The Effect of Alkali Concentration and Sodium Silicate Modulus on the Properties of Alkali-Activated Slag Concrete
In this study, the effect of alkali concentration and sodium silicate modulus of the activator solution on workability, compressive strength, and drying shrinkage of alkali-activated slag (AAS) concrete was investigated experimentally. Twenty mixes were prepared with the ground granulated blast furn...
Saved in:
Published in | Journal of Advanced Concrete Technology Vol. 16; no. 7; pp. 293 - 305 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
Japan Concrete Institute
13.07.2018
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, the effect of alkali concentration and sodium silicate modulus of the activator solution on workability, compressive strength, and drying shrinkage of alkali-activated slag (AAS) concrete was investigated experimentally. Twenty mixes were prepared with the ground granulated blast furnace slag (GGBFS) activated with the various alkali concentrations and sodium silicate modulus. The compressive strength at the ages of 7, 28 and 90 days was measured and the drying shrinkage of the concrete samples up to 400 days were measured. Based on the results, in most mixes, by increasing the sodium silicate modulus and the concentration of the alkali solution, the slump, compressive strength, and the rate of the drying shrinkage of the samples were increased, but the setting time was reduced. These results were contrary to those specimens cast with high alkalinity. The effect of the sodium silicate modulus was much higher than the concentration of the alkali solution on the drying shrinkage of the samples. In order to evaluate the effect of the alkali concentration and the silicate modulus on the microstructure and the reaction product of the AAS paste, x-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) images were examined. |
---|---|
AbstractList | In this study, the effect of alkali concentration and sodium silicate modulus of the activator solution on workability, compressive strength, and drying shrinkage of alkali-activated slag (AAS) concrete was investigated experimentally. Twenty mixes were prepared with the ground granulated blast furnace slag (GGBFS) activated with the various alkali concentrations and sodium silicate modulus. The compressive strength at the ages of 7, 28 and 90 days was measured and the drying shrinkage of the concrete samples up to 400 days were measured. Based on the results, in most mixes, by increasing the sodium silicate modulus and the concentration of the alkali solution, the slump, compressive strength, and the rate of the drying shrinkage of the samples were increased, but the setting time was reduced. These results were contrary to those specimens cast with high alkalinity. The effect of the sodium silicate modulus was much higher than the concentration of the alkali solution on the drying shrinkage of the samples. In order to evaluate the effect of the alkali concentration and the silicate modulus on the microstructure and the reaction product of the AAS paste, x-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) images were examined. |
Author | Taghvayi, Hamed Khalili, Mohammadbagher Behfarnia, Kiachehr |
Author_xml | – sequence: 1 fullname: Taghvayi, Hamed organization: Department of Civil Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran – sequence: 2 fullname: Behfarnia, Kiachehr organization: Department of Civil Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran – sequence: 3 fullname: Khalili, Mohammadbagher organization: Department of Civil Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran |
BookMark | eNp1kFtLAzEQhYNUsF6e_AMBH2XrJtlkd1-EUryBolDfwzSdtanbTU2ygv_etJUKgk8zMN85wznHZNC5Dgk5Z_lIMMmulmDiiKkRr8UBGTJRlJmomRhsd5VVOSuOyHEIyzwXpSjLIfGvC6Q3TYMmUtfQcfsOraUT1xnsoodoXUehm9Opm9t-Rae2tQYi0ic379s-0HSOyeHFuzX6aDH8umRjE-1ngpO6hbetqceIp-SwgTbg2c88IdPbm9fJffb4fPcwGT9mRvI8ZiCqOTdcGtZwgJLNikoaJZua44wJWVZK5ljUUBWFMiBgpngpuJIV5FzMxAm52LmuvfvoMUS9dL3v0kPNueCSMVVXiWI7yngXgsdGGxu3qVN422qW602xelOsZkqnYpPm8o9m7e0K_Nc_9PWOXoYIb7hnIbVlWtyz5Y9gfzAL8Bo78Q0x6JMQ |
CitedBy_id | crossref_primary_10_1016_j_clwas_2025_100270 crossref_primary_10_1016_j_cscm_2024_e03581 crossref_primary_10_1016_j_conbuildmat_2022_126556 crossref_primary_10_1016_j_jobe_2023_106398 crossref_primary_10_1016_j_jobe_2023_107167 crossref_primary_10_1016_j_jobe_2024_111462 crossref_primary_10_1080_21650373_2023_2260794 crossref_primary_10_1016_j_cscm_2025_e04391 crossref_primary_10_1080_19648189_2023_2276136 crossref_primary_10_1016_j_jobe_2023_106070 crossref_primary_10_1007_s41062_022_00789_w crossref_primary_10_1016_j_conbuildmat_2023_131272 crossref_primary_10_1016_j_clay_2022_106412 crossref_primary_10_1016_j_petrol_2020_107691 crossref_primary_10_1016_j_conbuildmat_2024_135192 crossref_primary_10_1016_j_conbuildmat_2024_136681 crossref_primary_10_3390_ma17112495 crossref_primary_10_3151_jact_20_1 crossref_primary_10_1016_j_cscm_2024_e03493 crossref_primary_10_1016_j_jobe_2022_104141 crossref_primary_10_1016_j_jobe_2022_104263 crossref_primary_10_1016_j_cscm_2024_e03451 crossref_primary_10_1016_j_cemconcomp_2022_104488 crossref_primary_10_1016_j_conbuildmat_2023_130963 crossref_primary_10_3390_app13052997 crossref_primary_10_1016_j_conbuildmat_2019_116827 crossref_primary_10_1016_j_conbuildmat_2023_132153 crossref_primary_10_1016_j_cemconcomp_2022_104451 crossref_primary_10_1016_j_conbuildmat_2024_136013 crossref_primary_10_3151_jact_21_695 crossref_primary_10_1002_suco_202100901 crossref_primary_10_1016_j_jclepro_2023_136522 crossref_primary_10_1061__ASCE_MT_1943_5533_0003233 crossref_primary_10_1016_j_jobe_2022_105109 crossref_primary_10_1016_j_cscm_2022_e01381 crossref_primary_10_1016_j_jclepro_2020_123488 crossref_primary_10_1016_j_conbuildmat_2022_126577 crossref_primary_10_3390_ma17174321 crossref_primary_10_1007_s13369_023_08373_9 crossref_primary_10_3390_ma18051005 crossref_primary_10_1007_s40996_022_00837_6 crossref_primary_10_1007_s12034_024_03258_5 crossref_primary_10_1016_j_conbuildmat_2018_09_125 crossref_primary_10_3390_polym16111582 crossref_primary_10_1002_suco_202100671 crossref_primary_10_1016_j_cemconcomp_2024_105865 crossref_primary_10_4028_p_67b121 crossref_primary_10_1016_j_jobe_2023_108074 crossref_primary_10_1016_j_conbuildmat_2020_120986 crossref_primary_10_1016_j_matpr_2024_05_058 crossref_primary_10_1007_s41024_023_00380_5 crossref_primary_10_1016_j_cemconcomp_2023_105076 crossref_primary_10_3390_ma18040915 crossref_primary_10_1016_j_conbuildmat_2023_133312 crossref_primary_10_1016_j_conbuildmat_2024_139375 crossref_primary_10_3390_buildings13051285 crossref_primary_10_2139_ssrn_4175926 crossref_primary_10_3151_jact_20_300 crossref_primary_10_1016_j_conbuildmat_2022_127416 crossref_primary_10_1016_j_jobe_2021_103813 crossref_primary_10_1016_j_conbuildmat_2022_129876 crossref_primary_10_1016_j_conbuildmat_2022_126843 crossref_primary_10_1016_j_conbuildmat_2019_117611 crossref_primary_10_1016_j_conbuildmat_2021_124760 crossref_primary_10_1016_j_cemconres_2023_107244 crossref_primary_10_3151_jact_18_192 crossref_primary_10_1002_suco_202200902 crossref_primary_10_1016_j_conbuildmat_2020_120381 crossref_primary_10_1016_j_conbuildmat_2023_130389 crossref_primary_10_1016_j_conbuildmat_2022_129991 crossref_primary_10_1016_j_conbuildmat_2023_133857 crossref_primary_10_3390_su14095214 crossref_primary_10_1016_j_conbuildmat_2024_136512 crossref_primary_10_1016_j_jobe_2021_103963 crossref_primary_10_3390_pr12010184 crossref_primary_10_1016_j_conbuildmat_2024_138698 crossref_primary_10_1016_j_cscm_2022_e01166 crossref_primary_10_1016_j_conbuildmat_2024_139223 crossref_primary_10_1016_j_jnoncrysol_2023_122263 crossref_primary_10_1016_j_jobe_2023_106830 crossref_primary_10_1016_j_jobe_2022_104998 |
Cites_doi | 10.1016/j.conbuildmat.2014.05.085 10.1023/A:1025904905176 10.1016/j.cemconcomp.2010.09.004 10.1016/j.cemconres.2016.10.003 10.1617/s11527-012-9842-1 10.1016/j.conbuildmat.2017.03.238 10.3151/jact.15.165 10.1016/j.jclepro.2016.11.178 10.1016/j.conbuildmat.2014.12.068 10.1016/j.cemconres.2011.08.005 10.1016/S0008-8846(96)00174-3 10.1016/0008-8846(95)00126-W 10.1016/j.conbuildmat.2007.10.011 10.1016/j.conbuildmat.2012.11.003 10.1016/j.conbuildmat.2018.03.155 10.1016/S0008-8846(99)00143-X 10.1016/S0008-8846(02)01096-7 10.1016/j.conbuildmat.2016.12.072 10.1016/j.cemconres.2007.11.002 10.1016/j.cemconres.2004.10.042 10.1016/j.cemconcomp.2014.07.007 10.1016/j.conbuildmat.2013.12.010 10.1007/s10853-008-3028-9 10.1016/j.conbuildmat.2016.11.070 10.3151/jact.14.245 10.1016/S0008-8846(97)00040-9 10.1016/j.cemconcomp.2008.03.002 10.1007/s10853-005-1821-2 10.1023/A:1010172204297 10.1016/j.cemconres.2010.11.016 10.1016/j.jclepro.2016.10.101 10.1016/j.conbuildmat.2014.09.059 10.1016/j.cemconres.2007.08.018 10.1016/S0008-8846(01)00717-7 10.1016/j.cemconcomp.2016.11.010 10.1016/0008-8846(89)90004-5 10.1023/A:1004742027117 10.1016/S0008-8846(00)00349-5 10.1016/j.compositesb.2013.10.001 10.1007/s40069-015-0114-7 10.1016/j.cemconres.2004.01.021 10.1016/j.cemconres.2016.07.001 10.1016/0008-8846(94)90026-4 10.1016/S0008-8846(98)00236-1 10.1016/S0008-8846(98)00170-7 10.1016/j.jclepro.2017.04.097 10.1016/S0892-6875(03)00008-6 10.1016/j.conbuildmat.2016.05.026 10.1016/0008-8846(95)00045-E 10.1016/S0008-8846(01)00574-9 10.1016/j.ceramint.2014.09.075 10.1016/S0008-8846(00)00327-6 10.1016/j.cemconres.2011.05.002 10.1520/CCA10306J 10.1016/j.colsurfa.2005.01.016 10.1111/jace.12620 10.1016/S0008-8846(99)00154-4 10.1016/j.cemconcomp.2011.08.003 10.1016/j.matdes.2014.12.051 10.3151/jact.13.187 10.1002/suco.201600147 10.1680/adcr.1995.7.27.93 10.1016/S0008-8846(00)00243-X |
ContentType | Journal Article |
Copyright | 2018 by Japan Concrete Institute Copyright Japan Science and Technology Agency 2018 |
Copyright_xml | – notice: 2018 by Japan Concrete Institute – notice: Copyright Japan Science and Technology Agency 2018 |
DBID | AAYXX CITATION 7QQ 7SR 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.3151/jact.16.293 |
DatabaseName | CrossRef Ceramic Abstracts Engineered Materials Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Ceramic Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1347-3913 |
EndPage | 305 |
ExternalDocumentID | 10_3151_jact_16_293 article_jact_16_7_16_293_article_char_en |
GroupedDBID | 5GY ACIWK ADDVE AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS EJD JSF JSH KQ8 OK1 P2P RJT RZJ AAYXX CITATION 7QQ 7SR 8BQ 8FD FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c520t-a38d2c25c1f2aa71b485c65f92eb13578650e49a8446ca3ab62732658a023b3 |
ISSN | 1346-8014 |
IngestDate | Mon Jun 30 09:58:15 EDT 2025 Thu Apr 24 23:12:33 EDT 2025 Tue Jul 01 01:31:04 EDT 2025 Wed Apr 05 07:13:55 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c520t-a38d2c25c1f2aa71b485c65f92eb13578650e49a8446ca3ab62732658a023b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jact/16/7/16_293/_article/-char/en |
PQID | 2232511698 |
PQPubID | 1996343 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2232511698 crossref_citationtrail_10_3151_jact_16_293 crossref_primary_10_3151_jact_16_293 jstage_primary_article_jact_16_7_16_293_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018/07/13 |
PublicationDateYYYYMMDD | 2018-07-13 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018/07/13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | Journal of Advanced Concrete Technology |
PublicationTitleAlternate | ACT |
PublicationYear | 2018 |
Publisher | Japan Concrete Institute Japan Science and Technology Agency |
Publisher_xml | – name: Japan Concrete Institute – name: Japan Science and Technology Agency |
References | 11) Bakharev, T., Sanjayan, J. and Cheng, Y.-B., (2001). “Resistance of alkali-activated slag concrete to carbonation.” Cement and Concrete Research, 31, 1277-1283. 55) Shojaei, M., Behfarnia, K. and Mohebi, R., (2015). “Application of alkali-activated slag concrete in railway sleepers.” Materials & Design, 69, 89-95. 50) Puertas, F., Palacios, M. and Vázquez, T., (2006). “Carbonation process of alkali-activated slag mortars.” Journal of materials science, 41, 3071-3082. 69) Ye, H., Cartwright, C., Rajabipour, F. and Radlińska, A., (2017). “Understanding the drying shrinkage performance of alkali-activated slag mortars.” Cement and Concrete Composites, 76, 13-24. 41) Law, D. W., Adam, A. A., Molyneaux, T. K. and Patnaikuni, I., (2012). “Durability assessment of alkali activated slag (AAS) concrete.” Materials and Structures, 45, 1425-1437. 48) Newmann, J. and Choo, B. S., (2003). “Advanced concrete technology–Concrete properties.” Elsevier, Ltd. Burlinton, MA. 13) Behfarnia, K. and Rostami, M., (2017a). “An assessment on parameters affecting the carbonation of alkali-activated slag concrete.” Journal of Cleaner Production, 157, 1-9. 57) Song, S., Sohn, D., Jennings, H. and Mason, T., (2000). “Hydration of alkali-activated ground granulated blast furnace slag.” Journal of materials science, 35, 249-257. 65) Wang, S.-D., Scrivener, K. L. and Pratt, P., (1994). Factors affecting the strength of alkali-activated slag. Cement and Concrete Research, 24, 1033-1043. 4) ASTM C157/C157M-08, (2008). “Standard test method for length change of hardened hydraulic-cement mortar and concrete.” American Society for Testing and Materials, West Conshohocken, PA. 38) Haha, M. B., Lothenbach, B., Le Saout, G. and Winnefeld, F., (2012). “Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—part II: effect of Al2O3.” Cement and Concrete Research, 42, 74-83. 9) Bakharev, T., Sanjayan, J. and Cheng, Y.-B., (1999a). “Effect of elevated temperature curing on properties of alkali-activated slag concrete.” Cement and Concrete Research, 29, 1619-1625. 25) Collins, F. and Sanjayan, J., (2000b). “Effect of pore size distribution on drying shrinking of alkali-activated slag concrete.” Cement and Concrete Research, 30, 1401-1406. 35) Gu, Y.-m., Fang, Y.-h., You, D., Gong, Y.-f. and Zhu, C.-h., (2015). “Properties and microstructure of alkali-activated slag cement cured at below-and about-normal temperature.” Construction and building materials, 79, 1-8. 42) Lee, N., Jang, J. and Lee, H., (2014). “Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages.” Cement and Concrete Composites, 53, 239-248. 36) Haha, M. B., Le Saout, G., Winnefeld, F. and Lothenbach, B., (2011a). “Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags.” Cement and Concrete Research, 41, 301-310. 46) Mehta, P. K., (1986). “Concrete. Structure, properties and materials.” Prentice-Hall, 450. 44) Ma, J. and Dehn, F., (2017). “Shrinkage and creep behavior of an alkali-activated slag concrete.” Structural Concrete, 18 (5), 801-810. 3) ASTM C191-04, (2004). “Standard test method for times of setting of hydraulic-cement concrete.” American Society for Testing and Materials, West Conshohocken, PA. 47) Neto, A. A. M., Cincotto, M. A. and Repette, W., (2008). “Drying and autogenous shrinkage of pastes and mortars with activated slag cement.” Cement and Concrete Research, 38, 565-574. 54) Shi, C. and Day, R. L., (1995). “A calorimetric study of early hydration of alkali-slag cements.” Cement and Concrete Research, 25, 1333-1346. 77) Zhang, Y. J., Zhao, Y. L. and Li, H. H., (2008). “Structure characterization of hydration products generated by alkaline activation of granulated blast furnace slag.” Journal of materials science, 43, 7141-7147. 18) Burciaga-Díaz, O. and Escalante-García, J. I., (2013). “Structure, mechanisms of reaction, and strength of an alkali-activated blast-furnace slag.” Journal of the American Ceramic Society, 96, 3939-3948. 17) BS 1881-116, (1983). “Testing concrete–Part 116: Method for determination of compressive strength of concrete cubes.” British Standard Institution. 45) Marjanović, N., Komljenović, M., Baščarević, Z., Nikolić, V. and Petrović, R., (2015). “Physical–mechanical and microstructural properties of alkali-activated fly ash–blast furnace slag blends.” Ceramics International, 41, 1421-1435. 43) Li, Y. and Li, J., (2014). “Capillary tension theory for prediction of early autogenous shrinkage of self-consolidating concrete.” Construction and building materials, 53, 511-516. 14) Behfarnia, K. and Rostami, M., (2017b). “Effects of micro and nanoparticles of SiO2 on the permeability of alkali activated slag concrete.” Construction and building materials, 131, 205-213. 21) Cheng, T. and Chiu, J., (2003). “Fire-resistant geopolymer produced by granulated blast furnace slag.” Minerals Engineering, 16, 205-210. 22) Chi, M. and Huang, R., (2013). “Binding mechanism and properties of alkali-activated fly ash/slag mortars.” Construction and building materials, 40, 291-298. 8) Aydın, S. and Baradan, B., (2014). “Effect of activator type and content on properties of alkali-activated slag mortars.” Composites Part B: Engineering, 57, 166-172. 10) Bakharev, T., Sanjayan, J. and Cheng, Y.-B., (2000). “Effect of admixtures on properties of alkali-activated slag concrete.” Cement and Concrete Research, 30, 1367-1374. 23) Collins, F. and Sanjayan, J., (1999). “Workability and mechanical properties of alkali activated slag concrete.” Cement and Concrete Research, 29, 455-458. 37) Haha, M. B., Lothenbach, B., Le Saout, G. and Winnefeld, F., (2011b). “Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—Part I: Effect of MgO.” Cement and Concrete Research, 41, 955-963. 26) Douglas, E., Bilodeau, A. and Malhotra, V., (1992). “Properties and durability of alkali-activated slag concrete.” Materials Journal, 89, 509-516. 31) Fernandez-Jimenez, A., Puertas, F. and Arteaga, A., (1998). “Determination of kinetic equations of alkaline activation of blast furnace slag by means of calorimetric data.” Journal of thermal analysis and calorimetry, 52, 945-955. 68) Ye, H., (2015). “Creep mechanisms of calcium–silicate–hydrate: an overview of recent advances and challenges.” International Journal of Concrete Structures and Materials, 9, 453-462. 73) Ye, H. and Radlińska, A., (2017b). “Effect of alkalis on cementitious materials: understanding the relationship between composition, structure, and volume change mechanism.” Journal of Advanced Concrete Technology, 15, 165-177. 2) Altan, E. and Erdoğan, S. T., (2012). “Alkali activation of a slag at ambient and elevated temperatures.” Cement and Concrete Composites, 34, 131-139. 53) Shi, C. and Day, R., (1996). “Selectivity of alkaline activators for the activation of slags.” Cement, Concrete and Aggregates, 18, 8-14. 59) Taylor, M., Tam, C. and Gielen, D., (2006). “Energy efficiency and CO2 emissions from the global cement industry.” Korea, 50, 61.7. 64) Wang, S.-D. and Scrivener, K. L., (1995). “Hydration products of alkali activated slag cement.” Cement and Concrete Research, 25, 561-571. 67) Wardhono, A., Law, D. W. and Molyneaux, T. C., (2015). “Long term performance of alkali activated slag concrete.” Journal of Advanced Concrete Technology, 13, 187-192. 51) Rostami, M. and Behfarnia, K., (2017). “The effect of silica fume on durability of alkali activated slag concrete.” Construction and building materials, 134, 262-268. 52) Shi, C., (1996). “Strength, pore structure and permeability of alkali-activated slag mortars.” Cement and Concrete Research, 26, 1789-1799. 24) Collins, F. and Sanjayan, J., (2000a). “Cracking tendency of alkali-activated slag concrete subjected to restrained shrinkage.” Cement and Concrete Research, 30, 791-798. 32) Gao, X., Yu, Q. and Brouwers, H., (2016). “Assessing the porosity and shrinkage of alkali activated slag-fly ash composites designed applying a packing model.” Construction and building materials, 119, 175-184. 56) Slowik, V., Schmidt, M. and Fritzsch, R., (2008). “Capillary pressure in fresh cement-based materials and identification of the air entry value.” Cement and Concrete Composites. 30, 557-565. 6) ASTM C33/C33M-18, (2018). “Standard specification for concrete aggregates.” American Society for Testing and Materials, West Conshohocken, PA. 75) Yip, C. K., Lukey, G. and Van Deventer, J., (2005). “The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation.” Cement and Concrete Research, 35, 1688-1697. 49) Pacheco-Torgal, F., Labrincha, J., Leonelli, C., Palomo, A. and Chindaprasit, P., (2014). “Handbook of alkali-activated cements, mortars and concretes.” Elsevier. 58) Taylor, H. F., (1997). “Cement chemistry.” Thomas Telford. 62) Wang, H., Li, H. and Yan, F., (2005). “Synthesis and mechanical properties of metakaolinite-based geopolymer.” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 268, 1-6. 20) Chang, J., (2003). “A study on the setting characteristics of sodium silicate-activated slag pastes.” Cement and Concrete Research, 33, 1005-1011. 15) Berenjian, J., (1988). “Superpelasticized flowing concrete: microstructure and long term deformation characteristics.” Thesis (PhD), Department of Civil Engineering, The Universityof leeds, UK. 66) Wang, W.-C., Wang, H.-Y. and Lo, M.-H., (2015). “The fresh and engineering properties of alkali activated slag as a function of fly ash replacement and alkali concentration.” Construction and building materials, 84, 224-229. 74) Yip, C. and Van Deventer, J., (2003). “Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder.” Journal of materials science, 38, 3851-3860. 19) Caijun, S. and Yinyu, L., (1989). “Investigation on some factors affecting the characteristics of alkali-phosphorus slag cement.” Cement and Concrete Research, 19, 527-53 44 45 46 47 48 49 50 51 52 53 10 54 11 55 12 56 13 57 14 58 15 59 16 17 18 19 1 2 3 4 5 6 7 8 9 60 61 62 63 20 64 21 65 22 66 23 67 24 68 25 69 26 27 28 29 70 71 72 73 30 74 31 75 32 76 33 77 34 78 35 36 37 38 39 40 41 42 43 |
References_xml | – reference: 73) Ye, H. and Radlińska, A., (2017b). “Effect of alkalis on cementitious materials: understanding the relationship between composition, structure, and volume change mechanism.” Journal of Advanced Concrete Technology, 15, 165-177. – reference: 16) Bernal, S. A., Provis, J. L., Rose, V. and De Gutierrez, R. M., (2011). “Evolution of binder structure in sodium silicate-activated slag-metakaolin blends.” Cement and Concrete Composites, 33, 46-54. – reference: 29) Fernández-Jiménez, A., Palomo, J. and Puertas, F., (1999). “Alkali-activated slag mortars: mechanical strength behaviour.” Cement and Concrete Research, 29, 1313-1321. – reference: 66) Wang, W.-C., Wang, H.-Y. and Lo, M.-H., (2015). “The fresh and engineering properties of alkali activated slag as a function of fly ash replacement and alkali concentration.” Construction and building materials, 84, 224-229. – reference: 34) Gessa-Perera, A. and González-Expósito, I., (2017). “Opportunities for waste recovery to improve the carbon footprint in the Spanish cement industry under a cap and trade system: Insights from a case study.” Journal of Cleaner Production, 142, 3665-3675. – reference: 45) Marjanović, N., Komljenović, M., Baščarević, Z., Nikolić, V. and Petrović, R., (2015). “Physical–mechanical and microstructural properties of alkali-activated fly ash–blast furnace slag blends.” Ceramics International, 41, 1421-1435. – reference: 69) Ye, H., Cartwright, C., Rajabipour, F. and Radlińska, A., (2017). “Understanding the drying shrinkage performance of alkali-activated slag mortars.” Cement and Concrete Composites, 76, 13-24. – reference: 32) Gao, X., Yu, Q. and Brouwers, H., (2016). “Assessing the porosity and shrinkage of alkali activated slag-fly ash composites designed applying a packing model.” Construction and building materials, 119, 175-184. – reference: 14) Behfarnia, K. and Rostami, M., (2017b). “Effects of micro and nanoparticles of SiO2 on the permeability of alkali activated slag concrete.” Construction and building materials, 131, 205-213. – reference: 64) Wang, S.-D. and Scrivener, K. L., (1995). “Hydration products of alkali activated slag cement.” Cement and Concrete Research, 25, 561-571. – reference: 17) BS 1881-116, (1983). “Testing concrete–Part 116: Method for determination of compressive strength of concrete cubes.” British Standard Institution. – reference: 51) Rostami, M. and Behfarnia, K., (2017). “The effect of silica fume on durability of alkali activated slag concrete.” Construction and building materials, 134, 262-268. – reference: 38) Haha, M. B., Lothenbach, B., Le Saout, G. and Winnefeld, F., (2012). “Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—part II: effect of Al2O3.” Cement and Concrete Research, 42, 74-83. – reference: 23) Collins, F. and Sanjayan, J., (1999). “Workability and mechanical properties of alkali activated slag concrete.” Cement and Concrete Research, 29, 455-458. – reference: 50) Puertas, F., Palacios, M. and Vázquez, T., (2006). “Carbonation process of alkali-activated slag mortars.” Journal of materials science, 41, 3071-3082. – reference: 58) Taylor, H. F., (1997). “Cement chemistry.” Thomas Telford. – reference: 40) Kumarappa, D. B., Peethamparan, S. and Ngami, M., (2018). “Autogenous shrinkage of alkali activated slag mortars: Basic mechanisms and mitigation methods.” Cement and Concrete Research, 109, 1-9. – reference: 5) ASTM C143/C143M-08, (2008). “Standard test method for slump of hydraulic-cement concrete.” American Society for Testing and Materials, West Conshohocken, PA. – reference: 74) Yip, C. and Van Deventer, J., (2003). “Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder.” Journal of materials science, 38, 3851-3860. – reference: 39) Krizan, D. and Zivanovic, B., (2002). “Effects of dosage and modulus of water glass on early hydration of alkali–slag cements.” Cement and Concrete Research, 32, 1181-1188. – reference: 52) Shi, C., (1996). “Strength, pore structure and permeability of alkali-activated slag mortars.” Cement and Concrete Research, 26, 1789-1799. – reference: 77) Zhang, Y. J., Zhao, Y. L. and Li, H. H., (2008). “Structure characterization of hydration products generated by alkaline activation of granulated blast furnace slag.” Journal of materials science, 43, 7141-7147. – reference: 8) Aydın, S. and Baradan, B., (2014). “Effect of activator type and content on properties of alkali-activated slag mortars.” Composites Part B: Engineering, 57, 166-172. – reference: 62) Wang, H., Li, H. and Yan, F., (2005). “Synthesis and mechanical properties of metakaolinite-based geopolymer.” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 268, 1-6. – reference: 68) Ye, H., (2015). “Creep mechanisms of calcium–silicate–hydrate: an overview of recent advances and challenges.” International Journal of Concrete Structures and Materials, 9, 453-462. – reference: 57) Song, S., Sohn, D., Jennings, H. and Mason, T., (2000). “Hydration of alkali-activated ground granulated blast furnace slag.” Journal of materials science, 35, 249-257. – reference: 27) Duxson, P., Provis, J. L., Lukey, G. C. and Van Deventer, J. S., (2007). “The role of inorganic polymer technology in the development of ‘green concrete’.” Cement and Concrete Research, 37, 1590-1597. – reference: 15) Berenjian, J., (1988). “Superpelasticized flowing concrete: microstructure and long term deformation characteristics.” Thesis (PhD), Department of Civil Engineering, The Universityof leeds, UK. – reference: 30) Fernández-Jiménez, A. and Puertas, F., (1997). “Alkali-activated slag cements: kinetic studies.” Cement and Concrete Research, 27, 359-368. – reference: 12) Bakharev, T., Sanjayan, J. G. and Cheng, Y.-B., (1999b). “Alkali activation of Australian slag cements.” Cement and Concrete Research, 29, 113-120. – reference: 21) Cheng, T. and Chiu, J., (2003). “Fire-resistant geopolymer produced by granulated blast furnace slag.” Minerals Engineering, 16, 205-210. – reference: 44) Ma, J. and Dehn, F., (2017). “Shrinkage and creep behavior of an alkali-activated slag concrete.” Structural Concrete, 18 (5), 801-810. – reference: 59) Taylor, M., Tam, C. and Gielen, D., (2006). “Energy efficiency and CO2 emissions from the global cement industry.” Korea, 50, 61.7. – reference: 78) Zuberi, M. J. S. and Patel, M. K., (2017). “Bottom-up analysis of energy efficiency improvement and CO2 emission reduction potentials in the Swiss cement industry.” Journal of Cleaner Production, 142, 4294-4309. – reference: 36) Haha, M. B., Le Saout, G., Winnefeld, F. and Lothenbach, B., (2011a). “Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags.” Cement and Concrete Research, 41, 301-310. – reference: 10) Bakharev, T., Sanjayan, J. and Cheng, Y.-B., (2000). “Effect of admixtures on properties of alkali-activated slag concrete.” Cement and Concrete Research, 30, 1367-1374. – reference: 19) Caijun, S. and Yinyu, L., (1989). “Investigation on some factors affecting the characteristics of alkali-phosphorus slag cement.” Cement and Concrete Research, 19, 527-533. – reference: 20) Chang, J., (2003). “A study on the setting characteristics of sodium silicate-activated slag pastes.” Cement and Concrete Research, 33, 1005-1011. – reference: 25) Collins, F. and Sanjayan, J., (2000b). “Effect of pore size distribution on drying shrinking of alkali-activated slag concrete.” Cement and Concrete Research, 30, 1401-1406. – reference: 71) Ye, H. and Radlińska, A., (2016b). “Shrinkage mechanisms of alkali-activated slag.” Cement and Concrete Research, 88, 126-135. – reference: 4) ASTM C157/C157M-08, (2008). “Standard test method for length change of hardened hydraulic-cement mortar and concrete.” American Society for Testing and Materials, West Conshohocken, PA. – reference: 9) Bakharev, T., Sanjayan, J. and Cheng, Y.-B., (1999a). “Effect of elevated temperature curing on properties of alkali-activated slag concrete.” Cement and Concrete Research, 29, 1619-1625. – reference: 75) Yip, C. K., Lukey, G. and Van Deventer, J., (2005). “The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation.” Cement and Concrete Research, 35, 1688-1697. – reference: 24) Collins, F. and Sanjayan, J., (2000a). “Cracking tendency of alkali-activated slag concrete subjected to restrained shrinkage.” Cement and Concrete Research, 30, 791-798. – reference: 35) Gu, Y.-m., Fang, Y.-h., You, D., Gong, Y.-f. and Zhu, C.-h., (2015). “Properties and microstructure of alkali-activated slag cement cured at below-and about-normal temperature.” Construction and building materials, 79, 1-8. – reference: 22) Chi, M. and Huang, R., (2013). “Binding mechanism and properties of alkali-activated fly ash/slag mortars.” Construction and building materials, 40, 291-298. – reference: 41) Law, D. W., Adam, A. A., Molyneaux, T. K. and Patnaikuni, I., (2012). “Durability assessment of alkali activated slag (AAS) concrete.” Materials and Structures, 45, 1425-1437. – reference: 42) Lee, N., Jang, J. and Lee, H., (2014). “Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages.” Cement and Concrete Composites, 53, 239-248. – reference: 37) Haha, M. B., Lothenbach, B., Le Saout, G. and Winnefeld, F., (2011b). “Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—Part I: Effect of MgO.” Cement and Concrete Research, 41, 955-963. – reference: 56) Slowik, V., Schmidt, M. and Fritzsch, R., (2008). “Capillary pressure in fresh cement-based materials and identification of the air entry value.” Cement and Concrete Composites. 30, 557-565. – reference: 63) Wang, S.-D., Pu, X.-C., Scrivener, K. and Pratt, P., (1995). “Alkali-activated slag cement and concrete: a review of properties and problems.” Advances in cement research, 7, 93-102. – reference: 70) Ye, H. and Radlińska, A., (2016a). “Quantitative analysis of phase assemblage and chemical shrinkage of alkali-activated slag.” Journal of Advanced Concrete Technology, 14, 245-260. – reference: 65) Wang, S.-D., Scrivener, K. L. and Pratt, P., (1994). Factors affecting the strength of alkali-activated slag. Cement and Concrete Research, 24, 1033-1043. – reference: 18) Burciaga-Díaz, O. and Escalante-García, J. I., (2013). “Structure, mechanisms of reaction, and strength of an alkali-activated blast-furnace slag.” Journal of the American Ceramic Society, 96, 3939-3948. – reference: 31) Fernandez-Jimenez, A., Puertas, F. and Arteaga, A., (1998). “Determination of kinetic equations of alkaline activation of blast furnace slag by means of calorimetric data.” Journal of thermal analysis and calorimetry, 52, 945-955. – reference: 61) U. S. Geological Survey (2017), “Mineral commodity summaries, Cement.” Retrieved from https://minerals.usgs.gov/minerals/pubs/commodity/cement/mcs-2017-cemen.pdf. – reference: 49) Pacheco-Torgal, F., Labrincha, J., Leonelli, C., Palomo, A. and Chindaprasit, P., (2014). “Handbook of alkali-activated cements, mortars and concretes.” Elsevier. – reference: 76) Yuan, X.-h., Chen, W., Lu, Z.-a. and Chen, H., (2014). “Shrinkage compensation of alkali-activated slag concrete and microstructural analysis.” Construction and building materials, 66, 422-428. – reference: 7) Atiş, C. D., Bilim, C., Çelik, Ö. and Karahan, O., (2009). “Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar.” Construction and building materials, 23, 548-555. – reference: 72) Ye, H. and Radlińska, A., (2017a). “Carbonation-induced volume change in alkali-activated slag.” Construction and building materials, 144, 635-644. – reference: 26) Douglas, E., Bilodeau, A. and Malhotra, V., (1992). “Properties and durability of alkali-activated slag concrete.” Materials Journal, 89, 509-516. – reference: 60) Thomas, R., Lezama, D. and Peethamparan, S., (2017). “On drying shrinkage in alkali-activated concrete: Improving dimensional stability by aging or heat-curing.” Cement and Concrete Research, 91, 13-23. – reference: 3) ASTM C191-04, (2004). “Standard test method for times of setting of hydraulic-cement concrete.” American Society for Testing and Materials, West Conshohocken, PA. – reference: 33) Gartner, E., (2004). “Industrially interesting approaches to “low-CO2” cements.” Cement and Concrete Research, 34, 1489-1498. – reference: 46) Mehta, P. K., (1986). “Concrete. Structure, properties and materials.” Prentice-Hall, 450. – reference: 67) Wardhono, A., Law, D. W. and Molyneaux, T. C., (2015). “Long term performance of alkali activated slag concrete.” Journal of Advanced Concrete Technology, 13, 187-192. – reference: 28) Fang, G., Bahrami, H. and Zhang, M., (2018). “Mechanisms of autogenous shrinkage of alkali-activated fly ash-slag pastes cured at ambient temperature within 24 h.” Construction and building materials, 171, 377-387. – reference: 47) Neto, A. A. M., Cincotto, M. A. and Repette, W., (2008). “Drying and autogenous shrinkage of pastes and mortars with activated slag cement.” Cement and Concrete Research, 38, 565-574. – reference: 13) Behfarnia, K. and Rostami, M., (2017a). “An assessment on parameters affecting the carbonation of alkali-activated slag concrete.” Journal of Cleaner Production, 157, 1-9. – reference: 2) Altan, E. and Erdoğan, S. T., (2012). “Alkali activation of a slag at ambient and elevated temperatures.” Cement and Concrete Composites, 34, 131-139. – reference: 1) ACI 209.2R-08, (2008). “Guide for modeling and calculating shrinkage and creep in hardened concrete.” ACI Committee 209, American Concrete Institute. – reference: 43) Li, Y. and Li, J., (2014). “Capillary tension theory for prediction of early autogenous shrinkage of self-consolidating concrete.” Construction and building materials, 53, 511-516. – reference: 54) Shi, C. and Day, R. L., (1995). “A calorimetric study of early hydration of alkali-slag cements.” Cement and Concrete Research, 25, 1333-1346. – reference: 11) Bakharev, T., Sanjayan, J. and Cheng, Y.-B., (2001). “Resistance of alkali-activated slag concrete to carbonation.” Cement and Concrete Research, 31, 1277-1283. – reference: 48) Newmann, J. and Choo, B. S., (2003). “Advanced concrete technology–Concrete properties.” Elsevier, Ltd. Burlinton, MA. – reference: 6) ASTM C33/C33M-18, (2018). “Standard specification for concrete aggregates.” American Society for Testing and Materials, West Conshohocken, PA. – reference: 53) Shi, C. and Day, R., (1996). “Selectivity of alkaline activators for the activation of slags.” Cement, Concrete and Aggregates, 18, 8-14. – reference: 55) Shojaei, M., Behfarnia, K. and Mohebi, R., (2015). “Application of alkali-activated slag concrete in railway sleepers.” Materials & Design, 69, 89-95. – ident: 76 doi: 10.1016/j.conbuildmat.2014.05.085 – ident: 74 doi: 10.1023/A:1025904905176 – ident: 16 doi: 10.1016/j.cemconcomp.2010.09.004 – ident: 60 doi: 10.1016/j.cemconres.2016.10.003 – ident: 41 doi: 10.1617/s11527-012-9842-1 – ident: 72 doi: 10.1016/j.conbuildmat.2017.03.238 – ident: 73 doi: 10.3151/jact.15.165 – ident: 78 doi: 10.1016/j.jclepro.2016.11.178 – ident: 35 doi: 10.1016/j.conbuildmat.2014.12.068 – ident: 38 doi: 10.1016/j.cemconres.2011.08.005 – ident: 52 doi: 10.1016/S0008-8846(96)00174-3 – ident: 54 doi: 10.1016/0008-8846(95)00126-W – ident: 7 doi: 10.1016/j.conbuildmat.2007.10.011 – ident: 22 doi: 10.1016/j.conbuildmat.2012.11.003 – ident: 28 doi: 10.1016/j.conbuildmat.2018.03.155 – ident: 9 doi: 10.1016/S0008-8846(99)00143-X – ident: 20 doi: 10.1016/S0008-8846(02)01096-7 – ident: 49 – ident: 26 – ident: 51 doi: 10.1016/j.conbuildmat.2016.12.072 – ident: 17 – ident: 5 – ident: 1 – ident: 47 doi: 10.1016/j.cemconres.2007.11.002 – ident: 59 – ident: 75 doi: 10.1016/j.cemconres.2004.10.042 – ident: 42 doi: 10.1016/j.cemconcomp.2014.07.007 – ident: 43 doi: 10.1016/j.conbuildmat.2013.12.010 – ident: 58 – ident: 48 – ident: 61 – ident: 77 doi: 10.1007/s10853-008-3028-9 – ident: 14 doi: 10.1016/j.conbuildmat.2016.11.070 – ident: 70 doi: 10.3151/jact.14.245 – ident: 30 doi: 10.1016/S0008-8846(97)00040-9 – ident: 56 doi: 10.1016/j.cemconcomp.2008.03.002 – ident: 40 – ident: 50 doi: 10.1007/s10853-005-1821-2 – ident: 4 – ident: 31 doi: 10.1023/A:1010172204297 – ident: 36 doi: 10.1016/j.cemconres.2010.11.016 – ident: 34 doi: 10.1016/j.jclepro.2016.10.101 – ident: 66 doi: 10.1016/j.conbuildmat.2014.09.059 – ident: 27 doi: 10.1016/j.cemconres.2007.08.018 – ident: 39 doi: 10.1016/S0008-8846(01)00717-7 – ident: 69 doi: 10.1016/j.cemconcomp.2016.11.010 – ident: 19 doi: 10.1016/0008-8846(89)90004-5 – ident: 57 doi: 10.1023/A:1004742027117 – ident: 10 doi: 10.1016/S0008-8846(00)00349-5 – ident: 8 doi: 10.1016/j.compositesb.2013.10.001 – ident: 68 doi: 10.1007/s40069-015-0114-7 – ident: 33 doi: 10.1016/j.cemconres.2004.01.021 – ident: 71 doi: 10.1016/j.cemconres.2016.07.001 – ident: 65 doi: 10.1016/0008-8846(94)90026-4 – ident: 3 – ident: 23 doi: 10.1016/S0008-8846(98)00236-1 – ident: 12 doi: 10.1016/S0008-8846(98)00170-7 – ident: 13 doi: 10.1016/j.jclepro.2017.04.097 – ident: 21 doi: 10.1016/S0892-6875(03)00008-6 – ident: 32 doi: 10.1016/j.conbuildmat.2016.05.026 – ident: 64 doi: 10.1016/0008-8846(95)00045-E – ident: 11 doi: 10.1016/S0008-8846(01)00574-9 – ident: 45 doi: 10.1016/j.ceramint.2014.09.075 – ident: 25 doi: 10.1016/S0008-8846(00)00327-6 – ident: 37 doi: 10.1016/j.cemconres.2011.05.002 – ident: 53 doi: 10.1520/CCA10306J – ident: 62 doi: 10.1016/j.colsurfa.2005.01.016 – ident: 15 – ident: 18 doi: 10.1111/jace.12620 – ident: 29 doi: 10.1016/S0008-8846(99)00154-4 – ident: 2 doi: 10.1016/j.cemconcomp.2011.08.003 – ident: 55 doi: 10.1016/j.matdes.2014.12.051 – ident: 67 doi: 10.3151/jact.13.187 – ident: 44 doi: 10.1002/suco.201600147 – ident: 63 doi: 10.1680/adcr.1995.7.27.93 – ident: 6 – ident: 46 – ident: 24 doi: 10.1016/S0008-8846(00)00243-X |
SSID | ssj0037377 |
Score | 2.4346757 |
Snippet | In this study, the effect of alkali concentration and sodium silicate modulus of the activator solution on workability, compressive strength, and drying... |
SourceID | proquest crossref jstage |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 293 |
SubjectTerms | Alkalinity Blast furnace slags Compressive strength Concrete Drying Granulation Price increases Scanning electron microscopy Shrinkage Sodium Sodium silicates Workability X-ray diffraction |
Title | The Effect of Alkali Concentration and Sodium Silicate Modulus on the Properties of Alkali-Activated Slag Concrete |
URI | https://www.jstage.jst.go.jp/article/jact/16/7/16_293/_article/-char/en https://www.proquest.com/docview/2232511698 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Advanced Concrete Technology, 2018/07/13, Vol.16(7), pp.293-305 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELXKwgEOiE9RWJAPe2KV0tiJkxxXCLRitUioRdpbZLtO06Ufq5IgwZ_hrzITO05Ke1i4RFUydtrOi_3szJsh5ETBLCYzZQIVF0UQaa4CFYYigMWIwdwgTBf4Rvfyszj_Gn26iq8Gg9-9qKW6UiP966Cu5H-8CufAr6iS_QfP-k7hBHwG_8IRPAzHW_vYpR9GQrn8BqQaNXw24rJqI40nm9miXp1OFlbwhvXP6mXdvidArcANRlfb9LO2l-BMN3XPkI4u5bzpdGuq3bihjsv6SALt7E6rvS37qZyXP-RPWyVbrpyoqpEIlQXuz1hx2gIzTJc-ZPiihG9jJdyXm1KuVnKmJIam9LcrwhT3Qa3a1I2wPMIMyFY5OjLtORjpMmfWDsuiB7-kP8bakopuuuaNantvJuDAZJoKBLoahWLk2_Tzbf81D_roRFgXYfMcG-ehyKHxHXKXwToEB9KLL_41FU94U9rT_yYrAMXG73p33qE8966B9c_3p_6Gz0wfkYfOefTMouoxGZj1E_Kgl57yKdkCvqjFF90U1CKD7uCLAr6oxRdt8UUdvihcBnzRDl9dLx2-KOKLtvh6RiYfP0zfnweuRkegYzauAsnTGdMs1mHBpExCFaWxFnGRMSABmEkJVgAmymQaRUJLLpUAvsyA9kogi4o_J0frzdq8IHScGi1mOmEylZESUSaYTMZhwQvDMy3YkLxt_8Rcu_T1WEVlmR9w15CceOMbm7XlsFliveGN3KPsjRJn6S-gFhKGniE5bt2XuwHhew5MGxfsIktf3u7-r8j97hE5JkfVtjavgeNW6k2Dsz8QqK2G |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Effect+of+Alkali+Concentration+and+Sodium+Silicate+Modulus+on+the+Properties+of+Alkali-Activated+Slag+Concrete&rft.jtitle=Journal+of+advanced+concrete+technology&rft.au=Taghvayi%2C+Hamed&rft.au=Behfarnia%2C+Kiachehr&rft.au=Khalili%2C+Mohammadbagher&rft.date=2018-07-13&rft.issn=1346-8014&rft.eissn=1347-3913&rft.volume=16&rft.issue=7&rft.spage=293&rft.epage=305&rft_id=info:doi/10.3151%2Fjact.16.293&rft.externalDBID=n%2Fa&rft.externalDocID=10_3151_jact_16_293 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-8014&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-8014&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-8014&client=summon |