Current status of Landsat program, science, and applications

Formal planning and development of what became the first Landsat satellite commenced over 50 years ago in 1967. Now, having collected earth observation data for well over four decades since the 1972 launch of Landsat-1, the Landsat program is increasingly complex and vibrant. Critical programmatic e...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing of environment Vol. 225; pp. 127 - 147
Main Authors Wulder, Michael A., Loveland, Thomas R., Roy, David P., Crawford, Christopher J., Masek, Jeffrey G., Woodcock, Curtis E., Allen, Richard G., Anderson, Martha C., Belward, Alan S., Cohen, Warren B., Dwyer, John, Erb, Angela, Gao, Feng, Griffiths, Patrick, Helder, Dennis, Hermosilla, Txomin, Hipple, James D., Hostert, Patrick, Hughes, M. Joseph, Huntington, Justin, Johnson, David M., Kennedy, Robert, Kilic, Ayse, Li, Zhan, Lymburner, Leo, McCorkel, Joel, Pahlevan, Nima, Scambos, Theodore A., Schaaf, Crystal, Schott, John R., Sheng, Yongwei, Storey, James, Vermote, Eric, Vogelmann, James, White, Joanne C., Wynne, Randolph H., Zhu, Zhe
Format Journal Article
LanguageEnglish
Published New York Elsevier Inc 01.05.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Formal planning and development of what became the first Landsat satellite commenced over 50 years ago in 1967. Now, having collected earth observation data for well over four decades since the 1972 launch of Landsat-1, the Landsat program is increasingly complex and vibrant. Critical programmatic elements are ensuring the continuity of high quality measurements for scientific and operational investigations, including ground systems, acquisition planning, data archiving and management, and provision of analysis ready data products. Free and open access to archival and new imagery has resulted in a myriad of innovative applications and novel scientific insights. The planning of future compatible satellites in the Landsat series, which maintain continuity while incorporating technological advancements, has resulted in an increased operational use of Landsat data. Governments and international agencies, among others, can now build an expectation of Landsat data into a given operational data stream. International programs and conventions (e.g., deforestation monitoring, climate change mitigation) are empowered by access to systematically collected and calibrated data with expected future continuity further contributing to the existing multi-decadal record. The increased breadth and depth of Landsat science and applications have accelerated following the launch of Landsat-8, with significant improvements in data quality. Herein, we describe the programmatic developments and institutional context for the Landsat program and the unique ability of Landsat to meet the needs of national and international programs. We then present the key trends in Landsat science that underpin many of the recent scientific and application developments and follow-up with more detailed thematically organized summaries. The historical context offered by archival imagery combined with new imagery allows for the development of time series algorithms that can produce information on trends and dynamics. Landsat-8 has figured prominently in these recent developments, as has the improved understanding and calibration of historical data. Following the communication of the state of Landsat science, an outlook for future launches and envisioned programmatic developments are presented. Increased linkages between satellite programs are also made possible through an expectation of future mission continuity, such as developing a virtual constellation with Sentinel-2. Successful science and applications developments create a positive feedback loop—justifying and encouraging current and future programmatic support for Landsat. •Landsat program approaching 50 years of continuous global data collection.•Landsat-8 successfully on-orbit; Landsat-9 under development; Landsat-10 being scoped.•Open data has accelerated science and application developments.•Value of calibrated data shown for science, applications, and towards virtual constellations.•Time series analysis of Landsat offering new insights on earth system and human activity.
AbstractList Formal planning and development of what became the first Landsat satellite commenced over 50 years ago in 1967. Now, having collected earth observation data for well over four decades since the 1972 launch of Landsat-1, the Landsat program is increasingly complex and vibrant. Critical programmatic elements are ensuring the continuity of high quality measurements for scientific and operational investigations, including ground systems, acquisition planning, data archiving and management, and provision of analysis ready data products. Free and open access to archival and new imagery has resulted in a myriad of innovative applications and novel scientific insights. The planning of future compatible satellites in the Landsat series, which maintain continuity while incorporating technological advancements, has resulted in an increased operational use of Landsat data. Governments and international agencies, among others, can now build an expectation of Landsat data into a given operational data stream. International programs and conventions (e.g., deforestation monitoring, climate change mitigation) are empowered by access to systematically collected and calibrated data with expected future continuity further contributing to the existing multi-decadal record. The increased breadth and depth of Landsat science and applications have accelerated following the launch of Landsat-8, with significant improvements in data quality. Herein, we describe the programmatic developments and institutional context for the Landsat program and the unique ability of Landsat to meet the needs of national and international programs. We then present the key trends in Landsat science that underpin many of the recent scientific and application developments and follow-up with more detailed thematically organized summaries. The historical context offered by archival imagery combined with new imagery allows for the development of time series algorithms that can produce information on trends and dynamics. Landsat-8 has figured prominently in these recent developments, as has the improved understanding and calibration of historical data. Following the communication of the state of Landsat science, an outlook for future launches and envisioned programmatic developments are presented. Increased linkages between satellite programs are also made possible through an expectation of future mission continuity, such as developing a virtual constellation with Sentinel-2. Successful science and applications developments create a positive feedback loop-justifying and encouraging current and future programmatic support for Landsat.
Formal planning and development of what became the first Landsat satellite commenced over 50 years ago in 1967. Now, having collected earth observation data for well over four decades since the 1972 launch of Landsat-1, the Landsat program is increasingly complex and vibrant. Critical programmatic elements are ensuring the continuity of high quality measurements for scientific and operational investigations, including ground systems, acquisition planning, data archiving and management, and provision of analysis ready data products. Free and open access to archival and new imagery has resulted in a myriad of innovative applications and novel scientific insights. The planning of future compatible satellites in the Landsat series, which maintain continuity while incorporating technological advancements, has resulted in an increased operational use of Landsat data. Governments and international agencies, among others, can now build an expectation of Landsat data into a given operational data stream. International programs and conventions (e.g., deforestation monitoring, climate change mitigation) are empowered by access to systematically collected and calibrated data with expected future continuity further contributing to the existing multi-decadal record. The increased breadth and depth of Landsat science and applications have accelerated following the launch of Landsat-8, with significant improvements in data quality. Herein, we describe the programmatic developments and institutional context for the Landsat program and the unique ability of Landsat to meet the needs of national and international programs. We then present the key trends in Landsat science that underpin many of the recent scientific and application developments and follow-up with more detailed thematically organized summaries. The historical context offered by archival imagery combined with new imagery allows for the development of time series algorithms that can produce information on trends and dynamics. Landsat-8 has figured prominently in these recent developments, as has the improved understanding and calibration of historical data. Following the communication of the state of Landsat science, an outlook for future launches and envisioned programmatic developments are presented. Increased linkages between satellite programs are also made possible through an expectation of future mission continuity, such as developing a virtual constellation with Sentinel-2. Successful science and applications developments create a positive feedback loop—justifying and encouraging current and future programmatic support for Landsat. •Landsat program approaching 50 years of continuous global data collection.•Landsat-8 successfully on-orbit; Landsat-9 under development; Landsat-10 being scoped.•Open data has accelerated science and application developments.•Value of calibrated data shown for science, applications, and towards virtual constellations.•Time series analysis of Landsat offering new insights on earth system and human activity.
Author Loveland, Thomas R.
Huntington, Justin
Belward, Alan S.
Li, Zhan
Hughes, M. Joseph
Woodcock, Curtis E.
Zhu, Zhe
Sheng, Yongwei
Pahlevan, Nima
Vermote, Eric
Wynne, Randolph H.
Scambos, Theodore A.
Cohen, Warren B.
White, Joanne C.
Helder, Dennis
Allen, Richard G.
Gao, Feng
Wulder, Michael A.
Hipple, James D.
Dwyer, John
Erb, Angela
McCorkel, Joel
Vogelmann, James
Storey, James
Anderson, Martha C.
Griffiths, Patrick
Johnson, David M.
Kennedy, Robert
Hostert, Patrick
Roy, David P.
Masek, Jeffrey G.
Crawford, Christopher J.
Hermosilla, Txomin
Schaaf, Crystal
Schott, John R.
Kilic, Ayse
Lymburner, Leo
Author_xml – sequence: 1
  givenname: Michael A.
  orcidid: 0000-0002-6942-1896
  surname: Wulder
  fullname: Wulder, Michael A.
  email: mike.wulder@canada.ca
  organization: Canadian Forest Service (Pacific Forestry Centre), Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia V8Z 1M5, Canada
– sequence: 2
  givenname: Thomas R.
  surname: Loveland
  fullname: Loveland, Thomas R.
  organization: U.S. Geological Survey Earth Resources Observation and Science (EROS) Center, 47914 252nd Street, Sioux Falls, SD 57198, USA
– sequence: 3
  givenname: David P.
  surname: Roy
  fullname: Roy, David P.
  organization: Department of Geography, Environment, & Spatial Sciences, Center for Global Change and Earth Observations, Michigan State University, USA
– sequence: 4
  givenname: Christopher J.
  surname: Crawford
  fullname: Crawford, Christopher J.
  organization: ASRC Federal InuTeq/U.S. Geological Survey Earth Resources Observation and Science (EROS) Center, 47914 252nd Street, Sioux Falls, SD 57198, USA
– sequence: 5
  givenname: Jeffrey G.
  surname: Masek
  fullname: Masek, Jeffrey G.
  organization: Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
– sequence: 6
  givenname: Curtis E.
  surname: Woodcock
  fullname: Woodcock, Curtis E.
  organization: Department of Earth and Environment, Boston University, MA 02215, USA
– sequence: 7
  givenname: Richard G.
  surname: Allen
  fullname: Allen, Richard G.
  organization: University of Idaho Research and Extension Center, Kimberly, ID 83341, USA
– sequence: 8
  givenname: Martha C.
  surname: Anderson
  fullname: Anderson, Martha C.
  organization: USDA, Agricultural Research Service, Hydrology and Remote Sensing Laboratory, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
– sequence: 9
  givenname: Alan S.
  surname: Belward
  fullname: Belward, Alan S.
  organization: European Commission, Joint Research Centre, Institute for Environment and Sustainability, 20133, VA, Italy
– sequence: 10
  givenname: Warren B.
  surname: Cohen
  fullname: Cohen, Warren B.
  organization: USDA Forest Service, PNW Research Station, 3200 SW Jefferson Way, Corvallis, OR 97331, USA
– sequence: 11
  givenname: John
  surname: Dwyer
  fullname: Dwyer, John
  organization: U.S. Geological Survey Earth Resources Observation and Science (EROS) Center, 47914 252nd Street, Sioux Falls, SD 57198, USA
– sequence: 12
  givenname: Angela
  surname: Erb
  fullname: Erb, Angela
  organization: School for the Environment, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125, USA
– sequence: 13
  givenname: Feng
  orcidid: 0000-0002-1865-2846
  surname: Gao
  fullname: Gao, Feng
  organization: USDA, Agricultural Research Service, Hydrology and Remote Sensing Laboratory, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
– sequence: 14
  givenname: Patrick
  surname: Griffiths
  fullname: Griffiths, Patrick
  organization: European Space Agency, Earth Observation, Science, Applications & Climate Department, Frascati (Roma), Italy
– sequence: 15
  givenname: Dennis
  orcidid: 0000-0002-7379-4679
  surname: Helder
  fullname: Helder, Dennis
  organization: College of Engineering, South Dakota State University Brookings, SD 57007, USA
– sequence: 16
  givenname: Txomin
  orcidid: 0000-0002-5445-0360
  surname: Hermosilla
  fullname: Hermosilla, Txomin
  organization: Canadian Forest Service (Pacific Forestry Centre), Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia V8Z 1M5, Canada
– sequence: 17
  givenname: James D.
  surname: Hipple
  fullname: Hipple, James D.
  organization: United States Department of Agriculture, Risk Management Agency, Washington, DC 20250, USA
– sequence: 18
  givenname: Patrick
  surname: Hostert
  fullname: Hostert, Patrick
  organization: Geography Department, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
– sequence: 19
  givenname: M. Joseph
  surname: Hughes
  fullname: Hughes, M. Joseph
  organization: College of Earth, Ocean, and Atmospheric Sciences, 104 CEOAS Admin Bldg., Oregon State University, Corvallis, OR 97331, United States
– sequence: 20
  givenname: Justin
  surname: Huntington
  fullname: Huntington, Justin
  organization: Desert Research Institute, Reno, NV 89501, USA
– sequence: 21
  givenname: David M.
  surname: Johnson
  fullname: Johnson, David M.
  organization: National Agricultural Statistics Service, United States Department of Agriculture, 1400 Independence Ave., SW, Washington, D.C. 20250, USA
– sequence: 22
  givenname: Robert
  surname: Kennedy
  fullname: Kennedy, Robert
  organization: College of Earth, Ocean, and Atmospheric Sciences, 104 CEOAS Admin Bldg., Oregon State University, Corvallis, OR 97331, United States
– sequence: 23
  givenname: Ayse
  surname: Kilic
  fullname: Kilic, Ayse
  organization: Dept. of Civil Engineering, School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 65816, USA
– sequence: 24
  givenname: Zhan
  orcidid: 0000-0001-6307-5200
  surname: Li
  fullname: Li, Zhan
  organization: Canadian Forest Service (Pacific Forestry Centre), Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia V8Z 1M5, Canada
– sequence: 25
  givenname: Leo
  orcidid: 0000-0002-1274-1792
  surname: Lymburner
  fullname: Lymburner, Leo
  organization: Geoscience Australia, GPO Box 378, Canberra, ACT 2601, Australia
– sequence: 26
  givenname: Joel
  orcidid: 0000-0003-2853-2036
  surname: McCorkel
  fullname: McCorkel, Joel
  organization: Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
– sequence: 27
  givenname: Nima
  orcidid: 0000-0002-5454-5212
  surname: Pahlevan
  fullname: Pahlevan, Nima
  organization: Terrestrial Information Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
– sequence: 28
  givenname: Theodore A.
  surname: Scambos
  fullname: Scambos, Theodore A.
  organization: National Snow and Ice Data Center, University of Colorado, 1540 30th Street, Boulder, CO 80303, USA
– sequence: 29
  givenname: Crystal
  surname: Schaaf
  fullname: Schaaf, Crystal
  organization: School for the Environment, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125, USA
– sequence: 30
  givenname: John R.
  surname: Schott
  fullname: Schott, John R.
  organization: Rochester Institute of Technology, Chester F. Carlson Center for Imaging Science, Rochester, NY 14623, USA
– sequence: 31
  givenname: Yongwei
  surname: Sheng
  fullname: Sheng, Yongwei
  organization: Department of Geography, University of California, Los Angeles, CA 90095, USA
– sequence: 32
  givenname: James
  orcidid: 0000-0002-6664-7232
  surname: Storey
  fullname: Storey, James
  organization: Stinger Ghaffarian Technologies, Contractor to the U.S. Geological Survey, Earth Resources Observation and Science (EROS) Center, Sioux Falls, SD, USA
– sequence: 33
  givenname: Eric
  surname: Vermote
  fullname: Vermote, Eric
  organization: Terrestrial Information Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
– sequence: 34
  givenname: James
  surname: Vogelmann
  fullname: Vogelmann, James
  organization: U.S. Geological Survey Earth Resources Observation and Science (EROS) Center, 47914 252nd Street, Sioux Falls, SD 57198, USA
– sequence: 35
  givenname: Joanne C.
  surname: White
  fullname: White, Joanne C.
  organization: Canadian Forest Service (Pacific Forestry Centre), Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia V8Z 1M5, Canada
– sequence: 36
  givenname: Randolph H.
  surname: Wynne
  fullname: Wynne, Randolph H.
  organization: Virginia Tech, Forest Resources and Environmental Conservation, 310 West Campus Dr, Blacksburg, VA 24061, USA
– sequence: 37
  givenname: Zhe
  orcidid: 0000-0001-8283-6407
  surname: Zhu
  fullname: Zhu, Zhe
  organization: Department of Geosciences, Texas Tech University, Lubbock, TX 79409-1053, USA
BookMark eNp9kD1PwzAQQC1UJNrCD2CLxMLQhLOdxIlgQRVfUiUWmC3HdpCjNA62g8S_x6WdOnS6we9Zd2-BZoMdNELXGDIMuLzrMud1RgDXGZAMcHGG5rhidQoM8hmaA9A8zUnBLtDC-w4iUTE8Rw_ryTk9hMQHESaf2DbZiEF5EZLR2S8ntqvES6MHqVdJfEjEOPZGimDs4C_ReSt6r68Oc4k-n58-1q_p5v3lbf24SWVBIKQNrYXIm1YqJouc1CUrgVABrNQV0W1DsGa1oqAYwRVtqSpyiUXOpCwUyAbTJbrd_xtX-p60D3xrvNR9LwZtJ88JIRhoWRV1RG-O0M5ObojbRYoCqRihJFJsT0lnvXe65dKE_5uCE6bnGPiuKu94rMp3VTkQHptFEx-ZozNb4X5POvd7R8dGP0Y7fiiqjNMycGXNCfsPL9SQYA
CitedBy_id crossref_primary_10_1016_j_rse_2022_113228
crossref_primary_10_1016_j_jag_2020_102272
crossref_primary_10_1109_TGRS_2022_3208926
crossref_primary_10_1071_WF20072
crossref_primary_10_1109_JSTARS_2024_3492025
crossref_primary_10_1109_LGRS_2020_2965297
crossref_primary_10_1016_j_jag_2021_102555
crossref_primary_10_26468_trakyasobed_1479079
crossref_primary_10_1016_j_pce_2023_103536
crossref_primary_10_1007_s12665_022_10477_8
crossref_primary_10_3390_ijgi9100572
crossref_primary_10_1016_j_isprsjprs_2022_01_006
crossref_primary_10_34133_remotesensing_0118
crossref_primary_10_5194_essd_13_3951_2021
crossref_primary_10_1029_2023JF007189
crossref_primary_10_1111_faf_12772
crossref_primary_10_3390_rs12182948
crossref_primary_10_3390_w11112236
crossref_primary_10_3390_rs16071222
crossref_primary_10_1016_j_foreco_2024_121757
crossref_primary_10_1186_s40663_021_00352_6
crossref_primary_10_1016_j_rse_2020_111968
crossref_primary_10_5194_tc_17_3535_2023
crossref_primary_10_1016_j_rse_2020_111723
crossref_primary_10_1007_s10712_024_09833_z
crossref_primary_10_34133_remotesensing_0112
crossref_primary_10_1109_TGRS_2020_3038878
crossref_primary_10_3390_hydrology10020041
crossref_primary_10_1016_j_rse_2022_113239
crossref_primary_10_1016_j_jhydrol_2024_130979
crossref_primary_10_1016_j_oregeorev_2020_103332
crossref_primary_10_1016_j_ejrh_2024_101863
crossref_primary_10_3390_rs13020266
crossref_primary_10_1109_TGRS_2021_3088537
crossref_primary_10_1002_wwp2_12210
crossref_primary_10_1109_TGRS_2022_3149762
crossref_primary_10_1016_j_rse_2019_111492
crossref_primary_10_21776_ub_jtsl_2024_011_2_15
crossref_primary_10_3390_data4030094
crossref_primary_10_1016_j_rse_2023_113852
crossref_primary_10_3390_rs12223690
crossref_primary_10_1016_j_actaastro_2023_09_040
crossref_primary_10_1016_j_scitotenv_2021_152646
crossref_primary_10_3390_rs15194659
crossref_primary_10_1038_s41597_021_01076_6
crossref_primary_10_3390_rs14092199
crossref_primary_10_1007_s11852_023_01019_w
crossref_primary_10_1080_01490419_2023_2200212
crossref_primary_10_1093_jmammal_gyac079
crossref_primary_10_1080_17445647_2020_1829115
crossref_primary_10_1016_j_rse_2023_113889
crossref_primary_10_1016_j_biocon_2022_109489
crossref_primary_10_1016_j_ecolind_2023_110290
crossref_primary_10_3390_rs11182166
crossref_primary_10_1016_j_foreco_2020_118370
crossref_primary_10_1016_j_isprsjprs_2020_04_001
crossref_primary_10_1016_j_ecolind_2021_108336
crossref_primary_10_3389_ffgc_2024_1221797
crossref_primary_10_1016_j_isprsjprs_2021_06_015
crossref_primary_10_32569_resilience_1172781
crossref_primary_10_1002_eco_2759
crossref_primary_10_1016_j_foreco_2020_118008
crossref_primary_10_1016_j_isprsjprs_2022_01_021
crossref_primary_10_1016_j_scitotenv_2020_143792
crossref_primary_10_3390_rs14030753
crossref_primary_10_1016_j_rse_2020_111742
crossref_primary_10_1016_j_foreco_2019_05_016
crossref_primary_10_1016_j_rse_2022_113324
crossref_primary_10_17129_botsci_3358
crossref_primary_10_3390_rs13112128
crossref_primary_10_3390_rs16081392
crossref_primary_10_1016_j_ecofro_2024_05_006
crossref_primary_10_1002_pei3_10109
crossref_primary_10_1071_WF23130
crossref_primary_10_1080_10095020_2023_2249042
crossref_primary_10_11922_csdata_2021_0012_zh
crossref_primary_10_3390_rs13020167
crossref_primary_10_1016_j_envsoft_2025_106405
crossref_primary_10_1016_j_jag_2021_102642
crossref_primary_10_3390_agriculture12071062
crossref_primary_10_1016_j_margeo_2021_106628
crossref_primary_10_3390_rs12182934
crossref_primary_10_1016_j_jag_2021_102636
crossref_primary_10_1080_23311916_2021_1923384
crossref_primary_10_1016_j_jag_2021_102518
crossref_primary_10_3390_rs12213674
crossref_primary_10_3390_land10030231
crossref_primary_10_1177_03091333221114864
crossref_primary_10_3390_s22103931
crossref_primary_10_1080_10106049_2021_1991634
crossref_primary_10_1016_j_srs_2021_100026
crossref_primary_10_3390_rs13204040
crossref_primary_10_1002_rse2_185
crossref_primary_10_3390_rs15123139
crossref_primary_10_1002_ecs2_4152
crossref_primary_10_1016_j_earscirev_2020_103269
crossref_primary_10_1016_j_srs_2021_100031
crossref_primary_10_1109_JSTARS_2023_3288973
crossref_primary_10_3390_rs14225870
crossref_primary_10_3390_urbansci9010011
crossref_primary_10_1016_j_srs_2021_100032
crossref_primary_10_1016_j_rse_2020_111802
crossref_primary_10_1016_j_rse_2020_111801
crossref_primary_10_1080_24694452_2021_1989284
crossref_primary_10_1016_j_foreco_2022_120184
crossref_primary_10_3390_rs13183767
crossref_primary_10_3390_rs12182907
crossref_primary_10_1007_s40808_024_02066_4
crossref_primary_10_1109_TGRS_2023_3343071
crossref_primary_10_1007_s42797_022_00067_z
crossref_primary_10_1016_j_scitotenv_2023_168584
crossref_primary_10_1016_j_rse_2023_113656
crossref_primary_10_1002_eap_2269
crossref_primary_10_1016_j_isprsjprs_2023_04_013
crossref_primary_10_1109_ACCESS_2024_3487267
crossref_primary_10_1016_j_isprsjprs_2023_10_007
crossref_primary_10_1016_j_jag_2021_102502
crossref_primary_10_1016_j_jhydrol_2024_131862
crossref_primary_10_1016_j_isprsjprs_2024_12_019
crossref_primary_10_2478_ffp_2023_0008
crossref_primary_10_1038_s41467_025_57036_w
crossref_primary_10_1002_ecs2_4027
crossref_primary_10_1016_j_rse_2023_113895
crossref_primary_10_1007_s12520_020_01127_w
crossref_primary_10_1016_j_jhydrol_2021_126934
crossref_primary_10_3390_rs14092279
crossref_primary_10_1016_j_jenvman_2024_121513
crossref_primary_10_3390_rs14174252
crossref_primary_10_1016_j_actaastro_2023_09_010
crossref_primary_10_3390_rs12142235
crossref_primary_10_1177_09749306221096956
crossref_primary_10_1109_MGRS_2020_3032713
crossref_primary_10_3390_rs11232785
crossref_primary_10_1029_2021EA002085
crossref_primary_10_1038_s41598_025_86485_y
crossref_primary_10_1016_j_ejrh_2022_101111
crossref_primary_10_1007_s10980_019_00928_2
crossref_primary_10_5194_bg_19_2805_2022
crossref_primary_10_3390_f14051061
crossref_primary_10_1016_j_landurbplan_2023_104701
crossref_primary_10_5194_amt_14_7999_2021
crossref_primary_10_1016_j_scitotenv_2020_142661
crossref_primary_10_3390_land10121399
crossref_primary_10_1016_j_rse_2020_111701
crossref_primary_10_1016_j_rse_2022_113364
crossref_primary_10_31413_nat_v12i4_18355
crossref_primary_10_1080_22797254_2021_1918582
crossref_primary_10_1016_j_rse_2022_113003
crossref_primary_10_2139_ssrn_4054431
crossref_primary_10_1021_acs_est_1c04873
crossref_primary_10_3390_rs16010098
crossref_primary_10_3390_land12030547
crossref_primary_10_1016_j_actaastro_2024_03_062
crossref_primary_10_1016_j_isprsjprs_2024_05_016
crossref_primary_10_3390_rs16050744
crossref_primary_10_1016_j_jenvman_2021_113481
crossref_primary_10_1109_JSTARS_2020_3007562
crossref_primary_10_3390_f11050579
crossref_primary_10_3390_rs14225785
crossref_primary_10_3390_f12020147
crossref_primary_10_3390_rs13234947
crossref_primary_10_1016_j_rse_2020_111718
crossref_primary_10_1016_j_indic_2024_100452
crossref_primary_10_3389_ffgc_2022_867369
crossref_primary_10_3390_rs16142547
crossref_primary_10_1088_1742_6596_1373_1_012048
crossref_primary_10_1016_j_scitotenv_2021_150449
crossref_primary_10_3390_rs12244191
crossref_primary_10_1016_j_compag_2024_109225
crossref_primary_10_1007_s40823_020_00054_9
crossref_primary_10_1080_01490419_2022_2051648
crossref_primary_10_1016_j_jag_2021_102394
crossref_primary_10_1038_s41598_023_47048_1
crossref_primary_10_3390_rs13183611
crossref_primary_10_1109_LGRS_2024_3379196
crossref_primary_10_1111_cobi_13520
