Current status of Landsat program, science, and applications
Formal planning and development of what became the first Landsat satellite commenced over 50 years ago in 1967. Now, having collected earth observation data for well over four decades since the 1972 launch of Landsat-1, the Landsat program is increasingly complex and vibrant. Critical programmatic e...
Saved in:
Published in | Remote sensing of environment Vol. 225; pp. 127 - 147 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Inc
01.05.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Formal planning and development of what became the first Landsat satellite commenced over 50 years ago in 1967. Now, having collected earth observation data for well over four decades since the 1972 launch of Landsat-1, the Landsat program is increasingly complex and vibrant. Critical programmatic elements are ensuring the continuity of high quality measurements for scientific and operational investigations, including ground systems, acquisition planning, data archiving and management, and provision of analysis ready data products. Free and open access to archival and new imagery has resulted in a myriad of innovative applications and novel scientific insights. The planning of future compatible satellites in the Landsat series, which maintain continuity while incorporating technological advancements, has resulted in an increased operational use of Landsat data. Governments and international agencies, among others, can now build an expectation of Landsat data into a given operational data stream. International programs and conventions (e.g., deforestation monitoring, climate change mitigation) are empowered by access to systematically collected and calibrated data with expected future continuity further contributing to the existing multi-decadal record. The increased breadth and depth of Landsat science and applications have accelerated following the launch of Landsat-8, with significant improvements in data quality.
Herein, we describe the programmatic developments and institutional context for the Landsat program and the unique ability of Landsat to meet the needs of national and international programs. We then present the key trends in Landsat science that underpin many of the recent scientific and application developments and follow-up with more detailed thematically organized summaries. The historical context offered by archival imagery combined with new imagery allows for the development of time series algorithms that can produce information on trends and dynamics. Landsat-8 has figured prominently in these recent developments, as has the improved understanding and calibration of historical data. Following the communication of the state of Landsat science, an outlook for future launches and envisioned programmatic developments are presented. Increased linkages between satellite programs are also made possible through an expectation of future mission continuity, such as developing a virtual constellation with Sentinel-2. Successful science and applications developments create a positive feedback loop—justifying and encouraging current and future programmatic support for Landsat.
•Landsat program approaching 50 years of continuous global data collection.•Landsat-8 successfully on-orbit; Landsat-9 under development; Landsat-10 being scoped.•Open data has accelerated science and application developments.•Value of calibrated data shown for science, applications, and towards virtual constellations.•Time series analysis of Landsat offering new insights on earth system and human activity. |
---|---|
AbstractList | Formal planning and development of what became the first Landsat satellite commenced over 50 years ago in 1967. Now, having collected earth observation data for well over four decades since the 1972 launch of Landsat-1, the Landsat program is increasingly complex and vibrant. Critical programmatic elements are ensuring the continuity of high quality measurements for scientific and operational investigations, including ground systems, acquisition planning, data archiving and management, and provision of analysis ready data products. Free and open access to archival and new imagery has resulted in a myriad of innovative applications and novel scientific insights. The planning of future compatible satellites in the Landsat series, which maintain continuity while incorporating technological advancements, has resulted in an increased operational use of Landsat data. Governments and international agencies, among others, can now build an expectation of Landsat data into a given operational data stream. International programs and conventions (e.g., deforestation monitoring, climate change mitigation) are empowered by access to systematically collected and calibrated data with expected future continuity further contributing to the existing multi-decadal record. The increased breadth and depth of Landsat science and applications have accelerated following the launch of Landsat-8, with significant improvements in data quality. Herein, we describe the programmatic developments and institutional context for the Landsat program and the unique ability of Landsat to meet the needs of national and international programs. We then present the key trends in Landsat science that underpin many of the recent scientific and application developments and follow-up with more detailed thematically organized summaries. The historical context offered by archival imagery combined with new imagery allows for the development of time series algorithms that can produce information on trends and dynamics. Landsat-8 has figured prominently in these recent developments, as has the improved understanding and calibration of historical data. Following the communication of the state of Landsat science, an outlook for future launches and envisioned programmatic developments are presented. Increased linkages between satellite programs are also made possible through an expectation of future mission continuity, such as developing a virtual constellation with Sentinel-2. Successful science and applications developments create a positive feedback loop-justifying and encouraging current and future programmatic support for Landsat. Formal planning and development of what became the first Landsat satellite commenced over 50 years ago in 1967. Now, having collected earth observation data for well over four decades since the 1972 launch of Landsat-1, the Landsat program is increasingly complex and vibrant. Critical programmatic elements are ensuring the continuity of high quality measurements for scientific and operational investigations, including ground systems, acquisition planning, data archiving and management, and provision of analysis ready data products. Free and open access to archival and new imagery has resulted in a myriad of innovative applications and novel scientific insights. The planning of future compatible satellites in the Landsat series, which maintain continuity while incorporating technological advancements, has resulted in an increased operational use of Landsat data. Governments and international agencies, among others, can now build an expectation of Landsat data into a given operational data stream. International programs and conventions (e.g., deforestation monitoring, climate change mitigation) are empowered by access to systematically collected and calibrated data with expected future continuity further contributing to the existing multi-decadal record. The increased breadth and depth of Landsat science and applications have accelerated following the launch of Landsat-8, with significant improvements in data quality. Herein, we describe the programmatic developments and institutional context for the Landsat program and the unique ability of Landsat to meet the needs of national and international programs. We then present the key trends in Landsat science that underpin many of the recent scientific and application developments and follow-up with more detailed thematically organized summaries. The historical context offered by archival imagery combined with new imagery allows for the development of time series algorithms that can produce information on trends and dynamics. Landsat-8 has figured prominently in these recent developments, as has the improved understanding and calibration of historical data. Following the communication of the state of Landsat science, an outlook for future launches and envisioned programmatic developments are presented. Increased linkages between satellite programs are also made possible through an expectation of future mission continuity, such as developing a virtual constellation with Sentinel-2. Successful science and applications developments create a positive feedback loop—justifying and encouraging current and future programmatic support for Landsat. •Landsat program approaching 50 years of continuous global data collection.•Landsat-8 successfully on-orbit; Landsat-9 under development; Landsat-10 being scoped.•Open data has accelerated science and application developments.•Value of calibrated data shown for science, applications, and towards virtual constellations.•Time series analysis of Landsat offering new insights on earth system and human activity. |
Author | Loveland, Thomas R. Huntington, Justin Belward, Alan S. Li, Zhan Hughes, M. Joseph Woodcock, Curtis E. Zhu, Zhe Sheng, Yongwei Pahlevan, Nima Vermote, Eric Wynne, Randolph H. Scambos, Theodore A. Cohen, Warren B. White, Joanne C. Helder, Dennis Allen, Richard G. Gao, Feng Wulder, Michael A. Hipple, James D. Dwyer, John Erb, Angela McCorkel, Joel Vogelmann, James Storey, James Anderson, Martha C. Griffiths, Patrick Johnson, David M. Kennedy, Robert Hostert, Patrick Roy, David P. Masek, Jeffrey G. Crawford, Christopher J. Hermosilla, Txomin Schaaf, Crystal Schott, John R. Kilic, Ayse Lymburner, Leo |
Author_xml | – sequence: 1 givenname: Michael A. orcidid: 0000-0002-6942-1896 surname: Wulder fullname: Wulder, Michael A. email: mike.wulder@canada.ca organization: Canadian Forest Service (Pacific Forestry Centre), Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia V8Z 1M5, Canada – sequence: 2 givenname: Thomas R. surname: Loveland fullname: Loveland, Thomas R. organization: U.S. Geological Survey Earth Resources Observation and Science (EROS) Center, 47914 252nd Street, Sioux Falls, SD 57198, USA – sequence: 3 givenname: David P. surname: Roy fullname: Roy, David P. organization: Department of Geography, Environment, & Spatial Sciences, Center for Global Change and Earth Observations, Michigan State University, USA – sequence: 4 givenname: Christopher J. surname: Crawford fullname: Crawford, Christopher J. organization: ASRC Federal InuTeq/U.S. Geological Survey Earth Resources Observation and Science (EROS) Center, 47914 252nd Street, Sioux Falls, SD 57198, USA – sequence: 5 givenname: Jeffrey G. surname: Masek fullname: Masek, Jeffrey G. organization: Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA – sequence: 6 givenname: Curtis E. surname: Woodcock fullname: Woodcock, Curtis E. organization: Department of Earth and Environment, Boston University, MA 02215, USA – sequence: 7 givenname: Richard G. surname: Allen fullname: Allen, Richard G. organization: University of Idaho Research and Extension Center, Kimberly, ID 83341, USA – sequence: 8 givenname: Martha C. surname: Anderson fullname: Anderson, Martha C. organization: USDA, Agricultural Research Service, Hydrology and Remote Sensing Laboratory, 10300 Baltimore Avenue, Beltsville, MD 20705, USA – sequence: 9 givenname: Alan S. surname: Belward fullname: Belward, Alan S. organization: European Commission, Joint Research Centre, Institute for Environment and Sustainability, 20133, VA, Italy – sequence: 10 givenname: Warren B. surname: Cohen fullname: Cohen, Warren B. organization: USDA Forest Service, PNW Research Station, 3200 SW Jefferson Way, Corvallis, OR 97331, USA – sequence: 11 givenname: John surname: Dwyer fullname: Dwyer, John organization: U.S. Geological Survey Earth Resources Observation and Science (EROS) Center, 47914 252nd Street, Sioux Falls, SD 57198, USA – sequence: 12 givenname: Angela surname: Erb fullname: Erb, Angela organization: School for the Environment, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125, USA – sequence: 13 givenname: Feng orcidid: 0000-0002-1865-2846 surname: Gao fullname: Gao, Feng organization: USDA, Agricultural Research Service, Hydrology and Remote Sensing Laboratory, 10300 Baltimore Avenue, Beltsville, MD 20705, USA – sequence: 14 givenname: Patrick surname: Griffiths fullname: Griffiths, Patrick organization: European Space Agency, Earth Observation, Science, Applications & Climate Department, Frascati (Roma), Italy – sequence: 15 givenname: Dennis orcidid: 0000-0002-7379-4679 surname: Helder fullname: Helder, Dennis organization: College of Engineering, South Dakota State University Brookings, SD 57007, USA – sequence: 16 givenname: Txomin orcidid: 0000-0002-5445-0360 surname: Hermosilla fullname: Hermosilla, Txomin organization: Canadian Forest Service (Pacific Forestry Centre), Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia V8Z 1M5, Canada – sequence: 17 givenname: James D. surname: Hipple fullname: Hipple, James D. organization: United States Department of Agriculture, Risk Management Agency, Washington, DC 20250, USA – sequence: 18 givenname: Patrick surname: Hostert fullname: Hostert, Patrick organization: Geography Department, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany – sequence: 19 givenname: M. Joseph surname: Hughes fullname: Hughes, M. Joseph organization: College of Earth, Ocean, and Atmospheric Sciences, 104 CEOAS Admin Bldg., Oregon State University, Corvallis, OR 97331, United States – sequence: 20 givenname: Justin surname: Huntington fullname: Huntington, Justin organization: Desert Research Institute, Reno, NV 89501, USA – sequence: 21 givenname: David M. surname: Johnson fullname: Johnson, David M. organization: National Agricultural Statistics Service, United States Department of Agriculture, 1400 Independence Ave., SW, Washington, D.C. 20250, USA – sequence: 22 givenname: Robert surname: Kennedy fullname: Kennedy, Robert organization: College of Earth, Ocean, and Atmospheric Sciences, 104 CEOAS Admin Bldg., Oregon State University, Corvallis, OR 97331, United States – sequence: 23 givenname: Ayse surname: Kilic fullname: Kilic, Ayse organization: Dept. of Civil Engineering, School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 65816, USA – sequence: 24 givenname: Zhan orcidid: 0000-0001-6307-5200 surname: Li fullname: Li, Zhan organization: Canadian Forest Service (Pacific Forestry Centre), Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia V8Z 1M5, Canada – sequence: 25 givenname: Leo orcidid: 0000-0002-1274-1792 surname: Lymburner fullname: Lymburner, Leo organization: Geoscience Australia, GPO Box 378, Canberra, ACT 2601, Australia – sequence: 26 givenname: Joel orcidid: 0000-0003-2853-2036 surname: McCorkel fullname: McCorkel, Joel organization: Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA – sequence: 27 givenname: Nima orcidid: 0000-0002-5454-5212 surname: Pahlevan fullname: Pahlevan, Nima organization: Terrestrial Information Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA – sequence: 28 givenname: Theodore A. surname: Scambos fullname: Scambos, Theodore A. organization: National Snow and Ice Data Center, University of Colorado, 1540 30th Street, Boulder, CO 80303, USA – sequence: 29 givenname: Crystal surname: Schaaf fullname: Schaaf, Crystal organization: School for the Environment, University of Massachusetts Boston, 100 Morrissey Blvd, Boston, MA 02125, USA – sequence: 30 givenname: John R. surname: Schott fullname: Schott, John R. organization: Rochester Institute of Technology, Chester F. Carlson Center for Imaging Science, Rochester, NY 14623, USA – sequence: 31 givenname: Yongwei surname: Sheng fullname: Sheng, Yongwei organization: Department of Geography, University of California, Los Angeles, CA 90095, USA – sequence: 32 givenname: James orcidid: 0000-0002-6664-7232 surname: Storey fullname: Storey, James organization: Stinger Ghaffarian Technologies, Contractor to the U.S. Geological Survey, Earth Resources Observation and Science (EROS) Center, Sioux Falls, SD, USA – sequence: 33 givenname: Eric surname: Vermote fullname: Vermote, Eric organization: Terrestrial Information Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA – sequence: 34 givenname: James surname: Vogelmann fullname: Vogelmann, James organization: U.S. Geological Survey Earth Resources Observation and Science (EROS) Center, 47914 252nd Street, Sioux Falls, SD 57198, USA – sequence: 35 givenname: Joanne C. surname: White fullname: White, Joanne C. organization: Canadian Forest Service (Pacific Forestry Centre), Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia V8Z 1M5, Canada – sequence: 36 givenname: Randolph H. surname: Wynne fullname: Wynne, Randolph H. organization: Virginia Tech, Forest Resources and Environmental Conservation, 310 West Campus Dr, Blacksburg, VA 24061, USA – sequence: 37 givenname: Zhe orcidid: 0000-0001-8283-6407 surname: Zhu fullname: Zhu, Zhe organization: Department of Geosciences, Texas Tech University, Lubbock, TX 79409-1053, USA |
BookMark | eNp9kD1PwzAQQC1UJNrCD2CLxMLQhLOdxIlgQRVfUiUWmC3HdpCjNA62g8S_x6WdOnS6we9Zd2-BZoMdNELXGDIMuLzrMud1RgDXGZAMcHGG5rhidQoM8hmaA9A8zUnBLtDC-w4iUTE8Rw_ryTk9hMQHESaf2DbZiEF5EZLR2S8ntqvES6MHqVdJfEjEOPZGimDs4C_ReSt6r68Oc4k-n58-1q_p5v3lbf24SWVBIKQNrYXIm1YqJouc1CUrgVABrNQV0W1DsGa1oqAYwRVtqSpyiUXOpCwUyAbTJbrd_xtX-p60D3xrvNR9LwZtJ88JIRhoWRV1RG-O0M5ObojbRYoCqRihJFJsT0lnvXe65dKE_5uCE6bnGPiuKu94rMp3VTkQHptFEx-ZozNb4X5POvd7R8dGP0Y7fiiqjNMycGXNCfsPL9SQYA |
CitedBy_id | crossref_primary_10_1016_j_rse_2022_113228 crossref_primary_10_1016_j_jag_2020_102272 crossref_primary_10_1109_TGRS_2022_3208926 crossref_primary_10_1071_WF20072 crossref_primary_10_1109_JSTARS_2024_3492025 crossref_primary_10_1109_LGRS_2020_2965297 crossref_primary_10_1016_j_jag_2021_102555 crossref_primary_10_26468_trakyasobed_1479079 crossref_primary_10_1016_j_pce_2023_103536 crossref_primary_10_1007_s12665_022_10477_8 crossref_primary_10_3390_ijgi9100572 crossref_primary_10_1016_j_isprsjprs_2022_01_006 crossref_primary_10_34133_remotesensing_0118 crossref_primary_10_5194_essd_13_3951_2021 crossref_primary_10_1029_2023JF007189 crossref_primary_10_1111_faf_12772 crossref_primary_10_3390_rs12182948 crossref_primary_10_3390_w11112236 crossref_primary_10_3390_rs16071222 crossref_primary_10_1016_j_foreco_2024_121757 crossref_primary_10_1186_s40663_021_00352_6 crossref_primary_10_1016_j_rse_2020_111968 crossref_primary_10_5194_tc_17_3535_2023 crossref_primary_10_1016_j_rse_2020_111723 crossref_primary_10_1007_s10712_024_09833_z crossref_primary_10_34133_remotesensing_0112 crossref_primary_10_1109_TGRS_2020_3038878 crossref_primary_10_3390_hydrology10020041 crossref_primary_10_1016_j_rse_2022_113239 crossref_primary_10_1016_j_jhydrol_2024_130979 crossref_primary_10_1016_j_oregeorev_2020_103332 crossref_primary_10_1016_j_ejrh_2024_101863 crossref_primary_10_3390_rs13020266 crossref_primary_10_1109_TGRS_2021_3088537 crossref_primary_10_1002_wwp2_12210 crossref_primary_10_1109_TGRS_2022_3149762 crossref_primary_10_1016_j_rse_2019_111492 crossref_primary_10_21776_ub_jtsl_2024_011_2_15 crossref_primary_10_3390_data4030094 crossref_primary_10_1016_j_rse_2023_113852 crossref_primary_10_3390_rs12223690 crossref_primary_10_1016_j_actaastro_2023_09_040 crossref_primary_10_1016_j_scitotenv_2021_152646 crossref_primary_10_3390_rs15194659 crossref_primary_10_1038_s41597_021_01076_6 crossref_primary_10_3390_rs14092199 crossref_primary_10_1007_s11852_023_01019_w crossref_primary_10_1080_01490419_2023_2200212 crossref_primary_10_1093_jmammal_gyac079 crossref_primary_10_1080_17445647_2020_1829115 crossref_primary_10_1016_j_rse_2023_113889 crossref_primary_10_1016_j_biocon_2022_109489 crossref_primary_10_1016_j_ecolind_2023_110290 crossref_primary_10_3390_rs11182166 crossref_primary_10_1016_j_foreco_2020_118370 crossref_primary_10_1016_j_isprsjprs_2020_04_001 crossref_primary_10_1016_j_ecolind_2021_108336 crossref_primary_10_3389_ffgc_2024_1221797 crossref_primary_10_1016_j_isprsjprs_2021_06_015 crossref_primary_10_32569_resilience_1172781 crossref_primary_10_1002_eco_2759 crossref_primary_10_1016_j_foreco_2020_118008 crossref_primary_10_1016_j_isprsjprs_2022_01_021 crossref_primary_10_1016_j_scitotenv_2020_143792 crossref_primary_10_3390_rs14030753 crossref_primary_10_1016_j_rse_2020_111742 crossref_primary_10_1016_j_foreco_2019_05_016 crossref_primary_10_1016_j_rse_2022_113324 crossref_primary_10_17129_botsci_3358 crossref_primary_10_3390_rs13112128 crossref_primary_10_3390_rs16081392 crossref_primary_10_1016_j_ecofro_2024_05_006 crossref_primary_10_1002_pei3_10109 crossref_primary_10_1071_WF23130 crossref_primary_10_1080_10095020_2023_2249042 crossref_primary_10_11922_csdata_2021_0012_zh crossref_primary_10_3390_rs13020167 crossref_primary_10_1016_j_envsoft_2025_106405 crossref_primary_10_1016_j_jag_2021_102642 crossref_primary_10_3390_agriculture12071062 crossref_primary_10_1016_j_margeo_2021_106628 crossref_primary_10_3390_rs12182934 crossref_primary_10_1016_j_jag_2021_102636 crossref_primary_10_1080_23311916_2021_1923384 crossref_primary_10_1016_j_jag_2021_102518 crossref_primary_10_3390_rs12213674 crossref_primary_10_3390_land10030231 crossref_primary_10_1177_03091333221114864 crossref_primary_10_3390_s22103931 crossref_primary_10_1080_10106049_2021_1991634 crossref_primary_10_1016_j_srs_2021_100026 crossref_primary_10_3390_rs13204040 crossref_primary_10_1002_rse2_185 crossref_primary_10_3390_rs15123139 crossref_primary_10_1002_ecs2_4152 crossref_primary_10_1016_j_earscirev_2020_103269 crossref_primary_10_1016_j_srs_2021_100031 crossref_primary_10_1109_JSTARS_2023_3288973 crossref_primary_10_3390_rs14225870 crossref_primary_10_3390_urbansci9010011 crossref_primary_10_1016_j_srs_2021_100032 crossref_primary_10_1016_j_rse_2020_111802 crossref_primary_10_1016_j_rse_2020_111801 crossref_primary_10_1080_24694452_2021_1989284 crossref_primary_10_1016_j_foreco_2022_120184 crossref_primary_10_3390_rs13183767 crossref_primary_10_3390_rs12182907 crossref_primary_10_1007_s40808_024_02066_4 crossref_primary_10_1109_TGRS_2023_3343071 crossref_primary_10_1007_s42797_022_00067_z crossref_primary_10_1016_j_scitotenv_2023_168584 crossref_primary_10_1016_j_rse_2023_113656 crossref_primary_10_1002_eap_2269 crossref_primary_10_1016_j_isprsjprs_2023_04_013 crossref_primary_10_1109_ACCESS_2024_3487267 crossref_primary_10_1016_j_isprsjprs_2023_10_007 crossref_primary_10_1016_j_jag_2021_102502 crossref_primary_10_1016_j_jhydrol_2024_131862 crossref_primary_10_1016_j_isprsjprs_2024_12_019 crossref_primary_10_2478_ffp_2023_0008 crossref_primary_10_1038_s41467_025_57036_w crossref_primary_10_1002_ecs2_4027 crossref_primary_10_1016_j_rse_2023_113895 crossref_primary_10_1007_s12520_020_01127_w crossref_primary_10_1016_j_jhydrol_2021_126934 crossref_primary_10_3390_rs14092279 crossref_primary_10_1016_j_jenvman_2024_121513 crossref_primary_10_3390_rs14174252 crossref_primary_10_1016_j_actaastro_2023_09_010 crossref_primary_10_3390_rs12142235 crossref_primary_10_1177_09749306221096956 crossref_primary_10_1109_MGRS_2020_3032713 crossref_primary_10_3390_rs11232785 crossref_primary_10_1029_2021EA002085 crossref_primary_10_1038_s41598_025_86485_y crossref_primary_10_1016_j_ejrh_2022_101111 crossref_primary_10_1007_s10980_019_00928_2 crossref_primary_10_5194_bg_19_2805_2022 crossref_primary_10_3390_f14051061 crossref_primary_10_1016_j_landurbplan_2023_104701 crossref_primary_10_5194_amt_14_7999_2021 crossref_primary_10_1016_j_scitotenv_2020_142661 crossref_primary_10_3390_land10121399 crossref_primary_10_1016_j_rse_2020_111701 crossref_primary_10_1016_j_rse_2022_113364 crossref_primary_10_31413_nat_v12i4_18355 crossref_primary_10_1080_22797254_2021_1918582 crossref_primary_10_1016_j_rse_2022_113003 crossref_primary_10_2139_ssrn_4054431 crossref_primary_10_1021_acs_est_1c04873 crossref_primary_10_3390_rs16010098 crossref_primary_10_3390_land12030547 crossref_primary_10_1016_j_actaastro_2024_03_062 crossref_primary_10_1016_j_isprsjprs_2024_05_016 crossref_primary_10_3390_rs16050744 crossref_primary_10_1016_j_jenvman_2021_113481 crossref_primary_10_1109_JSTARS_2020_3007562 crossref_primary_10_3390_f11050579 crossref_primary_10_3390_rs14225785 crossref_primary_10_3390_f12020147 crossref_primary_10_3390_rs13234947 crossref_primary_10_1016_j_rse_2020_111718 crossref_primary_10_1016_j_indic_2024_100452 crossref_primary_10_3389_ffgc_2022_867369 crossref_primary_10_3390_rs16142547 crossref_primary_10_1088_1742_6596_1373_1_012048 crossref_primary_10_1016_j_scitotenv_2021_150449 crossref_primary_10_3390_rs12244191 crossref_primary_10_1016_j_compag_2024_109225 crossref_primary_10_1007_s40823_020_00054_9 crossref_primary_10_1080_01490419_2022_2051648 crossref_primary_10_1016_j_jag_2021_102394 crossref_primary_10_1038_s41598_023_47048_1 crossref_primary_10_3390_rs13183611 