Three-dimensional DNA nanostructures to improve the hyperbranched hybridization chain reaction
Nonenzymatic nucleic acid amplification techniques ( e.g. the hybridization chain reaction, HCR) have shown promising potential for amplified detection of biomarkers. However, the traditional HCR occurs through random diffusion of DNA hairpins, making the kinetics and efficiency quite low. By assemb...
Saved in:
Published in | Chemical science (Cambridge) Vol. 1; no. 42; pp. 9758 - 9767 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
14.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nonenzymatic nucleic acid amplification techniques (
e.g.
the hybridization chain reaction, HCR) have shown promising potential for amplified detection of biomarkers. However, the traditional HCR occurs through random diffusion of DNA hairpins, making the kinetics and efficiency quite low. By assembling DNA hairpins at the vertexes of tetrahedral DNA nanostructures (TDNs), the reaction kinetics of the HCR is greatly accelerated due to the synergetic contributions of multiple reaction orientations, increased collision probability and enhanced local concentrations. The proposed quadrivalent TDN (qTDN)-mediated hyperbranched HCR has a ∼70-fold faster reaction rate than the traditional HCR. The approximately 76% fluorescence resonance energy transfer (FRET) efficiency obtained is the highest in the reported DNA-based FRET sensing systems as far as we know. Moreover, qTDNs modified by hairpins can easily load drugs, freely traverse plasma membranes and be rapidly cross-linked
via
the target-triggered HCR in live cells. The reduced freedom of movement as a result of the large crosslinked structure might constrain the hyperbranched HCR in a confined environment, thus making it a promising candidate for
in situ
imaging and photodynamic therapy. Hence, we present a paradigm of perfect integration of DNA nanotechnology with nucleic acid amplification, thus paving a promising way to the improved performance of nucleic acid amplification techniques and their wider application.
Nonenzymatic nucleic acid amplification techniques (
e.g.
the hybridization chain reaction, HCR) have shown promising potential for amplified detection of biomarkers. |
---|---|
AbstractList | Nonenzymatic nucleic acid amplification techniques (
the hybridization chain reaction, HCR) have shown promising potential for amplified detection of biomarkers. However, the traditional HCR occurs through random diffusion of DNA hairpins, making the kinetics and efficiency quite low. By assembling DNA hairpins at the vertexes of tetrahedral DNA nanostructures (TDNs), the reaction kinetics of the HCR is greatly accelerated due to the synergetic contributions of multiple reaction orientations, increased collision probability and enhanced local concentrations. The proposed quadrivalent TDN (qTDN)-mediated hyperbranched HCR has a ∼70-fold faster reaction rate than the traditional HCR. The approximately 76% fluorescence resonance energy transfer (FRET) efficiency obtained is the highest in the reported DNA-based FRET sensing systems as far as we know. Moreover, qTDNs modified by hairpins can easily load drugs, freely traverse plasma membranes and be rapidly cross-linked
the target-triggered HCR in live cells. The reduced freedom of movement as a result of the large crosslinked structure might constrain the hyperbranched HCR in a confined environment, thus making it a promising candidate for
imaging and photodynamic therapy. Hence, we present a paradigm of perfect integration of DNA nanotechnology with nucleic acid amplification, thus paving a promising way to the improved performance of nucleic acid amplification techniques and their wider application. Nonenzymatic nucleic acid amplification techniques ( e.g. the hybridization chain reaction, HCR) have shown promising potential for amplified detection of biomarkers. However, the traditional HCR occurs through random diffusion of DNA hairpins, making the kinetics and efficiency quite low. By assembling DNA hairpins at the vertexes of tetrahedral DNA nanostructures (TDNs), the reaction kinetics of the HCR is greatly accelerated due to the synergetic contributions of multiple reaction orientations, increased collision probability and enhanced local concentrations. The proposed quadrivalent TDN (qTDN)-mediated hyperbranched HCR has a ∼70-fold faster reaction rate than the traditional HCR. The approximately 76% fluorescence resonance energy transfer (FRET) efficiency obtained is the highest in the reported DNA-based FRET sensing systems as far as we know. Moreover, qTDNs modified by hairpins can easily load drugs, freely traverse plasma membranes and be rapidly cross-linked via the target-triggered HCR in live cells. The reduced freedom of movement as a result of the large crosslinked structure might constrain the hyperbranched HCR in a confined environment, thus making it a promising candidate for in situ imaging and photodynamic therapy. Hence, we present a paradigm of perfect integration of DNA nanotechnology with nucleic acid amplification, thus paving a promising way to the improved performance of nucleic acid amplification techniques and their wider application. Nonenzymatic nucleic acid amplification techniques ( e.g. the hybridization chain reaction, HCR) have shown promising potential for amplified detection of biomarkers. Nonenzymatic nucleic acid amplification techniques (e.g. the hybridization chain reaction, HCR) have shown promising potential for amplified detection of biomarkers. However, the traditional HCR occurs through random diffusion of DNA hairpins, making the kinetics and efficiency quite low. By assembling DNA hairpins at the vertexes of tetrahedral DNA nanostructures (TDNs), the reaction kinetics of the HCR is greatly accelerated due to the synergetic contributions of multiple reaction orientations, increased collision probability and enhanced local concentrations. The proposed quadrivalent TDN (qTDN)-mediated hyperbranched HCR has a ∼70-fold faster reaction rate than the traditional HCR. The approximately 76% fluorescence resonance energy transfer (FRET) efficiency obtained is the highest in the reported DNA-based FRET sensing systems as far as we know. Moreover, qTDNs modified by hairpins can easily load drugs, freely traverse plasma membranes and be rapidly cross-linked via the target-triggered HCR in live cells. The reduced freedom of movement as a result of the large crosslinked structure might constrain the hyperbranched HCR in a confined environment, thus making it a promising candidate for in situ imaging and photodynamic therapy. Hence, we present a paradigm of perfect integration of DNA nanotechnology with nucleic acid amplification, thus paving a promising way to the improved performance of nucleic acid amplification techniques and their wider application. Nonenzymatic nucleic acid amplification techniques ( e.g. the hybridization chain reaction, HCR) have shown promising potential for amplified detection of biomarkers. Nonenzymatic nucleic acid amplification techniques ( e.g. the hybridization chain reaction, HCR) have shown promising potential for amplified detection of biomarkers. However, the traditional HCR occurs through random diffusion of DNA hairpins, making the kinetics and efficiency quite low. By assembling DNA hairpins at the vertexes of tetrahedral DNA nanostructures (TDNs), the reaction kinetics of the HCR is greatly accelerated due to the synergetic contributions of multiple reaction orientations, increased collision probability and enhanced local concentrations. The proposed quadrivalent TDN (qTDN)-mediated hyperbranched HCR has a ∼70-fold faster reaction rate than the traditional HCR. The approximately 76% fluorescence resonance energy transfer (FRET) efficiency obtained is the highest in the reported DNA-based FRET sensing systems as far as we know. Moreover, qTDNs modified by hairpins can easily load drugs, freely traverse plasma membranes and be rapidly cross-linked via the target-triggered HCR in live cells. The reduced freedom of movement as a result of the large crosslinked structure might constrain the hyperbranched HCR in a confined environment, thus making it a promising candidate for in situ imaging and photodynamic therapy. Hence, we present a paradigm of perfect integration of DNA nanotechnology with nucleic acid amplification, thus paving a promising way to the improved performance of nucleic acid amplification techniques and their wider application. Nonenzymatic nucleic acid amplification techniques (e.g. the hybridization chain reaction, HCR) have shown promising potential for amplified detection of biomarkers. However, the traditional HCR occurs through random diffusion of DNA hairpins, making the kinetics and efficiency quite low. By assembling DNA hairpins at the vertexes of tetrahedral DNA nanostructures (TDNs), the reaction kinetics of the HCR is greatly accelerated due to the synergetic contributions of multiple reaction orientations, increased collision probability and enhanced local concentrations. The proposed quadrivalent TDN (qTDN)-mediated hyperbranched HCR has a ∼70-fold faster reaction rate than the traditional HCR. The approximately 76% fluorescence resonance energy transfer (FRET) efficiency obtained is the highest in the reported DNA-based FRET sensing systems as far as we know. Moreover, qTDNs modified by hairpins can easily load drugs, freely traverse plasma membranes and be rapidly cross-linked via the target-triggered HCR in live cells. The reduced freedom of movement as a result of the large crosslinked structure might constrain the hyperbranched HCR in a confined environment, thus making it a promising candidate for in situ imaging and photodynamic therapy. Hence, we present a paradigm of perfect integration of DNA nanotechnology with nucleic acid amplification, thus paving a promising way to the improved performance of nucleic acid amplification techniques and their wider application.Nonenzymatic nucleic acid amplification techniques (e.g. the hybridization chain reaction, HCR) have shown promising potential for amplified detection of biomarkers. However, the traditional HCR occurs through random diffusion of DNA hairpins, making the kinetics and efficiency quite low. By assembling DNA hairpins at the vertexes of tetrahedral DNA nanostructures (TDNs), the reaction kinetics of the HCR is greatly accelerated due to the synergetic contributions of multiple reaction orientations, increased collision probability and enhanced local concentrations. The proposed quadrivalent TDN (qTDN)-mediated hyperbranched HCR has a ∼70-fold faster reaction rate than the traditional HCR. The approximately 76% fluorescence resonance energy transfer (FRET) efficiency obtained is the highest in the reported DNA-based FRET sensing systems as far as we know. Moreover, qTDNs modified by hairpins can easily load drugs, freely traverse plasma membranes and be rapidly cross-linked via the target-triggered HCR in live cells. The reduced freedom of movement as a result of the large crosslinked structure might constrain the hyperbranched HCR in a confined environment, thus making it a promising candidate for in situ imaging and photodynamic therapy. Hence, we present a paradigm of perfect integration of DNA nanotechnology with nucleic acid amplification, thus paving a promising way to the improved performance of nucleic acid amplification techniques and their wider application. Nonenzymatic nucleic acid amplification techniques ( e.g. the hybridization chain reaction, HCR) have shown promising potential for amplified detection of biomarkers. However, the traditional HCR occurs through random diffusion of DNA hairpins, making the kinetics and efficiency quite low. By assembling DNA hairpins at the vertexes of tetrahedral DNA nanostructures (TDNs), the reaction kinetics of the HCR is greatly accelerated due to the synergetic contributions of multiple reaction orientations, increased collision probability and enhanced local concentrations. The proposed quadrivalent TDN (qTDN)-mediated hyperbranched HCR has a ∼70-fold faster reaction rate than the traditional HCR. The approximately 76% fluorescence resonance energy transfer (FRET) efficiency obtained is the highest in the reported DNA-based FRET sensing systems as far as we know. Moreover, qTDNs modified by hairpins can easily load drugs, freely traverse plasma membranes and be rapidly cross-linked via the target-triggered HCR in live cells. The reduced freedom of movement as a result of the large crosslinked structure might constrain the hyperbranched HCR in a confined environment, thus making it a promising candidate for in situ imaging and photodynamic therapy. Hence, we present a paradigm of perfect integration of DNA nanotechnology with nucleic acid amplification, thus paving a promising way to the improved performance of nucleic acid amplification techniques and their wider application. |
Author | Ma, Jia-Yi Wang, Ya-Xin Kong, De-Ming Wang, Dong-Xia Wang, Jing |
AuthorAffiliation | Nankai University State Key Laboratory of Medicinal Chemical Biology College of Chemistry Research Centre for Analytical Sciences Tianjin Key Laboratory of Biosensing and Molecular Recognition Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) |
AuthorAffiliation_xml | – name: Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – name: Tianjin Key Laboratory of Biosensing and Molecular Recognition – name: Research Centre for Analytical Sciences – name: College of Chemistry – name: State Key Laboratory of Medicinal Chemical Biology – name: Nankai University – name: b Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin , 300071 , P. R. China – name: a State Key Laboratory of Medicinal Chemical Biology , Tianjin Key Laboratory of Biosensing and Molecular Recognition , Research Centre for Analytical Sciences , College of Chemistry , Nankai University , Tianjin 300071 , P. R. China . Email: kongdem@nankai.edu.cn |
Author_xml | – sequence: 1 givenname: Jing surname: Wang fullname: Wang, Jing – sequence: 2 givenname: Dong-Xia surname: Wang fullname: Wang, Dong-Xia – sequence: 3 givenname: Jia-Yi surname: Ma fullname: Ma, Jia-Yi – sequence: 4 givenname: Ya-Xin surname: Wang fullname: Wang, Ya-Xin – sequence: 5 givenname: De-Ming surname: Kong fullname: Kong, De-Ming |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32055345$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1TAQhS3UipbSDXtQEBuEFPAjTuINUhUerVTBgrLFcpwxcZXYwXYqlV-Pb2-50ArhjT2ab47OzPgR2nPeAUJPCH5NMBNvtIgaU9oS_QAdUlyRsuZM7O3eFB-g4xgvcT6MEU6bh-iAUcw5q_gh-nYxBoBysDO4aL1TU_Hu00nhlPMxhVWnNUAski_svAR_BUUaoRivFwh9UE6PMOSoD3awP1XK9YUelXVFAKU34WO0b9QU4fj2PkJfP7y_6E7L888fz7qT81Jng6nsBasbwZVRnJqmZRoDHZqa9vVgdE7otue4bxtMhDaUUTCCtrWpRFtppuqBHaG3W91l7WcYNLgU1CSXYGcVrqVXVt7NODvK7_5K1kKwpqqzwMtbgeB_rBCTnG3UME3KgV-jpIxzURFCmoy-uIde-jXkyW0ognndtq3I1LO_He2s_B59Bl5tAR18jAHMDiFYblYrO_Glu1ltl2F8D9Y23Qw8d2Onf5c835aEqHfSf36LXAaTmaf_Y9gvMZq8DA |
CitedBy_id | crossref_primary_10_1021_acsnano_0c10844 crossref_primary_10_1016_j_snb_2023_133660 crossref_primary_10_1016_j_talanta_2021_122422 crossref_primary_10_1039_D1SC00587A crossref_primary_10_1016_j_bioactmat_2023_10_025 crossref_primary_10_1016_j_scitotenv_2021_147212 crossref_primary_10_1016_j_cclet_2022_05_020 crossref_primary_10_1002_admt_202400504 crossref_primary_10_2139_ssrn_4002174 crossref_primary_10_1002_ange_202001123 crossref_primary_10_1016_j_jhazmat_2024_135115 crossref_primary_10_1016_j_cej_2022_136838 crossref_primary_10_1039_D1AN00275A crossref_primary_10_1039_D0BM00931H crossref_primary_10_1039_D3SC01960H crossref_primary_10_1016_j_trac_2023_116960 crossref_primary_10_1021_acs_nanolett_1c04818 crossref_primary_10_1002_smll_202007355 crossref_primary_10_1021_acs_analchem_4c03012 crossref_primary_10_1039_D3AN00689A crossref_primary_10_1016_j_aca_2021_338908 crossref_primary_10_1007_s00604_023_05848_2 crossref_primary_10_1021_acs_analchem_3c02014 crossref_primary_10_1039_D0CC08172H crossref_primary_10_1039_D4CC04534C crossref_primary_10_1002_asia_202101315 crossref_primary_10_1021_acs_analchem_4c06879 crossref_primary_10_1021_acsami_1c09000 crossref_primary_10_1016_j_bios_2022_114183 crossref_primary_10_1016_j_snb_2024_135797 crossref_primary_10_1016_j_cbpa_2021_102104 crossref_primary_10_1016_j_foodchem_2023_135891 crossref_primary_10_2139_ssrn_4022154 crossref_primary_10_1002_adfm_202401711 crossref_primary_10_3390_chemistry5020098 crossref_primary_10_1016_j_snb_2020_129335 crossref_primary_10_1016_j_snb_2022_132955 crossref_primary_10_1002_cnma_202200459 crossref_primary_10_1021_acs_jafc_2c05831 crossref_primary_10_1007_s11426_024_2294_x crossref_primary_10_1021_acs_analchem_2c00190 crossref_primary_10_1021_jacs_0c12970 crossref_primary_10_1038_s41378_024_00861_8 crossref_primary_10_1039_D3CC02427J crossref_primary_10_1039_D1AN01371H crossref_primary_10_1016_j_bios_2022_114152 crossref_primary_10_1039_D2SC05568F crossref_primary_10_2174_1574888X15666200422103415 crossref_primary_10_1016_j_talanta_2023_124871 crossref_primary_10_1039_D1NJ03913J crossref_primary_10_1039_D2AN00080F crossref_primary_10_1021_acs_analchem_2c00974 crossref_primary_10_1021_acs_analchem_9b05648 crossref_primary_10_13103_JFHS_2023_38_5_279 crossref_primary_10_1016_j_bios_2022_114836 crossref_primary_10_1007_s44211_023_00304_w crossref_primary_10_1016_j_bios_2021_113739 crossref_primary_10_1039_D4RA08325C crossref_primary_10_1021_acssensors_0c01453 crossref_primary_10_1002_adhm_202302652 crossref_primary_10_1016_j_bios_2021_113731 crossref_primary_10_1016_j_trac_2023_116933 crossref_primary_10_1016_j_aca_2021_339018 crossref_primary_10_1007_s12010_024_05022_1 crossref_primary_10_1016_j_aca_2021_338681 crossref_primary_10_1016_j_talanta_2023_124645 crossref_primary_10_1021_cbe_4c00164 crossref_primary_10_1016_j_bios_2024_116601 crossref_primary_10_1021_acs_analchem_1c00873 crossref_primary_10_1021_acsnano_1c06117 crossref_primary_10_1021_acsami_3c06626 crossref_primary_10_1039_D3TB02947F crossref_primary_10_1002_adsr_202200102 crossref_primary_10_1016_j_talanta_2024_126665 crossref_primary_10_1021_acsami_3c06742 crossref_primary_10_1021_acs_analchem_2c02110 crossref_primary_10_1021_acs_analchem_4c01438 crossref_primary_10_3389_fchem_2023_1134863 crossref_primary_10_1021_acsnano_3c01374 crossref_primary_10_1016_j_bios_2021_113205 crossref_primary_10_1016_j_cej_2024_152840 crossref_primary_10_1016_j_cej_2023_148212 crossref_primary_10_1039_D0CC01626H crossref_primary_10_1021_acs_nanolett_4c03099 crossref_primary_10_1002_anse_202400009 crossref_primary_10_1039_D1QM00141H crossref_primary_10_1016_j_bioelechem_2024_108797 crossref_primary_10_1016_j_talanta_2023_125465 crossref_primary_10_1021_acs_analchem_5c00173 crossref_primary_10_1016_j_aca_2020_10_035 crossref_primary_10_1021_acs_analchem_3c00701 crossref_primary_10_1016_j_talanta_2021_122637 crossref_primary_10_1039_D1SC04229G crossref_primary_10_1039_D2TB02663E crossref_primary_10_1016_j_semcancer_2021_12_012 crossref_primary_10_1016_j_snb_2025_137431 crossref_primary_10_1016_j_aca_2020_12_050 crossref_primary_10_1016_j_cej_2020_127258 crossref_primary_10_1016_j_microc_2022_107989 crossref_primary_10_1002_anie_202014798 crossref_primary_10_1021_acs_analchem_0c04483 crossref_primary_10_1016_j_bios_2022_114009 crossref_primary_10_1016_j_bios_2020_112814 crossref_primary_10_1016_j_bios_2021_113708 crossref_primary_10_1021_acs_analchem_9b03659 crossref_primary_10_1016_j_talanta_2021_122846 crossref_primary_10_1016_j_talanta_2022_123219 crossref_primary_10_1002_admi_202000292 crossref_primary_10_1002_smll_202404641 crossref_primary_10_1021_acsmaterialslett_4c00650 crossref_primary_10_1039_D1CC02455H crossref_primary_10_1149_2754_2726_ace068 crossref_primary_10_2139_ssrn_4165890 crossref_primary_10_1016_j_bios_2021_113783 crossref_primary_10_1016_j_snb_2022_132997 crossref_primary_10_1002_agt2_166 crossref_primary_10_1016_j_ab_2021_114260 crossref_primary_10_1039_D1SC01269J crossref_primary_10_1002_ange_202014798 crossref_primary_10_1016_j_bios_2022_114077 crossref_primary_10_1021_acs_bioconjchem_1c00375 crossref_primary_10_1002_smll_202204108 crossref_primary_10_1021_acs_analchem_4c00754 crossref_primary_10_1039_D0TB02315A crossref_primary_10_1080_10739149_2020_1781162 crossref_primary_10_1021_acs_analchem_3c02822 crossref_primary_10_1002_anie_202001123 crossref_primary_10_1021_acs_nanolett_2c02934 crossref_primary_10_1016_j_scitotenv_2021_152629 crossref_primary_10_1088_2050_6120_aba357 crossref_primary_10_1016_j_bios_2022_115051 crossref_primary_10_1016_j_snb_2024_135656 crossref_primary_10_1016_j_snb_2021_130387 crossref_primary_10_1021_acs_analchem_1c04113 |
Cites_doi | 10.1021/ja300721s 10.1021/jacs.7b11311 10.1016/j.bios.2016.12.061 10.1002/adma.201802378 10.1021/acsnano.8b06322 10.1002/anie.201501457 10.1021/mp800115t 10.1039/C8SC01001C 10.1002/cncr.11753 10.1073/pnas.0407024101 10.1021/ac900598d 10.1002/anie.201804741 10.1016/j.trac.2017.06.011 10.1039/C5BM00467E 10.1093/nar/gkp117 10.1002/anie.201500478 10.1016/j.bios.2016.07.083 10.1021/acsnano.7b06699 10.1002/anie.201802701 10.1021/bi800773f 10.1021/jacs.7b09789 10.1039/C8SC01981A 10.1039/b600213g 10.1016/j.mvr.2018.05.007 10.1038/nrc1739 10.1039/C5CS00645G 10.1021/ja5101307 10.1016/j.dyepig.2011.09.016 10.1021/jacs.8b06146 10.1021/ja4023978 10.1021/ac0719305 10.1039/C5CC08907G 10.1021/jacs.8b08442 10.1021/acs.analchem.5b01634 10.1038/nnano.2017.127 10.1021/ja300984b 10.1021/acs.analchem.8b00722 10.1039/C6CC02571D 10.1016/S1389-0352(01)00039-3 10.1021/jacs.8b04648 10.1039/C7CS00055C 10.1021/acsnano.7b00725 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry 2019. Copyright Royal Society of Chemistry 2019 This journal is © The Royal Society of Chemistry 2019 2019 |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry 2019. – notice: Copyright Royal Society of Chemistry 2019 – notice: This journal is © The Royal Society of Chemistry 2019 2019 |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1039/c9sc02281c |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2041-6539 |
EndPage | 9767 |
ExternalDocumentID | PMC6993746 32055345 10_1039_C9SC02281C c9sc02281c |
Genre | Journal Article |
GroupedDBID | 0-7 0R 705 7~J AAGNR AAIWI AAPBV ABGFH ACGFS ACIWK ADBBV ADMRA AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS AOIJS AUDPV AZFZN BCNDV BLAPV BSQNT C6K CKLOX D0L EE0 EF- F5P GROUPED_DOAJ HYE HZ H~N JG O-G O9- OK1 R7C R7D RCNCU ROYLF RPM RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH SMJ 0R~ 53G AAEMU AAFWJ AAJAE AARTK AAXHV AAYXX ABEMK ABIQK ABPDG ABXOH AEFDR AESAV AFLYV AFPKN AGEGJ AGRSR AHGCF AKBGW ANUXI APEMP CITATION H13 HZ~ PGMZT RAOCF RNS -JG NPM 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c520t-b936795afa52f783c0e2d762b6dfc795c8b50b87019cf232ef9286f4984c3a6d3 |
ISSN | 2041-6520 |
IngestDate | Thu Aug 21 18:30:36 EDT 2025 Fri Jul 11 16:11:36 EDT 2025 Fri Jul 25 08:06:16 EDT 2025 Thu Jan 02 22:59:58 EST 2025 Thu Apr 24 23:05:31 EDT 2025 Tue Jul 01 03:46:30 EDT 2025 Sat Jan 08 04:36:59 EST 2022 Wed Nov 11 00:25:30 EST 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Language | English |
License | This journal is © The Royal Society of Chemistry 2019. This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0) |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c520t-b936795afa52f783c0e2d762b6dfc795c8b50b87019cf232ef9286f4984c3a6d3 |
Notes | 10.1039/c9sc02281c This work is dedicated to 100th anniversary of Nankai University. Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9216-8040 |
OpenAccessLink | http://dx.doi.org/10.1039/c9sc02281c |
PMID | 32055345 |
PQID | 2310568889 |
PQPubID | 2047492 |
PageCount | 1 |
ParticipantIDs | pubmed_primary_32055345 proquest_journals_2310568889 crossref_citationtrail_10_1039_C9SC02281C proquest_miscellaneous_2355941117 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6993746 crossref_primary_10_1039_C9SC02281C rsc_primary_c9sc02281c |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-14 |
PublicationDateYYYYMMDD | 2019-11-14 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical science (Cambridge) |
PublicationTitleAlternate | Chem Sci |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Li (C9SC02281C-(cit3)/*[position()=1]) 2009; 81 Engelen (C9SC02281C-(cit18)/*[position()=1]) 2018; 140 Ogawa (C9SC02281C-(cit27)/*[position()=1]) 2009; 6 Bui (C9SC02281C-(cit17)/*[position()=1]) 2018; 12 Ang (C9SC02281C-(cit31)/*[position()=1]) 2018; 90 Xue (C9SC02281C-(cit35)/*[position()=1]) 2018; 57 Wickramasinghe (C9SC02281C-(cit36)/*[position()=1]) 2009; 37 Liu (C9SC02281C-(cit22)/*[position()=1]) 2018; 12 Dirks (C9SC02281C-(cit8)/*[position()=1]) 2004; 101 Iqbal (C9SC02281C-(cit33)/*[position()=1]) 2008; 47 Kim (C9SC02281C-(cit39)/*[position()=1]) 2016; 4 Yang (C9SC02281C-(cit9)/*[position()=1]) 2017; 94 Liu (C9SC02281C-(cit23)/*[position()=1]) 2015; 137 Huang (C9SC02281C-(cit13)/*[position()=1]) 2018; 9 He (C9SC02281C-(cit34)/*[position()=1]) 2017; 11 Liang (C9SC02281C-(cit20)/*[position()=1]) 2018; 140 Wang (C9SC02281C-(cit37)/*[position()=1]) 2018; 120 Li (C9SC02281C-(cit19)/*[position()=1]) 2018; 140 Zhang (C9SC02281C-(cit42)/*[position()=1]) 2016; 52 Jiang (C9SC02281C-(cit14)/*[position()=1]) 2013; 135 Cissell (C9SC02281C-(cit25)/*[position()=1]) 2007; 79 Meng (C9SC02281C-(cit2)/*[position()=1]) 2016; 45 Ludwig (C9SC02281C-(cit1)/*[position()=1]) 2005; 5 He (C9SC02281C-(cit21)/*[position()=1]) 2018; 140 Liu (C9SC02281C-(cit24)/*[position()=1]) 2018; 57 Bi (C9SC02281C-(cit12)/*[position()=1]) 2017; 46 Santin (C9SC02281C-(cit7)/*[position()=1]) 2003; 98 Yin (C9SC02281C-(cit6)/*[position()=1]) 2012; 134 Dietrich (C9SC02281C-(cit32)/*[position()=1]) 2002; 82 Wang (C9SC02281C-(cit10)/*[position()=1]) 2018; 9 Jockusch (C9SC02281C-(cit28)/*[position()=1]) 2006; 5 Wang (C9SC02281C-(cit30)/*[position()=1]) 2015; 87 Du (C9SC02281C-(cit5)/*[position()=1]) 2016; 86 Ang (C9SC02281C-(cit29)/*[position()=1]) 2016; 52 Liu (C9SC02281C-(cit40)/*[position()=1]) 2015; 54 Zhai (C9SC02281C-(cit41)/*[position()=1]) 2018; 30 Hossain (C9SC02281C-(cit38)/*[position()=1]) 2012; 92 Huang (C9SC02281C-(cit4)/*[position()=1]) 2017; 91 Li (C9SC02281C-(cit15)/*[position()=1]) 2012; 134 Chatterjee (C9SC02281C-(cit16)/*[position()=1]) 2017; 12 Zhang (C9SC02281C-(cit26)/*[position()=1]) 2018; 140 Bi (C9SC02281C-(cit11)/*[position()=1]) 2015; 54 |
References_xml | – volume: 134 start-page: 5064 year: 2012 ident: C9SC02281C-(cit6)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja300721s – volume: 140 start-page: 4186 year: 2018 ident: C9SC02281C-(cit20)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11311 – volume: 91 start-page: 417 year: 2017 ident: C9SC02281C-(cit4)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.12.061 – volume: 30 start-page: 1802378 year: 2018 ident: C9SC02281C-(cit41)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201802378 – volume: 12 start-page: 12357 year: 2018 ident: C9SC02281C-(cit22)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.8b06322 – volume: 54 start-page: 8144 year: 2015 ident: C9SC02281C-(cit11)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201501457 – volume: 6 start-page: 386 year: 2009 ident: C9SC02281C-(cit27)/*[position()=1] publication-title: Mol. Pharm. doi: 10.1021/mp800115t – volume: 9 start-page: 4892 year: 2018 ident: C9SC02281C-(cit13)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C8SC01001C – volume: 98 start-page: 1898 year: 2003 ident: C9SC02281C-(cit7)/*[position()=1] publication-title: Cancer doi: 10.1002/cncr.11753 – volume: 101 start-page: 15275 year: 2004 ident: C9SC02281C-(cit8)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0407024101 – volume: 81 start-page: 5446 year: 2009 ident: C9SC02281C-(cit3)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac900598d – volume: 57 start-page: 9739 year: 2018 ident: C9SC02281C-(cit35)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201804741 – volume: 94 start-page: 1 year: 2017 ident: C9SC02281C-(cit9)/*[position()=1] publication-title: TrAC, Trends Anal. Chem. doi: 10.1016/j.trac.2017.06.011 – volume: 4 start-page: 605 year: 2016 ident: C9SC02281C-(cit39)/*[position()=1] publication-title: Biomater. Sci. doi: 10.1039/C5BM00467E – volume: 37 start-page: 2584 year: 2009 ident: C9SC02281C-(cit36)/*[position()=1] publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp117 – volume: 54 start-page: 8105 year: 2015 ident: C9SC02281C-(cit40)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201500478 – volume: 86 start-page: 811 year: 2016 ident: C9SC02281C-(cit5)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.07.083 – volume: 12 start-page: 1146 year: 2018 ident: C9SC02281C-(cit17)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b06699 – volume: 57 start-page: 7131 year: 2018 ident: C9SC02281C-(cit24)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201802701 – volume: 47 start-page: 7857 year: 2008 ident: C9SC02281C-(cit33)/*[position()=1] publication-title: Biochemistry doi: 10.1021/bi800773f – volume: 140 start-page: 258 year: 2018 ident: C9SC02281C-(cit21)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b09789 – volume: 9 start-page: 5842 year: 2018 ident: C9SC02281C-(cit10)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C8SC01981A – volume: 5 start-page: 493 year: 2006 ident: C9SC02281C-(cit28)/*[position()=1] publication-title: Photochem. Photobiol. Sci. doi: 10.1039/b600213g – volume: 120 start-page: 21 year: 2018 ident: C9SC02281C-(cit37)/*[position()=1] publication-title: Microvasc. Res. doi: 10.1016/j.mvr.2018.05.007 – volume: 5 start-page: 845 year: 2005 ident: C9SC02281C-(cit1)/*[position()=1] publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1739 – volume: 45 start-page: 2583 year: 2016 ident: C9SC02281C-(cit2)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00645G – volume: 137 start-page: 1730 year: 2015 ident: C9SC02281C-(cit23)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5101307 – volume: 92 start-page: 1376 year: 2012 ident: C9SC02281C-(cit38)/*[position()=1] publication-title: Dyes Pigm. doi: 10.1016/j.dyepig.2011.09.016 – volume: 140 start-page: 9758 year: 2018 ident: C9SC02281C-(cit18)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b06146 – volume: 135 start-page: 7430 year: 2013 ident: C9SC02281C-(cit14)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4023978 – volume: 79 start-page: 4754 year: 2007 ident: C9SC02281C-(cit25)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac0719305 – volume: 52 start-page: 4219 year: 2016 ident: C9SC02281C-(cit29)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC08907G – volume: 140 start-page: 16589 year: 2018 ident: C9SC02281C-(cit19)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b08442 – volume: 87 start-page: 6470 year: 2015 ident: C9SC02281C-(cit30)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b01634 – volume: 12 start-page: 920 year: 2017 ident: C9SC02281C-(cit16)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.127 – volume: 134 start-page: 13918 year: 2012 ident: C9SC02281C-(cit15)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja300984b – volume: 90 start-page: 6193 year: 2018 ident: C9SC02281C-(cit31)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b00722 – volume: 52 start-page: 7939 year: 2016 ident: C9SC02281C-(cit42)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C6CC02571D – volume: 82 start-page: 211 year: 2002 ident: C9SC02281C-(cit32)/*[position()=1] publication-title: Rev. Mol. Biotechnol. doi: 10.1016/S1389-0352(01)00039-3 – volume: 140 start-page: 9361 year: 2018 ident: C9SC02281C-(cit26)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b04648 – volume: 46 start-page: 4281 year: 2017 ident: C9SC02281C-(cit12)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00055C – volume: 11 start-page: 4060 year: 2017 ident: C9SC02281C-(cit34)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b00725 |
SSID | ssj0000331527 |
Score | 2.5995533 |
Snippet | Nonenzymatic nucleic acid amplification techniques (
e.g.
the hybridization chain reaction, HCR) have shown promising potential for amplified detection of... Nonenzymatic nucleic acid amplification techniques ( the hybridization chain reaction, HCR) have shown promising potential for amplified detection of... Nonenzymatic nucleic acid amplification techniques (e.g. the hybridization chain reaction, HCR) have shown promising potential for amplified detection of... |
SourceID | pubmedcentral proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9758 |
SubjectTerms | Amplification Biomarkers Chemistry Collision dynamics Confined spaces Crosslinking Deoxyribonucleic acid DNA Energy transfer Fluorescence Nanostructure Nanotechnology Photodynamic therapy Reaction kinetics |
Title | Three-dimensional DNA nanostructures to improve the hyperbranched hybridization chain reaction |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32055345 https://www.proquest.com/docview/2310568889 https://www.proquest.com/docview/2355941117 https://pubmed.ncbi.nlm.nih.gov/PMC6993746 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9MwGLZYd4AL4muQMSYjuKApkPgr8XHqQNOk7QArtBei2IlpJZROXXfYfj2v48RJaJGAS1TZb53W72P79cfzGKG3lKkYul4ZxmkZhcxoEiqeJyFXhlMdac6EJTifX4jTCTub8ml3bKxml6zVe323lVfyP16FNPCrZcn-g2d9oZAAn8G_8AQPw_Mvfbwqy7CwAv1OXOPo5OL4qMqrpZOFvVk5AYdFvXJQ1kHmHCaeK2Wv05hDrDm_tYythotpWcA1vcWRHfpxq9cVaGlAdvO3pXv1VhO-NcvPZ-2I2Es7WVY_wunCjwPn7pjuIg9ni99tZzlYVv0liVhabp6jgrqei0QsDgUnbsOl7Kc55SLf9fYQ5kS2mn5UJk7QvRmTIWZKtvb3EbVyqVpea6vjE-tuVPNnDbvMHbRLYDJBRmj389fJdObX4iJKm9t9_S9vlWyp_NAVMIxdNiYkm-dqd1btNTJ1uHL5CD1s5hn42IHmMbpXVk_Q_XF7vd9T9H0DPBjAg4fgweslbsCDATx4AB48AA-uwYNb8DxDk08fL8enYXPZRqjh765DJalIJM9NzolJUminJSlgpFSiMBoydKp4pFKr3q8NhOGlkSQVhsmUaZqLgu6hUbWsyhcIm0glhjNaaALxaU4UlCi0FpoKBRF2HKB3bTVmulGitxei_MzqExFUZmP5ZVxX-ThAb7ztldNf2Wp10Hoja9rndWZnLlykaSoD9NpnQy3bLbG8Kpc31gZm1AzG-yRAz53z_GsoiTinjAcoGbjVG1hl9mFOtZjXCu3CRv1MBGgPAODtOyAFaH97RnZVmP0_fesletC1tgM0AjCUryAkXqvDeinpsMH1L9Uduz8 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-dimensional+DNA+nanostructures+to+improve+the+hyperbranched+hybridization+chain+reaction&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Wang%2C+Jing&rft.au=Wang%2C+Dong-Xia&rft.au=Ma%2C+Jia-Yi&rft.au=Wang%2C+Ya-Xin&rft.date=2019-11-14&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=1&rft.issue=42&rft.spage=9758&rft.epage=9767&rft_id=info:doi/10.1039%2Fc9sc02281c&rft.externalDocID=c9sc02281c |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |