Dynamic Stability of Passive Bipedal Walking on Rough Terrain: A Preliminary Simulation Study
A simplified 2D passive dynamic model was simulated to walk down on a rough slope surface defined by deterministic profiles to investigate how the walking stability changes with increasing surface roughness. Our results show that the passive walker can walk on rough surfaces subject to surface rough...
Saved in:
Published in | Journal of bionics engineering Vol. 9; no. 4; pp. 423 - 433 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Singapore
Elsevier Ltd
01.12.2012
Springer Singapore |
Subjects | |
Online Access | Get full text |
ISSN | 1672-6529 2543-2141 |
DOI | 10.1016/S1672-6529(11)60139-X |
Cover
Loading…
Abstract | A simplified 2D passive dynamic model was simulated to walk down on a rough slope surface defined by deterministic profiles to investigate how the walking stability changes with increasing surface roughness. Our results show that the passive walker can walk on rough surfaces subject to surface roughness up to approximately 0.1% of its leg length. This indicates that bipedal walkers based on passive dynamics may possess some intrinsic stability to adapt to rough terrains although the maxi- mum roughness they can tolerate is small. Orbital stability method was used to quantify the walking stability before the walker started to fall over, It was found that the average maximum Floquet multiplier increases with surface roughness in a non-linear form. Although the passive walker remained orbitally stable for all the simulation cases, the results suggest that the possibility of the bipedal model moving away from its limit cycle increases with the surface roughness if subjected to additional perturbations. The number of consecutive steps before falling was used to measure the walking stability after the passive walker started to fall over. The results show that the number of steps before falling decreases exponentially with the increase in surface roughness. When the roughness magnitude approached to 0.73% of the walker's leg length, it fell down to the ground as soon as it entered into the uneven terrain. It was also found that shifting the phase angle of the surface profile has apparent affect on the system stability. This is probably because point contact was used to simulate the heel strikes and the resulted variations in system states at heel strikes may have pronounced impact on the passive gaits, which have narrow basins of attraction. These results would provide insight into how the dynamic stability of passive bipedal walkers evolves with increasing surface roughness. |
---|---|
AbstractList | A simplified 2D passive dynamic model was simulated to walk down on a rough slope surface defined by deterministic profiles to investigate how the walking stability changes with increasing surface roughness. Our results show that the passive walker can walk on rough surfaces subject to surface roughness up to approximately 0.1% of its leg length. This indicates that bipedal walkers based on passive dynamics may possess some intrinsic stability to adapt to rough terrains although the maximum roughness they can tolerate is small. Orbital stability method was used to quantify the walking stability before the walker started to fall over. It was found that the average maximum Floquet multiplier increases with surface roughness in a non-linear form. Although the passive walker remained orbitally stable for all the simulation cases, the results suggest that the possibility of the bipedal model moving away from its limit cycle increases with the surface roughness if subjected to additional perturbations. The number of consecutive steps before falling was used to measure the walking stability after the passive walker started to fall over. The results show that the number of steps before falling decreases exponentially with the increase in surface roughness. When the roughness magnitude approached to 0.73% of the walker's leg length, it fell down to the ground as soon as it entered into the uneven terrain. It was also found that shifting the phase angle of the surface profile has apparent affect on the system stability. This is probably because point contact was used to simulate the heel strikes and the resulted variations in system states at heel strikes may have pronounced impact on the passive gaits, which have narrow basins of attraction. These results would provide insight into how the dynamic stability of passive bipedal walkers evolves with increasing surface roughness. A simplified 2D passive dynamic model was simulated to walk down on a rough slope surface defined by deterministic profiles to investigate how the walking stability changes with increasing surface roughness. Our results show that the passive walker can walk on rough surfaces subject to surface roughness up to approximately 0.1% of its leg length. This indicates that bipedal walkers based on passive dynamics may possess some intrinsic stability to adapt to rough terrains although the maxi- mum roughness they can tolerate is small. Orbital stability method was used to quantify the walking stability before the walker started to fall over, It was found that the average maximum Floquet multiplier increases with surface roughness in a non-linear form. Although the passive walker remained orbitally stable for all the simulation cases, the results suggest that the possibility of the bipedal model moving away from its limit cycle increases with the surface roughness if subjected to additional perturbations. The number of consecutive steps before falling was used to measure the walking stability after the passive walker started to fall over. The results show that the number of steps before falling decreases exponentially with the increase in surface roughness. When the roughness magnitude approached to 0.73% of the walker's leg length, it fell down to the ground as soon as it entered into the uneven terrain. It was also found that shifting the phase angle of the surface profile has apparent affect on the system stability. This is probably because point contact was used to simulate the heel strikes and the resulted variations in system states at heel strikes may have pronounced impact on the passive gaits, which have narrow basins of attraction. These results would provide insight into how the dynamic stability of passive bipedal walkers evolves with increasing surface roughness. |
Author | Ren, Lei Afshar, Parsa Nassiri |
AuthorAffiliation | School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changehun 130022, P.R. China |
Author_xml | – sequence: 1 givenname: Parsa Nassiri surname: Afshar fullname: Afshar, Parsa Nassiri organization: School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK – sequence: 2 givenname: Lei surname: Ren fullname: Ren, Lei email: lei.ren@manchester.ac.uk organization: School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK |
BookMark | eNqFkc1u1DAURi1UJKaFR0Ayu7II-PoviVigtkBBqtSKKaI7y3GcqUtiT-2k0rwKz8I79RVwZ6ouusnKm3Puvf6-fbTng7cIvQXyAQjIj0uQJS2koPUhwHtJgNXF1Qu0oIKzggKHPbR4Ql6h_ZRuCBE1rdgCqS8brwdn8HLUjevduMGhwxc6JXdn8bFb21b3-Lfu_zi_wsHjn2FaXeNLG6N2_v7fX3yEL6Lt3eC8jhu8dMPU69FlcjlO7eY1etnpPtk3j-8B-vXt6-XJ9-Ls_PTHydFZYQQlY9FURlJOTMVazhrBTMuNrVpaE2q05F3DTWNJ_lBDyo4J27C25LUFI4BC1XXsAB3u5q5juJ1sGtXgkrF9r70NU1IgBXBBRCnmUQGMV5JIMo_mDKWoJYWMftqhJoaUou2UceM2iDEn1Ssg6qEstS1LPTShANS2LHWVbfHMXkc35EBnPbnzUub9ykZ1E6boc9Kz4uedaHMpdy6LyTjrjW1dtGZUbXCzE949nnwd_Oo2b3-6mbOSCikE-w8IZ8sb |
CitedBy_id | crossref_primary_10_1016_j_cnsns_2014_05_003 crossref_primary_10_5772_62330 crossref_primary_10_1007_s40435_016_0225_2 crossref_primary_10_1007_s12206_015_1039_4 crossref_primary_10_1007_s11071_023_09140_z |
Cites_doi | 10.1177/02783649922066655 10.1098/rsta.2006.1917 10.1017/S0263574704000475 10.1103/PhysRevLett.80.3658 10.1115/1.1372322 10.1177/027836499801701202 10.1016/0021-9290(80)90007-X 10.1016/S0021-9290(00)00101-9 10.1109/TRO.2004.838030 10.1177/02783640122067561 10.1115/1.2796024 10.1016/j.jbiomech.2006.07.017 10.1006/jtbi.1993.1121 10.1142/S0219843605000570 10.1177/027836499000900206 10.1023/A:1008844026298 10.1115/1.2798313 10.1371/journal.pcbi.0030134 10.1016/j.jbiomech.2006.08.006 10.1115/1.2746383 10.1016/S1672-6529(10)60243-0 10.1098/rsta.2006.1918 10.1016/S0021-9290(01)00169-5 10.1016/S1672-6529(11)60010-3 10.1177/027836498400300202 10.1098/rsta.2006.1920 10.1115/1.1427703 10.1299/jsdd.3.1 10.1016/j.jbiomech.2009.09.027 10.1098/rsta.2006.1923 10.1126/science.1107799 10.1016/0025-5564(80)90070-X 10.1115/1.2800760 10.1115/1.2895701 |
ContentType | Journal Article |
Copyright | 2012 Jilin University Jilin University 2012 |
Copyright_xml | – notice: 2012 Jilin University – notice: Jilin University 2012 |
DBID | 2RA 92L CQIGP W94 WU4 ~WA AAYXX CITATION 7QO 8FD FR3 P64 7SP 7TB L7M |
DOI | 10.1016/S1672-6529(11)60139-X |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-自然科学 中文科技期刊数据库-自然科学-生物科学 中文科技期刊数据库- 镜像站点 CrossRef Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Engineering Research Database Engineering Research Database Engineering Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology Engineering |
DocumentTitleAlternate | Dynamic Stability of Passive Bipedal Walking on Rough Terrain: A Preliminary Simulation Study |
EISSN | 2543-2141 |
EndPage | 433 |
ExternalDocumentID | 10_1016_S1672_6529_11_60139_X S167265291160139X 43725655 |
GroupedDBID | --K --M -EM .~1 0R~ 1B1 1~. 1~5 2B. 2C. 2RA 4.4 406 457 4G. 5GY 5VR 5VS 7-5 71M 8P~ 8UJ 92E 92I 92L 92Q 93N AACTN AAEDT AAEDW AAFGU AAHNG AAIAL AAIKJ AAKOC AALRI AAOAW AAQFI AATNV AAUYE AAXUO AAYFA ABDZT ABECU ABFGW ABFTV ABJNI ABKAS ABKCH ABMAC ABMQK ABTEG ABTKH ABTMW ABXDB ABYKQ ACAOD ACBMV ACBRV ACBYP ACDAQ ACGFS ACHSB ACIGE ACIPQ ACNNM ACOKC ACRLP ACTTH ACVWB ACWMK ACZOJ ADBBV ADEZE ADKNI ADMDM ADMUD ADOXG ADRFC ADTZH ADURQ ADYFF AEBSH AECPX AEFTE AEKER AENEX AESKC AESTI AEVTX AFKWA AFNRJ AFQWF AFUIB AGDGC AGGBP AGHFR AGJBK AGMZJ AGUBO AGYEJ AHJVU AIAKS AIEXJ AIKHN AILAN AIMYW AITGF AITUG AJBFU AJDOV AJOXV AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS AMFUW AMKLP AMRAJ AMXSW AMYLF AXJTR AXYYD BGNMA BJAXD BKOJK BLXMC CCEZO CEKLB CHBEP CQIGP CS3 CW9 DPUIP DU5 EBLON EBS EFJIC EFLBG EJD EO9 EP2 EP3 FA0 FDB FINBP FIRID FNLPD FNPLU FSGXE FYGXN GBLVA GGCAI GJIRD HZ~ IAO IKXTQ IWAJR J-C J1W JJJVA JZLTJ KOM KOV LLZTM M41 M4Y MO0 N9A NPVJJ NQJWS NU0 O-L O9- O9J OAUVE OZT P-8 P-9 P2P PC. PT4 Q38 RIG RLLFE ROL RSV SDC SDF SDG SES SNE SNPRN SOHCF SOJ SPC SRMVM SSLCW SST SSZ STPWE T5K TCJ TGP UOJIU UTJUX VEKWB VFIZW W94 WFFXF WU4 Z7X ZMTXR ~WA AGQEE FIGPU -SC -S~ AACDK AAJBT AASML AAXDM AAXKI ABAKF ABWVN ACDTI ACPIV ACRPL ADNMO AEFQL AEIPS AEMSY AFBBN AGRTI AIGIU AKRWK ANKPU CAJEC HG6 IHR ITC Q-- SJYHP U1G U5M AATTM AAYWO AAYXX ABBRH ABDBE ABFSG ACSTC ACVFH ADCNI AEUPX AEZWR AFDZB AFHIU AFOHR AFPUW AFXIZ AGCQF AGRNS AHPBZ AHWEU AIGII AIIUN AIXLP AKBMS AKYEP ATHPR AYFIA CITATION SSH 7QO 8FD EFKBS FR3 P64 7SP 7TB L7M |
ID | FETCH-LOGICAL-c520t-b8c6240c83d43b53cd4ce8d2902ca64fb4cbe0254b07f35eb3d749e1c51218ff3 |
IEDL.DBID | .~1 |
ISSN | 1672-6529 |
IngestDate | Fri Sep 05 05:08:29 EDT 2025 Fri Sep 05 06:19:14 EDT 2025 Fri Sep 05 12:00:41 EDT 2025 Tue Jul 01 00:55:02 EDT 2025 Thu Apr 24 23:08:41 EDT 2025 Fri Feb 21 02:31:05 EST 2025 Fri Feb 23 02:28:43 EST 2024 Wed Feb 14 10:44:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | bipedal walking rough terrain dynamic stability human locomotion |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c520t-b8c6240c83d43b53cd4ce8d2902ca64fb4cbe0254b07f35eb3d749e1c51218ff3 |
Notes | 22-1355/TB bipedal walking, rough terrain, dynamic stability, human locomotion A simplified 2D passive dynamic model was simulated to walk down on a rough slope surface defined by deterministic profiles to investigate how the walking stability changes with increasing surface roughness. Our results show that the passive walker can walk on rough surfaces subject to surface roughness up to approximately 0.1% of its leg length. This indicates that bipedal walkers based on passive dynamics may possess some intrinsic stability to adapt to rough terrains although the maxi- mum roughness they can tolerate is small. Orbital stability method was used to quantify the walking stability before the walker started to fall over, It was found that the average maximum Floquet multiplier increases with surface roughness in a non-linear form. Although the passive walker remained orbitally stable for all the simulation cases, the results suggest that the possibility of the bipedal model moving away from its limit cycle increases with the surface roughness if subjected to additional perturbations. The number of consecutive steps before falling was used to measure the walking stability after the passive walker started to fall over. The results show that the number of steps before falling decreases exponentially with the increase in surface roughness. When the roughness magnitude approached to 0.73% of the walker's leg length, it fell down to the ground as soon as it entered into the uneven terrain. It was also found that shifting the phase angle of the surface profile has apparent affect on the system stability. This is probably because point contact was used to simulate the heel strikes and the resulted variations in system states at heel strikes may have pronounced impact on the passive gaits, which have narrow basins of attraction. These results would provide insight into how the dynamic stability of passive bipedal walkers evolves with increasing surface roughness. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1283659621 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1651450575 proquest_miscellaneous_1513486060 proquest_miscellaneous_1283659621 crossref_citationtrail_10_1016_S1672_6529_11_60139_X crossref_primary_10_1016_S1672_6529_11_60139_X springer_journals_10_1016_S1672_6529_11_60139_X elsevier_sciencedirect_doi_10_1016_S1672_6529_11_60139_X chongqing_primary_43725655 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-12-01 |
PublicationDateYYYYMMDD | 2012-12-01 |
PublicationDate_xml | – month: 12 year: 2012 text: 2012-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Journal of bionics engineering |
PublicationTitleAbbrev | J Bionic Eng |
PublicationTitleAlternate | Journal of Bionics Engineering |
PublicationYear | 2012 |
Publisher | Elsevier Ltd Springer Singapore |
Publisher_xml | – name: Elsevier Ltd – name: Springer Singapore |
References | Manoonpong, Geng, Kulvicius, Porr, Worgotter (bib33) 2007; 3 Mochon, McMahon (bib10) 1980; 13 Ren, Jones, Howard (bib32) 2007; 40 Kuo (bib17) 2001; 123 Mochon, McMahon (bib11) 1981; 52 Fujita (bib4) 2006; 365 Hirose, Ogawa (bib2) 2006; 365 Lim, Takanishi (bib5) 2006; 365 McMahon (bib3) 1984; 3 Wisse, Schwab, van der Helm (bib14) 2004; 22 Wisse, Schwab, van der Linde, van der Helm (bib15) 2005; 21 Schwab A L, Wisse M. Basin of attraction of the simplest walking model. Dingwell, Kang, Marin (bib24) 2007; 40 Su, Dingwell (bib21) 2007; 129 Pfeiffer, Inoue (bib1) 2006; 365 Hurmuzlu, Basdogan, Stoianovici (bib22) 1996; 118 McGeer (bib6) 1990; 9 Strogatz (bib26) 1994 Maxwell, Kram, Kuo (bib35) 2002; 35 Collins, Ruina, Tedrake, Wisse (bib9) 2005; 307 Goswami, Thuilot, Espiau (bib28) 1998; 17 McGeer (bib7) 1993; 163 Luo, Li, Zhu (bib34) 2011; 8 Coleman, Ruina (bib8) 1998; 80 Collins, Wisse, Ruina (bib12) 2001; 20 Bauby, Kuo (bib36) 2000; 33 Hurmuzlu, Basdogan (bib23) 1994; 116 Kuo (bib18) 2002; 124 Amaraporn, Ren (bib30) 2010; 7 Wisse (bib16) 2005; 2 Dingwell, Kang (bib25) 2007; 129 Ren, Howard, Ren, Nester, Tian (bib31) 2010; 43 Kuo (bib37) 1999; 18 McGeer (bib27) 1993 Pittsburgh, PA, USA, 2001, DETC2001/VIB-21363. Narukawa, Yokoyama, Takahashi, Yoshida (bib13) 2009; 3 Garcia, Chatterjee, Ruina, Coleman (bib19) 1998; 120 Goswami, Espiau, Keramane (bib20) 1997; 4 Garcia, Chatterjee, Ruina, Coleman (CR19) 1998; 120 Dingwell, Kang, Marin (CR24) 2007; 40 McGeer, Chatila, Hirzinger (CR27) 1993 Hirose, Ogawa (CR2) 2006; 365 Schwab, Wisse (CR29) 2001 Lim, Takanishi (CR5) 2006; 365 Fujita (CR4) 2006; 365 McGeer (CR6) 1990; 9 Hurmuzlu, Basdogan, Stoianovici (CR22) 1996; 118 Strogatz (CR26) 1994 Bauby, Kuo (CR36) 2000; 33 Su, Dingwell (CR21) 2007; 129 Mochon, McMahon (CR11) 1981; 52 McGeer (CR7) 1993; 163 Amaraporn, Ren (CR30) 2010; 7 Mochon, McMahon (CR10) 1980; 13 Kuo (CR18) 2002; 124 Luo, Li, Zhu (CR34) 2011; 8 Pfeiffer, Inoue (CR1) 2006; 365 Collins, Wisse, Ruina (CR12) 2001; 20 Ren, Jones, Howard (CR32) 2007; 40 Dingwell, Kang (CR25) 2007; 129 Coleman, Ruina (CR8) 1998; 80 Goswami, Espiau, Keramane (CR20) 1997; 4 Hurmuzlu, Basdogan (CR23) 1994; 116 Ren, Howard, Ren, Nester, Tian (CR31) 2010; 43 McMahon (CR3) 1984; 3 Wisse (CR16) 2005; 2 Collins, Ruina, Tedrake, Wisse (CR9) 2005; 307 Narukawa, Yokoyama, Takahashi, Yoshida (CR13) 2009; 3 Wisse, Schwab, van der Linde, van der Helm (CR15) 2005; 21 Goswami, Thuilot, Espiau (CR28) 1998; 17 Kuo (CR37) 1999; 18 Wisse, Schwab, van der Helm (CR14) 2004; 22 Kuo (CR17) 2001; 123 Manoonpong, Geng, Kulvicius, Porr, Worgotter (CR33) 2007; 3 Maxwell, Kram, Kuo (CR35) 2002; 35 P Manoonpong (9040423_CR33) 2007; 3 A Goswami (9040423_CR20) 1997; 4 L Ren (9040423_CR31) 2010; 43 D Maxwell (9040423_CR35) 2002; 35 M Fujita (9040423_CR4) 2006; 365 M Wisse (9040423_CR15) 2005; 21 M Hirose (9040423_CR2) 2006; 365 B Amaraporn (9040423_CR30) 2010; 7 L Ren (9040423_CR32) 2007; 40 S H Strogatz (9040423_CR26) 1994 Y Hurmuzlu (9040423_CR23) 1994; 116 M Wisse (9040423_CR16) 2005; 2 F Pfeiffer (9040423_CR1) 2006; 365 M J Coleman (9040423_CR8) 1998; 80 S H Collins (9040423_CR12) 2001; 20 A D Kuo (9040423_CR17) 2001; 123 J B Dingwell (9040423_CR24) 2007; 40 T Narukawa (9040423_CR13) 2009; 3 A D Kuo (9040423_CR18) 2002; 124 X Luo (9040423_CR34) 2011; 8 A D Kuo (9040423_CR37) 1999; 18 T McGeer (9040423_CR6) 1990; 9 J L Su (9040423_CR21) 2007; 129 M Garcia (9040423_CR19) 1998; 120 A Goswami (9040423_CR28) 1998; 17 S Mochon (9040423_CR11) 1981; 52 J B Dingwell (9040423_CR25) 2007; 129 S Collins (9040423_CR9) 2005; 307 Y Hurmuzlu (9040423_CR22) 1996; 118 T A McMahon (9040423_CR3) 1984; 3 H O Lim (9040423_CR5) 2006; 365 T McGeer (9040423_CR7) 1993; 163 T McGeer (9040423_CR27) 1993 A L Schwab (9040423_CR29) 2001 S Mochon (9040423_CR10) 1980; 13 M Wisse (9040423_CR14) 2004; 22 C E Bauby (9040423_CR36) 2000; 33 |
References_xml | – volume: 123 start-page: 264 year: 2001 end-page: 269 ident: bib17 article-title: A simple model of bipedal walking predicts the preferred speed-step length relationship publication-title: Journal of Biomechanical Engineering – volume: 20 start-page: 607 year: 2001 end-page: 615 ident: bib12 article-title: A 3D passive-dynamic walking robot with two legs and knees publication-title: International Journal of Robotics Research – volume: 17 start-page: 1282 year: 1998 end-page: 1301 ident: bib28 article-title: A study of the passive gait of a compass-like biped robot: symmetry and chaos publication-title: International Journal of Robotic Research – volume: 307 start-page: 1082 year: 2005 end-page: 1085 ident: bib9 article-title: Efficient bipedal robots based on passive-dynamic walkers publication-title: Science – volume: 365 start-page: 3 year: 2006 end-page: 9 ident: bib1 article-title: Walking: technology and biology publication-title: Philosophical Transactions of the Royal Society A – Mathematical Physical & Engineering Sciences – volume: 9 start-page: 62 year: 1990 end-page: 82 ident: bib6 article-title: Passive dynamic walking publication-title: International Journal of Robotics Research – volume: 116 start-page: 30 year: 1994 end-page: 36 ident: bib23 article-title: On the measurement of dynamic stability of human locomotion publication-title: Journal of Biomechanical Engineering – year: 1994 ident: bib26 publication-title: Nonlinear Dynamics and Chaos – reference: , Pittsburgh, PA, USA, 2001, DETC2001/VIB-21363. – volume: 52 start-page: 241 year: 1981 end-page: 260 ident: bib11 article-title: Ballistic walking: an improved model publication-title: Mathematical Bioscience – volume: 120 start-page: 281 year: 1998 end-page: 288 ident: bib19 article-title: The simplest walking model: stability, complexity, and scaling publication-title: Journal of Biomechanical Engineering – volume: 40 start-page: 1567 year: 2007 end-page: 1574 ident: bib32 article-title: Predictive modelling of human walking over a complete gait cycle publication-title: Journal of Biomechanics – volume: 124 start-page: 113 year: 2002 end-page: 120 ident: bib18 article-title: Energetics of actively powered locomotion using the simplest walking model publication-title: Journal of Biomechanical Engineering – volume: 35 start-page: 117 year: 2002 end-page: 124 ident: bib35 article-title: Simultaneous positive and negative external mechanical work in human walking publication-title: Journal of Biomechanics – volume: 13 start-page: 49 year: 1980 end-page: 57 ident: bib10 article-title: Ballistic walking publication-title: Journal of Biomechanics – volume: 3 start-page: 4 year: 1984 end-page: 28 ident: bib3 article-title: Mechanics of locomotion publication-title: International Journal of Robotics Research – volume: 163 start-page: 277 year: 1993 end-page: 314 ident: bib7 article-title: Dynamics and control of bipedal locomotion publication-title: Journal of Theoretical Biology – volume: 118 start-page: 405 year: 1996 end-page: 411 ident: bib22 article-title: Kinematics and dynamic stability of the locomotion of post-polio patients publication-title: Journal of Biomechanical Engineering – year: 1993 ident: bib27 article-title: Passive dynamic biped catalogue publication-title: Experimental Robotics II – volume: 22 start-page: 681 year: 2004 end-page: 688 ident: bib14 article-title: Passive dynamic walking model with upper body publication-title: Robotica – volume: 4 start-page: 273 year: 1997 end-page: 286 ident: bib20 article-title: Limit cycle in a passive compass gait and passivity-mimicking control laws publication-title: Autonomous Robots – volume: 40 start-page: 1723 year: 2007 end-page: 1730 ident: bib24 article-title: The effects of sensory loss and walking speed on the orbital dynamic stability of human walking publication-title: Journal of Biomechanics – volume: 33 start-page: 1433 year: 2000 end-page: 1440 ident: bib36 article-title: Active control of lateral balance in human walking publication-title: Journal of Biomechanics – volume: 21 start-page: 393 year: 2005 end-page: 401 ident: bib15 article-title: How to keep from falling forward: elementary swing leg action for passive dynamic walkers publication-title: IEEE Transaction on Robotics – volume: 2 start-page: 459 year: 2005 end-page: 478 ident: bib16 article-title: Three additions to passive dynamic walking; actuation, an upper body, and 3D stability publication-title: International Journal of Humanoid Robotics – volume: 365 start-page: 21 year: 2006 end-page: 47 ident: bib4 article-title: How to make an autonomous robot as a partner with humans: design approach versus emergent approach publication-title: Philosophical Transactions of the Royal Society A – Mathematical Physical & Engineering Sciences – volume: 80 start-page: 3658 year: 1998 end-page: 3661 ident: bib8 article-title: An uncontrolled walking toy that cannot stand still publication-title: Physical Review Letters – volume: 129 start-page: 586 year: 2007 end-page: 593 ident: bib25 article-title: Differences between local and orbital dynamic stability during human walking publication-title: Journal of Biomechanical Engineering – volume: 18 start-page: 917 year: 1999 end-page: 930 ident: bib37 article-title: Stabilization of lateral motion in passive dynamic walking publication-title: International Journal of Robotics Research – volume: 129 start-page: 1 year: 2007 end-page: 11 ident: bib21 article-title: Dynamic stability of passive dynamic walking on an irregular surface publication-title: Journal of Biomechanical Engineering – volume: 43 start-page: 194 year: 2010 end-page: 202 ident: bib31 article-title: A generic analytical foot rollover model for predicting translational ankle kinematics in gait simulation studies publication-title: Journal of Biomechanics – volume: 365 start-page: 11 year: 2006 end-page: 19 ident: bib2 article-title: Honda humanoid robots development publication-title: Philosophical Transactions of the Royal Society A – Mathematical Physical & Engineering Sciences – volume: 3 start-page: e134 year: 2007 ident: bib33 article-title: Adaptive, fast walking in a biped robot under neuronal control and learning publication-title: PLoS Computational Biology – volume: 365 start-page: 49 year: 2006 end-page: 64 ident: bib5 article-title: Biped walking robots created at Waseda University: WL and WABIAN family publication-title: Philosophical Transactions of the Royal Society A – Mathematical Physical & Engineering Sciences – volume: 3 start-page: 1 year: 2009 end-page: 12 ident: bib13 article-title: Design and construction of a simple 3D straight legged passive walker with flat feet and ankle springs publication-title: Journal of System Design and Dynamics – volume: 7 start-page: 211 year: 2010 end-page: 218 ident: bib30 article-title: The human ankle-foot complex as a multi-configurable mechanism during the stance phase of walking publication-title: Journal of Bionic Engineering – reference: Schwab A L, Wisse M. Basin of attraction of the simplest walking model. – volume: 8 start-page: 33 year: 2011 end-page: 48 ident: bib34 article-title: Planning and control of CoP-switch-based planar biped walking publication-title: Journal of Bionic Engineering – volume: 18 start-page: 917 year: 1999 end-page: 930 ident: CR37 article-title: Stabilization of lateral motion in passive dynamic walking publication-title: International Journal of Robotics Research doi: 10.1177/02783649922066655 – volume: 365 start-page: 11 year: 2006 end-page: 19 ident: CR2 article-title: Honda humanoid robots development publication-title: Philosophical Transactions of the Royal Society A — Mathematical Physical & Engineering Sciences doi: 10.1098/rsta.2006.1917 – volume: 22 start-page: 681 year: 2004 end-page: 688 ident: CR14 article-title: Passive dynamic walking model with upper body publication-title: Robotica doi: 10.1017/S0263574704000475 – volume: 80 start-page: 3658 year: 1998 end-page: 3661 ident: CR8 article-title: An uncontrolled walking toy that cannot stand still publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.80.3658 – volume: 123 start-page: 264 year: 2001 end-page: 269 ident: CR17 article-title: A simple model of bipedal walking predicts the preferred speed-step length relationship publication-title: Journal of Biomechanical Engineering doi: 10.1115/1.1372322 – volume: 17 start-page: 1282 year: 1998 end-page: 1301 ident: CR28 article-title: A study of the passive gait of a compass-like biped robot: symmetry and chaos publication-title: International Journal of Robotic Research doi: 10.1177/027836499801701202 – volume: 13 start-page: 49 year: 1980 end-page: 57 ident: CR10 article-title: Ballistic walking publication-title: Journal of Biomechanics doi: 10.1016/0021-9290(80)90007-X – volume: 33 start-page: 1433 year: 2000 end-page: 1440 ident: CR36 article-title: Active control of lateral balance in human walking publication-title: Journal of Biomechanics doi: 10.1016/S0021-9290(00)00101-9 – volume: 21 start-page: 393 year: 2005 end-page: 401 ident: CR15 article-title: How to keep from falling forward: elementary swing leg action for passive dynamic walkers publication-title: IEEE Transaction on Robotics doi: 10.1109/TRO.2004.838030 – year: 2001 ident: CR29 article-title: Basin of attraction of the simplest walking model publication-title: Proceedings of ASME Design Engineering Technical Conferences – year: 1993 ident: CR27 article-title: Passive dynamic biped catalogue publication-title: Experimental Robotics II – volume: 20 start-page: 607 year: 2001 end-page: 615 ident: CR12 article-title: A 3D passive-dynamic walking robot with two legs and knees publication-title: International Journal of Robotics Research doi: 10.1177/02783640122067561 – volume: 118 start-page: 405 year: 1996 end-page: 411 ident: CR22 article-title: Kinematics and dynamic stability of the locomotion of post-polio patients publication-title: Journal of Biomechanical Engineering doi: 10.1115/1.2796024 – volume: 40 start-page: 1567 year: 2007 end-page: 1574 ident: CR32 article-title: Predictive modelling of human walking over a complete gait cycle publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2006.07.017 – volume: 163 start-page: 277 year: 1993 end-page: 314 ident: CR7 article-title: Dynamics and control of bipedal locomotion publication-title: Journal of Theoretical Biology doi: 10.1006/jtbi.1993.1121 – volume: 2 start-page: 459 year: 2005 end-page: 478 ident: CR16 article-title: Three additions to passive dynamic walking; actuation, an upper body, and 3D stability publication-title: International Journal of Humanoid Robotics doi: 10.1142/S0219843605000570 – volume: 9 start-page: 62 year: 1990 end-page: 82 ident: CR6 article-title: Passive dynamic walking publication-title: International Journal of Robotics Research doi: 10.1177/027836499000900206 – volume: 4 start-page: 273 year: 1997 end-page: 286 ident: CR20 article-title: Limit cycle in a passive compass gait and passivity-mimicking control laws publication-title: Autonomous Robots doi: 10.1023/A:1008844026298 – volume: 120 start-page: 281 year: 1998 end-page: 288 ident: CR19 article-title: The simplest walking model: stability, complexity, and scaling publication-title: Journal of Biomechanical Engineering doi: 10.1115/1.2798313 – volume: 3 start-page: e134 year: 2007 ident: CR33 article-title: Adaptive, fast walking in a biped robot under neuronal control and learning publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.0030134 – volume: 40 start-page: 1723 year: 2007 end-page: 1730 ident: CR24 article-title: The effects of sensory loss and walking speed on the orbital dynamic stability of human walking publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2006.08.006 – volume: 129 start-page: 586 year: 2007 end-page: 593 ident: CR25 article-title: Differences between local and orbital dynamic stability during human walking publication-title: Journal of Biomechanical Engineering doi: 10.1115/1.2746383 – volume: 7 start-page: 211 year: 2010 end-page: 218 ident: CR30 article-title: The human ankle-foot complex as a multi-configurable mechanism during the stance phase of walking publication-title: Journal of Bionic Engineering doi: 10.1016/S1672-6529(10)60243-0 – volume: 365 start-page: 3 year: 2006 end-page: 9 ident: CR1 article-title: Walking: technology and biology publication-title: Philosophical Transactions of the Royal Society A - Mathematical Physical & Engineering Sciences doi: 10.1098/rsta.2006.1918 – volume: 35 start-page: 117 year: 2002 end-page: 124 ident: CR35 article-title: Simultaneous positive and negative external mechanical work in human walking publication-title: Journal of Biomechanics doi: 10.1016/S0021-9290(01)00169-5 – volume: 8 start-page: 33 year: 2011 end-page: 48 ident: CR34 article-title: Planning and control of CoP-switchbased planar biped walking publication-title: Journal of Bionic Engineering doi: 10.1016/S1672-6529(11)60010-3 – volume: 3 start-page: 4 year: 1984 end-page: 28 ident: CR3 article-title: Mechanics of locomotion publication-title: International Journal of Robotics Research doi: 10.1177/027836498400300202 – volume: 365 start-page: 49 year: 2006 end-page: 64 ident: CR5 article-title: Biped walking robots created at Waseda University: WL and WABIAN family publication-title: Philosophical Transactions of the Royal Society A — Mathematical Physical & Engineering Sciences doi: 10.1098/rsta.2006.1920 – volume: 124 start-page: 113 year: 2002 end-page: 120 ident: CR18 article-title: Energetics of actively powered locomotion using the simplest walking model publication-title: Journal of Biomechanical Engineering doi: 10.1115/1.1427703 – volume: 3 start-page: 1 year: 2009 end-page: 12 ident: CR13 article-title: Design and construction of a simple 3D straight legged passive walker with flat feet and ankle springs publication-title: Journal of System Design and Dynamics doi: 10.1299/jsdd.3.1 – volume: 43 start-page: 194 year: 2010 end-page: 202 ident: CR31 article-title: A generic analytical foot rollover model for predicting translational ankle kinematics in gait simulation studies publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2009.09.027 – volume: 365 start-page: 21 year: 2006 end-page: 47 ident: CR4 article-title: How to make an autonomous robot as a partner with humans: design approach versus emergent approach publication-title: Philosophical Transactions of the Royal Society A — Mathematical Physical & Engineering Sciences doi: 10.1098/rsta.2006.1923 – volume: 307 start-page: 1082 year: 2005 end-page: 1085 ident: CR9 article-title: Efficient bipedal robots based on passive-dynamic walkers publication-title: Science doi: 10.1126/science.1107799 – volume: 52 start-page: 241 year: 1981 end-page: 260 ident: CR11 article-title: Ballistic walking: an improved model publication-title: Mathematical Bioscience doi: 10.1016/0025-5564(80)90070-X – year: 1994 ident: CR26 publication-title: Nonlinear Dynamics and Chaos – volume: 129 start-page: 1 year: 2007 end-page: 11 ident: CR21 article-title: Dynamic stability of passive dynamic walking on an irregular surface publication-title: Journal of Biomechanical Engineering doi: 10.1115/1.2800760 – volume: 116 start-page: 30 year: 1994 end-page: 36 ident: CR23 article-title: On the measurement of dynamic stability of human locomotion publication-title: Journal of Biomechanical Engineering doi: 10.1115/1.2895701 – volume: 120 start-page: 281 year: 1998 ident: 9040423_CR19 publication-title: Journal of Biomechanical Engineering doi: 10.1115/1.2798313 – volume: 129 start-page: 586 year: 2007 ident: 9040423_CR25 publication-title: Journal of Biomechanical Engineering doi: 10.1115/1.2746383 – volume: 4 start-page: 273 year: 1997 ident: 9040423_CR20 publication-title: Autonomous Robots doi: 10.1023/A:1008844026298 – volume: 20 start-page: 607 year: 2001 ident: 9040423_CR12 publication-title: International Journal of Robotics Research doi: 10.1177/02783640122067561 – volume: 3 start-page: 4 year: 1984 ident: 9040423_CR3 publication-title: International Journal of Robotics Research doi: 10.1177/027836498400300202 – volume: 123 start-page: 264 year: 2001 ident: 9040423_CR17 publication-title: Journal of Biomechanical Engineering doi: 10.1115/1.1372322 – volume: 80 start-page: 3658 year: 1998 ident: 9040423_CR8 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.80.3658 – volume: 18 start-page: 917 year: 1999 ident: 9040423_CR37 publication-title: International Journal of Robotics Research doi: 10.1177/02783649922066655 – volume: 307 start-page: 1082 year: 2005 ident: 9040423_CR9 publication-title: Science doi: 10.1126/science.1107799 – volume: 365 start-page: 49 year: 2006 ident: 9040423_CR5 publication-title: Philosophical Transactions of the Royal Society A — Mathematical Physical & Engineering Sciences doi: 10.1098/rsta.2006.1920 – volume: 116 start-page: 30 year: 1994 ident: 9040423_CR23 publication-title: Journal of Biomechanical Engineering doi: 10.1115/1.2895701 – volume: 17 start-page: 1282 year: 1998 ident: 9040423_CR28 publication-title: International Journal of Robotic Research doi: 10.1177/027836499801701202 – volume: 33 start-page: 1433 year: 2000 ident: 9040423_CR36 publication-title: Journal of Biomechanics doi: 10.1016/S0021-9290(00)00101-9 – volume: 13 start-page: 49 year: 1980 ident: 9040423_CR10 publication-title: Journal of Biomechanics doi: 10.1016/0021-9290(80)90007-X – volume: 365 start-page: 11 year: 2006 ident: 9040423_CR2 publication-title: Philosophical Transactions of the Royal Society A — Mathematical Physical & Engineering Sciences doi: 10.1098/rsta.2006.1917 – volume: 3 start-page: 1 year: 2009 ident: 9040423_CR13 publication-title: Journal of System Design and Dynamics doi: 10.1299/jsdd.3.1 – volume: 9 start-page: 62 year: 1990 ident: 9040423_CR6 publication-title: International Journal of Robotics Research doi: 10.1177/027836499000900206 – volume: 40 start-page: 1567 year: 2007 ident: 9040423_CR32 publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2006.07.017 – volume: 52 start-page: 241 year: 1981 ident: 9040423_CR11 publication-title: Mathematical Bioscience doi: 10.1016/0025-5564(80)90070-X – volume: 21 start-page: 393 year: 2005 ident: 9040423_CR15 publication-title: IEEE Transaction on Robotics doi: 10.1109/TRO.2004.838030 – volume: 163 start-page: 277 year: 1993 ident: 9040423_CR7 publication-title: Journal of Theoretical Biology doi: 10.1006/jtbi.1993.1121 – volume-title: Experimental Robotics II year: 1993 ident: 9040423_CR27 – volume: 7 start-page: 211 year: 2010 ident: 9040423_CR30 publication-title: Journal of Bionic Engineering doi: 10.1016/S1672-6529(10)60243-0 – volume: 43 start-page: 194 year: 2010 ident: 9040423_CR31 publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2009.09.027 – volume-title: Nonlinear Dynamics and Chaos year: 1994 ident: 9040423_CR26 – volume: 365 start-page: 3 year: 2006 ident: 9040423_CR1 publication-title: Philosophical Transactions of the Royal Society A - Mathematical Physical & Engineering Sciences doi: 10.1098/rsta.2006.1918 – volume: 2 start-page: 459 year: 2005 ident: 9040423_CR16 publication-title: International Journal of Humanoid Robotics doi: 10.1142/S0219843605000570 – volume: 124 start-page: 113 year: 2002 ident: 9040423_CR18 publication-title: Journal of Biomechanical Engineering doi: 10.1115/1.1427703 – volume: 129 start-page: 1 year: 2007 ident: 9040423_CR21 publication-title: Journal of Biomechanical Engineering doi: 10.1115/1.2800760 – volume: 3 start-page: e134 year: 2007 ident: 9040423_CR33 publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.0030134 – volume: 40 start-page: 1723 year: 2007 ident: 9040423_CR24 publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2006.08.006 – volume-title: Proceedings of ASME Design Engineering Technical Conferences year: 2001 ident: 9040423_CR29 – volume: 22 start-page: 681 year: 2004 ident: 9040423_CR14 publication-title: Robotica doi: 10.1017/S0263574704000475 – volume: 35 start-page: 117 year: 2002 ident: 9040423_CR35 publication-title: Journal of Biomechanics doi: 10.1016/S0021-9290(01)00169-5 – volume: 8 start-page: 33 year: 2011 ident: 9040423_CR34 publication-title: Journal of Bionic Engineering doi: 10.1016/S1672-6529(11)60010-3 – volume: 365 start-page: 21 year: 2006 ident: 9040423_CR4 publication-title: Philosophical Transactions of the Royal Society A — Mathematical Physical & Engineering Sciences doi: 10.1098/rsta.2006.1923 – volume: 118 start-page: 405 year: 1996 ident: 9040423_CR22 publication-title: Journal of Biomechanical Engineering doi: 10.1115/1.2796024 |
SSID | ssj0059283 |
Score | 1.9720069 |
Snippet | A simplified 2D passive dynamic model was simulated to walk down on a rough slope surface defined by deterministic profiles to investigate how the walking... |
SourceID | proquest crossref springer elsevier chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 423 |
SubjectTerms | Artificial Intelligence Biochemical Engineering Bioinformatics Biomaterials Biomedical Engineering and Bioengineering Biomedical Engineering/Biotechnology bipedal walking Computer simulation dynamic stability Engineering Floquet乘子 human locomotion Passive dynamics Rough terrain Roughness Stability Strikes Surface roughness Walking 动态稳定性 双足步行 模型模拟 行走稳定性 表面粗糙度 路面 轨道稳定性 |
Title | Dynamic Stability of Passive Bipedal Walking on Rough Terrain: A Preliminary Simulation Study |
URI | http://lib.cqvip.com/qk/87903X/201204/43725655.html https://dx.doi.org/10.1016/S1672-6529(11)60139-X https://link.springer.com/article/10.1016/S1672-6529(11)60139-X https://www.proquest.com/docview/1283659621 https://www.proquest.com/docview/1513486060 https://www.proquest.com/docview/1651450575 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELamISReEBsgusHkSTxsD1ljx3YS3spgKiBNE9tEXpCVODZU6pLSdg994W_nznHKD2mdxKt1thyf7-5zfL6PkNeOG6ZcziOb1yISNimjUqo8Ei6vmGAlEhtjtsW5Gl-Lj4Ustshp_xYG0yqD7-98uvfWoWUYVnM4m0yGl0ylXEkO1qoQxxT4gl2kWD__5Oc6zUPm3JfiROEIpX-_4ulG8I1HjB37QaICayx8b5tvPyBy3BWr_sCi_1yf-qh09oQ8DnCSjroZ75At2-yShx3B5GqX7ATTXdCjUF_6-Cn5-q5joacANH1q7Iq2jl4AigbPR99OZraGIb-UU_yLTtuGfkYmH3pl50gn8YaO6MXcTj0b2HxFLyc3gQGMYk7i6hm5Pnt_dTqOAstCZCSPl1GVGQVh3WRJLZJKJqYWxmY1z2NuSiVcJUxl8c18FacukXD4rlORW2YAKrDMueQ52W7axr4gFMCU43FuapnDuVHFmREp1qOpYuNYmrAB2VuvrZ511TQ0XhwCqpQDIvrF1ibUJ0eajKleJ6KhvjTqC84t2utLFwNysu7WD3lPh6zXpP5rp2kIIvd1Pew1r8EK8WqlbGx7u9AQ5ROFREZsg4xkCVJ-qXiDjAIA68-MAzLst5YObmWxeXZ7__9h--QRAEHepem8JNvL-a19BWBrWR14azogD0YfPo3PfwFKlR82 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEaIXRAuo2_IwEof2kG78TNJbKVQLlKqiW5ELshLHListyXZ3e9hLfzsex1keEluJqzW2HI898008ng-hN5ZqIm1GI5NVPOKGFVEhZBZxm5WEkwKIjSHb4kwOLvnHXORr6Lh7CwNplcH2tzbdW-vQ0g-r2Z-MRv0LIhMqBXWnVQKOye-h-1ywBLb2we0yz0Nk1NfiBOkIxH8942mH8I17hOz7UaIciix8b-qra-c6_uWsfgOjf92ferd08hg9CngSH7VT3kRrpt5CD1qGycUW2gxnd4b3QoHp_Sfo27uWhh47pOlzYxe4sfjcwWhn-vDb0cRUbsivxRh-o-Omxl-AygcPzRT4JA7xET6fmrGnA5su8MXoR6AAw5CUuHiKLk_eD48HUaBZiLSg8TwqUy2dX9cpqzgrBdMV1yataBZTXUhuS65LA4_myzixTLjou0p4Zoh2WIGk1rJnaL1uarONsENTlsaZrkTmAkcZp5onUJCmjLUlCSM9tLNcWzVpy2kouDl0sFL0EO8WW-lQoBx4MsZqmYkG-lKgLxe4KK8vlffQwbJbN-QdHdJOk-qPraacF7mr6-tO88odQ7hbKWrT3MyUc_NMApMRWSEjCAPOLxmvkJEOwfqgsYf63dZSwa7MVs9u5_8_7BV6OBh-PlWnH84-7aINhwppm7PzHK3PpzfmhUNe8_KlP1k_AcUcIMw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Stability+of+Passive+Bipedal+Walking+on+Rough+Terrain%3A+A+Preliminary+Simulation+Study&rft.jtitle=Journal+of+bionics+engineering&rft.au=Afshar%2C+Parsa&rft.au=Ren%2C+Lei&rft.date=2012-12-01&rft.issn=1672-6529&rft.volume=9&rft.issue=4&rft.spage=423&rft.epage=433&rft_id=info:doi/10.1016%2FS1672-6529%2811%2960139-X&rft.externalDBID=NO_FULL_TEXT |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F87903X%2F87903X.jpg |