The Effect of Alkali Concentration and Sodium Silicate Modulus on the Properties of Alkali-Activated Slag Concrete

In this study, the effect of alkali concentration and sodium silicate modulus of the activator solution on workability, compressive strength, and drying shrinkage of alkali-activated slag (AAS) concrete was investigated experimentally. Twenty mixes were prepared with the ground granulated blast furn...

Full description

Saved in:
Bibliographic Details
Published inJournal of Advanced Concrete Technology Vol. 16; no. 7; pp. 293 - 305
Main Authors Taghvayi, Hamed, Behfarnia, Kiachehr, Khalili, Mohammadbagher
Format Journal Article
LanguageEnglish
Published Tokyo Japan Concrete Institute 13.07.2018
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, the effect of alkali concentration and sodium silicate modulus of the activator solution on workability, compressive strength, and drying shrinkage of alkali-activated slag (AAS) concrete was investigated experimentally. Twenty mixes were prepared with the ground granulated blast furnace slag (GGBFS) activated with the various alkali concentrations and sodium silicate modulus. The compressive strength at the ages of 7, 28 and 90 days was measured and the drying shrinkage of the concrete samples up to 400 days were measured. Based on the results, in most mixes, by increasing the sodium silicate modulus and the concentration of the alkali solution, the slump, compressive strength, and the rate of the drying shrinkage of the samples were increased, but the setting time was reduced. These results were contrary to those specimens cast with high alkalinity. The effect of the sodium silicate modulus was much higher than the concentration of the alkali solution on the drying shrinkage of the samples. In order to evaluate the effect of the alkali concentration and the silicate modulus on the microstructure and the reaction product of the AAS paste, x-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) images were examined.
AbstractList In this study, the effect of alkali concentration and sodium silicate modulus of the activator solution on workability, compressive strength, and drying shrinkage of alkali-activated slag (AAS) concrete was investigated experimentally. Twenty mixes were prepared with the ground granulated blast furnace slag (GGBFS) activated with the various alkali concentrations and sodium silicate modulus. The compressive strength at the ages of 7, 28 and 90 days was measured and the drying shrinkage of the concrete samples up to 400 days were measured. Based on the results, in most mixes, by increasing the sodium silicate modulus and the concentration of the alkali solution, the slump, compressive strength, and the rate of the drying shrinkage of the samples were increased, but the setting time was reduced. These results were contrary to those specimens cast with high alkalinity. The effect of the sodium silicate modulus was much higher than the concentration of the alkali solution on the drying shrinkage of the samples. In order to evaluate the effect of the alkali concentration and the silicate modulus on the microstructure and the reaction product of the AAS paste, x-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) images were examined.
Author Taghvayi, Hamed
Khalili, Mohammadbagher
Behfarnia, Kiachehr
Author_xml – sequence: 1
  fullname: Taghvayi, Hamed
  organization: Department of Civil Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
– sequence: 2
  fullname: Behfarnia, Kiachehr
  organization: Department of Civil Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
– sequence: 3
  fullname: Khalili, Mohammadbagher
  organization: Department of Civil Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
BookMark eNp1kFtLAzEQhYNUsF6e_AMBH2XrJtlkd1-EUryBolDfwzSdtanbTU2ygv_etJUKgk8zMN85wznHZNC5Dgk5Z_lIMMmulmDiiKkRr8UBGTJRlJmomRhsd5VVOSuOyHEIyzwXpSjLIfGvC6Q3TYMmUtfQcfsOraUT1xnsoodoXUehm9Opm9t-Rae2tQYi0ic379s-0HSOyeHFuzX6aDH8umRjE-1ngpO6hbetqceIp-SwgTbg2c88IdPbm9fJffb4fPcwGT9mRvI8ZiCqOTdcGtZwgJLNikoaJZua44wJWVZK5ljUUBWFMiBgpngpuJIV5FzMxAm52LmuvfvoMUS9dL3v0kPNueCSMVVXiWI7yngXgsdGGxu3qVN422qW602xelOsZkqnYpPm8o9m7e0K_Nc_9PWOXoYIb7hnIbVlWtyz5Y9gfzAL8Bo78Q0x6JMQ
CitedBy_id crossref_primary_10_1016_j_clwas_2025_100270
crossref_primary_10_1016_j_cscm_2024_e03581
crossref_primary_10_1016_j_conbuildmat_2022_126556
crossref_primary_10_1016_j_jobe_2023_106398
crossref_primary_10_1016_j_jobe_2023_107167
crossref_primary_10_1016_j_jobe_2024_111462
crossref_primary_10_1080_21650373_2023_2260794
crossref_primary_10_1016_j_cscm_2025_e04391
crossref_primary_10_1080_19648189_2023_2276136
crossref_primary_10_1016_j_jobe_2023_106070
crossref_primary_10_1007_s41062_022_00789_w
crossref_primary_10_1016_j_conbuildmat_2023_131272
crossref_primary_10_1016_j_clay_2022_106412
crossref_primary_10_1016_j_petrol_2020_107691
crossref_primary_10_1016_j_conbuildmat_2024_135192
crossref_primary_10_1016_j_conbuildmat_2024_136681
crossref_primary_10_3390_ma17112495
crossref_primary_10_3151_jact_20_1
crossref_primary_10_1016_j_cscm_2024_e03493
crossref_primary_10_1016_j_jobe_2022_104141
crossref_primary_10_1016_j_jobe_2022_104263
crossref_primary_10_1016_j_cscm_2024_e03451
crossref_primary_10_1016_j_cemconcomp_2022_104488
crossref_primary_10_1016_j_conbuildmat_2023_130963
crossref_primary_10_3390_app13052997
crossref_primary_10_1016_j_conbuildmat_2019_116827
crossref_primary_10_1016_j_conbuildmat_2023_132153
crossref_primary_10_1016_j_cemconcomp_2022_104451
crossref_primary_10_1016_j_conbuildmat_2024_136013
crossref_primary_10_3151_jact_21_695
crossref_primary_10_1002_suco_202100901
crossref_primary_10_1016_j_jclepro_2023_136522
crossref_primary_10_1061__ASCE_MT_1943_5533_0003233
crossref_primary_10_1016_j_jobe_2022_105109
crossref_primary_10_1016_j_cscm_2022_e01381
crossref_primary_10_1016_j_jclepro_2020_123488
crossref_primary_10_1016_j_conbuildmat_2022_126577
crossref_primary_10_3390_ma17174321
crossref_primary_10_1007_s13369_023_08373_9
crossref_primary_10_3390_ma18051005
crossref_primary_10_1007_s40996_022_00837_6
crossref_primary_10_1007_s12034_024_03258_5
crossref_primary_10_1016_j_conbuildmat_2018_09_125
crossref_primary_10_3390_polym16111582
crossref_primary_10_1002_suco_202100671
crossref_primary_10_1016_j_cemconcomp_2024_105865
crossref_primary_10_4028_p_67b121
crossref_primary_10_1016_j_jobe_2023_108074
crossref_primary_10_1016_j_conbuildmat_2020_120986
crossref_primary_10_1016_j_matpr_2024_05_058
crossref_primary_10_1007_s41024_023_00380_5
crossref_primary_10_1016_j_cemconcomp_2023_105076
crossref_primary_10_3390_ma18040915
crossref_primary_10_1016_j_conbuildmat_2023_133312
crossref_primary_10_1016_j_conbuildmat_2024_139375
crossref_primary_10_3390_buildings13051285
crossref_primary_10_2139_ssrn_4175926
crossref_primary_10_3151_jact_20_300
crossref_primary_10_1016_j_conbuildmat_2022_127416
crossref_primary_10_1016_j_jobe_2021_103813
crossref_primary_10_1016_j_conbuildmat_2022_129876
crossref_primary_10_1016_j_conbuildmat_2022_126843
crossref_primary_10_1016_j_conbuildmat_2019_117611
crossref_primary_10_1016_j_conbuildmat_2021_124760
crossref_primary_10_1016_j_cemconres_2023_107244
crossref_primary_10_3151_jact_18_192
crossref_primary_10_1002_suco_202200902
crossref_primary_10_1016_j_conbuildmat_2020_120381
crossref_primary_10_1016_j_conbuildmat_2023_130389
crossref_primary_10_1016_j_conbuildmat_2022_129991
crossref_primary_10_1016_j_conbuildmat_2023_133857
crossref_primary_10_3390_su14095214
crossref_primary_10_1016_j_conbuildmat_2024_136512
crossref_primary_10_1016_j_jobe_2021_103963
crossref_primary_10_3390_pr12010184
crossref_primary_10_1016_j_conbuildmat_2024_138698
crossref_primary_10_1016_j_cscm_2022_e01166
crossref_primary_10_1016_j_conbuildmat_2024_139223
crossref_primary_10_1016_j_jnoncrysol_2023_122263
crossref_primary_10_1016_j_jobe_2023_106830
crossref_primary_10_1016_j_jobe_2022_104998
Cites_doi 10.1016/j.conbuildmat.2014.05.085
10.1023/A:1025904905176
10.1016/j.cemconcomp.2010.09.004
10.1016/j.cemconres.2016.10.003
10.1617/s11527-012-9842-1
10.1016/j.conbuildmat.2017.03.238
10.3151/jact.15.165
10.1016/j.jclepro.2016.11.178
10.1016/j.conbuildmat.2014.12.068
10.1016/j.cemconres.2011.08.005
10.1016/S0008-8846(96)00174-3
10.1016/0008-8846(95)00126-W
10.1016/j.conbuildmat.2007.10.011
10.1016/j.conbuildmat.2012.11.003
10.1016/j.conbuildmat.2018.03.155
10.1016/S0008-8846(99)00143-X
10.1016/S0008-8846(02)01096-7
10.1016/j.conbuildmat.2016.12.072
10.1016/j.cemconres.2007.11.002
10.1016/j.cemconres.2004.10.042
10.1016/j.cemconcomp.2014.07.007
10.1016/j.conbuildmat.2013.12.010
10.1007/s10853-008-3028-9
10.1016/j.conbuildmat.2016.11.070
10.3151/jact.14.245
10.1016/S0008-8846(97)00040-9
10.1016/j.cemconcomp.2008.03.002
10.1007/s10853-005-1821-2
10.1023/A:1010172204297
10.1016/j.cemconres.2010.11.016
10.1016/j.jclepro.2016.10.101
10.1016/j.conbuildmat.2014.09.059
10.1016/j.cemconres.2007.08.018
10.1016/S0008-8846(01)00717-7
10.1016/j.cemconcomp.2016.11.010
10.1016/0008-8846(89)90004-5
10.1023/A:1004742027117
10.1016/S0008-8846(00)00349-5
10.1016/j.compositesb.2013.10.001
10.1007/s40069-015-0114-7
10.1016/j.cemconres.2004.01.021
10.1016/j.cemconres.2016.07.001
10.1016/0008-8846(94)90026-4
10.1016/S0008-8846(98)00236-1
10.1016/S0008-8846(98)00170-7
10.1016/j.jclepro.2017.04.097
10.1016/S0892-6875(03)00008-6
10.1016/j.conbuildmat.2016.05.026
10.1016/0008-8846(95)00045-E
10.1016/S0008-8846(01)00574-9
10.1016/j.ceramint.2014.09.075
10.1016/S0008-8846(00)00327-6
10.1016/j.cemconres.2011.05.002
10.1520/CCA10306J
10.1016/j.colsurfa.2005.01.016
10.1111/jace.12620
10.1016/S0008-8846(99)00154-4
10.1016/j.cemconcomp.2011.08.003
10.1016/j.matdes.2014.12.051
10.3151/jact.13.187
10.1002/suco.201600147
10.1680/adcr.1995.7.27.93
10.1016/S0008-8846(00)00243-X
ContentType Journal Article
Copyright 2018 by Japan Concrete Institute
Copyright Japan Science and Technology Agency 2018
Copyright_xml – notice: 2018 by Japan Concrete Institute
– notice: Copyright Japan Science and Technology Agency 2018
DBID AAYXX
CITATION
7QQ
7SR
8BQ
8FD
FR3
JG9
KR7
DOI 10.3151/jact.16.293
DatabaseName CrossRef
Ceramic Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Ceramic Abstracts
Engineering Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1347-3913
EndPage 305
ExternalDocumentID 10_3151_jact_16_293
article_jact_16_7_16_293_article_char_en
GroupedDBID 5GY
ACIWK
ADDVE
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
EJD
JSF
JSH
KQ8
OK1
P2P
RJT
RZJ
AAYXX
CITATION
7QQ
7SR
8BQ
8FD
FR3
JG9
KR7
ID FETCH-LOGICAL-c520t-a38d2c25c1f2aa71b485c65f92eb13578650e49a8446ca3ab62732658a023b3
ISSN 1346-8014
IngestDate Mon Jun 30 09:58:15 EDT 2025
Thu Apr 24 23:12:33 EDT 2025
Tue Jul 01 01:31:04 EDT 2025
Wed Apr 05 07:13:55 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c520t-a38d2c25c1f2aa71b485c65f92eb13578650e49a8446ca3ab62732658a023b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.jstage.jst.go.jp/article/jact/16/7/16_293/_article/-char/en
PQID 2232511698
PQPubID 1996343
PageCount 13
ParticipantIDs proquest_journals_2232511698
crossref_citationtrail_10_3151_jact_16_293
crossref_primary_10_3151_jact_16_293
jstage_primary_article_jact_16_7_16_293_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018/07/13
PublicationDateYYYYMMDD 2018-07-13
PublicationDate_xml – month: 07
  year: 2018
  text: 2018/07/13
  day: 13
PublicationDecade 2010
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Journal of Advanced Concrete Technology
PublicationTitleAlternate ACT
PublicationYear 2018
Publisher Japan Concrete Institute
Japan Science and Technology Agency
Publisher_xml – name: Japan Concrete Institute
– name: Japan Science and Technology Agency
References 11) Bakharev, T., Sanjayan, J. and Cheng, Y.-B., (2001). “Resistance of alkali-activated slag concrete to carbonation.” Cement and Concrete Research, 31, 1277-1283.
55) Shojaei, M., Behfarnia, K. and Mohebi, R., (2015). “Application of alkali-activated slag concrete in railway sleepers.” Materials & Design, 69, 89-95.
50) Puertas, F., Palacios, M. and Vázquez, T., (2006). “Carbonation process of alkali-activated slag mortars.” Journal of materials science, 41, 3071-3082.
69) Ye, H., Cartwright, C., Rajabipour, F. and Radlińska, A., (2017). “Understanding the drying shrinkage performance of alkali-activated slag mortars.” Cement and Concrete Composites, 76, 13-24.
41) Law, D. W., Adam, A. A., Molyneaux, T. K. and Patnaikuni, I., (2012). “Durability assessment of alkali activated slag (AAS) concrete.” Materials and Structures, 45, 1425-1437.
48) Newmann, J. and Choo, B. S., (2003). “Advanced concrete technology–Concrete properties.” Elsevier, Ltd. Burlinton, MA.
13) Behfarnia, K. and Rostami, M., (2017a). “An assessment on parameters affecting the carbonation of alkali-activated slag concrete.” Journal of Cleaner Production, 157, 1-9.
57) Song, S., Sohn, D., Jennings, H. and Mason, T., (2000). “Hydration of alkali-activated ground granulated blast furnace slag.” Journal of materials science, 35, 249-257.
65) Wang, S.-D., Scrivener, K. L. and Pratt, P., (1994). Factors affecting the strength of alkali-activated slag. Cement and Concrete Research, 24, 1033-1043.
4) ASTM C157/C157M-08, (2008). “Standard test method for length change of hardened hydraulic-cement mortar and concrete.” American Society for Testing and Materials, West Conshohocken, PA.
38) Haha, M. B., Lothenbach, B., Le Saout, G. and Winnefeld, F., (2012). “Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—part II: effect of Al2O3.” Cement and Concrete Research, 42, 74-83.
9) Bakharev, T., Sanjayan, J. and Cheng, Y.-B., (1999a). “Effect of elevated temperature curing on properties of alkali-activated slag concrete.” Cement and Concrete Research, 29, 1619-1625.
25) Collins, F. and Sanjayan, J., (2000b). “Effect of pore size distribution on drying shrinking of alkali-activated slag concrete.” Cement and Concrete Research, 30, 1401-1406.
35) Gu, Y.-m., Fang, Y.-h., You, D., Gong, Y.-f. and Zhu, C.-h., (2015). “Properties and microstructure of alkali-activated slag cement cured at below-and about-normal temperature.” Construction and building materials, 79, 1-8.
42) Lee, N., Jang, J. and Lee, H., (2014). “Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages.” Cement and Concrete Composites, 53, 239-248.
36) Haha, M. B., Le Saout, G., Winnefeld, F. and Lothenbach, B., (2011a). “Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags.” Cement and Concrete Research, 41, 301-310.
46) Mehta, P. K., (1986). “Concrete. Structure, properties and materials.” Prentice-Hall, 450.
44) Ma, J. and Dehn, F., (2017). “Shrinkage and creep behavior of an alkali-activated slag concrete.” Structural Concrete, 18 (5), 801-810.
3) ASTM C191-04, (2004). “Standard test method for times of setting of hydraulic-cement concrete.” American Society for Testing and Materials, West Conshohocken, PA.
47) Neto, A. A. M., Cincotto, M. A. and Repette, W., (2008). “Drying and autogenous shrinkage of pastes and mortars with activated slag cement.” Cement and Concrete Research, 38, 565-574.
54) Shi, C. and Day, R. L., (1995). “A calorimetric study of early hydration of alkali-slag cements.” Cement and Concrete Research, 25, 1333-1346.
77) Zhang, Y. J., Zhao, Y. L. and Li, H. H., (2008). “Structure characterization of hydration products generated by alkaline activation of granulated blast furnace slag.” Journal of materials science, 43, 7141-7147.
18) Burciaga-Díaz, O. and Escalante-García, J. I., (2013). “Structure, mechanisms of reaction, and strength of an alkali-activated blast-furnace slag.” Journal of the American Ceramic Society, 96, 3939-3948.
17) BS 1881-116, (1983). “Testing concrete–Part 116: Method for determination of compressive strength of concrete cubes.” British Standard Institution.
45) Marjanović, N., Komljenović, M., Baščarević, Z., Nikolić, V. and Petrović, R., (2015). “Physical–mechanical and microstructural properties of alkali-activated fly ash–blast furnace slag blends.” Ceramics International, 41, 1421-1435.
43) Li, Y. and Li, J., (2014). “Capillary tension theory for prediction of early autogenous shrinkage of self-consolidating concrete.” Construction and building materials, 53, 511-516.
14) Behfarnia, K. and Rostami, M., (2017b). “Effects of micro and nanoparticles of SiO2 on the permeability of alkali activated slag concrete.” Construction and building materials, 131, 205-213.
21) Cheng, T. and Chiu, J., (2003). “Fire-resistant geopolymer produced by granulated blast furnace slag.” Minerals Engineering, 16, 205-210.
22) Chi, M. and Huang, R., (2013). “Binding mechanism and properties of alkali-activated fly ash/slag mortars.” Construction and building materials, 40, 291-298.
8) Aydın, S. and Baradan, B., (2014). “Effect of activator type and content on properties of alkali-activated slag mortars.” Composites Part B: Engineering, 57, 166-172.
10) Bakharev, T., Sanjayan, J. and Cheng, Y.-B., (2000). “Effect of admixtures on properties of alkali-activated slag concrete.” Cement and Concrete Research, 30, 1367-1374.
23) Collins, F. and Sanjayan, J., (1999). “Workability and mechanical properties of alkali activated slag concrete.” Cement and Concrete Research, 29, 455-458.
37) Haha, M. B., Lothenbach, B., Le Saout, G. and Winnefeld, F., (2011b). “Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—Part I: Effect of MgO.” Cement and Concrete Research, 41, 955-963.
26) Douglas, E., Bilodeau, A. and Malhotra, V., (1992). “Properties and durability of alkali-activated slag concrete.” Materials Journal, 89, 509-516.
31) Fernandez-Jimenez, A., Puertas, F. and Arteaga, A., (1998). “Determination of kinetic equations of alkaline activation of blast furnace slag by means of calorimetric data.” Journal of thermal analysis and calorimetry, 52, 945-955.
68) Ye, H., (2015). “Creep mechanisms of calcium–silicate–hydrate: an overview of recent advances and challenges.” International Journal of Concrete Structures and Materials, 9, 453-462.
73) Ye, H. and Radlińska, A., (2017b). “Effect of alkalis on cementitious materials: understanding the relationship between composition, structure, and volume change mechanism.” Journal of Advanced Concrete Technology, 15, 165-177.
2) Altan, E. and Erdoğan, S. T., (2012). “Alkali activation of a slag at ambient and elevated temperatures.” Cement and Concrete Composites, 34, 131-139.
53) Shi, C. and Day, R., (1996). “Selectivity of alkaline activators for the activation of slags.” Cement, Concrete and Aggregates, 18, 8-14.
59) Taylor, M., Tam, C. and Gielen, D., (2006). “Energy efficiency and CO2 emissions from the global cement industry.” Korea, 50, 61.7.
64) Wang, S.-D. and Scrivener, K. L., (1995). “Hydration products of alkali activated slag cement.” Cement and Concrete Research, 25, 561-571.
67) Wardhono, A., Law, D. W. and Molyneaux, T. C., (2015). “Long term performance of alkali activated slag concrete.” Journal of Advanced Concrete Technology, 13, 187-192.
51) Rostami, M. and Behfarnia, K., (2017). “The effect of silica fume on durability of alkali activated slag concrete.” Construction and building materials, 134, 262-268.
52) Shi, C., (1996). “Strength, pore structure and permeability of alkali-activated slag mortars.” Cement and Concrete Research, 26, 1789-1799.
24) Collins, F. and Sanjayan, J., (2000a). “Cracking tendency of alkali-activated slag concrete subjected to restrained shrinkage.” Cement and Concrete Research, 30, 791-798.
32) Gao, X., Yu, Q. and Brouwers, H., (2016). “Assessing the porosity and shrinkage of alkali activated slag-fly ash composites designed applying a packing model.” Construction and building materials, 119, 175-184.
56) Slowik, V., Schmidt, M. and Fritzsch, R., (2008). “Capillary pressure in fresh cement-based materials and identification of the air entry value.” Cement and Concrete Composites. 30, 557-565.
6) ASTM C33/C33M-18, (2018). “Standard specification for concrete aggregates.” American Society for Testing and Materials, West Conshohocken, PA.
75) Yip, C. K., Lukey, G. and Van Deventer, J., (2005). “The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation.” Cement and Concrete Research, 35, 1688-1697.
49) Pacheco-Torgal, F., Labrincha, J., Leonelli, C., Palomo, A. and Chindaprasit, P., (2014). “Handbook of alkali-activated cements, mortars and concretes.” Elsevier.
58) Taylor, H. F., (1997). “Cement chemistry.” Thomas Telford.
62) Wang, H., Li, H. and Yan, F., (2005). “Synthesis and mechanical properties of metakaolinite-based geopolymer.” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 268, 1-6.
20) Chang, J., (2003). “A study on the setting characteristics of sodium silicate-activated slag pastes.” Cement and Concrete Research, 33, 1005-1011.
15) Berenjian, J., (1988). “Superpelasticized flowing concrete: microstructure and long term deformation characteristics.” Thesis (PhD), Department of Civil Engineering, The Universityof leeds, UK.
66) Wang, W.-C., Wang, H.-Y. and Lo, M.-H., (2015). “The fresh and engineering properties of alkali activated slag as a function of fly ash replacement and alkali concentration.” Construction and building materials, 84, 224-229.
74) Yip, C. and Van Deventer, J., (2003). “Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder.” Journal of materials science, 38, 3851-3860.
19) Caijun, S. and Yinyu, L., (1989). “Investigation on some factors affecting the characteristics of alkali-phosphorus slag cement.” Cement and Concrete Research, 19, 527-53
44
45
46
47
48
49
50
51
52
53
10
54
11
55
12
56
13
57
14
58
15
59
16
17
18
19
1
2
3
4
5
6
7
8
9
60
61
62
63
20
64
21
65
22
66
23
67
24
68
25
69
26
27
28
29
70
71
72
73
30
74
31
75
32
76
33
77
34
78
35
36
37
38
39
40
41
42
43
References_xml – reference: 73) Ye, H. and Radlińska, A., (2017b). “Effect of alkalis on cementitious materials: understanding the relationship between composition, structure, and volume change mechanism.” Journal of Advanced Concrete Technology, 15, 165-177.
– reference: 16) Bernal, S. A., Provis, J. L., Rose, V. and De Gutierrez, R. M., (2011). “Evolution of binder structure in sodium silicate-activated slag-metakaolin blends.” Cement and Concrete Composites, 33, 46-54.
– reference: 29) Fernández-Jiménez, A., Palomo, J. and Puertas, F., (1999). “Alkali-activated slag mortars: mechanical strength behaviour.” Cement and Concrete Research, 29, 1313-1321.
– reference: 66) Wang, W.-C., Wang, H.-Y. and Lo, M.-H., (2015). “The fresh and engineering properties of alkali activated slag as a function of fly ash replacement and alkali concentration.” Construction and building materials, 84, 224-229.
– reference: 34) Gessa-Perera, A. and González-Expósito, I., (2017). “Opportunities for waste recovery to improve the carbon footprint in the Spanish cement industry under a cap and trade system: Insights from a case study.” Journal of Cleaner Production, 142, 3665-3675.
– reference: 45) Marjanović, N., Komljenović, M., Baščarević, Z., Nikolić, V. and Petrović, R., (2015). “Physical–mechanical and microstructural properties of alkali-activated fly ash–blast furnace slag blends.” Ceramics International, 41, 1421-1435.
– reference: 69) Ye, H., Cartwright, C., Rajabipour, F. and Radlińska, A., (2017). “Understanding the drying shrinkage performance of alkali-activated slag mortars.” Cement and Concrete Composites, 76, 13-24.
– reference: 32) Gao, X., Yu, Q. and Brouwers, H., (2016). “Assessing the porosity and shrinkage of alkali activated slag-fly ash composites designed applying a packing model.” Construction and building materials, 119, 175-184.
– reference: 14) Behfarnia, K. and Rostami, M., (2017b). “Effects of micro and nanoparticles of SiO2 on the permeability of alkali activated slag concrete.” Construction and building materials, 131, 205-213.
– reference: 64) Wang, S.-D. and Scrivener, K. L., (1995). “Hydration products of alkali activated slag cement.” Cement and Concrete Research, 25, 561-571.
– reference: 17) BS 1881-116, (1983). “Testing concrete–Part 116: Method for determination of compressive strength of concrete cubes.” British Standard Institution.
– reference: 51) Rostami, M. and Behfarnia, K., (2017). “The effect of silica fume on durability of alkali activated slag concrete.” Construction and building materials, 134, 262-268.
– reference: 38) Haha, M. B., Lothenbach, B., Le Saout, G. and Winnefeld, F., (2012). “Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—part II: effect of Al2O3.” Cement and Concrete Research, 42, 74-83.
– reference: 23) Collins, F. and Sanjayan, J., (1999). “Workability and mechanical properties of alkali activated slag concrete.” Cement and Concrete Research, 29, 455-458.
– reference: 50) Puertas, F., Palacios, M. and Vázquez, T., (2006). “Carbonation process of alkali-activated slag mortars.” Journal of materials science, 41, 3071-3082.
– reference: 58) Taylor, H. F., (1997). “Cement chemistry.” Thomas Telford.
– reference: 40) Kumarappa, D. B., Peethamparan, S. and Ngami, M., (2018). “Autogenous shrinkage of alkali activated slag mortars: Basic mechanisms and mitigation methods.” Cement and Concrete Research, 109, 1-9.
– reference: 5) ASTM C143/C143M-08, (2008). “Standard test method for slump of hydraulic-cement concrete.” American Society for Testing and Materials, West Conshohocken, PA.
– reference: 74) Yip, C. and Van Deventer, J., (2003). “Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder.” Journal of materials science, 38, 3851-3860.
– reference: 39) Krizan, D. and Zivanovic, B., (2002). “Effects of dosage and modulus of water glass on early hydration of alkali–slag cements.” Cement and Concrete Research, 32, 1181-1188.
– reference: 52) Shi, C., (1996). “Strength, pore structure and permeability of alkali-activated slag mortars.” Cement and Concrete Research, 26, 1789-1799.
– reference: 77) Zhang, Y. J., Zhao, Y. L. and Li, H. H., (2008). “Structure characterization of hydration products generated by alkaline activation of granulated blast furnace slag.” Journal of materials science, 43, 7141-7147.
– reference: 8) Aydın, S. and Baradan, B., (2014). “Effect of activator type and content on properties of alkali-activated slag mortars.” Composites Part B: Engineering, 57, 166-172.
– reference: 62) Wang, H., Li, H. and Yan, F., (2005). “Synthesis and mechanical properties of metakaolinite-based geopolymer.” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 268, 1-6.
– reference: 68) Ye, H., (2015). “Creep mechanisms of calcium–silicate–hydrate: an overview of recent advances and challenges.” International Journal of Concrete Structures and Materials, 9, 453-462.
– reference: 57) Song, S., Sohn, D., Jennings, H. and Mason, T., (2000). “Hydration of alkali-activated ground granulated blast furnace slag.” Journal of materials science, 35, 249-257.
– reference: 27) Duxson, P., Provis, J. L., Lukey, G. C. and Van Deventer, J. S., (2007). “The role of inorganic polymer technology in the development of ‘green concrete’.” Cement and Concrete Research, 37, 1590-1597.
– reference: 15) Berenjian, J., (1988). “Superpelasticized flowing concrete: microstructure and long term deformation characteristics.” Thesis (PhD), Department of Civil Engineering, The Universityof leeds, UK.
– reference: 30) Fernández-Jiménez, A. and Puertas, F., (1997). “Alkali-activated slag cements: kinetic studies.” Cement and Concrete Research, 27, 359-368.
– reference: 12) Bakharev, T., Sanjayan, J. G. and Cheng, Y.-B., (1999b). “Alkali activation of Australian slag cements.” Cement and Concrete Research, 29, 113-120.
– reference: 21) Cheng, T. and Chiu, J., (2003). “Fire-resistant geopolymer produced by granulated blast furnace slag.” Minerals Engineering, 16, 205-210.
– reference: 44) Ma, J. and Dehn, F., (2017). “Shrinkage and creep behavior of an alkali-activated slag concrete.” Structural Concrete, 18 (5), 801-810.
– reference: 59) Taylor, M., Tam, C. and Gielen, D., (2006). “Energy efficiency and CO2 emissions from the global cement industry.” Korea, 50, 61.7.
– reference: 78) Zuberi, M. J. S. and Patel, M. K., (2017). “Bottom-up analysis of energy efficiency improvement and CO2 emission reduction potentials in the Swiss cement industry.” Journal of Cleaner Production, 142, 4294-4309.
– reference: 36) Haha, M. B., Le Saout, G., Winnefeld, F. and Lothenbach, B., (2011a). “Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags.” Cement and Concrete Research, 41, 301-310.
– reference: 10) Bakharev, T., Sanjayan, J. and Cheng, Y.-B., (2000). “Effect of admixtures on properties of alkali-activated slag concrete.” Cement and Concrete Research, 30, 1367-1374.
– reference: 19) Caijun, S. and Yinyu, L., (1989). “Investigation on some factors affecting the characteristics of alkali-phosphorus slag cement.” Cement and Concrete Research, 19, 527-533.
– reference: 20) Chang, J., (2003). “A study on the setting characteristics of sodium silicate-activated slag pastes.” Cement and Concrete Research, 33, 1005-1011.
– reference: 25) Collins, F. and Sanjayan, J., (2000b). “Effect of pore size distribution on drying shrinking of alkali-activated slag concrete.” Cement and Concrete Research, 30, 1401-1406.
– reference: 71) Ye, H. and Radlińska, A., (2016b). “Shrinkage mechanisms of alkali-activated slag.” Cement and Concrete Research, 88, 126-135.
– reference: 4) ASTM C157/C157M-08, (2008). “Standard test method for length change of hardened hydraulic-cement mortar and concrete.” American Society for Testing and Materials, West Conshohocken, PA.
– reference: 9) Bakharev, T., Sanjayan, J. and Cheng, Y.-B., (1999a). “Effect of elevated temperature curing on properties of alkali-activated slag concrete.” Cement and Concrete Research, 29, 1619-1625.
– reference: 75) Yip, C. K., Lukey, G. and Van Deventer, J., (2005). “The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation.” Cement and Concrete Research, 35, 1688-1697.
– reference: 24) Collins, F. and Sanjayan, J., (2000a). “Cracking tendency of alkali-activated slag concrete subjected to restrained shrinkage.” Cement and Concrete Research, 30, 791-798.
– reference: 35) Gu, Y.-m., Fang, Y.-h., You, D., Gong, Y.-f. and Zhu, C.-h., (2015). “Properties and microstructure of alkali-activated slag cement cured at below-and about-normal temperature.” Construction and building materials, 79, 1-8.
– reference: 22) Chi, M. and Huang, R., (2013). “Binding mechanism and properties of alkali-activated fly ash/slag mortars.” Construction and building materials, 40, 291-298.
– reference: 41) Law, D. W., Adam, A. A., Molyneaux, T. K. and Patnaikuni, I., (2012). “Durability assessment of alkali activated slag (AAS) concrete.” Materials and Structures, 45, 1425-1437.
– reference: 42) Lee, N., Jang, J. and Lee, H., (2014). “Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages.” Cement and Concrete Composites, 53, 239-248.
– reference: 37) Haha, M. B., Lothenbach, B., Le Saout, G. and Winnefeld, F., (2011b). “Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—Part I: Effect of MgO.” Cement and Concrete Research, 41, 955-963.
– reference: 56) Slowik, V., Schmidt, M. and Fritzsch, R., (2008). “Capillary pressure in fresh cement-based materials and identification of the air entry value.” Cement and Concrete Composites. 30, 557-565.
– reference: 63) Wang, S.-D., Pu, X.-C., Scrivener, K. and Pratt, P., (1995). “Alkali-activated slag cement and concrete: a review of properties and problems.” Advances in cement research, 7, 93-102.
– reference: 70) Ye, H. and Radlińska, A., (2016a). “Quantitative analysis of phase assemblage and chemical shrinkage of alkali-activated slag.” Journal of Advanced Concrete Technology, 14, 245-260.
– reference: 65) Wang, S.-D., Scrivener, K. L. and Pratt, P., (1994). Factors affecting the strength of alkali-activated slag. Cement and Concrete Research, 24, 1033-1043.
– reference: 18) Burciaga-Díaz, O. and Escalante-García, J. I., (2013). “Structure, mechanisms of reaction, and strength of an alkali-activated blast-furnace slag.” Journal of the American Ceramic Society, 96, 3939-3948.
– reference: 31) Fernandez-Jimenez, A., Puertas, F. and Arteaga, A., (1998). “Determination of kinetic equations of alkaline activation of blast furnace slag by means of calorimetric data.” Journal of thermal analysis and calorimetry, 52, 945-955.
– reference: 61) U. S. Geological Survey (2017), “Mineral commodity summaries, Cement.” Retrieved from https://minerals.usgs.gov/minerals/pubs/commodity/cement/mcs-2017-cemen.pdf.
– reference: 49) Pacheco-Torgal, F., Labrincha, J., Leonelli, C., Palomo, A. and Chindaprasit, P., (2014). “Handbook of alkali-activated cements, mortars and concretes.” Elsevier.
– reference: 76) Yuan, X.-h., Chen, W., Lu, Z.-a. and Chen, H., (2014). “Shrinkage compensation of alkali-activated slag concrete and microstructural analysis.” Construction and building materials, 66, 422-428.
– reference: 7) Atiş, C. D., Bilim, C., Çelik, Ö. and Karahan, O., (2009). “Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar.” Construction and building materials, 23, 548-555.
– reference: 72) Ye, H. and Radlińska, A., (2017a). “Carbonation-induced volume change in alkali-activated slag.” Construction and building materials, 144, 635-644.
– reference: 26) Douglas, E., Bilodeau, A. and Malhotra, V., (1992). “Properties and durability of alkali-activated slag concrete.” Materials Journal, 89, 509-516.
– reference: 60) Thomas, R., Lezama, D. and Peethamparan, S., (2017). “On drying shrinkage in alkali-activated concrete: Improving dimensional stability by aging or heat-curing.” Cement and Concrete Research, 91, 13-23.
– reference: 3) ASTM C191-04, (2004). “Standard test method for times of setting of hydraulic-cement concrete.” American Society for Testing and Materials, West Conshohocken, PA.
– reference: 33) Gartner, E., (2004). “Industrially interesting approaches to “low-CO2” cements.” Cement and Concrete Research, 34, 1489-1498.
– reference: 46) Mehta, P. K., (1986). “Concrete. Structure, properties and materials.” Prentice-Hall, 450.
– reference: 67) Wardhono, A., Law, D. W. and Molyneaux, T. C., (2015). “Long term performance of alkali activated slag concrete.” Journal of Advanced Concrete Technology, 13, 187-192.
– reference: 28) Fang, G., Bahrami, H. and Zhang, M., (2018). “Mechanisms of autogenous shrinkage of alkali-activated fly ash-slag pastes cured at ambient temperature within 24 h.” Construction and building materials, 171, 377-387.
– reference: 47) Neto, A. A. M., Cincotto, M. A. and Repette, W., (2008). “Drying and autogenous shrinkage of pastes and mortars with activated slag cement.” Cement and Concrete Research, 38, 565-574.
– reference: 13) Behfarnia, K. and Rostami, M., (2017a). “An assessment on parameters affecting the carbonation of alkali-activated slag concrete.” Journal of Cleaner Production, 157, 1-9.
– reference: 2) Altan, E. and Erdoğan, S. T., (2012). “Alkali activation of a slag at ambient and elevated temperatures.” Cement and Concrete Composites, 34, 131-139.
– reference: 1) ACI 209.2R-08, (2008). “Guide for modeling and calculating shrinkage and creep in hardened concrete.” ACI Committee 209, American Concrete Institute.
– reference: 43) Li, Y. and Li, J., (2014). “Capillary tension theory for prediction of early autogenous shrinkage of self-consolidating concrete.” Construction and building materials, 53, 511-516.
– reference: 54) Shi, C. and Day, R. L., (1995). “A calorimetric study of early hydration of alkali-slag cements.” Cement and Concrete Research, 25, 1333-1346.
– reference: 11) Bakharev, T., Sanjayan, J. and Cheng, Y.-B., (2001). “Resistance of alkali-activated slag concrete to carbonation.” Cement and Concrete Research, 31, 1277-1283.
– reference: 48) Newmann, J. and Choo, B. S., (2003). “Advanced concrete technology–Concrete properties.” Elsevier, Ltd. Burlinton, MA.
– reference: 6) ASTM C33/C33M-18, (2018). “Standard specification for concrete aggregates.” American Society for Testing and Materials, West Conshohocken, PA.
– reference: 53) Shi, C. and Day, R., (1996). “Selectivity of alkaline activators for the activation of slags.” Cement, Concrete and Aggregates, 18, 8-14.
– reference: 55) Shojaei, M., Behfarnia, K. and Mohebi, R., (2015). “Application of alkali-activated slag concrete in railway sleepers.” Materials & Design, 69, 89-95.
– ident: 76
  doi: 10.1016/j.conbuildmat.2014.05.085
– ident: 74
  doi: 10.1023/A:1025904905176
– ident: 16
  doi: 10.1016/j.cemconcomp.2010.09.004
– ident: 60
  doi: 10.1016/j.cemconres.2016.10.003
– ident: 41
  doi: 10.1617/s11527-012-9842-1
– ident: 72
  doi: 10.1016/j.conbuildmat.2017.03.238
– ident: 73
  doi: 10.3151/jact.15.165
– ident: 78
  doi: 10.1016/j.jclepro.2016.11.178
– ident: 35
  doi: 10.1016/j.conbuildmat.2014.12.068
– ident: 38
  doi: 10.1016/j.cemconres.2011.08.005
– ident: 52
  doi: 10.1016/S0008-8846(96)00174-3
– ident: 54
  doi: 10.1016/0008-8846(95)00126-W
– ident: 7
  doi: 10.1016/j.conbuildmat.2007.10.011
– ident: 22
  doi: 10.1016/j.conbuildmat.2012.11.003
– ident: 28
  doi: 10.1016/j.conbuildmat.2018.03.155
– ident: 9
  doi: 10.1016/S0008-8846(99)00143-X
– ident: 20
  doi: 10.1016/S0008-8846(02)01096-7
– ident: 49
– ident: 26
– ident: 51
  doi: 10.1016/j.conbuildmat.2016.12.072
– ident: 17
– ident: 5
– ident: 1
– ident: 47
  doi: 10.1016/j.cemconres.2007.11.002
– ident: 59
– ident: 75
  doi: 10.1016/j.cemconres.2004.10.042
– ident: 42
  doi: 10.1016/j.cemconcomp.2014.07.007
– ident: 43
  doi: 10.1016/j.conbuildmat.2013.12.010
– ident: 58
– ident: 48
– ident: 61
– ident: 77
  doi: 10.1007/s10853-008-3028-9
– ident: 14
  doi: 10.1016/j.conbuildmat.2016.11.070
– ident: 70
  doi: 10.3151/jact.14.245
– ident: 30
  doi: 10.1016/S0008-8846(97)00040-9
– ident: 56
  doi: 10.1016/j.cemconcomp.2008.03.002
– ident: 40
– ident: 50
  doi: 10.1007/s10853-005-1821-2
– ident: 4
– ident: 31
  doi: 10.1023/A:1010172204297
– ident: 36
  doi: 10.1016/j.cemconres.2010.11.016
– ident: 34
  doi: 10.1016/j.jclepro.2016.10.101
– ident: 66
  doi: 10.1016/j.conbuildmat.2014.09.059
– ident: 27
  doi: 10.1016/j.cemconres.2007.08.018
– ident: 39
  doi: 10.1016/S0008-8846(01)00717-7
– ident: 69
  doi: 10.1016/j.cemconcomp.2016.11.010
– ident: 19
  doi: 10.1016/0008-8846(89)90004-5
– ident: 57
  doi: 10.1023/A:1004742027117
– ident: 10
  doi: 10.1016/S0008-8846(00)00349-5
– ident: 8
  doi: 10.1016/j.compositesb.2013.10.001
– ident: 68
  doi: 10.1007/s40069-015-0114-7
– ident: 33
  doi: 10.1016/j.cemconres.2004.01.021
– ident: 71
  doi: 10.1016/j.cemconres.2016.07.001
– ident: 65
  doi: 10.1016/0008-8846(94)90026-4
– ident: 3
– ident: 23
  doi: 10.1016/S0008-8846(98)00236-1
– ident: 12
  doi: 10.1016/S0008-8846(98)00170-7
– ident: 13
  doi: 10.1016/j.jclepro.2017.04.097
– ident: 21
  doi: 10.1016/S0892-6875(03)00008-6
– ident: 32
  doi: 10.1016/j.conbuildmat.2016.05.026
– ident: 64
  doi: 10.1016/0008-8846(95)00045-E
– ident: 11
  doi: 10.1016/S0008-8846(01)00574-9
– ident: 45
  doi: 10.1016/j.ceramint.2014.09.075
– ident: 25
  doi: 10.1016/S0008-8846(00)00327-6
– ident: 37
  doi: 10.1016/j.cemconres.2011.05.002
– ident: 53
  doi: 10.1520/CCA10306J
– ident: 62
  doi: 10.1016/j.colsurfa.2005.01.016
– ident: 15
– ident: 18
  doi: 10.1111/jace.12620
– ident: 29
  doi: 10.1016/S0008-8846(99)00154-4
– ident: 2
  doi: 10.1016/j.cemconcomp.2011.08.003
– ident: 55
  doi: 10.1016/j.matdes.2014.12.051
– ident: 67
  doi: 10.3151/jact.13.187
– ident: 44
  doi: 10.1002/suco.201600147
– ident: 63
  doi: 10.1680/adcr.1995.7.27.93
– ident: 6
– ident: 46
– ident: 24
  doi: 10.1016/S0008-8846(00)00243-X
SSID ssj0037377
Score 2.4346757
Snippet In this study, the effect of alkali concentration and sodium silicate modulus of the activator solution on workability, compressive strength, and drying...
SourceID proquest
crossref
jstage
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 293
SubjectTerms Alkalinity
Blast furnace slags
Compressive strength
Concrete
Drying
Granulation
Price increases
Scanning electron microscopy
Shrinkage
Sodium
Sodium silicates
Workability
X-ray diffraction
Title The Effect of Alkali Concentration and Sodium Silicate Modulus on the Properties of Alkali-Activated Slag Concrete
URI https://www.jstage.jst.go.jp/article/jact/16/7/16_293/_article/-char/en
https://www.proquest.com/docview/2232511698
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Advanced Concrete Technology, 2018/07/13, Vol.16(7), pp.293-305
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELXKwgEOiE9RWJAPe2KV0tiJkxxXCLRitUioRdpbZLtO06Ufq5IgwZ_hrzITO05Ke1i4RFUydtrOi_3szJsh5ETBLCYzZQIVF0UQaa4CFYYigMWIwdwgTBf4Rvfyszj_Gn26iq8Gg9-9qKW6UiP966Cu5H-8CufAr6iS_QfP-k7hBHwG_8IRPAzHW_vYpR9GQrn8BqQaNXw24rJqI40nm9miXp1OFlbwhvXP6mXdvidArcANRlfb9LO2l-BMN3XPkI4u5bzpdGuq3bihjsv6SALt7E6rvS37qZyXP-RPWyVbrpyoqpEIlQXuz1hx2gIzTJc-ZPiihG9jJdyXm1KuVnKmJIam9LcrwhT3Qa3a1I2wPMIMyFY5OjLtORjpMmfWDsuiB7-kP8bakopuuuaNantvJuDAZJoKBLoahWLk2_Tzbf81D_roRFgXYfMcG-ehyKHxHXKXwToEB9KLL_41FU94U9rT_yYrAMXG73p33qE8966B9c_3p_6Gz0wfkYfOefTMouoxGZj1E_Kgl57yKdkCvqjFF90U1CKD7uCLAr6oxRdt8UUdvihcBnzRDl9dLx2-KOKLtvh6RiYfP0zfnweuRkegYzauAsnTGdMs1mHBpExCFaWxFnGRMSABmEkJVgAmymQaRUJLLpUAvsyA9kogi4o_J0frzdq8IHScGi1mOmEylZESUSaYTMZhwQvDMy3YkLxt_8Rcu_T1WEVlmR9w15CceOMbm7XlsFliveGN3KPsjRJn6S-gFhKGniE5bt2XuwHhew5MGxfsIktf3u7-r8j97hE5JkfVtjavgeNW6k2Dsz8QqK2G
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Effect+of+Alkali+Concentration+and+Sodium+Silicate+Modulus+on+the+Properties+of+Alkali-Activated+Slag+Concrete&rft.jtitle=Journal+of+advanced+concrete+technology&rft.au=Taghvayi%2C+Hamed&rft.au=Behfarnia%2C+Kiachehr&rft.au=Khalili%2C+Mohammadbagher&rft.date=2018-07-13&rft.issn=1346-8014&rft.eissn=1347-3913&rft.volume=16&rft.issue=7&rft.spage=293&rft.epage=305&rft_id=info:doi/10.3151%2Fjact.16.293&rft.externalDBID=n%2Fa&rft.externalDocID=10_3151_jact_16_293
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-8014&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-8014&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-8014&client=summon