crossref_primary_10_1109_LGRS_2024_3379196 crossref_primary_10_1111_cobi_13520 crossref_primary_10_1038_s41598_022_05791_x crossref_primary_10_3390_rs14225790 crossref_primary_10_1002_lom3_10511 crossref_primary_10_3390_fire5030077 crossref_primary_10_1002_ldr_3692 crossref_primary_10_1007_s41748_025_00584_4 crossref_primary_10_1016_j_iswcr_2023_04_001 crossref_primary_10_1016_j_agwat_2022_108004 crossref_primary_10_3390_rs16030503 crossref_primary_10_14710_jil_22_1_1_10 crossref_primary_10_3390_rs12101673 crossref_primary_10_3989_dra_2024_982 crossref_primary_10_1016_j_rsase_2020_100460 crossref_primary_10_1088_1748_9326_ac8b9a crossref_primary_10_3390_rs15112845 crossref_primary_10_3390_rs16040684 crossref_primary_10_1016_j_envres_2020_110636 crossref_primary_10_3390_rs14051158 crossref_primary_10_5194_tc_16_737_2022 crossref_primary_10_1007_s12665_025_12179_3 crossref_primary_10_3390_rs11161891 crossref_primary_10_1016_j_envres_2023_115379 crossref_primary_10_1002_ldr_4537 crossref_primary_10_1016_j_rse_2021_112804 crossref_primary_10_3390_rs11101203 crossref_primary_10_1016_j_jag_2021_102386 crossref_primary_10_3390_rs11161899 crossref_primary_10_3390_rs16111854 crossref_primary_10_1080_1747423X_2020_1858198 crossref_primary_10_1016_j_rse_2022_113073 crossref_primary_10_1016_j_rse_2022_113195 crossref_primary_10_3390_rs13030494 crossref_primary_10_3390_su141912170 crossref_primary_10_3390_rs15112951 crossref_primary_10_3390_rs13051038 crossref_primary_10_1080_15481603_2023_2181143 crossref_primary_10_1007_s10708_023_10944_0 crossref_primary_10_3390_s25051622 crossref_primary_10_3389_frsen_2024_1322760 crossref_primary_10_3390_rs16101690 crossref_primary_10_1016_j_inffus_2020_10_008 crossref_primary_10_3390_rs13101988 crossref_primary_10_3390_rs15051263 crossref_primary_10_1080_22797254_2022_2052188 crossref_primary_10_3390_rs12020202 crossref_primary_10_3390_s23052644 crossref_primary_10_1002_vzj2_20289 crossref_primary_10_1016_j_agwat_2020_106081 crossref_primary_10_1038_s41597_024_03143_0 crossref_primary_10_3390_rs11151824 crossref_primary_10_1088_1748_9326_ac98d7 crossref_primary_10_3390_rs14030597 crossref_primary_10_3390_rs11040447 crossref_primary_10_1080_22797254_2022_2042397 crossref_primary_10_1016_j_jag_2020_102224 crossref_primary_10_3390_rs11161873 crossref_primary_10_1016_j_srs_2021_100014 crossref_primary_10_3390_s22155683 crossref_primary_10_3390_rs12122041 crossref_primary_10_3847_PSJ_ac8f43 crossref_primary_10_1371_journal_pone_0230013 crossref_primary_10_3390_land14030567 crossref_primary_10_3390_rs14194723 crossref_primary_10_1108_SR_04_2019_0089 crossref_primary_10_1016_j_srs_2021_100023 crossref_primary_10_1007_s11356_024_35009_8 crossref_primary_10_1111_sum_12833 crossref_primary_10_3390_rs14030469 crossref_primary_10_1016_j_rse_2019_111439 crossref_primary_10_1016_j_rse_2022_113296 crossref_primary_10_1016_j_rse_2019_111554 crossref_primary_10_1016_j_rse_2025_114643 crossref_primary_10_1016_j_rse_2022_113057 crossref_primary_10_3390_rs13183616 crossref_primary_10_3390_f12060680 crossref_primary_10_1016_j_ecss_2020_107128 crossref_primary_10_3390_s22134716 crossref_primary_10_1002_csan_20204 crossref_primary_10_3390_rs14174193 crossref_primary_10_1016_j_agrformet_2023_109698 crossref_primary_10_1016_j_ecss_2021_107247 crossref_primary_10_1016_j_jenvman_2022_117194 crossref_primary_10_1007_s11442_023_2181_z crossref_primary_10_1109_TGRS_2023_3299956 crossref_primary_10_1016_j_landurbplan_2021_104284 crossref_primary_10_1038_s41598_024_65659_0 crossref_primary_10_1016_j_jag_2019_04_010 crossref_primary_10_1109_JSTARS_2024_3408451 crossref_primary_10_1111_ecog_07394 crossref_primary_10_1080_03036758_2022_2118321 crossref_primary_10_1007_s12524_025_02137_8 crossref_primary_10_1016_j_rsase_2021_100664 crossref_primary_10_1016_j_rse_2020_111884 crossref_primary_10_1038_s41597_024_03508_5 crossref_primary_10_1080_07038992_2023_2216312 crossref_primary_10_3389_ffgc_2022_934019 crossref_primary_10_1080_10106049_2024_2322064 crossref_primary_10_1038_s41597_024_03561_0 crossref_primary_10_3390_rs11151808 crossref_primary_10_3390_rs13214251 crossref_primary_10_3390_rs16061101 crossref_primary_10_1016_j_rse_2021_112847 crossref_primary_10_3390_jmse12060922 crossref_primary_10_1016_j_rse_2022_112904 crossref_primary_10_1016_j_rse_2022_112905 crossref_primary_10_1080_02626667_2024_2397543 crossref_primary_10_1016_j_agrformet_2024_109962 crossref_primary_10_1109_JSTARS_2023_3238188 crossref_primary_10_1016_j_jag_2025_104482 crossref_primary_10_1016_j_sste_2020_100363 crossref_primary_10_1016_j_rse_2024_114404 crossref_primary_10_5194_hess_25_4789_2021 crossref_primary_10_1016_j_ufug_2023_128136 crossref_primary_10_3390_rs14051241 crossref_primary_10_3390_rs17040680 crossref_primary_10_5937_bnsr11_30488 crossref_primary_10_3390_rs15164072 crossref_primary_10_1016_j_scitotenv_2024_176638 crossref_primary_10_1109_TGRS_2022_3231926 crossref_primary_10_1016_j_ecolind_2021_108497 crossref_primary_10_1016_j_jag_2022_102856 crossref_primary_10_1016_j_isprsjprs_2023_05_005 crossref_primary_10_1364_OE_384035 crossref_primary_10_1016_j_jag_2020_102253 crossref_primary_10_1016_j_jag_2022_102852 crossref_primary_10_1080_01431161_2021_1887543 crossref_primary_10_1016_j_jag_2024_104159 crossref_primary_10_5194_essd_14_5489_2022 crossref_primary_10_1016_j_foreco_2022_120449 crossref_primary_10_1016_j_inpa_2023_02_009 crossref_primary_10_3390_rs14112651 crossref_primary_10_1080_01431161_2024_2370505 crossref_primary_10_1080_17538947_2024_2344585 crossref_primary_10_3390_agronomy14081862 crossref_primary_10_3390_w13162269 crossref_primary_10_1016_j_rsase_2025_101455 crossref_primary_10_1016_j_joule_2022_08_008 crossref_primary_10_3799_dqkx_2024_039 crossref_primary_10_5194_bg_18_207_2021 crossref_primary_10_1016_j_isprsjprs_2021_02_004 crossref_primary_10_1088_1748_9326_ab8b11 crossref_primary_10_1016_j_landurbplan_2020_103921 crossref_primary_10_3390_cli9030049 crossref_primary_10_3390_land10080867 crossref_primary_10_1016_j_jag_2021_102447 crossref_primary_10_1109_TGRS_2020_2992609 crossref_primary_10_4081_jlimnol_2022_2077 crossref_primary_10_1016_j_future_2024_107691 crossref_primary_10_1002_eng2_12273 crossref_primary_10_3390_data4040147 crossref_primary_10_1371_journal_pone_0299350 crossref_primary_10_1007_s10980_022_01406_y crossref_primary_10_1016_j_jaridenv_2021_104499 crossref_primary_10_1093_forestry_cpaa006 crossref_primary_10_1016_j_jag_2021_102319 crossref_primary_10_5194_tc_15_4557_2021 crossref_primary_10_3390_data4030113 crossref_primary_10_3390_rs14051226 crossref_primary_10_1007_s12237_021_00959_6 crossref_primary_10_1080_15481603_2023_2226515 crossref_primary_10_1093_forestry_cpac015 crossref_primary_10_1080_23311932_2024_2448597 crossref_primary_10_1109_TGRS_2021_3083754 crossref_primary_10_1080_01431161_2023_2211714 crossref_primary_10_1016_j_envsci_2020_04_005 crossref_primary_10_1109_JSTARS_2020_3014586 crossref_primary_10_1088_1755_1315_1004_1_012006 crossref_primary_10_1016_j_compag_2023_108204 crossref_primary_10_1016_j_rse_2020_112010 crossref_primary_10_1016_j_rse_2021_112401 crossref_primary_10_1109_TGRS_2024_3380639 crossref_primary_10_3390_rs13224536 crossref_primary_10_1016_j_jag_2024_103935 crossref_primary_10_1016_j_isprsjprs_2023_06_002 crossref_primary_10_1016_j_isprsjprs_2024_08_012 crossref_primary_10_1016_j_isprsjprs_2024_08_011 crossref_primary_10_3390_rs11161931 crossref_primary_10_1016_j_jag_2019_102007 crossref_primary_10_3390_rs12091499 crossref_primary_10_1007_s41976_022_00070_9 crossref_primary_10_1016_j_jhydrol_2024_132591 crossref_primary_10_1016_j_isprsjprs_2023_06_003 crossref_primary_10_1007_s10980_023_01753_4 crossref_primary_10_1016_j_rsase_2025_101448 crossref_primary_10_1002_ecs2_4744 crossref_primary_10_1080_01431161_2023_2232541 crossref_primary_10_3390_rs14236175 crossref_primary_10_1016_j_geodrs_2022_e00584 crossref_primary_10_3390_f16020194 crossref_primary_10_1016_j_rse_2020_112024 crossref_primary_10_5194_bg_20_1649_2023 crossref_primary_10_1016_j_rse_2021_112511 crossref_primary_10_1016_j_cageo_2022_105192 crossref_primary_10_1016_j_rsase_2022_100877 crossref_primary_10_1016_j_rse_2021_112752 crossref_primary_10_1016_j_envadv_2020_100008 crossref_primary_10_1016_j_isprsjprs_2020_08_018 crossref_primary_10_1016_j_rse_2021_112517 crossref_primary_10_3390_rs14215320 crossref_primary_10_1016_j_earscirev_2023_104501 crossref_primary_10_1016_j_srs_2020_100005 crossref_primary_10_1016_j_scitotenv_2021_146419 crossref_primary_10_1016_j_cor_2024_106875 crossref_primary_10_1080_2150704X_2020_1833096 crossref_primary_10_3390_rs13061125 crossref_primary_10_3390_rs15082117 crossref_primary_10_1016_j_compag_2024_108983 crossref_primary_10_1016_j_ecolind_2025_113244 crossref_primary_10_1080_07038992_2024_2448169 crossref_primary_10_1016_j_ecolind_2025_113367 crossref_primary_10_1109_JSTARS_2021_3088529 crossref_primary_10_1016_j_rsase_2024_101255 crossref_primary_10_1109_JSTARS_2024_3365826 crossref_primary_10_1016_j_rse_2021_112741 crossref_primary_10_1016_j_agrformet_2023_109649 crossref_primary_10_1016_j_scitotenv_2019_136092 crossref_primary_10_3390_w14030305 crossref_primary_10_1016_j_fecs_2023_100149 crossref_primary_10_1016_j_isprsjprs_2024_02_021 crossref_primary_10_1007_s10750_024_05574_7 crossref_primary_10_1016_j_agrformet_2022_109222 crossref_primary_10_1080_13658816_2023_2168006 crossref_primary_10_1038_s41380_022_01669_6 crossref_primary_10_1016_j_envpol_2022_120443 crossref_primary_10_1080_03736245_2020_1792336 crossref_primary_10_3390_rs11212591 crossref_primary_10_1109_TGRS_2021_3120914 crossref_primary_10_1016_j_scitotenv_2020_138873 crossref_primary_10_3390_w15010020 crossref_primary_10_3390_s20226631 crossref_primary_10_1016_j_jhydrol_2023_130097 crossref_primary_10_3390_rs13163069 crossref_primary_10_1016_j_rse_2024_114107 crossref_primary_10_1080_15481603_2024_2365001 crossref_primary_10_3390_rs17040726 crossref_primary_10_1016_j_rse_2021_112576 crossref_primary_10_3390_rs13071383 crossref_primary_10_1016_j_envsci_2021_07_020 crossref_primary_10_3390_rs14020322 crossref_primary_10_1016_j_rse_2021_112336 crossref_primary_10_1109_JSTARS_2024_3418891 crossref_primary_10_1093_forestry_cpad024 crossref_primary_10_5194_essd_15_4181_2023 crossref_primary_10_18273_revbol_v44n1_2022002 crossref_primary_10_1016_j_scitotenv_2021_146604 crossref_primary_10_1016_j_gsd_2024_101195 crossref_primary_10_3390_rs12172794 crossref_primary_10_3390_rs15061638 crossref_primary_10_3389_ffgc_2023_1018936 crossref_primary_10_1029_2023WR035164 crossref_primary_10_1038_s41597_024_03188_1 crossref_primary_10_1002_ecs2_4832 crossref_primary_10_1080_15481603_2023_2230706 crossref_primary_10_3390_rs12193132 crossref_primary_10_3390_rs12081268 crossref_primary_10_1109_TGRS_2023_3308902 crossref_primary_10_3390_rs15174157 crossref_primary_10_3390_wild2010007 crossref_primary_10_1016_j_rse_2020_112103 crossref_primary_10_1109_JSTARS_2020_2995543 crossref_primary_10_3390_f14050878 crossref_primary_10_1016_j_jenvman_2023_119921 crossref_primary_10_1016_j_mlwa_2023_100454 crossref_primary_10_1016_j_envc_2023_100800 crossref_primary_10_3390_rs16193680 crossref_primary_10_2166_wst_2023_113 crossref_primary_10_3390_rs12071101 crossref_primary_10_1016_j_ecoinf_2024_102986 crossref_primary_10_3390_rs15143677 crossref_primary_10_1073_pnas_2115485119 crossref_primary_10_1080_07038992_2023_2293058 crossref_primary_10_1029_2022JG006895 crossref_primary_10_1109_JMASS_2020_3035649 crossref_primary_10_1016_j_engeos_2022_06_002 crossref_primary_10_3390_rs15092381 crossref_primary_10_1016_j_foreco_2024_122231 crossref_primary_10_1016_j_rse_2020_112113 crossref_primary_10_3390_rs12223720 crossref_primary_10_1088_1748_9326_ad8e75 crossref_primary_10_1016_j_infgeo_2025_100002 crossref_primary_10_1016_j_rse_2021_112558 crossref_primary_10_1088_1748_9326_ac9636 crossref_primary_10_4995_raet_2020_13561 crossref_primary_10_1117_1_JRS_14_022208 crossref_primary_10_1002_jwmg_22501 crossref_primary_10_1088_1748_9326_acd407 crossref_primary_10_1007_s42979_022_01378_5 crossref_primary_10_1017_aog_2023_35 crossref_primary_10_3390_rs12172776 crossref_primary_10_1088_1755_1315_779_1_012135 crossref_primary_10_12944_CWE_16_3_24 crossref_primary_10_1016_j_rse_2019_111403 crossref_primary_10_1111_gcb_16121 crossref_primary_10_1007_s10021_021_00725_6 crossref_primary_10_1016_j_rse_2020_112005 crossref_primary_10_3390_su152115444 crossref_primary_10_1016_j_rsase_2023_100965 crossref_primary_10_1093_pnasnexus_pgad076 crossref_primary_10_32911_as_2024_v17_n1_1151 crossref_primary_10_1016_j_catena_2023_107280 crossref_primary_10_1029_2023JG007465 crossref_primary_10_1016_j_ecolind_2023_109898 crossref_primary_10_3390_rs15061651 crossref_primary_10_3390_rs16203876 crossref_primary_10_3390_rs14081802 crossref_primary_10_1088_1748_9326_acab1b crossref_primary_10_1016_j_jenvman_2020_111670 crossref_primary_10_1016_j_ecoinf_2023_102433 crossref_primary_10_3390_rs13163141 crossref_primary_10_1016_j_rse_2024_114260 crossref_primary_10_1016_j_rse_2024_114381 crossref_primary_10_5194_essd_16_5375_2024 crossref_primary_10_1016_j_envc_2022_100644 crossref_primary_10_1038_s41597_025_04430_0 crossref_primary_10_1016_j_soilbio_2023_109253 crossref_primary_10_1016_j_rse_2019_111511 crossref_primary_10_1016_j_rse_2020_112241 crossref_primary_10_1080_04353676_2024_2321426 crossref_primary_10_1080_10106049_2022_2152496 crossref_primary_10_1016_j_rse_2020_112001 crossref_primary_10_1016_j_softx_2024_101785 crossref_primary_10_1016_j_rse_2020_112244 crossref_primary_10_1029_2024GL113327 crossref_primary_10_1016_j_jhydrol_2020_125893 crossref_primary_10_3390_rs16234445 crossref_primary_10_1016_j_isprsjprs_2020_03_014 crossref_primary_10_1109_TGRS_2021_3132296 crossref_primary_10_1016_j_scitotenv_2024_176179 crossref_primary_10_1038_s41558_023_01851_w crossref_primary_10_3390_rs12091413 crossref_primary_10_3390_rs15204948 crossref_primary_10_3390_land12061231 crossref_primary_10_3390_rs15184577 crossref_primary_10_3390_s24041185 crossref_primary_10_1016_j_rsase_2024_101314 crossref_primary_10_1007_s11053_020_09737_w crossref_primary_10_1080_22797254_2021_2013735 crossref_primary_10_3390_rs13163217 crossref_primary_10_3390_rs13163339 crossref_primary_10_1109_TGRS_2024_3517696 crossref_primary_10_3389_fclim_2022_938975 crossref_primary_10_1016_j_radphyschem_2022_110004 crossref_primary_10_5194_esurf_8_1053_2020 crossref_primary_10_1109_TGRS_2022_3232624 crossref_primary_10_3390_rs16234454 crossref_primary_10_1093_pnasnexus_pgae466 crossref_primary_10_3390_rs12091527 crossref_primary_10_1007_s10661_021_09317_2 crossref_primary_10_1016_j_earscirev_2023_104337 crossref_primary_10_3390_app11135911 crossref_primary_10_3390_rs16050920 crossref_primary_10_3390_rs16122064 crossref_primary_10_3390_rs13010065 crossref_primary_10_3389_feart_2024_1325189 crossref_primary_10_3390_rs12010080 crossref_primary_10_1016_j_rse_2024_114285 crossref_primary_10_1080_20964471_2024_2323241 crossref_primary_10_3390_rs13091754 crossref_primary_10_1016_j_ecolind_2024_111615 crossref_primary_10_1109_JSTARS_2024_3519425 crossref_primary_10_1088_1748_9326_abae2c crossref_primary_10_1007_s12518_022_00441_3 crossref_primary_10_1109_TGRS_2021_3121272 crossref_primary_10_3390_rs16122079 crossref_primary_10_5194_hess_27_3687_2023 crossref_primary_10_1016_j_rse_2021_112358 crossref_primary_10_1080_17538947_2021_1949399 crossref_primary_10_1016_j_foreco_2024_122313 crossref_primary_10_3390_rs12183062 crossref_primary_10_1007_s10994_021_05999_4 crossref_primary_10_1002_rse2_328 crossref_primary_10_1088_1748_9326_ab93f9 crossref_primary_10_1016_j_coesh_2021_100251 crossref_primary_10_3390_su15118575 crossref_primary_10_1088_2515_7620_ace760 crossref_primary_10_1111_cobi_14150 crossref_primary_10_1016_j_srs_2022_100054 crossref_primary_10_3390_f14122305 crossref_primary_10_1016_j_ecolmodel_2023_110540 crossref_primary_10_3390_rs15184593 crossref_primary_10_1016_j_srs_2022_100058 crossref_primary_10_3390_rs12040612 crossref_primary_10_1016_j_rse_2020_111901 crossref_primary_10_1016_j_rse_2022_112990 crossref_primary_10_3390_rs16112033 crossref_primary_10_1016_j_ecoinf_2025_103090 crossref_primary_10_1080_07038992_2024_2445836 crossref_primary_10_1016_j_rse_2024_114056 crossref_primary_10_1016_j_rse_2019_02_016 crossref_primary_10_1016_j_rse_2022_112992 crossref_primary_10_3390_rs12142328 crossref_primary_10_1038_s43017_024_00554_w crossref_primary_10_1016_j_rse_2020_111916 crossref_primary_10_1016_j_srs_2023_100103 crossref_primary_10_1016_j_isprsjprs_2020_06_006 crossref_primary_10_1051_e3sconf_202131005001 crossref_primary_10_1016_j_ecolind_2025_113077 crossref_primary_10_5937_gp26_37720 crossref_primary_10_1007_s41207_025_00746_w crossref_primary_10_1016_j_rse_2021_112586 crossref_primary_10_3389_fevo_2024_1505125 crossref_primary_10_3390_rs12152471 crossref_primary_10_1109_TGRS_2020_2987985 crossref_primary_10_1016_j_rse_2023_113947 crossref_primary_10_3390_su13010086 crossref_primary_10_1007_s11852_022_00928_6 crossref_primary_10_1016_j_rse_2023_113823 crossref_primary_10_1080_10106049_2023_2190623 crossref_primary_10_34133_remotesensing_0285 crossref_primary_10_3390_fire7070230 crossref_primary_10_3390_f15122133 crossref_primary_10_1177_03091333211023690 crossref_primary_10_1016_j_foreco_2020_118663 crossref_primary_10_3390_land12040855 crossref_primary_10_1016_j_scitotenv_2023_162774 crossref_primary_10_3390_rs13152869 crossref_primary_10_3390_land9010027 crossref_primary_10_2478_ttj_2024_0009 crossref_primary_10_3389_fmars_2022_1005284 crossref_primary_10_3390_land11111889 crossref_primary_10_1016_j_catena_2023_107579 crossref_primary_10_1016_j_jag_2023_103435 crossref_primary_10_3390_rs14102295 crossref_primary_10_1016_j_envc_2024_100866 crossref_primary_10_1016_j_watres_2024_121442 crossref_primary_10_3390_ijerph18041573 crossref_primary_10_1016_j_asr_2021_11_002 crossref_primary_10_3390_rs14081789 crossref_primary_10_3390_rs12111824 crossref_primary_10_3390_rs15184419 crossref_primary_10_1016_j_softx_2023_101421 crossref_primary_10_3390_f16030502 crossref_primary_10_3390_rs17050910 crossref_primary_10_1007_s10661_020_08771_8 crossref_primary_10_1016_j_compag_2023_108250 crossref_primary_10_1016_j_rse_2020_112181 crossref_primary_10_3390_land10121301 crossref_primary_10_3390_s24113488 crossref_primary_10_1016_j_rse_2020_112189 crossref_primary_10_3390_rs16152760 crossref_primary_10_1002_rse2_122 crossref_primary_10_1038_s44304_025_00063_w crossref_primary_10_1002_rse2_248 crossref_primary_10_1007_s00704_020_03343_9 crossref_primary_10_1016_j_apgeog_2020_102273 crossref_primary_10_34133_remotesensing_0021 crossref_primary_10_1080_27669645_2023_2291216 crossref_primary_10_1111_ecog_06768 crossref_primary_10_3390_rs15041096 crossref_primary_10_1080_10106049_2024_2387786 crossref_primary_10_3390_rs16020293 crossref_primary_10_1007_s10333_022_00922_6 crossref_primary_10_1080_15481603_2022_2118440 crossref_primary_10_1002_ecs2_4094 crossref_primary_10_1016_j_rse_2019_04_020 crossref_primary_10_3390_land11040504 crossref_primary_10_1016_j_agrformet_2025_110468 crossref_primary_10_1016_j_rse_2019_04_025 crossref_primary_10_3390_rs13050934 crossref_primary_10_1016_j_ufug_2022_127558 crossref_primary_10_1007_s12040_021_01763_3 crossref_primary_10_3390_land13111969 crossref_primary_10_3390_rs12162597 crossref_primary_10_3390_rs11141681 crossref_primary_10_3390_rs12244116 crossref_primary_10_3390_f10121073 crossref_primary_10_1109_TGRS_2024_3374454 crossref_primary_10_1002_eap_2208 crossref_primary_10_1109_JSTARS_2023_3316298 crossref_primary_10_3390_rs12010187 crossref_primary_10_1016_j_envsoft_2020_104631 crossref_primary_10_1007_s12524_019_01036_z crossref_primary_10_48123_rsgis_1119572 crossref_primary_10_3390_rs12152438 crossref_primary_10_1007_s10661_022_09884_y crossref_primary_10_1002_saj2_20371 crossref_primary_10_1007_s10661_023_11326_2 |
Cites_doi | 10.3390/rs9090902 10.3390/rs61010232 10.1016/j.rse.2013.02.026 10.1016/S0034-4257(00)00169-3 10.3390/rs10071058 10.1080/22797254.2018.1507613 10.1002/2016WR020175 10.1016/j.rse.2014.11.005 10.3390/rs10091489 10.1007/s10021-013-9669-9 10.1088/1748-9326/8/4/045024 10.1016/j.rse.2015.11.032 10.3390/rs10010048 10.1016/j.rse.2016.02.034 10.1016/S0034-4257(02)00091-3 10.14358/PERS.72.10.1155 10.1016/j.rse.2018.02.046 10.1126/science.1229931 10.1016/j.rse.2005.10.022 10.1016/j.jag.2017.11.016 10.1126/science.aat1203 10.3390/rs9040364 10.1016/j.rse.2010.02.012 10.1016/j.rse.2009.05.005 10.1016/j.rse.2015.08.030 10.1038/ngeo2785 10.1016/j.rse.2015.08.020 10.1038/35041545 10.1016/j.rse.2011.09.024 10.1016/j.rse.2011.12.025 10.1016/j.rse.2018.05.033 10.1890/130066 10.1016/j.rse.2011.08.025 10.1016/j.envsoft.2014.11.017 10.1109/LGRS.2005.857030 10.1002/2014GL060641 10.1016/j.rse.2004.03.007 10.3390/rs61212619 10.1016/j.rse.2017.03.020 10.1109/TGRS.2013.2272545 10.1016/j.rse.2018.07.014 10.1016/j.rse.2017.11.007 10.1016/j.rse.2016.12.030 10.1016/j.gloplacha.2016.06.002 10.1016/j.tplants.2014.10.008 10.1016/j.rse.2016.04.008 10.1016/S0034-4257(98)00092-3 10.1016/j.rse.2016.09.014 10.3390/f8080275 10.1016/j.rse.2009.08.011 10.1111/j.1936-704X.2014.03178.x 10.1016/j.rse.2015.11.023 10.1175/JCLI-D-11-00015.1 10.1016/j.rse.2017.01.002 10.1126/science.320.5879.1011a 10.1109/TGRS.2012.2183137 10.1016/j.rse.2014.01.006 10.1016/j.rse.2013.04.022 10.3189/S026030550000642X 10.3390/rs5126481 10.1016/j.cosust.2012.09.013 10.1080/17538947.2016.1187673 10.1016/j.rse.2011.01.022 10.1016/j.isprsjprs.2014.03.009 10.3390/rs10091337 10.1061/(ASCE)0733-9437(2007)133:4(380) 10.1175/JHM-D-12-0140.1 10.1016/j.jag.2016.09.005 10.1126/science.1244693 10.1126/science.1187512 10.1016/j.isprsjprs.2016.04.001 10.1016/j.jag.2016.06.019 10.1002/geo2.4 10.1029/2012JD018506 10.1016/j.rse.2009.11.022 10.1016/j.foreco.2015.10.042 10.1016/j.rse.2011.06.027 10.1016/j.rse.2018.02.020 10.1080/01431160701253212 10.1016/j.rse.2015.08.023 10.1016/j.rse.2011.10.028 10.1016/j.rse.2016.11.004 10.1002/hyp.10134 10.1017/jog.2018.23 10.1117/1.JRS.7.073558 10.1016/j.rse.2018.06.038 10.3354/cr01411 10.1016/j.rse.2014.06.012 10.1109/36.841980 10.1016/j.rse.2013.04.004 10.1016/j.advwatres.2012.03.002 10.1016/j.rse.2011.04.019 10.1016/j.rse.2018.06.026 10.3390/rs70202208 10.1016/j.rse.2015.09.019 10.1175/BAMS-D-15-00324.1 10.1109/JSTARS.2012.2235174 10.3390/rs10091340 10.1038/nature22049 10.1016/j.rse.2014.12.014 10.1016/j.rse.2015.05.005 10.1016/j.rse.2014.11.027 10.1016/j.rse.2018.07.004 10.1016/j.rse.2016.01.023 10.3390/rs8060520 10.3390/rs61111244 10.1080/07038992.2018.1437719 10.3390/rs9040320 10.1111/gcb.13358 10.3390/rs10091363 10.1016/j.rse.2011.09.022 10.3390/f8040098 10.1016/j.rse.2018.07.010 10.5194/tc-10-15-2016 10.1016/j.jag.2017.04.004 10.1016/S0034-4257(02)00022-6 10.1016/j.rse.2015.02.009 10.1016/j.rse.2011.09.009 10.1016/S0034-4257(02)00089-5 10.1016/j.foreco.2015.06.014 10.1002/(SICI)1099-1085(199808/09)12:10/11<1723::AID-HYP691>3.0.CO;2-2 10.3389/feart.2017.00058 10.1080/2150704X.2015.1126375 10.1080/07038992.2014.945827 10.1016/j.rse.2016.02.018 10.1016/j.rse.2010.10.001 10.3189/2012AoG60A062 10.1016/j.rse.2014.02.001 10.1016/j.rse.2011.11.026 10.3390/rs9040317 10.1016/j.rse.2009.08.017 10.1109/36.581987 10.1016/j.rse.2008.05.005 10.1016/j.rse.2009.01.007 10.1111/jawr.12058 10.1111/1752-1688.12371 10.1016/0034-4257(92)90101-O 10.1016/j.rse.2013.05.033 10.1016/j.rse.2018.04.031 10.1016/j.rse.2017.03.015 10.1364/AO.54.003963 10.1016/j.rse.2012.06.006 10.3189/S0260305500000471 10.3390/rs70101135 10.1016/S0034-4257(02)00135-9 10.1016/j.rse.2010.07.010 10.1016/j.rse.2016.04.011 10.1016/j.isprsjprs.2016.11.004 10.3390/f8050166 10.1080/17538947.2015.1026420 10.1016/j.jag.2014.12.011 10.1016/j.rse.2014.08.001 10.1016/j.rse.2018.09.002 10.1016/j.agrformet.2015.12.065 10.1080/07038992.2014.987376 10.1109/JSTARS.2012.2228167 10.1029/2018GL078133 10.1126/science.1131634 10.5589/m11-034 10.1016/j.rse.2015.09.004 10.1016/j.rse.2007.07.004 10.1109/JSTARS.2012.2214474 10.3390/rs61111127 10.1016/j.rse.2016.02.052 10.1117/1.JRS.9.096070 10.1016/j.rse.2015.12.033 10.1016/j.rse.2013.01.011 10.1109/MGRS.2015.2434351 10.1080/01431161.2018.1471545 10.1364/AO.33.000443 10.1016/S0034-4257(03)00145-7 10.1109/TGRS.2003.812902 10.1016/j.rse.2016.04.015 10.1109/36.701075 10.1016/j.rse.2018.12.027 10.1016/S0034-4257(02)00087-1 10.1016/j.rse.2015.08.006 10.1080/01431160903186277 10.1007/s00382-016-3280-7 10.1016/j.rse.2015.12.041 10.1016/j.rse.2016.07.033 10.1016/j.rse.2015.01.032 10.5194/hess-17-2459-2013 10.3189/S0260305500000483 10.1016/j.rse.2015.10.034 10.3390/rs10020352 10.1023/A:1025514026772 10.1016/j.ecolind.2015.11.026 10.1364/AO.53.000648 10.1016/j.rse.2015.12.024 10.1016/j.rse.2016.03.018 10.1007/s10712-008-9037-z 10.3390/f8070251 10.1109/TGRS.2006.872081 10.1080/01431161.2012.663115 10.1016/j.rse.2011.09.025 10.1175/BAMS-D-16-0244.1 10.1016/j.rse.2013.08.014 10.1016/j.jag.2016.12.012 10.1016/j.rse.2016.02.059 10.1016/j.rse.2017.06.031 10.1111/jawr.12051 10.1016/j.rse.2010.07.008 10.1002/ldr.1084 10.1016/j.isprsjprs.2016.03.008 10.1016/j.rse.2011.06.026 10.1029/91JC02334 10.1016/j.rse.2011.08.026 10.5194/hess-15-223-2011 10.1016/j.rse.2015.11.034 10.3390/rs61212275 10.3390/rs61111607 10.5194/tc-12-521-2018 10.1038/505143a 10.1016/0034-4257(89)90101-6 10.1016/j.rse.2014.01.011 10.14358/PERS.81.7.573 10.1016/j.rse.2017.03.033 10.3390/rs9070670 10.3390/rs61110435 10.1016/j.rse.2015.09.001 10.1016/j.rse.2015.10.014 10.3390/rs9060584 10.1080/17538947.2017.1304586 10.1016/j.rse.2013.08.025 10.1016/j.rse.2016.07.004 10.1080/2150704X.2016.1233371 10.1016/j.rse.2017.09.029 10.1016/j.rse.2015.11.003 10.1016/j.rse.2017.06.019 10.1016/j.rse.2015.09.015 10.3390/rs4061856 10.1016/j.rse.2017.03.035 10.1016/j.isprsjprs.2017.06.013 10.1016/j.rse.2016.08.025 10.1016/j.rse.2011.10.030 10.1029/2010JG001428 10.1080/01431161.2018.1452075 10.3390/rs10060889 10.1016/j.rse.2017.06.027 10.1029/95WR02718 10.1016/j.rse.2011.07.022 10.3390/f6114105 10.1038/nature20584 10.1029/96JD02443 10.3133/ofr20171034 10.1109/TGRS.2010.2095462 10.1016/j.rse.2012.01.010 10.1175/BAMS-87-3-343 10.1016/j.rse.2016.03.039 |
ContentType | Journal Article |
Copyright | 2019 Copyright Elsevier BV May 2019 |
Copyright_xml | – notice: 2019 – notice: Copyright Elsevier BV May 2019 |
DBID | 6I. AAFTH AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 |
DOI | 10.1016/j.rse.2019.02.015 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Meteorological & Geoastrophysical Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Meteorological & Geoastrophysical Abstracts Biotechnology Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology Environmental Sciences |
EISSN | 1879-0704 |
EndPage | 147 |
ExternalDocumentID | 10_1016_j_rse_2019_02_015 S0034425719300707 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 41~ 457 4G. 53G 5VS 6I. 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSJ SSZ T5K TN5 TWZ VOH WH7 WUQ XOL ZCA ZMT ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD C1K EFKBS F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 |
ID | FETCH-LOGICAL-c520t-b39aa4bfcd7c5429676023a076e82efb21e79d30d72183f3d54c1a47cc5d0cb13 |
IEDL.DBID | .~1 |
ISSN | 0034-4257 |
IngestDate | Fri Jul 11 02:53:57 EDT 2025 Wed Aug 13 04:30:02 EDT 2025 Tue Jul 01 03:51:18 EDT 2025 Thu Apr 24 22:56:37 EDT 2025 Fri Feb 23 02:20:13 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | TIRS ARD Land change science Landsat science team Land cover OLI Open data Remote sensing science |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c520t-b39aa4bfcd7c5429676023a076e82efb21e79d30d72183f3d54c1a47cc5d0cb13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6942-1896 0000-0001-6307-5200 0000-0001-8283-6407 0000-0002-1865-2846 0000-0002-1274-1792 0000-0002-5454-5212 0000-0002-6664-7232 0000-0003-2853-2036 0000-0002-5445-0360 0000-0002-7379-4679 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0034425719300707 |
PQID | 2230287232 |
PQPubID | 2045405 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_2221036859 proquest_journals_2230287232 crossref_citationtrail_10_1016_j_rse_2019_02_015 crossref_primary_10_1016_j_rse_2019_02_015 elsevier_sciencedirect_doi_10_1016_j_rse_2019_02_015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-01 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Remote sensing of environment |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier BV |
Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
References | Reuter, Richardson, Pellerano, Irons, Allen, Anderson, Jhabvala, Lunsford, Montanaro, Smith, Tesfaye (bb2045) 2015; 7 Rosenthal, Dozier (bb1015) 1996; 32 Pasquarella, Holden, Kaufman, Woodcock (bb0940) 2016; 2(3) Sheng, Song, Wang, Lyons, Knox, Cox, Gao (bb1150) 2016; 185 Holden, Woodcock (bb0570) 2016; 185 Vuolo, Ng, Atzberger (bb1260) 2017; 57 Zeng, Wardlow, Wang, Shan, Tadesse, Hayes, Li (bb1380) 2016; 181 Gerace, Schott, Nevins (bb0415) 2013; 7 GOFC-GOLD (bb0420) 2016 Schroeder, Schleeweis, Moisen, Toney, Cohen, Freeman, Yang, Huang (bb1120) 2017; 195 Dolman, Belward, Briggs, Dowell, Eggleston, Hill, Richter, Simmons (bb0280) 2016; 9 Schwieder, Leitão, da Cunha Bustamante, Ferreira, Rabe, Hostert (bb1125) 2016; 52 Yan, Roy (bb1360) 2014; 144 Franz, Bailey, Kuring, Werdell (bb0360) 2015; 9 Irons, Dwyer, Barsi (bb0615) 2012; 122 UNESC (bb1220) 2017 Schott, Gerace, Woodcock, Wang, Zhu, Wynne, Blinn (bb1110) 2016; 185 UNCCD (bb1210) 2013 Gao, Masek, Schwaller, Hall (bb0380) 2006; 44 Gordon (bb0450) 1997; 102 Butler (bb0170) 2014; 505 Roy, D.P., Yan, L., 2018. Robust Landsat-based crop time series modelling. Remote Sens. Environ. doi Reynolds, Smith, Lambin, Turner, Mortimore, Batterbury, Downing, Dowlatabadi, Fernandez, Herrick, Huber-Sannwald, Jiang, Leemans, Lynam, Maestre, Ayarza, Walker (bb1000) 2007; 316 Melton, Johnson, Lund, Pierce, Michaelis, Hiatt, Guzman, Adhikari, Purdy, Rosevelt, Votava (bb0810) 2012; 5 Mueller, Lewis, Roberts, Ring, Melrose, Sixsmith, Lymburner, McIntyre, Tan, Curnow, Ip (bb0875) 2016; 174 UN (bb1205) 2015 Dwyer, Roy, Sauer, Jenkerson, Zhang, Lymburner (bb0300) 2018; 10 Zhu, Wang, Woodcock (bb1430) 2015; 159 Wulder, Coops, Roy, White, Hermosilla (bb1350) 2018; 39 Roy, Zhang, Ju, Gomez-Dans, Lewis, Schaaf, Sun, Li, Huang, Kovalskyy (bb1040) 2016; 176 Bolton, White, Wulder, Coops (bb0125) 2018; 66 (Accessed: Jan 10, 2019). Loveland, Irons (bb0740) 2016; 185 Schaaf, Gao, Strahler, Lucht, Li, Tsang, Strugnell, Zhang, Jin, Muller, Lewis (bb1075) 2002; 83 Zhang, Friedl, Schaaf, Strahler, Hodges, Gao, Reed (bb1395) 2003; 84 Baumann, Ozdogan, Richardson, Radeloff (bb0090) 2017; 54 Roy, Ju, Kline, Scaramuzza, Kovalskyy, Hansen, Loveland, Vermote, Zhang (bb1030) 2010; 114 Roy, Li, Zhang, Yan, Huang, Li (bb1050) 2017; 199 Wulder, White, Loveland, Woodcock, Belward, Cohen, Fosnight, Shaw, Masek, Roy (bb1345) 2016; 185 Lawrence, Ripple (bb0710) 1999; 67 Hulley, Hughes, Hook (bb0595) 2012; 117 Moisen, Meyer, Schroeder, Liao, Schleeweis, Freeman, Toney (bb0850) 2016; 22 Crawford (bb0235) 2015; 29 Schroeder, Wulder, Healey, Moisen (bb1115) 2011; 115 Schott, Gerace, Raqueno, Ientilucci, Raqueno, Lunsford (bb1105) 2014 Tulbure, Broich, Stehman, Kommareddy (bb1200) 2016; 178 Hall, Ormsby, Bindschadler, Siddalingaiah (bb0500) 1987; 9 Griffiths, Müller, Kuemmerle, Hostert (bb0480) 2013; 8 Selkowitz, Forster (bb1130) 2016; 117 Hedley, Roelfsema, Brando, Giardino, Kutser, Phinn, Mumby, Barrilero, Laporte, Koetz (bb0530) 2018; 216 Fahnestock, Scambos, Moon, Gardner, Haran, Klinger (bb0310) 2016; 185 Hendrickx, Allen, Brower, Byrd, Hong, Ogden, Pradhan, Robison, Toll, Trezza, Umstot (bb0540) 2016; 52 Li, Roy (bb0725) 2017; 9 Pahlevan, Schott, Franz, Zibordi, Markham, Bailey, Schaaf, Ondrusek, Greb, Strait (bb0930) 2017; 190 Betts (bb0105) 2000; 408 Vermote, Justice, Claverie, Franch (bb1240) 2016; 185 Gao, Anderson, Daughtry, Johnson (bb0395) 2018; 10 Potapov, Turubanova, Hansen (bb0990) 2011; 115 Storey, Choate, Lee (bb1175) 2014; 6 White, Wulder, Hobart, Luther, Hermosilla, Griffiths, Coops, Hall, Hostert, Dyk, Guindon (bb1300) 2014; 40 Pekel, Cottam, Gorelick, Belward (bb0950) 2016; 540 Storey, Roy, Masek, Gascon, Dwyer, Choate (bb1180) 2016; 186 Vogelmann, Xian, Homer, Tolk (bb1255) 2012; 122 Mouginot, Rignot, Scheuchl, Millan (bb0870) 2017; 9 Pflugmacher, Cohen, Kennedy (bb0970) 2012; 172 Verpoorter, Kutser, Seekell, Tranvik (bb1245) 2014; 41 Kampe, Good (bb0640) 2017; Vol. 10402 de la Fuente-Sáiz, Ortega-Farías, Fonseca, Ortega-Salazar, Kilic, Allen (bb0250) 2017; 9 Fisher, Mustard, Vadeboncoeur (bb0325) 2006; 100 Montanaro, Gerace, Rohrbach (bb0860) 2015; 54 Markham, Helder (bb0770) 2012; 122 DeVries, Decuyper, Verbesselt, Zeileis, Herold, Joseph (bb0270) 2015; 169 Anderson, Kustas, Norman, Hain, Mecikalski, Schultz, González-Dugo, Cammalleri, d'Urso, Pimstein, Gao (bb0025) 2011; 15 Ahmed, Wulder, White, Hermosilla, Coops, Franklin (bb0005) 2017; 8 Rittger, Painter, Dozier (bb1010) 2013; 51 Vermote, El Saleous, Justice (bb1235) 2002; 83 Schneider (bb1095) 2012; 124 Zhu, Woodcock, Holden, Yang (bb1435) 2015; 162 Justice, Vermote, Townshend, Defries, Roy, Hall, Salomonson, Privette, Riggs, Strahler, Lucht (bb0630) 1998; 36 Zhu, Woodcock, Olofsson (bb1425) 2012; 122 Anderson, Allen, Morse, Kustas (bb0030) 2012; 122 Goodwin, Coops, Wulder, Gillanders, Schroeder, Nelson (bb0440) 2008; 112 Gardner, Moholdt, Scambos, Fahnstock, Ligtenberg, van den Broeke, M. Nilsson, J. (bb0400) 2018; 12 Cook, Schott, Mandel, Raqueno (bb0230) 2014; 6 Otkin, Anderson, Hain, Svoboda, Johnson, Mueller, Tadesse, Wardlow, Brown (bb0910) 2016; 218 Nelson, Steinwand (bb0890) 2015; 81 Huntington, Hegewisch, Daudert, Morton, Abatzoglou, McEvoy, Erickson (bb0605) 2017; 98 White, Gómez, Wulder, Coops (bb1290) 2010; 114 Chander, Markham, Helder (bb0180) 2009; 113 Goward, Arvidson, Williams, Faundeen, Irons, Franks (bb0465) 2006; 72 Lucht, Schaaf, Strahler (bb0745) 2000; 38 Pahlevan, Lee, Wei, Schaff, Schott, Berk (bb0925) 2014; 154 Frantz, Röder, Stellmes, Hill (bb0355) 2017; 190 Williams, Gu, MacLean, Masek, Collatz (bb1325) 2016; 143 Zhu, Woodcock (bb1410) 2012; 118 Vogeler, Braaten, Sesak, Falkowski (bb1250) 2018; 209 Barsi, Schott, Hook, Raqueno, Markham, Radocinski (bb0080) 2014; 6 Finer, Novoa, Weisse, Petersen, Mascaro, Souto, Stearns, Martinez (bb0320) 2018; 360 Wulder, Hilker, White, Coops, Masek, Pflugmacher, Crevier (bb1340) 2015; 170 Bhandari, Phinn, Gill (bb0110) 2012; 4 Shuai, Masek, Gao, Schaaf (bb1155) 2011; 115 Ju, Roy, Vermote, Masek, Kovalskyy (bb0625) 2012; 122 Pflugmacher, Cohen, Kennedy, Yang (bb0975) 2014; 151 Pasquarella, Bradley, Woodcock (bb0945) 2017; 8 Goodwin, Magnussen, Coops, Wulder (bb0445) 2010; 31 Dechoz, Poulain, Massera, Languille, Greslou, de Lussy, Gaudel, L'Helguen, Picard, Trémas (bb0260) 2015; vol. 9643 National Academies of Sciences, Engineering, and Medicine (bb0880) 2018 Gao, Hilker, Zhu, Anderson, Masek, Wang, Yang (bb0385) 2015; 3 McDowell, Coops, Beck, Chambers, Gangodagamage, Hicke, Huang, Kennedy, Krofcheck, Litvak, Meddens (bb0790) 2015; 20 Broich, Huete, Paget, Ma, Tulbure, Coupe, Evans, Beringer, Devadas, Davies, Held (bb0140) 2015; 64 Sun, Gao, Anderson, Kustas, Alsina, Sanchez, Sams, McKee, Dulaney, White, Alfieri, Prueger, Melton, Post (bb1190) 2017; 9 Wang, Erb, Schaaf, Sun, Liu, Yang, Shuai, Casey, Román (bb1275) 2016; 185 Banskota, Kayastha, Falkowski, Wulder, Froese, White (bb0065) 2014; 40 Healey, Cohen, Yang, Brewer, Brooks, Gorelick, Hernandez, Huang, Hughes, Kennedy, Loveland (bb0525) 2018; 204 Kalma, McVicar, McCabe (bb0635) 2008; 29 Cui, Montanaro, Gerace, Schott, Markham (bb0245) 2015; Vol. 9607 Senf, Seidl, Hostert (bb1145) 2017; 60 Schmidt, Jenkerson, Masek, Vermote, Gao (bb1090) 2013 Barsi, Alhammoud, Czapla-Myers, Gascon, Obaidul Haque, Kaewmanee, Leigh, Markham (bb0085) 2018; 51 Pope, Scambos, Moussavi, Tedesco, Willis, Shean, Grigsby (bb0985) 2016; 10 Cohen, Yang, Kennedy (bb0210) 2010; 114 Kennedy, Andréfouët, Cohen, Gómez, Griffiths, Hais, Healey, Helmer, Hostert, Lyons, Meigs (bb0670) 2014; 12 Leslie, Serbina, Miller (bb0715) 2017; 2017–1034 Hansen, Potapov, Moore, Hancher, Turubanova, Tyukavina, Thau, Stehman, Goetz, Loveland, Kommareddy, Egorov, Chini, Justice, Townshend (bb0510) 2013; 342 Hostert, Roder, Hill (bb0575) 2003; 87 Nechad, Ruddick, Park (bb0885) 2010; 114 Loveland, Dwyer (bb0735) 2012; 122 Roy, Kovalskyy, Zhang, Vermote, Yan, Kumar, Egorov (bb1045) 2016; 185 Zhu, Woodcock (bb1415) 2014; 144 Griffiths, van der Linden, Kuemmerle, Hostert (bb0475) 2013; 6 Claverie, Ju, Masek, Dungan, Vermote, Roger, Skakun, Justice (bb0205) 2018; 219 Dozier (bb0290) 1989; 28 Hermosilla, Wulder, White, Coops, Pickell, Bolton (bb0565) 2019; 222 Masek, Goward, Kennedy, Cohen, Moisen, Schleeweis, Huang (bb0785) 2013; 16 Woodcock, Allen, Anderson, Belward, Bindschadler, Cohen, Gao, Goward, Helder, Helmer, Nemani, Oreopoulos, Schott, Thenkabail, Vermote, Vogelmann, Wulder, Wynne (bb2005) 2008; 302 Barnes, Roy (bb0070) 2010; 115 Vermote, Tanré, Deuze, Herman, Morcette (bb1230) 1997; 35 Allen, Tasumi, Trezza (bb0010) 2007; 133 Feng, Sexton, Channan, Townshend (bb0315) 2016; 9 Anderson, Gao, Knipper, Hain, Dulaney, Baldocchi, Eichelmann, Hemes, Yang, Medellín-Azuara, Kustas (bb0050) 2018; 10 Zhu, Woodcock (bb1420) 2014; 152 Roy, Wulder, Loveland, W. C.E, Allen, Anderson, Helder, Irons, Johnson, Kennedy, Scambos, Schaaf, Schott, Sheng, Vermote, Belward, Bindschadler, Cohen, Gao, Hipple, Hostert, Huntington, Justice, Kilic, Kovalskyy, Lee, Lymburner, Masek, McCorkel, Shuai, Trezza, Vogelmann, Wynne, Zhu (bb1035) 2014; 145 Concha, Schott (bb0225) 2016; 185 Huang, Goward, Masek, Thomas, Zhu, Vogelmann (bb0580) 2010; 114 Huntington, McGwire, Morton, Snyder, Peterson, Erickson, Niswonger, Carroll, Smith, Allen (bb0600) 2016; 185 Hurni, Schneider, Heinimann, Nong, Fox (bb0610) 2017; 9 Keeling, Whorf (bb0655) 2005 NRC, National Research Council (bb2010) 2013 Madoui, Gauthier, Leduc, Bergeron, Valeria (bb0755) 2015; 6 Pickell, Hermosilla, Frazier, Coops, Wulder (bb0980) 2015; 37 Kingslake, Ely, Das, Bell (bb0685) 2017; 544 Wang, Schaaf, Strahler, Chopping, Román, Shuai, Woodcock, Hollinger, Fitzjarrald (bb1270) 2014; 140 Cohen, Yang, Stehman, Schroeder, Bell, Masek, Huang, Meigs (bb0215) 2016; 360 Gómez, Wulder, White, Montes, Delgado (bb0425) 2012; 33 Brooks, Thomas, Wynne, Coulston (bb0145) 2012; 50 Melaas, Friedl, Zhu (bb0800) 2013; 132 Choi, Bindschadler (bb0190) 2004; 91 Kennedy, Yang, Cohen, Pfaff, Braaten, Nelson (bb2020) 2012; 122 Orheim, Lucchitta (bb0900) 1987; 9 Pettorelli, Wegmann, Skidmore, Mücher, Dawson, Fernandez, Lucas, Bhardwaj (10.1016/j.rse.2019.02.015_bb0115) 2015; 38 Concha (10.1016/j.rse.2019.02.015_bb0225) 2016; 185 UN (10.1016/j.rse.2019.02.015_bb1205) 2015 Huntington (10.1016/j.rse.2019.02.015_bb0605) 2017; 98 Goodwin (10.1016/j.rse.2019.02.015_bb0440) 2008; 112 White (10.1016/j.rse.2019.02.015_bb1285) 2015; 2 Torbick (10.1016/j.rse.2019.02.015_bb1195) 2018; 10 Dechoz (10.1016/j.rse.2019.02.015_bb0260) 2015; vol. 9643 Dolman (10.1016/j.rse.2019.02.015_bb0280) 2016; 9 Roy (10.1016/j.rse.2019.02.015_bb1035) 2014; 145 Reuter (10.1016/j.rse.2019.02.015_bb2045) 2015; 7 de la Fuente-Sáiz (10.1016/j.rse.2019.02.015_bb0250) 2017; 9 Sakamoto (10.1016/j.rse.2019.02.015_bb1060) 2011; 49 Williams (10.1016/j.rse.2019.02.015_bb1325) 2016; 143 Vermote (10.1016/j.rse.2019.02.015_bb1240) 2016; 185 Hermosilla (10.1016/j.rse.2019.02.015_bb0560) 2018; 44 Schwieder (10.1016/j.rse.2019.02.015_bb1125) 2016; 52 White (10.1016/j.rse.2019.02.015_bb1290) 2010; 114 Yamazaki (10.1016/j.rse.2019.02.015_bb1355) 2015; 171 Kustas (10.1016/j.rse.2019.02.015_bb0700) 2018 Roy (10.1016/j.rse.2019.02.015_bb1040) 2016; 176 Vuolo (10.1016/j.rse.2019.02.015_bb1260) 2017; 57 Schott (10.1016/j.rse.2019.02.015_bb1100) 2012; 122 Hall (10.1016/j.rse.2019.02.015_bb0500) 1987; 9 Klein (10.1016/j.rse.2019.02.015_bb0690) 1998; 12 Wulder (10.1016/j.rse.2019.02.015_bb1335) 2012; 122 Vogeler (10.1016/j.rse.2019.02.015_bb1250) 2018; 209 Gómez (10.1016/j.rse.2019.02.015_bb0430) 2016; 116 Zhe (10.1016/j.rse.2019.02.015_bb2000) 2019 Roy (10.1016/j.rse.2019.02.015_bb1025) 2002; 83 Braaten (10.1016/j.rse.2019.02.015_bb0130) 2015; 169 Lymburner (10.1016/j.rse.2019.02.015_bb0750) 2016; 185 Song (10.1016/j.rse.2019.02.015_bb2015) 2001; 75 Goward (10.1016/j.rse.2019.02.015_bb0470) 2017 Pahlevan (10.1016/j.rse.2019.02.015_bb0930) 2017; 190 Zhu (10.1016/j.rse.2019.02.015_bb1445) 2018 Pasquarella (10.1016/j.rse.2019.02.015_bb0940) 2016; 2(3) Nechad (10.1016/j.rse.2019.02.015_bb0885) 2010; 114 Pekel (10.1016/j.rse.2019.02.015_bb0950) 2016; 540 Laraby (10.1016/j.rse.2019.02.015_bb0705) 2018; 216 Lucht (10.1016/j.rse.2019.02.015_bb0745) 2000; 38 Skakun (10.1016/j.rse.2019.02.015_bb1160) 2017; 10 Anderson (10.1016/j.rse.2019.02.015_bb0030) 2012; 122 Sheng (10.1016/j.rse.2019.02.015_bb1150) 2016; 185 Yan (10.1016/j.rse.2019.02.015_bb1370) 2016; 8 Otkin (10.1016/j.rse.2019.02.015_bb0910) 2016; 218 Schroeder (10.1016/j.rse.2019.02.015_bb1120) 2017; 195 Barnes (10.1016/j.rse.2019.02.015_bb0070) 2010; 115 Cui (10.1016/j.rse.2019.02.015_bb0245) 2015; Vol. 9607 Montanaro (10.1016/j.rse.2019.02.015_bb0860) 2015; 54 Lawrence (10.1016/j.rse.2019.02.015_bb0710) 1999; 67 Mihailovic (10.1016/j.rse.2019.02.015_bb0825) 2004; 4 Loveland (10.1016/j.rse.2019.02.015_bb0740) 2016; 185 Barsi (10.1016/j.rse.2019.02.015_bb0085) 2018; 51 Zhu (10.1016/j.rse.2019.02.015_bb1415) 2014; 144 Roy (10.1016/j.rse.2019.02.015_bb1030) 2010; 114 Banskota (10.1016/j.rse.2019.02.015_bb0065) 2014; 40 Healey (10.1016/j.rse.2019.02.015_bb0525) 2018; 204 Kalma (10.1016/j.rse.2019.02.015_bb0635) 2008; 29 UNDESA (10.1016/j.rse.2019.02.015_bb1215) 2017 Vermote (10.1016/j.rse.2019.02.015_bb1235) 2002; 83 Strauss (10.1016/j.rse.2019.02.015_bb1185) 2017 Justice (10.1016/j.rse.2019.02.015_bb0630) 1998; 36 Gutman (10.1016/j.rse.2019.02.015_bb0495) 2013; 134 Goodwin (10.1016/j.rse.2019.02.015_bb0445) 2010; 31 Meigs (10.1016/j.rse.2019.02.015_bb0795) 2011; 115 Broich (10.1016/j.rse.2019.02.015_bb0140) 2015; 64 Gardner (10.1016/j.rse.2019.02.015_bb0400) 2018; 12 Alley (10.1016/j.rse.2019.02.015_bb0015) 2018; 64 Crawford (10.1016/j.rse.2019.02.015_bb0240) 2013; 135 Bolton (10.1016/j.rse.2019.02.015_bb0125) 2018; 66 Anderson (10.1016/j.rse.2019.02.015_bb0035) 2013; 14 Zhu (10.1016/j.rse.2019.02.015_bb1430) 2015; 159 Wang (10.1016/j.rse.2019.02.015_bb1275) 2016; 185 Hulley (10.1016/j.rse.2019.02.015_bb0595) 2012; 117 Schaeffer (10.1016/j.rse.2019.02.015_bb1080) 2018 Gómez (10.1016/j.rse.2019.02.015_bb0425) 2012; 33 Swithinbank (10.1016/j.rse.2019.02.015_bb2025) 1988 Zhu (10.1016/j.rse.2019.02.015_bb1425) 2012; 122 Schott (10.1016/j.rse.2019.02.015_bb1105) 2014 Pahlevan (10.1016/j.rse.2019.02.015_bb2035) 2016 Frazier (10.1016/j.rse.2019.02.015_bb0370) 2018; 205 Vogelmann (10.1016/j.rse.2019.02.015_bb1255) 2012; 122 Hawbaker (10.1016/j.rse.2019.02.015_bb0520) 2017; 198 Kennedy (10.1016/j.rse.2019.02.015_bb0665) 2010; 114 Gao (10.1016/j.rse.2019.02.015_bb0390) 2017; 188 Cohen (10.1016/j.rse.2019.02.015_bb0210) 2010; 114 Gascon (10.1016/j.rse.2019.02.015_bb0405) 2017; 9 Pahlevan (10.1016/j.rse.2019.02.015_bb0915) 2013; 6 Campagnolo (10.1016/j.rse.2019.02.015_bb0175) 2016; 175 Masek (10.1016/j.rse.2019.02.015_bb0785) 2013; 16 Schott (10.1016/j.rse.2019.02.015_bb1110) 2016; 185 Rittger (10.1016/j.rse.2019.02.015_bb1010) 2013; 51 Senf (10.1016/j.rse.2019.02.015_bb1135) 2015; 170 Flood (10.1016/j.rse.2019.02.015_bb0335) 2013; 5 Montanaro (10.1016/j.rse.2019.02.015_bb0855) 2014; 6 Sommer (10.1016/j.rse.2019.02.015_bb1165) 2011; 22 Tulbure (10.1016/j.rse.2019.02.015_bb1200) 2016; 178 Hermosilla (10.1016/j.rse.2019.02.015_bb0565) 2019; 222 Mankoff (10.1016/j.rse.2019.02.015_bb0765) 2012; 53 DeVries (10.1016/j.rse.2019.02.015_bb0270) 2015; 169 Burkhalter (10.1016/j.rse.2019.02.015_bb0160) 2013; 49 Wei (10.1016/j.rse.2019.02.015_bb1280) 2018; 215 Alonzo (10.1016/j.rse.2019.02.015_bb0020) 2016 Kennedy (10.1016/j.rse.2019.02.015_bb0670) 2014; 12 Steffen (10.1016/j.rse.2019.02.015_bb1170) 1991; 96 Anderson (10.1016/j.rse.2019.02.015_bb0025) 2011; 15 Kennedy (10.1016/j.rse.2019.02.015_bb0675) 2015; 166 Orheim (10.1016/j.rse.2019.02.015_bb0905) 1988; 11 Dozier (10.1016/j.rse.2019.02.015_bb0290) 1989; 28 Belward (10.1016/j.rse.2019.02.015_bb0100) 2015; 103 Mouginot (10.1016/j.rse.2019.02.015_bb0870) 2017; 9 Melaas (10.1016/j.rse.2019.02.015_bb0800) 2013; 132 Shuai (10.1016/j.rse.2019.02.015_bb1155) 2011; 115 Allen (10.1016/j.rse.2019.02.015_bb0010) 2007; 133 Wulder (10.1016/j.rse.2019.02.015_bb1345) 2016; 185 Mesinger (10.1016/j.rse.2019.02.015_bb0815) 2006; 87 Pflugmacher (10.1016/j.rse.2019.02.015_bb0975) 2014; 151 Potapov (10.1016/j.rse.2019.02.015_bb0990) 2011; 115 Cohen (10.1016/j.rse.2019.02.015_bb0215) 2016; 360 White (10.1016/j.rse.2019.02.015_bb1305) 2017; 194 Griffiths (10.1016/j.rse.2019.02.015_bb0490) 2018; 216 Pflugmacher (10.1016/j.rse.2019.02.015_bb0970) 2012; 172 Chander (10.1016/j.rse.2019.02.015_bb0180) 2009; 113 Morfitt (10.1016/j.rse.2019.02.015_bb0865) 2015; 7 White (10.1016/j.rse.2019.02.015_bb1295) 2011; 37 Choi (10.1016/j.rse.2019.02.015_bb0190) 2004; 91 10.1016/j.rse.2019.02.015_bb1020 Bindschadler (10.1016/j.rse.2019.02.015_bb0120) 2003; 41 Fisher (10.1016/j.rse.2019.02.015_bb0330) 2017; 53 Frazier (10.1016/j.rse.2019.02.015_bb0365) 2015; 170 Pope (10.1016/j.rse.2019.02.015_bb0985) 2016; 10 Loveland (10.1016/j.rse.2019.02.015_bb0735) 2012; 122 GOFC-GOLD (10.1016/j.rse.2019.02.015_bb0420) 2016 Barsi (10.1016/j.rse.2019.02.015_bb0080) 2014; 6 Gordon (10.1016/j.rse.2019.02.015_bb0450) 1997; 102 Mishra (10.1016/j.rse.2019.02.015_bb0840) 2014; 6 Anderson (10.1016/j.rse.2019.02.015_bb0050) 2018; 10 Pasquarella (10.1016/j.rse.2019.02.015_bb0945) 2017; 8 Dwyer (10.1016/j.rse.2019.02.015_bb0300) 2018; 10 Finer (10.1016/j.rse.2019.02.015_bb0320) 2018; 360 Chu (10.1016/j.rse.2019.02.015_bb0195) 2016; 62 Vermote (10.1016/j.rse.2019.02.015_bb1230) 1997; 35 Wang (10.1016/j.rse.2019.02.015_bb1270) 2014; 140 Griffiths (10.1016/j.rse.2019.02.015_bb0480) 2013; 8 Miles (10.1016/j.rse.2019.02.015_bb0830) 2017; 5 Zhu (10.1016/j.rse.2019.02.015_bb1435) 2015; 162 Hall (10.1016/j.rse.2019.02.015_bb0505) 2015; 162 Pahlevan (10.1016/j.rse.2019.02.015_bb0935) 2018; 10 Scambos (10.1016/j.rse.2019.02.015_bb1065) 1992; 42 Gallo (10.1016/j.rse.2019.02.015_bb0375) 2017; 10 Bhandari (10.1016/j.rse.2019.02.015_bb0110) 2012; 4 White (10.1016/j.rse.2019.02.015_bb1300) 2014; 40 Markham (10.1016/j.rse.2019.02.015_bb0775) 2014; 6 Senf (10.1016/j.rse.2019.02.015_bb1145) 2017; 60 Pereira (10.1016/j.rse.2019.02.015_bb0955) 2013; 339 Hughes (10.1016/j.rse.2019.02.015_bb0585) 2017; 8 Masek (10.1016/j.rse.2019.02.015_bb0780) 2006; 3 Madoui (10.1016/j.rse.2019.02.015_bb0755) 2015; 6 Roy (10.1016/j.rse.2019.02.015_bb1050) 2017; 199 White (10.1016/j.rse.2019.02.015_bb1310) 2018; 216 Gorelick (10.1016/j.rse.2019.02.015_bb0460) 2017; 202 McDowell (10.1016/j.rse.2019.02.015_bb0790) 2015; 20 Schaaf (10.1016/j.rse.2019.02.015_bb1075) 2002; 83 Oeser (10.1016/j.rse.2019.02.015_bb0895) 2017; 8 Cohen (10.1016/j.rse.2019.02.015_bb0220) 2017; 8 Gao (10.1016/j.rse.2019.02.015_bb0380) 2006; 44 Lewis (10.1016/j.rse.2019.02.015_bb0720) 2017; 202 Hurni (10.1016/j.rse.2019.02.015_bb0610) 2017; 9 Jeong (10.1016/j.rse.2019.02.015_bb0620) 2015; 170 UNCCD (10.1016/j.rse.2019.02.015_bb1210) 2013 Schmidt (10.1016/j.rse.2019.02.015_bb1090) 2013 Drusch (10.1016/j.rse.2019.02.015_bb0295) 2012; 120 Hermosilla (10.1016/j.rse.2019.02.015_bb0555) 2016; 9 Griffiths (10.1016/j.rse.2019.02.015_bb0485) 2014; 151 Yan (10.1016/j.rse.2019.02.015_bb1360) 2014; 144 Reynolds (10.1016/j.rse.2019.02.015_bb1000) 2007; 316 Hostert (10.1016/j.rse.2019.02.015_bb0575) 2003; 87 Helder (10.1016/j.rse.2019.02.015_bb0535) 2018; 10 Li (10.1016/j.rse.2019.02.015_bb0725) 2017; 9 Selkowitz (10.1016/j.rse.2019.02.015_bb1130) 2016; 117 Frantz (10.1016/j.rse.2019.02.015_bb0355) 2017; 190 Hansen (10.1016/j.rse.2019.02.015_bb0510) 2013; 342 Wulder (10.1016/j.rse.2019.02.015_bb1330) 2008; 112 Betts (10.1016/j.rse.2019.02.015_bb0105) 2000; 408 Brooks (10.1016/j.rse.2019.02.015_bb0145) 2012; 50 Wulder (10.1016/j.rse.2019.02.015_bb1350) 2018; 39 Huang (10.1016/j.rse.2019.02.015_bb0580) 2010; 114 Kloiber (10.1016/j.rse.2019.02.015_bb0695) 2002; 82 Feng (10.1016/j.rse.2019.02.015_bb0315) 2016; 9 Hulley (10.1016/j.rse.2019.02.015_bb0590) 2009; 113 Griffiths (10.1016/j.rse.2019.02.015_bb0475) 2013; 6 Leslie (10.1016/j.rse.2019.02.015_bb0715) 2017; 2017–1034 Keenan (10.1016/j.rse.2019.02.015_bb0660) 2015; 352 Holden (10.1016/j.rse.2019.02.015_bb0570) 2016; 185 Zhang (10.1016/j.rse.2019.02.015_bb1400) 2018; 215 Pahlevan (10.1016/j.rse.2019.02.015_bb0925) 2014; 154 Fahnestock (10.1016/j.rse.2019.02.015_bb0310) 2016; 185 Irons (10.1016/j.rse.20 |
References_xml | – volume: 140 start-page: 60 year: 2014 end-page: 77 ident: bb1270 article-title: Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods publication-title: Remote Sens. Environ. – volume: 153 start-page: 42 year: 2014 end-page: 48 ident: bb1315 article-title: Landsat thermal infrared imagery and western water management publication-title: J. Contemp. Water Res. Educ. – volume: 174 start-page: 341 year: 2016 end-page: 352 ident: bb0875 article-title: Water observations from space: mapping surface water from 25 years of Landsat imagery across Australia publication-title: Remote Sens. Environ. – volume: 144 start-page: 42 year: 2014 end-page: 64 ident: bb1360 article-title: Automated crop field extraction from multi-temporal web enabled Landsat data publication-title: Remote Sens. Environ. – start-page: 92181A year: 2014 ident: bb1105 article-title: Chasing the TIRS ghosts: calibrating the Landsat 8 thermal bands publication-title: SPIE Optical Engineering + Applications – volume: 83 start-page: 62 year: 2002 end-page: 76 ident: bb1025 article-title: The MODIS land product quality assessment approach publication-title: Remote Sens. Environ. – reference: Roy, D.P., Yan, L., 2018. Robust Landsat-based crop time series modelling. Remote Sens. Environ. doi: – volume: 9 start-page: 1035 year: 2016 end-page: 1054 ident: bb0555 article-title: Mass data processing of time series Landsat imagery: pixels to data products for forest monitoring publication-title: Int. J. Digital Earth – volume: 22 start-page: 184 year: 2011 end-page: 197 ident: bb1165 article-title: Application of indicator systems for monitoring and assessment of desertification from national to global scales publication-title: Land Degrad. Dev. – volume: 87 start-page: 343 year: 2006 end-page: 360 ident: bb0815 article-title: North American regional reanalysis publication-title: Bull. Am. Meteorol. Soc. – volume: 122 start-page: 11 year: 2012 end-page: 21 ident: bb0615 article-title: The next Landsat satellite: the Landsat data continuity mission publication-title: Remote Sens. Environ. – volume: 114 start-page: 854 year: 2010 end-page: 866 ident: bb0885 article-title: Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters publication-title: Remote Sens. Environ. – volume: 216 start-page: 497 year: 2018 end-page: 513 ident: bb0490 article-title: Reconstructing long term annual deforestation dynamics in Pará and Mato Grosso using the Landsat archive publication-title: Remote Sens. Environ. – volume: 115 start-page: 1421 year: 2011 end-page: 1433 ident: bb1115 article-title: Mapping wildfire and clearcut harvest disturbances in boreal forests with Landsat time series data publication-title: Remote Sens. Environ. – volume: 185 start-page: 37 year: 2016 end-page: 45 ident: bb1110 article-title: The impact of improved signal-to-noise ratios on algorithm performance: case studies for Landsat class instruments publication-title: Remote Sens. Environ. – volume: 53 start-page: 648 year: 2014 end-page: 665 ident: bb0920 article-title: Diurnal remote sensing of coastal/oceanic waters: a radiometric analysis for geostationary coastal and air pollution events publication-title: Appl. Opt. – volume: 122 start-page: 175 year: 2012 end-page: 184 ident: bb0625 article-title: Continental-scale validation of MODIS-based and LEDAPS Landsat ETM+ atmospheric correction methods publication-title: Remote Sens. Environ. – volume: 169 start-page: 390 year: 2015 end-page: 403 ident: bb0200 article-title: Evaluation of the Landsat-5 TM and Landsat-7 ETM + surface reflectance products publication-title: Remote Sens. Environ. – volume: 114 start-page: 1576 year: 2010 end-page: 1589 ident: bb1290 article-title: Characterizing temperate forest structural and spectral diversity with Hyperion EO-1 data publication-title: Remote Sens. Environ. – volume: 176 start-page: 255 year: 2016 end-page: 271 ident: bb1040 article-title: A general method to normalize Landsat reflectance data to nadir BRDF adjusted reflectance publication-title: Remote Sens. Environ. – volume: 41 start-page: 6396 year: 2014 end-page: 6402 ident: bb1245 article-title: A global inventory of lakes based on high-resolution satellite imagery publication-title: Geophys. Res. Lett. – volume: 20 start-page: 114 year: 2015 end-page: 123 ident: bb0790 article-title: Global satellite monitoring of climate-induced vegetation disturbances publication-title: Trends Plant Sci. – volume: 162 start-page: 67 year: 2015 end-page: 83 ident: bb1435 article-title: Generating synthetic Landsat images based on all available Landsat data: predicting Landsat surface reflectance at any given time publication-title: Remote Sens. Environ. – volume: 5 start-page: 1709 year: 2012 end-page: 1721 ident: bb0810 article-title: Satellite irrigation management support with the terrestrial observation and prediction system: a framework for integration of satellite and surface observations to support improvements in agricultural water resource management publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: vol. 9643 start-page: 96430A year: 2015 ident: bb0260 article-title: Sentinel 2 global reference image publication-title: Image and Signal Processing for Remote Sensing XXI – volume: 342 start-page: 850 year: 2013 end-page: 853 ident: bb0510 article-title: High-resolution global maps of 21st-century forest cover change publication-title: Science – volume: 8 start-page: 166 year: 2017 ident: bb0585 article-title: Patch-based forest change detection from Landsat time series publication-title: Forests – volume: 2017–1034 year: 2017 ident: bb0715 article-title: Landsat and agriculture—case studies on the uses and benefits of Landsat imagery in agricultural monitoring and production publication-title: U.S. Geol. Surv. Open File Rep. – volume: 4 start-page: 57 year: 2004 end-page: 77 ident: bb0825 article-title: Parameterization of albedo over heterogeneous surfaces in coupled land-atmosphere schemes for environmental modeling. Part I: theoretical background publication-title: Environ. Fluid Mech. – volume: 122 start-page: 2 year: 2012 end-page: 10 ident: bb1335 article-title: Opening the archive: how free data has enabled the science and monitoring promise of Landsat publication-title: Remote Sens. Environ. – volume: 10 start-page: 1058 year: 2018 ident: bb1195 article-title: Fusion of moderate resolution earth observations for operational crop type mapping publication-title: Remote Sens. – volume: 66 start-page: 174 year: 2018 end-page: 183 ident: bb0125 article-title: Updating stand-level forest inventories using airborne laser scanning and Landsat time series data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 5 start-page: 6481 year: 2013 end-page: 6500 ident: bb0335 article-title: Seasonal composite Landsat TM/ETM plus images using the Medoid (a multi-dimensional median) publication-title: Remote Sens. – volume: 174 start-page: 82 year: 2016 end-page: 99 ident: bb0040 article-title: The evaporative stress index as an indicator of agricultural drought in Brazil: an assessment based on crop yield impacts publication-title: Remote Sens. Environ. – volume: 64 start-page: 191 year: 2015 end-page: 204 ident: bb0140 article-title: A spatially explicit land surface phenology data product for science, monitoring and natural resources management applications publication-title: Environ. Model Softw. – volume: 7 start-page: 073558 year: 2013 ident: bb0415 article-title: Increased potential to monitor water quality in the near-shore environment with Landsat's next-generation satellite publication-title: J. Appl. Remote. Sens. – volume: 48 start-page: 3489 year: 2017 end-page: 3505 ident: bb0055 article-title: Effective radiative forcing from historical land use change publication-title: Clim. Dyn. – volume: 117 year: 2012 ident: bb0595 article-title: Quantifying uncertainties in land surface temperature and emissivity retrievals from ASTER and MODIS thermal infrared data publication-title: J. Geophys. Res.-Atmos. – volume: 62 start-page: 32 year: 2016 end-page: 46 ident: bb0195 article-title: Remote sensing approach to detect post-fire vegetation regrowth in Siberian boreal larch forest publication-title: Ecol. Indic. – volume: 3 start-page: 47 year: 2015 end-page: 60 ident: bb0385 article-title: Fusing Landsat and MODIS data for vegetation monitoring publication-title: IEEE Geosci. Remote Sens. Mag. – volume: 57 start-page: 202 year: 2017 end-page: 213 ident: bb1260 article-title: Smoothing and gap-filling of high resolution multi-spectral time series: example of Landsat data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 185 start-page: 271 year: 2016 end-page: 283 ident: bb1345 article-title: The global Landsat archive: status, consolidation, and direction publication-title: Remote Sens. Environ. – volume: 9 start-page: 317 year: 2017 ident: bb1190 article-title: Daily mapping of 30m LAI and NDVI for grape yield prediction in California vineyards publication-title: Remote Sens. – year: 2016 ident: bb0420 article-title: A Sourcebook of Methods and Procedures for Monitoring and Reporting Anthropogenic Greenhouse Gas Emissions and Removals Associated with Deforestation, Gains and Losses of Carbon Stocks in Forests Remaining Forests, and Forestation. GOFC-GOLD Report Version COP22-1 – volume: 2(3) start-page: 152 year: 2016 end-page: 170 ident: bb0940 article-title: From imagery to ecology: leveraging time series of all available Landsat observations to map and monitor ecosystem state and dynamics publication-title: Remote Sensing in Ecology and Conservation – volume: 83 start-page: 97 year: 2002 end-page: 111 ident: bb1235 article-title: Atmospheric correction of MODIS data in the visible to middle infrared: first results publication-title: Remote Sens. Environ. – volume: 11 start-page: 109 year: 1988 end-page: 120 ident: bb0905 article-title: Numerical analysis of Landsat thematic mapper images of Antarctica: surface temperatures and physical properties publication-title: Ann. Glaciol. – volume: 124 start-page: 689 year: 2012 end-page: 704 ident: bb1095 article-title: Monitoring land cover change in urban and pen-urban areas using dense time stacks of Landsat satellite data and a data mining approach publication-title: Remote Sens. Environ. – volume: 122 start-page: 41 year: 2012 end-page: 49 ident: bb1100 article-title: Thermal infrared radiometric calibration of the entire Landsat 4, 5, and 7 archive (1982–2010) publication-title: Remote Sens. Environ. – volume: 49 start-page: 1926 year: 2011 end-page: 1936 ident: bb1060 article-title: Detecting spatiotemporal changes of corn developmental stages in the US Corn Belt using MODIS WDRVI data publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 38 start-page: 51 year: 2015 end-page: 64 ident: bb0115 article-title: Applicability of Landsat 8 data for characterizing glacier facies and supraglacial debris publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 9 start-page: 646 year: 2016 ident: bb0280 article-title: A post-Paris look at climate observations publication-title: Nat. Geosci. – volume: 216 start-page: 598 year: 2018 end-page: 614 ident: bb0530 article-title: Coral reef applications of Sentinel-2: coverage, characteristics, bathymetry and benthic mapping with comparison to Landsat 8 publication-title: Remote Sens. Environ. – volume: 177 start-page: 13 year: 2016 end-page: 20 ident: bb2040 article-title: Imaging phenology; scaling from camera plots to landscapes publication-title: Remote Sens. Environ. – year: 2015 ident: bb1085 article-title: Perspectives on Public - Private Partnerships in U.S. Earth Observing Programs – volume: 35 start-page: 675 year: 1997 end-page: 686 ident: bb1230 article-title: Second simulation of the satellite signal in the solar spectrum, 6S: an overview publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 202 start-page: 18 year: 2017 end-page: 27 ident: bb0460 article-title: Google Earth Engine: planetary-scale geospatial analysis for everyone publication-title: Remote Sens. Environ. – volume: 53 start-page: 123 year: 2012 end-page: 128 ident: bb0765 article-title: The role of Pine Island Glacier ice shelf basal channels in deep-water upwelling, polynyas and ocean circulation in Pine Island Bay, Antarctica publication-title: Ann. Glaciol. – volume: 10 start-page: 352 year: 2018 ident: bb0285 article-title: Atmospheric correction inter-comparison exercise publication-title: Remote Sens. – volume: 6 start-page: 12275 year: 2014 end-page: 12808 ident: bb0775 article-title: Landsat-8 operational land imager radiometric calibration and stability publication-title: Remote Sens. – volume: 3 start-page: 68 year: 2006 end-page: 72 ident: bb0780 article-title: A Landsat surface reflectance dataset for North America, 1990-2000 publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 185 start-page: 108 year: 2016 end-page: 118 ident: bb0750 article-title: Landsat 8: providing continuity and increased precision for measuring multi-decadal time series of total suspended matter publication-title: Remote Sens. Environ. – year: 2013 ident: bb1210 article-title: Decision 22/COP.11 Advice on How Best to Measure Progress on Strategic Objectives 1, 2 and 3 of The Strategy ICCD/COP(11)/23/Add.1 – volume: 17 start-page: 2459 year: 2013 end-page: 2472 ident: bb0645 article-title: Water accounting plus (WA+) - a water accounting procedure for complex river basins based on satellite measurements publication-title: Hydrol. Earth Syst. Sci. – volume: 12 start-page: 339 year: 2014 end-page: 346 ident: bb0670 article-title: Bringing an ecological view of change to Landsat-based remote sensing publication-title: Front. Ecol. Environ. – volume: 39 start-page: 4254 year: 2018 end-page: 4284 ident: bb1350 article-title: Land cover 2.0 publication-title: Int. J. Remote Sens. – volume: 10 start-page: 1253 year: 2017 end-page: 1269 ident: bb1160 article-title: Automatic sub-pixel co-registration of Landsat-8 operational land imager and sentinel-2A multi-spectral instrument images using phase correlation and machine learning based mapping publication-title: Int. J. Digital Earth – volume: 185 start-page: 186 year: 2016 end-page: 197 ident: bb0600 article-title: Assessing the role of climate and resource management on groundwater dependent ecosystem changes in arid environments with the Landsat archive publication-title: Remote Sens. Environ. – volume: 151 start-page: 124 year: 2014 end-page: 137 ident: bb0975 article-title: Using Landsat-derived disturbance and recovery history and Lidar to map forest biomass dynamics publication-title: Remote Sens. Environ. – volume: 70 start-page: 215 year: 2016 end-page: 230 ident: bb0045 article-title: Relationships between the evaporative stress index and winter wheat and spring barley yield anomalies in the Czech Republic publication-title: Clim. Res. – volume: 42 start-page: 177 year: 1992 end-page: 186 ident: bb1065 article-title: Application of image cross-correlation to the measurement of glacier velocity using satellite image data publication-title: Remote Sens. Environ. – volume: 352 start-page: 9 year: 2015 end-page: 20 ident: bb0660 article-title: Dynamics of global forest area: results from the FAO global Forest resources assessment 2015 publication-title: For. Ecol. Manag. – volume: 122 start-page: 22 year: 2012 end-page: 29 ident: bb0735 article-title: Landsat: building a strong future publication-title: Remote Sens. Environ. – volume: 9 start-page: 113 year: 2016 end-page: 133 ident: bb0315 article-title: A global, high-resolution (30-m) inland water body dataset for 2000: first results of a topographic–spectral classification algorithm publication-title: Int. J. Digital Earth – volume: 37 start-page: 138 year: 2015 end-page: 149 ident: bb0980 article-title: Forest recovery trends derived from Landsat time series for North American boreal forests publication-title: Int. J. Remote Sens. – start-page: 1165 year: 2016 end-page: 1168 ident: bb2035 article-title: Calibration/validation of Landsat-Derived Ocean Colour Products in Boston Harbour publication-title: ISPRS - International Archives of the Photogrammetry – start-page: 49 year: 2017 ident: bb1220 article-title: United Nations Economic and Social Council Report of the Inter-agency and Expert Group on Sustainable Development Goal Indicators, E/CN.3/2017/2 – volume: 6 start-page: 2088 year: 2013 end-page: 2101 ident: bb0475 article-title: A pixel-based Landsat compositing algorithm for large area land cover mapping publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 505 start-page: 143 year: 2014 end-page: 144 ident: bb0170 article-title: Many eyes on earth publication-title: Nature. – volume: 54 start-page: 3963 year: 2015 end-page: 3978 ident: bb0860 article-title: Toward an operational stray light correction for the Landsat 8 thermal infrared sensor publication-title: Appl. Opt. – volume: 115 year: 2010 ident: bb0070 article-title: Radiative forcing over the conterminous United States due to contemporary land cover land use change and sensitivity to snow and interannual albedo variability publication-title: J. Geophys. Res. – volume: 8 start-page: 251 year: 2017 ident: bb0895 article-title: Using intra-annual Landsat time series for attributing forest disturbance agents in Central Europe publication-title: Forests – volume: 116 start-page: 55 year: 2016 end-page: 72 ident: bb0430 article-title: Time-series informed land cover: a review publication-title: Int. J. Photogramm. Remote Sens. – volume: 204 start-page: 717 year: 2018 end-page: 728 ident: bb0525 article-title: Mapping forest change using stacked generalization: an ensemble approach publication-title: Remote Sens. Environ. – volume: 4 start-page: 1856 year: 2012 end-page: 1886 ident: bb0110 article-title: Preparing Landsat Image Time Series (LITS) for monitoring changes in vegetation phenology in Queensland, Australia publication-title: Remote Sens. – volume: 98 start-page: 2397 year: 2017 end-page: 2410 ident: bb0605 article-title: Climate engine: cloud computing and visualization of climate and remote sensing data for advanced natural resource monitoring and process understanding publication-title: Bull. Am. Meteorol. Soc. – year: 2019 ident: bb2000 article-title: Benefits of the Free and Open Landsat Data Policy publication-title: Remote Sens. Environ. – volume: 52 start-page: 361 year: 2016 end-page: 370 ident: bb1125 article-title: Mapping Brazilian savanna vegetation gradients with Landsat time series publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 113 start-page: 893 year: 2009 end-page: 903 ident: bb0180 article-title: Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors publication-title: Remote Sens. Environ. – year: 2017 ident: bb1215 article-title: United Nations Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP/248 – volume: 169 start-page: 128 year: 2015 end-page: 138 ident: bb0130 article-title: Automated cloud and cloud shadow identification in Landsat MSS imagery for temperate ecosystems publication-title: Remote Sens. Environ. – volume: 45 start-page: 6124 year: 2018 end-page: 6133 ident: bb1070 article-title: Ultralow surface temperatures in East Antarctica from satellite thermal infrared mapping: the coldest places on Earth publication-title: Geophys. Res. Lett. – volume: 8 start-page: 29 year: 2017 end-page: 37 ident: bb0005 article-title: Classification of annual non-stand replacing boreal forest change in Canada using Landsat time series: a case study in northern Ontario publication-title: Remote Sens. Lett. – volume: 6 start-page: 11127 year: 2014 end-page: 11152 ident: bb1175 article-title: Landsat 8 operational land imager on-orbit geometric calibration and performance publication-title: Remote Sens. – year: 1988 ident: bb2025 article-title: Satellite image atlas of glaciers of the world: Antarctica publication-title: U.S. Geological Survey Professional Paper 1386-B – volume: 22 start-page: 3518 year: 2016 end-page: 3528 ident: bb0850 article-title: Shape selection in Landsat time series: a tool for monitoring forest dynamics publication-title: Glob. Chang. Biol. – volume: 302 start-page: 1011 year: 2008 ident: bb2005 article-title: Free access to Landsat imagery publication-title: Science – volume: 14 start-page: 1035 year: 2013 end-page: 1056 ident: bb0035 article-title: An intercomparison of drought indicators based on thermal remote sensing and NLDAS-2 simulations with U.S. drought monitor classifications publication-title: J. Hydrometeorol. – volume: Vol. 10402 year: 2017 ident: bb0640 article-title: Pathway to future sustainable land imaging: the compact hyperspectral prism spectrometer publication-title: Earth Observing Systems XXII – volume: 9 start-page: 584 year: 2017 ident: bb0405 article-title: Copernicus sentinel-2A calibration and products validation status publication-title: Remote Sens. – volume: 29 start-page: 128 year: 2015 end-page: 138 ident: bb0235 article-title: MODIS Terra collection 6 fractional snow cover validation in mountainous terrain during spring snowmelt using Landsat TM and ETM+ publication-title: Hydrol. Process. – volume: 96 start-page: 21971 year: 1991 end-page: 21987 ident: bb1170 article-title: NASA team algorithm for sea ice concentration retrieval from defense meteorological satellite program special sensor microwave imager: comparison with Landsat satellite imagery publication-title: J. Geophys. Res. Oceans – volume: 144 start-page: 152 year: 2014 end-page: 171 ident: bb1415 article-title: Continuous change detection and classification of land cover using all available Landsat data publication-title: Remote Sens. Environ. – volume: 159 start-page: 28 year: 2015 end-page: 43 ident: bb0995 article-title: Eastern Europe's forest cover dynamics from 1985 to 2012 quantified from the full Landsat archive publication-title: Remote Sens. Environ. – year: 2018 ident: bb0880 article-title: Thriving on our Changing Planet: A Decadal Strategy for Earth Observation from Space – volume: 152 start-page: 217 year: 2014 end-page: 234 ident: bb1420 article-title: Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: an algorithm designed specifically for monitoring land cover change publication-title: Remote Sens. Environ. – volume: 133 start-page: 380 year: 2007 end-page: 394 ident: bb0010 article-title: Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—model publication-title: J. Irrig. Drain. Eng. – volume: 216 start-page: 472 year: 2018 end-page: 481 ident: bb0705 article-title: Uncertainty estimation method and Landsat 7 global validation for the Landsat surface temperature product publication-title: Remote Sens. Environ. – volume: 115 start-page: 3707 year: 2011 end-page: 3718 ident: bb0795 article-title: A Landsat time series approach to characterize bark beetle and defoliator impacts on tree mortality and surface fuels in conifer forests publication-title: Remote Sens. Environ. – volume: 10 start-page: 1337 year: 2018 ident: bb0935 article-title: Toward long-term aquatic science products from heritage Landsat missions publication-title: Remote Sens. – volume: 51 start-page: 367 year: 2013 end-page: 380 ident: bb1010 article-title: Assessment of methods for mapping snow cover from MODIS publication-title: Adv. Water Resour. – volume: 9 start-page: 109 year: 1987 end-page: 118 ident: bb0900 article-title: Snow and ice studies by thematic mapper and multispectral scanner Landsat images publication-title: Ann. Glaciol. – volume: 44 start-page: 2207 year: 2006 end-page: 2218 ident: bb0380 article-title: On the blending of the Landsat and MODIS surface reflectance: predict daily Landsat surface feflectance publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 6 year: 2016 ident: bb0020 article-title: Capturing coupled riparian and coastal disturbance from industrial mining using cloud-resilient satellite time series analysis publication-title: Sci. Rep. – volume: 50 start-page: 3340 year: 2012 end-page: 3353 ident: bb0145 article-title: Fitting the multitemporal curve: a Fourier series approach to the missing data problem in remote sensing analysis publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 60 start-page: 49 year: 2017 end-page: 60 ident: bb1145 article-title: Remote sensing of forest insect disturbances: current state and future directions publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 38 start-page: 977 year: 2000 end-page: 998 ident: bb0745 article-title: An algorithm for the retrieval of albedo from space using semiempirical BRDF models publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 154 start-page: 272 year: 2014 end-page: 284 ident: bb0925 article-title: On-orbit radiometric characterization of OLI (Landsat-8) for applications in aquatic remote sensing publication-title: Remote Sens. Environ. – volume: 122 start-page: 206 year: 2016 end-page: 221 ident: bb1440 article-title: Optimizing selection of training and auxiliary data for operational land cover classification for the LCMAP initiative publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 120 start-page: 25 year: 2012 end-page: 36 ident: bb0295 article-title: Sentinel-2: ESA's optical high-resolution mission for GMES operational services publication-title: Remote Sens. Environ. – volume: 118 start-page: 83 year: 2012 end-page: 94 ident: bb1410 article-title: Object-based cloud and cloud shadow detection in Landsat imagery publication-title: Remote Sens. Environ. – volume: 145 start-page: 154 year: 2014 end-page: 172 ident: bb1035 article-title: Landsat-8: science and product vision for terrestrial global change research publication-title: Remote Sens. Environ. – volume: 10 start-page: 1340 year: 2018 ident: bb0535 article-title: Observations and recommendations for the calibration of Landsat 8 OLI and sentinel 2 MSI for improved data interoperability publication-title: Remote Sens. – volume: 49 start-page: 498 year: 2013 end-page: 517 ident: bb0160 article-title: Estimating crop water use via remote sensing techniques vs. conventional methods in the South Platte River Basin, Colorado publication-title: J. Am. Water Resour. Assoc. – volume: 166 start-page: 271 year: 2015 end-page: 285 ident: bb0675 article-title: Attribution of disturbance change agent from Landsat time series in support of habitat monitoring in the Puget Sound region, USA publication-title: Remote Sens. Environ. – year: 2018 ident: bb0700 article-title: The grape remote sensing atmospheric profile and evapotranspiration eXperiment (GRAPEX) publication-title: Bull. Am. Meteorol. Soc. – volume: 67 start-page: 309 year: 1999 end-page: 319 ident: bb0710 article-title: Calculating change curves for multitemporal satellite imagery: Mount St. Helens 1980-1995 publication-title: Remote Sens. Environ. – volume: 185 start-page: 46 year: 2016 end-page: 56 ident: bb1240 article-title: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product publication-title: Remote Sens. Environ. – volume: Vol. 9607 start-page: 96070S year: 2015 ident: bb0245 article-title: Requirement sensitivity studies for a future Landsat sensor publication-title: Earth Observing Systems XX – volume: 114 start-page: 2911 year: 2010 end-page: 2924 ident: bb0210 article-title: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync—tools for calibration and validation publication-title: Remote Sens. Environ. – volume: 115 start-page: 548 year: 2011 end-page: 561 ident: bb0990 article-title: Regional-scale boreal forest cover and change mapping using Landsat data composites for European Russia publication-title: Remote Sens. Environ. – volume: 2 start-page: 33 year: 2015 end-page: 54 ident: bb1285 article-title: A contemporary decennial examination of changing agricultural field sizes using Landsat time series data publication-title: Geogr. Environ. – volume: 32 start-page: 115 year: 1996 end-page: 130 ident: bb1015 article-title: Automated mapping of montane snow cover at subpixel resolution from the Landsat thematic mapper publication-title: Water Resour. Res. – volume: 64 start-page: 321 year: 2018 end-page: 332 ident: bb0015 article-title: Continent-wide estimates of Antarctic strain rates from Landsat 8-derived velocity grids publication-title: J. Glaciol. – volume: 40 start-page: 362 year: 2014 end-page: 384 ident: bb0065 article-title: Forest monitoring using Landsat time-series data—a review publication-title: Can. J. Remote. Sens. – volume: 170 start-page: 90 year: 2015 end-page: 101 ident: bb0620 article-title: Performance of Landsat 8 operational land imager for mapping ice sheet velocity publication-title: Remote Sens. Environ. – reference: (Accessed: Jan 10, 2019). – volume: 9 start-page: 096070 year: 2015 ident: bb0360 article-title: Ocean color measurements with the operational land imager on Landsat-8: implementation and evaluation in SeaDAS publication-title: J. Appl. Remote. Sens. – volume: 130 start-page: 370 year: 2017 end-page: 384 ident: bb1405 article-title: Change detection using Landsat time series: a review of frequencies, preprocessing, algorithms, and applications publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 218 start-page: 230 year: 2016 end-page: 242 ident: bb0910 article-title: Assessing the evolution of soil moisture and vegetation conditions during the 2012 United States flash drought publication-title: Agric. For. Meteorol. – volume: 151 start-page: 72 year: 2014 end-page: 88 ident: bb0485 article-title: Forest disturbances, forest recovery, and changes in forest types across the Carpathian ecoregion from 1985 to 2010 based on Landsat image composites publication-title: Remote Sens. Environ. – volume: 540 start-page: 418 year: 2016 end-page: 422 ident: bb0950 article-title: High-resolution mapping of global surface water and its long-term changes publication-title: Nature – volume: 37 start-page: 234 year: 2011 end-page: 251 ident: bb1295 article-title: A history of habitat dynamics: characterizing 35 years of stand-replacing disturbance publication-title: Can. J. Remote. Sens. – volume: 360 start-page: 1303 year: 2018 end-page: 1305 ident: bb0320 article-title: Combating deforestation: from satellite to intervention publication-title: Science. – volume: 172 start-page: 67 year: 2016 end-page: 86 ident: bb1365 article-title: Conterminous United States crop field size quantification from multi-temporal Landsat data publication-title: Remote Sens. Environ. – volume: 205 start-page: 32 year: 2018 end-page: 45 ident: bb0370 article-title: Analyzing spatial and temporal variability in short-term rates of post-fire vegetation return from Landsat Time Series publication-title: Remote Sens. Environ. – volume: 114 start-page: 183 year: 2010 end-page: 198 ident: bb0580 article-title: An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks publication-title: Remote Sens. Environ. – volume: 114 start-page: 2897 year: 2010 end-page: 2910 ident: bb0665 article-title: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr - Temporal segmentation algorithms publication-title: Remote Sens. Environ. – volume: 7 start-page: 1135 year: 2015 end-page: 1153 ident: bb2045 article-title: The Thermal Infrared Sensor (TIRS) on Landsat 8: Design overview and pre-launch characterization publication-title: Remote Sens. – volume: 122 start-page: 30 year: 2012 end-page: 40 ident: bb0770 article-title: Forty-year calibrated record of earth-reflected radiance from Landsat: a review publication-title: Remote Sens. Environ. – volume: 82 start-page: 38 year: 2002 end-page: 47 ident: bb0695 article-title: A procedure for regional lake water clarity assessment using Landsat multispectral data publication-title: Remote Sens. Environ. – volume: 195 start-page: 230 year: 2017 end-page: 243 ident: bb1120 article-title: Testing a Landsat-based approach for mapping disturbance causality in U.S. forests publication-title: Remote Sens. Environ. – volume: 122 start-page: 92 year: 2012 end-page: 105 ident: bb1255 article-title: Monitoring gradual ecosystem change using Landsat time series data analyses: case studies in selected forest and rangeland ecosystems publication-title: Remote Sens. Environ. – volume: 33 start-page: 5546 year: 2012 end-page: 5573 ident: bb0425 article-title: Characterizing 25 years of change in the area, distribution, and carbon stock of Mediterranean pines in Central Spain publication-title: Int. J. Remote Sens. – volume: 102 start-page: 17081 year: 1997 end-page: 17106 ident: bb0450 article-title: Atmospheric correction of ocean color imagery in the Earth Observing System era publication-title: J. Geophys. Res.-Atmos. – volume: 5 start-page: 58 year: 2017 ident: bb0830 article-title: Toward monitoring surface and subsurface lakes on the Greenland ice sheet using Sentinel-1 SAR and Landsat-8 OLI imagery publication-title: Front. Earth Sci. – volume: 41 start-page: 1373 year: 2003 end-page: 1377 ident: bb0120 article-title: Tracking subpixel-scale sastrugi with advanced land imager publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 175 start-page: 52 year: 2016 end-page: 64 ident: bb0175 article-title: Estimating the effective spatial resolution of the operational BRDF, albedo, and nadir reflectance products from MODIS and VIIRS publication-title: Remote Sens. Environ. – volume: 200 year: 2016 ident: bb0410 article-title: The Global Observing System for Climate: Implementation Needs – volume: 95(7) start-page: S143 year: 2014 ident: bb0345 article-title: Antarctica publication-title: State of the Climate in 2013 – volume: 10 start-page: 1489 year: 2018 ident: bb0395 article-title: Assessing the variability of corn and soybean yields in central Iowa using high spatiotemporal resolution multi-satellite imagery publication-title: Remote Sens. – volume: 99 start-page: 1 year: 2018 end-page: 19 ident: bb0760 article-title: An operational land surface temperature product for Landsat thermal data: methodology and validation publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 185 start-page: 95 year: 2016 end-page: 107 ident: bb0225 article-title: Retrieval of color producing agents in case 2 waters using Landsat 8 publication-title: Remote Sens. Environ. – volume: 100 start-page: 265 year: 2006 end-page: 279 ident: bb0325 article-title: Green leaf phenology at Landsat resolution: scaling from the field to the satellite publication-title: Remote Sens. Environ. – volume: 112 start-page: 955 year: 2008 end-page: 969 ident: bb1330 article-title: Landsat continuity: issues and opportunities for land cover monitoring publication-title: Remote Sens. Environ. – volume: 122 start-page: 75 year: 2012 end-page: 91 ident: bb1425 article-title: Continuous monitoring of forest disturbance using all available Landsat imagery publication-title: Remote Sens. Environ. – volume: 36 start-page: 1228 year: 1998 end-page: 1249 ident: bb0630 article-title: The moderate resolution imaging spectroradiometer (MODIS): land remote sensing for global change research publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 194 start-page: 155 year: 2017 end-page: 160 ident: bb1140 article-title: A Bayesian hierarchical model for estimating spatial and temporal variation in vegetation phenology from Landsat time series publication-title: Remote Sens. Environ. – volume: 9 start-page: 104 year: 1987 end-page: 108 ident: bb0500 article-title: Characterization of snow and ice reflectance zones on glaciers using Landsat Thematic Mapper data publication-title: Ann. Glaciol. – volume: 12 start-page: 1723 year: 1998 end-page: 1744 ident: bb0690 article-title: Improving snow cover mapping in forests through the use of a canopy reflectance model publication-title: Hydrol. Process. – volume: 49 start-page: 518 year: 2013 end-page: 533 ident: bb0095 article-title: Estimating annual groundwater evapotranspiration from phreatophytes in the great basin using Landsat and flux tower measurements publication-title: J. Am. Water Resour. Assoc. – volume: 72 start-page: 1155 year: 2006 end-page: 1169 ident: bb0465 article-title: Historical record of Landsat global coverage publication-title: Photogramm. Eng. Remote Sens. – volume: 188 start-page: 9 year: 2017 end-page: 25 ident: bb0390 article-title: Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery publication-title: Remote Sens. Environ. – volume: 2(3) start-page: 122 year: 2016 end-page: 131 ident: bb0960 article-title: Framing the concept of satellite remote sensing essential biodiversity variables: challenges and future directions publication-title: Remote Sensing in Ecology and Conservation – volume: 408 start-page: 187 year: 2000 ident: bb0105 article-title: Offset of the potential carbon sink from boreal forestation by decreases in surface albedo publication-title: Nature. – volume: 9 start-page: 670 year: 2017 ident: bb0250 article-title: Calibration of METRIC model to estimate energy balance over a drip-irrigated apple orchard publication-title: Remote Sens. – volume: 181 start-page: 237 year: 2016 end-page: 250 ident: bb1380 article-title: A hybrid approach for detecting corn and soybean phenology with time-series MODIS data publication-title: Remote Sens. Environ. – volume: 33 start-page: 443 year: 1994 end-page: 452 ident: bb0455 article-title: Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm publication-title: Appl. Opt. – volume: 143 start-page: 66 year: 2016 end-page: 80 ident: bb1325 article-title: Disturbance and the carbon balance of US forests: a quantitative review of impacts from harvests, fires, insects, and droughts publication-title: Glob. Planet. Chang. – volume: 83 start-page: 135 year: 2002 end-page: 148 ident: bb1075 article-title: First operational BRDF, albedo nadir reflectance products from MODIS publication-title: Remote Sens. Environ. – volume: 51 start-page: 822 year: 2018 end-page: 837 ident: bb0085 article-title: Sentinel-2A MSI and Landsat-8 OLI radiometric cross comparison over desert sites publication-title: Eur. J. Remote Sens. – volume: 10 start-page: 48 year: 2017 ident: bb0375 article-title: A land product characterization system for comparative analysis of satellite data and products publication-title: Remote Sens. – volume: 81 start-page: 573 year: 2015 end-page: 586 ident: bb0890 article-title: A Landsat data tiling and compositing approach optimized for change detection in the conterminous United States publication-title: Photogramm. Eng. Remote. Sens. – volume: 216 start-page: 262 year: 2018 end-page: 275 ident: bb1310 article-title: Confirmation of post-harvest spectral recovery from Landsat time series using measures of forest cover and height derived from airborne laser scanning data publication-title: Remote Sens. Environ. – volume: 8 start-page: 98 year: 2017 ident: bb0220 article-title: How similar are forest disturbance maps derived from different Landsat time series algorithms? publication-title: Forests. – start-page: 73 year: 2013 ident: bb2010 article-title: Landsat and beyond: Sustaining and enhancing the nation's land imaging program – volume: 316 start-page: 847 year: 2007 end-page: 851 ident: bb1000 article-title: Global desertification: building a science for dryland development publication-title: Science – volume: 199 start-page: 25 year: 2017 end-page: 38 ident: bb1050 article-title: Examination of Sentinel-2A multi-spectral instrument (MSI) reflectance anisotropy and the suitability of a general method to normalize MSI reflectance to nadir BRDF adjusted reflectance publication-title: Remote Sens. Environ. – volume: 170 start-page: 166 year: 2015 end-page: 177 ident: bb1135 article-title: Characterizing spectral-temporal patterns of defoliator and bark beetle disturbances using Landsat time series publication-title: Remote Sens. Environ. – volume: 159 start-page: 269 year: 2015 end-page: 277 ident: bb1430 article-title: Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images publication-title: Remote Sens. Environ. – volume: 10 start-page: 15 year: 2016 ident: bb0985 article-title: Estimating supraglacial lake depth in West Greenland using Landsat 8 and comparison with other multispectral methods publication-title: Cryosphere – volume: 6 start-page: 11607 year: 2014 end-page: 11626 ident: bb0080 article-title: Landsat-8 thermal infrared sensor (TIRS) vicarious radiometric calibration publication-title: Remote Sens. – volume: 132 start-page: 176 year: 2013 end-page: 185 ident: bb0800 article-title: Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM + data publication-title: Remote Sens. Environ. – volume: 115 start-page: 2204 year: 2011 end-page: 2216 ident: bb1155 article-title: An algorithm for the retrieval of 30-m snow-free albedo from Landsat surface reflectance and MODIS BRDF publication-title: Remote Sens. Environ. – volume: 186 start-page: 121 year: 2016 end-page: 122 ident: bb1180 article-title: A note on the temporary mis-registration of Landsat-8 operational land imager (OLI) and Sentinel-2 multi spectral instrument (MSI) imagery publication-title: Remote Sens. Environ. – volume: 6 start-page: 360 year: 2013 end-page: 374 ident: bb0915 article-title: Leveraging EO-1 to evaluate capability of new generation of Landsat sensors for coastal/inland water studies publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – year: 2017 ident: bb0470 article-title: Landsat's Enduring Legacy: Pioneering Global Land Observations from Space – volume: 170 start-page: 62 year: 2015 end-page: 76 ident: bb1340 article-title: Virtual constellations for global terrestrial monitoring publication-title: Remote Sens. Environ. – year: 2018 ident: bb1080 article-title: An initial validation of Landsat 5 and 7 derived surface water temperature for US lakes, reservoirs, and estuaries publication-title: Int. J. Remote Sens. – volume: 28 start-page: 5123 year: 2007 end-page: 5141 ident: bb1225 article-title: Mean compositing, an alternative strategy for producing temporal syntheses. Concepts and performance assessment for SPOT VEGETATION time series publication-title: Int. J. Remote Sens. – volume: 169 start-page: 320 year: 2015 end-page: 334 ident: bb0270 article-title: Tracking disturbance-regrowth dynamics in tropical forests using structural change detection and Landsat time series publication-title: Remote Sens. Environ. – volume: 178 start-page: 142 year: 2016 end-page: 157 ident: bb1200 article-title: Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region publication-title: Remote Sens. Environ. – volume: 112 start-page: 3680 year: 2008 end-page: 3689 ident: bb0440 article-title: Estimation of insect infestation dynamics using a temporal sequence of Landsat data publication-title: Remote Sens. Environ. – volume: 6 start-page: 11244 year: 2014 end-page: 11266 ident: bb0230 article-title: Development of an operational calibration methodology for the Landsat thermal data archive and initial testing of the atmospheric compensation component of a land surface temperature (LST) product from the archive publication-title: Remote Sens. – volume: 6 start-page: 12619 year: 2014 end-page: 12638 ident: bb0840 article-title: Radiometric cross calibration of Landsat 8 operational land imager (OLI) and Landsat 7 enhanced thematic mapper plus (ETM+) publication-title: Remote Sens. – volume: 185 start-page: 57 year: 2016 end-page: 70 ident: bb1045 article-title: Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity publication-title: Remote Sens. Environ. – volume: 190 start-page: 331 year: 2017 end-page: 347 ident: bb0355 article-title: Phenology-adaptive pixel-based compositing using optical earth observation imagery publication-title: Remote Sens. Environ. – year: 2005 ident: bb0655 article-title: Atmospheric Carbon Dioxide Record From Mauna Loa – volume: 6 start-page: 4105 year: 2015 end-page: 4134 ident: bb0755 article-title: Monitoring forest recovery following wildfire and harvest in boreal forests using satellite imagery publication-title: Forests – volume: 328 start-page: 1164 year: 2010 end-page: 1168 ident: bb0165 article-title: Global biodiversity: indicators of recent declines publication-title: Science. – volume: 6 start-page: 10435 year: 2014 end-page: 10456 ident: bb0855 article-title: Stray light artifacts in imagery from the Landsat 8 thermal infrared sensor publication-title: Remote Sens. – volume: 9 start-page: 902 year: 2017 ident: bb0725 article-title: A global analysis of sentinel-2A, sentinel-2B and Landsat-8 data revisit intervals and implications for terrestrial monitoring publication-title: Remote Sens. – volume: 339 start-page: 277 year: 2013 end-page: 278 ident: bb0955 article-title: Essential biodiversity variables publication-title: Science – volume: 162 start-page: 45 year: 2015 end-page: 54 ident: bb0505 article-title: Detection of earlier snowmelt in the Wind River range, Wyoming, using Landsat imagery, 1972–2013 publication-title: Remote Sens. Environ. – volume: 185 start-page: 84 year: 2016 end-page: 94 ident: bb0310 article-title: Rapid large-area mapping of ice flow using Landsat 8 publication-title: Remote Sens. Environ. – volume: 140 start-page: 466 year: 2014 end-page: 484 ident: bb0515 article-title: Monitoring conterminous United States (CONUS) land cover change with web-enabled Landsat data (WELD) publication-title: Remote Sens. Environ. – volume: 172 start-page: 146 year: 2012 end-page: 165 ident: bb0970 article-title: Using Landsat-derived disturbance history (1972–2010) to predict current forest structure publication-title: Remote Sens. Environ. – volume: 9 start-page: 1 year: 2017 end-page: 20 ident: bb0870 article-title: Comprehensive annual ice sheet velocity mapping using Landsat-8, Sentinel-1, and RADARSAT-2 data publication-title: Remote Sens. – volume: 10 start-page: 889 year: 2018 ident: bb0050 article-title: Field-scale assessment of land and water use change over the California Delta using remote sensing publication-title: Remote Sens. – volume: 185 start-page: 16 year: 2016 end-page: 36 ident: bb0570 article-title: An analysis of Landsat 7 and Landsat 8 underflight data and the implications for time series investigations publication-title: Remote Sens. Environ. – volume: 52 start-page: 89 year: 2016 end-page: 119 ident: bb0540 article-title: Benchmarking optical/thermal satellite imagery for estimating evapotranspiration and soil moisture in decision support tools publication-title: JAWRA J. Am. Water Resour. Assoc. – volume: 84 start-page: 471 year: 2003 end-page: 475 ident: bb1395 article-title: Monitoring vegetation phenology using MODIS publication-title: Remote Sens. Environ. – volume: 4 start-page: 696 year: 2012 end-page: 706 ident: bb0255 article-title: Synergies of multiple remote sensing data sources for REDD+ monitoring publication-title: Curr. Opin. Environ. Sustain. – volume: 190 start-page: 289 year: 2017 end-page: 301 ident: bb0930 article-title: Landsat 8 remote sensing reflectance (R rs) products: evaluations, intercomparisons, and enhancements publication-title: Remote Sens. Environ. – volume: 87 start-page: 183 year: 2003 end-page: 197 ident: bb0575 article-title: Coupling spectral unmixing and trend analysis for monitoring of long-term vegetation dynamics in Mediterranean rangelands publication-title: Remote Sens. Environ. – volume: 122 start-page: 117 year: 2012 end-page: 133 ident: bb2020 article-title: Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan publication-title: Remote Sens. Environ. – volume: 210 start-page: 387 year: 2018 end-page: 402 ident: bb1375 article-title: Field-scale mapping of evaporative stress indicators of crop yield: an application over Mead, NE publication-title: Remote Sens. Environ. – volume: 219 start-page: 145 year: 2018 end-page: 161 ident: bb0205 article-title: The harmonized Landsat and Sentinel-2 surface reflectance data set publication-title: Remote Sens. Environ. – volume: 9 start-page: 320 year: 2017 ident: bb0610 article-title: Mapping the expansion of boom crops in mainland southeast Asia using dense time stacks of Landsat data publication-title: Remote Sens. – volume: 134 start-page: 249 year: 2013 end-page: 265 ident: bb0495 article-title: Assessment of the NASA–USGS global land survey (GLS) datasets publication-title: Remote Sens. Environ. – volume: 114 start-page: 35 year: 2010 end-page: 49 ident: bb1030 article-title: Web-enabled Landsat data (WELD): Landsat ETM+ composited mosaics of the conterminous United States publication-title: Remote Sens. Environ. – volume: 31 start-page: 3263 year: 2010 end-page: 3271 ident: bb0445 article-title: Curve fitting of time-series Landsat imagery for characterizing a mountain pine beetle infestation publication-title: Int. J. Remote Sens. – volume: 215 start-page: 18 year: 2018 end-page: 32 ident: bb1280 article-title: An assessment of Landsat-8 atmospheric correction schemes and remote sensing reflectance products in coral reefs and coastal turbid waters publication-title: Remote Sens. Environ. – volume: 52 start-page: 3316 year: 2014 end-page: 3332 ident: bb0150 article-title: On-the-fly massively multitemporal change detection using statistical quality control charts and Landsat data publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2017 ident: bb1185 article-title: Flotilla of Tiny Satellites Will Photograph the Entire Earth every Day – volume: 75 start-page: 230 year: 2001 end-page: 244 ident: bb2015 article-title: Classification and change detection using Landsat TM data: when and how to correct atmospheric effects? publication-title: Remote Sens. Environ. – volume: 185 start-page: 1 year: 2016 end-page: 6 ident: bb0740 article-title: Landsat 8: the plans, the reality, and the legacy publication-title: Remote Sens. Environ. – volume: 53 start-page: 2618 year: 2017 end-page: 2626 ident: bb0330 article-title: The future of evapotranspiration: global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources publication-title: Water Resour. Res. – volume: 6 start-page: 10232 year: 2014 end-page: 10251 ident: bb0075 article-title: The spectral response of the Landsat-8 operational land imager publication-title: Remote Sens. – volume: 91 start-page: 237 year: 2004 end-page: 242 ident: bb0190 article-title: Cloud detection in Landsat imagery of ice sheets using shadow matching technique and automatic normalized difference snow index threshold value decision publication-title: Remote Sens. Environ. – volume: 215 start-page: 482 year: 2018 end-page: 494 ident: bb1400 article-title: Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences publication-title: Remote Sens. Environ. – volume: 113 start-page: 1967 year: 2009 end-page: 1975 ident: bb0590 article-title: The north American ASTER land surface emissivity database (NAALSED) version 2.0 publication-title: Remote Sens. Environ. – volume: 202 start-page: 276 year: 2017 end-page: 292 ident: bb0720 article-title: The Australian geoscience data cube—foundations and lessons learned publication-title: Remote Sens. Environ. – volume: 209 start-page: 363 year: 2018 end-page: 374 ident: bb1250 article-title: Extracting the full value of the Landsat archive: inter-sensor harmonization for the mapping of Minnesota forest canopy cover (1973–2015) publication-title: Remote Sens. Environ. – volume: 158 start-page: 220 year: 2015 end-page: 234 ident: bb0545 article-title: An integrated Landsat time series protocol for change detection and generation of annual gap free surface reflectance composites publication-title: Remote Sens. Environ. – volume: 10 start-page: 1363 year: 2018 ident: bb0300 article-title: Analysis ready data: enabling analysis of the Landsat archive publication-title: Remote Sens. – start-page: 349 year: 2010 ident: bb2030 publication-title: Glaciers of Asia: U.S. Geological Survey Professional Paper 1386–F – volume: 15 start-page: 223 year: 2011 end-page: 239 ident: bb0025 article-title: Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery publication-title: Hydrol. Earth Syst. Sci. – volume: 222 start-page: 65 year: 2019 end-page: 77 ident: bb0565 article-title: Impact of time on interpretations of forest fragmentation: three-decades of fragmentation dynamics over Canada publication-title: Remote Sens. Environ. – volume: 24 start-page: 3624 year: 2011 end-page: 3648 ident: bb1005 article-title: MERRA: NASA's modern-era retrospective analysis for research and applications publication-title: J. Clim. – volume: 185 start-page: 71 year: 2016 end-page: 83 ident: bb1275 article-title: Early spring post-fire snow albedo dynamics in high latitude boreal forests using Landsat-8 OLI data publication-title: Remote Sens. Environ. – volume: 103 start-page: 115 year: 2015 end-page: 128 ident: bb0100 article-title: Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 198 start-page: 504 year: 2017 end-page: 522 ident: bb0520 article-title: Mapping burned areas using dense time-series of Landsat data publication-title: Remote Sens. Environ. – volume: 28 start-page: 9 year: 1989 end-page: 22 ident: bb0290 article-title: Spectral signature of alpine snow cover from the Landsat Thematic Mapper publication-title: Remote Sens. Environ. – volume: 12 start-page: 521 year: 2018 end-page: 547 ident: bb0400 article-title: Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years publication-title: Cryosphere – volume: 171 start-page: 337 year: 2015 end-page: 351 ident: bb1355 article-title: Development of a global ~90 m water body map using multi-temporal Landsat images publication-title: Remote Sens. Environ. – volume: 8 start-page: 275 year: 2017 ident: bb0945 article-title: Near-real-time monitoring of insect defoliation using Landsat time series publication-title: Forests. – volume: 117 start-page: 126 year: 2016 end-page: 140 ident: bb1130 article-title: Automated mapping of persistent ice and snow cover across the western US with Landsat publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 44 start-page: 67 year: 2018 end-page: 87 ident: bb0560 article-title: Disturbance-informed annual land cover classification maps of Canada's forested ecosystems for a 29-year Landsat time series publication-title: Can. J. Remote. Sens. – volume: 185 start-page: 129 year: 2016 end-page: 141 ident: bb1150 article-title: Representative lake water extent mapping at continental scales using multi-temporal Landsat-8 imagery publication-title: Remote Sens. Environ. – volume: 54 start-page: 72 year: 2017 end-page: 83 ident: bb0090 article-title: Phenology from Landsat when data is scarce: using MODIS and dynamic time-warping to combine multi-year Landsat imagery to derive annual phenology curves publication-title: Int. J. Appl. Earth Obs. Geoinf. – start-page: 25 year: 2018 end-page: 46 ident: bb1445 article-title: Cloud and cloud shadow detection for Landsat images: the fundamental basis for analyzing Landsat time series publication-title: Remote Sensing Time Series Image Processing – volume: 135 start-page: 224 year: 2013 end-page: 233 ident: bb0240 article-title: Multitemporal snow cover mapping in mountainous terrain for Landsat climate data record development publication-title: Remote Sens. Environ. – volume: 170 start-page: 317 year: 2015 end-page: 327 ident: bb0365 article-title: Boreal shield forest disturbance and recovery trends using Landsat time series publication-title: Remote Sens. Environ. – volume: 16 start-page: 1086 year: 2013 end-page: 1104 ident: bb0785 article-title: United States forest disturbance trends observed using Landsat time series publication-title: Ecosystems. – year: 2015 ident: bb1205 article-title: United Nations, Transforming our World: The 2030 Agenda for Sustainable Development, UN A/RES/70/1 – volume: 544 start-page: 349 year: 2017 end-page: 352 ident: bb0685 article-title: Widespread movement of meltwater onto and across Antarctic ice shelves publication-title: Nature – year: 2013 ident: bb1090 article-title: Landsat ecosystem disturbance adaptive processing system (LEDAPS) algorithm description publication-title: U.S. Geological Survey Open-File Report 2013 – volume: 40 start-page: 192 year: 2014 end-page: 212 ident: bb1300 article-title: Pixel-based image compositing for large-area dense time series applications and science publication-title: Can. J. Remote. Sens. – volume: 194 start-page: 303 year: 2017 end-page: 321 ident: bb1305 article-title: A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series publication-title: Remote Sens. Environ. – volume: 8 year: 2013 ident: bb0480 article-title: Agricultural land change in the Carpathian ecoregion after the breakdown of socialism and expansion of the European Union publication-title: Environ. Res. Lett. – volume: 360 start-page: 242 year: 2016 end-page: 252 ident: bb0215 article-title: Forest disturbance across the conterminous United States from 1985–2012: the emerging dominance of forest decline publication-title: For. Ecol. Manag. – volume: 122 start-page: 50 year: 2012 end-page: 65 ident: bb0030 article-title: Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources publication-title: Remote Sens. Environ. – volume: 29 start-page: 421 year: 2008 end-page: 469 ident: bb0635 article-title: Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data publication-title: Surv. Geophys. – volume: 186 start-page: 452 year: 2016 end-page: 464 ident: bb0805 article-title: Multisite analysis of land surface phenology in North American temperate and boreal deciduous forests from Landsat publication-title: Remote Sens. Environ. – volume: 7 start-page: 2208 year: 2015 end-page: 2237 ident: bb0865 article-title: Landsat-8 operational land imager (OLI) radiometric performance on-orbit publication-title: Remote Sens. – volume: 170 start-page: 121 year: 2015 end-page: 132 ident: bb0550 article-title: Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics publication-title: Remote Sens. Environ. – volume: 8 start-page: 520 year: 2016 ident: bb1370 article-title: An automated approach for sub-pixel registration of Landsat-8 operational land imager (OLI) and Sentinel-2 multi spectral instrument (MSI) imagery publication-title: Remote Sens. – volume: 9 start-page: 902 issue: 9 year: 2017 ident: 10.1016/j.rse.2019.02.015_bb0725 article-title: A global analysis of sentinel-2A, sentinel-2B and Landsat-8 data revisit intervals and implications for terrestrial monitoring publication-title: Remote Sens. doi: 10.3390/rs9090902 – volume: 6 start-page: 10232 issue: 10 year: 2014 ident: 10.1016/j.rse.2019.02.015_bb0075 article-title: The spectral response of the Landsat-8 operational land imager publication-title: Remote Sens. doi: 10.3390/rs61010232 – volume: 134 start-page: 249 year: 2013 ident: 10.1016/j.rse.2019.02.015_bb0495 article-title: Assessment of the NASA–USGS global land survey (GLS) datasets publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.02.026 – year: 2013 ident: 10.1016/j.rse.2019.02.015_bb1090 article-title: Landsat ecosystem disturbance adaptive processing system (LEDAPS) algorithm description – year: 2017 ident: 10.1016/j.rse.2019.02.015_bb0470 – volume: 75 start-page: 230 issue: 2 year: 2001 ident: 10.1016/j.rse.2019.02.015_bb2015 article-title: Classification and change detection using Landsat TM data: when and how to correct atmospheric effects? publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(00)00169-3 – volume: 10 start-page: 1058 year: 2018 ident: 10.1016/j.rse.2019.02.015_bb1195 article-title: Fusion of moderate resolution earth observations for operational crop type mapping publication-title: Remote Sens. doi: 10.3390/rs10071058 – volume: 51 start-page: 822 issue: 1 year: 2018 ident: 10.1016/j.rse.2019.02.015_bb0085 article-title: Sentinel-2A MSI and Landsat-8 OLI radiometric cross comparison over desert sites publication-title: Eur. J. Remote Sens. doi: 10.1080/22797254.2018.1507613 – volume: 53 start-page: 2618 issue: 4 year: 2017 ident: 10.1016/j.rse.2019.02.015_bb0330 article-title: The future of evapotranspiration: global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources publication-title: Water Resour. Res. doi: 10.1002/2016WR020175 – volume: 158 start-page: 220 year: 2015 ident: 10.1016/j.rse.2019.02.015_bb0545 article-title: An integrated Landsat time series protocol for change detection and generation of annual gap free surface reflectance composites publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.11.005 – volume: 10 start-page: 1489 year: 2018 ident: 10.1016/j.rse.2019.02.015_bb0395 article-title: Assessing the variability of corn and soybean yields in central Iowa using high spatiotemporal resolution multi-satellite imagery publication-title: Remote Sens. doi: 10.3390/rs10091489 – volume: 16 start-page: 1086 year: 2013 ident: 10.1016/j.rse.2019.02.015_bb0785 article-title: United States forest disturbance trends observed using Landsat time series publication-title: Ecosystems. doi: 10.1007/s10021-013-9669-9 – volume: 8 year: 2013 ident: 10.1016/j.rse.2019.02.015_bb0480 article-title: Agricultural land change in the Carpathian ecoregion after the breakdown of socialism and expansion of the European Union publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/8/4/045024 – volume: 185 start-page: 271 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb1345 article-title: The global Landsat archive: status, consolidation, and direction publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.11.032 – volume: 10 start-page: 48 issue: 1 year: 2017 ident: 10.1016/j.rse.2019.02.015_bb0375 article-title: A land product characterization system for comparative analysis of satellite data and products publication-title: Remote Sens. doi: 10.3390/rs10010048 – volume: 178 start-page: 142 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb1200 article-title: Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.02.034 – volume: 99 start-page: 1 year: 2018 ident: 10.1016/j.rse.2019.02.015_bb0760 article-title: An operational land surface temperature product for Landsat thermal data: methodology and validation publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 1165 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb2035 article-title: Calibration/validation of Landsat-Derived Ocean Colour Products in Boston Harbour – volume: 83 start-page: 135 issue: 1–2 year: 2002 ident: 10.1016/j.rse.2019.02.015_bb1075 article-title: First operational BRDF, albedo nadir reflectance products from MODIS publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00091-3 – volume: 72 start-page: 1155 issue: 10 year: 2006 ident: 10.1016/j.rse.2019.02.015_bb0465 article-title: Historical record of Landsat global coverage publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.72.10.1155 – volume: 209 start-page: 363 year: 2018 ident: 10.1016/j.rse.2019.02.015_bb1250 article-title: Extracting the full value of the Landsat archive: inter-sensor harmonization for the mapping of Minnesota forest canopy cover (1973–2015) publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.02.046 – volume: 339 start-page: 277 issue: 6117 year: 2013 ident: 10.1016/j.rse.2019.02.015_bb0955 article-title: Essential biodiversity variables publication-title: Science doi: 10.1126/science.1229931 – volume: 100 start-page: 265 year: 2006 ident: 10.1016/j.rse.2019.02.015_bb0325 article-title: Green leaf phenology at Landsat resolution: scaling from the field to the satellite publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.10.022 – volume: 66 start-page: 174 year: 2018 ident: 10.1016/j.rse.2019.02.015_bb0125 article-title: Updating stand-level forest inventories using airborne laser scanning and Landsat time series data publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2017.11.016 – volume: 360 start-page: 1303 issue: 6395 year: 2018 ident: 10.1016/j.rse.2019.02.015_bb0320 article-title: Combating deforestation: from satellite to intervention publication-title: Science. doi: 10.1126/science.aat1203 – volume: 9 start-page: 1 issue: 4 year: 2017 ident: 10.1016/j.rse.2019.02.015_bb0870 article-title: Comprehensive annual ice sheet velocity mapping using Landsat-8, Sentinel-1, and RADARSAT-2 data publication-title: Remote Sens. doi: 10.3390/rs9040364 – year: 2018 ident: 10.1016/j.rse.2019.02.015_bb0880 – volume: 114 start-page: 1576 issue: 7 year: 2010 ident: 10.1016/j.rse.2019.02.015_bb1290 article-title: Characterizing temperate forest structural and spectral diversity with Hyperion EO-1 data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.02.012 – volume: 113 start-page: 1967 issue: 9 year: 2009 ident: 10.1016/j.rse.2019.02.015_bb0590 article-title: The north American ASTER land surface emissivity database (NAALSED) version 2.0 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.05.005 – volume: 169 start-page: 390 year: 2015 ident: 10.1016/j.rse.2019.02.015_bb0200 article-title: Evaluation of the Landsat-5 TM and Landsat-7 ETM + surface reflectance products publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.08.030 – volume: 9 start-page: 646 issue: 9 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb0280 article-title: A post-Paris look at climate observations publication-title: Nat. Geosci. doi: 10.1038/ngeo2785 – volume: 169 start-page: 320 year: 2015 ident: 10.1016/j.rse.2019.02.015_bb0270 article-title: Tracking disturbance-regrowth dynamics in tropical forests using structural change detection and Landsat time series publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.08.020 – volume: 408 start-page: 187 issue: 6809 year: 2000 ident: 10.1016/j.rse.2019.02.015_bb0105 article-title: Offset of the potential carbon sink from boreal forestation by decreases in surface albedo publication-title: Nature. doi: 10.1038/35041545 – volume: 122 start-page: 117 year: 2012 ident: 10.1016/j.rse.2019.02.015_bb2020 article-title: Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.09.024 – volume: 122 start-page: 175 year: 2012 ident: 10.1016/j.rse.2019.02.015_bb0625 article-title: Continental-scale validation of MODIS-based and LEDAPS Landsat ETM+ atmospheric correction methods publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.12.025 – volume: 215 start-page: 18 year: 2018 ident: 10.1016/j.rse.2019.02.015_bb1280 article-title: An assessment of Landsat-8 atmospheric correction schemes and remote sensing reflectance products in coral reefs and coastal turbid waters publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.05.033 – volume: 12 start-page: 339 issue: 6 year: 2014 ident: 10.1016/j.rse.2019.02.015_bb0670 article-title: Bringing an ecological view of change to Landsat-based remote sensing publication-title: Front. Ecol. Environ. doi: 10.1890/130066 – volume: 122 start-page: 50 year: 2012 ident: 10.1016/j.rse.2019.02.015_bb0030 article-title: Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.08.025 – volume: 64 start-page: 191 year: 2015 ident: 10.1016/j.rse.2019.02.015_bb0140 article-title: A spatially explicit land surface phenology data product for science, monitoring and natural resources management applications publication-title: Environ. Model Softw. doi: 10.1016/j.envsoft.2014.11.017 – volume: 3 start-page: 68 year: 2006 ident: 10.1016/j.rse.2019.02.015_bb0780 article-title: A Landsat surface reflectance dataset for North America, 1990-2000 publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2005.857030 – volume: 41 start-page: 6396 issue: 18 year: 2014 ident: 10.1016/j.rse.2019.02.015_bb1245 article-title: A global inventory of lakes based on high-resolution satellite imagery publication-title: Geophys. Res. Lett. doi: 10.1002/2014GL060641 – volume: 91 start-page: 237 year: 2004 ident: 10.1016/j.rse.2019.02.015_bb0190 article-title: Cloud detection in Landsat imagery of ice sheets using shadow matching technique and automatic normalized difference snow index threshold value decision publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.03.007 – volume: 6 start-page: 12619 issue: 12 year: 2014 ident: 10.1016/j.rse.2019.02.015_bb0840 article-title: Radiometric cross calibration of Landsat 8 operational land imager (OLI) and Landsat 7 enhanced thematic mapper plus (ETM+) publication-title: Remote Sens. doi: 10.3390/rs61212619 – volume: 194 start-page: 155 year: 2017 ident: 10.1016/j.rse.2019.02.015_bb1140 article-title: A Bayesian hierarchical model for estimating spatial and temporal variation in vegetation phenology from Landsat time series publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.03.020 – volume: 52 start-page: 3316 issue: 6 year: 2014 ident: 10.1016/j.rse.2019.02.015_bb0150 article-title: On-the-fly massively multitemporal change detection using statistical quality control charts and Landsat data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2272545 – year: 2005 ident: 10.1016/j.rse.2019.02.015_bb0655 – volume: 2(3) start-page: 122 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb0960 article-title: Framing the concept of satellite remote sensing essential biodiversity variables: challenges and future directions – volume: 216 start-page: 598 year: 2018 ident: 10.1016/j.rse.2019.02.015_bb0530 article-title: Coral reef applications of Sentinel-2: coverage, characteristics, bathymetry and benthic mapping with comparison to Landsat 8 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.07.014 – volume: 205 start-page: 32 year: 2018 ident: 10.1016/j.rse.2019.02.015_bb0370 article-title: Analyzing spatial and temporal variability in short-term rates of post-fire vegetation return from Landsat Time Series publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.11.007 – volume: 190 start-page: 289 year: 2017 ident: 10.1016/j.rse.2019.02.015_bb0930 article-title: Landsat 8 remote sensing reflectance (R rs) products: evaluations, intercomparisons, and enhancements publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.12.030 – volume: 143 start-page: 66 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb1325 article-title: Disturbance and the carbon balance of US forests: a quantitative review of impacts from harvests, fires, insects, and droughts publication-title: Glob. Planet. Chang. doi: 10.1016/j.gloplacha.2016.06.002 – volume: 20 start-page: 114 issue: 2 year: 2015 ident: 10.1016/j.rse.2019.02.015_bb0790 article-title: Global satellite monitoring of climate-induced vegetation disturbances publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2014.10.008 – volume: 185 start-page: 46 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb1240 article-title: Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.04.008 – volume: 67 start-page: 309 year: 1999 ident: 10.1016/j.rse.2019.02.015_bb0710 article-title: Calculating change curves for multitemporal satellite imagery: Mount St. Helens 1980-1995 publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(98)00092-3 – volume: 186 start-page: 452 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb0805 article-title: Multisite analysis of land surface phenology in North American temperate and boreal deciduous forests from Landsat publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.09.014 – volume: 8 start-page: 275 issue: 8 year: 2017 ident: 10.1016/j.rse.2019.02.015_bb0945 article-title: Near-real-time monitoring of insect defoliation using Landsat time series publication-title: Forests. doi: 10.3390/f8080275 – volume: 114 start-page: 35 year: 2010 ident: 10.1016/j.rse.2019.02.015_bb1030 article-title: Web-enabled Landsat data (WELD): Landsat ETM+ composited mosaics of the conterminous United States publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.08.011 – volume: 153 start-page: 42 issue: 1 year: 2014 ident: 10.1016/j.rse.2019.02.015_bb1315 article-title: Landsat thermal infrared imagery and western water management publication-title: J. Contemp. Water Res. Educ. doi: 10.1111/j.1936-704X.2014.03178.x – start-page: 25 year: 2018 ident: 10.1016/j.rse.2019.02.015_bb1445 article-title: Cloud and cloud shadow detection for Landsat images: the fundamental basis for analyzing Landsat time series – volume: 185 start-page: 84 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb0310 article-title: Rapid large-area mapping of ice flow using Landsat 8 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.11.023 – volume: 24 start-page: 3624 issue: 14 year: 2011 ident: 10.1016/j.rse.2019.02.015_bb1005 article-title: MERRA: NASA's modern-era retrospective analysis for research and applications publication-title: J. Clim. doi: 10.1175/JCLI-D-11-00015.1 – volume: 190 start-page: 331 year: 2017 ident: 10.1016/j.rse.2019.02.015_bb0355 article-title: Phenology-adaptive pixel-based compositing using optical earth observation imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.01.002 – volume: 302 start-page: 1011 issue: 5879 year: 2008 ident: 10.1016/j.rse.2019.02.015_bb2005 article-title: Free access to Landsat imagery publication-title: Science doi: 10.1126/science.320.5879.1011a – volume: 50 start-page: 3340 year: 2012 ident: 10.1016/j.rse.2019.02.015_bb0145 article-title: Fitting the multitemporal curve: a Fourier series approach to the missing data problem in remote sensing analysis publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2183137 – volume: 144 start-page: 42 year: 2014 ident: 10.1016/j.rse.2019.02.015_bb1360 article-title: Automated crop field extraction from multi-temporal web enabled Landsat data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.01.006 – volume: 151 start-page: 72 year: 2014 ident: 10.1016/j.rse.2019.02.015_bb0485 article-title: Forest disturbances, forest recovery, and changes in forest types across the Carpathian ecoregion from 1985 to 2010 based on Landsat image composites publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.04.022 – volume: 11 start-page: 109 year: 1988 ident: 10.1016/j.rse.2019.02.015_bb0905 article-title: Numerical analysis of Landsat thematic mapper images of Antarctica: surface temperatures and physical properties publication-title: Ann. Glaciol. doi: 10.3189/S026030550000642X – volume: 5 start-page: 6481 year: 2013 ident: 10.1016/j.rse.2019.02.015_bb0335 article-title: Seasonal composite Landsat TM/ETM plus images using the Medoid (a multi-dimensional median) publication-title: Remote Sens. doi: 10.3390/rs5126481 – volume: 4 start-page: 696 issue: 6 year: 2012 ident: 10.1016/j.rse.2019.02.015_bb0255 article-title: Synergies of multiple remote sensing data sources for REDD+ monitoring publication-title: Curr. Opin. Environ. Sustain. doi: 10.1016/j.cosust.2012.09.013 – year: 2016 ident: 10.1016/j.rse.2019.02.015_bb0420 – volume: 9 start-page: 1035 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb0555 article-title: Mass data processing of time series Landsat imagery: pixels to data products for forest monitoring publication-title: Int. J. Digital Earth doi: 10.1080/17538947.2016.1187673 – volume: 115 start-page: 1421 year: 2011 ident: 10.1016/j.rse.2019.02.015_bb1115 article-title: Mapping wildfire and clearcut harvest disturbances in boreal forests with Landsat time series data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.01.022 – volume: 103 start-page: 115 year: 2015 ident: 10.1016/j.rse.2019.02.015_bb0100 article-title: Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.03.009 – volume: 10 start-page: 1337 issue: 9 year: 2018 ident: 10.1016/j.rse.2019.02.015_bb0935 article-title: Toward long-term aquatic science products from heritage Landsat missions publication-title: Remote Sens. doi: 10.3390/rs10091337 – year: 1988 ident: 10.1016/j.rse.2019.02.015_bb2025 article-title: Satellite image atlas of glaciers of the world: Antarctica – volume: 133 start-page: 380 issue: 4 year: 2007 ident: 10.1016/j.rse.2019.02.015_bb0010 article-title: Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—model publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)0733-9437(2007)133:4(380) – volume: 14 start-page: 1035 year: 2013 ident: 10.1016/j.rse.2019.02.015_bb0035 article-title: An intercomparison of drought indicators based on thermal remote sensing and NLDAS-2 simulations with U.S. drought monitor classifications publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-12-0140.1 – volume: 54 start-page: 72 year: 2017 ident: 10.1016/j.rse.2019.02.015_bb0090 article-title: Phenology from Landsat when data is scarce: using MODIS and dynamic time-warping to combine multi-year Landsat imagery to derive annual phenology curves publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2016.09.005 – volume: 342 start-page: 850 year: 2013 ident: 10.1016/j.rse.2019.02.015_bb0510 article-title: High-resolution global maps of 21st-century forest cover change publication-title: Science doi: 10.1126/science.1244693 – volume: 328 start-page: 1164 issue: 5982 year: 2010 ident: 10.1016/j.rse.2019.02.015_bb0165 article-title: Global biodiversity: indicators of recent declines publication-title: Science. doi: 10.1126/science.1187512 – volume: 117 start-page: 126 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb1130 article-title: Automated mapping of persistent ice and snow cover across the western US with Landsat publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.04.001 – volume: 52 start-page: 361 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb1125 article-title: Mapping Brazilian savanna vegetation gradients with Landsat time series publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2016.06.019 – volume: 2 start-page: 33 year: 2015 ident: 10.1016/j.rse.2019.02.015_bb1285 article-title: A contemporary decennial examination of changing agricultural field sizes using Landsat time series data publication-title: Geogr. Environ. doi: 10.1002/geo2.4 – volume: 117 issue: D23 year: 2012 ident: 10.1016/j.rse.2019.02.015_bb0595 article-title: Quantifying uncertainties in land surface temperature and emissivity retrievals from ASTER and MODIS thermal infrared data publication-title: J. Geophys. Res.-Atmos. doi: 10.1029/2012JD018506 – year: 2013 ident: 10.1016/j.rse.2019.02.015_bb1210 – year: 2017 ident: 10.1016/j.rse.2019.02.015_bb1215 – volume: 114 start-page: 854 year: 2010 ident: 10.1016/j.rse.2019.02.015_bb0885 article-title: Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.11.022 – volume: 360 start-page: 242 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb0215 article-title: Forest disturbance across the conterminous United States from 1985–2012: the emerging dominance of forest decline publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2015.10.042 – volume: 122 start-page: 92 year: 2012 ident: 10.1016/j.rse.2019.02.015_bb1255 article-title: Monitoring gradual ecosystem change using Landsat time series data analyses: case studies in selected forest and rangeland ecosystems publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.06.027 – volume: 210 start-page: 387 year: 2018 ident: 10.1016/j.rse.2019.02.015_bb1375 article-title: Field-scale mapping of evaporative stress indicators of crop yield: an application over Mead, NE publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.02.020 – volume: 28 start-page: 5123 year: 2007 ident: 10.1016/j.rse.2019.02.015_bb1225 article-title: Mean compositing, an alternative strategy for producing temporal syntheses. Concepts and performance assessment for SPOT VEGETATION time series publication-title: Int. J. Remote Sens. doi: 10.1080/01431160701253212 – volume: Vol. 10402 year: 2017 ident: 10.1016/j.rse.2019.02.015_bb0640 article-title: Pathway to future sustainable land imaging: the compact hyperspectral prism spectrometer – volume: 170 start-page: 90 year: 2015 ident: 10.1016/j.rse.2019.02.015_bb0620 article-title: Performance of Landsat 8 operational land imager for mapping ice sheet velocity publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.08.023 – volume: 118 start-page: 83 year: 2012 ident: 10.1016/j.rse.2019.02.015_bb1410 article-title: Object-based cloud and cloud shadow detection in Landsat imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.10.028 – volume: 188 start-page: 9 year: 2017 ident: 10.1016/j.rse.2019.02.015_bb0390 article-title: Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.11.004 – volume: 29 start-page: 128 year: 2015 ident: 10.1016/j.rse.2019.02.015_bb0235 article-title: MODIS Terra collection 6 fractional snow cover validation in mountainous terrain during spring snowmelt using Landsat TM and ETM+ publication-title: Hydrol. Process. doi: 10.1002/hyp.10134 – volume: 64 start-page: 321 issue: 244 year: 2018 ident: 10.1016/j.rse.2019.02.015_bb0015 article-title: Continent-wide estimates of Antarctic strain rates from Landsat 8-derived velocity grids publication-title: J. Glaciol. doi: 10.1017/jog.2018.23 – volume: 7 start-page: 073558 issue: 1 year: 2013 ident: 10.1016/j.rse.2019.02.015_bb0415 article-title: Increased potential to monitor water quality in the near-shore environment with Landsat's next-generation satellite publication-title: J. Appl. Remote. Sens. doi: 10.1117/1.JRS.7.073558 – ident: 10.1016/j.rse.2019.02.015_bb1020 doi: 10.1016/j.rse.2018.06.038 – volume: 70 start-page: 215 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb0045 article-title: Relationships between the evaporative stress index and winter wheat and spring barley yield anomalies in the Czech Republic publication-title: Clim. Res. doi: 10.3354/cr01411 – volume: 152 start-page: 217 year: 2014 ident: 10.1016/j.rse.2019.02.015_bb1420 article-title: Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: an algorithm designed specifically for monitoring land cover change publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.06.012 – start-page: 92181A year: 2014 ident: 10.1016/j.rse.2019.02.015_bb1105 article-title: Chasing the TIRS ghosts: calibrating the Landsat 8 thermal bands – volume: 38 start-page: 977 issue: 2 year: 2000 ident: 10.1016/j.rse.2019.02.015_bb0745 article-title: An algorithm for the retrieval of albedo from space using semiempirical BRDF models publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.841980 – volume: 135 start-page: 224 year: 2013 ident: 10.1016/j.rse.2019.02.015_bb0240 article-title: Multitemporal snow cover mapping in mountainous terrain for Landsat climate data record development publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.04.004 – volume: 51 start-page: 367 year: 2013 ident: 10.1016/j.rse.2019.02.015_bb1010 article-title: Assessment of methods for mapping snow cover from MODIS publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2012.03.002 – volume: 115 start-page: 2204 issue: 9 year: 2011 ident: 10.1016/j.rse.2019.02.015_bb1155 article-title: An algorithm for the retrieval of 30-m snow-free albedo from Landsat surface reflectance and MODIS BRDF publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.04.019 – volume: 216 start-page: 472 year: 2018 ident: 10.1016/j.rse.2019.02.015_bb0705 article-title: Uncertainty estimation method and Landsat 7 global validation for the Landsat surface temperature product publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.06.026 – volume: 7 start-page: 2208 issue: 2 year: 2015 ident: 10.1016/j.rse.2019.02.015_bb0865 article-title: Landsat-8 operational land imager (OLI) radiometric performance on-orbit publication-title: Remote Sens. doi: 10.3390/rs70202208 – volume: 170 start-page: 166 year: 2015 ident: 10.1016/j.rse.2019.02.015_bb1135 article-title: Characterizing spectral-temporal patterns of defoliator and bark beetle disturbances using Landsat time series publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.09.019 – volume: 98 start-page: 2397 issue: 11 year: 2017 ident: 10.1016/j.rse.2019.02.015_bb0605 article-title: Climate engine: cloud computing and visualization of climate and remote sensing data for advanced natural resource monitoring and process understanding publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-15-00324.1 – start-page: 73 year: 2013 ident: 10.1016/j.rse.2019.02.015_bb2010 – volume: 6 start-page: 360 issue: 2 year: 2013 ident: 10.1016/j.rse.2019.02.015_bb0915 article-title: Leveraging EO-1 to evaluate capability of new generation of Landsat sensors for coastal/inland water studies publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2012.2235174 – volume: 10 start-page: 1340 year: 2018 ident: 10.1016/j.rse.2019.02.015_bb0535 article-title: Observations and recommendations for the calibration of Landsat 8 OLI and sentinel 2 MSI for improved data interoperability publication-title: Remote Sens. doi: 10.3390/rs10091340 – volume: 544 start-page: 349 issue: 7650 year: 2017 ident: 10.1016/j.rse.2019.02.015_bb0685 article-title: Widespread movement of meltwater onto and across Antarctic ice shelves publication-title: Nature doi: 10.1038/nature22049 – volume: 159 start-page: 269 year: 2015 ident: 10.1016/j.rse.2019.02.015_bb1430 article-title: Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.12.014 – volume: 166 start-page: 271 year: 2015 ident: 10.1016/j.rse.2019.02.015_bb0675 article-title: Attribution of disturbance change agent from Landsat time series in support of habitat monitoring in the Puget Sound region, USA publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.05.005 – volume: 159 start-page: 28 year: 2015 ident: 10.1016/j.rse.2019.02.015_bb0995 article-title: Eastern Europe's forest cover dynamics from 1985 to 2012 quantified from the full Landsat archive publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.11.027 – year: 2015 ident: 10.1016/j.rse.2019.02.015_bb1205 – volume: 216 start-page: 262 year: 2018 ident: 10.1016/j.rse.2019.02.015_bb1310 article-title: Confirmation of post-harvest spectral recovery from Landsat time series using measures of forest cover and height derived from airborne laser scanning data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.07.004 – volume: 176 start-page: 255 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb1040 article-title: A general method to normalize Landsat reflectance data to nadir BRDF adjusted reflectance publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.01.023 – volume: 8 start-page: 520 issue: 6 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb1370 article-title: An automated approach for sub-pixel registration of Landsat-8 operational land imager (OLI) and Sentinel-2 multi spectral instrument (MSI) imagery publication-title: Remote Sens. doi: 10.3390/rs8060520 – volume: 6 start-page: 11244 issue: 11 year: 2014 ident: 10.1016/j.rse.2019.02.015_bb0230 article-title: Development of an operational calibration methodology for the Landsat thermal data archive and initial testing of the atmospheric compensation component of a land surface temperature (LST) product from the archive publication-title: Remote Sens. doi: 10.3390/rs61111244 – volume: 44 start-page: 67 issue: 1 year: 2018 ident: 10.1016/j.rse.2019.02.015_bb0560 article-title: Disturbance-informed annual land cover classification maps of Canada's forested ecosystems for a 29-year Landsat time series publication-title: Can. J. Remote. Sens. doi: 10.1080/07038992.2018.1437719 – volume: 9 start-page: 320 issue: 4 year: 2017 ident: 10.1016/j.rse.2019.02.015_bb0610 article-title: Mapping the expansion of boom crops in mainland southeast Asia using dense time stacks of Landsat data publication-title: Remote Sens. doi: 10.3390/rs9040320 – volume: 22 start-page: 3518 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb0850 article-title: Shape selection in Landsat time series: a tool for monitoring forest dynamics publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.13358 – volume: 10 start-page: 1363 issue: 9 year: 2018 ident: 10.1016/j.rse.2019.02.015_bb0300 article-title: Analysis ready data: enabling analysis of the Landsat archive publication-title: Remote Sens. doi: 10.3390/rs10091363 – volume: 122 start-page: 22 year: 2012 ident: 10.1016/j.rse.2019.02.015_bb0735 article-title: Landsat: building a strong future publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.09.022 – volume: 8 start-page: 98 issue: 4 year: 2017 ident: 10.1016/j.rse.2019.02.015_bb0220 article-title: How similar are forest disturbance maps derived from different Landsat time series algorithms? publication-title: Forests. doi: 10.3390/f8040098 – volume: 216 start-page: 497 year: 2018 ident: 10.1016/j.rse.2019.02.015_bb0490 article-title: Reconstructing long term annual deforestation dynamics in Pará and Mato Grosso using the Landsat archive publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.07.010 – volume: 10 start-page: 15 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb0985 article-title: Estimating supraglacial lake depth in West Greenland using Landsat 8 and comparison with other multispectral methods publication-title: Cryosphere doi: 10.5194/tc-10-15-2016 – volume: 60 start-page: 49 year: 2017 ident: 10.1016/j.rse.2019.02.015_bb1145 article-title: Remote sensing of forest insect disturbances: current state and future directions publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2017.04.004 – volume: 82 start-page: 38 issue: 1 year: 2002 ident: 10.1016/j.rse.2019.02.015_bb0695 article-title: A procedure for regional lake water clarity assessment using Landsat multispectral data publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00022-6 – volume: 162 start-page: 67 year: 2015 ident: 10.1016/j.rse.2019.02.015_bb1435 article-title: Generating synthetic Landsat images based on all available Landsat data: predicting Landsat surface reflectance at any given time publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.02.009 – volume: 115 start-page: 3707 year: 2011 ident: 10.1016/j.rse.2019.02.015_bb0795 article-title: A Landsat time series approach to characterize bark beetle and defoliator impacts on tree mortality and surface fuels in conifer forests publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.09.009 – volume: 83 start-page: 97 issue: 1 year: 2002 ident: 10.1016/j.rse.2019.02.015_bb1235 article-title: Atmospheric correction of MODIS data in the visible to middle infrared: first results publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00089-5 – volume: 352 start-page: 9 year: 2015 ident: 10.1016/j.rse.2019.02.015_bb0660 article-title: Dynamics of global forest area: results from the FAO global Forest resources assessment 2015 publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2015.06.014 – volume: 12 start-page: 1723 year: 1998 ident: 10.1016/j.rse.2019.02.015_bb0690 article-title: Improving snow cover mapping in forests through the use of a canopy reflectance model publication-title: Hydrol. Process. doi: 10.1002/(SICI)1099-1085(199808/09)12:10/11<1723::AID-HYP691>3.0.CO;2-2 – volume: 5 start-page: 58 year: 2017 ident: 10.1016/j.rse.2019.02.015_bb0830 article-title: Toward monitoring surface and subsurface lakes on the Greenland ice sheet using Sentinel-1 SAR and Landsat-8 OLI imagery publication-title: Front. Earth Sci. doi: 10.3389/feart.2017.00058 – volume: 37 start-page: 138 issue: 1 year: 2015 ident: 10.1016/j.rse.2019.02.015_bb0980 article-title: Forest recovery trends derived from Landsat time series for North American boreal forests publication-title: Int. J. Remote Sens. doi: 10.1080/2150704X.2015.1126375 – volume: 40 start-page: 192 year: 2014 ident: 10.1016/j.rse.2019.02.015_bb1300 article-title: Pixel-based image compositing for large-area dense time series applications and science publication-title: Can. J. Remote. Sens. doi: 10.1080/07038992.2014.945827 – volume: 177 start-page: 13 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb2040 article-title: Imaging phenology; scaling from camera plots to landscapes publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.02.018 – volume: 115 start-page: 548 year: 2011 ident: 10.1016/j.rse.2019.02.015_bb0990 article-title: Regional-scale boreal forest cover and change mapping using Landsat data composites for European Russia publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.10.001 – volume: 53 start-page: 123 issue: 60 year: 2012 ident: 10.1016/j.rse.2019.02.015_bb0765 article-title: The role of Pine Island Glacier ice shelf basal channels in deep-water upwelling, polynyas and ocean circulation in Pine Island Bay, Antarctica publication-title: Ann. Glaciol. doi: 10.3189/2012AoG60A062 – volume: 145 start-page: 154 year: 2014 ident: 10.1016/j.rse.2019.02.015_bb1035 article-title: Landsat-8: science and product vision for terrestrial global change research publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.02.001 – volume: 120 start-page: 25 year: 2012 ident: 10.1016/j.rse.2019.02.015_bb0295 article-title: Sentinel-2: ESA's optical high-resolution mission for GMES operational services publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.11.026 – volume: 9 start-page: 317 year: 2017 ident: 10.1016/j.rse.2019.02.015_bb1190 article-title: Daily mapping of 30m LAI and NDVI for grape yield prediction in California vineyards publication-title: Remote Sens. doi: 10.3390/rs9040317 – volume: 114 start-page: 183 year: 2010 ident: 10.1016/j.rse.2019.02.015_bb0580 article-title: An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.08.017 – volume: 35 start-page: 675 issue: 3 year: 1997 ident: 10.1016/j.rse.2019.02.015_bb1230 article-title: Second simulation of the satellite signal in the solar spectrum, 6S: an overview publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.581987 – volume: 112 start-page: 3680 year: 2008 ident: 10.1016/j.rse.2019.02.015_bb0440 article-title: Estimation of insect infestation dynamics using a temporal sequence of Landsat data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.05.005 – volume: 113 start-page: 893 year: 2009 ident: 10.1016/j.rse.2019.02.015_bb0180 article-title: Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.01.007 – volume: 49 start-page: 518 issue: 3 year: 2013 ident: 10.1016/j.rse.2019.02.015_bb0095 article-title: Estimating annual groundwater evapotranspiration from phreatophytes in the great basin using Landsat and flux tower measurements publication-title: J. Am. Water Resour. Assoc. doi: 10.1111/jawr.12058 – volume: 52 start-page: 89 issue: 1 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb0540 article-title: Benchmarking optical/thermal satellite imagery for estimating evapotranspiration and soil moisture in decision support tools publication-title: JAWRA J. Am. Water Resour. Assoc. doi: 10.1111/1752-1688.12371 – volume: 42 start-page: 177 issue: 3 year: 1992 ident: 10.1016/j.rse.2019.02.015_bb1065 article-title: Application of image cross-correlation to the measurement of glacier velocity using satellite image data publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(92)90101-O – start-page: 349 year: 2010 ident: 10.1016/j.rse.2019.02.015_bb2030 – volume: 151 start-page: 124 year: 2014 ident: 10.1016/j.rse.2019.02.015_bb0975 article-title: Using Landsat-derived disturbance and recovery history and Lidar to map forest biomass dynamics publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.05.033 – volume: 215 start-page: 482 year: 2018 ident: 10.1016/j.rse.2019.02.015_bb1400 article-title: Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.04.031 – volume: 202 start-page: 276 year: 2017 ident: 10.1016/j.rse.2019.02.015_bb0720 article-title: The Australian geoscience data cube—foundations and lessons learned publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.03.015 – year: 2017 ident: 10.1016/j.rse.2019.02.015_bb1185 – volume: 54 start-page: 3963 issue: 13 year: 2015 ident: 10.1016/j.rse.2019.02.015_bb0860 article-title: Toward an operational stray light correction for the Landsat 8 thermal infrared sensor publication-title: Appl. Opt. doi: 10.1364/AO.54.003963 – volume: 124 start-page: 689 year: 2012 ident: 10.1016/j.rse.2019.02.015_bb1095 article-title: Monitoring land cover change in urban and pen-urban areas using dense time stacks of Landsat satellite data and a data mining approach publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.06.006 – volume: 95(7) start-page: S143 year: 2014 ident: 10.1016/j.rse.2019.02.015_bb0345 article-title: Antarctica – volume: 9 start-page: 104 issue: 1 year: 1987 ident: 10.1016/j.rse.2019.02.015_bb0500 article-title: Characterization of snow and ice reflectance zones on glaciers using Landsat Thematic Mapper data publication-title: Ann. Glaciol. doi: 10.3189/S0260305500000471 – volume: 7 start-page: 1135 issue: 1 year: 2015 ident: 10.1016/j.rse.2019.02.015_bb2045 article-title: The Thermal Infrared Sensor (TIRS) on Landsat 8: Design overview and pre-launch characterization publication-title: Remote Sens. doi: 10.3390/rs70101135 – volume: 84 start-page: 471 issue: 3 year: 2003 ident: 10.1016/j.rse.2019.02.015_bb1395 article-title: Monitoring vegetation phenology using MODIS publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00135-9 – volume: 114 start-page: 2911 issue: 12 year: 2010 ident: 10.1016/j.rse.2019.02.015_bb0210 article-title: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync—tools for calibration and validation publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.07.010 – volume: 185 start-page: 108 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb0750 article-title: Landsat 8: providing continuity and increased precision for measuring multi-decadal time series of total suspended matter publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.04.011 – year: 2015 ident: 10.1016/j.rse.2019.02.015_bb1085 – volume: 122 start-page: 206 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb1440 article-title: Optimizing selection of training and auxiliary data for operational land cover classification for the LCMAP initiative publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.11.004 – volume: 8 start-page: 166 issue: 5 year: 2017 ident: 10.1016/j.rse.2019.02.015_bb0585 article-title: Patch-based forest change detection from Landsat time series publication-title: Forests doi: 10.3390/f8050166 – volume: 9 start-page: 113 issue: 2 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb0315 article-title: A global, high-resolution (30-m) inland water body dataset for 2000: first results of a topographic–spectral classification algorithm publication-title: Int. J. Digital Earth doi: 10.1080/17538947.2015.1026420 – volume: 38 start-page: 51 year: 2015 ident: 10.1016/j.rse.2019.02.015_bb0115 article-title: Applicability of Landsat 8 data for characterizing glacier facies and supraglacial debris publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2014.12.011 – volume: 154 start-page: 272 year: 2014 ident: 10.1016/j.rse.2019.02.015_bb0925 article-title: On-orbit radiometric characterization of OLI (Landsat-8) for applications in aquatic remote sensing publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.08.001 – start-page: 6 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb0020 article-title: Capturing coupled riparian and coastal disturbance from industrial mining using cloud-resilient satellite time series analysis publication-title: Sci. Rep. – volume: 219 start-page: 145 year: 2018 ident: 10.1016/j.rse.2019.02.015_bb0205 article-title: The harmonized Landsat and Sentinel-2 surface reflectance data set publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.09.002 – volume: 218 start-page: 230 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb0910 article-title: Assessing the evolution of soil moisture and vegetation conditions during the 2012 United States flash drought publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2015.12.065 – volume: 40 start-page: 362 year: 2014 ident: 10.1016/j.rse.2019.02.015_bb0065 article-title: Forest monitoring using Landsat time-series data—a review publication-title: Can. J. Remote. Sens. doi: 10.1080/07038992.2014.987376 – volume: 6 start-page: 2088 issue: 5 year: 2013 ident: 10.1016/j.rse.2019.02.015_bb0475 article-title: A pixel-based Landsat compositing algorithm for large area land cover mapping publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2012.2228167 – volume: 45 start-page: 6124 issue: 12 year: 2018 ident: 10.1016/j.rse.2019.02.015_bb1070 article-title: Ultralow surface temperatures in East Antarctica from satellite thermal infrared mapping: the coldest places on Earth publication-title: Geophys. Res. Lett. doi: 10.1029/2018GL078133 – volume: 316 start-page: 847 issue: 5826 year: 2007 ident: 10.1016/j.rse.2019.02.015_bb1000 article-title: Global desertification: building a science for dryland development publication-title: Science doi: 10.1126/science.1131634 – volume: 37 start-page: 234 year: 2011 ident: 10.1016/j.rse.2019.02.015_bb1295 article-title: A history of habitat dynamics: characterizing 35 years of stand-replacing disturbance publication-title: Can. J. Remote. Sens. doi: 10.5589/m11-034 – volume: 170 start-page: 121 year: 2015 ident: 10.1016/j.rse.2019.02.015_bb0550 article-title: Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat-derived time-series metrics publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.09.004 – volume: 112 start-page: 955 issue: 3 year: 2008 ident: 10.1016/j.rse.2019.02.015_bb1330 article-title: Landsat continuity: issues and opportunities for land cover monitoring publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.07.004 – volume: 5 start-page: 1709 issue: 6 year: 2012 ident: 10.1016/j.rse.2019.02.015_bb0810 article-title: Satellite irrigation management support with the terrestrial observation and prediction system: a framework for integration of satellite and surface observations to support improvements in agricultural water resource management publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2012.2214474 – volume: 6 start-page: 11127 year: 2014 ident: 10.1016/j.rse.2019.02.015_bb1175 article-title: Landsat 8 operational land imager on-orbit geometric calibration and performance publication-title: Remote Sens. doi: 10.3390/rs61111127 – volume: 185 start-page: 16 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb0570 article-title: An analysis of Landsat 7 and Landsat 8 underflight data and the implications for time series investigations publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.02.052 – volume: 9 start-page: 096070 year: 2015 ident: 10.1016/j.rse.2019.02.015_bb0360 article-title: Ocean color measurements with the operational land imager on Landsat-8: implementation and evaluation in SeaDAS publication-title: J. Appl. Remote. Sens. doi: 10.1117/1.JRS.9.096070 – volume: 175 start-page: 52 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb0175 article-title: Estimating the effective spatial resolution of the operational BRDF, albedo, and nadir reflectance products from MODIS and VIIRS publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.12.033 – volume: 132 start-page: 176 year: 2013 ident: 10.1016/j.rse.2019.02.015_bb0800 article-title: Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM + data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.01.011 – volume: 3 start-page: 47 issue: 3 year: 2015 ident: 10.1016/j.rse.2019.02.015_bb0385 article-title: Fusing Landsat and MODIS data for vegetation monitoring publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2015.2434351 – year: 2018 ident: 10.1016/j.rse.2019.02.015_bb1080 article-title: An initial validation of Landsat 5 and 7 derived surface water temperature for US lakes, reservoirs, and estuaries publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2018.1471545 – volume: 33 start-page: 443 year: 1994 ident: 10.1016/j.rse.2019.02.015_bb0455 article-title: Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm publication-title: Appl. Opt. doi: 10.1364/AO.33.000443 – volume: 87 start-page: 183 year: 2003 ident: 10.1016/j.rse.2019.02.015_bb0575 article-title: Coupling spectral unmixing and trend analysis for monitoring of long-term vegetation dynamics in Mediterranean rangelands publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(03)00145-7 – volume: 41 start-page: 1373 issue: 6 year: 2003 ident: 10.1016/j.rse.2019.02.015_bb0120 article-title: Tracking subpixel-scale sastrugi with advanced land imager publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2003.812902 – volume: 185 start-page: 37 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb1110 article-title: The impact of improved signal-to-noise ratios on algorithm performance: case studies for Landsat class instruments publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.04.015 – volume: 36 start-page: 1228 issue: 4 year: 1998 ident: 10.1016/j.rse.2019.02.015_bb0630 article-title: The moderate resolution imaging spectroradiometer (MODIS): land remote sensing for global change research publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.701075 – volume: 222 start-page: 65 year: 2019 ident: 10.1016/j.rse.2019.02.015_bb0565 article-title: Impact of time on interpretations of forest fragmentation: three-decades of fragmentation dynamics over Canada publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.12.027 – volume: 83 start-page: 62 issue: 1–2 year: 2002 ident: 10.1016/j.rse.2019.02.015_bb1025 article-title: The MODIS land product quality assessment approach publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00087-1 – volume: 169 start-page: 128 year: 2015 ident: 10.1016/j.rse.2019.02.015_bb0130 article-title: Automated cloud and cloud shadow identification in Landsat MSS imagery for temperate ecosystems publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.08.006 – volume: 31 start-page: 3263 year: 2010 ident: 10.1016/j.rse.2019.02.015_bb0445 article-title: Curve fitting of time-series Landsat imagery for characterizing a mountain pine beetle infestation publication-title: Int. J. Remote Sens. doi: 10.1080/01431160903186277 – volume: 48 start-page: 3489 issue: 11 year: 2017 ident: 10.1016/j.rse.2019.02.015_bb0055 article-title: Effective radiative forcing from historical land use change publication-title: Clim. Dyn. doi: 10.1007/s00382-016-3280-7 – volume: 185 start-page: 129 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb1150 article-title: Representative lake water extent mapping at continental scales using multi-temporal Landsat-8 imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.12.041 – volume: 185 start-page: 1 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb0740 article-title: Landsat 8: the plans, the reality, and the legacy publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.07.033 – volume: 162 start-page: 45 year: 2015 ident: 10.1016/j.rse.2019.02.015_bb0505 article-title: Detection of earlier snowmelt in the Wind River range, Wyoming, using Landsat imagery, 1972–2013 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.01.032 – volume: 17 start-page: 2459 year: 2013 ident: 10.1016/j.rse.2019.02.015_bb0645 article-title: Water accounting plus (WA+) - a water accounting procedure for complex river basins based on satellite measurements publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-17-2459-2013 – volume: 9 start-page: 109 issue: 1 year: 1987 ident: 10.1016/j.rse.2019.02.015_bb0900 article-title: Snow and ice studies by thematic mapper and multispectral scanner Landsat images publication-title: Ann. Glaciol. doi: 10.3189/S0260305500000483 – volume: 172 start-page: 67 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb1365 article-title: Conterminous United States crop field size quantification from multi-temporal Landsat data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.10.034 – volume: 10 start-page: 352 issue: 2 year: 2018 ident: 10.1016/j.rse.2019.02.015_bb0285 article-title: Atmospheric correction inter-comparison exercise publication-title: Remote Sens. doi: 10.3390/rs10020352 – volume: 4 start-page: 57 issue: 1 year: 2004 ident: 10.1016/j.rse.2019.02.015_bb0825 article-title: Parameterization of albedo over heterogeneous surfaces in coupled land-atmosphere schemes for environmental modeling. Part I: theoretical background publication-title: Environ. Fluid Mech. doi: 10.1023/A:1025514026772 – volume: 2(3) start-page: 152 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb0940 article-title: From imagery to ecology: leveraging time series of all available Landsat observations to map and monitor ecosystem state and dynamics – volume: 62 start-page: 32 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb0195 article-title: Remote sensing approach to detect post-fire vegetation regrowth in Siberian boreal larch forest publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2015.11.026 – volume: 53 start-page: 648 year: 2014 ident: 10.1016/j.rse.2019.02.015_bb0920 article-title: Diurnal remote sensing of coastal/oceanic waters: a radiometric analysis for geostationary coastal and air pollution events publication-title: Appl. Opt. doi: 10.1364/AO.53.000648 – volume: 185 start-page: 57 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb1045 article-title: Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.12.024 – volume: 185 start-page: 95 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb0225 article-title: Retrieval of color producing agents in case 2 waters using Landsat 8 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.03.018 – volume: 29 start-page: 421 issue: 4–5 year: 2008 ident: 10.1016/j.rse.2019.02.015_bb0635 article-title: Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data publication-title: Surv. Geophys. doi: 10.1007/s10712-008-9037-z – volume: 8 start-page: 251 issue: 7 year: 2017 ident: 10.1016/j.rse.2019.02.015_bb0895 article-title: Using intra-annual Landsat time series for attributing forest disturbance agents in Central Europe publication-title: Forests doi: 10.3390/f8070251 – volume: 44 start-page: 2207 issue: 8 year: 2006 ident: 10.1016/j.rse.2019.02.015_bb0380 article-title: On the blending of the Landsat and MODIS surface reflectance: predict daily Landsat surface feflectance publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2006.872081 – volume: 33 start-page: 5546 year: 2012 ident: 10.1016/j.rse.2019.02.015_bb0425 article-title: Characterizing 25 years of change in the area, distribution, and carbon stock of Mediterranean pines in Central Spain publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2012.663115 – volume: 172 start-page: 146 year: 2012 ident: 10.1016/j.rse.2019.02.015_bb0970 article-title: Using Landsat-derived disturbance history (1972–2010) to predict current forest structure publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.09.025 – year: 2018 ident: 10.1016/j.rse.2019.02.015_bb0700 article-title: The grape remote sensing atmospheric profile and evapotranspiration eXperiment (GRAPEX) publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-16-0244.1 – volume: 140 start-page: 466 year: 2014 ident: 10.1016/j.rse.2019.02.015_bb0515 article-title: Monitoring conterminous United States (CONUS) land cover change with web-enabled Landsat data (WELD) publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.08.014 – volume: 57 start-page: 202 year: 2017 ident: 10.1016/j.rse.2019.02.015_bb1260 article-title: Smoothing and gap-filling of high resolution multi-spectral time series: example of Landsat data publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2016.12.012 – volume: 185 start-page: 71 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb1275 article-title: Early spring post-fire snow albedo dynamics in high latitude boreal forests using Landsat-8 OLI data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.02.059 – volume: 202 start-page: 18 year: 2017 ident: 10.1016/j.rse.2019.02.015_bb0460 article-title: Google Earth Engine: planetary-scale geospatial analysis for everyone publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.031 – volume: 49 start-page: 498 issue: 3 year: 2013 ident: 10.1016/j.rse.2019.02.015_bb0160 article-title: Estimating crop water use via remote sensing techniques vs. conventional methods in the South Platte River Basin, Colorado publication-title: J. Am. Water Resour. Assoc. doi: 10.1111/jawr.12051 – volume: 114 start-page: 2897 year: 2010 ident: 10.1016/j.rse.2019.02.015_bb0665 article-title: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr - Temporal segmentation algorithms publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.07.008 – volume: 22 start-page: 184 issue: 2 year: 2011 ident: 10.1016/j.rse.2019.02.015_bb1165 article-title: Application of indicator systems for monitoring and assessment of desertification from national to global scales publication-title: Land Degrad. Dev. doi: 10.1002/ldr.1084 – volume: 116 start-page: 55 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb0430 article-title: Time-series informed land cover: a review publication-title: Int. J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.03.008 – volume: Vol. 9607 start-page: 96070S year: 2015 ident: 10.1016/j.rse.2019.02.015_bb0245 article-title: Requirement sensitivity studies for a future Landsat sensor – volume: 122 start-page: 30 year: 2012 ident: 10.1016/j.rse.2019.02.015_bb0770 article-title: Forty-year calibrated record of earth-reflected radiance from Landsat: a review publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.06.026 – volume: 96 start-page: 21971 issue: C12 year: 1991 ident: 10.1016/j.rse.2019.02.015_bb1170 article-title: NASA team algorithm for sea ice concentration retrieval from defense meteorological satellite program special sensor microwave imager: comparison with Landsat satellite imagery publication-title: J. Geophys. Res. Oceans doi: 10.1029/91JC02334 – volume: 200 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb0410 – volume: 122 start-page: 11 year: 2012 ident: 10.1016/j.rse.2019.02.015_bb0615 article-title: The next Landsat satellite: the Landsat data continuity mission publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.08.026 – volume: 15 start-page: 223 issue: 1 year: 2011 ident: 10.1016/j.rse.2019.02.015_bb0025 article-title: Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-15-223-2011 – volume: 174 start-page: 82 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb0040 article-title: The evaporative stress index as an indicator of agricultural drought in Brazil: an assessment based on crop yield impacts publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.11.034 – volume: 6 start-page: 12275 issue: 12 year: 2014 ident: 10.1016/j.rse.2019.02.015_bb0775 article-title: Landsat-8 operational land imager radiometric calibration and stability publication-title: Remote Sens. doi: 10.3390/rs61212275 – volume: 6 start-page: 11607 issue: 11 year: 2014 ident: 10.1016/j.rse.2019.02.015_bb0080 article-title: Landsat-8 thermal infrared sensor (TIRS) vicarious radiometric calibration publication-title: Remote Sens. doi: 10.3390/rs61111607 – volume: 12 start-page: 521 issue: 2 year: 2018 ident: 10.1016/j.rse.2019.02.015_bb0400 article-title: Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years publication-title: Cryosphere doi: 10.5194/tc-12-521-2018 – volume: 505 start-page: 143 issue: 7482 year: 2014 ident: 10.1016/j.rse.2019.02.015_bb0170 article-title: Many eyes on earth publication-title: Nature. doi: 10.1038/505143a – volume: 28 start-page: 9 year: 1989 ident: 10.1016/j.rse.2019.02.015_bb0290 article-title: Spectral signature of alpine snow cover from the Landsat Thematic Mapper publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(89)90101-6 – volume: 144 start-page: 152 year: 2014 ident: 10.1016/j.rse.2019.02.015_bb1415 article-title: Continuous change detection and classification of land cover using all available Landsat data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.01.011 – volume: 81 start-page: 573 year: 2015 ident: 10.1016/j.rse.2019.02.015_bb0890 article-title: A Landsat data tiling and compositing approach optimized for change detection in the conterminous United States publication-title: Photogramm. Eng. Remote. Sens. doi: 10.14358/PERS.81.7.573 – year: 2019 ident: 10.1016/j.rse.2019.02.015_bb2000 article-title: Benefits of the Free and Open Landsat Data Policy publication-title: Remote Sens. Environ. – volume: 195 start-page: 230 year: 2017 ident: 10.1016/j.rse.2019.02.015_bb1120 article-title: Testing a Landsat-based approach for mapping disturbance causality in U.S. forests publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.03.033 – volume: 9 start-page: 670 issue: 7 year: 2017 ident: 10.1016/j.rse.2019.02.015_bb0250 article-title: Calibration of METRIC model to estimate energy balance over a drip-irrigated apple orchard publication-title: Remote Sens. doi: 10.3390/rs9070670 – volume: 6 start-page: 10435 issue: 11 year: 2014 ident: 10.1016/j.rse.2019.02.015_bb0855 article-title: Stray light artifacts in imagery from the Landsat 8 thermal infrared sensor publication-title: Remote Sens. doi: 10.3390/rs61110435 – volume: 170 start-page: 62 year: 2015 ident: 10.1016/j.rse.2019.02.015_bb1340 article-title: Virtual constellations for global terrestrial monitoring publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.09.001 – volume: 171 start-page: 337 year: 2015 ident: 10.1016/j.rse.2019.02.015_bb1355 article-title: Development of a global ~90 m water body map using multi-temporal Landsat images publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.10.014 – volume: 9 start-page: 584 issue: 6 year: 2017 ident: 10.1016/j.rse.2019.02.015_bb0405 article-title: Copernicus sentinel-2A calibration and products validation status publication-title: Remote Sens. doi: 10.3390/rs9060584 – volume: 10 start-page: 1253 issue: 12 year: 2017 ident: 10.1016/j.rse.2019.02.015_bb1160 article-title: Automatic sub-pixel co-registration of Landsat-8 operational land imager and sentinel-2A multi-spectral instrument images using phase correlation and machine learning based mapping publication-title: Int. J. Digital Earth doi: 10.1080/17538947.2017.1304586 – start-page: 49 year: 2017 ident: 10.1016/j.rse.2019.02.015_bb1220 – volume: 140 start-page: 60 year: 2014 ident: 10.1016/j.rse.2019.02.015_bb1270 article-title: Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.08.025 – volume: 185 start-page: 186 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb0600 article-title: Assessing the role of climate and resource management on groundwater dependent ecosystem changes in arid environments with the Landsat archive publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.07.004 – volume: 8 start-page: 29 issue: 1 year: 2017 ident: 10.1016/j.rse.2019.02.015_bb0005 article-title: Classification of annual non-stand replacing boreal forest change in Canada using Landsat time series: a case study in northern Ontario publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2016.1233371 – volume: vol. 9643 start-page: 96430A year: 2015 ident: 10.1016/j.rse.2019.02.015_bb0260 article-title: Sentinel 2 global reference image – volume: 204 start-page: 717 year: 2018 ident: 10.1016/j.rse.2019.02.015_bb0525 article-title: Mapping forest change using stacked generalization: an ensemble approach publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.09.029 – volume: 174 start-page: 341 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb0875 article-title: Water observations from space: mapping surface water from 25 years of Landsat imagery across Australia publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.11.003 – volume: 199 start-page: 25 year: 2017 ident: 10.1016/j.rse.2019.02.015_bb1050 article-title: Examination of Sentinel-2A multi-spectral instrument (MSI) reflectance anisotropy and the suitability of a general method to normalize MSI reflectance to nadir BRDF adjusted reflectance publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.019 – volume: 170 start-page: 317 year: 2015 ident: 10.1016/j.rse.2019.02.015_bb0365 article-title: Boreal shield forest disturbance and recovery trends using Landsat time series publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.09.015 – volume: 4 start-page: 1856 issue: 6 year: 2012 ident: 10.1016/j.rse.2019.02.015_bb0110 article-title: Preparing Landsat Image Time Series (LITS) for monitoring changes in vegetation phenology in Queensland, Australia publication-title: Remote Sens. doi: 10.3390/rs4061856 – volume: 194 start-page: 303 year: 2017 ident: 10.1016/j.rse.2019.02.015_bb1305 article-title: A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.03.035 – volume: 130 start-page: 370 year: 2017 ident: 10.1016/j.rse.2019.02.015_bb1405 article-title: Change detection using Landsat time series: a review of frequencies, preprocessing, algorithms, and applications publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.06.013 – volume: 186 start-page: 121 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb1180 article-title: A note on the temporary mis-registration of Landsat-8 operational land imager (OLI) and Sentinel-2 multi spectral instrument (MSI) imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.08.025 – volume: 122 start-page: 75 year: 2012 ident: 10.1016/j.rse.2019.02.015_bb1425 article-title: Continuous monitoring of forest disturbance using all available Landsat imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.10.030 – volume: 115 issue: G4 year: 2010 ident: 10.1016/j.rse.2019.02.015_bb0070 article-title: Radiative forcing over the conterminous United States due to contemporary land cover land use change and sensitivity to snow and interannual albedo variability publication-title: J. Geophys. Res. doi: 10.1029/2010JG001428 – volume: 39 start-page: 4254 issue: 12 year: 2018 ident: 10.1016/j.rse.2019.02.015_bb1350 article-title: Land cover 2.0 publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2018.1452075 – volume: 10 start-page: 889 year: 2018 ident: 10.1016/j.rse.2019.02.015_bb0050 article-title: Field-scale assessment of land and water use change over the California Delta using remote sensing publication-title: Remote Sens. doi: 10.3390/rs10060889 – volume: 198 start-page: 504 year: 2017 ident: 10.1016/j.rse.2019.02.015_bb0520 article-title: Mapping burned areas using dense time-series of Landsat data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.027 – volume: 32 start-page: 115 year: 1996 ident: 10.1016/j.rse.2019.02.015_bb1015 article-title: Automated mapping of montane snow cover at subpixel resolution from the Landsat thematic mapper publication-title: Water Resour. Res. doi: 10.1029/95WR02718 – volume: 122 start-page: 41 year: 2012 ident: 10.1016/j.rse.2019.02.015_bb1100 article-title: Thermal infrared radiometric calibration of the entire Landsat 4, 5, and 7 archive (1982–2010) publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.07.022 – volume: 6 start-page: 4105 year: 2015 ident: 10.1016/j.rse.2019.02.015_bb0755 article-title: Monitoring forest recovery following wildfire and harvest in boreal forests using satellite imagery publication-title: Forests doi: 10.3390/f6114105 – volume: 540 start-page: 418 issue: 7633 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb0950 article-title: High-resolution mapping of global surface water and its long-term changes publication-title: Nature doi: 10.1038/nature20584 – volume: 102 start-page: 17081 issue: D14 year: 1997 ident: 10.1016/j.rse.2019.02.015_bb0450 article-title: Atmospheric correction of ocean color imagery in the Earth Observing System era publication-title: J. Geophys. Res.-Atmos. doi: 10.1029/96JD02443 – volume: 2017–1034 year: 2017 ident: 10.1016/j.rse.2019.02.015_bb0715 article-title: Landsat and agriculture—case studies on the uses and benefits of Landsat imagery in agricultural monitoring and production publication-title: U.S. Geol. Surv. Open File Rep. doi: 10.3133/ofr20171034 – volume: 49 start-page: 1926 year: 2011 ident: 10.1016/j.rse.2019.02.015_bb1060 article-title: Detecting spatiotemporal changes of corn developmental stages in the US Corn Belt using MODIS WDRVI data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2010.2095462 – volume: 122 start-page: 2 year: 2012 ident: 10.1016/j.rse.2019.02.015_bb1335 article-title: Opening the archive: how free data has enabled the science and monitoring promise of Landsat publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.01.010 – volume: 87 start-page: 343 issue: 3 year: 2006 ident: 10.1016/j.rse.2019.02.015_bb0815 article-title: North American regional reanalysis publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-87-3-343 – volume: 181 start-page: 237 year: 2016 ident: 10.1016/j.rse.2019.02.015_bb1380 article-title: A hybrid approach for detecting corn and soybean phenology with time-series MODIS data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.03.039 |
SSID | ssj0015871 |
Score | 2.7063906 |
Snippet | Formal planning and development of what became the first Landsat satellite commenced over 50 years ago in 1967. Now, having collected earth observation data... Formal planning and development of what became the first Landsat satellite commenced over 50 years ago in 1967. Now, having collected earth observation data... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 127 |
SubjectTerms | Algorithms Applications programs Archives & records Archiving ARD Climate change Climate change mitigation Climate change monitoring Climate monitoring Continuity Data transmission Deforestation Feedback loops Imagery Land change science Land cover Landsat Landsat satellites Landsat science team monitoring OLI Open data planning Positive feedback Remote sensing Remote sensing science Satellite programs Satellites Science time series analysis TIRS Trends |
Title | Current status of Landsat program, science, and applications |
URI | https://dx.doi.org/10.1016/j.rse.2019.02.015 https://www.proquest.com/docview/2230287232 https://www.proquest.com/docview/2221036859 |
Volume | 225 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLYmEIILgsHEYExB4oQo9JEmq8RlQozxPIG0W5SmnRhC3bRuh1347dhtOh5CHDi2SdTWsb84jf0Z4FhzLTqRjHGTE-EGRRrXQQxEMJQesZ1xoWP6D_nwKPrP_HYQDmpwWeXCUFilxf4S0wu0tnfOrTTPJ6MR5fgGnDQOXZCCtIYy2LkkLT97X4Z5eGFHllXzAu5Q7-pks4jxmubElOlFBW0nVcb9fW36gdLF0tPbgk3rM7Ju-VrbUEuzOjSuPlPUsNHaaF6HdVvX_GVRh7XronDvYgcuLBETowyiec7GQ3ZPWb56xmyI1imz33_KsIF9Pdnehefe1dNl37GVExwT-u7MiYNIax4PTSINFaQSUuDarF0p0o6fDmPfS2WUBG4iyUMaBknIjadxpkyYuCb2ggasZOMs3QMWGjf2EyOJqZ6LRKO9IyT6iSeENkbwJriVzJSxtOJU3eJNVfFjrwrFrEjMyvUVirkJJ8shk5JT46_OvJoI9U0xFGL-X8Na1aQpa5W5QlcI3SmJTmQTjpbNaE90SKKzdDynPrgJJlb-aP9_Tz6ADboqgyJbsDKbztNDdFxmcbvQzDasdm_u-o8fnyfqYg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEJ4gxODFKErEZ008GTbso9uyiRdDRBDkpAm3pttdosaAETj4753Z7eIjhoPXnTa7mXa-TndmvgG40FyLdiRjvOREeEGRxnUQAxEMpUdsZ1zomP5D3o9E75HfjcNxCTpFLQylVVrszzE9Q2v7pGW12Xp7fqYa34DTjkMXJCOt2YAKsVOFZahc9we90SqYELZl3jgv4A5NKIKbWZrX-5zIMr0oY-6k5rh_H0-_gDo7fbo7sG3dRnadf9kulNJpDeo3X1VqKLRmOq9B1bY2f_qoweZt1rv3Yw-uLBcToyKi5ZzNJmxIhb56wWyWVpNZFTQZCtj34PY-PHZvHjo9xzZPcEzouwsnDiKteTwxiTTUk0pIgcezdqVI2346iX0vlVESuIkkJ2kSJCE3nsbFMmHimtgL6lCezqbpAbDQuLGfGElk9VwkGk0eUdFPPCG0MYI3wC10poxlFqcGF6-qSCF7UahmRWpWrq9QzQ24XE15y2k11g3mxUKoH3tDIeyvm3ZcLJqyhjlX6A2hRyXRj2zA-UqMJkVxEj1NZ0sag_dgIuaPDv_35jOo9h7uh2rYHw2OYIskeY7kMZQX78v0BP2YRXxq9-knrzjtEw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Current+status+of+Landsat+program%2C+science%2C+and+applications&rft.jtitle=Remote+sensing+of+environment&rft.au=Wulder%2C+Michael+A&rft.au=Loveland%2C+Thomas+R&rft.au=Roy%2C+David+P&rft.au=Crawford%2C+Christopher+J&rft.date=2019-05-01&rft.pub=Elsevier+BV&rft.issn=0034-4257&rft.eissn=1879-0704&rft.volume=225&rft.spage=127&rft_id=info:doi/10.1016%2Fj.rse.2019.02.015&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |