Toward the Enhancement of Microalgal Metabolite Production through Microalgae–Bacteria Consortia
Engineered mutualistic consortia of microalgae and bacteria may be a means of assembling a novel combination of metabolic capabilities with potential biotechnological advantages. Microalgae are promising organisms for the sustainable production of metabolites of commercial interest, such as lipids,...
Saved in:
Published in | Biology (Basel, Switzerland) Vol. 10; no. 4; p. 282 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.04.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Engineered mutualistic consortia of microalgae and bacteria may be a means of assembling a novel combination of metabolic capabilities with potential biotechnological advantages. Microalgae are promising organisms for the sustainable production of metabolites of commercial interest, such as lipids, carbohydrates, pigments, and proteins. Several studies reveal that microalgae growth and cellular storage of these metabolites can be enhanced significantly by co-cultivation with growth-promoting bacteria. This review summarizes the state of the art of microalgae–bacteria consortia for the production of microalgal metabolites. We discuss the current knowledge on microalgae–bacteria mutualism and the mechanisms of bacteria to enhance microalgae metabolism. Furthermore, the potential routes for a microalgae–bacteria biorefinery are outlined in an attempt to overcome the economic failures and negative energy balances of the existing production processes. |
---|---|
AbstractList | Engineered mutualistic consortia of microalgae and bacteria may be a means of assembling a novel combination of metabolic capabilities with potential biotechnological advantages. Microalgae are promising organisms for the sustainable production of metabolites of commercial interest, such as lipids, carbohydrates, pigments, and proteins. Several studies reveal that microalgae growth and cellular storage of these metabolites can be enhanced significantly by co-cultivation with growth-promoting bacteria. This review summarizes the state of the art of microalgae–bacteria consortia for the production of microalgal metabolites. We discuss the current knowledge on microalgae–bacteria mutualism and the mechanisms of bacteria to enhance microalgae metabolism. Furthermore, the potential routes for a microalgae–bacteria biorefinery are outlined in an attempt to overcome the economic failures and negative energy balances of the existing production processes. Engineered mutualistic consortia of microalgae and bacteria may be a means of assembling a novel combination of metabolic capabilities with potential biotechnological advantages. Microalgae are promising organisms for the sustainable production of metabolites of commercial interest, such as lipids, carbohydrates, pigments, and proteins. Several studies reveal that microalgae growth and cellular storage of these metabolites can be enhanced significantly by co-cultivation with growth-promoting bacteria. This review summarizes the state of the art of microalgae-bacteria consortia for the production of microalgal metabolites. We discuss the current knowledge on microalgae-bacteria mutualism and the mechanisms of bacteria to enhance microalgae metabolism. Furthermore, the potential routes for a microalgae-bacteria biorefinery are outlined in an attempt to overcome the economic failures and negative energy balances of the existing production processes.Engineered mutualistic consortia of microalgae and bacteria may be a means of assembling a novel combination of metabolic capabilities with potential biotechnological advantages. Microalgae are promising organisms for the sustainable production of metabolites of commercial interest, such as lipids, carbohydrates, pigments, and proteins. Several studies reveal that microalgae growth and cellular storage of these metabolites can be enhanced significantly by co-cultivation with growth-promoting bacteria. This review summarizes the state of the art of microalgae-bacteria consortia for the production of microalgal metabolites. We discuss the current knowledge on microalgae-bacteria mutualism and the mechanisms of bacteria to enhance microalgae metabolism. Furthermore, the potential routes for a microalgae-bacteria biorefinery are outlined in an attempt to overcome the economic failures and negative energy balances of the existing production processes. Simple SummaryMicroalgae are photosynthetic microorganisms with high biotechnological potential. However, the sustainable production of high-value products such as lipids, proteins, carbohydrates, and pigments undergoes important economic challenges. In this review, we describe the mutualistic association between microalgae and bacteria and the positive effects of artificial consortia on microalgal metabolites’ production. We highlighted the potential role of growth-promoting bacteria in optimizing microalgal biorefineries for the integrated production of these valuable products. Besides making a significant enhancement to microalgal metabolite production, the bacterium partner might assist in the biorefinery process’s key stages, such as biomass harvesting and CO2 fixation.AbstractEngineered mutualistic consortia of microalgae and bacteria may be a means of assembling a novel combination of metabolic capabilities with potential biotechnological advantages. Microalgae are promising organisms for the sustainable production of metabolites of commercial interest, such as lipids, carbohydrates, pigments, and proteins. Several studies reveal that microalgae growth and cellular storage of these metabolites can be enhanced significantly by co-cultivation with growth-promoting bacteria. This review summarizes the state of the art of microalgae–bacteria consortia for the production of microalgal metabolites. We discuss the current knowledge on microalgae–bacteria mutualism and the mechanisms of bacteria to enhance microalgae metabolism. Furthermore, the potential routes for a microalgae–bacteria biorefinery are outlined in an attempt to overcome the economic failures and negative energy balances of the existing production processes. |
Author | de-Bashan, Luz E. González-González, Lina Maria |
AuthorAffiliation | 2 Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Avenida IPN 195, La Paz, Baja California Sur 23096, Mexico 1 The Bashan Institute of Science, 1730 Post Oak Ct, Auburn, AL 36830, USA; lina@bashanis.org 3 Department of Entomology and Plant Pathology, Auburn University, 209 Life Sciences Building, Auburn, AL 36849, USA |
AuthorAffiliation_xml | – name: 3 Department of Entomology and Plant Pathology, Auburn University, 209 Life Sciences Building, Auburn, AL 36849, USA – name: 2 Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Avenida IPN 195, La Paz, Baja California Sur 23096, Mexico – name: 1 The Bashan Institute of Science, 1730 Post Oak Ct, Auburn, AL 36830, USA; lina@bashanis.org |
Author_xml | – sequence: 1 givenname: Lina Maria orcidid: 0000-0003-1793-7951 surname: González-González fullname: González-González, Lina Maria – sequence: 2 givenname: Luz E. surname: de-Bashan fullname: de-Bashan, Luz E. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33915681$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1vVCEUhompsXXs2p25iRs3Y_n-2JjYSdUmbTSxewJc5g4TBiqXq-nO_-A_9JfIOLW2kxhhATk878s5HJ6Cg5STB-A5gq8JUfDEhhzzcIMgpBBL_AgcYSjUXAgiDu7tD8HxOK5hGwJiTvgTcNjkiHGJjoC9yt9M6bu68t1ZWpnk_Man2uVldxlcySYOJnaXvhqbY6i--1RyP7kacmqakqdh9Rf0P7__ODWu-hJMt8hpzKUG8ww8Xpo4-uPbdQY-vzu7WnyYX3x8f754ezF3DMM6t5ASaIRQzELicN9zpRhXmAnje0cpEgRzTp3CLe6odEyqpUJtOuwwmYHznWufzVpfl7Ax5UZnE_TvQC6DNi0bF72WyPbQeygtd7R3zjLoEEcUGWN75VTzerPzup7spl3eHqSY-MD04UkKKz3kr1pCzhghzeDVrUHJXyY_Vr0Jo_MxmuTzNGrMGFJS8Vby_1EMJaeQooa-3EPXeSqpvemWklgJ2fo9Ay_uJ3-X9Z-eN-BkB7SujWPxyzsEwS0F9d7Hagq2p3Chmu0faNWH-E_dL_qp1Hg |
CitedBy_id | crossref_primary_10_1093_femsre_fuac020 crossref_primary_10_1007_s00203_021_02711_x crossref_primary_10_1016_j_heliyon_2024_e31170 crossref_primary_10_3390_su152416660 crossref_primary_10_1016_j_scitotenv_2022_155871 crossref_primary_10_1007_s00449_023_02947_5 crossref_primary_10_1007_s10811_022_02711_4 crossref_primary_10_1186_s44314_024_00005_2 crossref_primary_10_3389_fmicb_2023_1108018 crossref_primary_10_1007_s12155_024_10800_0 crossref_primary_10_3389_fclim_2024_1277475 crossref_primary_10_1007_s11356_024_33472_x crossref_primary_10_1016_j_fbio_2024_105629 crossref_primary_10_3390_ijms252111826 crossref_primary_10_1016_j_envres_2024_119439 crossref_primary_10_1016_j_jenvman_2023_119004 crossref_primary_10_3389_fbioe_2024_1338547 crossref_primary_10_3390_recycling9050097 crossref_primary_10_1016_j_biortech_2022_126732 crossref_primary_10_1007_s00248_022_02026_4 crossref_primary_10_1016_j_biteb_2025_102089 crossref_primary_10_1016_j_cej_2024_155703 crossref_primary_10_1007_s10811_024_03267_1 crossref_primary_10_1007_s12155_022_10411_7 crossref_primary_10_1016_j_cej_2025_160276 crossref_primary_10_1016_j_jenvman_2024_122385 crossref_primary_10_1007_s11814_024_00367_z crossref_primary_10_1016_j_watres_2025_123216 crossref_primary_10_1111_1751_7915_70046 crossref_primary_10_1016_j_biortech_2021_125830 crossref_primary_10_1111_jam_15509 crossref_primary_10_1016_j_aquaculture_2024_741959 crossref_primary_10_1016_j_algal_2021_102585 crossref_primary_10_1016_j_biortech_2023_129636 crossref_primary_10_1016_j_algal_2023_103203 crossref_primary_10_1016_j_cogsc_2022_100595 crossref_primary_10_3390_resources12100119 crossref_primary_10_1016_j_psep_2024_08_019 crossref_primary_10_1016_j_jece_2024_112906 crossref_primary_10_1021_acs_jafc_4c11580 crossref_primary_10_1016_j_biortech_2023_130019 crossref_primary_10_3390_synbio2020011 crossref_primary_10_3390_md23030116 crossref_primary_10_1007_s10811_022_02891_z crossref_primary_10_3390_biology12050693 crossref_primary_10_1007_s00203_023_03734_2 crossref_primary_10_1016_j_envres_2023_115872 crossref_primary_10_1016_j_jenvman_2024_121226 crossref_primary_10_3390_fermentation8100474 crossref_primary_10_1016_j_bej_2023_109211 crossref_primary_10_3390_md20110727 crossref_primary_10_1016_j_algal_2023_103351 crossref_primary_10_1016_j_jece_2024_113837 crossref_primary_10_3390_ma14113027 crossref_primary_10_1016_j_algal_2024_103773 crossref_primary_10_1016_j_biortech_2023_129801 crossref_primary_10_1016_j_biortech_2022_127129 crossref_primary_10_3390_su16198627 crossref_primary_10_3390_molecules27020422 crossref_primary_10_1186_s44315_024_00019_1 crossref_primary_10_3390_life14091053 crossref_primary_10_3390_fermentation8090466 |
Cites_doi | 10.1016/j.renene.2019.06.148 10.1007/s00248-017-1139-z 10.1016/j.algal.2020.102102 10.1128/aem.61.6.2439-2441.1995 10.1016/j.biortech.2020.123754 10.1086/418432 10.1007/s10750-007-9152-8 10.1111/j.1462-2920.2010.02411.x 10.1016/j.chemosphere.2020.129323 10.1016/j.biotechadv.2011.07.009 10.1016/j.algal.2016.05.024 10.1016/j.biortech.2019.122509 10.1016/j.biotechadv.2018.04.004 10.1016/j.biortech.2019.121396 10.1016/j.algal.2012.02.002 10.1111/j.1462-2920.2012.02733.x 10.1128/AEM.01496-13 10.3390/ph14020125 10.1016/j.chembiol.2010.02.010 10.1016/j.algal.2018.08.024 10.1016/j.biotechadv.2015.12.003 10.1111/nph.14832 10.1016/j.biosystems.2013.05.006 10.1002/lno.10009 10.1016/j.scitotenv.2017.07.114 10.1016/j.resmic.2014.12.010 10.1007/s00253-017-8693-7 10.1016/j.biortech.2014.08.088 10.3390/md14050100 10.1139/w02-051 10.1371/journal.pone.0096807 10.1128/AEM.66.4.1527-1531.2000 10.1016/j.biteb.2019.100214 10.1038/nmicrobiol.2017.65 10.1002/jobm.201700594 10.1016/j.biombioe.2020.105702 10.1016/j.envexpbot.2011.08.007 10.1016/j.biortech.2018.07.099 10.1088/1748-9326/aaafe3 10.1139/w00-041 10.1128/AEM.00518-08 10.1111/j.1529-8817.2011.01062.x 10.1186/s12934-018-0879-x 10.1016/j.algal.2016.02.019 10.1016/j.pbi.2015.07.003 10.1073/pnas.0905512106 10.1016/j.bej.2017.02.004 10.1016/j.algal.2015.02.003 10.1186/s13068-018-1174-0 10.1016/j.biortech.2012.11.130 10.1007/s00253-013-5389-5 10.1016/j.biortech.2018.08.059 10.1038/srep41310 10.1098/rsif.2014.0065 10.1016/B978-0-12-818536-0.00014-2 10.1073/pnas.0611067104 10.1371/journal.pone.0013794 10.1111/jpy.13132 10.1007/s00248-010-9686-6 10.1016/j.biortech.2015.04.092 10.1038/ismej.2014.9 10.1038/nature14488 10.1007/s10811-018-1591-2 10.1016/j.algal.2019.101462 10.1002/bbb.337 10.1007/s10811-019-01772-2 10.1016/j.copbio.2015.02.007 10.1038/ismej.2009.94 10.1016/j.ejsobi.2008.08.004 10.1007/s10811-019-01931-5 10.1016/j.chemosphere.2018.07.161 10.1093/femsec/fiw077 10.1016/j.biortech.2012.11.084 10.1016/j.algal.2019.101696 10.3389/fpls.2020.00279 10.3390/md13127069 10.1126/science.1259855 10.3389/fnut.2019.00007 10.3389/fmicb.2015.00056 10.1016/j.rser.2019.04.052 10.1016/j.biortech.2019.121804 10.1016/j.tibtech.2018.09.006 10.1016/j.algal.2019.101534 10.1186/s13068-020-1660-z 10.1007/s00248-006-9162-5 10.1016/j.enzmictec.2012.07.012 10.1128/AEM.06474-11 10.1016/j.rser.2013.11.054 10.1016/j.algal.2020.102177 10.15255/CABEQ.2013.1934 10.1007/s11306-012-0453-1 10.1038/nature04056 10.1016/j.bcab.2020.101790 10.1007/s00425-018-3048-x 10.1016/j.jbiotec.2014.02.014 10.1016/j.biortech.2014.10.159 10.1016/j.algal.2019.101547 10.1016/j.biortech.2011.11.113 10.1007/s13213-014-0866-3 10.1016/j.algal.2015.06.019 10.3390/genes9110520 10.3389/fpls.2018.00741 10.1016/j.enzmictec.2012.07.013 10.1016/j.bej.2013.10.014 10.1080/23311843.2016.1275089 10.1016/j.biombioe.2019.01.033 10.3389/fpls.2017.00289 10.1016/j.tibtech.2018.02.015 10.1016/j.algal.2015.03.007 10.1039/C4GC00745J 10.1002/bbb.2032 10.1016/j.algal.2020.101839 10.1016/j.biortech.2013.07.085 10.3390/agronomy9040192 10.1007/s00253-019-10246-x 10.1016/j.rser.2017.09.091 10.1111/1462-2920.14357 10.1038/s41579-019-0284-4 10.1016/j.bej.2018.03.010 10.1002/bbb.1864 10.1007/s00253-014-6088-6 10.1016/j.algal.2015.03.018 10.1016/j.algal.2020.101845 10.3109/07388551.2014.961402 10.1016/j.scitotenv.2018.11.026 10.1111/ele.12615 10.1016/j.biortech.2019.122017 10.1016/j.jbiosc.2019.12.004 10.1016/j.biteb.2019.02.015 10.1016/j.algal.2013.05.003 10.1016/j.renene.2017.03.025 10.1039/C8LC00977E 10.1073/pnas.95.15.8676 10.1007/s00248-018-1282-1 10.1016/j.renene.2016.01.090 10.1023/A:1026037216893 10.1007/s10811-015-0697-z 10.1128/AEM.01641-13 10.1111/1751-7915.12360 10.1016/j.biortech.2016.04.115 10.1021/acs.iecr.5b01684 10.1016/j.algal.2018.11.020 10.1111/jam.14095 10.1007/s00374-013-0799-1 10.1016/j.biortech.2016.09.106 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION NPM 7QP 7TK 8FD 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 7S9 L.6 5PM DOA |
DOI | 10.3390/biology10040282 |
DatabaseName | CrossRef PubMed Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Genetics Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central (New) (NC LIVE) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2079-7737 |
ExternalDocumentID | oai_doaj_org_article_81bd0ee08b6c4dccb50c16141aabd9c9 PMC8065533 33915681 10_3390_biology10040282 |
Genre | Journal Article Review |
GroupedDBID | 2XV 53G 5VS 8FE 8FH AADQD AAFWJ AAHBH AAYXX ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION EBD GROUPED_DOAJ HCIFZ HYE IAO IHR ITC KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM PQGLB 7QP 7TK 8FD ABUWG AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI PRINS RC3 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c520t-b0430a7795b03c2dd699569257aedc441732664c92995c48c589f91919c2c23 |
IEDL.DBID | M48 |
ISSN | 2079-7737 |
IngestDate | Wed Aug 27 01:27:42 EDT 2025 Thu Aug 21 17:51:46 EDT 2025 Fri Jul 11 02:06:02 EDT 2025 Fri Jul 11 00:53:57 EDT 2025 Fri Jul 25 12:14:03 EDT 2025 Mon Jul 21 05:48:43 EDT 2025 Tue Jul 01 01:28:35 EDT 2025 Thu Apr 24 23:13:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | biorefinery microalgae growth-promoting bacteria metabolites mutualism |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c520t-b0430a7795b03c2dd699569257aedc441732664c92995c48c589f91919c2c23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 Dedicated to the memory of Prof. Yoav Bashan, founder of the Bashan Institute of Science and leader of the Environmental Microbiology Group at CIBNOR for 28 years. |
ORCID | 0000-0003-1793-7951 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/biology10040282 |
PMID | 33915681 |
PQID | 2528297877 |
PQPubID | 2032427 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_81bd0ee08b6c4dccb50c16141aabd9c9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8065533 proquest_miscellaneous_2551989604 proquest_miscellaneous_2520864041 proquest_journals_2528297877 pubmed_primary_33915681 crossref_primary_10_3390_biology10040282 crossref_citationtrail_10_3390_biology10040282 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Biology (Basel, Switzerland) |
PublicationTitleAlternate | Biology (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Tremblay (ref_103) 2018; 267 Franco (ref_139) 2010; 2 Renuka (ref_133) 2018; 36 Mayali (ref_27) 2016; 15 Wemheuer (ref_44) 2013; 79 Chen (ref_128) 2013; 81 Goers (ref_26) 2014; 11 ref_10 ref_132 Trejo (ref_135) 2012; 75 Eltanahy (ref_144) 2019; 41 Yao (ref_9) 2019; 126 Garnier (ref_57) 2013; 2 Seymour (ref_18) 2017; 2 Ramanan (ref_11) 2016; 34 Vessey (ref_134) 2003; 255 Lee (ref_126) 2013; 131 Gifuni (ref_93) 2019; 37 Bohutskyi (ref_118) 2019; 653 Amavizca (ref_42) 2017; 7 Fabris (ref_4) 2020; 11 Toyama (ref_32) 2018; 11 Bashan (ref_75) 2002; 48 Kumar (ref_111) 2018; 269 Xue (ref_74) 2018; 58 Gonzalez (ref_87) 2000; 66 Wang (ref_94) 2016; 222 Kramer (ref_54) 2020; 18 Chan (ref_122) 2016; 9 Crawford (ref_55) 2010; 17 Lopez (ref_41) 2019; 44 Tighiri (ref_102) 2019; 286 ref_72 Lee (ref_80) 2019; 41 Lebsky (ref_88) 2000; 46 Kazamia (ref_52) 2016; 19 Mccollum (ref_148) 2018; 13 Sen (ref_89) 2019; 6 Abinandan (ref_35) 2018; 102 Grant (ref_46) 2014; 8 Vuong (ref_77) 2019; 32 Mahdy (ref_116) 2016; 96 Sialve (ref_121) 2012; 6 Cho (ref_81) 2015; 175 Zhuang (ref_34) 2019; 6 Bruckner (ref_43) 2011; 13 Yu (ref_6) 2015; 6 Morales (ref_106) 2020; 146 Sandhya (ref_78) 2019; 31 Ballhausen (ref_49) 2010; 4 Zhou (ref_96) 2015; 190 Maurya (ref_129) 2016; 214 Pagnussat (ref_61) 2020; 47 Hadar (ref_56) 1995; 61 Silambarasan (ref_131) 2020; 268 Commault (ref_7) 2019; 39 Choix (ref_65) 2014; 177 Amin (ref_58) 2009; 106 Paddock (ref_98) 2020; 104 Rajapitamahuni (ref_30) 2019; 31 Khan (ref_2) 2018; 17 Burmeister (ref_39) 2019; 19 ref_82 Ferreira (ref_114) 2019; 109 Paerl (ref_48) 2015; 60 Bashan (ref_37) 2008; 74 Bronstein (ref_12) 1994; 69 Gouveia (ref_90) 2014; 98 Schmid (ref_84) 2011; 47 ref_85 Ramanan (ref_22) 2015; 8 Palacios (ref_51) 2016; 28 Su (ref_29) 2012; 105 Dublan (ref_73) 2013; 146 Palacios (ref_62) 2019; 77 Jia (ref_100) 2016; 2 Nguyen (ref_28) 2020; 314 Choix (ref_63) 2018; 76 Solimeno (ref_99) 2017; 607 Zhao (ref_141) 2014; 31 Sposob (ref_107) 2020; 141 (ref_138) 2016; 55 Wan (ref_53) 2014; 98 Kubo (ref_25) 2013; 113 Fouilland (ref_19) 2018; 211 Helliwell (ref_47) 2018; 217 Lopez (ref_136) 2013; 49 Leyva (ref_66) 2015; 65 Choix (ref_79) 2012; 51 Chen (ref_104) 2019; 292 Astals (ref_105) 2021; 54 Steffen (ref_147) 2015; 347 Croft (ref_15) 2005; 438 Hernandez (ref_71) 2009; 45 Aketo (ref_115) 2020; 129 Kulkarni (ref_91) 2018; 35 Safafar (ref_95) 2015; 13 Rasouli (ref_86) 2018; 134 Wang (ref_125) 2012; 78 Makut (ref_101) 2019; 37 Park (ref_68) 2008; 598 Doebeli (ref_13) 1998; 95 Berthold (ref_40) 2019; 122 Powell (ref_124) 2013; 79 (ref_143) 2015; 9 Palacios (ref_60) 2016; 92 Amin (ref_59) 2015; 522 Sforza (ref_142) 2017; 121 Wang (ref_14) 2016; 36 Koutra (ref_120) 2018; 36 Nagarajan (ref_140) 2019; 290 Guo (ref_127) 2017; 109 Xu (ref_83) 2018; 9 Monte (ref_92) 2020; 297 Zhou (ref_97) 2014; 171 Lauersen (ref_3) 2019; 249 Kouzuma (ref_20) 2015; 33 Lakatos (ref_113) 2014; 16 ref_36 Subasankari (ref_31) 2020; 29 Sapp (ref_21) 2007; 53 Correa (ref_119) 2018; 82 Gerardo (ref_123) 2015; 11 Rivas (ref_33) 2010; 60 Meza (ref_64) 2015; 166 Astals (ref_117) 2019; 7 Vuppaladadiyam (ref_1) 2018; 12 Subashchandrabose (ref_16) 2011; 29 Kazamia (ref_45) 2012; 14 Cooper (ref_23) 2015; 26 Nobre (ref_112) 2013; 135 Raheem (ref_110) 2020; 52 Samo (ref_17) 2018; 20 Park (ref_69) 2017; 8 Biller (ref_146) 2012; 1 ref_109 Higgins (ref_50) 2016; 17 Ferreira (ref_130) 2019; 13 Paul (ref_76) 2013; 9 Dunham (ref_24) 2007; 104 Raposo (ref_137) 2011; 13 Barreiro (ref_145) 2015; 9 Peng (ref_67) 2020; 47 Kim (ref_108) 2020; 13 ref_8 Nagy (ref_38) 2014; 28 Choix (ref_70) 2012; 51 ref_5 |
References_xml | – volume: 146 start-page: 188 year: 2020 ident: ref_106 article-title: Biodiesel and biogas production from Isochrysis galbana using dry and wet lipid extraction: A biorefinery approach publication-title: Renew. Energy doi: 10.1016/j.renene.2019.06.148 – volume: 76 start-page: 430 year: 2018 ident: ref_63 article-title: Azospirillum brasilense increases CO2 fixation on microalgae Scenedesmus obliquus, Chlorella vulgaris, and Chlamydomonas reinhardtii cultured on high CO2 concentrations publication-title: Microb. Ecol. doi: 10.1007/s00248-017-1139-z – volume: 52 start-page: 102102 year: 2020 ident: ref_110 article-title: Hydrogen-rich energy recovery from microalgae (lipid-extracted) via steam catalytic gasification publication-title: Algal Res. doi: 10.1016/j.algal.2020.102102 – volume: 61 start-page: 2439 year: 1995 ident: ref_56 article-title: Oligotrophic bacteria enhance algal growth under iron-deficient conditions publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.61.6.2439-2441.1995 – volume: 314 start-page: 123754 year: 2020 ident: ref_28 article-title: Co-culture of microalgae-activated sludge for wastewater treatment and biomass production: Exploring their role under different inoculation ratios publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.123754 – volume: 69 start-page: 31 year: 1994 ident: ref_12 article-title: Our current understanding of mutualism publication-title: Q. Rev. Biol. doi: 10.1086/418432 – volume: 598 start-page: 219 year: 2008 ident: ref_68 article-title: Growth promotion of Chlorella ellipsoidea by co-inoculation with Brevundimonas sp. isolated from the microalga publication-title: Hydrobiologia doi: 10.1007/s10750-007-9152-8 – volume: 13 start-page: 1052 year: 2011 ident: ref_43 article-title: Growth and release of extracellular organic compounds by benthic diatoms depend on interactions with bacteria publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2010.02411.x – volume: 268 start-page: 129323 year: 2020 ident: ref_131 article-title: Removal of nutrients from domestic wastewater by microalgae coupled to lipid augmentation for biodiesel production and influence of deoiled algal biomass as biofertilizer for Solanum lycopersicum cultivation publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.129323 – volume: 29 start-page: 896 year: 2011 ident: ref_16 article-title: Consortia of cyanobacteria/microalgae and bacteria: Biotechnological potential publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2011.07.009 – volume: 17 start-page: 308 year: 2016 ident: ref_50 article-title: Cofactor symbiosis for enhanced algal growth, biofuel production, and wastewater treatment publication-title: Algal Res. doi: 10.1016/j.algal.2016.05.024 – volume: 297 start-page: 122509 year: 2020 ident: ref_92 article-title: Biorefinery of Dunaliella salina: Sustainable recovery of carotenoids, polar lipids and glycerol publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.122509 – volume: 36 start-page: 1255 year: 2018 ident: ref_133 article-title: Microalgae as multi-functional options in modern agriculture: Current trends, prospects and challenges publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2018.04.004 – volume: 286 start-page: 121396 year: 2019 ident: ref_102 article-title: Biotreatment of landfill leachate by microalgae-bacteria consortium in sequencing batch mode and product utilization publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.121396 – volume: 1 start-page: 70 year: 2012 ident: ref_146 article-title: Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process publication-title: Algal Res. doi: 10.1016/j.algal.2012.02.002 – volume: 14 start-page: 1466 year: 2012 ident: ref_45 article-title: Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2012.02733.x – volume: 79 start-page: 6093 year: 2013 ident: ref_124 article-title: Rapid aggregation of biofuel-producing algae by the bacterium Bacillus sp. strain RP1137 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01496-13 – ident: ref_8 doi: 10.3390/ph14020125 – volume: 17 start-page: 254 year: 2010 ident: ref_55 article-title: Siderophores from neighboring organisms promote the growth of uncultured bacteria publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2010.02.010 – volume: 35 start-page: 185 year: 2018 ident: ref_91 article-title: Process for selective extraction of pigments and functional proteins from Chlorella vulgaris publication-title: Algal Res. doi: 10.1016/j.algal.2018.08.024 – volume: 34 start-page: 14 year: 2016 ident: ref_11 article-title: Algae-bacteria interactions: Evolution, ecology and emerging applications publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2015.12.003 – volume: 217 start-page: 599 year: 2018 ident: ref_47 article-title: Quantitative proteomics of a B12 -dependent alga grown in coculture with bacteria reveals metabolic tradeoffs required for mutualism publication-title: New Phytol. doi: 10.1111/nph.14832 – volume: 113 start-page: 66 year: 2013 ident: ref_25 article-title: Construction of bacteria–eukaryote synthetic mutualism publication-title: Biosystems doi: 10.1016/j.biosystems.2013.05.006 – volume: 60 start-page: 215 year: 2015 ident: ref_48 article-title: Vitamin B1 ecophysiology of marine picoeukaryotic algae: Strain-specific differences and a new role for bacteria in vitamin cycling publication-title: Limnol. Oceanogr. doi: 10.1002/lno.10009 – volume: 607 start-page: 1136 year: 2017 ident: ref_99 article-title: Microalgae-bacteria models evolution: From microalgae steady-state to integrated microalgae-bacteria wastewater treatment models–a comparative review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.07.114 – volume: 166 start-page: 72 year: 2015 ident: ref_64 article-title: Involvement of indole-3-acetic acid produced by Azospirillum brasilense in accumulating intracellular ammonium in Chlorella vulgaris publication-title: Res. Microbiol. doi: 10.1016/j.resmic.2014.12.010 – volume: 102 start-page: 1131 year: 2018 ident: ref_35 article-title: Microalgae–bacteria biofilms: A sustainable synergistic approach in remediation of acid mine drainage publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-017-8693-7 – volume: 171 start-page: 330 year: 2014 ident: ref_97 article-title: Biomass and carotenoid production in photosynthetic bacteria wastewater treatment: Effects of light intensity publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.08.088 – ident: ref_10 doi: 10.3390/md14050100 – volume: 48 start-page: 514 year: 2002 ident: ref_75 article-title: Increased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. when co-immobilized in alginate beads with the microalgae-growth-promoting bacterium Azospirillum brasilense publication-title: Can. J. Microbiol. doi: 10.1139/w02-051 – ident: ref_72 doi: 10.1371/journal.pone.0096807 – volume: 66 start-page: 1527 year: 2000 ident: ref_87 article-title: Increased growth of the microalga Chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant-growth-promoting bacterium Azospirillum brasilense publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.66.4.1527-1531.2000 – volume: 7 start-page: 100214 year: 2019 ident: ref_117 article-title: Impact of osmotic shock pre-treatment on microalgae lipid extraction and subsequent methane production publication-title: Bioresour. Technol. Rep. doi: 10.1016/j.biteb.2019.100214 – volume: 2 start-page: 1 year: 2017 ident: ref_18 article-title: Zooming in on the phycosphere: The ecological interface for phytoplankton–bacteria relationships publication-title: Nat. Microbiol. doi: 10.1038/nmicrobiol.2017.65 – volume: 58 start-page: 358 year: 2018 ident: ref_74 article-title: Analysis of growth and lipid production characteristics of Chlorella vulgaris in artificially constructed consortia with symbiotic bacteria publication-title: J. Basic Microbiol. doi: 10.1002/jobm.201700594 – volume: 141 start-page: 105702 year: 2020 ident: ref_107 article-title: Assessment of the relationship between solubilization and biogas production on anaerobic digestion of pretreated lipid-extracted microalgae waste publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2020.105702 – volume: 75 start-page: 65 year: 2012 ident: ref_135 article-title: Recycling waste debris of immobilized microalgae and plant growth-promoting bacteria from wastewater treatment as a resource to improve fertility of eroded desert soil publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2011.08.007 – volume: 267 start-page: 657 year: 2018 ident: ref_103 article-title: Cultivation of an algae-bacteria consortium in wastewater from an industrial park: Effect of environmental stress and nutrient deficiency on lipid production publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.07.099 – volume: 13 start-page: 033006 year: 2018 ident: ref_148 article-title: Connecting the sustainable development goals by their energy inter-linkages publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aaafe3 – volume: 46 start-page: 653 year: 2000 ident: ref_88 article-title: Changes in the metabolism of the microalga Chlorella vulgaris when coimmobilized in alginate with the nitrogen-fixing Phyllobacterium myrsinacearum publication-title: Can. J. Microbiol. doi: 10.1139/w00-041 – volume: 74 start-page: 6797 year: 2008 ident: ref_37 article-title: Joint immobilization of plant growth-promoting bacteria and green microalgae in alginate beads as an experimental model for studying plant-bacterium interactions publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00518-08 – volume: 47 start-page: 1350 year: 2011 ident: ref_84 article-title: Cell-cell interaction in the eukaryote-prokaryote model of the microalgae Chlorella vulgaris and the bacterium Azospirillum brasilense immobilized in polymer beads publication-title: J. Phycol. doi: 10.1111/j.1529-8817.2011.01062.x – volume: 17 start-page: 1 year: 2018 ident: ref_2 article-title: The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products publication-title: Microb. Cell Factories doi: 10.1186/s12934-018-0879-x – volume: 15 start-page: 179 year: 2016 ident: ref_27 article-title: Establishment of stable synthetic mutualism without co-evolution between microalgae and bacteria demonstrated by mutual transfer of metabolites (NanoSIMS isotopic imaging) and persistent physical association (Fluorescent in situ hybridization) publication-title: Algal Res. doi: 10.1016/j.algal.2016.02.019 – volume: 26 start-page: 147 year: 2015 ident: ref_23 article-title: Exploring mutualistic interactions between microalgae and bacteria in the omics age publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2015.07.003 – volume: 106 start-page: 17071 year: 2009 ident: ref_58 article-title: Photolysis of iron–siderophore chelates promotes bacterial–algal mutualism publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0905512106 – volume: 121 start-page: 139 year: 2017 ident: ref_142 article-title: Anaerobic digestion of lipid-extracted microalgae: Enhancing nutrient recovery towards a closed loop recycling publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2017.02.004 – volume: 8 start-page: 140 year: 2015 ident: ref_22 article-title: Phycosphere bacterial diversity in green algae reveals an apparent similarity across habitats publication-title: Algal Res. doi: 10.1016/j.algal.2015.02.003 – volume: 2 start-page: 135 year: 2010 ident: ref_139 article-title: Microalgae-based systems for carbon dioxide sequestration and industrial biorefineries publication-title: Biomass. Croat. Sciyo – volume: 11 start-page: 176 year: 2018 ident: ref_32 article-title: Growth promotion of three microalgae, Chlamydomonas reinhardtii, Chlorella vulgaris and Euglena gracilis, by in situ indigenous bacteria in wastewater effluent publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-018-1174-0 – volume: 131 start-page: 195 year: 2013 ident: ref_126 article-title: Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.11.130 – volume: 98 start-page: 1043 year: 2014 ident: ref_90 article-title: Integrated microbial processes for biofuels and high value-added products: The way to improve the cost effectiveness of biofuel production publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-013-5389-5 – volume: 269 start-page: 408 year: 2018 ident: ref_111 article-title: Defatted algal biomass as feedstock for short chain carboxylic acids and biohydrogen production in the biorefinery format publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.08.059 – volume: 7 start-page: 1 year: 2017 ident: ref_42 article-title: Enhanced performance of the microalga Chlorella sorokiniana remotely induced by the plant growth-promoting bacteria Azospirillum brasilense and Bacillus pumilus publication-title: Sci. Rep. doi: 10.1038/srep41310 – volume: 11 start-page: 20140065 year: 2014 ident: ref_26 article-title: Co-culture systems and technologies: Taking synthetic biology to the next level publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2014.0065 – ident: ref_109 doi: 10.1016/B978-0-12-818536-0.00014-2 – volume: 104 start-page: 1741 year: 2007 ident: ref_24 article-title: Synthetic ecology: A model system for cooperation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0611067104 – ident: ref_36 doi: 10.1371/journal.pone.0013794 – ident: ref_85 doi: 10.1111/jpy.13132 – volume: 60 start-page: 628 year: 2010 ident: ref_33 article-title: Interactions of Botryococcus braunii cultures with bacterial biofilms publication-title: Microb. Ecol. doi: 10.1007/s00248-010-9686-6 – volume: 190 start-page: 196 year: 2015 ident: ref_96 article-title: Biomass and pigments production in photosynthetic bacteria wastewater treatment: Effects of photoperiod publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.04.092 – volume: 8 start-page: 1418 year: 2014 ident: ref_46 article-title: Direct exchange of vitamin B 12 is demonstrated by modelling the growth dynamics of algal–bacterial cocultures publication-title: ISME J. doi: 10.1038/ismej.2014.9 – volume: 522 start-page: 98 year: 2015 ident: ref_59 article-title: Interaction and signaling between a cosmopolitan phytoplankton and associated bacteria publication-title: Nature doi: 10.1038/nature14488 – volume: 31 start-page: 29 year: 2019 ident: ref_30 article-title: Co-cultivation of siderophore-producing bacteria Idiomarina loihiensis RS14 with Chlorella variabilis ATCC 12198, evaluation of micro-algal growth, lipid, and protein content under iron starvation publication-title: J. Appl. Phycol. doi: 10.1007/s10811-018-1591-2 – volume: 39 start-page: 101462 year: 2019 ident: ref_7 article-title: Methyl jasmonate treatment affects the regulation of the 2-C-methyl-D-erythritol 4-phosphate pathway and early steps of the triterpenoid biosynthesis in Chlamydomonas reinhardtii publication-title: Algal Res. doi: 10.1016/j.algal.2019.101462 – volume: 6 start-page: 205 year: 2012 ident: ref_121 article-title: Impact of microalgae characteristics on their conversion to biofuel. Part II: Focus on biomethane production publication-title: Biofuels Bioprod. Biorefining doi: 10.1002/bbb.337 – volume: 13 start-page: 719 year: 2011 ident: ref_137 article-title: Chlorella vulgaris as soil amendment: Influence of encapsulation and enrichment with rhizobacteria publication-title: Int. J. Agric. Biol. – volume: 31 start-page: 2259 year: 2019 ident: ref_78 article-title: Symbiotic association among marine microalgae and bacterial flora: A study with special reference to commercially important Isochrysis galbana culture publication-title: J. Appl. Phycol. doi: 10.1007/s10811-019-01772-2 – volume: 33 start-page: 125 year: 2015 ident: ref_20 article-title: Exploring the potential of algae/bacteria interactions publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2015.02.007 – volume: 4 start-page: 61 year: 2010 ident: ref_49 article-title: The complete genome sequence of the algal symbiont Dinoroseobacter shibae: A hitchhiker’s guide to life in the sea publication-title: ISME J. doi: 10.1038/ismej.2009.94 – volume: 45 start-page: 88 year: 2009 ident: ref_71 article-title: Growth promotion of the freshwater microalga Chlorella vulgaris by the nitrogen-fixing, plant growth-promoting bacterium Bacillus pumilus from arid zone soils publication-title: Eur. J. Soil Biol. doi: 10.1016/j.ejsobi.2008.08.004 – volume: 32 start-page: 71 year: 2019 ident: ref_77 article-title: Interaction between marine bacterium Stappia sp. K01 and diatom Phaeodactylum tricornutum through extracellular fatty acids publication-title: J. Appl. Phycol. doi: 10.1007/s10811-019-01931-5 – volume: 211 start-page: 449 year: 2018 ident: ref_19 article-title: Influence of bacteria on the response of microalgae to contaminant mixtures publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.07.161 – volume: 92 start-page: fiw077 year: 2016 ident: ref_60 article-title: Tryptophan, thiamine and indole-3-acetic acid exchange between Chlorella sorokiniana and the plant growth-promoting bacterium Azospirillum brasilense publication-title: FEMS Microbiol. Ecol. doi: 10.1093/femsec/fiw077 – volume: 135 start-page: 128 year: 2013 ident: ref_112 article-title: A biorefinery from Nannochloropsis sp. microalga–extraction of oils and pigments. Production of biohydrogen from the leftover biomass publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.11.084 – volume: 44 start-page: 101696 year: 2019 ident: ref_41 article-title: Riboflavin and lumichrome exuded by the bacterium Azospirillum brasilense promote growth and changes in metabolites in Chlorella sorokiniana under autotrophic conditions publication-title: Algal Res. doi: 10.1016/j.algal.2019.101696 – volume: 11 start-page: 279 year: 2020 ident: ref_4 article-title: Emerging technologies in algal biotechnology: Toward the establishment of a sustainable, algae-based bioeconomy publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.00279 – volume: 13 start-page: 7339 year: 2015 ident: ref_95 article-title: Carotenoids, phenolic compounds and tocopherols contribute to the antioxidative properties of some microalgae species grown on industrial wastewater publication-title: Mar. Drugs doi: 10.3390/md13127069 – volume: 347 start-page: 1259855 year: 2015 ident: ref_147 article-title: Planetary boundaries: Guiding human development on a changing planet publication-title: Science doi: 10.1126/science.1259855 – volume: 6 start-page: 7 year: 2019 ident: ref_89 article-title: Microbial Pigments in the Food Industry—Challenges and the Way Forward publication-title: Front. Nutr. doi: 10.3389/fnut.2019.00007 – volume: 6 start-page: 56 year: 2015 ident: ref_6 article-title: Chemicals to enhance microalgal growth and accumulation of high-value bioproducts publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.00056 – volume: 109 start-page: 448 year: 2019 ident: ref_114 article-title: A review on lipid production from microalgae: Association between cultivation using waste streams and fatty acid profiles publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.04.052 – volume: 290 start-page: 121804 year: 2019 ident: ref_140 article-title: Integration of anaerobic digestion and microalgal cultivation for digestate bioremediation and biogas upgrading publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.121804 – volume: 37 start-page: 242 year: 2019 ident: ref_93 article-title: Current bottlenecks and challenges of the microalgal biorefinery publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2018.09.006 – volume: 41 start-page: 101534 year: 2019 ident: ref_144 article-title: Assessing the fertilizing potential of microalgal digestates using the marine diatom Chaetoceros muelleri publication-title: Algal Res. doi: 10.1016/j.algal.2019.101534 – volume: 13 start-page: 1 year: 2020 ident: ref_108 article-title: Co-production of biodiesel and bioethanol using psychrophilic microalga Chlamydomonas sp. KNM0029C isolated from Arctic sea ice publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-020-1660-z – volume: 53 start-page: 683 year: 2007 ident: ref_21 article-title: Species-specific bacterial communities in the phycosphere of microalgae? publication-title: Microb. Ecol. doi: 10.1007/s00248-006-9162-5 – volume: 51 start-page: 300 year: 2012 ident: ref_79 article-title: Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: II. Heterotrophic conditions publication-title: Enzym. Microb. Technol. doi: 10.1016/j.enzmictec.2012.07.012 – volume: 78 start-page: 1445 year: 2012 ident: ref_125 article-title: Novel bacterial isolate from Permian groundwater, capable of aggregating potential biofuel-producing microalga Nannochloropsis oceanica IMET1 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.06474-11 – volume: 31 start-page: 121 year: 2014 ident: ref_141 article-title: Process effect of microalgal-carbon dioxide fixation and biomass production: A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.11.054 – volume: 54 start-page: 102177 year: 2021 ident: ref_105 article-title: Osmotic shock pre-treatment of Chaetoceros muelleri wet biomass enhanced solvent-free lipid extraction and biogas production publication-title: Algal Res. doi: 10.1016/j.algal.2020.102177 – volume: 28 start-page: 225 year: 2014 ident: ref_38 article-title: Interaction of bacterial populations in coupled microchambers publication-title: Chem. Biochem. Eng. Q. doi: 10.15255/CABEQ.2013.1934 – volume: 9 start-page: 349 year: 2013 ident: ref_76 article-title: A co-culturing/metabolomics approach to investigate chemically mediated interactions of planktonic organisms reveals influence of bacteria on diatom metabolism publication-title: Metabolomics doi: 10.1007/s11306-012-0453-1 – volume: 438 start-page: 90 year: 2005 ident: ref_15 article-title: Algae acquire vitamin B12 through a symbiotic relationship with bacteria publication-title: Nature doi: 10.1038/nature04056 – volume: 29 start-page: 101790 year: 2020 ident: ref_31 article-title: Growth promoting studies on co-culturing Nannochloropsis oceanica with Halomonas aquamarina actively enhance the algal biomass and lipid production publication-title: Biocatal. Agric. Biotechnol. doi: 10.1016/j.bcab.2020.101790 – volume: 249 start-page: 155 year: 2019 ident: ref_3 article-title: Eukaryotic microalgae as hosts for light-driven heterologous isoprenoid production publication-title: Planta doi: 10.1007/s00425-018-3048-x – volume: 177 start-page: 22 year: 2014 ident: ref_65 article-title: Enhanced activity of ADP glucose pyrophosphorylase and formation of starch induced by Azospirillum brasilense in Chlorella vulgaris publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2014.02.014 – volume: 175 start-page: 578 year: 2015 ident: ref_81 article-title: Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.10.159 – volume: 41 start-page: 101547 year: 2019 ident: ref_80 article-title: Effects of an auxin-producing symbiotic bacterium on cell growth of the microalga Haematococcus pluvialis: Elevation of cell density and prolongation of exponential stage publication-title: Algal Res. doi: 10.1016/j.algal.2019.101547 – volume: 105 start-page: 67 year: 2012 ident: ref_29 article-title: Synergistic cooperation between wastewater-born algae and activated sludge for wastewater treatment: Influence of algae and sludge inoculation ratios publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.11.113 – volume: 65 start-page: 339 year: 2015 ident: ref_66 article-title: Activity of acetyl-CoA carboxylase is not directly linked to accumulation of lipids when Chlorella vulgaris is co-immobilised with Azospirillum brasilense in alginate under autotrophic and heterotrophic conditions publication-title: Ann. Microbiol. doi: 10.1007/s13213-014-0866-3 – volume: 11 start-page: 248 year: 2015 ident: ref_123 article-title: Harvesting of microalgae within a biorefinery approach: A review of the developments and case studies from pilot-plants publication-title: Algal Res. doi: 10.1016/j.algal.2015.06.019 – ident: ref_5 doi: 10.3390/genes9110520 – volume: 9 start-page: 741 year: 2018 ident: ref_83 article-title: Enhanced lipid production in Chlamydomonas reinhardtii by co-culturing with Azotobacter chroococcum publication-title: Front Plant Sci. doi: 10.3389/fpls.2018.00741 – volume: 51 start-page: 294 year: 2012 ident: ref_70 article-title: Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: I. Autotrophic conditions publication-title: Enzym. Microb. Technol. doi: 10.1016/j.enzmictec.2012.07.013 – volume: 81 start-page: 170 year: 2013 ident: ref_128 article-title: Improving microalgal oil collecting efficiency by pretreating the microalgal cell wall with destructive bacteria publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2013.10.014 – volume: 2 start-page: 1275089 year: 2016 ident: ref_100 article-title: Removal of nitrogen from wastewater using microalgae and microalgae–bacteria consortia publication-title: Cogent Environ. Sci. doi: 10.1080/23311843.2016.1275089 – volume: 122 start-page: 280 year: 2019 ident: ref_40 article-title: Enhancing algal biomass and lipid production through bacterial co-culture publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2019.01.033 – volume: 8 start-page: 289 year: 2017 ident: ref_69 article-title: Phycospheric native bacteria Pelagibaca bermudensis and Stappia sp. ameliorate biomass productivity of Tetraselmis striata (KCTC1432BP) in co-cultivation system through mutualistic interaction publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00289 – volume: 36 start-page: 819 year: 2018 ident: ref_120 article-title: Bio-based products from microalgae cultivated in digestates publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2018.02.015 – volume: 9 start-page: 99 year: 2015 ident: ref_145 article-title: Cultivation of microalgae with recovered nutrients after hydrothermal liquefaction publication-title: Algal Res. doi: 10.1016/j.algal.2015.03.007 – volume: 16 start-page: 4716 year: 2014 ident: ref_113 article-title: Bacterial symbionts enhance photo-fermentative hydrogen evolution of Chlamydomonas algae publication-title: Green Chem. doi: 10.1039/C4GC00745J – volume: 13 start-page: 1169 year: 2019 ident: ref_130 article-title: Scenedesmus obliquus microalga-based biorefinery–from brewery effluent to bioactive compounds, biofuels and biofertilizers–aiming at a circular bioeconomy publication-title: Biofuels Bioprod. Biorefining doi: 10.1002/bbb.2032 – volume: 47 start-page: 101839 year: 2020 ident: ref_61 article-title: Auxin-dependent alleviation of oxidative stress and growth promotion of Scenedesmus obliquus C1S by Azospirillum brasilense publication-title: Algal Res. doi: 10.1016/j.algal.2020.101839 – volume: 146 start-page: 400 year: 2013 ident: ref_73 article-title: High lipid productivity of an Ankistrodesmus–Rhizobium artificial consortium publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.07.085 – ident: ref_82 – ident: ref_132 doi: 10.3390/agronomy9040192 – volume: 104 start-page: 893 year: 2020 ident: ref_98 article-title: The effect of the microalgae-bacteria microbiome on wastewater treatment and biomass production publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-019-10246-x – volume: 82 start-page: 1137 year: 2018 ident: ref_119 article-title: Integrated biodiesel and biogas production from microalgae: Towards a sustainable closed loop through nutrient recycling publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.09.091 – volume: 20 start-page: 4385 year: 2018 ident: ref_17 article-title: Attachment between heterotrophic bacteria and microalgae influences symbiotic microscale interactions publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.14357 – volume: 18 start-page: 152 year: 2020 ident: ref_54 article-title: Bacterial siderophores in community and host interactions publication-title: Nature Rev. Microbiol. doi: 10.1038/s41579-019-0284-4 – volume: 134 start-page: 129 year: 2018 ident: ref_86 article-title: Nutrient recovery from industrial wastewater as single cell protein by a co-culture of green microalgae and methanotrophs publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2018.03.010 – volume: 12 start-page: 304 year: 2018 ident: ref_1 article-title: Microalgae cultivation and metabolites production: A comprehensive review publication-title: Biofuels Bioprod. Biorefining doi: 10.1002/bbb.1864 – volume: 98 start-page: 9473 year: 2014 ident: ref_53 article-title: The effect of iron on growth, lipid accumulation, and gene expression profile of the freshwater microalga Chlorella sorokiniana publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-014-6088-6 – volume: 9 start-page: 297 year: 2015 ident: ref_143 article-title: Production of microalgae using centrate from anaerobic digestion as the nutrient source publication-title: Algal Res. doi: 10.1016/j.algal.2015.03.018 – volume: 47 start-page: 101845 year: 2020 ident: ref_67 article-title: Indole-3-acetic acid from Azosprillum brasilense promotes growth in green algae at the expense of energy storage products publication-title: Algal Res. doi: 10.1016/j.algal.2020.101845 – volume: 36 start-page: 341 year: 2016 ident: ref_14 article-title: Effects of bacterial communities on biofuel-producing microalgae: Stimulation, inhibition and harvesting publication-title: Crit. Rev. Biotechnol. doi: 10.3109/07388551.2014.961402 – volume: 653 start-page: 1377 year: 2019 ident: ref_118 article-title: Production of lipid-containing algal-bacterial polyculture in wastewater and biomethanation of lipid extracted residues: Enhancing methane yield through hydrothermal pretreatment and relieving solvent toxicity through co-digestion publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.11.026 – volume: 19 start-page: 810 year: 2016 ident: ref_52 article-title: How mutualisms arise in phytoplankton communities: Building eco-evolutionary principles for aquatic microbes publication-title: Ecol. Lett. doi: 10.1111/ele.12615 – volume: 292 start-page: 122017 year: 2019 ident: ref_104 article-title: The interactions of algae-activated sludge symbiotic system and its effects on wastewater treatment and lipid accumulation publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.122017 – volume: 129 start-page: 565 year: 2020 ident: ref_115 article-title: Selection and characterization of microalgae with potential for nutrient removal from municipal wastewater and simultaneous lipid production publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2019.12.004 – volume: 6 start-page: 138 year: 2019 ident: ref_34 article-title: A novel light source provided by photobacteria to improve the growth of microalgal biofilm publication-title: Bioresour. Technol. Rep. doi: 10.1016/j.biteb.2019.02.015 – volume: 2 start-page: 212 year: 2013 ident: ref_57 article-title: Screening and selection of growth-promoting bacteria for Dunaliella cultures publication-title: Algal Res. doi: 10.1016/j.algal.2013.05.003 – volume: 109 start-page: 195 year: 2017 ident: ref_127 article-title: Enzymes produced by biomass-degrading bacteria can efficiently hydrolyze algal cell walls and facilitate lipid extraction publication-title: Renew. Energy doi: 10.1016/j.renene.2017.03.025 – volume: 19 start-page: 98 year: 2019 ident: ref_39 article-title: A microfluidic co-cultivation platform to investigate microbial interactions at defined microenvironments publication-title: Lab Chip doi: 10.1039/C8LC00977E – volume: 95 start-page: 8676 year: 1998 ident: ref_13 article-title: The evolution of interspecific mutualisms publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.95.15.8676 – volume: 77 start-page: 980 year: 2019 ident: ref_62 article-title: Early changes in nutritional conditions affect formation of synthetic mutualism between Chlorella sorokiniana and the bacterium Azospirillum brasilense publication-title: Microb. Ecol. doi: 10.1007/s00248-018-1282-1 – volume: 96 start-page: 1103 year: 2016 ident: ref_116 article-title: From piggery wastewater nutrients to biogas: Microalgae biomass revalorization through anaerobic digestion publication-title: Renew. Energy doi: 10.1016/j.renene.2016.01.090 – volume: 255 start-page: 571 year: 2003 ident: ref_134 article-title: Plant growth promoting rhizobacteria as biofertilizers publication-title: Plant Soil doi: 10.1023/A:1026037216893 – volume: 28 start-page: 1521 year: 2016 ident: ref_51 article-title: Enhancement of thiamine release during synthetic mutualism between Chlorella sorokiniana and Azospirillum brasilense growing under stress conditions publication-title: J. Appl. Phycol. doi: 10.1007/s10811-015-0697-z – volume: 79 start-page: 6196 year: 2013 ident: ref_44 article-title: Metagenome survey of a multispecies and alga-associated biofilm revealed key elements of bacterial-algal interactions in photobioreactors publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01641-13 – volume: 9 start-page: 718 year: 2016 ident: ref_122 article-title: Progress on lipid extraction from wet algal biomass for biodiesel production publication-title: Microb. Biotechnol. doi: 10.1111/1751-7915.12360 – volume: 214 start-page: 787 year: 2016 ident: ref_129 article-title: Applications of de-oiled microalgal biomass towards development of sustainable biorefinery publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.04.115 – volume: 55 start-page: 2345 year: 2016 ident: ref_138 article-title: Optimal design of distributed algae-based biorefineries using CO2 emissions from multiple industrial plants publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b01684 – volume: 37 start-page: 228 year: 2019 ident: ref_101 article-title: Production of microbial biomass feedstock via co-cultivation of microalgae-bacteria consortium coupled with effective wastewater treatment: A sustainable approach publication-title: Algal Res. doi: 10.1016/j.algal.2018.11.020 – volume: 126 start-page: 359 year: 2019 ident: ref_9 article-title: Microalgae–bacteria symbiosis in microalgal growth and biofuel production: A review publication-title: J. Appl. Microbiol. doi: 10.1111/jam.14095 – volume: 49 start-page: 1053 year: 2013 ident: ref_136 article-title: Amendment of degraded desert soil with wastewater debris containing immobilized Chlorella sorokiniana and Azospirillum brasilense significantly modifies soil bacterial community structure, diversity, and richness publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-013-0799-1 – volume: 222 start-page: 485 year: 2016 ident: ref_94 article-title: Perspectives on the feasibility of using microalgae for industrial wastewater treatment publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.09.106 |
SSID | ssj0000702636 |
Score | 2.47846 |
SecondaryResourceType | review_article |
Snippet | Engineered mutualistic consortia of microalgae and bacteria may be a means of assembling a novel combination of metabolic capabilities with potential... Simple SummaryMicroalgae are photosynthetic microorganisms with high biotechnological potential. However, the sustainable production of high-value products... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 282 |
SubjectTerms | Algae Aquatic microorganisms Bacteria Biofilms biorefinery biorefining Biotechnology Carbohydrates Carbon Carbon dioxide Carbon dioxide fixation coculture Consortia energy Energy balance growth-promoting bacteria Lipid metabolism Metabolism Metabolites microalgae Microorganisms Mutualism Pigments Proteins Review Signal transduction |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7Et_VFBA9eqmmatM1RxUWEFcEV9lbyKitIV3Q9ePM_-A_9Jc6kdd0VHxevzQSSzCT5ppn5hpB9MJE0czl4qoV2sUiMj5VNfCwt066CG8Y4THDuXmbnN-KiL_sTpb4wJqyhB24W7ghglWPes8JkVjhrjWQWUIpItDZO2ZC6B3fehDMVzuAcfAt8l0QunxT8-qOW0wgJ0tDNmLqGAlv_dxDza6TkxNXTWSQLLWakx81Yl8iMr5fJXFNF8nmFmF4IfaUA5ehZPUA14i8_OqxoF8PtMFvjjnb9CPSNGcf0qmF5BY3QtkzPp6B_e3k9aRicNcVqngDPb_Uque6c9U7P47Z0QmwlZ6PYIJWXznMlDUstdy7DDFYF-1PDZLDsGMC2TFgAR0paUVhZqEqB76YstzxdI7P1sPYbhCrrCs-5q7QyApoKxSvHsipJqtQI7SNy-LGOpW1ZxbG4xV0J3gUufPll4SNyMO5w3xBq_Cx6gooZiyETdvgA9lG29lH-ZR8R2f5Qa9luz8eSS3xAhrMqj8jeuBk2Fr6W6NoPn4IMuHuCieQ3GYkxZxkTEVlvLGU82hSp97MCeudTNjQ1nemW-nYQCL7xsRtg-OZ_zH-LzHMMwwnBRttkdvTw5HcAR43Mbtgy73ZjIPE priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwEB7BVkhcEP8ECjISBy6hiWM79gmxaKsKaasKitRb5L_QSlVS2u2BG-_AG_IkzCTelK2g13giJZ4Z-xvP-BuAN2gilQo1RqrahlyULubGlzGXvrChxR3GBbrgvNxXe1_FpyN5lA7cLlJZ5XpNHBbq0Hs6I9_hknJ-aF71-7PvOXWNouxqaqFxG7ZwCdZ6Blvzxf7B5-mUBQ2aK8pPEqdPhfH9TuI2IqI0Cjc2tqOBtf9fUPN6xeRfW9DufbiXsCP7MCr7AdyK3UO4M3aT_PEI3OFQAssQ0rFFd0zqpKM_1rdsSWV3dGvjlC3jCvVON4_Zwcj2ipphqV3PlWD8_fPXfGRytoy6eiJMP7GP4cvu4vDjXp5aKORe8mKVO6L0snVtpCsqz0NQdJPVoJ9a_BlqP4bwTQmPIMlIL7SX2rQGYzjjuefVE5h1fRefATM-6Mh5aK1xAoe04W0oVFuWbeWEjRm8W89j4xO7ODW5OG0wyqCJb65NfAZvpxfORmKN_4vOSTGTGDFiDw_6829NcrAG4XcoYiy0U14E750sPKJZUVrrgvEmg-21WpvkphfNlVFl8HoaRgejrIntYn85yGDYJwpR3iQjqfZMFSKDp6OlTF9bEQW_0vh2vWFDG7-zOdKdHA9E35T0Rjj-_OZPfwF3ORXaDOVE2zBbnV_Gl4iUVu5Vcoc_Pe0YhQ priority: 102 providerName: ProQuest |
Title | Toward the Enhancement of Microalgal Metabolite Production through Microalgae–Bacteria Consortia |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33915681 https://www.proquest.com/docview/2528297877 https://www.proquest.com/docview/2520864041 https://www.proquest.com/docview/2551989604 https://pubmed.ncbi.nlm.nih.gov/PMC8065533 https://doaj.org/article/81bd0ee08b6c4dccb50c16141aabd9c9 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1BK1AvqHyVQFkZiQOXFMexk_iAqi7aqkLaqoJW6i3yV2ilVRaWrURv_Af-Ib-EGSe77VYtB67rsbTxzMRv4vF7AG8xRPLCl1ipVsanMrMh1S4LqXLc-AZ3GOvpgvP4sDg4kZ9O1emVHFC_gD9uLe1IT-pkNtn5-f1yFxP-A1WcWLK_7-mKiPuMKoj7sI7bUklyBuMe68fXconlBh1Vbt0xbwMe5kSXXlTZyiYVufxvA6A3-yivbUz7m_CoR5RsrwuBx3AvtE_gQacxefkU7HFsjGUI9NioPSMn0wdBNm3YmJrx6C7HhI3DHKOB7iOzo44DFv3FehGfK8Pw59fvYcfvbBhpfeK6nZtn8GV_dPzxIO2FFVKnBJ-nloi-TFlqZXnuhPcF3W_VmL0GH4ZEyRDUFdIhdNLKycqpSjcaKzvthBP5c1hrp214AUw7XwUhfGO0lThUadF4XjRZ1uRWmpDAzmIda9dzjpP0xaTG2oN8UN_wQQLvlhO-dXQbd5sOyTFLM-LJjj9MZ1_rPu1qBOWeh8ArWzjpnbOKO8S4MjPGeu10AtsLt9aL2KuFouNlfJOVCbxZDmPa0VmKacP0ItpgMSi5zP5lo6gjreAyga0uUpb_dhFpCZQrMbTyOKsj7flZpP-mo3AE6S__e-Yr2BDUmRP7j7ZhbT67CK8RWs3tANaHo8Ojz4P4aWIQE-gv4SAqyg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWyG4IN4NFDASSFxCHcd5-IAQC1ttaXdVwSL1RORXaKUqKe1WqDf-A3-DX8UvYSaPLVtBb73GEymxv7FnPDPfADxHiMSpy9BTzbULZWR8qGzkw8Ry7Uo8YYyjAufJNB1_lh_2kr0V-NXXwlBaZb8nNhu1qy3dkW-IhGJ-CK_szdG3kLpGUXS1b6HRwmLbn31Hl-3k9dZ7XN8XQmyOZu_GYddVILSJ4PPQEMuVzjKVGB5b4VxKxZ0Koau9s9SRCy2aVFq0G1RiZW6TXJUK3RplhSWaA9zwV2WccjGA1eFouvtxcaeD6iNSioYSg1AcK77RMSkRLRs5N0uHX9Mj4F-G7cX8zL8OvM1bcLOzVNnbFlq3YcVXd-Ba27vy7C6YWZNwy9CAZKNqn8BDF42sLtmEkvyoRuSQTfwcUUZ1zmy35ZZFHLCuOdC5oP_94-ew5Y3WjHqIolNwoO_BpyuY2vswqOrKrwFT1uVeCFdqZSQO5UqUjqdlFJWxkdoH8Kqfx8J2XObUUuOwQJ-GJr64MPEBvFy8cNTSePxfdEgLsxAj_u3mQX38tejUuUBj33HveW5SK521JuEWbWcZaW2csiqA9X5Zi25TOCnOIRzAs8UwqjPFaHTl69NGBp1MyWV0mUxCmW4plwE8aJGy-NqYCP_THN_OljC09DvLI9XBfkMrTiF2NP4fXv7pT-H6eDbZKXa2ptuP4IagFJ8mkWkdBvPjU_8YbbS5edKpBoMvV6uLfwCkyFGM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VW4G4oPJsaAEjgcQlbOI4Dx8QYumuWsquVlCknoj8Cq1UJaXdCvXGf-DP8Hv4JczkVbaC3nqNJ1Jif2PPeGa-AXiOEIkSm6Knminri1A7X5rQ-bEJlC3whNGWCpyns2T7s3i_H--vwK-uFobSKrs9sd6obWXojnzIY4r5IbzSYdGmRcy3Jm-Ov_nUQYoirV07jQYiu-78O7pvp693tnCtX3A-Ge-92_bbDgO-iXmw8DUxXqk0lbEOIsOtTajQUyKMlbOGunOhdZMIgzaEjI3ITJzJQqKLIw03RHmAm_9qSj7RAFZH49n8Y3-_g6rEE4qMEptQFMlg2LIqEUUbOTpLB2HdL-BfRu7lXM2_Dr_JGtxurVb2toHZHVhx5V240fSxPL8Heq9OvmVoTLJxeUBAoktHVhVsSgl_VC9yxKZugYijmmc2b3hmEROsbRR0Ieh-__g5ajikFaN-ouggHKr78OkapvYBDMqqdOvApLGZ49wWSmqBQ5nkhQ2SIgyLSAvlPHjVzWNuWl5zaq9xlKN_QxOfX5p4D172Lxw3lB7_Fx3RwvRixMVdP6hOvuataudo-NvAuSDTiRHWGB0HBu1oESqlrTTSg81uWfN2gzjNL-DswbN-GFWb4jWqdNVZLYMOpwhEeJVMTFlvSSA8eNggpf_aiMj_kwzfTpcwtPQ7yyPl4UFNMU7hdnQEHl396U_hJupg_mFntrsBtzhl-9Q5TZswWJycucdori30k1YzGHy5XlX8Ay8zVcE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+the+Enhancement+of+Microalgal+Metabolite+Production+through+Microalgae%E2%80%93Bacteria+Consortia&rft.jtitle=Biology+%28Basel%2C+Switzerland%29&rft.au=Gonz%C3%A1lez-Gonz%C3%A1lez%2C+Lina+Maria&rft.au=de-Bashan%2C+Luz+E.&rft.date=2021-04-01&rft.pub=MDPI&rft.eissn=2079-7737&rft.volume=10&rft.issue=4&rft_id=info:doi/10.3390%2Fbiology10040282&rft_id=info%3Apmid%2F33915681&rft.externalDocID=PMC8065533 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-7737&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-7737&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-7737&client=summon |