42IHmMbpXVk_Q_XF7vd9T9H0DPBjAg4fgweslbsCDATx4AB48AA-uwYNb8DxDk08fL8enYXPZRqjh765DJalIJM9NzolJUminJSlgpFSiMBoydKp4pFKr3q8NhOGlkSQVhsmUaZqLgu6hUbWsyhcIm0glhjNaaALxaU4UlCi0FpoKBRF2HKB3bTVmulGitxei_MzqExFUZmP5ZVxX-ThAb7ztldNf2Wp10Hoja9rndWZnLlykaSoD9NpnQy3bLbG8Kpc31gZm1AzG-yRAz53z_GsoiTinjAcoGbjVG1hl9mFOtZjXCu3CRv1MBGgPAODtOyAFaH97RnZVmP0_fesletC1tgM0AjCUryAkXqvDeinpsMH1L9Uduz8
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-dimensional+DNA+nanostructures+to+improve+the+hyperbranched+hybridization+chain+reaction&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Wang%2C+Jing&rft.au=Wang%2C+Dong-Xia&rft.au=Ma%2C+Jia-Yi&rft.au=Wang%2C+Ya-Xin&rft.date=2019-11-14&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=1&rft.issue=42&rft.spage=9758&rft.epage=9767&rft_id=info:doi/10.1039%2Fc9sc02281c&rft.externalDocID=c9sc02281c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon