Toward the Enhancement of Microalgal Metabolite Production through Microalgae–Bacteria Consortia

Engineered mutualistic consortia of microalgae and bacteria may be a means of assembling a novel combination of metabolic capabilities with potential biotechnological advantages. Microalgae are promising organisms for the sustainable production of metabolites of commercial interest, such as lipids,...

Full description

Saved in:
Bibliographic Details
Published inBiology (Basel, Switzerland) Vol. 10; no. 4; p. 282
Main Authors González-González, Lina Maria, de-Bashan, Luz E.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.04.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Engineered mutualistic consortia of microalgae and bacteria may be a means of assembling a novel combination of metabolic capabilities with potential biotechnological advantages. Microalgae are promising organisms for the sustainable production of metabolites of commercial interest, such as lipids, carbohydrates, pigments, and proteins. Several studies reveal that microalgae growth and cellular storage of these metabolites can be enhanced significantly by co-cultivation with growth-promoting bacteria. This review summarizes the state of the art of microalgae–bacteria consortia for the production of microalgal metabolites. We discuss the current knowledge on microalgae–bacteria mutualism and the mechanisms of bacteria to enhance microalgae metabolism. Furthermore, the potential routes for a microalgae–bacteria biorefinery are outlined in an attempt to overcome the economic failures and negative energy balances of the existing production processes.
AbstractList Engineered mutualistic consortia of microalgae and bacteria may be a means of assembling a novel combination of metabolic capabilities with potential biotechnological advantages. Microalgae are promising organisms for the sustainable production of metabolites of commercial interest, such as lipids, carbohydrates, pigments, and proteins. Several studies reveal that microalgae growth and cellular storage of these metabolites can be enhanced significantly by co-cultivation with growth-promoting bacteria. This review summarizes the state of the art of microalgae–bacteria consortia for the production of microalgal metabolites. We discuss the current knowledge on microalgae–bacteria mutualism and the mechanisms of bacteria to enhance microalgae metabolism. Furthermore, the potential routes for a microalgae–bacteria biorefinery are outlined in an attempt to overcome the economic failures and negative energy balances of the existing production processes.
Engineered mutualistic consortia of microalgae and bacteria may be a means of assembling a novel combination of metabolic capabilities with potential biotechnological advantages. Microalgae are promising organisms for the sustainable production of metabolites of commercial interest, such as lipids, carbohydrates, pigments, and proteins. Several studies reveal that microalgae growth and cellular storage of these metabolites can be enhanced significantly by co-cultivation with growth-promoting bacteria. This review summarizes the state of the art of microalgae-bacteria consortia for the production of microalgal metabolites. We discuss the current knowledge on microalgae-bacteria mutualism and the mechanisms of bacteria to enhance microalgae metabolism. Furthermore, the potential routes for a microalgae-bacteria biorefinery are outlined in an attempt to overcome the economic failures and negative energy balances of the existing production processes.Engineered mutualistic consortia of microalgae and bacteria may be a means of assembling a novel combination of metabolic capabilities with potential biotechnological advantages. Microalgae are promising organisms for the sustainable production of metabolites of commercial interest, such as lipids, carbohydrates, pigments, and proteins. Several studies reveal that microalgae growth and cellular storage of these metabolites can be enhanced significantly by co-cultivation with growth-promoting bacteria. This review summarizes the state of the art of microalgae-bacteria consortia for the production of microalgal metabolites. We discuss the current knowledge on microalgae-bacteria mutualism and the mechanisms of bacteria to enhance microalgae metabolism. Furthermore, the potential routes for a microalgae-bacteria biorefinery are outlined in an attempt to overcome the economic failures and negative energy balances of the existing production processes.
Simple SummaryMicroalgae are photosynthetic microorganisms with high biotechnological potential. However, the sustainable production of high-value products such as lipids, proteins, carbohydrates, and pigments undergoes important economic challenges. In this review, we describe the mutualistic association between microalgae and bacteria and the positive effects of artificial consortia on microalgal metabolites’ production. We highlighted the potential role of growth-promoting bacteria in optimizing microalgal biorefineries for the integrated production of these valuable products. Besides making a significant enhancement to microalgal metabolite production, the bacterium partner might assist in the biorefinery process’s key stages, such as biomass harvesting and CO2 fixation.AbstractEngineered mutualistic consortia of microalgae and bacteria may be a means of assembling a novel combination of metabolic capabilities with potential biotechnological advantages. Microalgae are promising organisms for the sustainable production of metabolites of commercial interest, such as lipids, carbohydrates, pigments, and proteins. Several studies reveal that microalgae growth and cellular storage of these metabolites can be enhanced significantly by co-cultivation with growth-promoting bacteria. This review summarizes the state of the art of microalgae–bacteria consortia for the production of microalgal metabolites. We discuss the current knowledge on microalgae–bacteria mutualism and the mechanisms of bacteria to enhance microalgae metabolism. Furthermore, the potential routes for a microalgae–bacteria biorefinery are outlined in an attempt to overcome the economic failures and negative energy balances of the existing production processes.
Author de-Bashan, Luz E.
González-González, Lina Maria
AuthorAffiliation 2 Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Avenida IPN 195, La Paz, Baja California Sur 23096, Mexico
1 The Bashan Institute of Science, 1730 Post Oak Ct, Auburn, AL 36830, USA; lina@bashanis.org
3 Department of Entomology and Plant Pathology, Auburn University, 209 Life Sciences Building, Auburn, AL 36849, USA
AuthorAffiliation_xml – name: 3 Department of Entomology and Plant Pathology, Auburn University, 209 Life Sciences Building, Auburn, AL 36849, USA
– name: 2 Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Avenida IPN 195, La Paz, Baja California Sur 23096, Mexico
– name: 1 The Bashan Institute of Science, 1730 Post Oak Ct, Auburn, AL 36830, USA; lina@bashanis.org
Author_xml – sequence: 1
  givenname: Lina Maria
  orcidid: 0000-0003-1793-7951
  surname: González-González
  fullname: González-González, Lina Maria
– sequence: 2
  givenname: Luz E.
  surname: de-Bashan
  fullname: de-Bashan, Luz E.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33915681$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1vVCEUhompsXXs2p25iRs3Y_n-2JjYSdUmbTSxewJc5g4TBiqXq-nO_-A_9JfIOLW2kxhhATk878s5HJ6Cg5STB-A5gq8JUfDEhhzzcIMgpBBL_AgcYSjUXAgiDu7tD8HxOK5hGwJiTvgTcNjkiHGJjoC9yt9M6bu68t1ZWpnk_Man2uVldxlcySYOJnaXvhqbY6i--1RyP7kacmqakqdh9Rf0P7__ODWu-hJMt8hpzKUG8ww8Xpo4-uPbdQY-vzu7WnyYX3x8f754ezF3DMM6t5ASaIRQzELicN9zpRhXmAnje0cpEgRzTp3CLe6odEyqpUJtOuwwmYHznWufzVpfl7Ax5UZnE_TvQC6DNi0bF72WyPbQeygtd7R3zjLoEEcUGWN75VTzerPzup7spl3eHqSY-MD04UkKKz3kr1pCzhghzeDVrUHJXyY_Vr0Jo_MxmuTzNGrMGFJS8Vby_1EMJaeQooa-3EPXeSqpvemWklgJ2fo9Ay_uJ3-X9Z-eN-BkB7SujWPxyzsEwS0F9d7Hagq2p3Chmu0faNWH-E_dL_qp1Hg
CitedBy_id crossref_primary_10_1093_femsre_fuac020
crossref_primary_10_1007_s00203_021_02711_x
crossref_primary_10_1016_j_heliyon_2024_e31170
crossref_primary_10_3390_su152416660
crossref_primary_10_1016_j_scitotenv_2022_155871
crossref_primary_10_1007_s00449_023_02947_5
crossref_primary_10_1007_s10811_022_02711_4
crossref_primary_10_1186_s44314_024_00005_2
crossref_primary_10_3389_fmicb_2023_1108018
crossref_primary_10_1007_s12155_024_10800_0
crossref_primary_10_3389_fclim_2024_1277475
crossref_primary_10_1007_s11356_024_33472_x
crossref_primary_10_1016_j_fbio_2024_105629
crossref_primary_10_3390_ijms252111826
crossref_primary_10_1016_j_envres_2024_119439
crossref_primary_10_1016_j_jenvman_2023_119004
crossref_primary_10_3389_fbioe_2024_1338547
crossref_primary_10_3390_recycling9050097
crossref_primary_10_1016_j_biortech_2022_126732
crossref_primary_10_1007_s00248_022_02026_4
crossref_primary_10_1016_j_biteb_2025_102089
crossref_primary_10_1016_j_cej_2024_155703
crossref_primary_10_1007_s10811_024_03267_1
crossref_primary_10_1007_s12155_022_10411_7
crossref_primary_10_1016_j_cej_2025_160276
crossref_primary_10_1016_j_jenvman_2024_122385
crossref_primary_10_1007_s11814_024_00367_z
crossref_primary_10_1016_j_watres_2025_123216
crossref_primary_10_1111_1751_7915_70046
crossref_primary_10_1016_j_biortech_2021_125830
crossref_primary_10_1111_jam_15509
crossref_primary_10_1016_j_aquaculture_2024_741959
crossref_primary_10_1016_j_algal_2021_102585
crossref_primary_10_1016_j_biortech_2023_129636
crossref_primary_10_1016_j_algal_2023_103203
crossref_primary_10_1016_j_cogsc_2022_100595
crossref_primary_10_3390_resources12100119
crossref_primary_10_1016_j_psep_2024_08_019
crossref_primary_10_1016_j_jece_2024_112906
crossref_primary_10_1021_acs_jafc_4c11580
crossref_primary_10_1016_j_biortech_2023_130019
crossref_primary_10_3390_synbio2020011
crossref_primary_10_3390_md23030116
crossref_primary_10_1007_s10811_022_02891_z
crossref_primary_10_3390_biology12050693
crossref_primary_10_1007_s00203_023_03734_2
crossref_primary_10_1016_j_envres_2023_115872
crossref_primary_10_1016_j_jenvman_2024_121226
crossref_primary_10_3390_fermentation8100474
crossref_primary_10_1016_j_bej_2023_109211
crossref_primary_10_3390_md20110727
crossref_primary_10_1016_j_algal_2023_103351
crossref_primary_10_1016_j_jece_2024_113837
crossref_primary_10_3390_ma14113027
crossref_primary_10_1016_j_algal_2024_103773
crossref_primary_10_1016_j_biortech_2023_129801
crossref_primary_10_1016_j_biortech_2022_127129
crossref_primary_10_3390_su16198627
crossref_primary_10_3390_molecules27020422
crossref_primary_10_1186_s44315_024_00019_1
crossref_primary_10_3390_life14091053
crossref_primary_10_3390_fermentation8090466
Cites_doi 10.1016/j.renene.2019.06.148
10.1007/s00248-017-1139-z
10.1016/j.algal.2020.102102
10.1128/aem.61.6.2439-2441.1995
10.1016/j.biortech.2020.123754
10.1086/418432
10.1007/s10750-007-9152-8
10.1111/j.1462-2920.2010.02411.x
10.1016/j.chemosphere.2020.129323
10.1016/j.biotechadv.2011.07.009
10.1016/j.algal.2016.05.024
10.1016/j.biortech.2019.122509
10.1016/j.biotechadv.2018.04.004
10.1016/j.biortech.2019.121396
10.1016/j.algal.2012.02.002
10.1111/j.1462-2920.2012.02733.x
10.1128/AEM.01496-13
10.3390/ph14020125
10.1016/j.chembiol.2010.02.010
10.1016/j.algal.2018.08.024
10.1016/j.biotechadv.2015.12.003
10.1111/nph.14832
10.1016/j.biosystems.2013.05.006
10.1002/lno.10009
10.1016/j.scitotenv.2017.07.114
10.1016/j.resmic.2014.12.010
10.1007/s00253-017-8693-7
10.1016/j.biortech.2014.08.088
10.3390/md14050100
10.1139/w02-051
10.1371/journal.pone.0096807
10.1128/AEM.66.4.1527-1531.2000
10.1016/j.biteb.2019.100214
10.1038/nmicrobiol.2017.65
10.1002/jobm.201700594
10.1016/j.biombioe.2020.105702
10.1016/j.envexpbot.2011.08.007
10.1016/j.biortech.2018.07.099
10.1088/1748-9326/aaafe3
10.1139/w00-041
10.1128/AEM.00518-08
10.1111/j.1529-8817.2011.01062.x
10.1186/s12934-018-0879-x
10.1016/j.algal.2016.02.019
10.1016/j.pbi.2015.07.003
10.1073/pnas.0905512106
10.1016/j.bej.2017.02.004
10.1016/j.algal.2015.02.003
10.1186/s13068-018-1174-0
10.1016/j.biortech.2012.11.130
10.1007/s00253-013-5389-5
10.1016/j.biortech.2018.08.059
10.1038/srep41310
10.1098/rsif.2014.0065
10.1016/B978-0-12-818536-0.00014-2
10.1073/pnas.0611067104
10.1371/journal.pone.0013794
10.1111/jpy.13132
10.1007/s00248-010-9686-6
10.1016/j.biortech.2015.04.092
10.1038/ismej.2014.9
10.1038/nature14488
10.1007/s10811-018-1591-2
10.1016/j.algal.2019.101462
10.1002/bbb.337
10.1007/s10811-019-01772-2
10.1016/j.copbio.2015.02.007
10.1038/ismej.2009.94
10.1016/j.ejsobi.2008.08.004
10.1007/s10811-019-01931-5
10.1016/j.chemosphere.2018.07.161
10.1093/femsec/fiw077
10.1016/j.biortech.2012.11.084
10.1016/j.algal.2019.101696
10.3389/fpls.2020.00279
10.3390/md13127069
10.1126/science.1259855
10.3389/fnut.2019.00007
10.3389/fmicb.2015.00056
10.1016/j.rser.2019.04.052
10.1016/j.biortech.2019.121804
10.1016/j.tibtech.2018.09.006
10.1016/j.algal.2019.101534
10.1186/s13068-020-1660-z
10.1007/s00248-006-9162-5
10.1016/j.enzmictec.2012.07.012
10.1128/AEM.06474-11
10.1016/j.rser.2013.11.054
10.1016/j.algal.2020.102177
10.15255/CABEQ.2013.1934
10.1007/s11306-012-0453-1
10.1038/nature04056
10.1016/j.bcab.2020.101790
10.1007/s00425-018-3048-x
10.1016/j.jbiotec.2014.02.014
10.1016/j.biortech.2014.10.159
10.1016/j.algal.2019.101547
10.1016/j.biortech.2011.11.113
10.1007/s13213-014-0866-3
10.1016/j.algal.2015.06.019
10.3390/genes9110520
10.3389/fpls.2018.00741
10.1016/j.enzmictec.2012.07.013
10.1016/j.bej.2013.10.014
10.1080/23311843.2016.1275089
10.1016/j.biombioe.2019.01.033
10.3389/fpls.2017.00289
10.1016/j.tibtech.2018.02.015
10.1016/j.algal.2015.03.007
10.1039/C4GC00745J
10.1002/bbb.2032
10.1016/j.algal.2020.101839
10.1016/j.biortech.2013.07.085
10.3390/agronomy9040192
10.1007/s00253-019-10246-x
10.1016/j.rser.2017.09.091
10.1111/1462-2920.14357
10.1038/s41579-019-0284-4
10.1016/j.bej.2018.03.010
10.1002/bbb.1864
10.1007/s00253-014-6088-6
10.1016/j.algal.2015.03.018
10.1016/j.algal.2020.101845
10.3109/07388551.2014.961402
10.1016/j.scitotenv.2018.11.026
10.1111/ele.12615
10.1016/j.biortech.2019.122017
10.1016/j.jbiosc.2019.12.004
10.1016/j.biteb.2019.02.015
10.1016/j.algal.2013.05.003
10.1016/j.renene.2017.03.025
10.1039/C8LC00977E
10.1073/pnas.95.15.8676
10.1007/s00248-018-1282-1
10.1016/j.renene.2016.01.090
10.1023/A:1026037216893
10.1007/s10811-015-0697-z
10.1128/AEM.01641-13
10.1111/1751-7915.12360
10.1016/j.biortech.2016.04.115
10.1021/acs.iecr.5b01684
10.1016/j.algal.2018.11.020
10.1111/jam.14095
10.1007/s00374-013-0799-1
10.1016/j.biortech.2016.09.106
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
NPM
7QP
7TK
8FD
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M7P
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
7S9
L.6
5PM
DOA
DOI 10.3390/biology10040282
DatabaseName CrossRef
PubMed
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
PubMed

MEDLINE - Academic
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central (New) (NC LIVE)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2079-7737
ExternalDocumentID oai_doaj_org_article_81bd0ee08b6c4dccb50c16141aabd9c9
PMC8065533
33915681
10_3390_biology10040282
Genre Journal Article
Review
GroupedDBID 2XV
53G
5VS
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
EBD
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
PQGLB
7QP
7TK
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
RC3
7X8
7S9
L.6
5PM
PUEGO
ID FETCH-LOGICAL-c520t-b0430a7795b03c2dd699569257aedc441732664c92995c48c589f91919c2c23
IEDL.DBID M48
ISSN 2079-7737
IngestDate Wed Aug 27 01:27:42 EDT 2025
Thu Aug 21 17:51:46 EDT 2025
Fri Jul 11 02:06:02 EDT 2025
Fri Jul 11 00:53:57 EDT 2025
Fri Jul 25 12:14:03 EDT 2025
Mon Jul 21 05:48:43 EDT 2025
Tue Jul 01 01:28:35 EDT 2025
Thu Apr 24 23:13:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords biorefinery
microalgae
growth-promoting bacteria
metabolites
mutualism
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c520t-b0430a7795b03c2dd699569257aedc441732664c92995c48c589f91919c2c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
Dedicated to the memory of Prof. Yoav Bashan, founder of the Bashan Institute of Science and leader of the Environmental Microbiology Group at CIBNOR for 28 years.
ORCID 0000-0003-1793-7951
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/biology10040282
PMID 33915681
PQID 2528297877
PQPubID 2032427
ParticipantIDs doaj_primary_oai_doaj_org_article_81bd0ee08b6c4dccb50c16141aabd9c9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8065533
proquest_miscellaneous_2551989604
proquest_miscellaneous_2520864041
proquest_journals_2528297877
pubmed_primary_33915681
crossref_primary_10_3390_biology10040282
crossref_citationtrail_10_3390_biology10040282
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Biology (Basel, Switzerland)
PublicationTitleAlternate Biology (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Tremblay (ref_103) 2018; 267
Franco (ref_139) 2010; 2
Renuka (ref_133) 2018; 36
Mayali (ref_27) 2016; 15
Wemheuer (ref_44) 2013; 79
Chen (ref_128) 2013; 81
Goers (ref_26) 2014; 11
ref_10
ref_132
Trejo (ref_135) 2012; 75
Eltanahy (ref_144) 2019; 41
Yao (ref_9) 2019; 126
Garnier (ref_57) 2013; 2
Seymour (ref_18) 2017; 2
Ramanan (ref_11) 2016; 34
Vessey (ref_134) 2003; 255
Lee (ref_126) 2013; 131
Gifuni (ref_93) 2019; 37
Bohutskyi (ref_118) 2019; 653
Amavizca (ref_42) 2017; 7
Fabris (ref_4) 2020; 11
Toyama (ref_32) 2018; 11
Bashan (ref_75) 2002; 48
Kumar (ref_111) 2018; 269
Xue (ref_74) 2018; 58
Gonzalez (ref_87) 2000; 66
Wang (ref_94) 2016; 222
Kramer (ref_54) 2020; 18
Chan (ref_122) 2016; 9
Crawford (ref_55) 2010; 17
Lopez (ref_41) 2019; 44
Tighiri (ref_102) 2019; 286
ref_72
Lee (ref_80) 2019; 41
Lebsky (ref_88) 2000; 46
Kazamia (ref_52) 2016; 19
Mccollum (ref_148) 2018; 13
Sen (ref_89) 2019; 6
Abinandan (ref_35) 2018; 102
Grant (ref_46) 2014; 8
Vuong (ref_77) 2019; 32
Mahdy (ref_116) 2016; 96
Sialve (ref_121) 2012; 6
Cho (ref_81) 2015; 175
Zhuang (ref_34) 2019; 6
Bruckner (ref_43) 2011; 13
Yu (ref_6) 2015; 6
Morales (ref_106) 2020; 146
Sandhya (ref_78) 2019; 31
Ballhausen (ref_49) 2010; 4
Zhou (ref_96) 2015; 190
Maurya (ref_129) 2016; 214
Pagnussat (ref_61) 2020; 47
Hadar (ref_56) 1995; 61
Silambarasan (ref_131) 2020; 268
Commault (ref_7) 2019; 39
Choix (ref_65) 2014; 177
Amin (ref_58) 2009; 106
Paddock (ref_98) 2020; 104
Rajapitamahuni (ref_30) 2019; 31
Khan (ref_2) 2018; 17
Burmeister (ref_39) 2019; 19
ref_82
Ferreira (ref_114) 2019; 109
Paerl (ref_48) 2015; 60
Bashan (ref_37) 2008; 74
Bronstein (ref_12) 1994; 69
Gouveia (ref_90) 2014; 98
Schmid (ref_84) 2011; 47
ref_85
Ramanan (ref_22) 2015; 8
Palacios (ref_51) 2016; 28
Su (ref_29) 2012; 105
Dublan (ref_73) 2013; 146
Palacios (ref_62) 2019; 77
Jia (ref_100) 2016; 2
Nguyen (ref_28) 2020; 314
Choix (ref_63) 2018; 76
Solimeno (ref_99) 2017; 607
Zhao (ref_141) 2014; 31
Sposob (ref_107) 2020; 141
(ref_138) 2016; 55
Wan (ref_53) 2014; 98
Kubo (ref_25) 2013; 113
Fouilland (ref_19) 2018; 211
Helliwell (ref_47) 2018; 217
Lopez (ref_136) 2013; 49
Leyva (ref_66) 2015; 65
Choix (ref_79) 2012; 51
Chen (ref_104) 2019; 292
Astals (ref_105) 2021; 54
Steffen (ref_147) 2015; 347
Croft (ref_15) 2005; 438
Hernandez (ref_71) 2009; 45
Aketo (ref_115) 2020; 129
Kulkarni (ref_91) 2018; 35
Safafar (ref_95) 2015; 13
Rasouli (ref_86) 2018; 134
Wang (ref_125) 2012; 78
Makut (ref_101) 2019; 37
Park (ref_68) 2008; 598
Doebeli (ref_13) 1998; 95
Berthold (ref_40) 2019; 122
Powell (ref_124) 2013; 79
(ref_143) 2015; 9
Palacios (ref_60) 2016; 92
Amin (ref_59) 2015; 522
Sforza (ref_142) 2017; 121
Wang (ref_14) 2016; 36
Koutra (ref_120) 2018; 36
Nagarajan (ref_140) 2019; 290
Guo (ref_127) 2017; 109
Xu (ref_83) 2018; 9
Monte (ref_92) 2020; 297
Zhou (ref_97) 2014; 171
Lauersen (ref_3) 2019; 249
Kouzuma (ref_20) 2015; 33
Lakatos (ref_113) 2014; 16
ref_36
Subasankari (ref_31) 2020; 29
Sapp (ref_21) 2007; 53
Correa (ref_119) 2018; 82
Gerardo (ref_123) 2015; 11
Rivas (ref_33) 2010; 60
Meza (ref_64) 2015; 166
Astals (ref_117) 2019; 7
Vuppaladadiyam (ref_1) 2018; 12
Subashchandrabose (ref_16) 2011; 29
Kazamia (ref_45) 2012; 14
Cooper (ref_23) 2015; 26
Nobre (ref_112) 2013; 135
Raheem (ref_110) 2020; 52
Samo (ref_17) 2018; 20
Park (ref_69) 2017; 8
Biller (ref_146) 2012; 1
ref_109
Higgins (ref_50) 2016; 17
Ferreira (ref_130) 2019; 13
Paul (ref_76) 2013; 9
Dunham (ref_24) 2007; 104
Raposo (ref_137) 2011; 13
Barreiro (ref_145) 2015; 9
Peng (ref_67) 2020; 47
Kim (ref_108) 2020; 13
ref_8
Nagy (ref_38) 2014; 28
Choix (ref_70) 2012; 51
ref_5
References_xml – volume: 146
  start-page: 188
  year: 2020
  ident: ref_106
  article-title: Biodiesel and biogas production from Isochrysis galbana using dry and wet lipid extraction: A biorefinery approach
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.06.148
– volume: 76
  start-page: 430
  year: 2018
  ident: ref_63
  article-title: Azospirillum brasilense increases CO2 fixation on microalgae Scenedesmus obliquus, Chlorella vulgaris, and Chlamydomonas reinhardtii cultured on high CO2 concentrations
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-017-1139-z
– volume: 52
  start-page: 102102
  year: 2020
  ident: ref_110
  article-title: Hydrogen-rich energy recovery from microalgae (lipid-extracted) via steam catalytic gasification
  publication-title: Algal Res.
  doi: 10.1016/j.algal.2020.102102
– volume: 61
  start-page: 2439
  year: 1995
  ident: ref_56
  article-title: Oligotrophic bacteria enhance algal growth under iron-deficient conditions
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.61.6.2439-2441.1995
– volume: 314
  start-page: 123754
  year: 2020
  ident: ref_28
  article-title: Co-culture of microalgae-activated sludge for wastewater treatment and biomass production: Exploring their role under different inoculation ratios
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.123754
– volume: 69
  start-page: 31
  year: 1994
  ident: ref_12
  article-title: Our current understanding of mutualism
  publication-title: Q. Rev. Biol.
  doi: 10.1086/418432
– volume: 598
  start-page: 219
  year: 2008
  ident: ref_68
  article-title: Growth promotion of Chlorella ellipsoidea by co-inoculation with Brevundimonas sp. isolated from the microalga
  publication-title: Hydrobiologia
  doi: 10.1007/s10750-007-9152-8
– volume: 13
  start-page: 1052
  year: 2011
  ident: ref_43
  article-title: Growth and release of extracellular organic compounds by benthic diatoms depend on interactions with bacteria
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2010.02411.x
– volume: 268
  start-page: 129323
  year: 2020
  ident: ref_131
  article-title: Removal of nutrients from domestic wastewater by microalgae coupled to lipid augmentation for biodiesel production and influence of deoiled algal biomass as biofertilizer for Solanum lycopersicum cultivation
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.129323
– volume: 29
  start-page: 896
  year: 2011
  ident: ref_16
  article-title: Consortia of cyanobacteria/microalgae and bacteria: Biotechnological potential
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2011.07.009
– volume: 17
  start-page: 308
  year: 2016
  ident: ref_50
  article-title: Cofactor symbiosis for enhanced algal growth, biofuel production, and wastewater treatment
  publication-title: Algal Res.
  doi: 10.1016/j.algal.2016.05.024
– volume: 297
  start-page: 122509
  year: 2020
  ident: ref_92
  article-title: Biorefinery of Dunaliella salina: Sustainable recovery of carotenoids, polar lipids and glycerol
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.122509
– volume: 36
  start-page: 1255
  year: 2018
  ident: ref_133
  article-title: Microalgae as multi-functional options in modern agriculture: Current trends, prospects and challenges
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2018.04.004
– volume: 286
  start-page: 121396
  year: 2019
  ident: ref_102
  article-title: Biotreatment of landfill leachate by microalgae-bacteria consortium in sequencing batch mode and product utilization
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.121396
– volume: 1
  start-page: 70
  year: 2012
  ident: ref_146
  article-title: Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process
  publication-title: Algal Res.
  doi: 10.1016/j.algal.2012.02.002
– volume: 14
  start-page: 1466
  year: 2012
  ident: ref_45
  article-title: Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2012.02733.x
– volume: 79
  start-page: 6093
  year: 2013
  ident: ref_124
  article-title: Rapid aggregation of biofuel-producing algae by the bacterium Bacillus sp. strain RP1137
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01496-13
– ident: ref_8
  doi: 10.3390/ph14020125
– volume: 17
  start-page: 254
  year: 2010
  ident: ref_55
  article-title: Siderophores from neighboring organisms promote the growth of uncultured bacteria
  publication-title: Chem. Biol.
  doi: 10.1016/j.chembiol.2010.02.010
– volume: 35
  start-page: 185
  year: 2018
  ident: ref_91
  article-title: Process for selective extraction of pigments and functional proteins from Chlorella vulgaris
  publication-title: Algal Res.
  doi: 10.1016/j.algal.2018.08.024
– volume: 34
  start-page: 14
  year: 2016
  ident: ref_11
  article-title: Algae-bacteria interactions: Evolution, ecology and emerging applications
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2015.12.003
– volume: 217
  start-page: 599
  year: 2018
  ident: ref_47
  article-title: Quantitative proteomics of a B12 -dependent alga grown in coculture with bacteria reveals metabolic tradeoffs required for mutualism
  publication-title: New Phytol.
  doi: 10.1111/nph.14832
– volume: 113
  start-page: 66
  year: 2013
  ident: ref_25
  article-title: Construction of bacteria–eukaryote synthetic mutualism
  publication-title: Biosystems
  doi: 10.1016/j.biosystems.2013.05.006
– volume: 60
  start-page: 215
  year: 2015
  ident: ref_48
  article-title: Vitamin B1 ecophysiology of marine picoeukaryotic algae: Strain-specific differences and a new role for bacteria in vitamin cycling
  publication-title: Limnol. Oceanogr.
  doi: 10.1002/lno.10009
– volume: 607
  start-page: 1136
  year: 2017
  ident: ref_99
  article-title: Microalgae-bacteria models evolution: From microalgae steady-state to integrated microalgae-bacteria wastewater treatment models–a comparative review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.07.114
– volume: 166
  start-page: 72
  year: 2015
  ident: ref_64
  article-title: Involvement of indole-3-acetic acid produced by Azospirillum brasilense in accumulating intracellular ammonium in Chlorella vulgaris
  publication-title: Res. Microbiol.
  doi: 10.1016/j.resmic.2014.12.010
– volume: 102
  start-page: 1131
  year: 2018
  ident: ref_35
  article-title: Microalgae–bacteria biofilms: A sustainable synergistic approach in remediation of acid mine drainage
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-017-8693-7
– volume: 171
  start-page: 330
  year: 2014
  ident: ref_97
  article-title: Biomass and carotenoid production in photosynthetic bacteria wastewater treatment: Effects of light intensity
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.08.088
– ident: ref_10
  doi: 10.3390/md14050100
– volume: 48
  start-page: 514
  year: 2002
  ident: ref_75
  article-title: Increased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. when co-immobilized in alginate beads with the microalgae-growth-promoting bacterium Azospirillum brasilense
  publication-title: Can. J. Microbiol.
  doi: 10.1139/w02-051
– ident: ref_72
  doi: 10.1371/journal.pone.0096807
– volume: 66
  start-page: 1527
  year: 2000
  ident: ref_87
  article-title: Increased growth of the microalga Chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant-growth-promoting bacterium Azospirillum brasilense
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.66.4.1527-1531.2000
– volume: 7
  start-page: 100214
  year: 2019
  ident: ref_117
  article-title: Impact of osmotic shock pre-treatment on microalgae lipid extraction and subsequent methane production
  publication-title: Bioresour. Technol. Rep.
  doi: 10.1016/j.biteb.2019.100214
– volume: 2
  start-page: 1
  year: 2017
  ident: ref_18
  article-title: Zooming in on the phycosphere: The ecological interface for phytoplankton–bacteria relationships
  publication-title: Nat. Microbiol.
  doi: 10.1038/nmicrobiol.2017.65
– volume: 58
  start-page: 358
  year: 2018
  ident: ref_74
  article-title: Analysis of growth and lipid production characteristics of Chlorella vulgaris in artificially constructed consortia with symbiotic bacteria
  publication-title: J. Basic Microbiol.
  doi: 10.1002/jobm.201700594
– volume: 141
  start-page: 105702
  year: 2020
  ident: ref_107
  article-title: Assessment of the relationship between solubilization and biogas production on anaerobic digestion of pretreated lipid-extracted microalgae waste
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2020.105702
– volume: 75
  start-page: 65
  year: 2012
  ident: ref_135
  article-title: Recycling waste debris of immobilized microalgae and plant growth-promoting bacteria from wastewater treatment as a resource to improve fertility of eroded desert soil
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2011.08.007
– volume: 267
  start-page: 657
  year: 2018
  ident: ref_103
  article-title: Cultivation of an algae-bacteria consortium in wastewater from an industrial park: Effect of environmental stress and nutrient deficiency on lipid production
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.07.099
– volume: 13
  start-page: 033006
  year: 2018
  ident: ref_148
  article-title: Connecting the sustainable development goals by their energy inter-linkages
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aaafe3
– volume: 46
  start-page: 653
  year: 2000
  ident: ref_88
  article-title: Changes in the metabolism of the microalga Chlorella vulgaris when coimmobilized in alginate with the nitrogen-fixing Phyllobacterium myrsinacearum
  publication-title: Can. J. Microbiol.
  doi: 10.1139/w00-041
– volume: 74
  start-page: 6797
  year: 2008
  ident: ref_37
  article-title: Joint immobilization of plant growth-promoting bacteria and green microalgae in alginate beads as an experimental model for studying plant-bacterium interactions
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00518-08
– volume: 47
  start-page: 1350
  year: 2011
  ident: ref_84
  article-title: Cell-cell interaction in the eukaryote-prokaryote model of the microalgae Chlorella vulgaris and the bacterium Azospirillum brasilense immobilized in polymer beads
  publication-title: J. Phycol.
  doi: 10.1111/j.1529-8817.2011.01062.x
– volume: 17
  start-page: 1
  year: 2018
  ident: ref_2
  article-title: The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products
  publication-title: Microb. Cell Factories
  doi: 10.1186/s12934-018-0879-x
– volume: 15
  start-page: 179
  year: 2016
  ident: ref_27
  article-title: Establishment of stable synthetic mutualism without co-evolution between microalgae and bacteria demonstrated by mutual transfer of metabolites (NanoSIMS isotopic imaging) and persistent physical association (Fluorescent in situ hybridization)
  publication-title: Algal Res.
  doi: 10.1016/j.algal.2016.02.019
– volume: 26
  start-page: 147
  year: 2015
  ident: ref_23
  article-title: Exploring mutualistic interactions between microalgae and bacteria in the omics age
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2015.07.003
– volume: 106
  start-page: 17071
  year: 2009
  ident: ref_58
  article-title: Photolysis of iron–siderophore chelates promotes bacterial–algal mutualism
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0905512106
– volume: 121
  start-page: 139
  year: 2017
  ident: ref_142
  article-title: Anaerobic digestion of lipid-extracted microalgae: Enhancing nutrient recovery towards a closed loop recycling
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2017.02.004
– volume: 8
  start-page: 140
  year: 2015
  ident: ref_22
  article-title: Phycosphere bacterial diversity in green algae reveals an apparent similarity across habitats
  publication-title: Algal Res.
  doi: 10.1016/j.algal.2015.02.003
– volume: 2
  start-page: 135
  year: 2010
  ident: ref_139
  article-title: Microalgae-based systems for carbon dioxide sequestration and industrial biorefineries
  publication-title: Biomass. Croat. Sciyo
– volume: 11
  start-page: 176
  year: 2018
  ident: ref_32
  article-title: Growth promotion of three microalgae, Chlamydomonas reinhardtii, Chlorella vulgaris and Euglena gracilis, by in situ indigenous bacteria in wastewater effluent
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-018-1174-0
– volume: 131
  start-page: 195
  year: 2013
  ident: ref_126
  article-title: Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.11.130
– volume: 98
  start-page: 1043
  year: 2014
  ident: ref_90
  article-title: Integrated microbial processes for biofuels and high value-added products: The way to improve the cost effectiveness of biofuel production
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-013-5389-5
– volume: 269
  start-page: 408
  year: 2018
  ident: ref_111
  article-title: Defatted algal biomass as feedstock for short chain carboxylic acids and biohydrogen production in the biorefinery format
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.08.059
– volume: 7
  start-page: 1
  year: 2017
  ident: ref_42
  article-title: Enhanced performance of the microalga Chlorella sorokiniana remotely induced by the plant growth-promoting bacteria Azospirillum brasilense and Bacillus pumilus
  publication-title: Sci. Rep.
  doi: 10.1038/srep41310
– volume: 11
  start-page: 20140065
  year: 2014
  ident: ref_26
  article-title: Co-culture systems and technologies: Taking synthetic biology to the next level
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2014.0065
– ident: ref_109
  doi: 10.1016/B978-0-12-818536-0.00014-2
– volume: 104
  start-page: 1741
  year: 2007
  ident: ref_24
  article-title: Synthetic ecology: A model system for cooperation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0611067104
– ident: ref_36
  doi: 10.1371/journal.pone.0013794
– ident: ref_85
  doi: 10.1111/jpy.13132
– volume: 60
  start-page: 628
  year: 2010
  ident: ref_33
  article-title: Interactions of Botryococcus braunii cultures with bacterial biofilms
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-010-9686-6
– volume: 190
  start-page: 196
  year: 2015
  ident: ref_96
  article-title: Biomass and pigments production in photosynthetic bacteria wastewater treatment: Effects of photoperiod
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.04.092
– volume: 8
  start-page: 1418
  year: 2014
  ident: ref_46
  article-title: Direct exchange of vitamin B 12 is demonstrated by modelling the growth dynamics of algal–bacterial cocultures
  publication-title: ISME J.
  doi: 10.1038/ismej.2014.9
– volume: 522
  start-page: 98
  year: 2015
  ident: ref_59
  article-title: Interaction and signaling between a cosmopolitan phytoplankton and associated bacteria
  publication-title: Nature
  doi: 10.1038/nature14488
– volume: 31
  start-page: 29
  year: 2019
  ident: ref_30
  article-title: Co-cultivation of siderophore-producing bacteria Idiomarina loihiensis RS14 with Chlorella variabilis ATCC 12198, evaluation of micro-algal growth, lipid, and protein content under iron starvation
  publication-title: J. Appl. Phycol.
  doi: 10.1007/s10811-018-1591-2
– volume: 39
  start-page: 101462
  year: 2019
  ident: ref_7
  article-title: Methyl jasmonate treatment affects the regulation of the 2-C-methyl-D-erythritol 4-phosphate pathway and early steps of the triterpenoid biosynthesis in Chlamydomonas reinhardtii
  publication-title: Algal Res.
  doi: 10.1016/j.algal.2019.101462
– volume: 6
  start-page: 205
  year: 2012
  ident: ref_121
  article-title: Impact of microalgae characteristics on their conversion to biofuel. Part II: Focus on biomethane production
  publication-title: Biofuels Bioprod. Biorefining
  doi: 10.1002/bbb.337
– volume: 13
  start-page: 719
  year: 2011
  ident: ref_137
  article-title: Chlorella vulgaris as soil amendment: Influence of encapsulation and enrichment with rhizobacteria
  publication-title: Int. J. Agric. Biol.
– volume: 31
  start-page: 2259
  year: 2019
  ident: ref_78
  article-title: Symbiotic association among marine microalgae and bacterial flora: A study with special reference to commercially important Isochrysis galbana culture
  publication-title: J. Appl. Phycol.
  doi: 10.1007/s10811-019-01772-2
– volume: 33
  start-page: 125
  year: 2015
  ident: ref_20
  article-title: Exploring the potential of algae/bacteria interactions
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2015.02.007
– volume: 4
  start-page: 61
  year: 2010
  ident: ref_49
  article-title: The complete genome sequence of the algal symbiont Dinoroseobacter shibae: A hitchhiker’s guide to life in the sea
  publication-title: ISME J.
  doi: 10.1038/ismej.2009.94
– volume: 45
  start-page: 88
  year: 2009
  ident: ref_71
  article-title: Growth promotion of the freshwater microalga Chlorella vulgaris by the nitrogen-fixing, plant growth-promoting bacterium Bacillus pumilus from arid zone soils
  publication-title: Eur. J. Soil Biol.
  doi: 10.1016/j.ejsobi.2008.08.004
– volume: 32
  start-page: 71
  year: 2019
  ident: ref_77
  article-title: Interaction between marine bacterium Stappia sp. K01 and diatom Phaeodactylum tricornutum through extracellular fatty acids
  publication-title: J. Appl. Phycol.
  doi: 10.1007/s10811-019-01931-5
– volume: 211
  start-page: 449
  year: 2018
  ident: ref_19
  article-title: Influence of bacteria on the response of microalgae to contaminant mixtures
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.07.161
– volume: 92
  start-page: fiw077
  year: 2016
  ident: ref_60
  article-title: Tryptophan, thiamine and indole-3-acetic acid exchange between Chlorella sorokiniana and the plant growth-promoting bacterium Azospirillum brasilense
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1093/femsec/fiw077
– volume: 135
  start-page: 128
  year: 2013
  ident: ref_112
  article-title: A biorefinery from Nannochloropsis sp. microalga–extraction of oils and pigments. Production of biohydrogen from the leftover biomass
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.11.084
– volume: 44
  start-page: 101696
  year: 2019
  ident: ref_41
  article-title: Riboflavin and lumichrome exuded by the bacterium Azospirillum brasilense promote growth and changes in metabolites in Chlorella sorokiniana under autotrophic conditions
  publication-title: Algal Res.
  doi: 10.1016/j.algal.2019.101696
– volume: 11
  start-page: 279
  year: 2020
  ident: ref_4
  article-title: Emerging technologies in algal biotechnology: Toward the establishment of a sustainable, algae-based bioeconomy
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.00279
– volume: 13
  start-page: 7339
  year: 2015
  ident: ref_95
  article-title: Carotenoids, phenolic compounds and tocopherols contribute to the antioxidative properties of some microalgae species grown on industrial wastewater
  publication-title: Mar. Drugs
  doi: 10.3390/md13127069
– volume: 347
  start-page: 1259855
  year: 2015
  ident: ref_147
  article-title: Planetary boundaries: Guiding human development on a changing planet
  publication-title: Science
  doi: 10.1126/science.1259855
– volume: 6
  start-page: 7
  year: 2019
  ident: ref_89
  article-title: Microbial Pigments in the Food Industry—Challenges and the Way Forward
  publication-title: Front. Nutr.
  doi: 10.3389/fnut.2019.00007
– volume: 6
  start-page: 56
  year: 2015
  ident: ref_6
  article-title: Chemicals to enhance microalgal growth and accumulation of high-value bioproducts
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.00056
– volume: 109
  start-page: 448
  year: 2019
  ident: ref_114
  article-title: A review on lipid production from microalgae: Association between cultivation using waste streams and fatty acid profiles
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.04.052
– volume: 290
  start-page: 121804
  year: 2019
  ident: ref_140
  article-title: Integration of anaerobic digestion and microalgal cultivation for digestate bioremediation and biogas upgrading
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.121804
– volume: 37
  start-page: 242
  year: 2019
  ident: ref_93
  article-title: Current bottlenecks and challenges of the microalgal biorefinery
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2018.09.006
– volume: 41
  start-page: 101534
  year: 2019
  ident: ref_144
  article-title: Assessing the fertilizing potential of microalgal digestates using the marine diatom Chaetoceros muelleri
  publication-title: Algal Res.
  doi: 10.1016/j.algal.2019.101534
– volume: 13
  start-page: 1
  year: 2020
  ident: ref_108
  article-title: Co-production of biodiesel and bioethanol using psychrophilic microalga Chlamydomonas sp. KNM0029C isolated from Arctic sea ice
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-020-1660-z
– volume: 53
  start-page: 683
  year: 2007
  ident: ref_21
  article-title: Species-specific bacterial communities in the phycosphere of microalgae?
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-006-9162-5
– volume: 51
  start-page: 300
  year: 2012
  ident: ref_79
  article-title: Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: II. Heterotrophic conditions
  publication-title: Enzym. Microb. Technol.
  doi: 10.1016/j.enzmictec.2012.07.012
– volume: 78
  start-page: 1445
  year: 2012
  ident: ref_125
  article-title: Novel bacterial isolate from Permian groundwater, capable of aggregating potential biofuel-producing microalga Nannochloropsis oceanica IMET1
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.06474-11
– volume: 31
  start-page: 121
  year: 2014
  ident: ref_141
  article-title: Process effect of microalgal-carbon dioxide fixation and biomass production: A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.11.054
– volume: 54
  start-page: 102177
  year: 2021
  ident: ref_105
  article-title: Osmotic shock pre-treatment of Chaetoceros muelleri wet biomass enhanced solvent-free lipid extraction and biogas production
  publication-title: Algal Res.
  doi: 10.1016/j.algal.2020.102177
– volume: 28
  start-page: 225
  year: 2014
  ident: ref_38
  article-title: Interaction of bacterial populations in coupled microchambers
  publication-title: Chem. Biochem. Eng. Q.
  doi: 10.15255/CABEQ.2013.1934
– volume: 9
  start-page: 349
  year: 2013
  ident: ref_76
  article-title: A co-culturing/metabolomics approach to investigate chemically mediated interactions of planktonic organisms reveals influence of bacteria on diatom metabolism
  publication-title: Metabolomics
  doi: 10.1007/s11306-012-0453-1
– volume: 438
  start-page: 90
  year: 2005
  ident: ref_15
  article-title: Algae acquire vitamin B12 through a symbiotic relationship with bacteria
  publication-title: Nature
  doi: 10.1038/nature04056
– volume: 29
  start-page: 101790
  year: 2020
  ident: ref_31
  article-title: Growth promoting studies on co-culturing Nannochloropsis oceanica with Halomonas aquamarina actively enhance the algal biomass and lipid production
  publication-title: Biocatal. Agric. Biotechnol.
  doi: 10.1016/j.bcab.2020.101790
– volume: 249
  start-page: 155
  year: 2019
  ident: ref_3
  article-title: Eukaryotic microalgae as hosts for light-driven heterologous isoprenoid production
  publication-title: Planta
  doi: 10.1007/s00425-018-3048-x
– volume: 177
  start-page: 22
  year: 2014
  ident: ref_65
  article-title: Enhanced activity of ADP glucose pyrophosphorylase and formation of starch induced by Azospirillum brasilense in Chlorella vulgaris
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2014.02.014
– volume: 175
  start-page: 578
  year: 2015
  ident: ref_81
  article-title: Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.10.159
– volume: 41
  start-page: 101547
  year: 2019
  ident: ref_80
  article-title: Effects of an auxin-producing symbiotic bacterium on cell growth of the microalga Haematococcus pluvialis: Elevation of cell density and prolongation of exponential stage
  publication-title: Algal Res.
  doi: 10.1016/j.algal.2019.101547
– volume: 105
  start-page: 67
  year: 2012
  ident: ref_29
  article-title: Synergistic cooperation between wastewater-born algae and activated sludge for wastewater treatment: Influence of algae and sludge inoculation ratios
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.11.113
– volume: 65
  start-page: 339
  year: 2015
  ident: ref_66
  article-title: Activity of acetyl-CoA carboxylase is not directly linked to accumulation of lipids when Chlorella vulgaris is co-immobilised with Azospirillum brasilense in alginate under autotrophic and heterotrophic conditions
  publication-title: Ann. Microbiol.
  doi: 10.1007/s13213-014-0866-3
– volume: 11
  start-page: 248
  year: 2015
  ident: ref_123
  article-title: Harvesting of microalgae within a biorefinery approach: A review of the developments and case studies from pilot-plants
  publication-title: Algal Res.
  doi: 10.1016/j.algal.2015.06.019
– ident: ref_5
  doi: 10.3390/genes9110520
– volume: 9
  start-page: 741
  year: 2018
  ident: ref_83
  article-title: Enhanced lipid production in Chlamydomonas reinhardtii by co-culturing with Azotobacter chroococcum
  publication-title: Front Plant Sci.
  doi: 10.3389/fpls.2018.00741
– volume: 51
  start-page: 294
  year: 2012
  ident: ref_70
  article-title: Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: I. Autotrophic conditions
  publication-title: Enzym. Microb. Technol.
  doi: 10.1016/j.enzmictec.2012.07.013
– volume: 81
  start-page: 170
  year: 2013
  ident: ref_128
  article-title: Improving microalgal oil collecting efficiency by pretreating the microalgal cell wall with destructive bacteria
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2013.10.014
– volume: 2
  start-page: 1275089
  year: 2016
  ident: ref_100
  article-title: Removal of nitrogen from wastewater using microalgae and microalgae–bacteria consortia
  publication-title: Cogent Environ. Sci.
  doi: 10.1080/23311843.2016.1275089
– volume: 122
  start-page: 280
  year: 2019
  ident: ref_40
  article-title: Enhancing algal biomass and lipid production through bacterial co-culture
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2019.01.033
– volume: 8
  start-page: 289
  year: 2017
  ident: ref_69
  article-title: Phycospheric native bacteria Pelagibaca bermudensis and Stappia sp. ameliorate biomass productivity of Tetraselmis striata (KCTC1432BP) in co-cultivation system through mutualistic interaction
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00289
– volume: 36
  start-page: 819
  year: 2018
  ident: ref_120
  article-title: Bio-based products from microalgae cultivated in digestates
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2018.02.015
– volume: 9
  start-page: 99
  year: 2015
  ident: ref_145
  article-title: Cultivation of microalgae with recovered nutrients after hydrothermal liquefaction
  publication-title: Algal Res.
  doi: 10.1016/j.algal.2015.03.007
– volume: 16
  start-page: 4716
  year: 2014
  ident: ref_113
  article-title: Bacterial symbionts enhance photo-fermentative hydrogen evolution of Chlamydomonas algae
  publication-title: Green Chem.
  doi: 10.1039/C4GC00745J
– volume: 13
  start-page: 1169
  year: 2019
  ident: ref_130
  article-title: Scenedesmus obliquus microalga-based biorefinery–from brewery effluent to bioactive compounds, biofuels and biofertilizers–aiming at a circular bioeconomy
  publication-title: Biofuels Bioprod. Biorefining
  doi: 10.1002/bbb.2032
– volume: 47
  start-page: 101839
  year: 2020
  ident: ref_61
  article-title: Auxin-dependent alleviation of oxidative stress and growth promotion of Scenedesmus obliquus C1S by Azospirillum brasilense
  publication-title: Algal Res.
  doi: 10.1016/j.algal.2020.101839
– volume: 146
  start-page: 400
  year: 2013
  ident: ref_73
  article-title: High lipid productivity of an Ankistrodesmus–Rhizobium artificial consortium
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.07.085
– ident: ref_82
– ident: ref_132
  doi: 10.3390/agronomy9040192
– volume: 104
  start-page: 893
  year: 2020
  ident: ref_98
  article-title: The effect of the microalgae-bacteria microbiome on wastewater treatment and biomass production
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-019-10246-x
– volume: 82
  start-page: 1137
  year: 2018
  ident: ref_119
  article-title: Integrated biodiesel and biogas production from microalgae: Towards a sustainable closed loop through nutrient recycling
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.09.091
– volume: 20
  start-page: 4385
  year: 2018
  ident: ref_17
  article-title: Attachment between heterotrophic bacteria and microalgae influences symbiotic microscale interactions
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.14357
– volume: 18
  start-page: 152
  year: 2020
  ident: ref_54
  article-title: Bacterial siderophores in community and host interactions
  publication-title: Nature Rev. Microbiol.
  doi: 10.1038/s41579-019-0284-4
– volume: 134
  start-page: 129
  year: 2018
  ident: ref_86
  article-title: Nutrient recovery from industrial wastewater as single cell protein by a co-culture of green microalgae and methanotrophs
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2018.03.010
– volume: 12
  start-page: 304
  year: 2018
  ident: ref_1
  article-title: Microalgae cultivation and metabolites production: A comprehensive review
  publication-title: Biofuels Bioprod. Biorefining
  doi: 10.1002/bbb.1864
– volume: 98
  start-page: 9473
  year: 2014
  ident: ref_53
  article-title: The effect of iron on growth, lipid accumulation, and gene expression profile of the freshwater microalga Chlorella sorokiniana
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-014-6088-6
– volume: 9
  start-page: 297
  year: 2015
  ident: ref_143
  article-title: Production of microalgae using centrate from anaerobic digestion as the nutrient source
  publication-title: Algal Res.
  doi: 10.1016/j.algal.2015.03.018
– volume: 47
  start-page: 101845
  year: 2020
  ident: ref_67
  article-title: Indole-3-acetic acid from Azosprillum brasilense promotes growth in green algae at the expense of energy storage products
  publication-title: Algal Res.
  doi: 10.1016/j.algal.2020.101845
– volume: 36
  start-page: 341
  year: 2016
  ident: ref_14
  article-title: Effects of bacterial communities on biofuel-producing microalgae: Stimulation, inhibition and harvesting
  publication-title: Crit. Rev. Biotechnol.
  doi: 10.3109/07388551.2014.961402
– volume: 653
  start-page: 1377
  year: 2019
  ident: ref_118
  article-title: Production of lipid-containing algal-bacterial polyculture in wastewater and biomethanation of lipid extracted residues: Enhancing methane yield through hydrothermal pretreatment and relieving solvent toxicity through co-digestion
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.11.026
– volume: 19
  start-page: 810
  year: 2016
  ident: ref_52
  article-title: How mutualisms arise in phytoplankton communities: Building eco-evolutionary principles for aquatic microbes
  publication-title: Ecol. Lett.
  doi: 10.1111/ele.12615
– volume: 292
  start-page: 122017
  year: 2019
  ident: ref_104
  article-title: The interactions of algae-activated sludge symbiotic system and its effects on wastewater treatment and lipid accumulation
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.122017
– volume: 129
  start-page: 565
  year: 2020
  ident: ref_115
  article-title: Selection and characterization of microalgae with potential for nutrient removal from municipal wastewater and simultaneous lipid production
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/j.jbiosc.2019.12.004
– volume: 6
  start-page: 138
  year: 2019
  ident: ref_34
  article-title: A novel light source provided by photobacteria to improve the growth of microalgal biofilm
  publication-title: Bioresour. Technol. Rep.
  doi: 10.1016/j.biteb.2019.02.015
– volume: 2
  start-page: 212
  year: 2013
  ident: ref_57
  article-title: Screening and selection of growth-promoting bacteria for Dunaliella cultures
  publication-title: Algal Res.
  doi: 10.1016/j.algal.2013.05.003
– volume: 109
  start-page: 195
  year: 2017
  ident: ref_127
  article-title: Enzymes produced by biomass-degrading bacteria can efficiently hydrolyze algal cell walls and facilitate lipid extraction
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.03.025
– volume: 19
  start-page: 98
  year: 2019
  ident: ref_39
  article-title: A microfluidic co-cultivation platform to investigate microbial interactions at defined microenvironments
  publication-title: Lab Chip
  doi: 10.1039/C8LC00977E
– volume: 95
  start-page: 8676
  year: 1998
  ident: ref_13
  article-title: The evolution of interspecific mutualisms
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.95.15.8676
– volume: 77
  start-page: 980
  year: 2019
  ident: ref_62
  article-title: Early changes in nutritional conditions affect formation of synthetic mutualism between Chlorella sorokiniana and the bacterium Azospirillum brasilense
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-018-1282-1
– volume: 96
  start-page: 1103
  year: 2016
  ident: ref_116
  article-title: From piggery wastewater nutrients to biogas: Microalgae biomass revalorization through anaerobic digestion
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.01.090
– volume: 255
  start-page: 571
  year: 2003
  ident: ref_134
  article-title: Plant growth promoting rhizobacteria as biofertilizers
  publication-title: Plant Soil
  doi: 10.1023/A:1026037216893
– volume: 28
  start-page: 1521
  year: 2016
  ident: ref_51
  article-title: Enhancement of thiamine release during synthetic mutualism between Chlorella sorokiniana and Azospirillum brasilense growing under stress conditions
  publication-title: J. Appl. Phycol.
  doi: 10.1007/s10811-015-0697-z
– volume: 79
  start-page: 6196
  year: 2013
  ident: ref_44
  article-title: Metagenome survey of a multispecies and alga-associated biofilm revealed key elements of bacterial-algal interactions in photobioreactors
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01641-13
– volume: 9
  start-page: 718
  year: 2016
  ident: ref_122
  article-title: Progress on lipid extraction from wet algal biomass for biodiesel production
  publication-title: Microb. Biotechnol.
  doi: 10.1111/1751-7915.12360
– volume: 214
  start-page: 787
  year: 2016
  ident: ref_129
  article-title: Applications of de-oiled microalgal biomass towards development of sustainable biorefinery
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.04.115
– volume: 55
  start-page: 2345
  year: 2016
  ident: ref_138
  article-title: Optimal design of distributed algae-based biorefineries using CO2 emissions from multiple industrial plants
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.5b01684
– volume: 37
  start-page: 228
  year: 2019
  ident: ref_101
  article-title: Production of microbial biomass feedstock via co-cultivation of microalgae-bacteria consortium coupled with effective wastewater treatment: A sustainable approach
  publication-title: Algal Res.
  doi: 10.1016/j.algal.2018.11.020
– volume: 126
  start-page: 359
  year: 2019
  ident: ref_9
  article-title: Microalgae–bacteria symbiosis in microalgal growth and biofuel production: A review
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/jam.14095
– volume: 49
  start-page: 1053
  year: 2013
  ident: ref_136
  article-title: Amendment of degraded desert soil with wastewater debris containing immobilized Chlorella sorokiniana and Azospirillum brasilense significantly modifies soil bacterial community structure, diversity, and richness
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-013-0799-1
– volume: 222
  start-page: 485
  year: 2016
  ident: ref_94
  article-title: Perspectives on the feasibility of using microalgae for industrial wastewater treatment
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.09.106
SSID ssj0000702636
Score 2.47846
SecondaryResourceType review_article
Snippet Engineered mutualistic consortia of microalgae and bacteria may be a means of assembling a novel combination of metabolic capabilities with potential...
Simple SummaryMicroalgae are photosynthetic microorganisms with high biotechnological potential. However, the sustainable production of high-value products...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 282
SubjectTerms Algae
Aquatic microorganisms
Bacteria
Biofilms
biorefinery
biorefining
Biotechnology
Carbohydrates
Carbon
Carbon dioxide
Carbon dioxide fixation
coculture
Consortia
energy
Energy balance
growth-promoting bacteria
Lipid metabolism
Metabolism
Metabolites
microalgae
Microorganisms
Mutualism
Pigments
Proteins
Review
Signal transduction
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7Et_VFBA9eqmmatM1RxUWEFcEV9lbyKitIV3Q9ePM_-A_9Jc6kdd0VHxevzQSSzCT5ppn5hpB9MJE0czl4qoV2sUiMj5VNfCwt066CG8Y4THDuXmbnN-KiL_sTpb4wJqyhB24W7ghglWPes8JkVjhrjWQWUIpItDZO2ZC6B3fehDMVzuAcfAt8l0QunxT8-qOW0wgJ0tDNmLqGAlv_dxDza6TkxNXTWSQLLWakx81Yl8iMr5fJXFNF8nmFmF4IfaUA5ehZPUA14i8_OqxoF8PtMFvjjnb9CPSNGcf0qmF5BY3QtkzPp6B_e3k9aRicNcVqngDPb_Uque6c9U7P47Z0QmwlZ6PYIJWXznMlDUstdy7DDFYF-1PDZLDsGMC2TFgAR0paUVhZqEqB76YstzxdI7P1sPYbhCrrCs-5q7QyApoKxSvHsipJqtQI7SNy-LGOpW1ZxbG4xV0J3gUufPll4SNyMO5w3xBq_Cx6gooZiyETdvgA9lG29lH-ZR8R2f5Qa9luz8eSS3xAhrMqj8jeuBk2Fr6W6NoPn4IMuHuCieQ3GYkxZxkTEVlvLGU82hSp97MCeudTNjQ1nemW-nYQCL7xsRtg-OZ_zH-LzHMMwwnBRttkdvTw5HcAR43Mbtgy73ZjIPE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwEB7BVkhcEP8ECjISBy6hiWM79gmxaKsKaasKitRb5L_QSlVS2u2BG-_AG_IkzCTelK2g13giJZ4Z-xvP-BuAN2gilQo1RqrahlyULubGlzGXvrChxR3GBbrgvNxXe1_FpyN5lA7cLlJZ5XpNHBbq0Hs6I9_hknJ-aF71-7PvOXWNouxqaqFxG7ZwCdZ6Blvzxf7B5-mUBQ2aK8pPEqdPhfH9TuI2IqI0Cjc2tqOBtf9fUPN6xeRfW9DufbiXsCP7MCr7AdyK3UO4M3aT_PEI3OFQAssQ0rFFd0zqpKM_1rdsSWV3dGvjlC3jCvVON4_Zwcj2ipphqV3PlWD8_fPXfGRytoy6eiJMP7GP4cvu4vDjXp5aKORe8mKVO6L0snVtpCsqz0NQdJPVoJ9a_BlqP4bwTQmPIMlIL7SX2rQGYzjjuefVE5h1fRefATM-6Mh5aK1xAoe04W0oVFuWbeWEjRm8W89j4xO7ODW5OG0wyqCJb65NfAZvpxfORmKN_4vOSTGTGDFiDw_6829NcrAG4XcoYiy0U14E750sPKJZUVrrgvEmg-21WpvkphfNlVFl8HoaRgejrIntYn85yGDYJwpR3iQjqfZMFSKDp6OlTF9bEQW_0vh2vWFDG7-zOdKdHA9E35T0Rjj-_OZPfwF3ORXaDOVE2zBbnV_Gl4iUVu5Vcoc_Pe0YhQ
  priority: 102
  providerName: ProQuest
Title Toward the Enhancement of Microalgal Metabolite Production through Microalgae–Bacteria Consortia
URI https://www.ncbi.nlm.nih.gov/pubmed/33915681
https://www.proquest.com/docview/2528297877
https://www.proquest.com/docview/2520864041
https://www.proquest.com/docview/2551989604
https://pubmed.ncbi.nlm.nih.gov/PMC8065533
https://doaj.org/article/81bd0ee08b6c4dccb50c16141aabd9c9
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1BK1AvqHyVQFkZiQOXFMexk_iAqi7aqkLaqoJW6i3yV2ilVRaWrURv_Af-Ib-EGSe77VYtB67rsbTxzMRv4vF7AG8xRPLCl1ipVsanMrMh1S4LqXLc-AZ3GOvpgvP4sDg4kZ9O1emVHFC_gD9uLe1IT-pkNtn5-f1yFxP-A1WcWLK_7-mKiPuMKoj7sI7bUklyBuMe68fXconlBh1Vbt0xbwMe5kSXXlTZyiYVufxvA6A3-yivbUz7m_CoR5RsrwuBx3AvtE_gQacxefkU7HFsjGUI9NioPSMn0wdBNm3YmJrx6C7HhI3DHKOB7iOzo44DFv3FehGfK8Pw59fvYcfvbBhpfeK6nZtn8GV_dPzxIO2FFVKnBJ-nloi-TFlqZXnuhPcF3W_VmL0GH4ZEyRDUFdIhdNLKycqpSjcaKzvthBP5c1hrp214AUw7XwUhfGO0lThUadF4XjRZ1uRWmpDAzmIda9dzjpP0xaTG2oN8UN_wQQLvlhO-dXQbd5sOyTFLM-LJjj9MZ1_rPu1qBOWeh8ArWzjpnbOKO8S4MjPGeu10AtsLt9aL2KuFouNlfJOVCbxZDmPa0VmKacP0ItpgMSi5zP5lo6gjreAyga0uUpb_dhFpCZQrMbTyOKsj7flZpP-mo3AE6S__e-Yr2BDUmRP7j7ZhbT67CK8RWs3tANaHo8Ojz4P4aWIQE-gv4SAqyg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWyG4IN4NFDASSFxCHcd5-IAQC1ttaXdVwSL1RORXaKUqKe1WqDf-A3-DX8UvYSaPLVtBb73GEymxv7FnPDPfADxHiMSpy9BTzbULZWR8qGzkw8Ry7Uo8YYyjAufJNB1_lh_2kr0V-NXXwlBaZb8nNhu1qy3dkW-IhGJ-CK_szdG3kLpGUXS1b6HRwmLbn31Hl-3k9dZ7XN8XQmyOZu_GYddVILSJ4PPQEMuVzjKVGB5b4VxKxZ0Koau9s9SRCy2aVFq0G1RiZW6TXJUK3RplhSWaA9zwV2WccjGA1eFouvtxcaeD6iNSioYSg1AcK77RMSkRLRs5N0uHX9Mj4F-G7cX8zL8OvM1bcLOzVNnbFlq3YcVXd-Ba27vy7C6YWZNwy9CAZKNqn8BDF42sLtmEkvyoRuSQTfwcUUZ1zmy35ZZFHLCuOdC5oP_94-ew5Y3WjHqIolNwoO_BpyuY2vswqOrKrwFT1uVeCFdqZSQO5UqUjqdlFJWxkdoH8Kqfx8J2XObUUuOwQJ-GJr64MPEBvFy8cNTSePxfdEgLsxAj_u3mQX38tejUuUBj33HveW5SK521JuEWbWcZaW2csiqA9X5Zi25TOCnOIRzAs8UwqjPFaHTl69NGBp1MyWV0mUxCmW4plwE8aJGy-NqYCP_THN_OljC09DvLI9XBfkMrTiF2NP4fXv7pT-H6eDbZKXa2ptuP4IagFJ8mkWkdBvPjU_8YbbS5edKpBoMvV6uLfwCkyFGM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VW4G4oPJsaAEjgcQlbOI4Dx8QYumuWsquVlCknoj8Cq1UJaXdCvXGf-DP8Hv4JczkVbaC3nqNJ1Jif2PPeGa-AXiOEIkSm6Knminri1A7X5rQ-bEJlC3whNGWCpyns2T7s3i_H--vwK-uFobSKrs9sd6obWXojnzIY4r5IbzSYdGmRcy3Jm-Ov_nUQYoirV07jQYiu-78O7pvp693tnCtX3A-Ge-92_bbDgO-iXmw8DUxXqk0lbEOIsOtTajQUyKMlbOGunOhdZMIgzaEjI3ITJzJQqKLIw03RHmAm_9qSj7RAFZH49n8Y3-_g6rEE4qMEptQFMlg2LIqEUUbOTpLB2HdL-BfRu7lXM2_Dr_JGtxurVb2toHZHVhx5V240fSxPL8Heq9OvmVoTLJxeUBAoktHVhVsSgl_VC9yxKZugYijmmc2b3hmEROsbRR0Ieh-__g5ajikFaN-ouggHKr78OkapvYBDMqqdOvApLGZ49wWSmqBQ5nkhQ2SIgyLSAvlPHjVzWNuWl5zaq9xlKN_QxOfX5p4D172Lxw3lB7_Fx3RwvRixMVdP6hOvuataudo-NvAuSDTiRHWGB0HBu1oESqlrTTSg81uWfN2gzjNL-DswbN-GFWb4jWqdNVZLYMOpwhEeJVMTFlvSSA8eNggpf_aiMj_kwzfTpcwtPQ7yyPl4UFNMU7hdnQEHl396U_hJupg_mFntrsBtzhl-9Q5TZswWJycucdori30k1YzGHy5XlX8Ay8zVcE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+the+Enhancement+of+Microalgal+Metabolite+Production+through+Microalgae%E2%80%93Bacteria+Consortia&rft.jtitle=Biology+%28Basel%2C+Switzerland%29&rft.au=Gonz%C3%A1lez-Gonz%C3%A1lez%2C+Lina+Maria&rft.au=de-Bashan%2C+Luz+E.&rft.date=2021-04-01&rft.pub=MDPI&rft.eissn=2079-7737&rft.volume=10&rft.issue=4&rft_id=info:doi/10.3390%2Fbiology10040282&rft_id=info%3Apmid%2F33915681&rft.externalDocID=PMC8065533
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-7737&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-7737&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-7737&client=summon