crossref_primary_10_1038_s41598_022_05791_x
crossref_primary_10_3390_rs14225790
crossref_primary_10_1002_lom3_10511
crossref_primary_10_3390_fire5030077
crossref_primary_10_1002_ldr_3692
crossref_primary_10_1007_s41748_025_00584_4
crossref_primary_10_1016_j_iswcr_2023_04_001
crossref_primary_10_1016_j_agwat_2022_108004
crossref_primary_10_3390_rs16030503
crossref_primary_10_14710_jil_22_1_1_10
crossref_primary_10_3390_rs12101673
crossref_primary_10_3989_dra_2024_982
crossref_primary_10_1016_j_rsase_2020_100460
crossref_primary_10_1088_1748_9326_ac8b9a
crossref_primary_10_3390_rs15112845
crossref_primary_10_3390_rs16040684
crossref_primary_10_1016_j_envres_2020_110636
crossref_primary_10_3390_rs14051158
crossref_primary_10_5194_tc_16_737_2022
crossref_primary_10_1007_s12665_025_12179_3
crossref_primary_10_3390_rs11161891
crossref_primary_10_1016_j_envres_2023_115379
crossref_primary_10_1002_ldr_4537
crossref_primary_10_1016_j_rse_2021_112804
crossref_primary_10_3390_rs11101203
crossref_primary_10_1016_j_jag_2021_102386
crossref_primary_10_3390_rs11161899
crossref_primary_10_3390_rs16111854
crossref_primary_10_1080_1747423X_2020_1858198
crossref_primary_10_1016_j_rse_2022_113073
crossref_primary_10_1016_j_rse_2022_113195
crossref_primary_10_3390_rs13030494
crossref_primary_10_3390_su141912170
crossref_primary_10_3390_rs15112951
crossref_primary_10_3390_rs13051038
crossref_primary_10_1080_15481603_2023_2181143
crossref_primary_10_1007_s10708_023_10944_0
crossref_primary_10_3390_s25051622
crossref_primary_10_3389_frsen_2024_1322760
crossref_primary_10_3390_rs16101690
crossref_primary_10_1016_j_inffus_2020_10_008
crossref_primary_10_3390_rs13101988
crossref_primary_10_3390_rs15051263
crossref_primary_10_1080_22797254_2022_2052188
crossref_primary_10_3390_rs12020202
crossref_primary_10_3390_s23052644
crossref_primary_10_1002_vzj2_20289
crossref_primary_10_1016_j_agwat_2020_106081
crossref_primary_10_1038_s41597_024_03143_0
crossref_primary_10_3390_rs11151824
crossref_primary_10_1088_1748_9326_ac98d7
crossref_primary_10_3390_rs14030597
crossref_primary_10_3390_rs11040447
crossref_primary_10_1080_22797254_2022_2042397
crossref_primary_10_1016_j_jag_2020_102224
crossref_primary_10_3390_rs11161873
crossref_primary_10_1016_j_srs_2021_100014
crossref_primary_10_3390_s22155683
crossref_primary_10_3390_rs12122041
crossref_primary_10_3847_PSJ_ac8f43
crossref_primary_10_1371_journal_pone_0230013
crossref_primary_10_3390_land14030567
crossref_primary_10_3390_rs14194723
crossref_primary_10_1108_SR_04_2019_0089
crossref_primary_10_1016_j_srs_2021_100023
crossref_primary_10_1007_s11356_024_35009_8
crossref_primary_10_1111_sum_12833
crossref_primary_10_3390_rs14030469
crossref_primary_10_1016_j_rse_2019_111439
crossref_primary_10_1016_j_rse_2022_113296
crossref_primary_10_1016_j_rse_2019_111554
crossref_primary_10_1016_j_rse_2025_114643
crossref_primary_10_1016_j_rse_2022_113057
crossref_primary_10_3390_rs13183616
crossref_primary_10_3390_f12060680
crossref_primary_10_1016_j_ecss_2020_107128
crossref_primary_10_3390_s22134716
crossref_primary_10_1002_csan_20204
crossref_primary_10_3390_rs14174193
crossref_primary_10_1016_j_agrformet_2023_109698
crossref_primary_10_1016_j_ecss_2021_107247
crossref_primary_10_1016_j_jenvman_2022_117194
crossref_primary_10_1007_s11442_023_2181_z
crossref_primary_10_1109_TGRS_2023_3299956
crossref_primary_10_1016_j_landurbplan_2021_104284
crossref_primary_10_1038_s41598_024_65659_0
crossref_primary_10_1016_j_jag_2019_04_010
crossref_primary_10_1109_JSTARS_2024_3408451
crossref_primary_10_1111_ecog_07394
crossref_primary_10_1080_03036758_2022_2118321
crossref_primary_10_1007_s12524_025_02137_8
crossref_primary_10_1016_j_rsase_2021_100664
crossref_primary_10_1016_j_rse_2020_111884
crossref_primary_10_1038_s41597_024_03508_5
crossref_primary_10_1080_07038992_2023_2216312
crossref_primary_10_3389_ffgc_2022_934019
crossref_primary_10_1080_10106049_2024_2322064
crossref_primary_10_1038_s41597_024_03561_0
crossref_primary_10_3390_rs11151808
crossref_primary_10_3390_rs13214251
crossref_primary_10_3390_rs16061101
crossref_primary_10_1016_j_rse_2021_112847
crossref_primary_10_3390_jmse12060922
crossref_primary_10_1016_j_rse_2022_112904
crossref_primary_10_1016_j_rse_2022_112905
crossref_primary_10_1080_02626667_2024_2397543
crossref_primary_10_1016_j_agrformet_2024_109962
crossref_primary_10_1109_JSTARS_2023_3238188
crossref_primary_10_1016_j_jag_2025_104482
crossref_primary_10_1016_j_sste_2020_100363
crossref_primary_10_1016_j_rse_2024_114404
crossref_primary_10_5194_hess_25_4789_2021
crossref_primary_10_1016_j_ufug_2023_128136
crossref_primary_10_3390_rs14051241
crossref_primary_10_3390_rs17040680
crossref_primary_10_5937_bnsr11_30488
crossref_primary_10_3390_rs15164072
crossref_primary_10_1016_j_scitotenv_2024_176638
crossref_primary_10_1109_TGRS_2022_3231926
crossref_primary_10_1016_j_ecolind_2021_108497
crossref_primary_10_1016_j_jag_2022_102856
crossref_primary_10_1016_j_isprsjprs_2023_05_005
crossref_primary_10_1364_OE_384035
crossref_primary_10_1016_j_jag_2020_102253
crossref_primary_10_1016_j_jag_2022_102852
crossref_primary_10_1080_01431161_2021_1887543
crossref_primary_10_1016_j_jag_2024_104159
crossref_primary_10_5194_essd_14_5489_2022
crossref_primary_10_1016_j_foreco_2022_120449
crossref_primary_10_1016_j_inpa_2023_02_009
crossref_primary_10_3390_rs14112651
crossref_primary_10_1080_01431161_2024_2370505
crossref_primary_10_1080_17538947_2024_2344585
crossref_primary_10_3390_agronomy14081862
crossref_primary_10_3390_w13162269
crossref_primary_10_1016_j_rsase_2025_101455
crossref_primary_10_1016_j_joule_2022_08_008
crossref_primary_10_3799_dqkx_2024_039
crossref_primary_10_5194_bg_18_207_2021
crossref_primary_10_1016_j_isprsjprs_2021_02_004
crossref_primary_10_1088_1748_9326_ab8b11
crossref_primary_10_1016_j_landurbplan_2020_103921
crossref_primary_10_3390_cli9030049
crossref_primary_10_3390_land10080867
crossref_primary_10_1016_j_jag_2021_102447
crossref_primary_10_1109_TGRS_2020_2992609
crossref_primary_10_4081_jlimnol_2022_2077
crossref_primary_10_1016_j_future_2024_107691
crossref_primary_10_1002_eng2_12273
crossref_primary_10_3390_data4040147
crossref_primary_10_1371_journal_pone_0299350
crossref_primary_10_1007_s10980_022_01406_y
crossref_primary_10_1016_j_jaridenv_2021_104499
crossref_primary_10_1093_forestry_cpaa006
crossref_primary_10_1016_j_jag_2021_102319
crossref_primary_10_5194_tc_15_4557_2021
crossref_primary_10_3390_data4030113
crossref_primary_10_3390_rs14051226
crossref_primary_10_1007_s12237_021_00959_6
crossref_primary_10_1080_15481603_2023_2226515
crossref_primary_10_1093_forestry_cpac015
crossref_primary_10_1080_23311932_2024_2448597
crossref_primary_10_1109_TGRS_2021_3083754
crossref_primary_10_1080_01431161_2023_2211714
crossref_primary_10_1016_j_envsci_2020_04_005
crossref_primary_10_1109_JSTARS_2020_3014586
crossref_primary_10_1088_1755_1315_1004_1_012006
crossref_primary_10_1016_j_compag_2023_108204
crossref_primary_10_1016_j_rse_2020_112010
crossref_primary_10_1016_j_rse_2021_112401
crossref_primary_10_1109_TGRS_2024_3380639
crossref_primary_10_3390_rs13224536
crossref_primary_10_1016_j_jag_2024_103935
crossref_primary_10_1016_j_isprsjprs_2023_06_002
crossref_primary_10_1016_j_isprsjprs_2024_08_012
crossref_primary_10_1016_j_isprsjprs_2024_08_011
crossref_primary_10_3390_rs11161931
crossref_primary_10_1016_j_jag_2019_102007
crossref_primary_10_3390_rs12091499
crossref_primary_10_1007_s41976_022_00070_9
crossref_primary_10_1016_j_jhydrol_2024_132591
crossref_primary_10_1016_j_isprsjprs_2023_06_003
crossref_primary_10_1007_s10980_023_01753_4
crossref_primary_10_1016_j_rsase_2025_101448
crossref_primary_10_1002_ecs2_4744
crossref_primary_10_1080_01431161_2023_2232541
crossref_primary_10_3390_rs14236175
crossref_primary_10_1016_j_geodrs_2022_e00584
crossref_primary_10_3390_f16020194
crossref_primary_10_1016_j_rse_2020_112024
crossref_primary_10_5194_bg_20_1649_2023
crossref_primary_10_1016_j_rse_2021_112511
crossref_primary_10_1016_j_cageo_2022_105192
crossref_primary_10_1016_j_rsase_2022_100877
crossref_primary_10_1016_j_rse_2021_112752
crossref_primary_10_1016_j_envadv_2020_100008
crossref_primary_10_1016_j_isprsjprs_2020_08_018
crossref_primary_10_1016_j_rse_2021_112517
crossref_primary_10_3390_rs14215320
crossref_primary_10_1016_j_earscirev_2023_104501
crossref_primary_10_1016_j_srs_2020_100005
crossref_primary_10_1016_j_scitotenv_2021_146419
crossref_primary_10_1016_j_cor_2024_106875
crossref_primary_10_1080_2150704X_2020_1833096
crossref_primary_10_3390_rs13061125
crossref_primary_10_3390_rs15082117
crossref_primary_10_1016_j_compag_2024_108983
crossref_primary_10_1016_j_ecolind_2025_113244
crossref_primary_10_1080_07038992_2024_2448169
crossref_primary_10_1016_j_ecolind_2025_113367
crossref_primary_10_1109_JSTARS_2021_3088529
crossref_primary_10_1016_j_rsase_2024_101255
crossref_primary_10_1109_JSTARS_2024_3365826
crossref_primary_10_1016_j_rse_2021_112741
crossref_primary_10_1016_j_agrformet_2023_109649
crossref_primary_10_1016_j_scitotenv_2019_136092
crossref_primary_10_3390_w14030305
crossref_primary_10_1016_j_fecs_2023_100149
crossref_primary_10_1016_j_isprsjprs_2024_02_021
crossref_primary_10_1007_s10750_024_05574_7
crossref_primary_10_1016_j_agrformet_2022_109222
crossref_primary_10_1080_13658816_2023_2168006
crossref_primary_10_1038_s41380_022_01669_6
crossref_primary_10_1016_j_envpol_2022_120443
crossref_primary_10_1080_03736245_2020_1792336
crossref_primary_10_3390_rs11212591
crossref_primary_10_1109_TGRS_2021_3120914
crossref_primary_10_1016_j_scitotenv_2020_138873
crossref_primary_10_3390_w15010020
crossref_primary_10_3390_s20226631
crossref_primary_10_1016_j_jhydrol_2023_130097
crossref_primary_10_3390_rs13163069
crossref_primary_10_1016_j_rse_2024_114107
crossref_primary_10_1080_15481603_2024_2365001
crossref_primary_10_3390_rs17040726
crossref_primary_10_1016_j_rse_2021_112576
crossref_primary_10_3390_rs13071383
crossref_primary_10_1016_j_envsci_2021_07_020
crossref_primary_10_3390_rs14020322
crossref_primary_10_1016_j_rse_2021_112336
crossref_primary_10_1109_JSTARS_2024_3418891
crossref_primary_10_1093_forestry_cpad024
crossref_primary_10_5194_essd_15_4181_2023
crossref_primary_10_18273_revbol_v44n1_2022002
crossref_primary_10_1016_j_scitotenv_2021_146604
crossref_primary_10_1016_j_gsd_2024_101195
crossref_primary_10_3390_rs12172794
crossref_primary_10_3390_rs15061638
crossref_primary_10_3389_ffgc_2023_1018936
crossref_primary_10_1029_2023WR035164
crossref_primary_10_1038_s41597_024_03188_1
crossref_primary_10_1002_ecs2_4832
crossref_primary_10_1080_15481603_2023_2230706
crossref_primary_10_3390_rs12193132
crossref_primary_10_3390_rs12081268
crossref_primary_10_1109_TGRS_2023_3308902
crossref_primary_10_3390_rs15174157
crossref_primary_10_3390_wild2010007
crossref_primary_10_1016_j_rse_2020_112103
crossref_primary_10_1109_JSTARS_2020_2995543
crossref_primary_10_3390_f14050878
crossref_primary_10_1016_j_jenvman_2023_119921
crossref_primary_10_1016_j_mlwa_2023_100454
crossref_primary_10_1016_j_envc_2023_100800
crossref_primary_10_3390_rs16193680
crossref_primary_10_2166_wst_2023_113
crossref_primary_10_3390_rs12071101
crossref_primary_10_1016_j_ecoinf_2024_102986
crossref_primary_10_3390_rs15143677
crossref_primary_10_1073_pnas_2115485119
crossref_primary_10_1080_07038992_2023_2293058
crossref_primary_10_1029_2022JG006895
crossref_primary_10_1109_JMASS_2020_3035649
crossref_primary_10_1016_j_engeos_2022_06_002
crossref_primary_10_3390_rs15092381
crossref_primary_10_1016_j_foreco_2024_122231
crossref_primary_10_1016_j_rse_2020_112113
crossref_primary_10_3390_rs12223720
crossref_primary_10_1088_1748_9326_ad8e75
crossref_primary_10_1016_j_infgeo_2025_100002
crossref_primary_10_1016_j_rse_2021_112558
crossref_primary_10_1088_1748_9326_ac9636
crossref_primary_10_4995_raet_2020_13561
crossref_primary_10_1117_1_JRS_14_022208
crossref_primary_10_1002_jwmg_22501
crossref_primary_10_1088_1748_9326_acd407
crossref_primary_10_1007_s42979_022_01378_5
crossref_primary_10_1017_aog_2023_35
crossref_primary_10_3390_rs12172776
crossref_primary_10_1088_1755_1315_779_1_012135
crossref_primary_10_12944_CWE_16_3_24
crossref_primary_10_1016_j_rse_2019_111403
crossref_primary_10_1111_gcb_16121
crossref_primary_10_1007_s10021_021_00725_6
crossref_primary_10_1016_j_rse_2020_112005
crossref_primary_10_3390_su152115444
crossref_primary_10_1016_j_rsase_2023_100965
crossref_primary_10_1093_pnasnexus_pgad076
crossref_primary_10_32911_as_2024_v17_n1_1151
crossref_primary_10_1016_j_catena_2023_107280
crossref_primary_10_1029_2023JG007465
crossref_primary_10_1016_j_ecolind_2023_109898
crossref_primary_10_3390_rs15061651
crossref_primary_10_3390_rs16203876
crossref_primary_10_3390_rs14081802
crossref_primary_10_1088_1748_9326_acab1b
crossref_primary_10_1016_j_jenvman_2020_111670
crossref_primary_10_1016_j_ecoinf_2023_102433
crossref_primary_10_3390_rs13163141
crossref_primary_10_1016_j_rse_2024_114260
crossref_primary_10_1016_j_rse_2024_114381
crossref_primary_10_5194_essd_16_5375_2024
crossref_primary_10_1016_j_envc_2022_100644
crossref_primary_10_1038_s41597_025_04430_0
crossref_primary_10_1016_j_soilbio_2023_109253
crossref_primary_10_1016_j_rse_2019_111511
crossref_primary_10_1016_j_rse_2020_112241
crossref_primary_10_1080_04353676_2024_2321426
crossref_primary_10_1080_10106049_2022_2152496
crossref_primary_10_1016_j_rse_2020_112001
crossref_primary_10_1016_j_softx_2024_101785
crossref_primary_10_1016_j_rse_2020_112244
crossref_primary_10_1029_2024GL113327
crossref_primary_10_1016_j_jhydrol_2020_125893
crossref_primary_10_3390_rs16234445
crossref_primary_10_1016_j_isprsjprs_2020_03_014
crossref_primary_10_1109_TGRS_2021_3132296
crossref_primary_10_1016_j_scitotenv_2024_176179
crossref_primary_10_1038_s41558_023_01851_w
crossref_primary_10_3390_rs12091413
crossref_primary_10_3390_rs15204948
crossref_primary_10_3390_land12061231
crossref_primary_10_3390_rs15184577
crossref_primary_10_3390_s24041185
crossref_primary_10_1016_j_rsase_2024_101314
crossref_primary_10_1007_s11053_020_09737_w
crossref_primary_10_1080_22797254_2021_2013735
crossref_primary_10_3390_rs13163217
crossref_primary_10_3390_rs13163339
crossref_primary_10_1109_TGRS_2024_3517696
crossref_primary_10_3389_fclim_2022_938975
crossref_primary_10_1016_j_radphyschem_2022_110004
crossref_primary_10_5194_esurf_8_1053_2020
crossref_primary_10_1109_TGRS_2022_3232624
crossref_primary_10_3390_rs16234454
crossref_primary_10_1093_pnasnexus_pgae466
crossref_primary_10_3390_rs12091527
crossref_primary_10_1007_s10661_021_09317_2
crossref_primary_10_1016_j_earscirev_2023_104337
crossref_primary_10_3390_app11135911
crossref_primary_10_3390_rs16050920
crossref_primary_10_3390_rs16122064
crossref_primary_10_3390_rs13010065
crossref_primary_10_3389_feart_2024_1325189
crossref_primary_10_3390_rs12010080
crossref_primary_10_1016_j_rse_2024_114285
crossref_primary_10_1080_20964471_2024_2323241
crossref_primary_10_3390_rs13091754
crossref_primary_10_1016_j_ecolind_2024_111615
crossref_primary_10_1109_JSTARS_2024_3519425
crossref_primary_10_1088_1748_9326_abae2c
crossref_primary_10_1007_s12518_022_00441_3
crossref_primary_10_1109_TGRS_2021_3121272
crossref_primary_10_3390_rs16122079
crossref_primary_10_5194_hess_27_3687_2023
crossref_primary_10_1016_j_rse_2021_112358
crossref_primary_10_1080_17538947_2021_1949399
crossref_primary_10_1016_j_foreco_2024_122313
crossref_primary_10_3390_rs12183062
crossref_primary_10_1007_s10994_021_05999_4
crossref_primary_10_1002_rse2_328
crossref_primary_10_1088_1748_9326_ab93f9
crossref_primary_10_1016_j_coesh_2021_100251
crossref_primary_10_3390_su15118575
crossref_primary_10_1088_2515_7620_ace760
crossref_primary_10_1111_cobi_14150
crossref_primary_10_1016_j_srs_2022_100054
crossref_primary_10_3390_f14122305
crossref_primary_10_1016_j_ecolmodel_2023_110540
crossref_primary_10_3390_rs15184593
crossref_primary_10_1016_j_srs_2022_100058
crossref_primary_10_3390_rs12040612
crossref_primary_10_1016_j_rse_2020_111901
crossref_primary_10_1016_j_rse_2022_112990
crossref_primary_10_3390_rs16112033
crossref_primary_10_1016_j_ecoinf_2025_103090
crossref_primary_10_1080_07038992_2024_2445836
crossref_primary_10_1016_j_rse_2024_114056
crossref_primary_10_1016_j_rse_2019_02_016
crossref_primary_10_1016_j_rse_2022_112992
crossref_primary_10_3390_rs12142328
crossref_primary_10_1038_s43017_024_00554_w
crossref_primary_10_1016_j_rse_2020_111916
crossref_primary_10_1016_j_srs_2023_100103
crossref_primary_10_1016_j_isprsjprs_2020_06_006
crossref_primary_10_1051_e3sconf_202131005001
crossref_primary_10_1016_j_ecolind_2025_113077
crossref_primary_10_5937_gp26_37720
crossref_primary_10_1007_s41207_025_00746_w
crossref_primary_10_1016_j_rse_2021_112586
crossref_primary_10_3389_fevo_2024_1505125
crossref_primary_10_3390_rs12152471
crossref_primary_10_1109_TGRS_2020_2987985
crossref_primary_10_1016_j_rse_2023_113947
crossref_primary_10_3390_su13010086
crossref_primary_10_1007_s11852_022_00928_6
crossref_primary_10_1016_j_rse_2023_113823
crossref_primary_10_1080_10106049_2023_2190623
crossref_primary_10_34133_remotesensing_0285
crossref_primary_10_3390_fire7070230
crossref_primary_10_3390_f15122133
crossref_primary_10_1177_03091333211023690
crossref_primary_10_1016_j_foreco_2020_118663
crossref_primary_10_3390_land12040855
crossref_primary_10_1016_j_scitotenv_2023_162774
crossref_primary_10_3390_rs13152869
crossref_primary_10_3390_land9010027
crossref_primary_10_2478_ttj_2024_0009
crossref_primary_10_3389_fmars_2022_1005284
crossref_primary_10_3390_land11111889
crossref_primary_10_1016_j_catena_2023_107579
crossref_primary_10_1016_j_jag_2023_103435
crossref_primary_10_3390_rs14102295
crossref_primary_10_1016_j_envc_2024_100866
crossref_primary_10_1016_j_watres_2024_121442
crossref_primary_10_3390_ijerph18041573
crossref_primary_10_1016_j_asr_2021_11_002
crossref_primary_10_3390_rs14081789
crossref_primary_10_3390_rs12111824
crossref_primary_10_3390_rs15184419
crossref_primary_10_1016_j_softx_2023_101421
crossref_primary_10_3390_f16030502
crossref_primary_10_3390_rs17050910
crossref_primary_10_1007_s10661_020_08771_8
crossref_primary_10_1016_j_compag_2023_108250
crossref_primary_10_1016_j_rse_2020_112181
crossref_primary_10_3390_land10121301
crossref_primary_10_3390_s24113488
crossref_primary_10_1016_j_rse_2020_112189
crossref_primary_10_3390_rs16152760
crossref_primary_10_1002_rse2_122
crossref_primary_10_1038_s44304_025_00063_w
crossref_primary_10_1002_rse2_248
crossref_primary_10_1007_s00704_020_03343_9
crossref_primary_10_1016_j_apgeog_2020_102273
crossref_primary_10_34133_remotesensing_0021
crossref_primary_10_1080_27669645_2023_2291216
crossref_primary_10_1111_ecog_06768
crossref_primary_10_3390_rs15041096
crossref_primary_10_1080_10106049_2024_2387786
crossref_primary_10_3390_rs16020293
crossref_primary_10_1007_s10333_022_00922_6
crossref_primary_10_1080_15481603_2022_2118440
crossref_primary_10_1002_ecs2_4094
crossref_primary_10_1016_j_rse_2019_04_020
crossref_primary_10_3390_land11040504
crossref_primary_10_1016_j_agrformet_2025_110468
crossref_primary_10_1016_j_rse_2019_04_025
crossref_primary_10_3390_rs13050934
crossref_primary_10_1016_j_ufug_2022_127558
crossref_primary_10_1007_s12040_021_01763_3
crossref_primary_10_3390_land13111969
crossref_primary_10_3390_rs12162597
crossref_primary_10_3390_rs11141681
crossref_primary_10_3390_rs12244116
crossref_primary_10_3390_f10121073
crossref_primary_10_1109_TGRS_2024_3374454
crossref_primary_10_1002_eap_2208
crossref_primary_10_1109_JSTARS_2023_3316298
crossref_primary_10_3390_rs12010187
crossref_primary_10_1016_j_envsoft_2020_104631
crossref_primary_10_1007_s12524_019_01036_z
crossref_primary_10_48123_rsgis_1119572
crossref_primary_10_3390_rs12152438
crossref_primary_10_1007_s10661_022_09884_y
crossref_primary_10_1002_saj2_20371
crossref_primary_10_1007_s10661_023_11326_2
Cites_doi 10.3390/rs9090902
10.3390/rs61010232
10.1016/j.rse.2013.02.026
10.1016/S0034-4257(00)00169-3
10.3390/rs10071058
10.1080/22797254.2018.1507613
10.1002/2016WR020175
10.1016/j.rse.2014.11.005
10.3390/rs10091489
10.1007/s10021-013-9669-9
10.1088/1748-9326/8/4/045024
10.1016/j.rse.2015.11.032
10.3390/rs10010048
10.1016/j.rse.2016.02.034
10.1016/S0034-4257(02)00091-3
10.14358/PERS.72.10.1155
10.1016/j.rse.2018.02.046
10.1126/science.1229931
10.1016/j.rse.2005.10.022
10.1016/j.jag.2017.11.016
10.1126/science.aat1203
10.3390/rs9040364
10.1016/j.rse.2010.02.012
10.1016/j.rse.2009.05.005
10.1016/j.rse.2015.08.030
10.1038/ngeo2785
10.1016/j.rse.2015.08.020
10.1038/35041545
10.1016/j.rse.2011.09.024
10.1016/j.rse.2011.12.025
10.1016/j.rse.2018.05.033
10.1890/130066
10.1016/j.rse.2011.08.025
10.1016/j.envsoft.2014.11.017
10.1109/LGRS.2005.857030
10.1002/2014GL060641
10.1016/j.rse.2004.03.007
10.3390/rs61212619
10.1016/j.rse.2017.03.020
10.1109/TGRS.2013.2272545
10.1016/j.rse.2018.07.014
10.1016/j.rse.2017.11.007
10.1016/j.rse.2016.12.030
10.1016/j.gloplacha.2016.06.002
10.1016/j.tplants.2014.10.008
10.1016/j.rse.2016.04.008
10.1016/S0034-4257(98)00092-3
10.1016/j.rse.2016.09.014
10.3390/f8080275
10.1016/j.rse.2009.08.011
10.1111/j.1936-704X.2014.03178.x
10.1016/j.rse.2015.11.023
10.1175/JCLI-D-11-00015.1
10.1016/j.rse.2017.01.002
10.1126/science.320.5879.1011a
10.1109/TGRS.2012.2183137
10.1016/j.rse.2014.01.006
10.1016/j.rse.2013.04.022
10.3189/S026030550000642X
10.3390/rs5126481
10.1016/j.cosust.2012.09.013
10.1080/17538947.2016.1187673
10.1016/j.rse.2011.01.022
10.1016/j.isprsjprs.2014.03.009
10.3390/rs10091337
10.1061/(ASCE)0733-9437(2007)133:4(380)
10.1175/JHM-D-12-0140.1
10.1016/j.jag.2016.09.005
10.1126/science.1244693
10.1126/science.1187512
10.1016/j.isprsjprs.2016.04.001
10.1016/j.jag.2016.06.019
10.1002/geo2.4
10.1029/2012JD018506
10.1016/j.rse.2009.11.022
10.1016/j.foreco.2015.10.042
10.1016/j.rse.2011.06.027
10.1016/j.rse.2018.02.020
10.1080/01431160701253212
10.1016/j.rse.2015.08.023
10.1016/j.rse.2011.10.028
10.1016/j.rse.2016.11.004
10.1002/hyp.10134
10.1017/jog.2018.23
10.1117/1.JRS.7.073558
10.1016/j.rse.2018.06.038
10.3354/cr01411
10.1016/j.rse.2014.06.012
10.1109/36.841980
10.1016/j.rse.2013.04.004
10.1016/j.advwatres.2012.03.002
10.1016/j.rse.2011.04.019
10.1016/j.rse.2018.06.026
10.3390/rs70202208
10.1016/j.rse.2015.09.019
10.1175/BAMS-D-15-00324.1
10.1109/JSTARS.2012.2235174
10.3390/rs10091340
10.1038/nature22049
10.1016/j.rse.2014.12.014
10.1016/j.rse.2015.05.005
10.1016/j.rse.2014.11.027
10.1016/j.rse.2018.07.004
10.1016/j.rse.2016.01.023
10.3390/rs8060520
10.3390/rs61111244
10.1080/07038992.2018.1437719
10.3390/rs9040320
10.1111/gcb.13358
10.3390/rs10091363
10.1016/j.rse.2011.09.022
10.3390/f8040098
10.1016/j.rse.2018.07.010
10.5194/tc-10-15-2016
10.1016/j.jag.2017.04.004
10.1016/S0034-4257(02)00022-6
10.1016/j.rse.2015.02.009
10.1016/j.rse.2011.09.009
10.1016/S0034-4257(02)00089-5
10.1016/j.foreco.2015.06.014
10.1002/(SICI)1099-1085(199808/09)12:10/11<1723::AID-HYP691>3.0.CO;2-2
10.3389/feart.2017.00058
10.1080/2150704X.2015.1126375
10.1080/07038992.2014.945827
10.1016/j.rse.2016.02.018
10.1016/j.rse.2010.10.001
10.3189/2012AoG60A062
10.1016/j.rse.2014.02.001
10.1016/j.rse.2011.11.026
10.3390/rs9040317
10.1016/j.rse.2009.08.017
10.1109/36.581987
10.1016/j.rse.2008.05.005
10.1016/j.rse.2009.01.007
10.1111/jawr.12058
10.1111/1752-1688.12371
10.1016/0034-4257(92)90101-O
10.1016/j.rse.2013.05.033
10.1016/j.rse.2018.04.031
10.1016/j.rse.2017.03.015
10.1364/AO.54.003963
10.1016/j.rse.2012.06.006
10.3189/S0260305500000471
10.3390/rs70101135
10.1016/S0034-4257(02)00135-9
10.1016/j.rse.2010.07.010
10.1016/j.rse.2016.04.011
10.1016/j.isprsjprs.2016.11.004
10.3390/f8050166
10.1080/17538947.2015.1026420
10.1016/j.jag.2014.12.011
10.1016/j.rse.2014.08.001
10.1016/j.rse.2018.09.002
10.1016/j.agrformet.2015.12.065
10.1080/07038992.2014.987376
10.1109/JSTARS.2012.2228167
10.1029/2018GL078133
10.1126/science.1131634
10.5589/m11-034
10.1016/j.rse.2015.09.004
10.1016/j.rse.2007.07.004
10.1109/JSTARS.2012.2214474
10.3390/rs61111127
10.1016/j.rse.2016.02.052
10.1117/1.JRS.9.096070
10.1016/j.rse.2015.12.033
10.1016/j.rse.2013.01.011
10.1109/MGRS.2015.2434351
10.1080/01431161.2018.1471545
10.1364/AO.33.000443
10.1016/S0034-4257(03)00145-7
10.1109/TGRS.2003.812902
10.1016/j.rse.2016.04.015
10.1109/36.701075
10.1016/j.rse.2018.12.027
10.1016/S0034-4257(02)00087-1
10.1016/j.rse.2015.08.006
10.1080/01431160903186277
10.1007/s00382-016-3280-7
10.1016/j.rse.2015.12.041
10.1016/j.rse.2016.07.033
10.1016/j.rse.2015.01.032
10.5194/hess-17-2459-2013
10.3189/S0260305500000483
10.1016/j.rse.2015.10.034
10.3390/rs10020352
10.1023/A:1025514026772
10.1016/j.ecolind.2015.11.026
10.1364/AO.53.000648
10.1016/j.rse.2015.12.024
10.1016/j.rse.2016.03.018
10.1007/s10712-008-9037-z
10.3390/f8070251
10.1109/TGRS.2006.872081
10.1080/01431161.2012.663115
10.1016/j.rse.2011.09.025
10.1175/BAMS-D-16-0244.1
10.1016/j.rse.2013.08.014
10.1016/j.jag.2016.12.012
10.1016/j.rse.2016.02.059
10.1016/j.rse.2017.06.031
10.1111/jawr.12051
10.1016/j.rse.2010.07.008
10.1002/ldr.1084
10.1016/j.isprsjprs.2016.03.008
10.1016/j.rse.2011.06.026
10.1029/91JC02334
10.1016/j.rse.2011.08.026
10.5194/hess-15-223-2011
10.1016/j.rse.2015.11.034
10.3390/rs61212275
10.3390/rs61111607
10.5194/tc-12-521-2018
10.1038/505143a
10.1016/0034-4257(89)90101-6
10.1016/j.rse.2014.01.011
10.14358/PERS.81.7.573
10.1016/j.rse.2017.03.033
10.3390/rs9070670
10.3390/rs61110435
10.1016/j.rse.2015.09.001
10.1016/j.rse.2015.10.014
10.3390/rs9060584
10.1080/17538947.2017.1304586
10.1016/j.rse.2013.08.025
10.1016/j.rse.2016.07.004
10.1080/2150704X.2016.1233371
10.1016/j.rse.2017.09.029
10.1016/j.rse.2015.11.003
10.1016/j.rse.2017.06.019
10.1016/j.rse.2015.09.015
10.3390/rs4061856
10.1016/j.rse.2017.03.035
10.1016/j.isprsjprs.2017.06.013
10.1016/j.rse.2016.08.025
10.1016/j.rse.2011.10.030
10.1029/2010JG001428
10.1080/01431161.2018.1452075
10.3390/rs10060889
10.1016/j.rse.2017.06.027
10.1029/95WR02718
10.1016/j.rse.2011.07.022
10.3390/f6114105
10.1038/nature20584
10.1029/96JD02443
10.3133/ofr20171034
10.1109/TGRS.2010.2095462
10.1016/j.rse.2012.01.010
10.1175/BAMS-87-3-343
10.1016/j.rse.2016.03.039
ContentType Journal Article
Copyright 2019
Copyright Elsevier BV May 2019
Copyright_xml – notice: 2019
– notice: Copyright Elsevier BV May 2019
DBID 6I.
AAFTH
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
DOI 10.1016/j.rse.2019.02.015
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Meteorological & Geoastrophysical Abstracts
Biotechnology Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
EISSN 1879-0704
EndPage 147
ExternalDocumentID 10_1016_j_rse_2019_02_015
S0034425719300707
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
41~
457
4G.
53G
5VS
6I.
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
VOH
WH7
WUQ
XOL
ZCA
ZMT
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
C1K
EFKBS
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
ID FETCH-LOGICAL-c520t-b39aa4bfcd7c5429676023a076e82efb21e79d30d72183f3d54c1a47cc5d0cb13
IEDL.DBID .~1
ISSN 0034-4257
IngestDate Fri Jul 11 02:53:57 EDT 2025
Wed Aug 13 04:30:02 EDT 2025
Tue Jul 01 03:51:18 EDT 2025
Thu Apr 24 22:56:37 EDT 2025
Fri Feb 23 02:20:13 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords TIRS
ARD
Land change science
Landsat science team
Land cover
OLI
Open data
Remote sensing science
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c520t-b39aa4bfcd7c5429676023a076e82efb21e79d30d72183f3d54c1a47cc5d0cb13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6942-1896
0000-0001-6307-5200
0000-0001-8283-6407
0000-0002-1865-2846
0000-0002-1274-1792
0000-0002-5454-5212
0000-0002-6664-7232
0000-0003-2853-2036
0000-0002-5445-0360
0000-0002-7379-4679
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0034425719300707
PQID 2230287232
PQPubID 2045405
PageCount 21
ParticipantIDs proquest_miscellaneous_2221036859
proquest_journals_2230287232
crossref_citationtrail_10_1016_j_rse_2019_02_015
crossref_primary_10_1016_j_rse_2019_02_015
elsevier_sciencedirect_doi_10_1016_j_rse_2019_02_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Remote sensing of environment
PublicationYear 2019
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Reuter, Richardson, Pellerano, Irons, Allen, Anderson, Jhabvala, Lunsford, Montanaro, Smith, Tesfaye (bb2045) 2015; 7
Rosenthal, Dozier (bb1015) 1996; 32
Pasquarella, Holden, Kaufman, Woodcock (bb0940) 2016; 2(3)
Sheng, Song, Wang, Lyons, Knox, Cox, Gao (bb1150) 2016; 185
Holden, Woodcock (bb0570) 2016; 185
Vuolo, Ng, Atzberger (bb1260) 2017; 57
Zeng, Wardlow, Wang, Shan, Tadesse, Hayes, Li (bb1380) 2016; 181
Gerace, Schott, Nevins (bb0415) 2013; 7
GOFC-GOLD (bb0420) 2016
Schroeder, Schleeweis, Moisen, Toney, Cohen, Freeman, Yang, Huang (bb1120) 2017; 195
Dolman, Belward, Briggs, Dowell, Eggleston, Hill, Richter, Simmons (bb0280) 2016; 9
Schwieder, Leitão, da Cunha Bustamante, Ferreira, Rabe, Hostert (bb1125) 2016; 52
Yan, Roy (bb1360) 2014; 144
Franz, Bailey, Kuring, Werdell (bb0360) 2015; 9
Irons, Dwyer, Barsi (bb0615) 2012; 122
UNESC (bb1220) 2017
Schott, Gerace, Woodcock, Wang, Zhu, Wynne, Blinn (bb1110) 2016; 185
UNCCD (bb1210) 2013
Gao, Masek, Schwaller, Hall (bb0380) 2006; 44
Gordon (bb0450) 1997; 102
Butler (bb0170) 2014; 505
Roy, D.P., Yan, L., 2018. Robust Landsat-based crop time series modelling. Remote Sens. Environ. doi
Reynolds, Smith, Lambin, Turner, Mortimore, Batterbury, Downing, Dowlatabadi, Fernandez, Herrick, Huber-Sannwald, Jiang, Leemans, Lynam, Maestre, Ayarza, Walker (bb1000) 2007; 316
Melton, Johnson, Lund, Pierce, Michaelis, Hiatt, Guzman, Adhikari, Purdy, Rosevelt, Votava (bb0810) 2012; 5
Mueller, Lewis, Roberts, Ring, Melrose, Sixsmith, Lymburner, McIntyre, Tan, Curnow, Ip (bb0875) 2016; 174
UN (bb1205) 2015
Dwyer, Roy, Sauer, Jenkerson, Zhang, Lymburner (bb0300) 2018; 10
Zhu, Wang, Woodcock (bb1430) 2015; 159
Wulder, Coops, Roy, White, Hermosilla (bb1350) 2018; 39
Roy, Zhang, Ju, Gomez-Dans, Lewis, Schaaf, Sun, Li, Huang, Kovalskyy (bb1040) 2016; 176
Bolton, White, Wulder, Coops (bb0125) 2018; 66
(Accessed: Jan 10, 2019).
Loveland, Irons (bb0740) 2016; 185
Schaaf, Gao, Strahler, Lucht, Li, Tsang, Strugnell, Zhang, Jin, Muller, Lewis (bb1075) 2002; 83
Zhang, Friedl, Schaaf, Strahler, Hodges, Gao, Reed (bb1395) 2003; 84
Baumann, Ozdogan, Richardson, Radeloff (bb0090) 2017; 54
Roy, Ju, Kline, Scaramuzza, Kovalskyy, Hansen, Loveland, Vermote, Zhang (bb1030) 2010; 114
Roy, Li, Zhang, Yan, Huang, Li (bb1050) 2017; 199
Wulder, White, Loveland, Woodcock, Belward, Cohen, Fosnight, Shaw, Masek, Roy (bb1345) 2016; 185
Lawrence, Ripple (bb0710) 1999; 67
Hulley, Hughes, Hook (bb0595) 2012; 117
Moisen, Meyer, Schroeder, Liao, Schleeweis, Freeman, Toney (bb0850) 2016; 22
Crawford (bb0235) 2015; 29
Schroeder, Wulder, Healey, Moisen (bb1115) 2011; 115
Schott, Gerace, Raqueno, Ientilucci, Raqueno, Lunsford (bb1105) 2014
Tulbure, Broich, Stehman, Kommareddy (bb1200) 2016; 178
Hall, Ormsby, Bindschadler, Siddalingaiah (bb0500) 1987; 9
Griffiths, Müller, Kuemmerle, Hostert (bb0480) 2013; 8
Selkowitz, Forster (bb1130) 2016; 117
Hedley, Roelfsema, Brando, Giardino, Kutser, Phinn, Mumby, Barrilero, Laporte, Koetz (bb0530) 2018; 216
Fahnestock, Scambos, Moon, Gardner, Haran, Klinger (bb0310) 2016; 185
Hendrickx, Allen, Brower, Byrd, Hong, Ogden, Pradhan, Robison, Toll, Trezza, Umstot (bb0540) 2016; 52
Li, Roy (bb0725) 2017; 9
Pahlevan, Schott, Franz, Zibordi, Markham, Bailey, Schaaf, Ondrusek, Greb, Strait (bb0930) 2017; 190
Betts (bb0105) 2000; 408
Vermote, Justice, Claverie, Franch (bb1240) 2016; 185
Gao, Anderson, Daughtry, Johnson (bb0395) 2018; 10
Potapov, Turubanova, Hansen (bb0990) 2011; 115
Storey, Choate, Lee (bb1175) 2014; 6
White, Wulder, Hobart, Luther, Hermosilla, Griffiths, Coops, Hall, Hostert, Dyk, Guindon (bb1300) 2014; 40
Pekel, Cottam, Gorelick, Belward (bb0950) 2016; 540
Storey, Roy, Masek, Gascon, Dwyer, Choate (bb1180) 2016; 186
Vogelmann, Xian, Homer, Tolk (bb1255) 2012; 122
Mouginot, Rignot, Scheuchl, Millan (bb0870) 2017; 9
Pflugmacher, Cohen, Kennedy (bb0970) 2012; 172
Verpoorter, Kutser, Seekell, Tranvik (bb1245) 2014; 41
Kampe, Good (bb0640) 2017; Vol. 10402
de la Fuente-Sáiz, Ortega-Farías, Fonseca, Ortega-Salazar, Kilic, Allen (bb0250) 2017; 9
Fisher, Mustard, Vadeboncoeur (bb0325) 2006; 100
Montanaro, Gerace, Rohrbach (bb0860) 2015; 54
Markham, Helder (bb0770) 2012; 122
DeVries, Decuyper, Verbesselt, Zeileis, Herold, Joseph (bb0270) 2015; 169
Anderson, Kustas, Norman, Hain, Mecikalski, Schultz, González-Dugo, Cammalleri, d'Urso, Pimstein, Gao (bb0025) 2011; 15
Ahmed, Wulder, White, Hermosilla, Coops, Franklin (bb0005) 2017; 8
Rittger, Painter, Dozier (bb1010) 2013; 51
Vermote, El Saleous, Justice (bb1235) 2002; 83
Schneider (bb1095) 2012; 124
Zhu, Woodcock, Holden, Yang (bb1435) 2015; 162
Justice, Vermote, Townshend, Defries, Roy, Hall, Salomonson, Privette, Riggs, Strahler, Lucht (bb0630) 1998; 36
Zhu, Woodcock, Olofsson (bb1425) 2012; 122
Anderson, Allen, Morse, Kustas (bb0030) 2012; 122
Goodwin, Coops, Wulder, Gillanders, Schroeder, Nelson (bb0440) 2008; 112
Gardner, Moholdt, Scambos, Fahnstock, Ligtenberg, van den Broeke, M. Nilsson, J. (bb0400) 2018; 12
Cook, Schott, Mandel, Raqueno (bb0230) 2014; 6
Otkin, Anderson, Hain, Svoboda, Johnson, Mueller, Tadesse, Wardlow, Brown (bb0910) 2016; 218
Nelson, Steinwand (bb0890) 2015; 81
Huntington, Hegewisch, Daudert, Morton, Abatzoglou, McEvoy, Erickson (bb0605) 2017; 98
White, Gómez, Wulder, Coops (bb1290) 2010; 114
Chander, Markham, Helder (bb0180) 2009; 113
Goward, Arvidson, Williams, Faundeen, Irons, Franks (bb0465) 2006; 72
Lucht, Schaaf, Strahler (bb0745) 2000; 38
Pahlevan, Lee, Wei, Schaff, Schott, Berk (bb0925) 2014; 154
Frantz, Röder, Stellmes, Hill (bb0355) 2017; 190
Williams, Gu, MacLean, Masek, Collatz (bb1325) 2016; 143
Zhu, Woodcock (bb1410) 2012; 118
Vogeler, Braaten, Sesak, Falkowski (bb1250) 2018; 209
Barsi, Schott, Hook, Raqueno, Markham, Radocinski (bb0080) 2014; 6
Finer, Novoa, Weisse, Petersen, Mascaro, Souto, Stearns, Martinez (bb0320) 2018; 360
Wulder, Hilker, White, Coops, Masek, Pflugmacher, Crevier (bb1340) 2015; 170
Bhandari, Phinn, Gill (bb0110) 2012; 4
Shuai, Masek, Gao, Schaaf (bb1155) 2011; 115
Ju, Roy, Vermote, Masek, Kovalskyy (bb0625) 2012; 122
Pflugmacher, Cohen, Kennedy, Yang (bb0975) 2014; 151
Pasquarella, Bradley, Woodcock (bb0945) 2017; 8
Goodwin, Magnussen, Coops, Wulder (bb0445) 2010; 31
Dechoz, Poulain, Massera, Languille, Greslou, de Lussy, Gaudel, L'Helguen, Picard, Trémas (bb0260) 2015; vol. 9643
National Academies of Sciences, Engineering, and Medicine (bb0880) 2018
Gao, Hilker, Zhu, Anderson, Masek, Wang, Yang (bb0385) 2015; 3
McDowell, Coops, Beck, Chambers, Gangodagamage, Hicke, Huang, Kennedy, Krofcheck, Litvak, Meddens (bb0790) 2015; 20
Broich, Huete, Paget, Ma, Tulbure, Coupe, Evans, Beringer, Devadas, Davies, Held (bb0140) 2015; 64
Sun, Gao, Anderson, Kustas, Alsina, Sanchez, Sams, McKee, Dulaney, White, Alfieri, Prueger, Melton, Post (bb1190) 2017; 9
Wang, Erb, Schaaf, Sun, Liu, Yang, Shuai, Casey, Román (bb1275) 2016; 185
Banskota, Kayastha, Falkowski, Wulder, Froese, White (bb0065) 2014; 40
Healey, Cohen, Yang, Brewer, Brooks, Gorelick, Hernandez, Huang, Hughes, Kennedy, Loveland (bb0525) 2018; 204
Kalma, McVicar, McCabe (bb0635) 2008; 29
Cui, Montanaro, Gerace, Schott, Markham (bb0245) 2015; Vol. 9607
Senf, Seidl, Hostert (bb1145) 2017; 60
Schmidt, Jenkerson, Masek, Vermote, Gao (bb1090) 2013
Barsi, Alhammoud, Czapla-Myers, Gascon, Obaidul Haque, Kaewmanee, Leigh, Markham (bb0085) 2018; 51
Pope, Scambos, Moussavi, Tedesco, Willis, Shean, Grigsby (bb0985) 2016; 10
Cohen, Yang, Kennedy (bb0210) 2010; 114
Kennedy, Andréfouët, Cohen, Gómez, Griffiths, Hais, Healey, Helmer, Hostert, Lyons, Meigs (bb0670) 2014; 12
Leslie, Serbina, Miller (bb0715) 2017; 2017–1034
Hansen, Potapov, Moore, Hancher, Turubanova, Tyukavina, Thau, Stehman, Goetz, Loveland, Kommareddy, Egorov, Chini, Justice, Townshend (bb0510) 2013; 342
Hostert, Roder, Hill (bb0575) 2003; 87
Nechad, Ruddick, Park (bb0885) 2010; 114
Loveland, Dwyer (bb0735) 2012; 122
Roy, Kovalskyy, Zhang, Vermote, Yan, Kumar, Egorov (bb1045) 2016; 185
Zhu, Woodcock (bb1415) 2014; 144
Griffiths, van der Linden, Kuemmerle, Hostert (bb0475) 2013; 6
Claverie, Ju, Masek, Dungan, Vermote, Roger, Skakun, Justice (bb0205) 2018; 219
Dozier (bb0290) 1989; 28
Hermosilla, Wulder, White, Coops, Pickell, Bolton (bb0565) 2019; 222
Masek, Goward, Kennedy, Cohen, Moisen, Schleeweis, Huang (bb0785) 2013; 16
Woodcock, Allen, Anderson, Belward, Bindschadler, Cohen, Gao, Goward, Helder, Helmer, Nemani, Oreopoulos, Schott, Thenkabail, Vermote, Vogelmann, Wulder, Wynne (bb2005) 2008; 302
Barnes, Roy (bb0070) 2010; 115
Vermote, Tanré, Deuze, Herman, Morcette (bb1230) 1997; 35
Allen, Tasumi, Trezza (bb0010) 2007; 133
Feng, Sexton, Channan, Townshend (bb0315) 2016; 9
Anderson, Gao, Knipper, Hain, Dulaney, Baldocchi, Eichelmann, Hemes, Yang, Medellín-Azuara, Kustas (bb0050) 2018; 10
Zhu, Woodcock (bb1420) 2014; 152
Roy, Wulder, Loveland, W. C.E, Allen, Anderson, Helder, Irons, Johnson, Kennedy, Scambos, Schaaf, Schott, Sheng, Vermote, Belward, Bindschadler, Cohen, Gao, Hipple, Hostert, Huntington, Justice, Kilic, Kovalskyy, Lee, Lymburner, Masek, McCorkel, Shuai, Trezza, Vogelmann, Wynne, Zhu (bb1035) 2014; 145
Concha, Schott (bb0225) 2016; 185
Huang, Goward, Masek, Thomas, Zhu, Vogelmann (bb0580) 2010; 114
Huntington, McGwire, Morton, Snyder, Peterson, Erickson, Niswonger, Carroll, Smith, Allen (bb0600) 2016; 185
Hurni, Schneider, Heinimann, Nong, Fox (bb0610) 2017; 9
Keeling, Whorf (bb0655) 2005
NRC, National Research Council (bb2010) 2013
Madoui, Gauthier, Leduc, Bergeron, Valeria (bb0755) 2015; 6
Pickell, Hermosilla, Frazier, Coops, Wulder (bb0980) 2015; 37
Kingslake, Ely, Das, Bell (bb0685) 2017; 544
Wang, Schaaf, Strahler, Chopping, Román, Shuai, Woodcock, Hollinger, Fitzjarrald (bb1270) 2014; 140
Cohen, Yang, Stehman, Schroeder, Bell, Masek, Huang, Meigs (bb0215) 2016; 360
Gómez, Wulder, White, Montes, Delgado (bb0425) 2012; 33
Brooks, Thomas, Wynne, Coulston (bb0145) 2012; 50
Melaas, Friedl, Zhu (bb0800) 2013; 132
Choi, Bindschadler (bb0190) 2004; 91
Kennedy, Yang, Cohen, Pfaff, Braaten, Nelson (bb2020) 2012; 122
Orheim, Lucchitta (bb0900) 1987; 9
Pettorelli, Wegmann, Skidmore, Mücher, Dawson, Fernandez, Lucas,
Bhardwaj (10.1016/j.rse.2019.02.015_bb0115) 2015; 38
Concha (10.1016/j.rse.2019.02.015_bb0225) 2016; 185
UN (10.1016/j.rse.2019.02.015_bb1205) 2015
Huntington (10.1016/j.rse.2019.02.015_bb0605) 2017; 98
Goodwin (10.1016/j.rse.2019.02.015_bb0440) 2008; 112
White (10.1016/j.rse.2019.02.015_bb1285) 2015; 2
Torbick (10.1016/j.rse.2019.02.015_bb1195) 2018; 10
Dechoz (10.1016/j.rse.2019.02.015_bb0260) 2015; vol. 9643
Dolman (10.1016/j.rse.2019.02.015_bb0280) 2016; 9
Roy (10.1016/j.rse.2019.02.015_bb1035) 2014; 145
Reuter (10.1016/j.rse.2019.02.015_bb2045) 2015; 7
de la Fuente-Sáiz (10.1016/j.rse.2019.02.015_bb0250) 2017; 9
Sakamoto (10.1016/j.rse.2019.02.015_bb1060) 2011; 49
Williams (10.1016/j.rse.2019.02.015_bb1325) 2016; 143
Vermote (10.1016/j.rse.2019.02.015_bb1240) 2016; 185
Hermosilla (10.1016/j.rse.2019.02.015_bb0560) 2018; 44
Schwieder (10.1016/j.rse.2019.02.015_bb1125) 2016; 52
White (10.1016/j.rse.2019.02.015_bb1290) 2010; 114
Yamazaki (10.1016/j.rse.2019.02.015_bb1355) 2015; 171
Kustas (10.1016/j.rse.2019.02.015_bb0700) 2018
Roy (10.1016/j.rse.2019.02.015_bb1040) 2016; 176
Vuolo (10.1016/j.rse.2019.02.015_bb1260) 2017; 57
Schott (10.1016/j.rse.2019.02.015_bb1100) 2012; 122
Hall (10.1016/j.rse.2019.02.015_bb0500) 1987; 9
Klein (10.1016/j.rse.2019.02.015_bb0690) 1998; 12
Wulder (10.1016/j.rse.2019.02.015_bb1335) 2012; 122
Vogeler (10.1016/j.rse.2019.02.015_bb1250) 2018; 209
Gómez (10.1016/j.rse.2019.02.015_bb0430) 2016; 116
Zhe (10.1016/j.rse.2019.02.015_bb2000) 2019
Roy (10.1016/j.rse.2019.02.015_bb1025) 2002; 83
Braaten (10.1016/j.rse.2019.02.015_bb0130) 2015; 169
Lymburner (10.1016/j.rse.2019.02.015_bb0750) 2016; 185
Song (10.1016/j.rse.2019.02.015_bb2015) 2001; 75
Goward (10.1016/j.rse.2019.02.015_bb0470) 2017
Pahlevan (10.1016/j.rse.2019.02.015_bb0930) 2017; 190
Zhu (10.1016/j.rse.2019.02.015_bb1445) 2018
Pasquarella (10.1016/j.rse.2019.02.015_bb0940) 2016; 2(3)
Nechad (10.1016/j.rse.2019.02.015_bb0885) 2010; 114
Pekel (10.1016/j.rse.2019.02.015_bb0950) 2016; 540
Laraby (10.1016/j.rse.2019.02.015_bb0705) 2018; 216
Lucht (10.1016/j.rse.2019.02.015_bb0745) 2000; 38
Skakun (10.1016/j.rse.2019.02.015_bb1160) 2017; 10
Anderson (10.1016/j.rse.2019.02.015_bb0030) 2012; 122
Sheng (10.1016/j.rse.2019.02.015_bb1150) 2016; 185
Yan (10.1016/j.rse.2019.02.015_bb1370) 2016; 8
Otkin (10.1016/j.rse.2019.02.015_bb0910) 2016; 218
Schroeder (10.1016/j.rse.2019.02.015_bb1120) 2017; 195
Barnes (10.1016/j.rse.2019.02.015_bb0070) 2010; 115
Cui (10.1016/j.rse.2019.02.015_bb0245) 2015; Vol. 9607
Montanaro (10.1016/j.rse.2019.02.015_bb0860) 2015; 54
Lawrence (10.1016/j.rse.2019.02.015_bb0710) 1999; 67
Mihailovic (10.1016/j.rse.2019.02.015_bb0825) 2004; 4
Loveland (10.1016/j.rse.2019.02.015_bb0740) 2016; 185
Barsi (10.1016/j.rse.2019.02.015_bb0085) 2018; 51
Zhu (10.1016/j.rse.2019.02.015_bb1415) 2014; 144
Roy (10.1016/j.rse.2019.02.015_bb1030) 2010; 114
Banskota (10.1016/j.rse.2019.02.015_bb0065) 2014; 40
Healey (10.1016/j.rse.2019.02.015_bb0525) 2018; 204
Kalma (10.1016/j.rse.2019.02.015_bb0635) 2008; 29
UNDESA (10.1016/j.rse.2019.02.015_bb1215) 2017
Vermote (10.1016/j.rse.2019.02.015_bb1235) 2002; 83
Strauss (10.1016/j.rse.2019.02.015_bb1185) 2017
Justice (10.1016/j.rse.2019.02.015_bb0630) 1998; 36
Gutman (10.1016/j.rse.2019.02.015_bb0495) 2013; 134
Goodwin (10.1016/j.rse.2019.02.015_bb0445) 2010; 31
Meigs (10.1016/j.rse.2019.02.015_bb0795) 2011; 115
Broich (10.1016/j.rse.2019.02.015_bb0140) 2015; 64
Gardner (10.1016/j.rse.2019.02.015_bb0400) 2018; 12
Alley (10.1016/j.rse.2019.02.015_bb0015) 2018; 64
Crawford (10.1016/j.rse.2019.02.015_bb0240) 2013; 135
Bolton (10.1016/j.rse.2019.02.015_bb0125) 2018; 66
Anderson (10.1016/j.rse.2019.02.015_bb0035) 2013; 14
Zhu (10.1016/j.rse.2019.02.015_bb1430) 2015; 159
Wang (10.1016/j.rse.2019.02.015_bb1275) 2016; 185
Hulley (10.1016/j.rse.2019.02.015_bb0595) 2012; 117
Schaeffer (10.1016/j.rse.2019.02.015_bb1080) 2018
Gómez (10.1016/j.rse.2019.02.015_bb0425) 2012; 33
Swithinbank (10.1016/j.rse.2019.02.015_bb2025) 1988
Zhu (10.1016/j.rse.2019.02.015_bb1425) 2012; 122
Schott (10.1016/j.rse.2019.02.015_bb1105) 2014
Pahlevan (10.1016/j.rse.2019.02.015_bb2035) 2016
Frazier (10.1016/j.rse.2019.02.015_bb0370) 2018; 205
Vogelmann (10.1016/j.rse.2019.02.015_bb1255) 2012; 122
Hawbaker (10.1016/j.rse.2019.02.015_bb0520) 2017; 198
Kennedy (10.1016/j.rse.2019.02.015_bb0665) 2010; 114
Gao (10.1016/j.rse.2019.02.015_bb0390) 2017; 188
Cohen (10.1016/j.rse.2019.02.015_bb0210) 2010; 114
Gascon (10.1016/j.rse.2019.02.015_bb0405) 2017; 9
Pahlevan (10.1016/j.rse.2019.02.015_bb0915) 2013; 6
Campagnolo (10.1016/j.rse.2019.02.015_bb0175) 2016; 175
Masek (10.1016/j.rse.2019.02.015_bb0785) 2013; 16
Schott (10.1016/j.rse.2019.02.015_bb1110) 2016; 185
Rittger (10.1016/j.rse.2019.02.015_bb1010) 2013; 51
Senf (10.1016/j.rse.2019.02.015_bb1135) 2015; 170
Flood (10.1016/j.rse.2019.02.015_bb0335) 2013; 5
Montanaro (10.1016/j.rse.2019.02.015_bb0855) 2014; 6
Sommer (10.1016/j.rse.2019.02.015_bb1165) 2011; 22
Tulbure (10.1016/j.rse.2019.02.015_bb1200) 2016; 178
Hermosilla (10.1016/j.rse.2019.02.015_bb0565) 2019; 222
Mankoff (10.1016/j.rse.2019.02.015_bb0765) 2012; 53
DeVries (10.1016/j.rse.2019.02.015_bb0270) 2015; 169
Burkhalter (10.1016/j.rse.2019.02.015_bb0160) 2013; 49
Wei (10.1016/j.rse.2019.02.015_bb1280) 2018; 215
Alonzo (10.1016/j.rse.2019.02.015_bb0020) 2016
Kennedy (10.1016/j.rse.2019.02.015_bb0670) 2014; 12
Steffen (10.1016/j.rse.2019.02.015_bb1170) 1991; 96
Anderson (10.1016/j.rse.2019.02.015_bb0025) 2011; 15
Kennedy (10.1016/j.rse.2019.02.015_bb0675) 2015; 166
Orheim (10.1016/j.rse.2019.02.015_bb0905) 1988; 11
Dozier (10.1016/j.rse.2019.02.015_bb0290) 1989; 28
Belward (10.1016/j.rse.2019.02.015_bb0100) 2015; 103
Mouginot (10.1016/j.rse.2019.02.015_bb0870) 2017; 9
Melaas (10.1016/j.rse.2019.02.015_bb0800) 2013; 132
Shuai (10.1016/j.rse.2019.02.015_bb1155) 2011; 115
Allen (10.1016/j.rse.2019.02.015_bb0010) 2007; 133
Wulder (10.1016/j.rse.2019.02.015_bb1345) 2016; 185
Mesinger (10.1016/j.rse.2019.02.015_bb0815) 2006; 87
Pflugmacher (10.1016/j.rse.2019.02.015_bb0975) 2014; 151
Potapov (10.1016/j.rse.2019.02.015_bb0990) 2011; 115
Cohen (10.1016/j.rse.2019.02.015_bb0215) 2016; 360
White (10.1016/j.rse.2019.02.015_bb1305) 2017; 194
Griffiths (10.1016/j.rse.2019.02.015_bb0490) 2018; 216
Pflugmacher (10.1016/j.rse.2019.02.015_bb0970) 2012; 172
Chander (10.1016/j.rse.2019.02.015_bb0180) 2009; 113
Morfitt (10.1016/j.rse.2019.02.015_bb0865) 2015; 7
White (10.1016/j.rse.2019.02.015_bb1295) 2011; 37
Choi (10.1016/j.rse.2019.02.015_bb0190) 2004; 91
10.1016/j.rse.2019.02.015_bb1020
Bindschadler (10.1016/j.rse.2019.02.015_bb0120) 2003; 41
Fisher (10.1016/j.rse.2019.02.015_bb0330) 2017; 53
Frazier (10.1016/j.rse.2019.02.015_bb0365) 2015; 170
Pope (10.1016/j.rse.2019.02.015_bb0985) 2016; 10
Loveland (10.1016/j.rse.2019.02.015_bb0735) 2012; 122
GOFC-GOLD (10.1016/j.rse.2019.02.015_bb0420) 2016
Barsi (10.1016/j.rse.2019.02.015_bb0080) 2014; 6
Gordon (10.1016/j.rse.2019.02.015_bb0450) 1997; 102
Mishra (10.1016/j.rse.2019.02.015_bb0840) 2014; 6
Anderson (10.1016/j.rse.2019.02.015_bb0050) 2018; 10
Pasquarella (10.1016/j.rse.2019.02.015_bb0945) 2017; 8
Dwyer (10.1016/j.rse.2019.02.015_bb0300) 2018; 10
Finer (10.1016/j.rse.2019.02.015_bb0320) 2018; 360
Chu (10.1016/j.rse.2019.02.015_bb0195) 2016; 62
Vermote (10.1016/j.rse.2019.02.015_bb1230) 1997; 35
Wang (10.1016/j.rse.2019.02.015_bb1270) 2014; 140
Griffiths (10.1016/j.rse.2019.02.015_bb0480) 2013; 8
Miles (10.1016/j.rse.2019.02.015_bb0830) 2017; 5
Zhu (10.1016/j.rse.2019.02.015_bb1435) 2015; 162
Hall (10.1016/j.rse.2019.02.015_bb0505) 2015; 162
Pahlevan (10.1016/j.rse.2019.02.015_bb0935) 2018; 10
Scambos (10.1016/j.rse.2019.02.015_bb1065) 1992; 42
Gallo (10.1016/j.rse.2019.02.015_bb0375) 2017; 10
Bhandari (10.1016/j.rse.2019.02.015_bb0110) 2012; 4
White (10.1016/j.rse.2019.02.015_bb1300) 2014; 40
Markham (10.1016/j.rse.2019.02.015_bb0775) 2014; 6
Senf (10.1016/j.rse.2019.02.015_bb1145) 2017; 60
Pereira (10.1016/j.rse.2019.02.015_bb0955) 2013; 339
Hughes (10.1016/j.rse.2019.02.015_bb0585) 2017; 8
Masek (10.1016/j.rse.2019.02.015_bb0780) 2006; 3
Madoui (10.1016/j.rse.2019.02.015_bb0755) 2015; 6
Roy (10.1016/j.rse.2019.02.015_bb1050) 2017; 199
White (10.1016/j.rse.2019.02.015_bb1310) 2018; 216
Gorelick (10.1016/j.rse.2019.02.015_bb0460) 2017; 202
McDowell (10.1016/j.rse.2019.02.015_bb0790) 2015; 20
Schaaf (10.1016/j.rse.2019.02.015_bb1075) 2002; 83
Oeser (10.1016/j.rse.2019.02.015_bb0895) 2017; 8
Cohen (10.1016/j.rse.2019.02.015_bb0220) 2017; 8
Gao (10.1016/j.rse.2019.02.015_bb0380) 2006; 44
Lewis (10.1016/j.rse.2019.02.015_bb0720) 2017; 202
Hurni (10.1016/j.rse.2019.02.015_bb0610) 2017; 9
Jeong (10.1016/j.rse.2019.02.015_bb0620) 2015; 170
UNCCD (10.1016/j.rse.2019.02.015_bb1210) 2013
Schmidt (10.1016/j.rse.2019.02.015_bb1090) 2013
Drusch (10.1016/j.rse.2019.02.015_bb0295) 2012; 120
Hermosilla (10.1016/j.rse.2019.02.015_bb0555) 2016; 9
Griffiths (10.1016/j.rse.2019.02.015_bb0485) 2014; 151
Yan (10.1016/j.rse.2019.02.015_bb1360) 2014; 144
Reynolds (10.1016/j.rse.2019.02.015_bb1000) 2007; 316
Hostert (10.1016/j.rse.2019.02.015_bb0575) 2003; 87
Helder (10.1016/j.rse.2019.02.015_bb0535) 2018; 10
Li (10.1016/j.rse.2019.02.015_bb0725) 2017; 9
Selkowitz (10.1016/j.rse.2019.02.015_bb1130) 2016; 117
Frantz (10.1016/j.rse.2019.02.015_bb0355) 2017; 190
Hansen (10.1016/j.rse.2019.02.015_bb0510) 2013; 342
Wulder (10.1016/j.rse.2019.02.015_bb1330) 2008; 112
Betts (10.1016/j.rse.2019.02.015_bb0105) 2000; 408
Brooks (10.1016/j.rse.2019.02.015_bb0145) 2012; 50
Wulder (10.1016/j.rse.2019.02.015_bb1350) 2018; 39
Huang (10.1016/j.rse.2019.02.015_bb0580) 2010; 114
Kloiber (10.1016/j.rse.2019.02.015_bb0695) 2002; 82
Feng (10.1016/j.rse.2019.02.015_bb0315) 2016; 9
Hulley (10.1016/j.rse.2019.02.015_bb0590) 2009; 113
Griffiths (10.1016/j.rse.2019.02.015_bb0475) 2013; 6
Leslie (10.1016/j.rse.2019.02.015_bb0715) 2017; 2017–1034
Keenan (10.1016/j.rse.2019.02.015_bb0660) 2015; 352
Holden (10.1016/j.rse.2019.02.015_bb0570) 2016; 185
Zhang (10.1016/j.rse.2019.02.015_bb1400) 2018; 215
Pahlevan (10.1016/j.rse.2019.02.015_bb0925) 2014; 154
Fahnestock (10.1016/j.rse.2019.02.015_bb0310) 2016; 185
Irons (10.1016/j.rse.20
References_xml – volume: 140
  start-page: 60
  year: 2014
  end-page: 77
  ident: bb1270
  article-title: Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods
  publication-title: Remote Sens. Environ.
– volume: 153
  start-page: 42
  year: 2014
  end-page: 48
  ident: bb1315
  article-title: Landsat thermal infrared imagery and western water management
  publication-title: J. Contemp. Water Res. Educ.
– volume: 174
  start-page: 341
  year: 2016
  end-page: 352
  ident: bb0875
  article-title: Water observations from space: mapping surface water from 25 years of Landsat imagery across Australia
  publication-title: Remote Sens. Environ.
– volume: 144
  start-page: 42
  year: 2014
  end-page: 64
  ident: bb1360
  article-title: Automated crop field extraction from multi-temporal web enabled Landsat data
  publication-title: Remote Sens. Environ.
– start-page: 92181A
  year: 2014
  ident: bb1105
  article-title: Chasing the TIRS ghosts: calibrating the Landsat 8 thermal bands
  publication-title: SPIE Optical Engineering + Applications
– volume: 83
  start-page: 62
  year: 2002
  end-page: 76
  ident: bb1025
  article-title: The MODIS land product quality assessment approach
  publication-title: Remote Sens. Environ.
– reference: Roy, D.P., Yan, L., 2018. Robust Landsat-based crop time series modelling. Remote Sens. Environ. doi:
– volume: 9
  start-page: 1035
  year: 2016
  end-page: 1054
  ident: bb0555
  article-title: Mass data processing of time series Landsat imagery: pixels to data products for forest monitoring
  publication-title: Int. J. Digital Earth
– volume: 22
  start-page: 184
  year: 2011
  end-page: 197
  ident: bb1165
  article-title: Application of indicator systems for monitoring and assessment of desertification from national to global scales
  publication-title: Land Degrad. Dev.
– volume: 87
  start-page: 343
  year: 2006
  end-page: 360
  ident: bb0815
  article-title: North American regional reanalysis
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 122
  start-page: 11
  year: 2012
  end-page: 21
  ident: bb0615
  article-title: The next Landsat satellite: the Landsat data continuity mission
  publication-title: Remote Sens. Environ.
– volume: 114
  start-page: 854
  year: 2010
  end-page: 866
  ident: bb0885
  article-title: Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters
  publication-title: Remote Sens. Environ.
– volume: 216
  start-page: 497
  year: 2018
  end-page: 513
  ident: bb0490
  article-title: Reconstructing long term annual deforestation dynamics in Pará and Mato Grosso using the Landsat archive
  publication-title: Remote Sens. Environ.
– volume: 115
  start-page: 1421
  year: 2011
  end-page: 1433
  ident: bb1115
  article-title: Mapping wildfire and clearcut harvest disturbances in boreal forests with Landsat time series data
  publication-title: Remote Sens. Environ.
– volume: 185
  start-page: 37
  year: 2016
  end-page: 45
  ident: bb1110
  article-title: The impact of improved signal-to-noise ratios on algorithm performance: case studies for Landsat class instruments
  publication-title: Remote Sens. Environ.
– volume: 53
  start-page: 648
  year: 2014
  end-page: 665
  ident: bb0920
  article-title: Diurnal remote sensing of coastal/oceanic waters: a radiometric analysis for geostationary coastal and air pollution events
  publication-title: Appl. Opt.
– volume: 122
  start-page: 175
  year: 2012
  end-page: 184
  ident: bb0625
  article-title: Continental-scale validation of MODIS-based and LEDAPS Landsat ETM+ atmospheric correction methods
  publication-title: Remote Sens. Environ.
– volume: 169
  start-page: 390
  year: 2015
  end-page: 403
  ident: bb0200
  article-title: Evaluation of the Landsat-5 TM and Landsat-7 ETM + surface reflectance products
  publication-title: Remote Sens. Environ.
– volume: 114
  start-page: 1576
  year: 2010
  end-page: 1589
  ident: bb1290
  article-title: Characterizing temperate forest structural and spectral diversity with Hyperion EO-1 data
  publication-title: Remote Sens. Environ.
– volume: 176
  start-page: 255
  year: 2016
  end-page: 271
  ident: bb1040
  article-title: A general method to normalize Landsat reflectance data to nadir BRDF adjusted reflectance
  publication-title: Remote Sens. Environ.
– volume: 41
  start-page: 6396
  year: 2014
  end-page: 6402
  ident: bb1245
  article-title: A global inventory of lakes based on high-resolution satellite imagery
  publication-title: Geophys. Res. Lett.
– volume: 20
  start-page: 114
  year: 2015
  end-page: 123
  ident: bb0790
  article-title: Global satellite monitoring of climate-induced vegetation disturbances
  publication-title: Trends Plant Sci.
– volume: 162
  start-page: 67
  year: 2015
  end-page: 83
  ident: bb1435
  article-title: Generating synthetic Landsat images based on all available Landsat data: predicting Landsat surface reflectance at any given time
  publication-title: Remote Sens. Environ.
– volume: 5
  start-page: 1709
  year: 2012
  end-page: 1721
  ident: bb0810
  article-title: Satellite irrigation management support with the terrestrial observation and prediction system: a framework for integration of satellite and surface observations to support improvements in agricultural water resource management
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: vol. 9643
  start-page: 96430A
  year: 2015
  ident: bb0260
  article-title: Sentinel 2 global reference image
  publication-title: Image and Signal Processing for Remote Sensing XXI
– volume: 342
  start-page: 850
  year: 2013
  end-page: 853
  ident: bb0510
  article-title: High-resolution global maps of 21st-century forest cover change
  publication-title: Science
– volume: 8
  start-page: 166
  year: 2017
  ident: bb0585
  article-title: Patch-based forest change detection from Landsat time series
  publication-title: Forests
– volume: 2017–1034
  year: 2017
  ident: bb0715
  article-title: Landsat and agriculture—case studies on the uses and benefits of Landsat imagery in agricultural monitoring and production
  publication-title: U.S. Geol. Surv. Open File Rep.
– volume: 4
  start-page: 57
  year: 2004
  end-page: 77
  ident: bb0825
  article-title: Parameterization of albedo over heterogeneous surfaces in coupled land-atmosphere schemes for environmental modeling. Part I: theoretical background
  publication-title: Environ. Fluid Mech.
– volume: 122
  start-page: 2
  year: 2012
  end-page: 10
  ident: bb1335
  article-title: Opening the archive: how free data has enabled the science and monitoring promise of Landsat
  publication-title: Remote Sens. Environ.
– volume: 10
  start-page: 1058
  year: 2018
  ident: bb1195
  article-title: Fusion of moderate resolution earth observations for operational crop type mapping
  publication-title: Remote Sens.
– volume: 66
  start-page: 174
  year: 2018
  end-page: 183
  ident: bb0125
  article-title: Updating stand-level forest inventories using airborne laser scanning and Landsat time series data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 5
  start-page: 6481
  year: 2013
  end-page: 6500
  ident: bb0335
  article-title: Seasonal composite Landsat TM/ETM plus images using the Medoid (a multi-dimensional median)
  publication-title: Remote Sens.
– volume: 174
  start-page: 82
  year: 2016
  end-page: 99
  ident: bb0040
  article-title: The evaporative stress index as an indicator of agricultural drought in Brazil: an assessment based on crop yield impacts
  publication-title: Remote Sens. Environ.
– volume: 64
  start-page: 191
  year: 2015
  end-page: 204
  ident: bb0140
  article-title: A spatially explicit land surface phenology data product for science, monitoring and natural resources management applications
  publication-title: Environ. Model Softw.
– volume: 7
  start-page: 073558
  year: 2013
  ident: bb0415
  article-title: Increased potential to monitor water quality in the near-shore environment with Landsat's next-generation satellite
  publication-title: J. Appl. Remote. Sens.
– volume: 48
  start-page: 3489
  year: 2017
  end-page: 3505
  ident: bb0055
  article-title: Effective radiative forcing from historical land use change
  publication-title: Clim. Dyn.
– volume: 117
  year: 2012
  ident: bb0595
  article-title: Quantifying uncertainties in land surface temperature and emissivity retrievals from ASTER and MODIS thermal infrared data
  publication-title: J. Geophys. Res.-Atmos.
– volume: 62
  start-page: 32
  year: 2016
  end-page: 46
  ident: bb0195
  article-title: Remote sensing approach to detect post-fire vegetation regrowth in Siberian boreal larch forest
  publication-title: Ecol. Indic.
– volume: 3
  start-page: 47
  year: 2015
  end-page: 60
  ident: bb0385
  article-title: Fusing Landsat and MODIS data for vegetation monitoring
  publication-title: IEEE Geosci. Remote Sens. Mag.
– volume: 57
  start-page: 202
  year: 2017
  end-page: 213
  ident: bb1260
  article-title: Smoothing and gap-filling of high resolution multi-spectral time series: example of Landsat data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 185
  start-page: 271
  year: 2016
  end-page: 283
  ident: bb1345
  article-title: The global Landsat archive: status, consolidation, and direction
  publication-title: Remote Sens. Environ.
– volume: 9
  start-page: 317
  year: 2017
  ident: bb1190
  article-title: Daily mapping of 30m LAI and NDVI for grape yield prediction in California vineyards
  publication-title: Remote Sens.
– year: 2016
  ident: bb0420
  article-title: A Sourcebook of Methods and Procedures for Monitoring and Reporting Anthropogenic Greenhouse Gas Emissions and Removals Associated with Deforestation, Gains and Losses of Carbon Stocks in Forests Remaining Forests, and Forestation. GOFC-GOLD Report Version COP22-1
– volume: 2(3)
  start-page: 152
  year: 2016
  end-page: 170
  ident: bb0940
  article-title: From imagery to ecology: leveraging time series of all available Landsat observations to map and monitor ecosystem state and dynamics
  publication-title: Remote Sensing in Ecology and Conservation
– volume: 83
  start-page: 97
  year: 2002
  end-page: 111
  ident: bb1235
  article-title: Atmospheric correction of MODIS data in the visible to middle infrared: first results
  publication-title: Remote Sens. Environ.
– volume: 11
  start-page: 109
  year: 1988
  end-page: 120
  ident: bb0905
  article-title: Numerical analysis of Landsat thematic mapper images of Antarctica: surface temperatures and physical properties
  publication-title: Ann. Glaciol.
– volume: 124
  start-page: 689
  year: 2012
  end-page: 704
  ident: bb1095
  article-title: Monitoring land cover change in urban and pen-urban areas using dense time stacks of Landsat satellite data and a data mining approach
  publication-title: Remote Sens. Environ.
– volume: 122
  start-page: 41
  year: 2012
  end-page: 49
  ident: bb1100
  article-title: Thermal infrared radiometric calibration of the entire Landsat 4, 5, and 7 archive (1982–2010)
  publication-title: Remote Sens. Environ.
– volume: 49
  start-page: 1926
  year: 2011
  end-page: 1936
  ident: bb1060
  article-title: Detecting spatiotemporal changes of corn developmental stages in the US Corn Belt using MODIS WDRVI data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 38
  start-page: 51
  year: 2015
  end-page: 64
  ident: bb0115
  article-title: Applicability of Landsat 8 data for characterizing glacier facies and supraglacial debris
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 9
  start-page: 646
  year: 2016
  ident: bb0280
  article-title: A post-Paris look at climate observations
  publication-title: Nat. Geosci.
– volume: 216
  start-page: 598
  year: 2018
  end-page: 614
  ident: bb0530
  article-title: Coral reef applications of Sentinel-2: coverage, characteristics, bathymetry and benthic mapping with comparison to Landsat 8
  publication-title: Remote Sens. Environ.
– volume: 177
  start-page: 13
  year: 2016
  end-page: 20
  ident: bb2040
  article-title: Imaging phenology; scaling from camera plots to landscapes
  publication-title: Remote Sens. Environ.
– year: 2015
  ident: bb1085
  article-title: Perspectives on Public - Private Partnerships in U.S. Earth Observing Programs
– volume: 35
  start-page: 675
  year: 1997
  end-page: 686
  ident: bb1230
  article-title: Second simulation of the satellite signal in the solar spectrum, 6S: an overview
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 202
  start-page: 18
  year: 2017
  end-page: 27
  ident: bb0460
  article-title: Google Earth Engine: planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
– volume: 53
  start-page: 123
  year: 2012
  end-page: 128
  ident: bb0765
  article-title: The role of Pine Island Glacier ice shelf basal channels in deep-water upwelling, polynyas and ocean circulation in Pine Island Bay, Antarctica
  publication-title: Ann. Glaciol.
– volume: 10
  start-page: 352
  year: 2018
  ident: bb0285
  article-title: Atmospheric correction inter-comparison exercise
  publication-title: Remote Sens.
– volume: 6
  start-page: 12275
  year: 2014
  end-page: 12808
  ident: bb0775
  article-title: Landsat-8 operational land imager radiometric calibration and stability
  publication-title: Remote Sens.
– volume: 3
  start-page: 68
  year: 2006
  end-page: 72
  ident: bb0780
  article-title: A Landsat surface reflectance dataset for North America, 1990-2000
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 185
  start-page: 108
  year: 2016
  end-page: 118
  ident: bb0750
  article-title: Landsat 8: providing continuity and increased precision for measuring multi-decadal time series of total suspended matter
  publication-title: Remote Sens. Environ.
– year: 2013
  ident: bb1210
  article-title: Decision 22/COP.11 Advice on How Best to Measure Progress on Strategic Objectives 1, 2 and 3 of The Strategy ICCD/COP(11)/23/Add.1
– volume: 17
  start-page: 2459
  year: 2013
  end-page: 2472
  ident: bb0645
  article-title: Water accounting plus (WA+) - a water accounting procedure for complex river basins based on satellite measurements
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 12
  start-page: 339
  year: 2014
  end-page: 346
  ident: bb0670
  article-title: Bringing an ecological view of change to Landsat-based remote sensing
  publication-title: Front. Ecol. Environ.
– volume: 39
  start-page: 4254
  year: 2018
  end-page: 4284
  ident: bb1350
  article-title: Land cover 2.0
  publication-title: Int. J. Remote Sens.
– volume: 10
  start-page: 1253
  year: 2017
  end-page: 1269
  ident: bb1160
  article-title: Automatic sub-pixel co-registration of Landsat-8 operational land imager and sentinel-2A multi-spectral instrument images using phase correlation and machine learning based mapping
  publication-title: Int. J. Digital Earth
– volume: 185
  start-page: 186
  year: 2016
  end-page: 197
  ident: bb0600
  article-title: Assessing the role of climate and resource management on groundwater dependent ecosystem changes in arid environments with the Landsat archive
  publication-title: Remote Sens. Environ.
– volume: 151
  start-page: 124
  year: 2014
  end-page: 137
  ident: bb0975
  article-title: Using Landsat-derived disturbance and recovery history and Lidar to map forest biomass dynamics
  publication-title: Remote Sens. Environ.
– volume: 70
  start-page: 215
  year: 2016
  end-page: 230
  ident: bb0045
  article-title: Relationships between the evaporative stress index and winter wheat and spring barley yield anomalies in the Czech Republic
  publication-title: Clim. Res.
– volume: 42
  start-page: 177
  year: 1992
  end-page: 186
  ident: bb1065
  article-title: Application of image cross-correlation to the measurement of glacier velocity using satellite image data
  publication-title: Remote Sens. Environ.
– volume: 352
  start-page: 9
  year: 2015
  end-page: 20
  ident: bb0660
  article-title: Dynamics of global forest area: results from the FAO global Forest resources assessment 2015
  publication-title: For. Ecol. Manag.
– volume: 122
  start-page: 22
  year: 2012
  end-page: 29
  ident: bb0735
  article-title: Landsat: building a strong future
  publication-title: Remote Sens. Environ.
– volume: 9
  start-page: 113
  year: 2016
  end-page: 133
  ident: bb0315
  article-title: A global, high-resolution (30-m) inland water body dataset for 2000: first results of a topographic–spectral classification algorithm
  publication-title: Int. J. Digital Earth
– volume: 37
  start-page: 138
  year: 2015
  end-page: 149
  ident: bb0980
  article-title: Forest recovery trends derived from Landsat time series for North American boreal forests
  publication-title: Int. J. Remote Sens.
– start-page: 1165
  year: 2016
  end-page: 1168
  ident: bb2035
  article-title: Calibration/validation of Landsat-Derived Ocean Colour Products in Boston Harbour
  publication-title: ISPRS - International Archives of the Photogrammetry
– start-page: 49
  year: 2017
  ident: bb1220
  article-title: United Nations Economic and Social Council Report of the Inter-agency and Expert Group on Sustainable Development Goal Indicators, E/CN.3/2017/2
– volume: 6
  start-page: 2088
  year: 2013
  end-page: 2101
  ident: bb0475
  article-title: A pixel-based Landsat compositing algorithm for large area land cover mapping
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 505
  start-page: 143
  year: 2014
  end-page: 144
  ident: bb0170
  article-title: Many eyes on earth
  publication-title: Nature.
– volume: 54
  start-page: 3963
  year: 2015
  end-page: 3978
  ident: bb0860
  article-title: Toward an operational stray light correction for the Landsat 8 thermal infrared sensor
  publication-title: Appl. Opt.
– volume: 115
  year: 2010
  ident: bb0070
  article-title: Radiative forcing over the conterminous United States due to contemporary land cover land use change and sensitivity to snow and interannual albedo variability
  publication-title: J. Geophys. Res.
– volume: 8
  start-page: 251
  year: 2017
  ident: bb0895
  article-title: Using intra-annual Landsat time series for attributing forest disturbance agents in Central Europe
  publication-title: Forests
– volume: 116
  start-page: 55
  year: 2016
  end-page: 72
  ident: bb0430
  article-title: Time-series informed land cover: a review
  publication-title: Int. J. Photogramm. Remote Sens.
– volume: 204
  start-page: 717
  year: 2018
  end-page: 728
  ident: bb0525
  article-title: Mapping forest change using stacked generalization: an ensemble approach
  publication-title: Remote Sens. Environ.
– volume: 4
  start-page: 1856
  year: 2012
  end-page: 1886
  ident: bb0110
  article-title: Preparing Landsat Image Time Series (LITS) for monitoring changes in vegetation phenology in Queensland, Australia
  publication-title: Remote Sens.
– volume: 98
  start-page: 2397
  year: 2017
  end-page: 2410
  ident: bb0605
  article-title: Climate engine: cloud computing and visualization of climate and remote sensing data for advanced natural resource monitoring and process understanding
  publication-title: Bull. Am. Meteorol. Soc.
– year: 2019
  ident: bb2000
  article-title: Benefits of the Free and Open Landsat Data Policy
  publication-title: Remote Sens. Environ.
– volume: 52
  start-page: 361
  year: 2016
  end-page: 370
  ident: bb1125
  article-title: Mapping Brazilian savanna vegetation gradients with Landsat time series
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 113
  start-page: 893
  year: 2009
  end-page: 903
  ident: bb0180
  article-title: Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors
  publication-title: Remote Sens. Environ.
– year: 2017
  ident: bb1215
  article-title: United Nations Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP/248
– volume: 169
  start-page: 128
  year: 2015
  end-page: 138
  ident: bb0130
  article-title: Automated cloud and cloud shadow identification in Landsat MSS imagery for temperate ecosystems
  publication-title: Remote Sens. Environ.
– volume: 45
  start-page: 6124
  year: 2018
  end-page: 6133
  ident: bb1070
  article-title: Ultralow surface temperatures in East Antarctica from satellite thermal infrared mapping: the coldest places on Earth
  publication-title: Geophys. Res. Lett.
– volume: 8
  start-page: 29
  year: 2017
  end-page: 37
  ident: bb0005
  article-title: Classification of annual non-stand replacing boreal forest change in Canada using Landsat time series: a case study in northern Ontario
  publication-title: Remote Sens. Lett.
– volume: 6
  start-page: 11127
  year: 2014
  end-page: 11152
  ident: bb1175
  article-title: Landsat 8 operational land imager on-orbit geometric calibration and performance
  publication-title: Remote Sens.
– year: 1988
  ident: bb2025
  article-title: Satellite image atlas of glaciers of the world: Antarctica
  publication-title: U.S. Geological Survey Professional Paper 1386-B
– volume: 22
  start-page: 3518
  year: 2016
  end-page: 3528
  ident: bb0850
  article-title: Shape selection in Landsat time series: a tool for monitoring forest dynamics
  publication-title: Glob. Chang. Biol.
– volume: 302
  start-page: 1011
  year: 2008
  ident: bb2005
  article-title: Free access to Landsat imagery
  publication-title: Science
– volume: 14
  start-page: 1035
  year: 2013
  end-page: 1056
  ident: bb0035
  article-title: An intercomparison of drought indicators based on thermal remote sensing and NLDAS-2 simulations with U.S. drought monitor classifications
  publication-title: J. Hydrometeorol.
– volume: Vol. 10402
  year: 2017
  ident: bb0640
  article-title: Pathway to future sustainable land imaging: the compact hyperspectral prism spectrometer
  publication-title: Earth Observing Systems XXII
– volume: 9
  start-page: 584
  year: 2017
  ident: bb0405
  article-title: Copernicus sentinel-2A calibration and products validation status
  publication-title: Remote Sens.
– volume: 29
  start-page: 128
  year: 2015
  end-page: 138
  ident: bb0235
  article-title: MODIS Terra collection 6 fractional snow cover validation in mountainous terrain during spring snowmelt using Landsat TM and ETM+
  publication-title: Hydrol. Process.
– volume: 96
  start-page: 21971
  year: 1991
  end-page: 21987
  ident: bb1170
  article-title: NASA team algorithm for sea ice concentration retrieval from defense meteorological satellite program special sensor microwave imager: comparison with Landsat satellite imagery
  publication-title: J. Geophys. Res. Oceans
– volume: 144
  start-page: 152
  year: 2014
  end-page: 171
  ident: bb1415
  article-title: Continuous change detection and classification of land cover using all available Landsat data
  publication-title: Remote Sens. Environ.
– volume: 159
  start-page: 28
  year: 2015
  end-page: 43
  ident: bb0995
  article-title: Eastern Europe's forest cover dynamics from 1985 to 2012 quantified from the full Landsat archive
  publication-title: Remote Sens. Environ.
– year: 2018
  ident: bb0880
  article-title: Thriving on our Changing Planet: A Decadal Strategy for Earth Observation from Space
– volume: 152
  start-page: 217
  year: 2014
  end-page: 234
  ident: bb1420
  article-title: Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: an algorithm designed specifically for monitoring land cover change
  publication-title: Remote Sens. Environ.
– volume: 133
  start-page: 380
  year: 2007
  end-page: 394
  ident: bb0010
  article-title: Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—model
  publication-title: J. Irrig. Drain. Eng.
– volume: 216
  start-page: 472
  year: 2018
  end-page: 481
  ident: bb0705
  article-title: Uncertainty estimation method and Landsat 7 global validation for the Landsat surface temperature product
  publication-title: Remote Sens. Environ.
– volume: 115
  start-page: 3707
  year: 2011
  end-page: 3718
  ident: bb0795
  article-title: A Landsat time series approach to characterize bark beetle and defoliator impacts on tree mortality and surface fuels in conifer forests
  publication-title: Remote Sens. Environ.
– volume: 10
  start-page: 1337
  year: 2018
  ident: bb0935
  article-title: Toward long-term aquatic science products from heritage Landsat missions
  publication-title: Remote Sens.
– volume: 51
  start-page: 367
  year: 2013
  end-page: 380
  ident: bb1010
  article-title: Assessment of methods for mapping snow cover from MODIS
  publication-title: Adv. Water Resour.
– volume: 9
  start-page: 109
  year: 1987
  end-page: 118
  ident: bb0900
  article-title: Snow and ice studies by thematic mapper and multispectral scanner Landsat images
  publication-title: Ann. Glaciol.
– volume: 44
  start-page: 2207
  year: 2006
  end-page: 2218
  ident: bb0380
  article-title: On the blending of the Landsat and MODIS surface reflectance: predict daily Landsat surface feflectance
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 6
  year: 2016
  ident: bb0020
  article-title: Capturing coupled riparian and coastal disturbance from industrial mining using cloud-resilient satellite time series analysis
  publication-title: Sci. Rep.
– volume: 50
  start-page: 3340
  year: 2012
  end-page: 3353
  ident: bb0145
  article-title: Fitting the multitemporal curve: a Fourier series approach to the missing data problem in remote sensing analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 60
  start-page: 49
  year: 2017
  end-page: 60
  ident: bb1145
  article-title: Remote sensing of forest insect disturbances: current state and future directions
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 38
  start-page: 977
  year: 2000
  end-page: 998
  ident: bb0745
  article-title: An algorithm for the retrieval of albedo from space using semiempirical BRDF models
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 154
  start-page: 272
  year: 2014
  end-page: 284
  ident: bb0925
  article-title: On-orbit radiometric characterization of OLI (Landsat-8) for applications in aquatic remote sensing
  publication-title: Remote Sens. Environ.
– volume: 122
  start-page: 206
  year: 2016
  end-page: 221
  ident: bb1440
  article-title: Optimizing selection of training and auxiliary data for operational land cover classification for the LCMAP initiative
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 120
  start-page: 25
  year: 2012
  end-page: 36
  ident: bb0295
  article-title: Sentinel-2: ESA's optical high-resolution mission for GMES operational services
  publication-title: Remote Sens. Environ.
– volume: 118
  start-page: 83
  year: 2012
  end-page: 94
  ident: bb1410
  article-title: Object-based cloud and cloud shadow detection in Landsat imagery
  publication-title: Remote Sens. Environ.
– volume: 145
  start-page: 154
  year: 2014
  end-page: 172
  ident: bb1035
  article-title: Landsat-8: science and product vision for terrestrial global change research
  publication-title: Remote Sens. Environ.
– volume: 10
  start-page: 1340
  year: 2018
  ident: bb0535
  article-title: Observations and recommendations for the calibration of Landsat 8 OLI and sentinel 2 MSI for improved data interoperability
  publication-title: Remote Sens.
– volume: 49
  start-page: 498
  year: 2013
  end-page: 517
  ident: bb0160
  article-title: Estimating crop water use via remote sensing techniques vs. conventional methods in the South Platte River Basin, Colorado
  publication-title: J. Am. Water Resour. Assoc.
– volume: 166
  start-page: 271
  year: 2015
  end-page: 285
  ident: bb0675
  article-title: Attribution of disturbance change agent from Landsat time series in support of habitat monitoring in the Puget Sound region, USA
  publication-title: Remote Sens. Environ.
– year: 2018
  ident: bb0700
  article-title: The grape remote sensing atmospheric profile and evapotranspiration eXperiment (GRAPEX)
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 67
  start-page: 309
  year: 1999
  end-page: 319
  ident: bb0710
  article-title: Calculating change curves for multitemporal satellite imagery: Mount St. Helens 1980-1995
  publication-title: Remote Sens. Environ.
– volume: 185
  start-page: 46
  year: 2016
  end-page: 56
  ident: bb1240
  article-title: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product
  publication-title: Remote Sens. Environ.
– volume: Vol. 9607
  start-page: 96070S
  year: 2015
  ident: bb0245
  article-title: Requirement sensitivity studies for a future Landsat sensor
  publication-title: Earth Observing Systems XX
– volume: 114
  start-page: 2911
  year: 2010
  end-page: 2924
  ident: bb0210
  article-title: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync—tools for calibration and validation
  publication-title: Remote Sens. Environ.
– volume: 115
  start-page: 548
  year: 2011
  end-page: 561
  ident: bb0990
  article-title: Regional-scale boreal forest cover and change mapping using Landsat data composites for European Russia
  publication-title: Remote Sens. Environ.
– volume: 2
  start-page: 33
  year: 2015
  end-page: 54
  ident: bb1285
  article-title: A contemporary decennial examination of changing agricultural field sizes using Landsat time series data
  publication-title: Geogr. Environ.
– volume: 32
  start-page: 115
  year: 1996
  end-page: 130
  ident: bb1015
  article-title: Automated mapping of montane snow cover at subpixel resolution from the Landsat thematic mapper
  publication-title: Water Resour. Res.
– volume: 64
  start-page: 321
  year: 2018
  end-page: 332
  ident: bb0015
  article-title: Continent-wide estimates of Antarctic strain rates from Landsat 8-derived velocity grids
  publication-title: J. Glaciol.
– volume: 40
  start-page: 362
  year: 2014
  end-page: 384
  ident: bb0065
  article-title: Forest monitoring using Landsat time-series data—a review
  publication-title: Can. J. Remote. Sens.
– volume: 170
  start-page: 90
  year: 2015
  end-page: 101
  ident: bb0620
  article-title: Performance of Landsat 8 operational land imager for mapping ice sheet velocity
  publication-title: Remote Sens. Environ.
– reference: (Accessed: Jan 10, 2019).
– volume: 9
  start-page: 096070
  year: 2015
  ident: bb0360
  article-title: Ocean color measurements with the operational land imager on Landsat-8: implementation and evaluation in SeaDAS
  publication-title: J. Appl. Remote. Sens.
– volume: 130
  start-page: 370
  year: 2017
  end-page: 384
  ident: bb1405
  article-title: Change detection using Landsat time series: a review of frequencies, preprocessing, algorithms, and applications
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 218
  start-page: 230
  year: 2016
  end-page: 242
  ident: bb0910
  article-title: Assessing the evolution of soil moisture and vegetation conditions during the 2012 United States flash drought
  publication-title: Agric. For. Meteorol.
– volume: 151
  start-page: 72
  year: 2014
  end-page: 88
  ident: bb0485
  article-title: Forest disturbances, forest recovery, and changes in forest types across the Carpathian ecoregion from 1985 to 2010 based on Landsat image composites
  publication-title: Remote Sens. Environ.
– volume: 540
  start-page: 418
  year: 2016
  end-page: 422
  ident: bb0950
  article-title: High-resolution mapping of global surface water and its long-term changes
  publication-title: Nature
– volume: 37
  start-page: 234
  year: 2011
  end-page: 251
  ident: bb1295
  article-title: A history of habitat dynamics: characterizing 35 years of stand-replacing disturbance
  publication-title: Can. J. Remote. Sens.
– volume: 360
  start-page: 1303
  year: 2018
  end-page: 1305
  ident: bb0320
  article-title: Combating deforestation: from satellite to intervention
  publication-title: Science.
– volume: 172
  start-page: 67
  year: 2016
  end-page: 86
  ident: bb1365
  article-title: Conterminous United States crop field size quantification from multi-temporal Landsat data
  publication-title: Remote Sens. Environ.
– volume: 205
  start-page: 32
  year: 2018
  end-page: 45
  ident: bb0370
  article-title: Analyzing spatial and temporal variability in short-term rates of post-fire vegetation return from Landsat Time Series
  publication-title: Remote Sens. Environ.
– volume: 114
  start-page: 183
  year: 2010
  end-page: 198
  ident: bb0580
  article-title: An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks
  publication-title: Remote Sens. Environ.
– volume: 114
  start-page: 2897
  year: 2010
  end-page: 2910
  ident: bb0665
  article-title: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr - Temporal segmentation algorithms
  publication-title: Remote Sens. Environ.
– volume: 7
  start-page: 1135
  year: 2015
  end-page: 1153
  ident: bb2045
  article-title: The Thermal Infrared Sensor (TIRS) on Landsat 8: Design overview and pre-launch characterization
  publication-title: Remote Sens.
– volume: 122
  start-page: 30
  year: 2012
  end-page: 40
  ident: bb0770
  article-title: Forty-year calibrated record of earth-reflected radiance from Landsat: a review
  publication-title: Remote Sens. Environ.
– volume: 82
  start-page: 38
  year: 2002
  end-page: 47
  ident: bb0695
  article-title: A procedure for regional lake water clarity assessment using Landsat multispectral data
  publication-title: Remote Sens. Environ.
– volume: 195
  start-page: 230
  year: 2017
  end-page: 243
  ident: bb1120
  article-title: Testing a Landsat-based approach for mapping disturbance causality in U.S. forests
  publication-title: Remote Sens. Environ.
– volume: 122
  start-page: 92
  year: 2012
  end-page: 105
  ident: bb1255
  article-title: Monitoring gradual ecosystem change using Landsat time series data analyses: case studies in selected forest and rangeland ecosystems
  publication-title: Remote Sens. Environ.
– volume: 33
  start-page: 5546
  year: 2012
  end-page: 5573
  ident: bb0425
  article-title: Characterizing 25 years of change in the area, distribution, and carbon stock of Mediterranean pines in Central Spain
  publication-title: Int. J. Remote Sens.
– volume: 102
  start-page: 17081
  year: 1997
  end-page: 17106
  ident: bb0450
  article-title: Atmospheric correction of ocean color imagery in the Earth Observing System era
  publication-title: J. Geophys. Res.-Atmos.
– volume: 5
  start-page: 58
  year: 2017
  ident: bb0830
  article-title: Toward monitoring surface and subsurface lakes on the Greenland ice sheet using Sentinel-1 SAR and Landsat-8 OLI imagery
  publication-title: Front. Earth Sci.
– volume: 41
  start-page: 1373
  year: 2003
  end-page: 1377
  ident: bb0120
  article-title: Tracking subpixel-scale sastrugi with advanced land imager
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 175
  start-page: 52
  year: 2016
  end-page: 64
  ident: bb0175
  article-title: Estimating the effective spatial resolution of the operational BRDF, albedo, and nadir reflectance products from MODIS and VIIRS
  publication-title: Remote Sens. Environ.
– volume: 200
  year: 2016
  ident: bb0410
  article-title: The Global Observing System for Climate: Implementation Needs
– volume: 95(7)
  start-page: S143
  year: 2014
  ident: bb0345
  article-title: Antarctica
  publication-title: State of the Climate in 2013
– volume: 10
  start-page: 1489
  year: 2018
  ident: bb0395
  article-title: Assessing the variability of corn and soybean yields in central Iowa using high spatiotemporal resolution multi-satellite imagery
  publication-title: Remote Sens.
– volume: 99
  start-page: 1
  year: 2018
  end-page: 19
  ident: bb0760
  article-title: An operational land surface temperature product for Landsat thermal data: methodology and validation
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 185
  start-page: 95
  year: 2016
  end-page: 107
  ident: bb0225
  article-title: Retrieval of color producing agents in case 2 waters using Landsat 8
  publication-title: Remote Sens. Environ.
– volume: 100
  start-page: 265
  year: 2006
  end-page: 279
  ident: bb0325
  article-title: Green leaf phenology at Landsat resolution: scaling from the field to the satellite
  publication-title: Remote Sens. Environ.
– volume: 112
  start-page: 955
  year: 2008
  end-page: 969
  ident: bb1330
  article-title: Landsat continuity: issues and opportunities for land cover monitoring
  publication-title: Remote Sens. Environ.
– volume: 122
  start-page: 75
  year: 2012
  end-page: 91
  ident: bb1425
  article-title: Continuous monitoring of forest disturbance using all available Landsat imagery
  publication-title: Remote Sens. Environ.
– volume: 36
  start-page: 1228
  year: 1998
  end-page: 1249
  ident: bb0630
  article-title: The moderate resolution imaging spectroradiometer (MODIS): land remote sensing for global change research
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 194
  start-page: 155
  year: 2017
  end-page: 160
  ident: bb1140
  article-title: A Bayesian hierarchical model for estimating spatial and temporal variation in vegetation phenology from Landsat time series
  publication-title: Remote Sens. Environ.
– volume: 9
  start-page: 104
  year: 1987
  end-page: 108
  ident: bb0500
  article-title: Characterization of snow and ice reflectance zones on glaciers using Landsat Thematic Mapper data
  publication-title: Ann. Glaciol.
– volume: 12
  start-page: 1723
  year: 1998
  end-page: 1744
  ident: bb0690
  article-title: Improving snow cover mapping in forests through the use of a canopy reflectance model
  publication-title: Hydrol. Process.
– volume: 49
  start-page: 518
  year: 2013
  end-page: 533
  ident: bb0095
  article-title: Estimating annual groundwater evapotranspiration from phreatophytes in the great basin using Landsat and flux tower measurements
  publication-title: J. Am. Water Resour. Assoc.
– volume: 72
  start-page: 1155
  year: 2006
  end-page: 1169
  ident: bb0465
  article-title: Historical record of Landsat global coverage
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 188
  start-page: 9
  year: 2017
  end-page: 25
  ident: bb0390
  article-title: Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery
  publication-title: Remote Sens. Environ.
– volume: 2(3)
  start-page: 122
  year: 2016
  end-page: 131
  ident: bb0960
  article-title: Framing the concept of satellite remote sensing essential biodiversity variables: challenges and future directions
  publication-title: Remote Sensing in Ecology and Conservation
– volume: 408
  start-page: 187
  year: 2000
  ident: bb0105
  article-title: Offset of the potential carbon sink from boreal forestation by decreases in surface albedo
  publication-title: Nature.
– volume: 9
  start-page: 670
  year: 2017
  ident: bb0250
  article-title: Calibration of METRIC model to estimate energy balance over a drip-irrigated apple orchard
  publication-title: Remote Sens.
– volume: 181
  start-page: 237
  year: 2016
  end-page: 250
  ident: bb1380
  article-title: A hybrid approach for detecting corn and soybean phenology with time-series MODIS data
  publication-title: Remote Sens. Environ.
– volume: 33
  start-page: 443
  year: 1994
  end-page: 452
  ident: bb0455
  article-title: Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm
  publication-title: Appl. Opt.
– volume: 143
  start-page: 66
  year: 2016
  end-page: 80
  ident: bb1325
  article-title: Disturbance and the carbon balance of US forests: a quantitative review of impacts from harvests, fires, insects, and droughts
  publication-title: Glob. Planet. Chang.
– volume: 83
  start-page: 135
  year: 2002
  end-page: 148
  ident: bb1075
  article-title: First operational BRDF, albedo nadir reflectance products from MODIS
  publication-title: Remote Sens. Environ.
– volume: 51
  start-page: 822
  year: 2018
  end-page: 837
  ident: bb0085
  article-title: Sentinel-2A MSI and Landsat-8 OLI radiometric cross comparison over desert sites
  publication-title: Eur. J. Remote Sens.
– volume: 10
  start-page: 48
  year: 2017
  ident: bb0375
  article-title: A land product characterization system for comparative analysis of satellite data and products
  publication-title: Remote Sens.
– volume: 81
  start-page: 573
  year: 2015
  end-page: 586
  ident: bb0890
  article-title: A Landsat data tiling and compositing approach optimized for change detection in the conterminous United States
  publication-title: Photogramm. Eng. Remote. Sens.
– volume: 216
  start-page: 262
  year: 2018
  end-page: 275
  ident: bb1310
  article-title: Confirmation of post-harvest spectral recovery from Landsat time series using measures of forest cover and height derived from airborne laser scanning data
  publication-title: Remote Sens. Environ.
– volume: 8
  start-page: 98
  year: 2017
  ident: bb0220
  article-title: How similar are forest disturbance maps derived from different Landsat time series algorithms?
  publication-title: Forests.
– start-page: 73
  year: 2013
  ident: bb2010
  article-title: Landsat and beyond: Sustaining and enhancing the nation's land imaging program
– volume: 316
  start-page: 847
  year: 2007
  end-page: 851
  ident: bb1000
  article-title: Global desertification: building a science for dryland development
  publication-title: Science
– volume: 199
  start-page: 25
  year: 2017
  end-page: 38
  ident: bb1050
  article-title: Examination of Sentinel-2A multi-spectral instrument (MSI) reflectance anisotropy and the suitability of a general method to normalize MSI reflectance to nadir BRDF adjusted reflectance
  publication-title: Remote Sens. Environ.
– volume: 170
  start-page: 166
  year: 2015
  end-page: 177
  ident: bb1135
  article-title: Characterizing spectral-temporal patterns of defoliator and bark beetle disturbances using Landsat time series
  publication-title: Remote Sens. Environ.
– volume: 159
  start-page: 269
  year: 2015
  end-page: 277
  ident: bb1430
  article-title: Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images
  publication-title: Remote Sens. Environ.
– volume: 10
  start-page: 15
  year: 2016
  ident: bb0985
  article-title: Estimating supraglacial lake depth in West Greenland using Landsat 8 and comparison with other multispectral methods
  publication-title: Cryosphere
– volume: 6
  start-page: 11607
  year: 2014
  end-page: 11626
  ident: bb0080
  article-title: Landsat-8 thermal infrared sensor (TIRS) vicarious radiometric calibration
  publication-title: Remote Sens.
– volume: 132
  start-page: 176
  year: 2013
  end-page: 185
  ident: bb0800
  article-title: Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM + data
  publication-title: Remote Sens. Environ.
– volume: 115
  start-page: 2204
  year: 2011
  end-page: 2216
  ident: bb1155
  article-title: An algorithm for the retrieval of 30-m snow-free albedo from Landsat surface reflectance and MODIS BRDF
  publication-title: Remote Sens. Environ.
– volume: 186
  start-page: 121
  year: 2016
  end-page: 122
  ident: bb1180
  article-title: A note on the temporary mis-registration of Landsat-8 operational land imager (OLI) and Sentinel-2 multi spectral instrument (MSI) imagery
  publication-title: Remote Sens. Environ.
– volume: 6
  start-page: 360
  year: 2013
  end-page: 374
  ident: bb0915
  article-title: Leveraging EO-1 to evaluate capability of new generation of Landsat sensors for coastal/inland water studies
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– year: 2017
  ident: bb0470
  article-title: Landsat's Enduring Legacy: Pioneering Global Land Observations from Space
– volume: 170
  start-page: 62
  year: 2015
  end-page: 76
  ident: bb1340
  article-title: Virtual constellations for global terrestrial monitoring
  publication-title: Remote Sens. Environ.
– year: 2018
  ident: bb1080
  article-title: An initial validation of Landsat 5 and 7 derived surface water temperature for US lakes, reservoirs, and estuaries
  publication-title: Int. J. Remote Sens.
– volume: 28
  start-page: 5123
  year: 2007
  end-page: 5141
  ident: bb1225
  article-title: Mean compositing, an alternative strategy for producing temporal syntheses. Concepts and performance assessment for SPOT VEGETATION time series
  publication-title: Int. J. Remote Sens.
– volume: 169
  start-page: 320
  year: 2015
  end-page: 334
  ident: bb0270
  article-title: Tracking disturbance-regrowth dynamics in tropical forests using structural change detection and Landsat time series
  publication-title: Remote Sens. Environ.
– volume: 178
  start-page: 142
  year: 2016
  end-page: 157
  ident: bb1200
  article-title: Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region
  publication-title: Remote Sens. Environ.
– volume: 112
  start-page: 3680
  year: 2008
  end-page: 3689
  ident: bb0440
  article-title: Estimation of insect infestation dynamics using a temporal sequence of Landsat data
  publication-title: Remote Sens. Environ.
– volume: 6
  start-page: 11244
  year: 2014
  end-page: 11266
  ident: bb0230
  article-title: Development of an operational calibration methodology for the Landsat thermal data archive and initial testing of the atmospheric compensation component of a land surface temperature (LST) product from the archive
  publication-title: Remote Sens.
– volume: 6
  start-page: 12619
  year: 2014
  end-page: 12638
  ident: bb0840
  article-title: Radiometric cross calibration of Landsat 8 operational land imager (OLI) and Landsat 7 enhanced thematic mapper plus (ETM+)
  publication-title: Remote Sens.
– volume: 185
  start-page: 57
  year: 2016
  end-page: 70
  ident: bb1045
  article-title: Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity
  publication-title: Remote Sens. Environ.
– volume: 190
  start-page: 331
  year: 2017
  end-page: 347
  ident: bb0355
  article-title: Phenology-adaptive pixel-based compositing using optical earth observation imagery
  publication-title: Remote Sens. Environ.
– year: 2005
  ident: bb0655
  article-title: Atmospheric Carbon Dioxide Record From Mauna Loa
– volume: 6
  start-page: 4105
  year: 2015
  end-page: 4134
  ident: bb0755
  article-title: Monitoring forest recovery following wildfire and harvest in boreal forests using satellite imagery
  publication-title: Forests
– volume: 328
  start-page: 1164
  year: 2010
  end-page: 1168
  ident: bb0165
  article-title: Global biodiversity: indicators of recent declines
  publication-title: Science.
– volume: 6
  start-page: 10435
  year: 2014
  end-page: 10456
  ident: bb0855
  article-title: Stray light artifacts in imagery from the Landsat 8 thermal infrared sensor
  publication-title: Remote Sens.
– volume: 9
  start-page: 902
  year: 2017
  ident: bb0725
  article-title: A global analysis of sentinel-2A, sentinel-2B and Landsat-8 data revisit intervals and implications for terrestrial monitoring
  publication-title: Remote Sens.
– volume: 339
  start-page: 277
  year: 2013
  end-page: 278
  ident: bb0955
  article-title: Essential biodiversity variables
  publication-title: Science
– volume: 162
  start-page: 45
  year: 2015
  end-page: 54
  ident: bb0505
  article-title: Detection of earlier snowmelt in the Wind River range, Wyoming, using Landsat imagery, 1972–2013
  publication-title: Remote Sens. Environ.
– volume: 185
  start-page: 84
  year: 2016
  end-page: 94
  ident: bb0310
  article-title: Rapid large-area mapping of ice flow using Landsat 8
  publication-title: Remote Sens. Environ.
– volume: 140
  start-page: 466
  year: 2014
  end-page: 484
  ident: bb0515
  article-title: Monitoring conterminous United States (CONUS) land cover change with web-enabled Landsat data (WELD)
  publication-title: Remote Sens. Environ.
– volume: 172
  start-page: 146
  year: 2012
  end-page: 165
  ident: bb0970
  article-title: Using Landsat-derived disturbance history (1972–2010) to predict current forest structure
  publication-title: Remote Sens. Environ.
– volume: 9
  start-page: 1
  year: 2017
  end-page: 20
  ident: bb0870
  article-title: Comprehensive annual ice sheet velocity mapping using Landsat-8, Sentinel-1, and RADARSAT-2 data
  publication-title: Remote Sens.
– volume: 10
  start-page: 889
  year: 2018
  ident: bb0050
  article-title: Field-scale assessment of land and water use change over the California Delta using remote sensing
  publication-title: Remote Sens.
– volume: 185
  start-page: 16
  year: 2016
  end-page: 36
  ident: bb0570
  article-title: An analysis of Landsat 7 and Landsat 8 underflight data and the implications for time series investigations
  publication-title: Remote Sens. Environ.
– volume: 52
  start-page: 89
  year: 2016
  end-page: 119
  ident: bb0540
  article-title: Benchmarking optical/thermal satellite imagery for estimating evapotranspiration and soil moisture in decision support tools
  publication-title: JAWRA J. Am. Water Resour. Assoc.
– volume: 84
  start-page: 471
  year: 2003
  end-page: 475
  ident: bb1395
  article-title: Monitoring vegetation phenology using MODIS
  publication-title: Remote Sens. Environ.
– volume: 4
  start-page: 696
  year: 2012
  end-page: 706
  ident: bb0255
  article-title: Synergies of multiple remote sensing data sources for REDD+ monitoring
  publication-title: Curr. Opin. Environ. Sustain.
– volume: 190
  start-page: 289
  year: 2017
  end-page: 301
  ident: bb0930
  article-title: Landsat 8 remote sensing reflectance (R rs) products: evaluations, intercomparisons, and enhancements
  publication-title: Remote Sens. Environ.
– volume: 87
  start-page: 183
  year: 2003
  end-page: 197
  ident: bb0575
  article-title: Coupling spectral unmixing and trend analysis for monitoring of long-term vegetation dynamics in Mediterranean rangelands
  publication-title: Remote Sens. Environ.
– volume: 122
  start-page: 117
  year: 2012
  end-page: 133
  ident: bb2020
  article-title: Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan
  publication-title: Remote Sens. Environ.
– volume: 210
  start-page: 387
  year: 2018
  end-page: 402
  ident: bb1375
  article-title: Field-scale mapping of evaporative stress indicators of crop yield: an application over Mead, NE
  publication-title: Remote Sens. Environ.
– volume: 219
  start-page: 145
  year: 2018
  end-page: 161
  ident: bb0205
  article-title: The harmonized Landsat and Sentinel-2 surface reflectance data set
  publication-title: Remote Sens. Environ.
– volume: 9
  start-page: 320
  year: 2017
  ident: bb0610
  article-title: Mapping the expansion of boom crops in mainland southeast Asia using dense time stacks of Landsat data
  publication-title: Remote Sens.
– volume: 134
  start-page: 249
  year: 2013
  end-page: 265
  ident: bb0495
  article-title: Assessment of the NASA–USGS global land survey (GLS) datasets
  publication-title: Remote Sens. Environ.
– volume: 114
  start-page: 35
  year: 2010
  end-page: 49
  ident: bb1030
  article-title: Web-enabled Landsat data (WELD): Landsat ETM+ composited mosaics of the conterminous United States
  publication-title: Remote Sens. Environ.
– volume: 31
  start-page: 3263
  year: 2010
  end-page: 3271
  ident: bb0445
  article-title: Curve fitting of time-series Landsat imagery for characterizing a mountain pine beetle infestation
  publication-title: Int. J. Remote Sens.
– volume: 215
  start-page: 18
  year: 2018
  end-page: 32
  ident: bb1280
  article-title: An assessment of Landsat-8 atmospheric correction schemes and remote sensing reflectance products in coral reefs and coastal turbid waters
  publication-title: Remote Sens. Environ.
– volume: 52
  start-page: 3316
  year: 2014
  end-page: 3332
  ident: bb0150
  article-title: On-the-fly massively multitemporal change detection using statistical quality control charts and Landsat data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2017
  ident: bb1185
  article-title: Flotilla of Tiny Satellites Will Photograph the Entire Earth every Day
– volume: 75
  start-page: 230
  year: 2001
  end-page: 244
  ident: bb2015
  article-title: Classification and change detection using Landsat TM data: when and how to correct atmospheric effects?
  publication-title: Remote Sens. Environ.
– volume: 185
  start-page: 1
  year: 2016
  end-page: 6
  ident: bb0740
  article-title: Landsat 8: the plans, the reality, and the legacy
  publication-title: Remote Sens. Environ.
– volume: 53
  start-page: 2618
  year: 2017
  end-page: 2626
  ident: bb0330
  article-title: The future of evapotranspiration: global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources
  publication-title: Water Resour. Res.
– volume: 6
  start-page: 10232
  year: 2014
  end-page: 10251
  ident: bb0075
  article-title: The spectral response of the Landsat-8 operational land imager
  publication-title: Remote Sens.
– volume: 91
  start-page: 237
  year: 2004
  end-page: 242
  ident: bb0190
  article-title: Cloud detection in Landsat imagery of ice sheets using shadow matching technique and automatic normalized difference snow index threshold value decision
  publication-title: Remote Sens. Environ.
– volume: 215
  start-page: 482
  year: 2018
  end-page: 494
  ident: bb1400
  article-title: Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences
  publication-title: Remote Sens. Environ.
– volume: 113
  start-page: 1967
  year: 2009
  end-page: 1975
  ident: bb0590
  article-title: The north American ASTER land surface emissivity database (NAALSED) version 2.0
  publication-title: Remote Sens. Environ.
– volume: 202
  start-page: 276
  year: 2017
  end-page: 292
  ident: bb0720
  article-title: The Australian geoscience data cube—foundations and lessons learned
  publication-title: Remote Sens. Environ.
– volume: 209
  start-page: 363
  year: 2018
  end-page: 374
  ident: bb1250
  article-title: Extracting the full value of the Landsat archive: inter-sensor harmonization for the mapping of Minnesota forest canopy cover (1973–2015)
  publication-title: Remote Sens. Environ.
– volume: 158
  start-page: 220
  year: 2015
  end-page: 234
  ident: bb0545
  article-title: An integrated Landsat time series protocol for change detection and generation of annual gap free surface reflectance composites
  publication-title: Remote Sens. Environ.
– volume: 10
  start-page: 1363
  year: 2018
  ident: bb0300
  article-title: Analysis ready data: enabling analysis of the Landsat archive
  publication-title: Remote Sens.
– start-page: 349
  year: 2010
  ident: bb2030
  publication-title: Glaciers of Asia: U.S. Geological Survey Professional Paper 1386–F
– volume: 15
  start-page: 223
  year: 2011
  end-page: 239
  ident: bb0025
  article-title: Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 222
  start-page: 65
  year: 2019
  end-page: 77
  ident: bb0565
  article-title: Impact of time on interpretations of forest fragmentation: three-decades of fragmentation dynamics over Canada
  publication-title: Remote Sens. Environ.
– volume: 24
  start-page: 3624
  year: 2011
  end-page: 3648
  ident: bb1005
  article-title: MERRA: NASA's modern-era retrospective analysis for research and applications
  publication-title: J. Clim.
– volume: 185
  start-page: 71
  year: 2016
  end-page: 83
  ident: bb1275
  article-title: Early spring post-fire snow albedo dynamics in high latitude boreal forests using Landsat-8 OLI data
  publication-title: Remote Sens. Environ.
– volume: 103
  start-page: 115
  year: 2015
  end-page: 128
  ident: bb0100
  article-title: Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 198
  start-page: 504
  year: 2017
  end-page: 522
  ident: bb0520
  article-title: Mapping burned areas using dense time-series of Landsat data
  publication-title: Remote Sens. Environ.
– volume: 28
  start-page: 9
  year: 1989
  end-page: 22
  ident: bb0290
  article-title: Spectral signature of alpine snow cover from the Landsat Thematic Mapper
  publication-title: Remote Sens. Environ.
– volume: 12
  start-page: 521
  year: 2018
  end-page: 547
  ident: bb0400
  article-title: Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years
  publication-title: Cryosphere
– volume: 171
  start-page: 337
  year: 2015
  end-page: 351
  ident: bb1355
  article-title: Development of a global ~90 m water body map using multi-temporal Landsat images
  publication-title: Remote Sens. Environ.
– volume: 8
  start-page: 275
  year: 2017
  ident: bb0945
  article-title: Near-real-time monitoring of insect defoliation using Landsat time series
  publication-title: Forests.
– volume: 117
  start-page: 126
  year: 2016
  end-page: 140
  ident: bb1130
  article-title: Automated mapping of persistent ice and snow cover across the western US with Landsat
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 44
  start-page: 67
  year: 2018
  end-page: 87
  ident: bb0560
  article-title: Disturbance-informed annual land cover classification maps of Canada's forested ecosystems for a 29-year Landsat time series
  publication-title: Can. J. Remote. Sens.
– volume: 185
  start-page: 129
  year: 2016
  end-page: 141
  ident: bb1150
  article-title: Representative lake water extent mapping at continental scales using multi-temporal Landsat-8 imagery
  publication-title: Remote Sens. Environ.
– volume: 54
  start-page: 72
  year: 2017
  end-page: 83
  ident: bb0090
  article-title: Phenology from Landsat when data is scarce: using MODIS and dynamic time-warping to combine multi-year Landsat imagery to derive annual phenology curves
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– start-page: 25
  year: 2018
  end-page: 46
  ident: bb1445
  article-title: Cloud and cloud shadow detection for Landsat images: the fundamental basis for analyzing Landsat time series
  publication-title: Remote Sensing Time Series Image Processing
– volume: 135
  start-page: 224
  year: 2013
  end-page: 233
  ident: bb0240
  article-title: Multitemporal snow cover mapping in mountainous terrain for Landsat climate data record development
  publication-title: Remote Sens. Environ.
– volume: 170
  start-page: 317
  year: 2015
  end-page: 327
  ident: bb0365
  article-title: Boreal shield forest disturbance and recovery trends using Landsat time series
  publication-title: Remote Sens. Environ.
– volume: 16
  start-page: 1086
  year: 2013
  end-page: 1104
  ident: bb0785
  article-title: United States forest disturbance trends observed using Landsat time series
  publication-title: Ecosystems.
– year: 2015
  ident: bb1205
  article-title: United Nations, Transforming our World: The 2030 Agenda for Sustainable Development, UN A/RES/70/1
– volume: 544
  start-page: 349
  year: 2017
  end-page: 352
  ident: bb0685
  article-title: Widespread movement of meltwater onto and across Antarctic ice shelves
  publication-title: Nature
– year: 2013
  ident: bb1090
  article-title: Landsat ecosystem disturbance adaptive processing system (LEDAPS) algorithm description
  publication-title: U.S. Geological Survey Open-File Report 2013
– volume: 40
  start-page: 192
  year: 2014
  end-page: 212
  ident: bb1300
  article-title: Pixel-based image compositing for large-area dense time series applications and science
  publication-title: Can. J. Remote. Sens.
– volume: 194
  start-page: 303
  year: 2017
  end-page: 321
  ident: bb1305
  article-title: A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series
  publication-title: Remote Sens. Environ.
– volume: 8
  year: 2013
  ident: bb0480
  article-title: Agricultural land change in the Carpathian ecoregion after the breakdown of socialism and expansion of the European Union
  publication-title: Environ. Res. Lett.
– volume: 360
  start-page: 242
  year: 2016
  end-page: 252
  ident: bb0215
  article-title: Forest disturbance across the conterminous United States from 1985–2012: the emerging dominance of forest decline
  publication-title: For. Ecol. Manag.
– volume: 122
  start-page: 50
  year: 2012
  end-page: 65
  ident: bb0030
  article-title: Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources
  publication-title: Remote Sens. Environ.
– volume: 29
  start-page: 421
  year: 2008
  end-page: 469
  ident: bb0635
  article-title: Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data
  publication-title: Surv. Geophys.
– volume: 186
  start-page: 452
  year: 2016
  end-page: 464
  ident: bb0805
  article-title: Multisite analysis of land surface phenology in North American temperate and boreal deciduous forests from Landsat
  publication-title: Remote Sens. Environ.
– volume: 7
  start-page: 2208
  year: 2015
  end-page: 2237
  ident: bb0865
  article-title: Landsat-8 operational land imager (OLI) radiometric performance on-orbit
  publication-title: Remote Sens.
– volume: 170
  start-page: 121
  year: 2015
  end-page: 132
  ident: bb0550
  article-title: Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics
  publication-title: Remote Sens. Environ.
– volume: 8
  start-page: 520
  year: 2016
  ident: bb1370
  article-title: An automated approach for sub-pixel registration of Landsat-8 operational land imager (OLI) and Sentinel-2 multi spectral instrument (MSI) imagery
  publication-title: Remote Sens.
– volume: 9
  start-page: 902
  issue: 9
  year: 2017
  ident: 10.1016/j.rse.2019.02.015_bb0725
  article-title: A global analysis of sentinel-2A, sentinel-2B and Landsat-8 data revisit intervals and implications for terrestrial monitoring
  publication-title: Remote Sens.
  doi: 10.3390/rs9090902
– volume: 6
  start-page: 10232
  issue: 10
  year: 2014
  ident: 10.1016/j.rse.2019.02.015_bb0075
  article-title: The spectral response of the Landsat-8 operational land imager
  publication-title: Remote Sens.
  doi: 10.3390/rs61010232
– volume: 134
  start-page: 249
  year: 2013
  ident: 10.1016/j.rse.2019.02.015_bb0495
  article-title: Assessment of the NASA–USGS global land survey (GLS) datasets
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.02.026
– year: 2013
  ident: 10.1016/j.rse.2019.02.015_bb1090
  article-title: Landsat ecosystem disturbance adaptive processing system (LEDAPS) algorithm description
– year: 2017
  ident: 10.1016/j.rse.2019.02.015_bb0470
– volume: 75
  start-page: 230
  issue: 2
  year: 2001
  ident: 10.1016/j.rse.2019.02.015_bb2015
  article-title: Classification and change detection using Landsat TM data: when and how to correct atmospheric effects?
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(00)00169-3
– volume: 10
  start-page: 1058
  year: 2018
  ident: 10.1016/j.rse.2019.02.015_bb1195
  article-title: Fusion of moderate resolution earth observations for operational crop type mapping
  publication-title: Remote Sens.
  doi: 10.3390/rs10071058
– volume: 51
  start-page: 822
  issue: 1
  year: 2018
  ident: 10.1016/j.rse.2019.02.015_bb0085
  article-title: Sentinel-2A MSI and Landsat-8 OLI radiometric cross comparison over desert sites
  publication-title: Eur. J. Remote Sens.
  doi: 10.1080/22797254.2018.1507613
– volume: 53
  start-page: 2618
  issue: 4
  year: 2017
  ident: 10.1016/j.rse.2019.02.015_bb0330
  article-title: The future of evapotranspiration: global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources
  publication-title: Water Resour. Res.
  doi: 10.1002/2016WR020175
– volume: 158
  start-page: 220
  year: 2015
  ident: 10.1016/j.rse.2019.02.015_bb0545
  article-title: An integrated Landsat time series protocol for change detection and generation of annual gap free surface reflectance composites
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.11.005
– volume: 10
  start-page: 1489
  year: 2018
  ident: 10.1016/j.rse.2019.02.015_bb0395
  article-title: Assessing the variability of corn and soybean yields in central Iowa using high spatiotemporal resolution multi-satellite imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs10091489
– volume: 16
  start-page: 1086
  year: 2013
  ident: 10.1016/j.rse.2019.02.015_bb0785
  article-title: United States forest disturbance trends observed using Landsat time series
  publication-title: Ecosystems.
  doi: 10.1007/s10021-013-9669-9
– volume: 8
  year: 2013
  ident: 10.1016/j.rse.2019.02.015_bb0480
  article-title: Agricultural land change in the Carpathian ecoregion after the breakdown of socialism and expansion of the European Union
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/8/4/045024
– volume: 185
  start-page: 271
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb1345
  article-title: The global Landsat archive: status, consolidation, and direction
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.11.032
– volume: 10
  start-page: 48
  issue: 1
  year: 2017
  ident: 10.1016/j.rse.2019.02.015_bb0375
  article-title: A land product characterization system for comparative analysis of satellite data and products
  publication-title: Remote Sens.
  doi: 10.3390/rs10010048
– volume: 178
  start-page: 142
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb1200
  article-title: Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.02.034
– volume: 99
  start-page: 1
  year: 2018
  ident: 10.1016/j.rse.2019.02.015_bb0760
  article-title: An operational land surface temperature product for Landsat thermal data: methodology and validation
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 1165
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb2035
  article-title: Calibration/validation of Landsat-Derived Ocean Colour Products in Boston Harbour
– volume: 83
  start-page: 135
  issue: 1–2
  year: 2002
  ident: 10.1016/j.rse.2019.02.015_bb1075
  article-title: First operational BRDF, albedo nadir reflectance products from MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00091-3
– volume: 72
  start-page: 1155
  issue: 10
  year: 2006
  ident: 10.1016/j.rse.2019.02.015_bb0465
  article-title: Historical record of Landsat global coverage
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.72.10.1155
– volume: 209
  start-page: 363
  year: 2018
  ident: 10.1016/j.rse.2019.02.015_bb1250
  article-title: Extracting the full value of the Landsat archive: inter-sensor harmonization for the mapping of Minnesota forest canopy cover (1973–2015)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.02.046
– volume: 339
  start-page: 277
  issue: 6117
  year: 2013
  ident: 10.1016/j.rse.2019.02.015_bb0955
  article-title: Essential biodiversity variables
  publication-title: Science
  doi: 10.1126/science.1229931
– volume: 100
  start-page: 265
  year: 2006
  ident: 10.1016/j.rse.2019.02.015_bb0325
  article-title: Green leaf phenology at Landsat resolution: scaling from the field to the satellite
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.10.022
– volume: 66
  start-page: 174
  year: 2018
  ident: 10.1016/j.rse.2019.02.015_bb0125
  article-title: Updating stand-level forest inventories using airborne laser scanning and Landsat time series data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2017.11.016
– volume: 360
  start-page: 1303
  issue: 6395
  year: 2018
  ident: 10.1016/j.rse.2019.02.015_bb0320
  article-title: Combating deforestation: from satellite to intervention
  publication-title: Science.
  doi: 10.1126/science.aat1203
– volume: 9
  start-page: 1
  issue: 4
  year: 2017
  ident: 10.1016/j.rse.2019.02.015_bb0870
  article-title: Comprehensive annual ice sheet velocity mapping using Landsat-8, Sentinel-1, and RADARSAT-2 data
  publication-title: Remote Sens.
  doi: 10.3390/rs9040364
– year: 2018
  ident: 10.1016/j.rse.2019.02.015_bb0880
– volume: 114
  start-page: 1576
  issue: 7
  year: 2010
  ident: 10.1016/j.rse.2019.02.015_bb1290
  article-title: Characterizing temperate forest structural and spectral diversity with Hyperion EO-1 data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.02.012
– volume: 113
  start-page: 1967
  issue: 9
  year: 2009
  ident: 10.1016/j.rse.2019.02.015_bb0590
  article-title: The north American ASTER land surface emissivity database (NAALSED) version 2.0
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.05.005
– volume: 169
  start-page: 390
  year: 2015
  ident: 10.1016/j.rse.2019.02.015_bb0200
  article-title: Evaluation of the Landsat-5 TM and Landsat-7 ETM + surface reflectance products
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.08.030
– volume: 9
  start-page: 646
  issue: 9
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb0280
  article-title: A post-Paris look at climate observations
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo2785
– volume: 169
  start-page: 320
  year: 2015
  ident: 10.1016/j.rse.2019.02.015_bb0270
  article-title: Tracking disturbance-regrowth dynamics in tropical forests using structural change detection and Landsat time series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.08.020
– volume: 408
  start-page: 187
  issue: 6809
  year: 2000
  ident: 10.1016/j.rse.2019.02.015_bb0105
  article-title: Offset of the potential carbon sink from boreal forestation by decreases in surface albedo
  publication-title: Nature.
  doi: 10.1038/35041545
– volume: 122
  start-page: 117
  year: 2012
  ident: 10.1016/j.rse.2019.02.015_bb2020
  article-title: Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.09.024
– volume: 122
  start-page: 175
  year: 2012
  ident: 10.1016/j.rse.2019.02.015_bb0625
  article-title: Continental-scale validation of MODIS-based and LEDAPS Landsat ETM+ atmospheric correction methods
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.12.025
– volume: 215
  start-page: 18
  year: 2018
  ident: 10.1016/j.rse.2019.02.015_bb1280
  article-title: An assessment of Landsat-8 atmospheric correction schemes and remote sensing reflectance products in coral reefs and coastal turbid waters
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.05.033
– volume: 12
  start-page: 339
  issue: 6
  year: 2014
  ident: 10.1016/j.rse.2019.02.015_bb0670
  article-title: Bringing an ecological view of change to Landsat-based remote sensing
  publication-title: Front. Ecol. Environ.
  doi: 10.1890/130066
– volume: 122
  start-page: 50
  year: 2012
  ident: 10.1016/j.rse.2019.02.015_bb0030
  article-title: Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.08.025
– volume: 64
  start-page: 191
  year: 2015
  ident: 10.1016/j.rse.2019.02.015_bb0140
  article-title: A spatially explicit land surface phenology data product for science, monitoring and natural resources management applications
  publication-title: Environ. Model Softw.
  doi: 10.1016/j.envsoft.2014.11.017
– volume: 3
  start-page: 68
  year: 2006
  ident: 10.1016/j.rse.2019.02.015_bb0780
  article-title: A Landsat surface reflectance dataset for North America, 1990-2000
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2005.857030
– volume: 41
  start-page: 6396
  issue: 18
  year: 2014
  ident: 10.1016/j.rse.2019.02.015_bb1245
  article-title: A global inventory of lakes based on high-resolution satellite imagery
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2014GL060641
– volume: 91
  start-page: 237
  year: 2004
  ident: 10.1016/j.rse.2019.02.015_bb0190
  article-title: Cloud detection in Landsat imagery of ice sheets using shadow matching technique and automatic normalized difference snow index threshold value decision
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.03.007
– volume: 6
  start-page: 12619
  issue: 12
  year: 2014
  ident: 10.1016/j.rse.2019.02.015_bb0840
  article-title: Radiometric cross calibration of Landsat 8 operational land imager (OLI) and Landsat 7 enhanced thematic mapper plus (ETM+)
  publication-title: Remote Sens.
  doi: 10.3390/rs61212619
– volume: 194
  start-page: 155
  year: 2017
  ident: 10.1016/j.rse.2019.02.015_bb1140
  article-title: A Bayesian hierarchical model for estimating spatial and temporal variation in vegetation phenology from Landsat time series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.03.020
– volume: 52
  start-page: 3316
  issue: 6
  year: 2014
  ident: 10.1016/j.rse.2019.02.015_bb0150
  article-title: On-the-fly massively multitemporal change detection using statistical quality control charts and Landsat data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2272545
– year: 2005
  ident: 10.1016/j.rse.2019.02.015_bb0655
– volume: 2(3)
  start-page: 122
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb0960
  article-title: Framing the concept of satellite remote sensing essential biodiversity variables: challenges and future directions
– volume: 216
  start-page: 598
  year: 2018
  ident: 10.1016/j.rse.2019.02.015_bb0530
  article-title: Coral reef applications of Sentinel-2: coverage, characteristics, bathymetry and benthic mapping with comparison to Landsat 8
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.07.014
– volume: 205
  start-page: 32
  year: 2018
  ident: 10.1016/j.rse.2019.02.015_bb0370
  article-title: Analyzing spatial and temporal variability in short-term rates of post-fire vegetation return from Landsat Time Series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.11.007
– volume: 190
  start-page: 289
  year: 2017
  ident: 10.1016/j.rse.2019.02.015_bb0930
  article-title: Landsat 8 remote sensing reflectance (R rs) products: evaluations, intercomparisons, and enhancements
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.12.030
– volume: 143
  start-page: 66
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb1325
  article-title: Disturbance and the carbon balance of US forests: a quantitative review of impacts from harvests, fires, insects, and droughts
  publication-title: Glob. Planet. Chang.
  doi: 10.1016/j.gloplacha.2016.06.002
– volume: 20
  start-page: 114
  issue: 2
  year: 2015
  ident: 10.1016/j.rse.2019.02.015_bb0790
  article-title: Global satellite monitoring of climate-induced vegetation disturbances
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2014.10.008
– volume: 185
  start-page: 46
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb1240
  article-title: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.04.008
– volume: 67
  start-page: 309
  year: 1999
  ident: 10.1016/j.rse.2019.02.015_bb0710
  article-title: Calculating change curves for multitemporal satellite imagery: Mount St. Helens 1980-1995
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(98)00092-3
– volume: 186
  start-page: 452
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb0805
  article-title: Multisite analysis of land surface phenology in North American temperate and boreal deciduous forests from Landsat
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.09.014
– volume: 8
  start-page: 275
  issue: 8
  year: 2017
  ident: 10.1016/j.rse.2019.02.015_bb0945
  article-title: Near-real-time monitoring of insect defoliation using Landsat time series
  publication-title: Forests.
  doi: 10.3390/f8080275
– volume: 114
  start-page: 35
  year: 2010
  ident: 10.1016/j.rse.2019.02.015_bb1030
  article-title: Web-enabled Landsat data (WELD): Landsat ETM+ composited mosaics of the conterminous United States
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.08.011
– volume: 153
  start-page: 42
  issue: 1
  year: 2014
  ident: 10.1016/j.rse.2019.02.015_bb1315
  article-title: Landsat thermal infrared imagery and western water management
  publication-title: J. Contemp. Water Res. Educ.
  doi: 10.1111/j.1936-704X.2014.03178.x
– start-page: 25
  year: 2018
  ident: 10.1016/j.rse.2019.02.015_bb1445
  article-title: Cloud and cloud shadow detection for Landsat images: the fundamental basis for analyzing Landsat time series
– volume: 185
  start-page: 84
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb0310
  article-title: Rapid large-area mapping of ice flow using Landsat 8
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.11.023
– volume: 24
  start-page: 3624
  issue: 14
  year: 2011
  ident: 10.1016/j.rse.2019.02.015_bb1005
  article-title: MERRA: NASA's modern-era retrospective analysis for research and applications
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-11-00015.1
– volume: 190
  start-page: 331
  year: 2017
  ident: 10.1016/j.rse.2019.02.015_bb0355
  article-title: Phenology-adaptive pixel-based compositing using optical earth observation imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.01.002
– volume: 302
  start-page: 1011
  issue: 5879
  year: 2008
  ident: 10.1016/j.rse.2019.02.015_bb2005
  article-title: Free access to Landsat imagery
  publication-title: Science
  doi: 10.1126/science.320.5879.1011a
– volume: 50
  start-page: 3340
  year: 2012
  ident: 10.1016/j.rse.2019.02.015_bb0145
  article-title: Fitting the multitemporal curve: a Fourier series approach to the missing data problem in remote sensing analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2183137
– volume: 144
  start-page: 42
  year: 2014
  ident: 10.1016/j.rse.2019.02.015_bb1360
  article-title: Automated crop field extraction from multi-temporal web enabled Landsat data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.01.006
– volume: 151
  start-page: 72
  year: 2014
  ident: 10.1016/j.rse.2019.02.015_bb0485
  article-title: Forest disturbances, forest recovery, and changes in forest types across the Carpathian ecoregion from 1985 to 2010 based on Landsat image composites
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.04.022
– volume: 11
  start-page: 109
  year: 1988
  ident: 10.1016/j.rse.2019.02.015_bb0905
  article-title: Numerical analysis of Landsat thematic mapper images of Antarctica: surface temperatures and physical properties
  publication-title: Ann. Glaciol.
  doi: 10.3189/S026030550000642X
– volume: 5
  start-page: 6481
  year: 2013
  ident: 10.1016/j.rse.2019.02.015_bb0335
  article-title: Seasonal composite Landsat TM/ETM plus images using the Medoid (a multi-dimensional median)
  publication-title: Remote Sens.
  doi: 10.3390/rs5126481
– volume: 4
  start-page: 696
  issue: 6
  year: 2012
  ident: 10.1016/j.rse.2019.02.015_bb0255
  article-title: Synergies of multiple remote sensing data sources for REDD+ monitoring
  publication-title: Curr. Opin. Environ. Sustain.
  doi: 10.1016/j.cosust.2012.09.013
– year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb0420
– volume: 9
  start-page: 1035
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb0555
  article-title: Mass data processing of time series Landsat imagery: pixels to data products for forest monitoring
  publication-title: Int. J. Digital Earth
  doi: 10.1080/17538947.2016.1187673
– volume: 115
  start-page: 1421
  year: 2011
  ident: 10.1016/j.rse.2019.02.015_bb1115
  article-title: Mapping wildfire and clearcut harvest disturbances in boreal forests with Landsat time series data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.01.022
– volume: 103
  start-page: 115
  year: 2015
  ident: 10.1016/j.rse.2019.02.015_bb0100
  article-title: Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.03.009
– volume: 10
  start-page: 1337
  issue: 9
  year: 2018
  ident: 10.1016/j.rse.2019.02.015_bb0935
  article-title: Toward long-term aquatic science products from heritage Landsat missions
  publication-title: Remote Sens.
  doi: 10.3390/rs10091337
– year: 1988
  ident: 10.1016/j.rse.2019.02.015_bb2025
  article-title: Satellite image atlas of glaciers of the world: Antarctica
– volume: 133
  start-page: 380
  issue: 4
  year: 2007
  ident: 10.1016/j.rse.2019.02.015_bb0010
  article-title: Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—model
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)0733-9437(2007)133:4(380)
– volume: 14
  start-page: 1035
  year: 2013
  ident: 10.1016/j.rse.2019.02.015_bb0035
  article-title: An intercomparison of drought indicators based on thermal remote sensing and NLDAS-2 simulations with U.S. drought monitor classifications
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-12-0140.1
– volume: 54
  start-page: 72
  year: 2017
  ident: 10.1016/j.rse.2019.02.015_bb0090
  article-title: Phenology from Landsat when data is scarce: using MODIS and dynamic time-warping to combine multi-year Landsat imagery to derive annual phenology curves
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2016.09.005
– volume: 342
  start-page: 850
  year: 2013
  ident: 10.1016/j.rse.2019.02.015_bb0510
  article-title: High-resolution global maps of 21st-century forest cover change
  publication-title: Science
  doi: 10.1126/science.1244693
– volume: 328
  start-page: 1164
  issue: 5982
  year: 2010
  ident: 10.1016/j.rse.2019.02.015_bb0165
  article-title: Global biodiversity: indicators of recent declines
  publication-title: Science.
  doi: 10.1126/science.1187512
– volume: 117
  start-page: 126
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb1130
  article-title: Automated mapping of persistent ice and snow cover across the western US with Landsat
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.04.001
– volume: 52
  start-page: 361
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb1125
  article-title: Mapping Brazilian savanna vegetation gradients with Landsat time series
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2016.06.019
– volume: 2
  start-page: 33
  year: 2015
  ident: 10.1016/j.rse.2019.02.015_bb1285
  article-title: A contemporary decennial examination of changing agricultural field sizes using Landsat time series data
  publication-title: Geogr. Environ.
  doi: 10.1002/geo2.4
– volume: 117
  issue: D23
  year: 2012
  ident: 10.1016/j.rse.2019.02.015_bb0595
  article-title: Quantifying uncertainties in land surface temperature and emissivity retrievals from ASTER and MODIS thermal infrared data
  publication-title: J. Geophys. Res.-Atmos.
  doi: 10.1029/2012JD018506
– year: 2013
  ident: 10.1016/j.rse.2019.02.015_bb1210
– year: 2017
  ident: 10.1016/j.rse.2019.02.015_bb1215
– volume: 114
  start-page: 854
  year: 2010
  ident: 10.1016/j.rse.2019.02.015_bb0885
  article-title: Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.11.022
– volume: 360
  start-page: 242
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb0215
  article-title: Forest disturbance across the conterminous United States from 1985–2012: the emerging dominance of forest decline
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2015.10.042
– volume: 122
  start-page: 92
  year: 2012
  ident: 10.1016/j.rse.2019.02.015_bb1255
  article-title: Monitoring gradual ecosystem change using Landsat time series data analyses: case studies in selected forest and rangeland ecosystems
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.06.027
– volume: 210
  start-page: 387
  year: 2018
  ident: 10.1016/j.rse.2019.02.015_bb1375
  article-title: Field-scale mapping of evaporative stress indicators of crop yield: an application over Mead, NE
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.02.020
– volume: 28
  start-page: 5123
  year: 2007
  ident: 10.1016/j.rse.2019.02.015_bb1225
  article-title: Mean compositing, an alternative strategy for producing temporal syntheses. Concepts and performance assessment for SPOT VEGETATION time series
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160701253212
– volume: Vol. 10402
  year: 2017
  ident: 10.1016/j.rse.2019.02.015_bb0640
  article-title: Pathway to future sustainable land imaging: the compact hyperspectral prism spectrometer
– volume: 170
  start-page: 90
  year: 2015
  ident: 10.1016/j.rse.2019.02.015_bb0620
  article-title: Performance of Landsat 8 operational land imager for mapping ice sheet velocity
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.08.023
– volume: 118
  start-page: 83
  year: 2012
  ident: 10.1016/j.rse.2019.02.015_bb1410
  article-title: Object-based cloud and cloud shadow detection in Landsat imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.10.028
– volume: 188
  start-page: 9
  year: 2017
  ident: 10.1016/j.rse.2019.02.015_bb0390
  article-title: Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.11.004
– volume: 29
  start-page: 128
  year: 2015
  ident: 10.1016/j.rse.2019.02.015_bb0235
  article-title: MODIS Terra collection 6 fractional snow cover validation in mountainous terrain during spring snowmelt using Landsat TM and ETM+
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.10134
– volume: 64
  start-page: 321
  issue: 244
  year: 2018
  ident: 10.1016/j.rse.2019.02.015_bb0015
  article-title: Continent-wide estimates of Antarctic strain rates from Landsat 8-derived velocity grids
  publication-title: J. Glaciol.
  doi: 10.1017/jog.2018.23
– volume: 7
  start-page: 073558
  issue: 1
  year: 2013
  ident: 10.1016/j.rse.2019.02.015_bb0415
  article-title: Increased potential to monitor water quality in the near-shore environment with Landsat's next-generation satellite
  publication-title: J. Appl. Remote. Sens.
  doi: 10.1117/1.JRS.7.073558
– ident: 10.1016/j.rse.2019.02.015_bb1020
  doi: 10.1016/j.rse.2018.06.038
– volume: 70
  start-page: 215
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb0045
  article-title: Relationships between the evaporative stress index and winter wheat and spring barley yield anomalies in the Czech Republic
  publication-title: Clim. Res.
  doi: 10.3354/cr01411
– volume: 152
  start-page: 217
  year: 2014
  ident: 10.1016/j.rse.2019.02.015_bb1420
  article-title: Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: an algorithm designed specifically for monitoring land cover change
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.06.012
– start-page: 92181A
  year: 2014
  ident: 10.1016/j.rse.2019.02.015_bb1105
  article-title: Chasing the TIRS ghosts: calibrating the Landsat 8 thermal bands
– volume: 38
  start-page: 977
  issue: 2
  year: 2000
  ident: 10.1016/j.rse.2019.02.015_bb0745
  article-title: An algorithm for the retrieval of albedo from space using semiempirical BRDF models
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.841980
– volume: 135
  start-page: 224
  year: 2013
  ident: 10.1016/j.rse.2019.02.015_bb0240
  article-title: Multitemporal snow cover mapping in mountainous terrain for Landsat climate data record development
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.04.004
– volume: 51
  start-page: 367
  year: 2013
  ident: 10.1016/j.rse.2019.02.015_bb1010
  article-title: Assessment of methods for mapping snow cover from MODIS
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2012.03.002
– volume: 115
  start-page: 2204
  issue: 9
  year: 2011
  ident: 10.1016/j.rse.2019.02.015_bb1155
  article-title: An algorithm for the retrieval of 30-m snow-free albedo from Landsat surface reflectance and MODIS BRDF
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.04.019
– volume: 216
  start-page: 472
  year: 2018
  ident: 10.1016/j.rse.2019.02.015_bb0705
  article-title: Uncertainty estimation method and Landsat 7 global validation for the Landsat surface temperature product
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.06.026
– volume: 7
  start-page: 2208
  issue: 2
  year: 2015
  ident: 10.1016/j.rse.2019.02.015_bb0865
  article-title: Landsat-8 operational land imager (OLI) radiometric performance on-orbit
  publication-title: Remote Sens.
  doi: 10.3390/rs70202208
– volume: 170
  start-page: 166
  year: 2015
  ident: 10.1016/j.rse.2019.02.015_bb1135
  article-title: Characterizing spectral-temporal patterns of defoliator and bark beetle disturbances using Landsat time series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.09.019
– volume: 98
  start-page: 2397
  issue: 11
  year: 2017
  ident: 10.1016/j.rse.2019.02.015_bb0605
  article-title: Climate engine: cloud computing and visualization of climate and remote sensing data for advanced natural resource monitoring and process understanding
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-15-00324.1
– start-page: 73
  year: 2013
  ident: 10.1016/j.rse.2019.02.015_bb2010
– volume: 6
  start-page: 360
  issue: 2
  year: 2013
  ident: 10.1016/j.rse.2019.02.015_bb0915
  article-title: Leveraging EO-1 to evaluate capability of new generation of Landsat sensors for coastal/inland water studies
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2012.2235174
– volume: 10
  start-page: 1340
  year: 2018
  ident: 10.1016/j.rse.2019.02.015_bb0535
  article-title: Observations and recommendations for the calibration of Landsat 8 OLI and sentinel 2 MSI for improved data interoperability
  publication-title: Remote Sens.
  doi: 10.3390/rs10091340
– volume: 544
  start-page: 349
  issue: 7650
  year: 2017
  ident: 10.1016/j.rse.2019.02.015_bb0685
  article-title: Widespread movement of meltwater onto and across Antarctic ice shelves
  publication-title: Nature
  doi: 10.1038/nature22049
– volume: 159
  start-page: 269
  year: 2015
  ident: 10.1016/j.rse.2019.02.015_bb1430
  article-title: Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.12.014
– volume: 166
  start-page: 271
  year: 2015
  ident: 10.1016/j.rse.2019.02.015_bb0675
  article-title: Attribution of disturbance change agent from Landsat time series in support of habitat monitoring in the Puget Sound region, USA
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.05.005
– volume: 159
  start-page: 28
  year: 2015
  ident: 10.1016/j.rse.2019.02.015_bb0995
  article-title: Eastern Europe's forest cover dynamics from 1985 to 2012 quantified from the full Landsat archive
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.11.027
– year: 2015
  ident: 10.1016/j.rse.2019.02.015_bb1205
– volume: 216
  start-page: 262
  year: 2018
  ident: 10.1016/j.rse.2019.02.015_bb1310
  article-title: Confirmation of post-harvest spectral recovery from Landsat time series using measures of forest cover and height derived from airborne laser scanning data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.07.004
– volume: 176
  start-page: 255
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb1040
  article-title: A general method to normalize Landsat reflectance data to nadir BRDF adjusted reflectance
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.01.023
– volume: 8
  start-page: 520
  issue: 6
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb1370
  article-title: An automated approach for sub-pixel registration of Landsat-8 operational land imager (OLI) and Sentinel-2 multi spectral instrument (MSI) imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs8060520
– volume: 6
  start-page: 11244
  issue: 11
  year: 2014
  ident: 10.1016/j.rse.2019.02.015_bb0230
  article-title: Development of an operational calibration methodology for the Landsat thermal data archive and initial testing of the atmospheric compensation component of a land surface temperature (LST) product from the archive
  publication-title: Remote Sens.
  doi: 10.3390/rs61111244
– volume: 44
  start-page: 67
  issue: 1
  year: 2018
  ident: 10.1016/j.rse.2019.02.015_bb0560
  article-title: Disturbance-informed annual land cover classification maps of Canada's forested ecosystems for a 29-year Landsat time series
  publication-title: Can. J. Remote. Sens.
  doi: 10.1080/07038992.2018.1437719
– volume: 9
  start-page: 320
  issue: 4
  year: 2017
  ident: 10.1016/j.rse.2019.02.015_bb0610
  article-title: Mapping the expansion of boom crops in mainland southeast Asia using dense time stacks of Landsat data
  publication-title: Remote Sens.
  doi: 10.3390/rs9040320
– volume: 22
  start-page: 3518
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb0850
  article-title: Shape selection in Landsat time series: a tool for monitoring forest dynamics
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.13358
– volume: 10
  start-page: 1363
  issue: 9
  year: 2018
  ident: 10.1016/j.rse.2019.02.015_bb0300
  article-title: Analysis ready data: enabling analysis of the Landsat archive
  publication-title: Remote Sens.
  doi: 10.3390/rs10091363
– volume: 122
  start-page: 22
  year: 2012
  ident: 10.1016/j.rse.2019.02.015_bb0735
  article-title: Landsat: building a strong future
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.09.022
– volume: 8
  start-page: 98
  issue: 4
  year: 2017
  ident: 10.1016/j.rse.2019.02.015_bb0220
  article-title: How similar are forest disturbance maps derived from different Landsat time series algorithms?
  publication-title: Forests.
  doi: 10.3390/f8040098
– volume: 216
  start-page: 497
  year: 2018
  ident: 10.1016/j.rse.2019.02.015_bb0490
  article-title: Reconstructing long term annual deforestation dynamics in Pará and Mato Grosso using the Landsat archive
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.07.010
– volume: 10
  start-page: 15
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb0985
  article-title: Estimating supraglacial lake depth in West Greenland using Landsat 8 and comparison with other multispectral methods
  publication-title: Cryosphere
  doi: 10.5194/tc-10-15-2016
– volume: 60
  start-page: 49
  year: 2017
  ident: 10.1016/j.rse.2019.02.015_bb1145
  article-title: Remote sensing of forest insect disturbances: current state and future directions
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2017.04.004
– volume: 82
  start-page: 38
  issue: 1
  year: 2002
  ident: 10.1016/j.rse.2019.02.015_bb0695
  article-title: A procedure for regional lake water clarity assessment using Landsat multispectral data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00022-6
– volume: 162
  start-page: 67
  year: 2015
  ident: 10.1016/j.rse.2019.02.015_bb1435
  article-title: Generating synthetic Landsat images based on all available Landsat data: predicting Landsat surface reflectance at any given time
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.02.009
– volume: 115
  start-page: 3707
  year: 2011
  ident: 10.1016/j.rse.2019.02.015_bb0795
  article-title: A Landsat time series approach to characterize bark beetle and defoliator impacts on tree mortality and surface fuels in conifer forests
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.09.009
– volume: 83
  start-page: 97
  issue: 1
  year: 2002
  ident: 10.1016/j.rse.2019.02.015_bb1235
  article-title: Atmospheric correction of MODIS data in the visible to middle infrared: first results
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00089-5
– volume: 352
  start-page: 9
  year: 2015
  ident: 10.1016/j.rse.2019.02.015_bb0660
  article-title: Dynamics of global forest area: results from the FAO global Forest resources assessment 2015
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2015.06.014
– volume: 12
  start-page: 1723
  year: 1998
  ident: 10.1016/j.rse.2019.02.015_bb0690
  article-title: Improving snow cover mapping in forests through the use of a canopy reflectance model
  publication-title: Hydrol. Process.
  doi: 10.1002/(SICI)1099-1085(199808/09)12:10/11<1723::AID-HYP691>3.0.CO;2-2
– volume: 5
  start-page: 58
  year: 2017
  ident: 10.1016/j.rse.2019.02.015_bb0830
  article-title: Toward monitoring surface and subsurface lakes on the Greenland ice sheet using Sentinel-1 SAR and Landsat-8 OLI imagery
  publication-title: Front. Earth Sci.
  doi: 10.3389/feart.2017.00058
– volume: 37
  start-page: 138
  issue: 1
  year: 2015
  ident: 10.1016/j.rse.2019.02.015_bb0980
  article-title: Forest recovery trends derived from Landsat time series for North American boreal forests
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/2150704X.2015.1126375
– volume: 40
  start-page: 192
  year: 2014
  ident: 10.1016/j.rse.2019.02.015_bb1300
  article-title: Pixel-based image compositing for large-area dense time series applications and science
  publication-title: Can. J. Remote. Sens.
  doi: 10.1080/07038992.2014.945827
– volume: 177
  start-page: 13
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb2040
  article-title: Imaging phenology; scaling from camera plots to landscapes
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.02.018
– volume: 115
  start-page: 548
  year: 2011
  ident: 10.1016/j.rse.2019.02.015_bb0990
  article-title: Regional-scale boreal forest cover and change mapping using Landsat data composites for European Russia
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.10.001
– volume: 53
  start-page: 123
  issue: 60
  year: 2012
  ident: 10.1016/j.rse.2019.02.015_bb0765
  article-title: The role of Pine Island Glacier ice shelf basal channels in deep-water upwelling, polynyas and ocean circulation in Pine Island Bay, Antarctica
  publication-title: Ann. Glaciol.
  doi: 10.3189/2012AoG60A062
– volume: 145
  start-page: 154
  year: 2014
  ident: 10.1016/j.rse.2019.02.015_bb1035
  article-title: Landsat-8: science and product vision for terrestrial global change research
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.02.001
– volume: 120
  start-page: 25
  year: 2012
  ident: 10.1016/j.rse.2019.02.015_bb0295
  article-title: Sentinel-2: ESA's optical high-resolution mission for GMES operational services
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.11.026
– volume: 9
  start-page: 317
  year: 2017
  ident: 10.1016/j.rse.2019.02.015_bb1190
  article-title: Daily mapping of 30m LAI and NDVI for grape yield prediction in California vineyards
  publication-title: Remote Sens.
  doi: 10.3390/rs9040317
– volume: 114
  start-page: 183
  year: 2010
  ident: 10.1016/j.rse.2019.02.015_bb0580
  article-title: An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.08.017
– volume: 35
  start-page: 675
  issue: 3
  year: 1997
  ident: 10.1016/j.rse.2019.02.015_bb1230
  article-title: Second simulation of the satellite signal in the solar spectrum, 6S: an overview
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.581987
– volume: 112
  start-page: 3680
  year: 2008
  ident: 10.1016/j.rse.2019.02.015_bb0440
  article-title: Estimation of insect infestation dynamics using a temporal sequence of Landsat data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.05.005
– volume: 113
  start-page: 893
  year: 2009
  ident: 10.1016/j.rse.2019.02.015_bb0180
  article-title: Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.01.007
– volume: 49
  start-page: 518
  issue: 3
  year: 2013
  ident: 10.1016/j.rse.2019.02.015_bb0095
  article-title: Estimating annual groundwater evapotranspiration from phreatophytes in the great basin using Landsat and flux tower measurements
  publication-title: J. Am. Water Resour. Assoc.
  doi: 10.1111/jawr.12058
– volume: 52
  start-page: 89
  issue: 1
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb0540
  article-title: Benchmarking optical/thermal satellite imagery for estimating evapotranspiration and soil moisture in decision support tools
  publication-title: JAWRA J. Am. Water Resour. Assoc.
  doi: 10.1111/1752-1688.12371
– volume: 42
  start-page: 177
  issue: 3
  year: 1992
  ident: 10.1016/j.rse.2019.02.015_bb1065
  article-title: Application of image cross-correlation to the measurement of glacier velocity using satellite image data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(92)90101-O
– start-page: 349
  year: 2010
  ident: 10.1016/j.rse.2019.02.015_bb2030
– volume: 151
  start-page: 124
  year: 2014
  ident: 10.1016/j.rse.2019.02.015_bb0975
  article-title: Using Landsat-derived disturbance and recovery history and Lidar to map forest biomass dynamics
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.05.033
– volume: 215
  start-page: 482
  year: 2018
  ident: 10.1016/j.rse.2019.02.015_bb1400
  article-title: Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.04.031
– volume: 202
  start-page: 276
  year: 2017
  ident: 10.1016/j.rse.2019.02.015_bb0720
  article-title: The Australian geoscience data cube—foundations and lessons learned
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.03.015
– year: 2017
  ident: 10.1016/j.rse.2019.02.015_bb1185
– volume: 54
  start-page: 3963
  issue: 13
  year: 2015
  ident: 10.1016/j.rse.2019.02.015_bb0860
  article-title: Toward an operational stray light correction for the Landsat 8 thermal infrared sensor
  publication-title: Appl. Opt.
  doi: 10.1364/AO.54.003963
– volume: 124
  start-page: 689
  year: 2012
  ident: 10.1016/j.rse.2019.02.015_bb1095
  article-title: Monitoring land cover change in urban and pen-urban areas using dense time stacks of Landsat satellite data and a data mining approach
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.06.006
– volume: 95(7)
  start-page: S143
  year: 2014
  ident: 10.1016/j.rse.2019.02.015_bb0345
  article-title: Antarctica
– volume: 9
  start-page: 104
  issue: 1
  year: 1987
  ident: 10.1016/j.rse.2019.02.015_bb0500
  article-title: Characterization of snow and ice reflectance zones on glaciers using Landsat Thematic Mapper data
  publication-title: Ann. Glaciol.
  doi: 10.3189/S0260305500000471
– volume: 7
  start-page: 1135
  issue: 1
  year: 2015
  ident: 10.1016/j.rse.2019.02.015_bb2045
  article-title: The Thermal Infrared Sensor (TIRS) on Landsat 8: Design overview and pre-launch characterization
  publication-title: Remote Sens.
  doi: 10.3390/rs70101135
– volume: 84
  start-page: 471
  issue: 3
  year: 2003
  ident: 10.1016/j.rse.2019.02.015_bb1395
  article-title: Monitoring vegetation phenology using MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00135-9
– volume: 114
  start-page: 2911
  issue: 12
  year: 2010
  ident: 10.1016/j.rse.2019.02.015_bb0210
  article-title: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync—tools for calibration and validation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.07.010
– volume: 185
  start-page: 108
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb0750
  article-title: Landsat 8: providing continuity and increased precision for measuring multi-decadal time series of total suspended matter
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.04.011
– year: 2015
  ident: 10.1016/j.rse.2019.02.015_bb1085
– volume: 122
  start-page: 206
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb1440
  article-title: Optimizing selection of training and auxiliary data for operational land cover classification for the LCMAP initiative
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.11.004
– volume: 8
  start-page: 166
  issue: 5
  year: 2017
  ident: 10.1016/j.rse.2019.02.015_bb0585
  article-title: Patch-based forest change detection from Landsat time series
  publication-title: Forests
  doi: 10.3390/f8050166
– volume: 9
  start-page: 113
  issue: 2
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb0315
  article-title: A global, high-resolution (30-m) inland water body dataset for 2000: first results of a topographic–spectral classification algorithm
  publication-title: Int. J. Digital Earth
  doi: 10.1080/17538947.2015.1026420
– volume: 38
  start-page: 51
  year: 2015
  ident: 10.1016/j.rse.2019.02.015_bb0115
  article-title: Applicability of Landsat 8 data for characterizing glacier facies and supraglacial debris
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2014.12.011
– volume: 154
  start-page: 272
  year: 2014
  ident: 10.1016/j.rse.2019.02.015_bb0925
  article-title: On-orbit radiometric characterization of OLI (Landsat-8) for applications in aquatic remote sensing
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.08.001
– start-page: 6
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb0020
  article-title: Capturing coupled riparian and coastal disturbance from industrial mining using cloud-resilient satellite time series analysis
  publication-title: Sci. Rep.
– volume: 219
  start-page: 145
  year: 2018
  ident: 10.1016/j.rse.2019.02.015_bb0205
  article-title: The harmonized Landsat and Sentinel-2 surface reflectance data set
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.09.002
– volume: 218
  start-page: 230
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb0910
  article-title: Assessing the evolution of soil moisture and vegetation conditions during the 2012 United States flash drought
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2015.12.065
– volume: 40
  start-page: 362
  year: 2014
  ident: 10.1016/j.rse.2019.02.015_bb0065
  article-title: Forest monitoring using Landsat time-series data—a review
  publication-title: Can. J. Remote. Sens.
  doi: 10.1080/07038992.2014.987376
– volume: 6
  start-page: 2088
  issue: 5
  year: 2013
  ident: 10.1016/j.rse.2019.02.015_bb0475
  article-title: A pixel-based Landsat compositing algorithm for large area land cover mapping
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2012.2228167
– volume: 45
  start-page: 6124
  issue: 12
  year: 2018
  ident: 10.1016/j.rse.2019.02.015_bb1070
  article-title: Ultralow surface temperatures in East Antarctica from satellite thermal infrared mapping: the coldest places on Earth
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2018GL078133
– volume: 316
  start-page: 847
  issue: 5826
  year: 2007
  ident: 10.1016/j.rse.2019.02.015_bb1000
  article-title: Global desertification: building a science for dryland development
  publication-title: Science
  doi: 10.1126/science.1131634
– volume: 37
  start-page: 234
  year: 2011
  ident: 10.1016/j.rse.2019.02.015_bb1295
  article-title: A history of habitat dynamics: characterizing 35 years of stand-replacing disturbance
  publication-title: Can. J. Remote. Sens.
  doi: 10.5589/m11-034
– volume: 170
  start-page: 121
  year: 2015
  ident: 10.1016/j.rse.2019.02.015_bb0550
  article-title: Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.09.004
– volume: 112
  start-page: 955
  issue: 3
  year: 2008
  ident: 10.1016/j.rse.2019.02.015_bb1330
  article-title: Landsat continuity: issues and opportunities for land cover monitoring
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.07.004
– volume: 5
  start-page: 1709
  issue: 6
  year: 2012
  ident: 10.1016/j.rse.2019.02.015_bb0810
  article-title: Satellite irrigation management support with the terrestrial observation and prediction system: a framework for integration of satellite and surface observations to support improvements in agricultural water resource management
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2012.2214474
– volume: 6
  start-page: 11127
  year: 2014
  ident: 10.1016/j.rse.2019.02.015_bb1175
  article-title: Landsat 8 operational land imager on-orbit geometric calibration and performance
  publication-title: Remote Sens.
  doi: 10.3390/rs61111127
– volume: 185
  start-page: 16
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb0570
  article-title: An analysis of Landsat 7 and Landsat 8 underflight data and the implications for time series investigations
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.02.052
– volume: 9
  start-page: 096070
  year: 2015
  ident: 10.1016/j.rse.2019.02.015_bb0360
  article-title: Ocean color measurements with the operational land imager on Landsat-8: implementation and evaluation in SeaDAS
  publication-title: J. Appl. Remote. Sens.
  doi: 10.1117/1.JRS.9.096070
– volume: 175
  start-page: 52
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb0175
  article-title: Estimating the effective spatial resolution of the operational BRDF, albedo, and nadir reflectance products from MODIS and VIIRS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.12.033
– volume: 132
  start-page: 176
  year: 2013
  ident: 10.1016/j.rse.2019.02.015_bb0800
  article-title: Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM + data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.01.011
– volume: 3
  start-page: 47
  issue: 3
  year: 2015
  ident: 10.1016/j.rse.2019.02.015_bb0385
  article-title: Fusing Landsat and MODIS data for vegetation monitoring
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2015.2434351
– year: 2018
  ident: 10.1016/j.rse.2019.02.015_bb1080
  article-title: An initial validation of Landsat 5 and 7 derived surface water temperature for US lakes, reservoirs, and estuaries
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2018.1471545
– volume: 33
  start-page: 443
  year: 1994
  ident: 10.1016/j.rse.2019.02.015_bb0455
  article-title: Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm
  publication-title: Appl. Opt.
  doi: 10.1364/AO.33.000443
– volume: 87
  start-page: 183
  year: 2003
  ident: 10.1016/j.rse.2019.02.015_bb0575
  article-title: Coupling spectral unmixing and trend analysis for monitoring of long-term vegetation dynamics in Mediterranean rangelands
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(03)00145-7
– volume: 41
  start-page: 1373
  issue: 6
  year: 2003
  ident: 10.1016/j.rse.2019.02.015_bb0120
  article-title: Tracking subpixel-scale sastrugi with advanced land imager
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2003.812902
– volume: 185
  start-page: 37
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb1110
  article-title: The impact of improved signal-to-noise ratios on algorithm performance: case studies for Landsat class instruments
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.04.015
– volume: 36
  start-page: 1228
  issue: 4
  year: 1998
  ident: 10.1016/j.rse.2019.02.015_bb0630
  article-title: The moderate resolution imaging spectroradiometer (MODIS): land remote sensing for global change research
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.701075
– volume: 222
  start-page: 65
  year: 2019
  ident: 10.1016/j.rse.2019.02.015_bb0565
  article-title: Impact of time on interpretations of forest fragmentation: three-decades of fragmentation dynamics over Canada
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.12.027
– volume: 83
  start-page: 62
  issue: 1–2
  year: 2002
  ident: 10.1016/j.rse.2019.02.015_bb1025
  article-title: The MODIS land product quality assessment approach
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00087-1
– volume: 169
  start-page: 128
  year: 2015
  ident: 10.1016/j.rse.2019.02.015_bb0130
  article-title: Automated cloud and cloud shadow identification in Landsat MSS imagery for temperate ecosystems
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.08.006
– volume: 31
  start-page: 3263
  year: 2010
  ident: 10.1016/j.rse.2019.02.015_bb0445
  article-title: Curve fitting of time-series Landsat imagery for characterizing a mountain pine beetle infestation
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160903186277
– volume: 48
  start-page: 3489
  issue: 11
  year: 2017
  ident: 10.1016/j.rse.2019.02.015_bb0055
  article-title: Effective radiative forcing from historical land use change
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-016-3280-7
– volume: 185
  start-page: 129
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb1150
  article-title: Representative lake water extent mapping at continental scales using multi-temporal Landsat-8 imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.12.041
– volume: 185
  start-page: 1
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb0740
  article-title: Landsat 8: the plans, the reality, and the legacy
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.07.033
– volume: 162
  start-page: 45
  year: 2015
  ident: 10.1016/j.rse.2019.02.015_bb0505
  article-title: Detection of earlier snowmelt in the Wind River range, Wyoming, using Landsat imagery, 1972–2013
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.01.032
– volume: 17
  start-page: 2459
  year: 2013
  ident: 10.1016/j.rse.2019.02.015_bb0645
  article-title: Water accounting plus (WA+) - a water accounting procedure for complex river basins based on satellite measurements
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-17-2459-2013
– volume: 9
  start-page: 109
  issue: 1
  year: 1987
  ident: 10.1016/j.rse.2019.02.015_bb0900
  article-title: Snow and ice studies by thematic mapper and multispectral scanner Landsat images
  publication-title: Ann. Glaciol.
  doi: 10.3189/S0260305500000483
– volume: 172
  start-page: 67
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb1365
  article-title: Conterminous United States crop field size quantification from multi-temporal Landsat data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.10.034
– volume: 10
  start-page: 352
  issue: 2
  year: 2018
  ident: 10.1016/j.rse.2019.02.015_bb0285
  article-title: Atmospheric correction inter-comparison exercise
  publication-title: Remote Sens.
  doi: 10.3390/rs10020352
– volume: 4
  start-page: 57
  issue: 1
  year: 2004
  ident: 10.1016/j.rse.2019.02.015_bb0825
  article-title: Parameterization of albedo over heterogeneous surfaces in coupled land-atmosphere schemes for environmental modeling. Part I: theoretical background
  publication-title: Environ. Fluid Mech.
  doi: 10.1023/A:1025514026772
– volume: 2(3)
  start-page: 152
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb0940
  article-title: From imagery to ecology: leveraging time series of all available Landsat observations to map and monitor ecosystem state and dynamics
– volume: 62
  start-page: 32
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb0195
  article-title: Remote sensing approach to detect post-fire vegetation regrowth in Siberian boreal larch forest
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2015.11.026
– volume: 53
  start-page: 648
  year: 2014
  ident: 10.1016/j.rse.2019.02.015_bb0920
  article-title: Diurnal remote sensing of coastal/oceanic waters: a radiometric analysis for geostationary coastal and air pollution events
  publication-title: Appl. Opt.
  doi: 10.1364/AO.53.000648
– volume: 185
  start-page: 57
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb1045
  article-title: Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.12.024
– volume: 185
  start-page: 95
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb0225
  article-title: Retrieval of color producing agents in case 2 waters using Landsat 8
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.03.018
– volume: 29
  start-page: 421
  issue: 4–5
  year: 2008
  ident: 10.1016/j.rse.2019.02.015_bb0635
  article-title: Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data
  publication-title: Surv. Geophys.
  doi: 10.1007/s10712-008-9037-z
– volume: 8
  start-page: 251
  issue: 7
  year: 2017
  ident: 10.1016/j.rse.2019.02.015_bb0895
  article-title: Using intra-annual Landsat time series for attributing forest disturbance agents in Central Europe
  publication-title: Forests
  doi: 10.3390/f8070251
– volume: 44
  start-page: 2207
  issue: 8
  year: 2006
  ident: 10.1016/j.rse.2019.02.015_bb0380
  article-title: On the blending of the Landsat and MODIS surface reflectance: predict daily Landsat surface feflectance
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2006.872081
– volume: 33
  start-page: 5546
  year: 2012
  ident: 10.1016/j.rse.2019.02.015_bb0425
  article-title: Characterizing 25 years of change in the area, distribution, and carbon stock of Mediterranean pines in Central Spain
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2012.663115
– volume: 172
  start-page: 146
  year: 2012
  ident: 10.1016/j.rse.2019.02.015_bb0970
  article-title: Using Landsat-derived disturbance history (1972–2010) to predict current forest structure
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.09.025
– year: 2018
  ident: 10.1016/j.rse.2019.02.015_bb0700
  article-title: The grape remote sensing atmospheric profile and evapotranspiration eXperiment (GRAPEX)
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-16-0244.1
– volume: 140
  start-page: 466
  year: 2014
  ident: 10.1016/j.rse.2019.02.015_bb0515
  article-title: Monitoring conterminous United States (CONUS) land cover change with web-enabled Landsat data (WELD)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.08.014
– volume: 57
  start-page: 202
  year: 2017
  ident: 10.1016/j.rse.2019.02.015_bb1260
  article-title: Smoothing and gap-filling of high resolution multi-spectral time series: example of Landsat data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2016.12.012
– volume: 185
  start-page: 71
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb1275
  article-title: Early spring post-fire snow albedo dynamics in high latitude boreal forests using Landsat-8 OLI data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.02.059
– volume: 202
  start-page: 18
  year: 2017
  ident: 10.1016/j.rse.2019.02.015_bb0460
  article-title: Google Earth Engine: planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.031
– volume: 49
  start-page: 498
  issue: 3
  year: 2013
  ident: 10.1016/j.rse.2019.02.015_bb0160
  article-title: Estimating crop water use via remote sensing techniques vs. conventional methods in the South Platte River Basin, Colorado
  publication-title: J. Am. Water Resour. Assoc.
  doi: 10.1111/jawr.12051
– volume: 114
  start-page: 2897
  year: 2010
  ident: 10.1016/j.rse.2019.02.015_bb0665
  article-title: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr - Temporal segmentation algorithms
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.07.008
– volume: 22
  start-page: 184
  issue: 2
  year: 2011
  ident: 10.1016/j.rse.2019.02.015_bb1165
  article-title: Application of indicator systems for monitoring and assessment of desertification from national to global scales
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.1084
– volume: 116
  start-page: 55
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb0430
  article-title: Time-series informed land cover: a review
  publication-title: Int. J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.03.008
– volume: Vol. 9607
  start-page: 96070S
  year: 2015
  ident: 10.1016/j.rse.2019.02.015_bb0245
  article-title: Requirement sensitivity studies for a future Landsat sensor
– volume: 122
  start-page: 30
  year: 2012
  ident: 10.1016/j.rse.2019.02.015_bb0770
  article-title: Forty-year calibrated record of earth-reflected radiance from Landsat: a review
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.06.026
– volume: 96
  start-page: 21971
  issue: C12
  year: 1991
  ident: 10.1016/j.rse.2019.02.015_bb1170
  article-title: NASA team algorithm for sea ice concentration retrieval from defense meteorological satellite program special sensor microwave imager: comparison with Landsat satellite imagery
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1029/91JC02334
– volume: 200
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb0410
– volume: 122
  start-page: 11
  year: 2012
  ident: 10.1016/j.rse.2019.02.015_bb0615
  article-title: The next Landsat satellite: the Landsat data continuity mission
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.08.026
– volume: 15
  start-page: 223
  issue: 1
  year: 2011
  ident: 10.1016/j.rse.2019.02.015_bb0025
  article-title: Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-15-223-2011
– volume: 174
  start-page: 82
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb0040
  article-title: The evaporative stress index as an indicator of agricultural drought in Brazil: an assessment based on crop yield impacts
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.11.034
– volume: 6
  start-page: 12275
  issue: 12
  year: 2014
  ident: 10.1016/j.rse.2019.02.015_bb0775
  article-title: Landsat-8 operational land imager radiometric calibration and stability
  publication-title: Remote Sens.
  doi: 10.3390/rs61212275
– volume: 6
  start-page: 11607
  issue: 11
  year: 2014
  ident: 10.1016/j.rse.2019.02.015_bb0080
  article-title: Landsat-8 thermal infrared sensor (TIRS) vicarious radiometric calibration
  publication-title: Remote Sens.
  doi: 10.3390/rs61111607
– volume: 12
  start-page: 521
  issue: 2
  year: 2018
  ident: 10.1016/j.rse.2019.02.015_bb0400
  article-title: Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years
  publication-title: Cryosphere
  doi: 10.5194/tc-12-521-2018
– volume: 505
  start-page: 143
  issue: 7482
  year: 2014
  ident: 10.1016/j.rse.2019.02.015_bb0170
  article-title: Many eyes on earth
  publication-title: Nature.
  doi: 10.1038/505143a
– volume: 28
  start-page: 9
  year: 1989
  ident: 10.1016/j.rse.2019.02.015_bb0290
  article-title: Spectral signature of alpine snow cover from the Landsat Thematic Mapper
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(89)90101-6
– volume: 144
  start-page: 152
  year: 2014
  ident: 10.1016/j.rse.2019.02.015_bb1415
  article-title: Continuous change detection and classification of land cover using all available Landsat data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.01.011
– volume: 81
  start-page: 573
  year: 2015
  ident: 10.1016/j.rse.2019.02.015_bb0890
  article-title: A Landsat data tiling and compositing approach optimized for change detection in the conterminous United States
  publication-title: Photogramm. Eng. Remote. Sens.
  doi: 10.14358/PERS.81.7.573
– year: 2019
  ident: 10.1016/j.rse.2019.02.015_bb2000
  article-title: Benefits of the Free and Open Landsat Data Policy
  publication-title: Remote Sens. Environ.
– volume: 195
  start-page: 230
  year: 2017
  ident: 10.1016/j.rse.2019.02.015_bb1120
  article-title: Testing a Landsat-based approach for mapping disturbance causality in U.S. forests
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.03.033
– volume: 9
  start-page: 670
  issue: 7
  year: 2017
  ident: 10.1016/j.rse.2019.02.015_bb0250
  article-title: Calibration of METRIC model to estimate energy balance over a drip-irrigated apple orchard
  publication-title: Remote Sens.
  doi: 10.3390/rs9070670
– volume: 6
  start-page: 10435
  issue: 11
  year: 2014
  ident: 10.1016/j.rse.2019.02.015_bb0855
  article-title: Stray light artifacts in imagery from the Landsat 8 thermal infrared sensor
  publication-title: Remote Sens.
  doi: 10.3390/rs61110435
– volume: 170
  start-page: 62
  year: 2015
  ident: 10.1016/j.rse.2019.02.015_bb1340
  article-title: Virtual constellations for global terrestrial monitoring
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.09.001
– volume: 171
  start-page: 337
  year: 2015
  ident: 10.1016/j.rse.2019.02.015_bb1355
  article-title: Development of a global ~90 m water body map using multi-temporal Landsat images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.10.014
– volume: 9
  start-page: 584
  issue: 6
  year: 2017
  ident: 10.1016/j.rse.2019.02.015_bb0405
  article-title: Copernicus sentinel-2A calibration and products validation status
  publication-title: Remote Sens.
  doi: 10.3390/rs9060584
– volume: 10
  start-page: 1253
  issue: 12
  year: 2017
  ident: 10.1016/j.rse.2019.02.015_bb1160
  article-title: Automatic sub-pixel co-registration of Landsat-8 operational land imager and sentinel-2A multi-spectral instrument images using phase correlation and machine learning based mapping
  publication-title: Int. J. Digital Earth
  doi: 10.1080/17538947.2017.1304586
– start-page: 49
  year: 2017
  ident: 10.1016/j.rse.2019.02.015_bb1220
– volume: 140
  start-page: 60
  year: 2014
  ident: 10.1016/j.rse.2019.02.015_bb1270
  article-title: Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.08.025
– volume: 185
  start-page: 186
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb0600
  article-title: Assessing the role of climate and resource management on groundwater dependent ecosystem changes in arid environments with the Landsat archive
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.07.004
– volume: 8
  start-page: 29
  issue: 1
  year: 2017
  ident: 10.1016/j.rse.2019.02.015_bb0005
  article-title: Classification of annual non-stand replacing boreal forest change in Canada using Landsat time series: a case study in northern Ontario
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2016.1233371
– volume: vol. 9643
  start-page: 96430A
  year: 2015
  ident: 10.1016/j.rse.2019.02.015_bb0260
  article-title: Sentinel 2 global reference image
– volume: 204
  start-page: 717
  year: 2018
  ident: 10.1016/j.rse.2019.02.015_bb0525
  article-title: Mapping forest change using stacked generalization: an ensemble approach
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.09.029
– volume: 174
  start-page: 341
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb0875
  article-title: Water observations from space: mapping surface water from 25 years of Landsat imagery across Australia
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.11.003
– volume: 199
  start-page: 25
  year: 2017
  ident: 10.1016/j.rse.2019.02.015_bb1050
  article-title: Examination of Sentinel-2A multi-spectral instrument (MSI) reflectance anisotropy and the suitability of a general method to normalize MSI reflectance to nadir BRDF adjusted reflectance
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.019
– volume: 170
  start-page: 317
  year: 2015
  ident: 10.1016/j.rse.2019.02.015_bb0365
  article-title: Boreal shield forest disturbance and recovery trends using Landsat time series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.09.015
– volume: 4
  start-page: 1856
  issue: 6
  year: 2012
  ident: 10.1016/j.rse.2019.02.015_bb0110
  article-title: Preparing Landsat Image Time Series (LITS) for monitoring changes in vegetation phenology in Queensland, Australia
  publication-title: Remote Sens.
  doi: 10.3390/rs4061856
– volume: 194
  start-page: 303
  year: 2017
  ident: 10.1016/j.rse.2019.02.015_bb1305
  article-title: A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.03.035
– volume: 130
  start-page: 370
  year: 2017
  ident: 10.1016/j.rse.2019.02.015_bb1405
  article-title: Change detection using Landsat time series: a review of frequencies, preprocessing, algorithms, and applications
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.06.013
– volume: 186
  start-page: 121
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb1180
  article-title: A note on the temporary mis-registration of Landsat-8 operational land imager (OLI) and Sentinel-2 multi spectral instrument (MSI) imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.08.025
– volume: 122
  start-page: 75
  year: 2012
  ident: 10.1016/j.rse.2019.02.015_bb1425
  article-title: Continuous monitoring of forest disturbance using all available Landsat imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.10.030
– volume: 115
  issue: G4
  year: 2010
  ident: 10.1016/j.rse.2019.02.015_bb0070
  article-title: Radiative forcing over the conterminous United States due to contemporary land cover land use change and sensitivity to snow and interannual albedo variability
  publication-title: J. Geophys. Res.
  doi: 10.1029/2010JG001428
– volume: 39
  start-page: 4254
  issue: 12
  year: 2018
  ident: 10.1016/j.rse.2019.02.015_bb1350
  article-title: Land cover 2.0
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2018.1452075
– volume: 10
  start-page: 889
  year: 2018
  ident: 10.1016/j.rse.2019.02.015_bb0050
  article-title: Field-scale assessment of land and water use change over the California Delta using remote sensing
  publication-title: Remote Sens.
  doi: 10.3390/rs10060889
– volume: 198
  start-page: 504
  year: 2017
  ident: 10.1016/j.rse.2019.02.015_bb0520
  article-title: Mapping burned areas using dense time-series of Landsat data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.027
– volume: 32
  start-page: 115
  year: 1996
  ident: 10.1016/j.rse.2019.02.015_bb1015
  article-title: Automated mapping of montane snow cover at subpixel resolution from the Landsat thematic mapper
  publication-title: Water Resour. Res.
  doi: 10.1029/95WR02718
– volume: 122
  start-page: 41
  year: 2012
  ident: 10.1016/j.rse.2019.02.015_bb1100
  article-title: Thermal infrared radiometric calibration of the entire Landsat 4, 5, and 7 archive (1982–2010)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.07.022
– volume: 6
  start-page: 4105
  year: 2015
  ident: 10.1016/j.rse.2019.02.015_bb0755
  article-title: Monitoring forest recovery following wildfire and harvest in boreal forests using satellite imagery
  publication-title: Forests
  doi: 10.3390/f6114105
– volume: 540
  start-page: 418
  issue: 7633
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb0950
  article-title: High-resolution mapping of global surface water and its long-term changes
  publication-title: Nature
  doi: 10.1038/nature20584
– volume: 102
  start-page: 17081
  issue: D14
  year: 1997
  ident: 10.1016/j.rse.2019.02.015_bb0450
  article-title: Atmospheric correction of ocean color imagery in the Earth Observing System era
  publication-title: J. Geophys. Res.-Atmos.
  doi: 10.1029/96JD02443
– volume: 2017–1034
  year: 2017
  ident: 10.1016/j.rse.2019.02.015_bb0715
  article-title: Landsat and agriculture—case studies on the uses and benefits of Landsat imagery in agricultural monitoring and production
  publication-title: U.S. Geol. Surv. Open File Rep.
  doi: 10.3133/ofr20171034
– volume: 49
  start-page: 1926
  year: 2011
  ident: 10.1016/j.rse.2019.02.015_bb1060
  article-title: Detecting spatiotemporal changes of corn developmental stages in the US Corn Belt using MODIS WDRVI data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2095462
– volume: 122
  start-page: 2
  year: 2012
  ident: 10.1016/j.rse.2019.02.015_bb1335
  article-title: Opening the archive: how free data has enabled the science and monitoring promise of Landsat
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.01.010
– volume: 87
  start-page: 343
  issue: 3
  year: 2006
  ident: 10.1016/j.rse.2019.02.015_bb0815
  article-title: North American regional reanalysis
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-87-3-343
– volume: 181
  start-page: 237
  year: 2016
  ident: 10.1016/j.rse.2019.02.015_bb1380
  article-title: A hybrid approach for detecting corn and soybean phenology with time-series MODIS data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.03.039
SSID ssj0015871
Score 2.7063906
Snippet Formal planning and development of what became the first Landsat satellite commenced over 50 years ago in 1967. Now, having collected earth observation data...
Formal planning and development of what became the first Landsat satellite commenced over 50 years ago in 1967. Now, having collected earth observation data...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 127
SubjectTerms Algorithms
Applications programs
Archives & records
Archiving
ARD
Climate change
Climate change mitigation
Climate change monitoring
Climate monitoring
Continuity
Data transmission
Deforestation
Feedback loops
Imagery
Land change science
Land cover
Landsat
Landsat satellites
Landsat science team
monitoring
OLI
Open data
planning
Positive feedback
Remote sensing
Remote sensing science
Satellite programs
Satellites
Science
time series analysis
TIRS
Trends
Title Current status of Landsat program, science, and applications
URI https://dx.doi.org/10.1016/j.rse.2019.02.015
https://www.proquest.com/docview/2230287232
https://www.proquest.com/docview/2221036859
Volume 225
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLYmEIILgsHEYExB4oQo9JEmq8RlQozxPIG0W5SmnRhC3bRuh1347dhtOh5CHDi2SdTWsb84jf0Z4FhzLTqRjHGTE-EGRRrXQQxEMJQesZ1xoWP6D_nwKPrP_HYQDmpwWeXCUFilxf4S0wu0tnfOrTTPJ6MR5fgGnDQOXZCCtIYy2LkkLT97X4Z5eGFHllXzAu5Q7-pks4jxmubElOlFBW0nVcb9fW36gdLF0tPbgk3rM7Ju-VrbUEuzOjSuPlPUsNHaaF6HdVvX_GVRh7XronDvYgcuLBETowyiec7GQ3ZPWb56xmyI1imz33_KsIF9Pdnehefe1dNl37GVExwT-u7MiYNIax4PTSINFaQSUuDarF0p0o6fDmPfS2WUBG4iyUMaBknIjadxpkyYuCb2ggasZOMs3QMWGjf2EyOJqZ6LRKO9IyT6iSeENkbwJriVzJSxtOJU3eJNVfFjrwrFrEjMyvUVirkJJ8shk5JT46_OvJoI9U0xFGL-X8Na1aQpa5W5QlcI3SmJTmQTjpbNaE90SKKzdDynPrgJJlb-aP9_Tz6ADboqgyJbsDKbztNDdFxmcbvQzDasdm_u-o8fnyfqYg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEJ4gxODFKErEZ008GTbso9uyiRdDRBDkpAm3pttdosaAETj4753Z7eIjhoPXnTa7mXa-TndmvgG40FyLdiRjvOREeEGRxnUQAxEMpUdsZ1zomP5D3o9E75HfjcNxCTpFLQylVVrszzE9Q2v7pGW12Xp7fqYa34DTjkMXJCOt2YAKsVOFZahc9we90SqYELZl3jgv4A5NKIKbWZrX-5zIMr0oY-6k5rh_H0-_gDo7fbo7sG3dRnadf9kulNJpDeo3X1VqKLRmOq9B1bY2f_qoweZt1rv3Yw-uLBcToyKi5ZzNJmxIhb56wWyWVpNZFTQZCtj34PY-PHZvHjo9xzZPcEzouwsnDiKteTwxiTTUk0pIgcezdqVI2346iX0vlVESuIkkJ2kSJCE3nsbFMmHimtgL6lCezqbpAbDQuLGfGElk9VwkGk0eUdFPPCG0MYI3wC10poxlFqcGF6-qSCF7UahmRWpWrq9QzQ24XE15y2k11g3mxUKoH3tDIeyvm3ZcLJqyhjlX6A2hRyXRj2zA-UqMJkVxEj1NZ0sag_dgIuaPDv_35jOo9h7uh2rYHw2OYIskeY7kMZQX78v0BP2YRXxq9-knrzjtEw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Current+status+of+Landsat+program%2C+science%2C+and+applications&rft.jtitle=Remote+sensing+of+environment&rft.au=Wulder%2C+Michael+A&rft.au=Loveland%2C+Thomas+R&rft.au=Roy%2C+David+P&rft.au=Crawford%2C+Christopher+J&rft.date=2019-05-01&rft.pub=Elsevier+BV&rft.issn=0034-4257&rft.eissn=1879-0704&rft.volume=225&rft.spage=127&rft_id=info:doi/10.1016%2Fj.rse.2019.02.015&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon