Dynamic Stability of Passive Bipedal Walking on Rough Terrain: A Preliminary Simulation Study

A simplified 2D passive dynamic model was simulated to walk down on a rough slope surface defined by deterministic profiles to investigate how the walking stability changes with increasing surface roughness. Our results show that the passive walker can walk on rough surfaces subject to surface rough...

Full description

Saved in:
Bibliographic Details
Published inJournal of bionics engineering Vol. 9; no. 4; pp. 423 - 433
Main Authors Afshar, Parsa Nassiri, Ren, Lei
Format Journal Article
LanguageEnglish
Published Singapore Elsevier Ltd 01.12.2012
Springer Singapore
Subjects
Online AccessGet full text
ISSN1672-6529
2543-2141
DOI10.1016/S1672-6529(11)60139-X

Cover

Loading…
Abstract A simplified 2D passive dynamic model was simulated to walk down on a rough slope surface defined by deterministic profiles to investigate how the walking stability changes with increasing surface roughness. Our results show that the passive walker can walk on rough surfaces subject to surface roughness up to approximately 0.1% of its leg length. This indicates that bipedal walkers based on passive dynamics may possess some intrinsic stability to adapt to rough terrains although the maxi- mum roughness they can tolerate is small. Orbital stability method was used to quantify the walking stability before the walker started to fall over, It was found that the average maximum Floquet multiplier increases with surface roughness in a non-linear form. Although the passive walker remained orbitally stable for all the simulation cases, the results suggest that the possibility of the bipedal model moving away from its limit cycle increases with the surface roughness if subjected to additional perturbations. The number of consecutive steps before falling was used to measure the walking stability after the passive walker started to fall over. The results show that the number of steps before falling decreases exponentially with the increase in surface roughness. When the roughness magnitude approached to 0.73% of the walker's leg length, it fell down to the ground as soon as it entered into the uneven terrain. It was also found that shifting the phase angle of the surface profile has apparent affect on the system stability. This is probably because point contact was used to simulate the heel strikes and the resulted variations in system states at heel strikes may have pronounced impact on the passive gaits, which have narrow basins of attraction. These results would provide insight into how the dynamic stability of passive bipedal walkers evolves with increasing surface roughness.
AbstractList A simplified 2D passive dynamic model was simulated to walk down on a rough slope surface defined by deterministic profiles to investigate how the walking stability changes with increasing surface roughness. Our results show that the passive walker can walk on rough surfaces subject to surface roughness up to approximately 0.1% of its leg length. This indicates that bipedal walkers based on passive dynamics may possess some intrinsic stability to adapt to rough terrains although the maximum roughness they can tolerate is small. Orbital stability method was used to quantify the walking stability before the walker started to fall over. It was found that the average maximum Floquet multiplier increases with surface roughness in a non-linear form. Although the passive walker remained orbitally stable for all the simulation cases, the results suggest that the possibility of the bipedal model moving away from its limit cycle increases with the surface roughness if subjected to additional perturbations. The number of consecutive steps before falling was used to measure the walking stability after the passive walker started to fall over. The results show that the number of steps before falling decreases exponentially with the increase in surface roughness. When the roughness magnitude approached to 0.73% of the walker's leg length, it fell down to the ground as soon as it entered into the uneven terrain. It was also found that shifting the phase angle of the surface profile has apparent affect on the system stability. This is probably because point contact was used to simulate the heel strikes and the resulted variations in system states at heel strikes may have pronounced impact on the passive gaits, which have narrow basins of attraction. These results would provide insight into how the dynamic stability of passive bipedal walkers evolves with increasing surface roughness.
A simplified 2D passive dynamic model was simulated to walk down on a rough slope surface defined by deterministic profiles to investigate how the walking stability changes with increasing surface roughness. Our results show that the passive walker can walk on rough surfaces subject to surface roughness up to approximately 0.1% of its leg length. This indicates that bipedal walkers based on passive dynamics may possess some intrinsic stability to adapt to rough terrains although the maxi- mum roughness they can tolerate is small. Orbital stability method was used to quantify the walking stability before the walker started to fall over, It was found that the average maximum Floquet multiplier increases with surface roughness in a non-linear form. Although the passive walker remained orbitally stable for all the simulation cases, the results suggest that the possibility of the bipedal model moving away from its limit cycle increases with the surface roughness if subjected to additional perturbations. The number of consecutive steps before falling was used to measure the walking stability after the passive walker started to fall over. The results show that the number of steps before falling decreases exponentially with the increase in surface roughness. When the roughness magnitude approached to 0.73% of the walker's leg length, it fell down to the ground as soon as it entered into the uneven terrain. It was also found that shifting the phase angle of the surface profile has apparent affect on the system stability. This is probably because point contact was used to simulate the heel strikes and the resulted variations in system states at heel strikes may have pronounced impact on the passive gaits, which have narrow basins of attraction. These results would provide insight into how the dynamic stability of passive bipedal walkers evolves with increasing surface roughness.
Author Ren, Lei
Afshar, Parsa Nassiri
AuthorAffiliation School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changehun 130022, P.R. China
Author_xml – sequence: 1
  givenname: Parsa Nassiri
  surname: Afshar
  fullname: Afshar, Parsa Nassiri
  organization: School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK
– sequence: 2
  givenname: Lei
  surname: Ren
  fullname: Ren, Lei
  email: lei.ren@manchester.ac.uk
  organization: School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK
BookMark eNqFkc1u1DAURi1UJKaFR0Ayu7II-PoviVigtkBBqtSKKaI7y3GcqUtiT-2k0rwKz8I79RVwZ6ouusnKm3Puvf6-fbTng7cIvQXyAQjIj0uQJS2koPUhwHtJgNXF1Qu0oIKzggKHPbR4Ql6h_ZRuCBE1rdgCqS8brwdn8HLUjevduMGhwxc6JXdn8bFb21b3-Lfu_zi_wsHjn2FaXeNLG6N2_v7fX3yEL6Lt3eC8jhu8dMPU69FlcjlO7eY1etnpPtk3j-8B-vXt6-XJ9-Ls_PTHydFZYQQlY9FURlJOTMVazhrBTMuNrVpaE2q05F3DTWNJ_lBDyo4J27C25LUFI4BC1XXsAB3u5q5juJ1sGtXgkrF9r70NU1IgBXBBRCnmUQGMV5JIMo_mDKWoJYWMftqhJoaUou2UceM2iDEn1Ssg6qEstS1LPTShANS2LHWVbfHMXkc35EBnPbnzUub9ykZ1E6boc9Kz4uedaHMpdy6LyTjrjW1dtGZUbXCzE949nnwd_Oo2b3-6mbOSCikE-w8IZ8sb
CitedBy_id crossref_primary_10_1016_j_cnsns_2014_05_003
crossref_primary_10_5772_62330
crossref_primary_10_1007_s40435_016_0225_2
crossref_primary_10_1007_s12206_015_1039_4
crossref_primary_10_1007_s11071_023_09140_z
Cites_doi 10.1177/02783649922066655
10.1098/rsta.2006.1917
10.1017/S0263574704000475
10.1103/PhysRevLett.80.3658
10.1115/1.1372322
10.1177/027836499801701202
10.1016/0021-9290(80)90007-X
10.1016/S0021-9290(00)00101-9
10.1109/TRO.2004.838030
10.1177/02783640122067561
10.1115/1.2796024
10.1016/j.jbiomech.2006.07.017
10.1006/jtbi.1993.1121
10.1142/S0219843605000570
10.1177/027836499000900206
10.1023/A:1008844026298
10.1115/1.2798313
10.1371/journal.pcbi.0030134
10.1016/j.jbiomech.2006.08.006
10.1115/1.2746383
10.1016/S1672-6529(10)60243-0
10.1098/rsta.2006.1918
10.1016/S0021-9290(01)00169-5
10.1016/S1672-6529(11)60010-3
10.1177/027836498400300202
10.1098/rsta.2006.1920
10.1115/1.1427703
10.1299/jsdd.3.1
10.1016/j.jbiomech.2009.09.027
10.1098/rsta.2006.1923
10.1126/science.1107799
10.1016/0025-5564(80)90070-X
10.1115/1.2800760
10.1115/1.2895701
ContentType Journal Article
Copyright 2012 Jilin University
Jilin University 2012
Copyright_xml – notice: 2012 Jilin University
– notice: Jilin University 2012
DBID 2RA
92L
CQIGP
W94
WU4
~WA
AAYXX
CITATION
7QO
8FD
FR3
P64
7SP
7TB
L7M
DOI 10.1016/S1672-6529(11)60139-X
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-自然科学
中文科技期刊数据库-自然科学-生物科学
中文科技期刊数据库- 镜像站点
CrossRef
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Engineering Research Database

Engineering Research Database

Engineering Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
Engineering
DocumentTitleAlternate Dynamic Stability of Passive Bipedal Walking on Rough Terrain: A Preliminary Simulation Study
EISSN 2543-2141
EndPage 433
ExternalDocumentID 10_1016_S1672_6529_11_60139_X
S167265291160139X
43725655
GroupedDBID --K
--M
-EM
.~1
0R~
1B1
1~.
1~5
2B.
2C.
2RA
4.4
406
457
4G.
5GY
5VR
5VS
7-5
71M
8P~
8UJ
92E
92I
92L
92Q
93N
AACTN
AAEDT
AAEDW
AAFGU
AAHNG
AAIAL
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATNV
AAUYE
AAXUO
AAYFA
ABDZT
ABECU
ABFGW
ABFTV
ABJNI
ABKAS
ABKCH
ABMAC
ABMQK
ABTEG
ABTKH
ABTMW
ABXDB
ABYKQ
ACAOD
ACBMV
ACBRV
ACBYP
ACDAQ
ACGFS
ACHSB
ACIGE
ACIPQ
ACNNM
ACOKC
ACRLP
ACTTH
ACVWB
ACWMK
ACZOJ
ADBBV
ADEZE
ADKNI
ADMDM
ADMUD
ADOXG
ADRFC
ADTZH
ADURQ
ADYFF
AEBSH
AECPX
AEFTE
AEKER
AENEX
AESKC
AESTI
AEVTX
AFKWA
AFNRJ
AFQWF
AFUIB
AGDGC
AGGBP
AGHFR
AGJBK
AGMZJ
AGUBO
AGYEJ
AHJVU
AIAKS
AIEXJ
AIKHN
AILAN
AIMYW
AITGF
AITUG
AJBFU
AJDOV
AJOXV
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMKLP
AMRAJ
AMXSW
AMYLF
AXJTR
AXYYD
BGNMA
BJAXD
BKOJK
BLXMC
CCEZO
CEKLB
CHBEP
CQIGP
CS3
CW9
DPUIP
DU5
EBLON
EBS
EFJIC
EFLBG
EJD
EO9
EP2
EP3
FA0
FDB
FINBP
FIRID
FNLPD
FNPLU
FSGXE
FYGXN
GBLVA
GGCAI
GJIRD
HZ~
IAO
IKXTQ
IWAJR
J-C
J1W
JJJVA
JZLTJ
KOM
KOV
LLZTM
M41
M4Y
MO0
N9A
NPVJJ
NQJWS
NU0
O-L
O9-
O9J
OAUVE
OZT
P-8
P-9
P2P
PC.
PT4
Q38
RIG
RLLFE
ROL
RSV
SDC
SDF
SDG
SES
SNE
SNPRN
SOHCF
SOJ
SPC
SRMVM
SSLCW
SST
SSZ
STPWE
T5K
TCJ
TGP
UOJIU
UTJUX
VEKWB
VFIZW
W94
WFFXF
WU4
Z7X
ZMTXR
~WA
AGQEE
FIGPU
-SC
-S~
AACDK
AAJBT
AASML
AAXDM
AAXKI
ABAKF
ABWVN
ACDTI
ACPIV
ACRPL
ADNMO
AEFQL
AEIPS
AEMSY
AFBBN
AGRTI
AIGIU
AKRWK
ANKPU
CAJEC
HG6
IHR
ITC
Q--
SJYHP
U1G
U5M
AATTM
AAYWO
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ACVFH
ADCNI
AEUPX
AEZWR
AFDZB
AFHIU
AFOHR
AFPUW
AFXIZ
AGCQF
AGRNS
AHPBZ
AHWEU
AIGII
AIIUN
AIXLP
AKBMS
AKYEP
ATHPR
AYFIA
CITATION
SSH
7QO
8FD
EFKBS
FR3
P64
7SP
7TB
L7M
ID FETCH-LOGICAL-c520t-b8c6240c83d43b53cd4ce8d2902ca64fb4cbe0254b07f35eb3d749e1c51218ff3
IEDL.DBID .~1
ISSN 1672-6529
IngestDate Fri Sep 05 05:08:29 EDT 2025
Fri Sep 05 06:19:14 EDT 2025
Fri Sep 05 12:00:41 EDT 2025
Tue Jul 01 00:55:02 EDT 2025
Thu Apr 24 23:08:41 EDT 2025
Fri Feb 21 02:31:05 EST 2025
Fri Feb 23 02:28:43 EST 2024
Wed Feb 14 10:44:38 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords bipedal walking
rough terrain
dynamic stability
human locomotion
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c520t-b8c6240c83d43b53cd4ce8d2902ca64fb4cbe0254b07f35eb3d749e1c51218ff3
Notes 22-1355/TB
bipedal walking, rough terrain, dynamic stability, human locomotion
A simplified 2D passive dynamic model was simulated to walk down on a rough slope surface defined by deterministic profiles to investigate how the walking stability changes with increasing surface roughness. Our results show that the passive walker can walk on rough surfaces subject to surface roughness up to approximately 0.1% of its leg length. This indicates that bipedal walkers based on passive dynamics may possess some intrinsic stability to adapt to rough terrains although the maxi- mum roughness they can tolerate is small. Orbital stability method was used to quantify the walking stability before the walker started to fall over, It was found that the average maximum Floquet multiplier increases with surface roughness in a non-linear form. Although the passive walker remained orbitally stable for all the simulation cases, the results suggest that the possibility of the bipedal model moving away from its limit cycle increases with the surface roughness if subjected to additional perturbations. The number of consecutive steps before falling was used to measure the walking stability after the passive walker started to fall over. The results show that the number of steps before falling decreases exponentially with the increase in surface roughness. When the roughness magnitude approached to 0.73% of the walker's leg length, it fell down to the ground as soon as it entered into the uneven terrain. It was also found that shifting the phase angle of the surface profile has apparent affect on the system stability. This is probably because point contact was used to simulate the heel strikes and the resulted variations in system states at heel strikes may have pronounced impact on the passive gaits, which have narrow basins of attraction. These results would provide insight into how the dynamic stability of passive bipedal walkers evolves with increasing surface roughness.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1283659621
PQPubID 23462
PageCount 11
ParticipantIDs proquest_miscellaneous_1651450575
proquest_miscellaneous_1513486060
proquest_miscellaneous_1283659621
crossref_citationtrail_10_1016_S1672_6529_11_60139_X
crossref_primary_10_1016_S1672_6529_11_60139_X
springer_journals_10_1016_S1672_6529_11_60139_X
elsevier_sciencedirect_doi_10_1016_S1672_6529_11_60139_X
chongqing_primary_43725655
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-12-01
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Journal of bionics engineering
PublicationTitleAbbrev J Bionic Eng
PublicationTitleAlternate Journal of Bionics Engineering
PublicationYear 2012
Publisher Elsevier Ltd
Springer Singapore
Publisher_xml – name: Elsevier Ltd
– name: Springer Singapore
References Manoonpong, Geng, Kulvicius, Porr, Worgotter (bib33) 2007; 3
Mochon, McMahon (bib10) 1980; 13
Ren, Jones, Howard (bib32) 2007; 40
Kuo (bib17) 2001; 123
Mochon, McMahon (bib11) 1981; 52
Fujita (bib4) 2006; 365
Hirose, Ogawa (bib2) 2006; 365
Lim, Takanishi (bib5) 2006; 365
McMahon (bib3) 1984; 3
Wisse, Schwab, van der Helm (bib14) 2004; 22
Wisse, Schwab, van der Linde, van der Helm (bib15) 2005; 21
Schwab A L, Wisse M. Basin of attraction of the simplest walking model.
Dingwell, Kang, Marin (bib24) 2007; 40
Su, Dingwell (bib21) 2007; 129
Pfeiffer, Inoue (bib1) 2006; 365
Hurmuzlu, Basdogan, Stoianovici (bib22) 1996; 118
McGeer (bib6) 1990; 9
Strogatz (bib26) 1994
Maxwell, Kram, Kuo (bib35) 2002; 35
Collins, Ruina, Tedrake, Wisse (bib9) 2005; 307
Goswami, Thuilot, Espiau (bib28) 1998; 17
McGeer (bib7) 1993; 163
Luo, Li, Zhu (bib34) 2011; 8
Coleman, Ruina (bib8) 1998; 80
Collins, Wisse, Ruina (bib12) 2001; 20
Bauby, Kuo (bib36) 2000; 33
Hurmuzlu, Basdogan (bib23) 1994; 116
Kuo (bib18) 2002; 124
Amaraporn, Ren (bib30) 2010; 7
Wisse (bib16) 2005; 2
Dingwell, Kang (bib25) 2007; 129
Ren, Howard, Ren, Nester, Tian (bib31) 2010; 43
Kuo (bib37) 1999; 18
McGeer (bib27) 1993
Pittsburgh, PA, USA, 2001, DETC2001/VIB-21363.
Narukawa, Yokoyama, Takahashi, Yoshida (bib13) 2009; 3
Garcia, Chatterjee, Ruina, Coleman (bib19) 1998; 120
Goswami, Espiau, Keramane (bib20) 1997; 4
Garcia, Chatterjee, Ruina, Coleman (CR19) 1998; 120
Dingwell, Kang, Marin (CR24) 2007; 40
McGeer, Chatila, Hirzinger (CR27) 1993
Hirose, Ogawa (CR2) 2006; 365
Schwab, Wisse (CR29) 2001
Lim, Takanishi (CR5) 2006; 365
Fujita (CR4) 2006; 365
McGeer (CR6) 1990; 9
Hurmuzlu, Basdogan, Stoianovici (CR22) 1996; 118
Strogatz (CR26) 1994
Bauby, Kuo (CR36) 2000; 33
Su, Dingwell (CR21) 2007; 129
Mochon, McMahon (CR11) 1981; 52
McGeer (CR7) 1993; 163
Amaraporn, Ren (CR30) 2010; 7
Mochon, McMahon (CR10) 1980; 13
Kuo (CR18) 2002; 124
Luo, Li, Zhu (CR34) 2011; 8
Pfeiffer, Inoue (CR1) 2006; 365
Collins, Wisse, Ruina (CR12) 2001; 20
Ren, Jones, Howard (CR32) 2007; 40
Dingwell, Kang (CR25) 2007; 129
Coleman, Ruina (CR8) 1998; 80
Goswami, Espiau, Keramane (CR20) 1997; 4
Hurmuzlu, Basdogan (CR23) 1994; 116
Ren, Howard, Ren, Nester, Tian (CR31) 2010; 43
McMahon (CR3) 1984; 3
Wisse (CR16) 2005; 2
Collins, Ruina, Tedrake, Wisse (CR9) 2005; 307
Narukawa, Yokoyama, Takahashi, Yoshida (CR13) 2009; 3
Wisse, Schwab, van der Linde, van der Helm (CR15) 2005; 21
Goswami, Thuilot, Espiau (CR28) 1998; 17
Kuo (CR37) 1999; 18
Wisse, Schwab, van der Helm (CR14) 2004; 22
Kuo (CR17) 2001; 123
Manoonpong, Geng, Kulvicius, Porr, Worgotter (CR33) 2007; 3
Maxwell, Kram, Kuo (CR35) 2002; 35
P Manoonpong (9040423_CR33) 2007; 3
A Goswami (9040423_CR20) 1997; 4
L Ren (9040423_CR31) 2010; 43
D Maxwell (9040423_CR35) 2002; 35
M Fujita (9040423_CR4) 2006; 365
M Wisse (9040423_CR15) 2005; 21
M Hirose (9040423_CR2) 2006; 365
B Amaraporn (9040423_CR30) 2010; 7
L Ren (9040423_CR32) 2007; 40
S H Strogatz (9040423_CR26) 1994
Y Hurmuzlu (9040423_CR23) 1994; 116
M Wisse (9040423_CR16) 2005; 2
F Pfeiffer (9040423_CR1) 2006; 365
M J Coleman (9040423_CR8) 1998; 80
S H Collins (9040423_CR12) 2001; 20
A D Kuo (9040423_CR17) 2001; 123
J B Dingwell (9040423_CR24) 2007; 40
T Narukawa (9040423_CR13) 2009; 3
A D Kuo (9040423_CR18) 2002; 124
X Luo (9040423_CR34) 2011; 8
A D Kuo (9040423_CR37) 1999; 18
T McGeer (9040423_CR6) 1990; 9
J L Su (9040423_CR21) 2007; 129
M Garcia (9040423_CR19) 1998; 120
A Goswami (9040423_CR28) 1998; 17
S Mochon (9040423_CR11) 1981; 52
J B Dingwell (9040423_CR25) 2007; 129
S Collins (9040423_CR9) 2005; 307
Y Hurmuzlu (9040423_CR22) 1996; 118
T A McMahon (9040423_CR3) 1984; 3
H O Lim (9040423_CR5) 2006; 365
T McGeer (9040423_CR7) 1993; 163
T McGeer (9040423_CR27) 1993
A L Schwab (9040423_CR29) 2001
S Mochon (9040423_CR10) 1980; 13
M Wisse (9040423_CR14) 2004; 22
C E Bauby (9040423_CR36) 2000; 33
References_xml – volume: 123
  start-page: 264
  year: 2001
  end-page: 269
  ident: bib17
  article-title: A simple model of bipedal walking predicts the preferred speed-step length relationship
  publication-title: Journal of Biomechanical Engineering
– volume: 20
  start-page: 607
  year: 2001
  end-page: 615
  ident: bib12
  article-title: A 3D passive-dynamic walking robot with two legs and knees
  publication-title: International Journal of Robotics Research
– volume: 17
  start-page: 1282
  year: 1998
  end-page: 1301
  ident: bib28
  article-title: A study of the passive gait of a compass-like biped robot: symmetry and chaos
  publication-title: International Journal of Robotic Research
– volume: 307
  start-page: 1082
  year: 2005
  end-page: 1085
  ident: bib9
  article-title: Efficient bipedal robots based on passive-dynamic walkers
  publication-title: Science
– volume: 365
  start-page: 3
  year: 2006
  end-page: 9
  ident: bib1
  article-title: Walking: technology and biology
  publication-title: Philosophical Transactions of the Royal Society A – Mathematical Physical & Engineering Sciences
– volume: 9
  start-page: 62
  year: 1990
  end-page: 82
  ident: bib6
  article-title: Passive dynamic walking
  publication-title: International Journal of Robotics Research
– volume: 116
  start-page: 30
  year: 1994
  end-page: 36
  ident: bib23
  article-title: On the measurement of dynamic stability of human locomotion
  publication-title: Journal of Biomechanical Engineering
– year: 1994
  ident: bib26
  publication-title: Nonlinear Dynamics and Chaos
– reference: , Pittsburgh, PA, USA, 2001, DETC2001/VIB-21363.
– volume: 52
  start-page: 241
  year: 1981
  end-page: 260
  ident: bib11
  article-title: Ballistic walking: an improved model
  publication-title: Mathematical Bioscience
– volume: 120
  start-page: 281
  year: 1998
  end-page: 288
  ident: bib19
  article-title: The simplest walking model: stability, complexity, and scaling
  publication-title: Journal of Biomechanical Engineering
– volume: 40
  start-page: 1567
  year: 2007
  end-page: 1574
  ident: bib32
  article-title: Predictive modelling of human walking over a complete gait cycle
  publication-title: Journal of Biomechanics
– volume: 124
  start-page: 113
  year: 2002
  end-page: 120
  ident: bib18
  article-title: Energetics of actively powered locomotion using the simplest walking model
  publication-title: Journal of Biomechanical Engineering
– volume: 35
  start-page: 117
  year: 2002
  end-page: 124
  ident: bib35
  article-title: Simultaneous positive and negative external mechanical work in human walking
  publication-title: Journal of Biomechanics
– volume: 13
  start-page: 49
  year: 1980
  end-page: 57
  ident: bib10
  article-title: Ballistic walking
  publication-title: Journal of Biomechanics
– volume: 3
  start-page: 4
  year: 1984
  end-page: 28
  ident: bib3
  article-title: Mechanics of locomotion
  publication-title: International Journal of Robotics Research
– volume: 163
  start-page: 277
  year: 1993
  end-page: 314
  ident: bib7
  article-title: Dynamics and control of bipedal locomotion
  publication-title: Journal of Theoretical Biology
– volume: 118
  start-page: 405
  year: 1996
  end-page: 411
  ident: bib22
  article-title: Kinematics and dynamic stability of the locomotion of post-polio patients
  publication-title: Journal of Biomechanical Engineering
– year: 1993
  ident: bib27
  article-title: Passive dynamic biped catalogue
  publication-title: Experimental Robotics II
– volume: 22
  start-page: 681
  year: 2004
  end-page: 688
  ident: bib14
  article-title: Passive dynamic walking model with upper body
  publication-title: Robotica
– volume: 4
  start-page: 273
  year: 1997
  end-page: 286
  ident: bib20
  article-title: Limit cycle in a passive compass gait and passivity-mimicking control laws
  publication-title: Autonomous Robots
– volume: 40
  start-page: 1723
  year: 2007
  end-page: 1730
  ident: bib24
  article-title: The effects of sensory loss and walking speed on the orbital dynamic stability of human walking
  publication-title: Journal of Biomechanics
– volume: 33
  start-page: 1433
  year: 2000
  end-page: 1440
  ident: bib36
  article-title: Active control of lateral balance in human walking
  publication-title: Journal of Biomechanics
– volume: 21
  start-page: 393
  year: 2005
  end-page: 401
  ident: bib15
  article-title: How to keep from falling forward: elementary swing leg action for passive dynamic walkers
  publication-title: IEEE Transaction on Robotics
– volume: 2
  start-page: 459
  year: 2005
  end-page: 478
  ident: bib16
  article-title: Three additions to passive dynamic walking; actuation, an upper body, and 3D stability
  publication-title: International Journal of Humanoid Robotics
– volume: 365
  start-page: 21
  year: 2006
  end-page: 47
  ident: bib4
  article-title: How to make an autonomous robot as a partner with humans: design approach versus emergent approach
  publication-title: Philosophical Transactions of the Royal Society A – Mathematical Physical & Engineering Sciences
– volume: 80
  start-page: 3658
  year: 1998
  end-page: 3661
  ident: bib8
  article-title: An uncontrolled walking toy that cannot stand still
  publication-title: Physical Review Letters
– volume: 129
  start-page: 586
  year: 2007
  end-page: 593
  ident: bib25
  article-title: Differences between local and orbital dynamic stability during human walking
  publication-title: Journal of Biomechanical Engineering
– volume: 18
  start-page: 917
  year: 1999
  end-page: 930
  ident: bib37
  article-title: Stabilization of lateral motion in passive dynamic walking
  publication-title: International Journal of Robotics Research
– volume: 129
  start-page: 1
  year: 2007
  end-page: 11
  ident: bib21
  article-title: Dynamic stability of passive dynamic walking on an irregular surface
  publication-title: Journal of Biomechanical Engineering
– volume: 43
  start-page: 194
  year: 2010
  end-page: 202
  ident: bib31
  article-title: A generic analytical foot rollover model for predicting translational ankle kinematics in gait simulation studies
  publication-title: Journal of Biomechanics
– volume: 365
  start-page: 11
  year: 2006
  end-page: 19
  ident: bib2
  article-title: Honda humanoid robots development
  publication-title: Philosophical Transactions of the Royal Society A – Mathematical Physical & Engineering Sciences
– volume: 3
  start-page: e134
  year: 2007
  ident: bib33
  article-title: Adaptive, fast walking in a biped robot under neuronal control and learning
  publication-title: PLoS Computational Biology
– volume: 365
  start-page: 49
  year: 2006
  end-page: 64
  ident: bib5
  article-title: Biped walking robots created at Waseda University: WL and WABIAN family
  publication-title: Philosophical Transactions of the Royal Society A – Mathematical Physical & Engineering Sciences
– volume: 3
  start-page: 1
  year: 2009
  end-page: 12
  ident: bib13
  article-title: Design and construction of a simple 3D straight legged passive walker with flat feet and ankle springs
  publication-title: Journal of System Design and Dynamics
– volume: 7
  start-page: 211
  year: 2010
  end-page: 218
  ident: bib30
  article-title: The human ankle-foot complex as a multi-configurable mechanism during the stance phase of walking
  publication-title: Journal of Bionic Engineering
– reference: Schwab A L, Wisse M. Basin of attraction of the simplest walking model.
– volume: 8
  start-page: 33
  year: 2011
  end-page: 48
  ident: bib34
  article-title: Planning and control of CoP-switch-based planar biped walking
  publication-title: Journal of Bionic Engineering
– volume: 18
  start-page: 917
  year: 1999
  end-page: 930
  ident: CR37
  article-title: Stabilization of lateral motion in passive dynamic walking
  publication-title: International Journal of Robotics Research
  doi: 10.1177/02783649922066655
– volume: 365
  start-page: 11
  year: 2006
  end-page: 19
  ident: CR2
  article-title: Honda humanoid robots development
  publication-title: Philosophical Transactions of the Royal Society A — Mathematical Physical & Engineering Sciences
  doi: 10.1098/rsta.2006.1917
– volume: 22
  start-page: 681
  year: 2004
  end-page: 688
  ident: CR14
  article-title: Passive dynamic walking model with upper body
  publication-title: Robotica
  doi: 10.1017/S0263574704000475
– volume: 80
  start-page: 3658
  year: 1998
  end-page: 3661
  ident: CR8
  article-title: An uncontrolled walking toy that cannot stand still
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.80.3658
– volume: 123
  start-page: 264
  year: 2001
  end-page: 269
  ident: CR17
  article-title: A simple model of bipedal walking predicts the preferred speed-step length relationship
  publication-title: Journal of Biomechanical Engineering
  doi: 10.1115/1.1372322
– volume: 17
  start-page: 1282
  year: 1998
  end-page: 1301
  ident: CR28
  article-title: A study of the passive gait of a compass-like biped robot: symmetry and chaos
  publication-title: International Journal of Robotic Research
  doi: 10.1177/027836499801701202
– volume: 13
  start-page: 49
  year: 1980
  end-page: 57
  ident: CR10
  article-title: Ballistic walking
  publication-title: Journal of Biomechanics
  doi: 10.1016/0021-9290(80)90007-X
– volume: 33
  start-page: 1433
  year: 2000
  end-page: 1440
  ident: CR36
  article-title: Active control of lateral balance in human walking
  publication-title: Journal of Biomechanics
  doi: 10.1016/S0021-9290(00)00101-9
– volume: 21
  start-page: 393
  year: 2005
  end-page: 401
  ident: CR15
  article-title: How to keep from falling forward: elementary swing leg action for passive dynamic walkers
  publication-title: IEEE Transaction on Robotics
  doi: 10.1109/TRO.2004.838030
– year: 2001
  ident: CR29
  article-title: Basin of attraction of the simplest walking model
  publication-title: Proceedings of ASME Design Engineering Technical Conferences
– year: 1993
  ident: CR27
  article-title: Passive dynamic biped catalogue
  publication-title: Experimental Robotics II
– volume: 20
  start-page: 607
  year: 2001
  end-page: 615
  ident: CR12
  article-title: A 3D passive-dynamic walking robot with two legs and knees
  publication-title: International Journal of Robotics Research
  doi: 10.1177/02783640122067561
– volume: 118
  start-page: 405
  year: 1996
  end-page: 411
  ident: CR22
  article-title: Kinematics and dynamic stability of the locomotion of post-polio patients
  publication-title: Journal of Biomechanical Engineering
  doi: 10.1115/1.2796024
– volume: 40
  start-page: 1567
  year: 2007
  end-page: 1574
  ident: CR32
  article-title: Predictive modelling of human walking over a complete gait cycle
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2006.07.017
– volume: 163
  start-page: 277
  year: 1993
  end-page: 314
  ident: CR7
  article-title: Dynamics and control of bipedal locomotion
  publication-title: Journal of Theoretical Biology
  doi: 10.1006/jtbi.1993.1121
– volume: 2
  start-page: 459
  year: 2005
  end-page: 478
  ident: CR16
  article-title: Three additions to passive dynamic walking; actuation, an upper body, and 3D stability
  publication-title: International Journal of Humanoid Robotics
  doi: 10.1142/S0219843605000570
– volume: 9
  start-page: 62
  year: 1990
  end-page: 82
  ident: CR6
  article-title: Passive dynamic walking
  publication-title: International Journal of Robotics Research
  doi: 10.1177/027836499000900206
– volume: 4
  start-page: 273
  year: 1997
  end-page: 286
  ident: CR20
  article-title: Limit cycle in a passive compass gait and passivity-mimicking control laws
  publication-title: Autonomous Robots
  doi: 10.1023/A:1008844026298
– volume: 120
  start-page: 281
  year: 1998
  end-page: 288
  ident: CR19
  article-title: The simplest walking model: stability, complexity, and scaling
  publication-title: Journal of Biomechanical Engineering
  doi: 10.1115/1.2798313
– volume: 3
  start-page: e134
  year: 2007
  ident: CR33
  article-title: Adaptive, fast walking in a biped robot under neuronal control and learning
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.0030134
– volume: 40
  start-page: 1723
  year: 2007
  end-page: 1730
  ident: CR24
  article-title: The effects of sensory loss and walking speed on the orbital dynamic stability of human walking
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2006.08.006
– volume: 129
  start-page: 586
  year: 2007
  end-page: 593
  ident: CR25
  article-title: Differences between local and orbital dynamic stability during human walking
  publication-title: Journal of Biomechanical Engineering
  doi: 10.1115/1.2746383
– volume: 7
  start-page: 211
  year: 2010
  end-page: 218
  ident: CR30
  article-title: The human ankle-foot complex as a multi-configurable mechanism during the stance phase of walking
  publication-title: Journal of Bionic Engineering
  doi: 10.1016/S1672-6529(10)60243-0
– volume: 365
  start-page: 3
  year: 2006
  end-page: 9
  ident: CR1
  article-title: Walking: technology and biology
  publication-title: Philosophical Transactions of the Royal Society A - Mathematical Physical & Engineering Sciences
  doi: 10.1098/rsta.2006.1918
– volume: 35
  start-page: 117
  year: 2002
  end-page: 124
  ident: CR35
  article-title: Simultaneous positive and negative external mechanical work in human walking
  publication-title: Journal of Biomechanics
  doi: 10.1016/S0021-9290(01)00169-5
– volume: 8
  start-page: 33
  year: 2011
  end-page: 48
  ident: CR34
  article-title: Planning and control of CoP-switchbased planar biped walking
  publication-title: Journal of Bionic Engineering
  doi: 10.1016/S1672-6529(11)60010-3
– volume: 3
  start-page: 4
  year: 1984
  end-page: 28
  ident: CR3
  article-title: Mechanics of locomotion
  publication-title: International Journal of Robotics Research
  doi: 10.1177/027836498400300202
– volume: 365
  start-page: 49
  year: 2006
  end-page: 64
  ident: CR5
  article-title: Biped walking robots created at Waseda University: WL and WABIAN family
  publication-title: Philosophical Transactions of the Royal Society A — Mathematical Physical & Engineering Sciences
  doi: 10.1098/rsta.2006.1920
– volume: 124
  start-page: 113
  year: 2002
  end-page: 120
  ident: CR18
  article-title: Energetics of actively powered locomotion using the simplest walking model
  publication-title: Journal of Biomechanical Engineering
  doi: 10.1115/1.1427703
– volume: 3
  start-page: 1
  year: 2009
  end-page: 12
  ident: CR13
  article-title: Design and construction of a simple 3D straight legged passive walker with flat feet and ankle springs
  publication-title: Journal of System Design and Dynamics
  doi: 10.1299/jsdd.3.1
– volume: 43
  start-page: 194
  year: 2010
  end-page: 202
  ident: CR31
  article-title: A generic analytical foot rollover model for predicting translational ankle kinematics in gait simulation studies
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2009.09.027
– volume: 365
  start-page: 21
  year: 2006
  end-page: 47
  ident: CR4
  article-title: How to make an autonomous robot as a partner with humans: design approach versus emergent approach
  publication-title: Philosophical Transactions of the Royal Society A — Mathematical Physical & Engineering Sciences
  doi: 10.1098/rsta.2006.1923
– volume: 307
  start-page: 1082
  year: 2005
  end-page: 1085
  ident: CR9
  article-title: Efficient bipedal robots based on passive-dynamic walkers
  publication-title: Science
  doi: 10.1126/science.1107799
– volume: 52
  start-page: 241
  year: 1981
  end-page: 260
  ident: CR11
  article-title: Ballistic walking: an improved model
  publication-title: Mathematical Bioscience
  doi: 10.1016/0025-5564(80)90070-X
– year: 1994
  ident: CR26
  publication-title: Nonlinear Dynamics and Chaos
– volume: 129
  start-page: 1
  year: 2007
  end-page: 11
  ident: CR21
  article-title: Dynamic stability of passive dynamic walking on an irregular surface
  publication-title: Journal of Biomechanical Engineering
  doi: 10.1115/1.2800760
– volume: 116
  start-page: 30
  year: 1994
  end-page: 36
  ident: CR23
  article-title: On the measurement of dynamic stability of human locomotion
  publication-title: Journal of Biomechanical Engineering
  doi: 10.1115/1.2895701
– volume: 120
  start-page: 281
  year: 1998
  ident: 9040423_CR19
  publication-title: Journal of Biomechanical Engineering
  doi: 10.1115/1.2798313
– volume: 129
  start-page: 586
  year: 2007
  ident: 9040423_CR25
  publication-title: Journal of Biomechanical Engineering
  doi: 10.1115/1.2746383
– volume: 4
  start-page: 273
  year: 1997
  ident: 9040423_CR20
  publication-title: Autonomous Robots
  doi: 10.1023/A:1008844026298
– volume: 20
  start-page: 607
  year: 2001
  ident: 9040423_CR12
  publication-title: International Journal of Robotics Research
  doi: 10.1177/02783640122067561
– volume: 3
  start-page: 4
  year: 1984
  ident: 9040423_CR3
  publication-title: International Journal of Robotics Research
  doi: 10.1177/027836498400300202
– volume: 123
  start-page: 264
  year: 2001
  ident: 9040423_CR17
  publication-title: Journal of Biomechanical Engineering
  doi: 10.1115/1.1372322
– volume: 80
  start-page: 3658
  year: 1998
  ident: 9040423_CR8
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.80.3658
– volume: 18
  start-page: 917
  year: 1999
  ident: 9040423_CR37
  publication-title: International Journal of Robotics Research
  doi: 10.1177/02783649922066655
– volume: 307
  start-page: 1082
  year: 2005
  ident: 9040423_CR9
  publication-title: Science
  doi: 10.1126/science.1107799
– volume: 365
  start-page: 49
  year: 2006
  ident: 9040423_CR5
  publication-title: Philosophical Transactions of the Royal Society A — Mathematical Physical & Engineering Sciences
  doi: 10.1098/rsta.2006.1920
– volume: 116
  start-page: 30
  year: 1994
  ident: 9040423_CR23
  publication-title: Journal of Biomechanical Engineering
  doi: 10.1115/1.2895701
– volume: 17
  start-page: 1282
  year: 1998
  ident: 9040423_CR28
  publication-title: International Journal of Robotic Research
  doi: 10.1177/027836499801701202
– volume: 33
  start-page: 1433
  year: 2000
  ident: 9040423_CR36
  publication-title: Journal of Biomechanics
  doi: 10.1016/S0021-9290(00)00101-9
– volume: 13
  start-page: 49
  year: 1980
  ident: 9040423_CR10
  publication-title: Journal of Biomechanics
  doi: 10.1016/0021-9290(80)90007-X
– volume: 365
  start-page: 11
  year: 2006
  ident: 9040423_CR2
  publication-title: Philosophical Transactions of the Royal Society A — Mathematical Physical & Engineering Sciences
  doi: 10.1098/rsta.2006.1917
– volume: 3
  start-page: 1
  year: 2009
  ident: 9040423_CR13
  publication-title: Journal of System Design and Dynamics
  doi: 10.1299/jsdd.3.1
– volume: 9
  start-page: 62
  year: 1990
  ident: 9040423_CR6
  publication-title: International Journal of Robotics Research
  doi: 10.1177/027836499000900206
– volume: 40
  start-page: 1567
  year: 2007
  ident: 9040423_CR32
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2006.07.017
– volume: 52
  start-page: 241
  year: 1981
  ident: 9040423_CR11
  publication-title: Mathematical Bioscience
  doi: 10.1016/0025-5564(80)90070-X
– volume: 21
  start-page: 393
  year: 2005
  ident: 9040423_CR15
  publication-title: IEEE Transaction on Robotics
  doi: 10.1109/TRO.2004.838030
– volume: 163
  start-page: 277
  year: 1993
  ident: 9040423_CR7
  publication-title: Journal of Theoretical Biology
  doi: 10.1006/jtbi.1993.1121
– volume-title: Experimental Robotics II
  year: 1993
  ident: 9040423_CR27
– volume: 7
  start-page: 211
  year: 2010
  ident: 9040423_CR30
  publication-title: Journal of Bionic Engineering
  doi: 10.1016/S1672-6529(10)60243-0
– volume: 43
  start-page: 194
  year: 2010
  ident: 9040423_CR31
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2009.09.027
– volume-title: Nonlinear Dynamics and Chaos
  year: 1994
  ident: 9040423_CR26
– volume: 365
  start-page: 3
  year: 2006
  ident: 9040423_CR1
  publication-title: Philosophical Transactions of the Royal Society A - Mathematical Physical & Engineering Sciences
  doi: 10.1098/rsta.2006.1918
– volume: 2
  start-page: 459
  year: 2005
  ident: 9040423_CR16
  publication-title: International Journal of Humanoid Robotics
  doi: 10.1142/S0219843605000570
– volume: 124
  start-page: 113
  year: 2002
  ident: 9040423_CR18
  publication-title: Journal of Biomechanical Engineering
  doi: 10.1115/1.1427703
– volume: 129
  start-page: 1
  year: 2007
  ident: 9040423_CR21
  publication-title: Journal of Biomechanical Engineering
  doi: 10.1115/1.2800760
– volume: 3
  start-page: e134
  year: 2007
  ident: 9040423_CR33
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.0030134
– volume: 40
  start-page: 1723
  year: 2007
  ident: 9040423_CR24
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2006.08.006
– volume-title: Proceedings of ASME Design Engineering Technical Conferences
  year: 2001
  ident: 9040423_CR29
– volume: 22
  start-page: 681
  year: 2004
  ident: 9040423_CR14
  publication-title: Robotica
  doi: 10.1017/S0263574704000475
– volume: 35
  start-page: 117
  year: 2002
  ident: 9040423_CR35
  publication-title: Journal of Biomechanics
  doi: 10.1016/S0021-9290(01)00169-5
– volume: 8
  start-page: 33
  year: 2011
  ident: 9040423_CR34
  publication-title: Journal of Bionic Engineering
  doi: 10.1016/S1672-6529(11)60010-3
– volume: 365
  start-page: 21
  year: 2006
  ident: 9040423_CR4
  publication-title: Philosophical Transactions of the Royal Society A — Mathematical Physical & Engineering Sciences
  doi: 10.1098/rsta.2006.1923
– volume: 118
  start-page: 405
  year: 1996
  ident: 9040423_CR22
  publication-title: Journal of Biomechanical Engineering
  doi: 10.1115/1.2796024
SSID ssj0059283
Score 1.9720069
Snippet A simplified 2D passive dynamic model was simulated to walk down on a rough slope surface defined by deterministic profiles to investigate how the walking...
SourceID proquest
crossref
springer
elsevier
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 423
SubjectTerms Artificial Intelligence
Biochemical Engineering
Bioinformatics
Biomaterials
Biomedical Engineering and Bioengineering
Biomedical Engineering/Biotechnology
bipedal walking
Computer simulation
dynamic stability
Engineering
Floquet乘子
human locomotion
Passive dynamics
Rough terrain
Roughness
Stability
Strikes
Surface roughness
Walking
动态稳定性
双足步行
模型模拟
行走稳定性
表面粗糙度
路面
轨道稳定性
Title Dynamic Stability of Passive Bipedal Walking on Rough Terrain: A Preliminary Simulation Study
URI http://lib.cqvip.com/qk/87903X/201204/43725655.html
https://dx.doi.org/10.1016/S1672-6529(11)60139-X
https://link.springer.com/article/10.1016/S1672-6529(11)60139-X
https://www.proquest.com/docview/1283659621
https://www.proquest.com/docview/1513486060
https://www.proquest.com/docview/1651450575
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELamISReEBsgusHkSTxsD1ljx3YS3spgKiBNE9tEXpCVODZU6pLSdg994W_nznHKD2mdxKt1thyf7-5zfL6PkNeOG6ZcziOb1yISNimjUqo8Ei6vmGAlEhtjtsW5Gl-Lj4Ustshp_xYG0yqD7-98uvfWoWUYVnM4m0yGl0ylXEkO1qoQxxT4gl2kWD__5Oc6zUPm3JfiROEIpX-_4ulG8I1HjB37QaICayx8b5tvPyBy3BWr_sCi_1yf-qh09oQ8DnCSjroZ75At2-yShx3B5GqX7ATTXdCjUF_6-Cn5-q5joacANH1q7Iq2jl4AigbPR99OZraGIb-UU_yLTtuGfkYmH3pl50gn8YaO6MXcTj0b2HxFLyc3gQGMYk7i6hm5Pnt_dTqOAstCZCSPl1GVGQVh3WRJLZJKJqYWxmY1z2NuSiVcJUxl8c18FacukXD4rlORW2YAKrDMueQ52W7axr4gFMCU43FuapnDuVHFmREp1qOpYuNYmrAB2VuvrZ511TQ0XhwCqpQDIvrF1ibUJ0eajKleJ6KhvjTqC84t2utLFwNysu7WD3lPh6zXpP5rp2kIIvd1Pew1r8EK8WqlbGx7u9AQ5ROFREZsg4xkCVJ-qXiDjAIA68-MAzLst5YObmWxeXZ7__9h--QRAEHepem8JNvL-a19BWBrWR14azogD0YfPo3PfwFKlR82
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEaIXRAuo2_IwEof2kG78TNJbKVQLlKqiW5ELshLHListyXZ3e9hLfzsex1keEluJqzW2HI898008ng-hN5ZqIm1GI5NVPOKGFVEhZBZxm5WEkwKIjSHb4kwOLvnHXORr6Lh7CwNplcH2tzbdW-vQ0g-r2Z-MRv0LIhMqBXWnVQKOye-h-1ywBLb2we0yz0Nk1NfiBOkIxH8942mH8I17hOz7UaIciix8b-qra-c6_uWsfgOjf92ferd08hg9CngSH7VT3kRrpt5CD1qGycUW2gxnd4b3QoHp_Sfo27uWhh47pOlzYxe4sfjcwWhn-vDb0cRUbsivxRh-o-Omxl-AygcPzRT4JA7xET6fmrGnA5su8MXoR6AAw5CUuHiKLk_eD48HUaBZiLSg8TwqUy2dX9cpqzgrBdMV1yataBZTXUhuS65LA4_myzixTLjou0p4Zoh2WIGk1rJnaL1uarONsENTlsaZrkTmAkcZp5onUJCmjLUlCSM9tLNcWzVpy2kouDl0sFL0EO8WW-lQoBx4MsZqmYkG-lKgLxe4KK8vlffQwbJbN-QdHdJOk-qPraacF7mr6-tO88odQ7hbKWrT3MyUc_NMApMRWSEjCAPOLxmvkJEOwfqgsYf63dZSwa7MVs9u5_8_7BV6OBh-PlWnH84-7aINhwppm7PzHK3PpzfmhUNe8_KlP1k_AcUcIMw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Stability+of+Passive+Bipedal+Walking+on+Rough+Terrain%3A+A+Preliminary+Simulation+Study&rft.jtitle=Journal+of+bionics+engineering&rft.au=Afshar%2C+Parsa&rft.au=Ren%2C+Lei&rft.date=2012-12-01&rft.issn=1672-6529&rft.volume=9&rft.issue=4&rft.spage=423&rft.epage=433&rft_id=info:doi/10.1016%2FS1672-6529%2811%2960139-X&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F87903X%2F87903X.jpg