Reactive Oxygen Species, Antioxidant Responses and Implications from a Microbial Modulation Perspective
Plants are exposed to various environmental stresses in their lifespan that threaten their survival. Reactive oxygen species (ROS), the byproducts of aerobic metabolism, are essential signalling molecules in regulating multiple plant developmental processes as well as in reinforcing plant tolerance...
Saved in:
Published in | Biology (Basel, Switzerland) Vol. 11; no. 2; p. 155 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
18.01.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plants are exposed to various environmental stresses in their lifespan that threaten their survival. Reactive oxygen species (ROS), the byproducts of aerobic metabolism, are essential signalling molecules in regulating multiple plant developmental processes as well as in reinforcing plant tolerance to biotic and abiotic stimuli. However, intensified environmental challenges such as salinity, drought, UV irradiation, and heavy metals usually interfere with natural ROS metabolism and homeostasis, thus aggravating ROS generation excessively and ultimately resulting in oxidative stress. Cellular damage is confined to the degradation of biomolecular structures, including carbohydrates, proteins, lipids, pigments, and DNA. The nature of the double-edged function of ROS as a secondary messenger or harmful oxidant has been attributed to the degree of existing balance between cellular ROS production and ROS removal machinery. The activities of enzyme-based antioxidants, catalase (CAT, EC 1.11.1.6), monodehydroascorbate reductase (MDHAR, E.C.1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1), superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), glutathione reductase (GR, EC 1.6.4.2), and guaiacol peroxidase (GPX, EC 1.11.1.7); and non-enzyme based antioxidant molecules, ascorbate (AA), glutathione (GSH), carotenoids, α-tocopherol, prolines, flavonoids, and phenolics, are indeed parts of the defensive strategies developed by plants to scavenge excess ROS and to maintain cellular redox homeostasis during oxidative stress. This review briefly summarises current knowledge on enzymatic and non-enzymatic antioxidant machinery in plants. Moreover, additional information about the beneficial impact of the microbiome on countering abiotic/biotic stresses in association with roots and plant tissues has also been provided. |
---|---|
AbstractList | Plants are exposed to various environmental stresses in their lifespan that threaten their survival. Reactive oxygen species (ROS), the byproducts of aerobic metabolism, are essential signalling molecules in regulating multiple plant developmental processes as well as in reinforcing plant tolerance to biotic and abiotic stimuli. However, intensified environmental challenges such as salinity, drought, UV irradiation, and heavy metals usually interfere with natural ROS metabolism and homeostasis, thus aggravating ROS generation excessively and ultimately resulting in oxidative stress. Cellular damage is confined to the degradation of biomolecular structures, including carbohydrates, proteins, lipids, pigments, and DNA. The nature of the double-edged function of ROS as a secondary messenger or harmful oxidant has been attributed to the degree of existing balance between cellular ROS production and ROS removal machinery. The activities of enzyme-based antioxidants, catalase (CAT, EC 1.11.1.6), monodehydroascorbate reductase (MDHAR, E.C.1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1), superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), glutathione reductase (GR, EC 1.6.4.2), and guaiacol peroxidase (GPX, EC 1.11.1.7); and non-enzyme based antioxidant molecules, ascorbate (AA), glutathione (GSH), carotenoids, α-tocopherol, prolines, flavonoids, and phenolics, are indeed parts of the defensive strategies developed by plants to scavenge excess ROS and to maintain cellular redox homeostasis during oxidative stress. This review briefly summarises current knowledge on enzymatic and non-enzymatic antioxidant machinery in plants. Moreover, additional information about the beneficial impact of the microbiome on countering abiotic/biotic stresses in association with roots and plant tissues has also been provided. Plants are exposed to various environmental stresses in their lifespan that threaten their survival. Reactive oxygen species (ROS), the byproducts of aerobic metabolism, are essential signalling molecules in regulating multiple plant developmental processes as well as in reinforcing plant tolerance to biotic and abiotic stimuli. However, intensified environmental challenges such as salinity, drought, UV irradiation, and heavy metals usually interfere with natural ROS metabolism and homeostasis, thus aggravating ROS generation excessively and ultimately resulting in oxidative stress. Cellular damage is confined to the degradation of biomolecular structures, including carbohydrates, proteins, lipids, pigments, and DNA. The nature of the double-edged function of ROS as a secondary messenger or harmful oxidant has been attributed to the degree of existing balance between cellular ROS production and ROS removal machinery. The activities of enzyme-based antioxidants, catalase (CAT, EC 1.11.1.6), monodehydroascorbate reductase (MDHAR, E.C.1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1), superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), glutathione reductase (GR, EC 1.6.4.2), and guaiacol peroxidase (GPX, EC 1.11.1.7); and non-enzyme based antioxidant molecules, ascorbate (AA), glutathione (GSH), carotenoids, α-tocopherol, prolines, flavonoids, and phenolics, are indeed parts of the defensive strategies developed by plants to scavenge excess ROS and to maintain cellular redox homeostasis during oxidative stress. This review briefly summarises current knowledge on enzymatic and non-enzymatic antioxidant machinery in plants. Moreover, additional information about the beneficial impact of the microbiome on countering abiotic/biotic stresses in association with roots and plant tissues has also been provided.Plants are exposed to various environmental stresses in their lifespan that threaten their survival. Reactive oxygen species (ROS), the byproducts of aerobic metabolism, are essential signalling molecules in regulating multiple plant developmental processes as well as in reinforcing plant tolerance to biotic and abiotic stimuli. However, intensified environmental challenges such as salinity, drought, UV irradiation, and heavy metals usually interfere with natural ROS metabolism and homeostasis, thus aggravating ROS generation excessively and ultimately resulting in oxidative stress. Cellular damage is confined to the degradation of biomolecular structures, including carbohydrates, proteins, lipids, pigments, and DNA. The nature of the double-edged function of ROS as a secondary messenger or harmful oxidant has been attributed to the degree of existing balance between cellular ROS production and ROS removal machinery. The activities of enzyme-based antioxidants, catalase (CAT, EC 1.11.1.6), monodehydroascorbate reductase (MDHAR, E.C.1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1), superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), glutathione reductase (GR, EC 1.6.4.2), and guaiacol peroxidase (GPX, EC 1.11.1.7); and non-enzyme based antioxidant molecules, ascorbate (AA), glutathione (GSH), carotenoids, α-tocopherol, prolines, flavonoids, and phenolics, are indeed parts of the defensive strategies developed by plants to scavenge excess ROS and to maintain cellular redox homeostasis during oxidative stress. This review briefly summarises current knowledge on enzymatic and non-enzymatic antioxidant machinery in plants. Moreover, additional information about the beneficial impact of the microbiome on countering abiotic/biotic stresses in association with roots and plant tissues has also been provided. Simple SummaryEnvironmental conditions are subject to unprecedented changes due to recent progressive anthropogenic activities on our planet. Plants, as the frontline of food security, are susceptible to these changes, resulting in the generation of unavoidable byproducts of metabolism (ROS), which eventually affect their productivity. The response of plants to these unfavorable conditions is highly intricate and depends on several factors, among them are the species/genotype tolerance level, intensity, and duration of stress factors. Defensive mechanisms in plant systems, by nature, are concerned primarily with generating enzymatic and non-enzymatic antioxidants. In addition to this, plant-microbe interactions have been found to improve immune systems in plants suffering from drought and salinity stress.AbstractPlants are exposed to various environmental stresses in their lifespan that threaten their survival. Reactive oxygen species (ROS), the byproducts of aerobic metabolism, are essential signalling molecules in regulating multiple plant developmental processes as well as in reinforcing plant tolerance to biotic and abiotic stimuli. However, intensified environmental challenges such as salinity, drought, UV irradiation, and heavy metals usually interfere with natural ROS metabolism and homeostasis, thus aggravating ROS generation excessively and ultimately resulting in oxidative stress. Cellular damage is confined to the degradation of biomolecular structures, including carbohydrates, proteins, lipids, pigments, and DNA. The nature of the double-edged function of ROS as a secondary messenger or harmful oxidant has been attributed to the degree of existing balance between cellular ROS production and ROS removal machinery. The activities of enzyme-based antioxidants, catalase (CAT, EC 1.11.1.6), monodehydroascorbate reductase (MDHAR, E.C.1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1), superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), glutathione reductase (GR, EC 1.6.4.2), and guaiacol peroxidase (GPX, EC 1.11.1.7); and non-enzyme based antioxidant molecules, ascorbate (AA), glutathione (GSH), carotenoids, α-tocopherol, prolines, flavonoids, and phenolics, are indeed parts of the defensive strategies developed by plants to scavenge excess ROS and to maintain cellular redox homeostasis during oxidative stress. This review briefly summarises current knowledge on enzymatic and non-enzymatic antioxidant machinery in plants. Moreover, additional information about the beneficial impact of the microbiome on countering abiotic/biotic stresses in association with roots and plant tissues has also been provided. |
Author | Schnug, Ewald Zandi, Peiman |
AuthorAffiliation | 2 Department of Life Sciences, Institute for Plant Biology, Technical University of Braunschweig, 38106 Braunschweig, Germany 1 International Faculty of Applied Technology, Yibin University, Yibin 644000, China; peiman.zandi@yibinu.edu.cn |
AuthorAffiliation_xml | – name: 2 Department of Life Sciences, Institute for Plant Biology, Technical University of Braunschweig, 38106 Braunschweig, Germany – name: 1 International Faculty of Applied Technology, Yibin University, Yibin 644000, China; peiman.zandi@yibinu.edu.cn |
Author_xml | – sequence: 1 givenname: Peiman orcidid: 0000-0003-3520-3994 surname: Zandi fullname: Zandi, Peiman – sequence: 2 givenname: Ewald surname: Schnug fullname: Schnug, Ewald |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35205022$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1rHCEYxqWkNB_Nubci9NJDtvFzHC-FEPqxkJCStmdRx5m6zOpUZ0L2v6-zm4ZkoVAviu_veXh8X4_BQYjBAfAGow-USnRufOxjt8EYEYQ5fwGOCBJyIQQVB0_Oh-A05xUqSyBS0eoVOKScII4IOQLdrdN29HcO3txvOhfg98FZ7_IZvAijj_e-0WGEty4PMWSXoQ4NXK6H3ltdyiHDNsU11PDa2xSN1z28js3Ub4vwm0u52M32r8HLVvfZnT7sJ-Dn508_Lr8urm6-LC8vrha2RBoXGksuBG9poxvrDGOupbyWUla2Fda1tqorVFuDGTZIolZjQ-uKFUWtDW0lPQHLnW8T9UoNya912qiovdpexNQpnUZve6e4bawhgjSWt8wwqrFoZGkKwbyR2ODi9XHnNUxm7UqeMCbdPzN9Xgn-l-rinarrSjI2h3n_YJDi78nlUa19tq7vdXBxyopUrK6ZQJj-B0ppzQnGc6x3e-gqTimUrs4UIUzgihTq7dPwj6n_jr4A5zugDC7n5NpHBCM1_y-197-Kgu8prB-3ky6v9_0_dX8A32zWnQ |
CitedBy_id | crossref_primary_10_1080_01904167_2024_2422586 crossref_primary_10_1590_1807_1929_agriambi_v28n8e279686 crossref_primary_10_2174_0122106812323520240809090957 crossref_primary_10_3389_fpls_2022_867172 crossref_primary_10_1021_acs_chemrestox_4c00235 crossref_primary_10_1016_j_lfs_2023_122007 crossref_primary_10_2478_fhort_2024_0016 crossref_primary_10_3390_plants13091243 crossref_primary_10_3390_jof10090635 crossref_primary_10_1007_s00210_024_03392_1 crossref_primary_10_29233_sdufeffd_1529867 crossref_primary_10_1007_s12649_024_02589_y crossref_primary_10_3390_molecules29040865 crossref_primary_10_1016_j_crphar_2024_100199 crossref_primary_10_3390_ijpb15030055 crossref_primary_10_1016_j_dci_2024_105251 crossref_primary_10_1007_s00344_023_11119_4 crossref_primary_10_3390_agronomy14030617 crossref_primary_10_3390_plants12030428 crossref_primary_10_1128_aac_01349_24 crossref_primary_10_1016_j_fbio_2024_105002 crossref_primary_10_1007_s00344_024_11619_x crossref_primary_10_3390_cells12091341 crossref_primary_10_1007_s10343_024_01070_z crossref_primary_10_1186_s12870_025_06323_1 crossref_primary_10_3390_foods13172787 crossref_primary_10_1007_s12038_023_00390_y crossref_primary_10_1149_1945_7111_ad7bef crossref_primary_10_1002_ardp_202300263 crossref_primary_10_1016_j_plaphy_2023_107936 crossref_primary_10_1007_s00344_024_11548_9 crossref_primary_10_1016_j_scitotenv_2023_161871 crossref_primary_10_1007_s11356_024_34150_8 crossref_primary_10_1016_j_micpath_2024_107253 crossref_primary_10_1016_j_cropro_2025_107182 crossref_primary_10_3390_foods13244116 crossref_primary_10_1016_j_chemosphere_2024_142896 crossref_primary_10_1016_j_ijbiomac_2024_135859 crossref_primary_10_3390_polym16030376 crossref_primary_10_1038_s41598_024_80798_0 crossref_primary_10_1038_s41598_024_83506_0 crossref_primary_10_1186_s12870_024_05340_w crossref_primary_10_3390_ijms241813794 crossref_primary_10_1016_j_pmpp_2024_102412 crossref_primary_10_1080_14620316_2025_2456723 crossref_primary_10_1007_s12633_024_03094_6 crossref_primary_10_1038_s41598_024_80234_3 crossref_primary_10_3390_toxics10090499 crossref_primary_10_1016_j_chemosphere_2024_141316 crossref_primary_10_1080_15569543_2024_2382989 crossref_primary_10_1016_j_fbio_2025_106117 crossref_primary_10_1038_s41598_023_46696_7 crossref_primary_10_3390_agronomy13020493 crossref_primary_10_5010_JPB_2024_51_033_337 crossref_primary_10_1007_s11240_024_02739_z crossref_primary_10_1016_j_pmpp_2024_102370 crossref_primary_10_1186_s12870_024_05811_0 crossref_primary_10_1016_j_fochx_2025_102326 crossref_primary_10_1016_j_jhazmat_2024_136971 crossref_primary_10_1007_s12633_024_03215_1 crossref_primary_10_1007_s10534_025_00670_0 crossref_primary_10_1007_s40003_024_00813_8 crossref_primary_10_1007_s44372_025_00155_x crossref_primary_10_3390_molecules27185823 crossref_primary_10_1186_s40538_024_00689_4 crossref_primary_10_4081_ija_2024_2219 crossref_primary_10_3390_foods13010072 crossref_primary_10_1016_j_plaphy_2023_108006 crossref_primary_10_1080_09670262_2024_2447264 crossref_primary_10_1007_s10725_024_01125_1 crossref_primary_10_1007_s10142_024_01505_w crossref_primary_10_1016_j_indcrop_2023_117664 crossref_primary_10_1186_s42397_023_00164_9 crossref_primary_10_3389_fmicb_2023_1255921 crossref_primary_10_3390_agriculture13101983 crossref_primary_10_3390_toxics12090653 crossref_primary_10_33003_fjs_2024_0803_2458 crossref_primary_10_1590_s0102_0536_20220201 crossref_primary_10_1007_s40502_024_00799_z crossref_primary_10_1590_1807_1929_agriambi_v28n1e270704 crossref_primary_10_3390_agronomy13123076 crossref_primary_10_1007_s42161_022_01289_7 crossref_primary_10_3390_plants14030410 crossref_primary_10_1007_s12038_023_00364_0 crossref_primary_10_1016_j_molp_2024_03_003 crossref_primary_10_3389_fmicb_2023_1198131 crossref_primary_10_3390_ijms24043755 crossref_primary_10_1007_s11816_024_00918_0 crossref_primary_10_3390_horticulturae9020172 crossref_primary_10_1039_D4EW00576G crossref_primary_10_3390_agronomy13061502 crossref_primary_10_3390_plants13060778 crossref_primary_10_1016_j_plaphy_2023_108261 crossref_primary_10_3390_antiox13101223 crossref_primary_10_3390_w16243633 crossref_primary_10_1016_j_heliyon_2023_e22148 crossref_primary_10_1371_journal_pone_0315819 crossref_primary_10_1007_s00792_024_01346_2 crossref_primary_10_1007_s11756_022_01268_4 crossref_primary_10_3389_fpls_2023_1079656 crossref_primary_10_3390_metabo14120711 crossref_primary_10_3390_horticulturae9111196 crossref_primary_10_3390_microorganisms11112654 crossref_primary_10_2478_aoas_2022_0057 crossref_primary_10_3390_medicina60050804 crossref_primary_10_3390_agronomy13071675 crossref_primary_10_1016_j_eti_2024_103673 crossref_primary_10_1016_j_sajb_2025_02_030 crossref_primary_10_1038_s41598_025_92798_9 crossref_primary_10_1016_j_chemosphere_2022_136207 crossref_primary_10_3389_fchem_2024_1414646 crossref_primary_10_3390_su151511768 crossref_primary_10_1007_s11270_025_07875_6 crossref_primary_10_3923_ijbs_2023_01_09 crossref_primary_10_1016_j_micres_2024_127827 crossref_primary_10_1016_j_heliyon_2024_e31544 crossref_primary_10_3390_oxygen2030025 crossref_primary_10_1007_s42729_024_01903_w crossref_primary_10_31857_S0555109923050185 crossref_primary_10_3390_ijms25074018 crossref_primary_10_30970_sbi_1802_778 crossref_primary_10_3390_jof10050320 crossref_primary_10_3390_ijms241310960 crossref_primary_10_3390_ijms231911773 crossref_primary_10_3390_plants11131620 crossref_primary_10_3390_plants13182630 crossref_primary_10_3390_horticulturae11010047 crossref_primary_10_3390_jof10050329 crossref_primary_10_1007_s10343_023_00890_9 crossref_primary_10_1134_S0003683823050186 crossref_primary_10_1007_s42729_022_01080_8 crossref_primary_10_1186_s12870_024_05496_5 crossref_primary_10_1039_D4NJ05538A crossref_primary_10_3389_fpls_2023_1104874 crossref_primary_10_1080_21645698_2025_2469942 crossref_primary_10_3390_cells13121035 crossref_primary_10_1002_pmic_202200108 crossref_primary_10_1016_j_jplph_2025_154455 crossref_primary_10_1007_s00344_022_10839_3 crossref_primary_10_3390_ijms25179367 crossref_primary_10_3390_plants13020293 crossref_primary_10_1002_cbdv_202402184 crossref_primary_10_1016_j_ecoenv_2025_117732 crossref_primary_10_1038_s41598_024_64056_x crossref_primary_10_1007_s10725_022_00956_0 crossref_primary_10_3389_fpls_2025_1540266 crossref_primary_10_3390_plants13202934 crossref_primary_10_1016_j_jhazmat_2024_134875 crossref_primary_10_1186_s12870_024_05511_9 crossref_primary_10_1038_s41598_024_76194_3 crossref_primary_10_1016_j_talanta_2025_127751 crossref_primary_10_3389_fmicb_2023_1210890 crossref_primary_10_3390_ijpb14010026 crossref_primary_10_1038_s41598_024_70164_5 crossref_primary_10_3390_plants13111431 crossref_primary_10_3390_agronomy14091949 crossref_primary_10_1016_j_jhazmat_2024_135968 crossref_primary_10_3389_fpls_2022_881032 crossref_primary_10_1186_s12870_024_05709_x crossref_primary_10_1134_S102144372360099X crossref_primary_10_1590_1807_1929_agriambi_v26n10p747_752 crossref_primary_10_3389_fpls_2024_1423625 |
Cites_doi | 10.1007/s00299-008-0643-5 10.1016/j.micres.2015.12.003 10.1111/1462-2920.12439 10.1016/j.plaphy.2019.02.005 10.1007/s11103-015-0301-6 10.5772/60477 10.1016/j.apsoil.2007.12.006 10.3390/ijms21041437 10.1134/S1021443708060071 10.1111/j.1469-8137.2007.02047.x 10.1007/s10535-006-0054-9 10.1094/PHYTO-03-10-0091 10.1016/j.plaphy.2013.10.012 10.1071/FP02144 10.3389/fpls.2020.618835 10.3390/antiox8120641 10.1104/pp.17.00317 10.1186/s40659-018-0197-0 10.1093/jxb/eri039 10.1073/pnas.0407960102 10.1089/ars.2012.5052 10.1111/j.1744-7909.2009.00886.x 10.1016/S0020-1693(00)91627-X 10.1093/pcp/pci246 10.1016/j.sjbs.2021.05.040 10.1104/pp.118.2.637 10.1007/978-3-319-75088-0 10.1105/tpc.105.039404 10.1093/jxb/eri134 10.1111/j.1469-8137.2010.03509.x 10.1104/pp.20.00388 10.1007/BF00028744 10.1111/j.1439-037X.2009.00378.x 10.1007/s10725-009-9418-4 10.1016/S1016-8478(23)13224-9 10.1105/tpc.113.117028 10.3732/ajb.90.9.1400 10.1016/j.phytochem.2004.06.023 10.1016/j.mam.2018.07.002 10.1038/289310a0 10.1093/jxb/erf090 10.1111/j.1365-313X.2007.03266.x 10.1093/jxb/erv089 10.1007/BF00020803 10.1016/j.envexpbot.2018.02.001 10.1186/s40529-014-0054-6 10.3390/ijms22084281 10.1111/j.1744-7909.2010.00921.x 10.1080/09168451.2016.1256759 10.1016/0167-4838(84)90337-6 10.1007/s11356-012-1461-4 10.1186/s12870-019-1707-0 10.1080/07352689409701914 10.1016/0003-9861(85)90167-5 10.1093/pcp/pcv063 10.1016/j.ecoenv.2004.06.010 10.1016/j.envexpbot.2005.03.002 10.1016/j.micres.2019.126388 10.1016/j.scienta.2018.06.069 10.1093/jxb/ers335 10.3390/agronomy3040648 10.1111/j.1399-3054.1991.tb02490.x 10.1105/tpc.106.043992 10.1146/annurev-arplant-042817-040322 10.3389/fpls.2016.00471 10.1016/S2095-3119(13)60279-8 10.1016/j.jff.2020.103917 10.1007/s00299-008-0556-3 10.1007/BF02535334 10.1111/j.1365-3040.2005.01419.x 10.1016/j.rsci.2018.06.002 10.1023/A:1005742916292 10.1007/s00425-006-0417-7 10.1038/s41598-018-27032-w 10.1046/j.1365-313X.1993.03040527.x 10.1073/pnas.0635176100 10.1111/j.0031-9317.2004.00308.x 10.1371/journal.pone.0052565 10.1007/s10725-010-9479-4 10.1016/j.plaphy.2010.01.004 10.1111/j.1365-313X.2007.03305.x 10.1146/annurev.arplant.56.032604.144301 10.1016/j.plaphy.2013.05.032 10.1089/ars.2012.5074 10.1016/j.plaphy.2010.08.016 10.1016/S0031-9422(98)00282-9 10.1016/j.plaphy.2017.11.018 10.1007/s11738-004-0011-1 10.1007/s00299-011-1056-4 10.1016/j.plantsci.2004.04.028 10.3390/antiox6040099 10.1105/tpc.15.00144 10.3389/fpls.2019.01178 10.1016/j.redox.2020.101525 10.1007/s00726-006-0407-x 10.3389/fpls.2019.00800 10.1093/jxb/erq282 10.1016/j.niox.2016.12.010 10.1016/S0300-483X(02)00196-8 10.1104/pp.103.4.1067 10.1016/0167-4781(88)90030-9 10.1104/pp.102.2.691 10.1007/s00709-012-0378-6 10.1089/ars.2018.7601 10.1007/978-94-017-2660-3 10.1242/dev.164376 10.1007/BF00043878 10.1089/ars.2006.8.152 10.1089/ars.2009.2887 10.1007/s10535-014-0390-0 10.3389/fenvs.2014.00053 10.1111/jipb.12649 10.1016/j.plantsci.2004.03.032 10.1007/s00709-015-0755-z 10.1104/pp.107.113613 10.1016/S0021-9258(18)67210-2 10.1016/S1011-1344(96)07470-2 10.1093/jxb/erv084 10.1007/s11540-010-9178-6 10.1016/j.freeradbiomed.2018.03.033 10.1104/pp.89.3.952 10.1038/s41598-020-73489-z 10.3390/ijms21144858 10.1016/S0891-5849(98)00090-2 10.1007/s00425-013-1862-8 10.1104/pp.104.054908 10.1111/j.1365-3040.2009.02041.x 10.3390/ijms13044458 10.1093/jxb/erv099 10.1515/opag-2021-0040 10.1111/tpj.12386 10.1016/j.tplants.2008.10.004 10.1371/journal.pone.0060109 10.21273/JASHS.124.4.330 10.1016/j.jmb.2008.06.083 10.1111/j.1365-3040.1992.tb00988.x 10.1093/jexbot/52.364.2115 10.1111/nph.16086 10.1016/j.bbabio.2011.04.012 10.1016/j.envexpbot.2016.01.008 10.1016/0076-6879(93)14065-Q 10.1080/10715769900301561 10.1016/S0021-9258(17)38813-0 10.1073/pnas.231178298 10.1016/0167-4889(94)90284-4 10.1104/pp.105.3.1015 10.1201/b12954 10.1016/j.plantsci.2012.07.014 10.1007/s00425-020-03414-1 10.1007/s00709-011-0365-3 10.1556/AAgr.57.2009.1.1 10.1093/jxb/ert375 10.1007/s11738-007-0072-z 10.1105/tpc.108.061341 10.1016/S1360-1385(97)01018-2 10.1007/s11738-011-0881-y 10.1074/jbc.M304987200 10.1007/s11274-010-0572-7 10.1104/pp.106.077073 10.2307/3869254 10.1016/0005-2736(81)90572-1 10.1023/A:1001898310321 10.1093/acprof:oso/9780198717478.001.0001 10.1016/j.bbagen.2012.08.003 10.1104/pp.108.117614 10.1016/j.tplants.2009.01.008 10.3389/fpls.2017.00581 10.17221/410-PSE 10.1016/S0981-9428(02)01414-6 10.1016/0014-5793(94)00923-6 10.3389/fpls.2016.01574 10.1016/j.plaphy.2014.05.007 10.1186/s12870-016-0856-7 10.1016/j.plantsci.2020.110604 10.1111/pce.13453 10.1080/09168451.2015.1135042 10.1007/s10535-005-5308-4 10.1016/j.apsoil.2016.04.009 10.1007/s00344-012-9283-7 10.1016/S0168-9452(00)00457-X 10.1016/j.freeradbiomed.2007.03.013 10.1074/jbc.M802601200 10.3389/fpls.2013.00314 10.1017/S0021859609008806 10.1007/s00425-005-0125-8 10.1111/ppl.12583 10.1016/j.scienta.2018.04.068 10.1074/jbc.M307525200 10.1016/j.semcdb.2017.07.013 10.1016/j.plantsci.2005.09.005 10.1111/j.1365-313X.2006.02837.x 10.1016/j.jplph.2011.08.002 10.1016/j.jhazmat.2016.05.032 10.1016/S1360-1385(02)02312-9 10.1016/j.jplph.2007.07.013 10.3390/cells8020086 10.3389/fpls.2016.00230 10.1179/135100008X259141 10.1111/j.1399-3054.1992.tb04728.x 10.1007/BF00014973 10.1016/j.freeradbiomed.2019.02.006 10.1007/s11738-012-1142-4 10.1016/j.envexpbot.2019.06.004 10.1111/j.1365-313X.2004.02105.x 10.1094/MPMI-21-7-0958 10.1016/j.jplph.2011.09.004 10.1016/j.envexpbot.2018.05.003 10.1023/B:GROW.0000014891.35427.7b 10.1089/ars.2009.2842 10.1146/annurev.arplant.59.032607.092945 10.1007/s12298-014-0224-8 10.1016/S0098-8472(03)00063-7 10.1590/1678-4685-GMB-2015-0192 10.1016/j.scienta.2013.08.016 10.1104/pp.112.1.327 10.1104/pp.100.3.1605 10.1271/bbb.90305 10.1016/j.plantsci.2010.01.004 10.1046/j.1365-313X.2003.01715.x 10.1053/plac.2001.0650 10.1002/dvg.1020100405 10.1016/j.jplph.2010.09.003 10.1073/pnas.1016060108 10.1038/s41586-020-2032-3 10.1093/jxb/eraa107 10.3390/antiox8090384 10.1016/j.plaphy.2018.07.036 10.1007/BF00226730 10.1007/s11120-005-8811-8 10.1007/s11738-007-0059-9 10.1089/152308603321223531 10.1104/pp.19.01556 10.3390/microorganisms8060823 10.1104/pp.114.245324 10.1007/s00248-013-0326-9 10.1007/s11738-011-0806-9 10.1111/j.1365-3040.2009.02028.x 10.1093/jxb/erm144 10.1007/s12374-014-0383-8 10.1016/j.plantsci.2003.08.005 10.1111/j.1469-8137.2006.01643.x 10.1104/pp.110.1.125 10.1016/j.envexpbot.2014.11.004 10.1016/j.plaphy.2006.10.020 10.1007/s10725-010-9526-1 10.3389/fphys.2012.00182 10.1016/j.ceca.2017.01.007 10.1071/FP04235 10.1074/jbc.M702831200 10.1080/17429145.2010.535178 10.1111/j.1744-7909.2008.00741.x 10.1016/j.jplph.2016.01.016 10.1007/s004250050699 10.3389/fpls.2011.00103 10.1016/j.jplph.2005.10.002 10.1016/j.plantsci.2003.11.004 10.1016/j.tplants.2008.10.007 10.1016/j.jplph.2006.03.010 10.3389/fpls.2021.683546 10.1073/pnas.92.13.5930 10.1016/j.sjbs.2014.12.001 10.1016/0003-9861(90)90256-X 10.1007/s11816-010-0152-1 10.1007/s10725-018-0420-6 10.1098/rstb.2000.0710 10.1007/BF02524257 10.1111/j.1399-3054.1987.tb09240.x 10.3389/fpls.2020.591911 10.1016/j.isci.2019.05.014 10.1080/15228861003776175 10.1104/pp.108.122119 10.1007/s11738-014-1756-9 10.1007/978-1-4939-7136-7_13 10.1093/pcp/pcp134 10.1016/j.phytochem.2007.06.010 10.1016/j.jplph.2008.12.014 10.1111/j.1399-3054.2006.00611.x 10.1080/17429145.2014.902125 10.3389/fpls.2015.00069 10.1007/s00425-003-1192-3 10.1007/s11738-008-0189-8 10.1093/pcp/pcv203 10.1007/BF02522884 10.1007/s10725-005-0002-2 10.1590/S0100-879X2005000700003 10.5897/AJB2015.14405 10.1104/pp.99.4.1726 10.3389/fpls.2016.00187 10.1104/pp.121.3.1047 10.3389/fpls.2020.00169 10.1038/srep19498 10.1105/tpc.104.026971 10.1146/annurev-arplant-050718-095955 10.3389/fpls.2016.01408 10.1046/j.1365-2249.2003.02104.x 10.1111/tpj.14791 10.4161/psb.5.2.10527 10.1104/pp.106.1.399 10.1007/s00709-010-0210-0 10.1104/pp.15.00293 10.1080/17429145.2010.513484 10.1007/s00425-009-1075-3 10.1007/s10646-012-0945-9 10.1016/j.tplants.2009.11.009 10.1016/j.bbrc.2020.11.006 10.1093/pcp/pcf103 10.4161/psb.6.5.15069 10.5897/AJAR2014.8575 10.1007/s11738-009-0275-6 10.1093/jexbot/53.372.1331 10.1016/S0168-9452(01)00450-2 10.1016/j.bbrc.2017.12.054 10.1093/pcp/pct072 10.1105/tpc.105.033589 10.1016/j.bbabio.2010.11.002 10.1016/j.tplants.2004.08.009 10.1104/pp.106.085506 10.1146/annurev.arplant.50.1.601 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION NPM 7QP 7TK 8FD 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 7S9 L.6 5PM DOA |
DOI | 10.3390/biology11020155 |
DatabaseName | CrossRef PubMed Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Genetics Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef PubMed MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ: Directory of Open Access Journal (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2079-7737 |
ExternalDocumentID | oai_doaj_org_article_5cdcb272dc5f4b43a17d9022215d91b1 PMC8869449 35205022 10_3390_biology11020155 |
Genre | Journal Article Review |
GroupedDBID | 2XV 53G 5VS 8FE 8FH AADQD AAFWJ AAHBH AAYXX ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION EBD GROUPED_DOAJ HCIFZ HYE IAO IHR ITC KQ8 LK8 M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM ISR NPM 7QP 7TK 8FD ABUWG AZQEC DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c520t-a195775f3dadceb44ef3589996cf7cefc68608cb141b090fa1b386475f8ab3f93 |
IEDL.DBID | M48 |
ISSN | 2079-7737 |
IngestDate | Wed Aug 27 01:29:24 EDT 2025 Thu Aug 21 18:11:25 EDT 2025 Fri Jul 11 12:13:40 EDT 2025 Fri Jul 11 16:21:07 EDT 2025 Fri Jul 25 11:57:37 EDT 2025 Thu Jan 02 22:56:56 EST 2025 Tue Jul 01 01:28:43 EDT 2025 Thu Apr 24 22:52:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | oxidative damage environmental stress antioxidants reactive oxygen species |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c520t-a195775f3dadceb44ef3589996cf7cefc68608cb141b090fa1b386475f8ab3f93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3520-3994 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/biology11020155 |
PMID | 35205022 |
PQID | 2632247162 |
PQPubID | 2032427 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5cdcb272dc5f4b43a17d9022215d91b1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8869449 proquest_miscellaneous_2648847013 proquest_miscellaneous_2633852111 proquest_journals_2632247162 pubmed_primary_35205022 crossref_primary_10_3390_biology11020155 crossref_citationtrail_10_3390_biology11020155 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220118 |
PublicationDateYYYYMMDD | 2022-01-18 |
PublicationDate_xml | – month: 1 year: 2022 text: 20220118 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Biology (Basel, Switzerland) |
PublicationTitleAlternate | Biology (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_257 ref_139 Jiang (ref_173) 2002; 53 Grover (ref_34) 2010; 27 Shrivastava (ref_297) 2014; 22 Kerdnaimongkol (ref_115) 1999; 124 Eltayeb (ref_186) 2007; 225 Niu (ref_284) 2016; 7 ref_99 ref_251 Agati (ref_270) 2012; 196 RoyChoudhury (ref_214) 2012; 66 Krasylenko (ref_46) 2020; 44 Liebler (ref_210) 1986; 261 Ushimaru (ref_201) 2006; 163 Johnson (ref_261) 2007; 282 Ni (ref_93) 1991; 3 Logan (ref_166) 2003; 90 Eising (ref_90) 1990; 278 Farago (ref_224) 1979; 32 Melchior (ref_9) 2018; 63 Kim (ref_204) 2013; 237 Havaux (ref_256) 2013; 79 Lin (ref_68) 2013; 162 Kliebenstein (ref_50) 1998; 118 Rossel (ref_140) 2005; 29 Paul (ref_313) 2008; 59 Tewari (ref_56) 2004; 166 Zhang (ref_125) 2020; 299 ref_241 Shintu (ref_312) 2015; 2 Corpas (ref_95) 1999; 31 ref_124 Redinbaugh (ref_103) 1988; 951 Kankofer (ref_292) 2001; 22 Barczyk (ref_333) 2013; 20 Ivanov (ref_154) 2012; 250 Baxter (ref_22) 2013; 65 Sharma (ref_223) 1998; 49 Almeselmani (ref_348) 2009; 57 Jamdhade (ref_54) 2017; 1631 Gao (ref_326) 2008; 54 Marino (ref_7) 2010; 189 Almeida (ref_114) 2005; 32 Hoque (ref_226) 2007; 164 Azzi (ref_253) 2007; 43 (ref_317) 2008; 30 ref_158 Roychoudhury (ref_338) 2008; 27 Lima (ref_67) 2018; 149 Chevalier (ref_98) 1992; 99 Guo (ref_238) 2006; 12 Sharma (ref_219) 2009; 14 ref_150 Kaur (ref_184) 2011; 2 ref_78 Banik (ref_308) 2016; 126 Guo (ref_168) 2016; 316 Waszczak (ref_274) 2015; 66 Soll (ref_234) 1985; 238 Vardharajula (ref_293) 2011; 6 Pilon (ref_49) 2011; 1807 Wang (ref_290) 2013; 4 Alegre (ref_352) 2000; 210 Bowler (ref_66) 1994; 13 Nath (ref_21) 2016; 7 Lichtenthaler (ref_233) 1981; 641 Gomathi (ref_266) 2011; 3 Farnese (ref_285) 2016; 7 Finnegan (ref_273) 2012; 3 Chen (ref_189) 2006; 142 Esaka (ref_82) 1997; 33 Kleff (ref_91) 1994; 1224 Sharma (ref_152) 2012; 2012 Noshi (ref_194) 2016; 80 ref_260 ref_89 Suzuki (ref_141) 2012; 64 Stephenie (ref_58) 2020; 68 Suzuki (ref_278) 2010; 12 Matringe (ref_244) 2008; 147 Yordanova (ref_57) 2004; 51 Myouga (ref_52) 2008; 20 Szarka (ref_211) 2012; 13 Zhang (ref_323) 2011; 30 Zhang (ref_295) 2016; 7 Mhamdi (ref_101) 2010; 61 Wu (ref_276) 2020; 578 ref_213 Wang (ref_164) 2018; 495 Eltelib (ref_203) 2011; 168 Hu (ref_79) 2016; 39 Das (ref_26) 2014; 2 Rolli (ref_35) 2014; 17 Mullineaux (ref_212) 2005; 86 Chen (ref_198) 2003; 100 (ref_288) 2015; 37 Sairam (ref_345) 1998; 41 Srivastava (ref_156) 2010; 64 (ref_178) 2004; 42 Ivanov (ref_243) 2003; 5 Trebak (ref_282) 2010; 12 Halliwell (ref_250) 2006; 141 Naseem (ref_301) 2014; 9 Yu (ref_172) 2013; 25 Chen (ref_205) 2008; 283 Waszczak (ref_275) 2018; 69 Su (ref_121) 2018; 60 Kaur (ref_349) 2018; 8 DellaPenna (ref_264) 2006; 57 Jahns (ref_263) 2012; 1817 Yi (ref_62) 2016; 194 (ref_195) 2010; 217 Kumar (ref_350) 2011; 34 Vandenabeele (ref_128) 2004; 39 Yin (ref_169) 2017; 161 Corpas (ref_174) 2006; 170 Yin (ref_202) 2009; 231 Rahman (ref_2) 2021; 6 Qayyum (ref_346) 2021; 28 Wong (ref_39) 2008; 21 Fini (ref_269) 2011; 6 Skadsen (ref_85) 1995; 29 Sewelam (ref_5) 2016; 7 Vaidyanathan (ref_339) 2003; 165 Hyun (ref_254) 2010; 5 Saradhi (ref_221) 1997; 38 Delledonne (ref_289) 2001; 98 Roychoudhury (ref_332) 2013; 1 Hoque (ref_228) 2008; 165 Kukreja (ref_319) 2005; 49 DellaPenna (ref_242) 2006; 126 Bhattacharjee (ref_6) 2005; 89 Niak (ref_209) 2004; 26 Walters (ref_305) 2009; 147 Gabara (ref_321) 2007; 30 Sultana (ref_187) 2011; 169 Sandhya (ref_37) 2010; 62 Foyer (ref_13) 2018; 154 Mori (ref_118) 1993; 102 Yang (ref_122) 2018; 42 Asada (ref_149) 1992; 85 Corpas (ref_130) 2017; 68 Harish (ref_304) 2008; 39 Kanwischer (ref_235) 2005; 137 Schultes (ref_109) 1994; 106 Sakihama (ref_271) 2002; 177 Chakraborty (ref_344) 2011; 6 Sakajo (ref_120) 1987; 165 ref_230 Ansary (ref_310) 2012; 3 Wang (ref_306) 2012; 20 ref_353 Palma (ref_123) 2020; 34 Wang (ref_179) 2006; 170 Chutipaijit (ref_342) 2009; 41 Miller (ref_27) 2010; 33 Chin (ref_145) 2019; 16 Chen (ref_146) 2014; 166 Berkholz (ref_160) 2008; 382 Gill (ref_20) 2010; 48 Eastmond (ref_185) 2007; 19 Kasim (ref_40) 2012; 32 Nahar (ref_31) 2018; 25 Chen (ref_225) 2005; 102 Potters (ref_200) 2002; 40 ref_102 Kaul (ref_218) 2008; 34 Havaux (ref_262) 2009; 14 Badawi (ref_327) 2004; 121 Sharma (ref_134) 2004; 167 Floyd (ref_220) 1984; 790 Cui (ref_280) 2019; 134 Davletova (ref_143) 2005; 17 Ju (ref_69) 2018; 130 Kiffin (ref_232) 2006; 8 Young (ref_255) 1991; 83 Batool (ref_294) 2020; 10 Ngumbi (ref_302) 2016; 105 Armada (ref_311) 2013; 67 Szabados (ref_216) 2010; 15 Smirnoff (ref_199) 2018; 122 Appelqvist (ref_231) 1996; 31 Ahsan (ref_3) 2003; 131 Rady (ref_61) 2018; 240 Mishra (ref_155) 2010; 248 Brunner (ref_163) 2018; 86 Li (ref_325) 2013; 12 Wadsworth (ref_104) 1989; 10 ref_16 (ref_88) 1991; 199 Foyer (ref_17) 2005; 17 Yang (ref_303) 2009; 14 Abler (ref_107) 1991; 81 Granlund (ref_138) 2009; 50 Han (ref_208) 2013; 18 Hartmann (ref_43) 2021; 12 Mishra (ref_340) 2011; 250 Havir (ref_117) 1989; 89 Miller (ref_272) 1997; 2 Tuzet (ref_75) 2019; 30 Joo (ref_80) 2014; 57 Berg (ref_36) 2013; 3 Azpilicueta (ref_92) 2008; 13 Pereyra (ref_41) 2006; 44 Mhamdi (ref_18) 2018; 145 Atak (ref_341) 2018; 25 Kadota (ref_8) 2015; 56 Shinozaki (ref_236) 1994; 6 Maeda (ref_252) 2006; 18 Shafi (ref_72) 2015; 87 Karpinski (ref_161) 1997; 9 Guan (ref_106) 1996; 30 Rao (ref_330) 1996; 110 Srivastava (ref_148) 2005; 56 Igamberdiev (ref_248) 2004; 219 Rahantaniaina (ref_188) 2017; 174 Xu (ref_354) 2008; 69 Willekens (ref_84) 1994; 352 Ma (ref_44) 2020; 11 Wang (ref_63) 1993; 13 Isin (ref_94) 1991; 17 Suzuki (ref_111) 1994; 25 (ref_287) 2015; 66 Hempel (ref_283) 2017; 63 Sudhakar (ref_177) 2001; 161 Foyer (ref_48) 2020; 71 Schmidt (ref_119) 2006; 223 Maruta (ref_136) 2016; 57 Gill (ref_176) 2013; 70 Xing (ref_129) 2007; 58 Fryer (ref_247) 1992; 15 Roychoudhury (ref_337) 2011; 34 Asada (ref_151) 1999; 50 DellaPenna (ref_245) 2009; 48 Luna (ref_112) 2005; 56 Fukuzawa (ref_249) 1982; 17 Jha (ref_38) 2014; 20 Trelstad (ref_217) 1981; 289 Parida (ref_147) 2005; 60 Demirel (ref_1) 2020; 11 Frugoli (ref_76) 1996; 112 Yalcinkaya (ref_277) 2019; 165 Kataya (ref_159) 2010; 5 Song (ref_157) 2012; 21 Sharma (ref_335) 2005; 46 Huang (ref_23) 2019; 10 Xia (ref_19) 2015; 66 Dias (ref_70) 2019; 137 Matysik (ref_222) 2002; 82 Basu (ref_336) 2009; 60 Passardi (ref_153) 2004; 65 Mittler (ref_25) 2004; 9 Chew (ref_137) 2003; 278 Morita (ref_96) 1994; 105 Shabankareh (ref_351) 2021; 11 Li (ref_240) 2010; 178 Scandalios (ref_77) 2005; 38 Bafeel (ref_239) 2008; 10 Wu (ref_113) 1995; 108 Rasool (ref_28) 2012; 35 Mafakheri (ref_318) 2010; 4 Noctor (ref_47) 2018; 80 (ref_14) 2016; 57 Marty (ref_170) 2019; 224 Kim (ref_328) 2005; 38 Contreras (ref_32) 2018; 51 Xing (ref_73) 2013; 54 Takshak (ref_322) 2014; 58 Yasar (ref_30) 2008; 55 Bindschedler (ref_15) 2006; 47 Du (ref_81) 2008; 50 Contento (ref_100) 2010; 48 Ding (ref_190) 2020; 71 Maruta (ref_135) 2012; 1820 Pandey (ref_144) 2017; 8 Ono (ref_131) 2020; 534 ref_296 Mastouri (ref_314) 2010; 100 Sales (ref_55) 2013; 73 ref_298 Yogendra (ref_33) 2015; 14 Dimkpa (ref_42) 2009; 32 Lee (ref_108) 2005; 20 Eyidogan (ref_320) 2007; 29 Zou (ref_133) 2015; 27 Pnueli (ref_142) 2003; 34 Drory (ref_86) 1992; 100 ref_182 Chauhan (ref_347) 2015; 252 ref_181 Guan (ref_105) 1993; 3 Rizhsky (ref_74) 2003; 278 Ciacka (ref_279) 2020; 252 Laissue (ref_281) 2017; 8 Aghaei (ref_334) 2009; 51 Meena (ref_116) 2016; 7 Noshi (ref_192) 2017; 81 Yogendra (ref_315) 2014; 9 Alam (ref_97) 2018; 123 Obara (ref_183) 2002; 43 Vurukonda (ref_309) 2016; 184 Boguszewska (ref_71) 2010; 53 Hossain (ref_180) 1985; 260 ref_65 ref_64 Islam (ref_229) 2009; 73 Haldimann (ref_307) 2007; 174 Lindermayr (ref_286) 2015; 167 Lucas (ref_300) 2014; 82 Gleason (ref_12) 2011; 108 Yoshida (ref_193) 2006; 47 Wang (ref_191) 2010; 52 Talbi (ref_29) 2015; 111 ref_291 (ref_258) 1987; 69 Xu (ref_343) 2006; 56 ref_197 Liang (ref_215) 2013; 19 Grace (ref_267) 2000; 355 Kornyeyev (ref_165) 2003; 30 Morgan (ref_53) 2008; 147 Krasylenko (ref_11) 2021; 11 Sumugat (ref_171) 2010; 11 Wang (ref_329) 2004; 167 Guan (ref_83) 1995; 92 Wang (ref_126) 2009; 195 (ref_175) 2001; 160 Malar (ref_331) 2016; 55 Mylona (ref_127) 1998; 25 Niewiadomska (ref_110) 2009; 166 Zlatev (ref_316) 2006; 50 Xu (ref_227) 2008; 28 Mittler (ref_10) 2002; 7 Dowdle (ref_206) 2007; 52 Carlson (ref_299) 2019; 232 Li (ref_265) 2008; 147 Sandalio (ref_324) 2001; 52 ref_45 Li (ref_59) 2018; 238 Terai (ref_207) 2020; 183 Gupta (ref_60) 1993; 103 Do (ref_196) 2016; 6 Bueso (ref_132) 2007; 52 Petrov (ref_24) 2015; 6 Schwarz (ref_237) 1999; 121 Cogdell (ref_259) 1993; 214 Wang (ref_162) 2020; 103 Chen (ref_87) 2012; 169 Jaleel (ref_4) 2009; 31 Michalak (ref_268) 2006; 15 Alscher (ref_51) 2002; 53 Wang (ref_167) 2019; 10 Kagan (ref_246) 2000; 214 |
References_xml | – volume: 28 start-page: 325 year: 2008 ident: ref_227 article-title: Protective effects of proline against cadmium toxicity in micropropagated hyperaccumulator, Solanum nigrum L. publication-title: Plant Cell Rep. doi: 10.1007/s00299-008-0643-5 – volume: 184 start-page: 13 year: 2016 ident: ref_309 article-title: Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria publication-title: Microbiol. Res. doi: 10.1016/j.micres.2015.12.003 – volume: 17 start-page: 316 year: 2014 ident: ref_35 article-title: Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.12439 – volume: 137 start-page: 121 year: 2019 ident: ref_70 article-title: Lead induces oxidative stress in Pisum sativum plants and changes the levels of phytohormones with antioxidant role publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2019.02.005 – volume: 38 start-page: 218 year: 2005 ident: ref_328 article-title: Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barley roots under saline stress publication-title: J. Biochem. Mol. Biol. – volume: 87 start-page: 615 year: 2015 ident: ref_72 article-title: Expression of SOD and APX genes positively regulates secondary cell wall biosynthesis and promotes plant growth and yield in Arabidopsis under salt stress publication-title: Plant Mol. Biol. doi: 10.1007/s11103-015-0301-6 – ident: ref_150 doi: 10.5772/60477 – volume: 39 start-page: 187 year: 2008 ident: ref_304 article-title: Biohardening with Plant Growth Promoting Rhizosphere and Endophytic bacteria induces systemic resistance against Banana bunchy top virus publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2007.12.006 – ident: ref_124 doi: 10.3390/ijms21041437 – volume: 55 start-page: 782 year: 2008 ident: ref_30 article-title: Effect of salt stress on antioxidant defense systems, lipid peroxidation, and chlorophyll content in green bean publication-title: Russ. J. Plant Physiol. doi: 10.1134/S1021443708060071 – volume: 174 start-page: 799 year: 2007 ident: ref_307 article-title: Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery publication-title: New Phytol. doi: 10.1111/j.1469-8137.2007.02047.x – volume: 50 start-page: 389 year: 2006 ident: ref_316 article-title: Comparison of resistance to drought of three bean cultivars publication-title: Biol. Plant. doi: 10.1007/s10535-006-0054-9 – volume: 100 start-page: 1213 year: 2010 ident: ref_314 article-title: Seed Treatment with Trichoderma harzianum Alleviates Biotic, Abiotic, and Physiological Stresses in Germinating Seeds and Seedlings publication-title: Phytopathology doi: 10.1094/PHYTO-03-10-0091 – volume: 73 start-page: 326 year: 2013 ident: ref_55 article-title: Superoxide dismutase and ascorbate peroxidase improve the recovery of photosynthesis in sugarcane plants subjected to water deficit and low substrate temperature publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2013.10.012 – volume: 30 start-page: 101 year: 2003 ident: ref_165 article-title: Elevated chloroplastic glutathione reductase activities decrease chilling-induced photoinhibition by increasing rates of photochemistry, but not thermal energy dissipation, in transgenic cotton publication-title: Funct. Plant Biol. doi: 10.1071/FP02144 – volume: 11 start-page: 618835 year: 2021 ident: ref_11 article-title: Signaling Toward Reactive Oxygen Species-Scavenging Enzymes in Plants publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.618835 – ident: ref_291 doi: 10.3390/antiox8120641 – volume: 174 start-page: 956 year: 2017 ident: ref_188 article-title: Cytosolic and Chloroplastic DHARs Cooperate in Oxidative Stress-Driven Activation of the Salicylic Acid Pathway publication-title: Plant Physiol. doi: 10.1104/pp.17.00317 – volume: 51 start-page: 48 year: 2018 ident: ref_32 article-title: Copper stress induces antioxidant responses and accumulation of sugars and phytochelatins in Antarctic Colobanthus quitensis (Kunth) Bartl publication-title: Biol. Res. doi: 10.1186/s40659-018-0197-0 – volume: 56 start-page: 417 year: 2005 ident: ref_112 article-title: Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat publication-title: J. Exp. Bot. doi: 10.1093/jxb/eri039 – volume: 102 start-page: 3459 year: 2005 ident: ref_225 article-title: From The Cover: Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0407960102 – volume: 18 start-page: 2106 year: 2013 ident: ref_208 article-title: Functional Analysis of Arabidopsis Mutants Points to Novel Roles for Glutathione in Coupling H2O2 to Activation of Salicylic Acid Accumulation and Signaling publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2012.5052 – volume: 6 start-page: 251 year: 1994 ident: ref_236 article-title: A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress publication-title: Plant Cell – volume: 51 start-page: 1095 year: 2009 ident: ref_334 article-title: Potato Responds to Salt Stress by Increased Activity of Antioxidant Enzymes publication-title: J. Integr. Plant Biol. doi: 10.1111/j.1744-7909.2009.00886.x – volume: 217 start-page: 455 year: 2010 ident: ref_195 article-title: Short-Term Effects of Arsenate-Induced Toxicity on Growth, Chlorophyll and Carotenoid Contents, and Total Content of Phenolic Compounds of Azolla filiculoides publication-title: Water Air Soil Pollut. – volume: 32 start-page: L93 year: 1979 ident: ref_224 article-title: Plants which accumulate metals. Part IV. A possible copper-proline complex from the roots of armeria maritima publication-title: Inorg. Chim. Acta doi: 10.1016/S0020-1693(00)91627-X – volume: 47 start-page: 304 year: 2006 ident: ref_193 article-title: Cytosolic Dehydroascorbate Reductase is Important for Ozone Tolerance in Arabidopsisthaliana publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pci246 – volume: 48 start-page: 301 year: 2009 ident: ref_245 article-title: Biosynthesis, regulation and functions of tocochromanols in plants publication-title: Plant Physiol. Biochem. – volume: 28 start-page: 5238 year: 2021 ident: ref_346 article-title: Improvement in drought tolerance in bread wheat is related to an improvement in osmolyte production, antioxidant enzyme activities, and gaseous exchange publication-title: Saudi J. Biol. Sci. doi: 10.1016/j.sjbs.2021.05.040 – volume: 118 start-page: 637 year: 1998 ident: ref_50 article-title: Superoxide Dismutase in Arabidopsis: An Eclectic Enzyme Family with Disparate Regulation and Protein Localization publication-title: Plant Physiol. doi: 10.1104/pp.118.2.637 – ident: ref_65 doi: 10.1007/978-3-319-75088-0 – volume: 18 start-page: 2710 year: 2006 ident: ref_252 article-title: Tocopherols Play a Crucial Role in Low-Temperature Adaptation and Phloem Loading in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.105.039404 – volume: 56 start-page: 1335 year: 2005 ident: ref_148 article-title: Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic publication-title: J. Exp. Bot. doi: 10.1093/jxb/eri134 – volume: 189 start-page: 580 year: 2010 ident: ref_7 article-title: A Medicago truncatula NADPH oxidase is involved in symbiotic nodule functioning publication-title: New Phytol. doi: 10.1111/j.1469-8137.2010.03509.x – ident: ref_197 doi: 10.1104/pp.20.00388 – volume: 57 start-page: 1364 year: 2016 ident: ref_14 article-title: ROS Generation in Peroxisomes and its Role in Cell Signaling publication-title: Plant Cell Physiol. – volume: 66 start-page: 29 year: 2012 ident: ref_214 article-title: Transgenic plants: Benefits and controversies publication-title: J. Bot. Soc. Bengal – volume: 17 start-page: 1263 year: 1991 ident: ref_94 article-title: Isolation and characterization of a pea catalase cDNA publication-title: Plant Mol. Biol. doi: 10.1007/BF00028744 – volume: 195 start-page: 377 year: 2009 ident: ref_126 article-title: Coronatine Enhances Chilling Tolerance in Cucumber (Cucumis sativus L.) Seedlings by Improving the Antioxidative Defence System publication-title: J. Agron. Crop. Sci. doi: 10.1111/j.1439-037X.2009.00378.x – volume: 60 start-page: 51 year: 2009 ident: ref_336 article-title: Differential antioxidative responses of indica rice cultivars to drought stress publication-title: Plant Growth Regul. doi: 10.1007/s10725-009-9418-4 – volume: 20 start-page: 247 year: 2005 ident: ref_108 article-title: Differential expression of three catalase genes in hot pepper (Capsicum annuum L.) publication-title: Mol. Cells doi: 10.1016/S1016-8478(23)13224-9 – volume: 25 start-page: 4451 year: 2013 ident: ref_172 article-title: Plastid-Localized Glutathione Reductase2-Regulated Glutathione Redox Status Is Essential for Arabidopsis Root Apical Meristem Maintenance publication-title: Plant Cell doi: 10.1105/tpc.113.117028 – volume: 90 start-page: 1400 year: 2003 ident: ref_166 article-title: Transgenic overproduction of glutathione reductase does not protect cotton, Gossypium hirsutum (Malvaceae), from photoinhibition during growth under chilling conditions publication-title: Am. J. Bot. doi: 10.3732/ajb.90.9.1400 – volume: 65 start-page: 1879 year: 2004 ident: ref_153 article-title: The class III peroxidase multigenic family in rice and its evolution in land plants publication-title: Phytochemistry doi: 10.1016/j.phytochem.2004.06.023 – volume: 15 start-page: 523 year: 2006 ident: ref_268 article-title: Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress publication-title: Pol. J. Environ. Stud. – volume: 63 start-page: 3 year: 2018 ident: ref_9 article-title: Control of SUMO and Ubiquitin by ROS: Signaling and disease implications publication-title: Mol. Asp. Med. doi: 10.1016/j.mam.2018.07.002 – volume: 289 start-page: 310 year: 1981 ident: ref_217 article-title: Nonenzymatic hydroxylations of proline and lysine by reduced oxygen derivatives publication-title: Nature doi: 10.1038/289310a0 – volume: 8 start-page: 1 year: 2017 ident: ref_281 article-title: Photosynthesis-dependent H2O2 transfer from chloroplasts to nuclei provides a high-light signalling mechanism publication-title: Nat. Commun. – volume: 53 start-page: 2401 year: 2002 ident: ref_173 article-title: Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves publication-title: J. Exp. Bot. doi: 10.1093/jxb/erf090 – volume: 52 start-page: 673 year: 2007 ident: ref_206 article-title: Two genes in Arabidopsis thaliana encoding GDP-l-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability publication-title: Plant J. doi: 10.1111/j.1365-313X.2007.03266.x – volume: 66 start-page: 2839 year: 2015 ident: ref_19 article-title: Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv089 – volume: 30 start-page: 913 year: 1996 ident: ref_106 article-title: Isolation, characterization and expression of the maize Cat2 catalase gene publication-title: Plant Mol. Biol. doi: 10.1007/BF00020803 – volume: 149 start-page: 59 year: 2018 ident: ref_67 article-title: Antioxidant protection and PSII regulation mitigate photo-oxidative stress induced by drought followed by high light in cashew plants publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2018.02.001 – volume: 55 start-page: 54 year: 2016 ident: ref_331 article-title: Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)] publication-title: Bot. Stud. doi: 10.1186/s40529-014-0054-6 – ident: ref_89 doi: 10.3390/ijms22084281 – volume: 52 start-page: 400 year: 2010 ident: ref_191 article-title: Increased Vitamin C Content Accompanied by an Enhanced Recycling Pathway Confers Oxidative Stress Tolerance in Arabidopsis publication-title: J. Integr. Plant Biol. doi: 10.1111/j.1744-7909.2010.00921.x – volume: 81 start-page: 523 year: 2017 ident: ref_192 article-title: Arabidopsis dehydroascorbate reductase 1 and 2 modulate redox states of ascorbate-glutathione cycle in the cytosol in response to photooxidative stress publication-title: Biosci. Biotechnol. Biochem. doi: 10.1080/09168451.2016.1256759 – volume: 790 start-page: 94 year: 1984 ident: ref_220 article-title: Formation of long-lived hydroxyl free radical adducts of proline and hydroxyproline in a fenton reaction publication-title: Biochim. Biophys. Acta-Protein Struct. Mol. Enzym. doi: 10.1016/0167-4838(84)90337-6 – volume: 20 start-page: 4920 year: 2013 ident: ref_333 article-title: A comparative study of heavy metal accumulation and antioxidant responses in Vaccinium myrtillus L. leaves in polluted and non-polluted areas publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-012-1461-4 – ident: ref_99 doi: 10.1186/s12870-019-1707-0 – volume: 13 start-page: 199 year: 1994 ident: ref_66 article-title: Superoxide Dismutase in Plants publication-title: Crit. Rev. Plant Sci. doi: 10.1080/07352689409701914 – volume: 238 start-page: 290 year: 1985 ident: ref_234 article-title: Localization and synthesis of prenylquinones in isolated outer and inner envelope membranes from spinach chloroplasts publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(85)90167-5 – volume: 56 start-page: 1472 year: 2015 ident: ref_8 article-title: Regulation of the NADPH Oxidase RBOHD During Plant Immunity publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcv063 – volume: 60 start-page: 324 year: 2005 ident: ref_147 article-title: Salt tolerance and salinity effects on plants: A review publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2004.06.010 – volume: 56 start-page: 274 year: 2006 ident: ref_343 article-title: Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2005.03.002 – volume: 232 start-page: 126388 year: 2019 ident: ref_299 article-title: Rhizobacteria-induced systemic tolerance against drought stress in Sorghum bicolor (L.) Moench publication-title: Microbiol. Res. doi: 10.1016/j.micres.2019.126388 – volume: 240 start-page: 614 year: 2018 ident: ref_61 article-title: Up-regulation of antioxidative defense systems by glycine betaine foliar application in onion plants confer tolerance to salinity stress publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2018.06.069 – volume: 64 start-page: 253 year: 2012 ident: ref_141 article-title: Enhanced seed production under prolonged heat stress conditions inArabidopsis thalianaplants deficient in cytosolic ascorbate peroxidase 2 publication-title: J. Exp. Bot. doi: 10.1093/jxb/ers335 – volume: 3 start-page: 648 year: 2013 ident: ref_36 article-title: Next-Generation Bio-Products Sowing the Seeds of Success for Sustainable Agriculture publication-title: Agronomy doi: 10.3390/agronomy3040648 – volume: 83 start-page: 702 year: 1991 ident: ref_255 article-title: The photoprotective role of carotenoids in higher plants publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.1991.tb02490.x – volume: 19 start-page: 1376 year: 2007 ident: ref_185 article-title: Monodehyroascorbate reductase4 is Required for Seed Storage Oil Hydrolysis and Postgerminative Growth in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.106.043992 – volume: 12 start-page: 468 year: 2006 ident: ref_238 article-title: Overexpression of VTE1 from Arabidopsis resulting in high vitamin E accumu-lation and salt stress tolerance increase in tobacco plant publication-title: Chin. J. Appl. Environ. Biol. – volume: 69 start-page: 209 year: 2018 ident: ref_275 article-title: Reactive Oxygen Species in Plant Signaling publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042817-040322 – volume: 7 start-page: 471 year: 2016 ident: ref_285 article-title: When Bad Guys Become Good Ones: The Key Role of Reactive Oxygen Species and Nitric Oxide in the Plant Responses to Abiotic Stress publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00471 – volume: 12 start-page: 610 year: 2013 ident: ref_325 article-title: Effect of Cadmium Stress on the Growth, Antioxidative Enzymes and Lipid Peroxidation in Two Kenaf (Hibiscus cannabinus L.) Plant Seedlings publication-title: J. Integr. Agric. doi: 10.1016/S2095-3119(13)60279-8 – volume: 10 start-page: 593 year: 2008 ident: ref_239 article-title: Antioxidants and accumulation of α-tocopherol induce chilling tolerance in Medicago sativa publication-title: Int. J. Agric. Biol. – volume: 68 start-page: 103917 year: 2020 ident: ref_58 article-title: An insight on superoxide dismutase (SOD) from plants for mammalian health enhancement publication-title: J. Funct. Foods doi: 10.1016/j.jff.2020.103917 – volume: 27 start-page: 1395 year: 2008 ident: ref_338 article-title: Comparative physiological and molecular responses of a common aromatic indica rice cultivar to high salinity with non-aromatic indica rice cultivars publication-title: Plant Cell Rep. doi: 10.1007/s00299-008-0556-3 – ident: ref_64 – volume: 17 start-page: 511 year: 1982 ident: ref_249 article-title: Antioxidant activities of tocopherols on Fe2+-ascorbate-induced lipid peroxidation in lecithin liposomes publication-title: Lipids doi: 10.1007/BF02535334 – volume: 29 start-page: 269 year: 2005 ident: ref_140 article-title: A mutation affecting ascorbate peroxidase 2 gene expression reveals a link between responses to high light and drought tolerance publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2005.01419.x – volume: 25 start-page: 185 year: 2018 ident: ref_31 article-title: Antioxidant Protection Mechanisms Reveal Significant Response in Drought-Induced Oxidative Stress in Some Traditional Rice of Assam, India publication-title: Rice Sci. doi: 10.1016/j.rsci.2018.06.002 – volume: 33 start-page: 141 year: 1997 ident: ref_82 article-title: cDNA cloning and differential gene expression of three catalases in pumpkin publication-title: Plant Mol. Biol. doi: 10.1023/A:1005742916292 – volume: 44 start-page: 68 year: 2020 ident: ref_46 article-title: In vivo light-sheet microscopy resolves localisation patterns of FSD1, a superoxide dismutase with function in root development and osmoprotection publication-title: Plant Cell Environ. – volume: 225 start-page: 1255 year: 2007 ident: ref_186 article-title: Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses publication-title: Planta doi: 10.1007/s00425-006-0417-7 – volume: 8 start-page: 8735 year: 2018 ident: ref_349 article-title: 28-homobrassinolide regulates antioxidant enzyme activities and gene expression in response to salt- and temperature-induced oxidative stress in Brassica juncea publication-title: Sci. Rep. doi: 10.1038/s41598-018-27032-w – volume: 3 start-page: 527 year: 1993 ident: ref_105 article-title: Characterization of the catalase antioxidant defense gene Cat1 of maize, and its developmentally regulated expression in transgenic tobacco publication-title: Plant J. doi: 10.1046/j.1365-313X.1993.03040527.x – volume: 100 start-page: 3525 year: 2003 ident: ref_198 article-title: Increasing vitamin C content of plants through enhanced ascorbate recycling publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0635176100 – volume: 121 start-page: 231 year: 2004 ident: ref_327 article-title: Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit publication-title: Physiol. Plant. doi: 10.1111/j.0031-9317.2004.00308.x – ident: ref_45 doi: 10.1371/journal.pone.0052565 – volume: 62 start-page: 21 year: 2010 ident: ref_37 article-title: Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress publication-title: Plant Growth Regul. doi: 10.1007/s10725-010-9479-4 – volume: 48 start-page: 232 year: 2010 ident: ref_100 article-title: Increase in catalase-3 activity as a response to use of alternative catabolic substrates during sucrose starvation publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2010.01.004 – volume: 52 start-page: 1052 year: 2007 ident: ref_132 article-title: The lithium tolerance of the Arabidopsiscat2mutant reveals a cross-talk between oxidative stress and ethylene publication-title: Plant J. doi: 10.1111/j.1365-313X.2007.03305.x – volume: 57 start-page: 711 year: 2006 ident: ref_264 article-title: Vitamin synthesis in plants: Tocopherols and Carotenoids publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.56.032604.144301 – volume: 70 start-page: 204 year: 2013 ident: ref_176 article-title: Glutathione and glutathione reductase: A boon in disguise for plant abiotic stress defense operations publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2013.05.032 – volume: 19 start-page: 998 year: 2013 ident: ref_215 article-title: Proline Mechanisms of Stress Survival publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2012.5074 – volume: 48 start-page: 909 year: 2010 ident: ref_20 article-title: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2010.08.016 – volume: 49 start-page: 1531 year: 1998 ident: ref_223 article-title: In vitro alleviation of heavy metal-induced enzyme inhibition by proline publication-title: Phytochemistry doi: 10.1016/S0031-9422(98)00282-9 – volume: 123 start-page: 54 year: 2018 ident: ref_97 article-title: Comprehensive analysis and transcript profiling of Arabidopsis thaliana and Oryza sativa catalase gene family suggests their specific roles in development and stress responses publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2017.11.018 – volume: 26 start-page: 1 year: 2004 ident: ref_209 article-title: Ascorbate and ascorbate-dependent enzymes in detached tomato leaves under conditions modulating the ascorbate pool publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-004-0011-1 – volume: 2012 start-page: 217037 year: 2012 ident: ref_152 article-title: Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions publication-title: J. Bot. – volume: 30 start-page: 1475 year: 2011 ident: ref_323 article-title: Exogenous application of salicylic acid alleviates cadmium toxicity and reduces hydrogen peroxide accumulation in root apoplasts of Phaseolus aureus and Vicia sativa publication-title: Plant Cell Rep. doi: 10.1007/s00299-011-1056-4 – volume: 167 start-page: 541 year: 2004 ident: ref_134 article-title: Ascorbate peroxidase from rice seedlings: Properties of enzyme isoforms, effects of stresses and protective roles of osmolytes publication-title: Plant Sci. doi: 10.1016/j.plantsci.2004.04.028 – ident: ref_241 doi: 10.3390/antiox6040099 – volume: 27 start-page: 1445 year: 2015 ident: ref_133 article-title: Arabidopsis calcium-dependent protein kinase8 and CATALASE3 Function in Abscisic Acid-Mediated Signaling and H2O2 Homeostasis in Stomatal Guard Cells under Drought Stress publication-title: Plant Cell doi: 10.1105/tpc.15.00144 – volume: 10 start-page: 1178 year: 2019 ident: ref_167 article-title: Enhanced Tolerance to Methyl Viologen-Mediated Oxidative Stress via AtGR2 Expression From Chloroplast Genome publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.01178 – volume: 34 start-page: 101525 year: 2020 ident: ref_123 article-title: Plant catalases as NO and H2S targets publication-title: Redox Biol. doi: 10.1016/j.redox.2020.101525 – volume: 34 start-page: 315 year: 2008 ident: ref_218 article-title: Free radical scavenging potential of L-proline: Evidence from in vitro assays publication-title: Amino Acids doi: 10.1007/s00726-006-0407-x – volume: 10 start-page: 800 year: 2019 ident: ref_23 article-title: Mechanisms of ROS regulation of plant development and stress responses publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00800 – volume: 61 start-page: 4197 year: 2010 ident: ref_101 article-title: Catalase function in plants: A focus on Arabidopsis mutants as stress-mimic models publication-title: J. Exp. Bot. doi: 10.1093/jxb/erq282 – volume: 68 start-page: 103 year: 2017 ident: ref_130 article-title: Lead-induced stress, which triggers the production of nitric oxide (NO) and superoxide anion (O2−) in Arabidopsis peroxisomes, affects catalase activity publication-title: Nitric Oxide doi: 10.1016/j.niox.2016.12.010 – volume: 177 start-page: 67 year: 2002 ident: ref_271 article-title: Plant phenolic antioxidant and prooxidant activities: Phenolics-induced oxidative damage mediated by metals in plants publication-title: Toxicology doi: 10.1016/S0300-483X(02)00196-8 – volume: 103 start-page: 1067 year: 1993 ident: ref_60 article-title: Overexpression of Superoxide Dismutase Protects Plants from Oxidative Stress (Induction of Ascorbate Peroxidase in Superoxide Dismutase-Overexpressing Plants) publication-title: Plant Physiol. doi: 10.1104/pp.103.4.1067 – volume: 951 start-page: 104 year: 1988 ident: ref_103 article-title: Characterization of catalase transcripts and their differential expression in maize publication-title: Biochim. Biophys. Acta-Gene Struct. Expr. doi: 10.1016/0167-4781(88)90030-9 – volume: 108 start-page: 1748 year: 1995 ident: ref_113 article-title: Isolation and characterization of a potato catalase cDNA publication-title: Plant Physiol. – volume: 102 start-page: 691 year: 1993 ident: ref_118 article-title: cDNA for Catalase from Etiolated Mung Bean (Vigna radiata) Hypocotyls publication-title: Plant Physiol. doi: 10.1104/pp.102.2.691 – volume: 250 start-page: 95 year: 2012 ident: ref_154 article-title: Long-term impact of sublethal atrazine perturbs the redox homeostasis in pea (Pisum sativum L.) plants publication-title: Protoplasma doi: 10.1007/s00709-012-0378-6 – volume: 30 start-page: 1238 year: 2019 ident: ref_75 article-title: Analyzing the Function of Catalase and the Ascorbate–Glutathione Pathway in H2O2 Processing: Insights from an Experimentally Constrained Kinetic Model publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2018.7601 – ident: ref_260 doi: 10.1007/978-94-017-2660-3 – volume: 145 start-page: dev164376 year: 2018 ident: ref_18 article-title: Reactive oxygen species in plant development publication-title: Development doi: 10.1242/dev.164376 – volume: 25 start-page: 507 year: 1994 ident: ref_111 article-title: Isolation and characterization of two tightly linked catalase genes from castor bean that are differentially regulated publication-title: Plant Mol. Biol. doi: 10.1007/BF00043878 – volume: 8 start-page: 152 year: 2006 ident: ref_232 article-title: Oxidative Stress and Autophagy publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2006.8.152 – volume: 12 start-page: 323 year: 2010 ident: ref_278 article-title: Protein carbonylation publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2009.2887 – volume: 58 start-page: 328 year: 2014 ident: ref_322 article-title: Effect of ultraviolet-B radiation on biomass production, lipid peroxidation, reactive oxygen species, and antioxidants in withania somnifera publication-title: Biol. Plant. doi: 10.1007/s10535-014-0390-0 – volume: 2 start-page: 53 year: 2014 ident: ref_26 article-title: Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants publication-title: Front. Environ. Sci. doi: 10.3389/fenvs.2014.00053 – volume: 60 start-page: 591 year: 2018 ident: ref_121 article-title: The Arabidopsiscatalase triple mutant reveals important roles of catalases and peroxisome-derived signaling in plant development publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.12649 – volume: 167 start-page: 671 year: 2004 ident: ref_329 article-title: Transgenic Arabidopsis overexpressing Mn-SOD enhanced salt-tolerance publication-title: Plant Sci. doi: 10.1016/j.plantsci.2004.03.032 – volume: 252 start-page: 1241 year: 2015 ident: ref_347 article-title: Wheat cultivars differing in heat tolerance show a differential response to oxidative stress during monocarpic senescence under high temperature stress publication-title: Protoplasma doi: 10.1007/s00709-015-0755-z – volume: 147 start-page: 101 year: 2008 ident: ref_53 article-title: Decrease in Manganese Superoxide Dismutase Leads to Reduced Root Growth and Affects Tricarboxylic Acid Cycle Flux and Mitochondrial Redox Homeostasis publication-title: Plant Physiol. doi: 10.1104/pp.107.113613 – volume: 261 start-page: 12114 year: 1986 ident: ref_210 article-title: Antioxidant protection of phospholipid bilayers by alpha-tocopherol. Control of α-tocopherol status and lipid peroxidation by ascorbic acid and glutathione publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)67210-2 – volume: 38 start-page: 253 year: 1997 ident: ref_221 article-title: Involvement of proline in protecting thylakoid membranes against free radical-induced photodamage publication-title: J. Photochem. Photobiol. B Biol. doi: 10.1016/S1011-1344(96)07470-2 – volume: 66 start-page: 2923 year: 2015 ident: ref_274 article-title: Oxidative post-translational modifications of cysteine residues in plant signal transduction publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv084 – volume: 53 start-page: 373 year: 2010 ident: ref_71 article-title: Drought-Responsive Antioxidant Enzymes in Potato (Solanum tuberosum L.) publication-title: Potato Res. doi: 10.1007/s11540-010-9178-6 – volume: 122 start-page: 116 year: 2018 ident: ref_199 article-title: Ascorbic acid metabolism and functions: A comparison of plants and mammals publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2018.03.033 – volume: 89 start-page: 952 year: 1989 ident: ref_117 article-title: Regulation of Catalase Activity in Leaves of Nicotiana sylvestris by High CO2 publication-title: Plant Physiol. doi: 10.1104/pp.89.3.952 – volume: 10 start-page: 1 year: 2020 ident: ref_294 article-title: Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities publication-title: Sci. Rep. doi: 10.1038/s41598-020-73489-z – ident: ref_353 doi: 10.3390/ijms21144858 – volume: 25 start-page: 576 year: 1998 ident: ref_127 article-title: Modulation of antioxidant responses by arsenic in maize publication-title: Free Radic. Biol. Med. doi: 10.1016/S0891-5849(98)00090-2 – volume: 237 start-page: 1613 year: 2013 ident: ref_204 article-title: Homologous expression of cytosolic dehydroascorbate reductase increases grain yield and biomass under paddy field conditions in transgenic rice (Oryza sativa L. japonica) publication-title: Planta doi: 10.1007/s00425-013-1862-8 – volume: 137 start-page: 713 year: 2005 ident: ref_235 article-title: Alterations in Tocopherol Cyclase Activity in Transgenic and Mutant Plants of Arabidopsis Affect Tocopherol Content, Tocopherol Composition, and Oxidative Stress publication-title: Plant Physiol. doi: 10.1104/pp.104.054908 – volume: 33 start-page: 453 year: 2010 ident: ref_27 article-title: Reactive oxygen species homeostasis and signalling during drought and salinity stresses publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2009.02041.x – volume: 13 start-page: 4458 year: 2012 ident: ref_211 article-title: The ascorbate-glutathione-α-tocopherol triad in abiotic stress response publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms13044458 – volume: 66 start-page: 2827 year: 2015 ident: ref_287 article-title: ROS and RNS in plant physiology: An overview publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv099 – volume: 6 start-page: 549 year: 2021 ident: ref_2 article-title: Morphophysiological changes and reactive oxygen species metabolism in Corchorus olitorius L. under different abiotic stresses publication-title: Open Agric. doi: 10.1515/opag-2021-0040 – volume: 79 start-page: 597 year: 2013 ident: ref_256 article-title: Carotenoid oxidation products as stress signals in plants publication-title: Plant J. doi: 10.1111/tpj.12386 – volume: 14 start-page: 1 year: 2009 ident: ref_303 article-title: Rhizosphere bacteria help plants tolerate abiotic stress publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2008.10.004 – ident: ref_158 doi: 10.1371/journal.pone.0060109 – volume: 124 start-page: 330 year: 1999 ident: ref_115 article-title: Inhibition of Catalase by Antisense RNA Increases Susceptibility to Oxidative Stress and Chilling Injury in Transgenic Tomato Plants publication-title: J. Am. Soc. Hortic. Sci. doi: 10.21273/JASHS.124.4.330 – volume: 382 start-page: 371 year: 2008 ident: ref_160 article-title: Catalytic Cycle of Human Glutathione Reductase Near 1 Å Resolution publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2008.06.083 – volume: 15 start-page: 381 year: 1992 ident: ref_247 article-title: The antioxidant effects of thylakoid Vitamin E (alpha-tocopherol) publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.1992.tb00988.x – volume: 52 start-page: 2115 year: 2001 ident: ref_324 article-title: Cadmium-induced changes in the growth and oxidative metabolism of pea plants publication-title: J. Exp. Bot. doi: 10.1093/jexbot/52.364.2115 – volume: 224 start-page: 1569 year: 2019 ident: ref_170 article-title: Arabidopsis glutathione reductase 2 is indispensable in plastids, while mitochondrial glutathione is safeguarded by additional reduction and transport systems publication-title: New Phytol. doi: 10.1111/nph.16086 – volume: 1817 start-page: 182 year: 2012 ident: ref_263 article-title: The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2011.04.012 – volume: 126 start-page: 76 year: 2016 ident: ref_308 article-title: Effects of drought acclimation on drought stress resistance in potato (Solanum tuberosum L.) genotypes publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2016.01.008 – volume: 214 start-page: 185 year: 1993 ident: ref_259 article-title: Functions of carotenoids in photosynthesis publication-title: Meth. Enzymol. doi: 10.1016/0076-6879(93)14065-Q – volume: 31 start-page: 235 year: 1999 ident: ref_95 article-title: Purification of Catalase from Pea Leaf Peroxisomes: Identification of Five Different Isoforms publication-title: Free. Radic. Res. doi: 10.1080/10715769900301561 – volume: 260 start-page: 12920 year: 1985 ident: ref_180 article-title: Monodehydroascorbate reductase from cucumber is a flavin adenine dinucleotide enzyme publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)38813-0 – volume: 98 start-page: 13454 year: 2001 ident: ref_289 article-title: Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.231178298 – volume: 1224 start-page: 463 year: 1994 ident: ref_91 article-title: Nucleotide and deduced amino acid sequence of a putative higher molecular weight precursor for catalase in sunflower cotyledons publication-title: Biochim. Biophys. Acta-Bioenerg. doi: 10.1016/0167-4889(94)90284-4 – volume: 105 start-page: 1015 year: 1994 ident: ref_96 article-title: A cDNA Clone Encoding a Rice Catalase Isozyme publication-title: Plant Physiol. doi: 10.1104/pp.105.3.1015 – ident: ref_213 doi: 10.1201/b12954 – volume: 196 start-page: 67 year: 2012 ident: ref_270 article-title: Flavonoids as antioxidants in plants: Location and functional significance publication-title: Plant Sci. doi: 10.1016/j.plantsci.2012.07.014 – volume: 252 start-page: 12 year: 2020 ident: ref_279 article-title: Carbonylation of proteins—An element of plant ageing publication-title: Planta doi: 10.1007/s00425-020-03414-1 – volume: 250 start-page: 3 year: 2011 ident: ref_340 article-title: Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and salt-sensitive Indica rice (Oryza sativa L.) seedlings publication-title: Protoplasma doi: 10.1007/s00709-011-0365-3 – volume: 57 start-page: 1 year: 2009 ident: ref_348 article-title: High temperature stress tolerance in wheat genotypes: Role of antioxidant defence enzymes publication-title: Acta Agron. Hung. doi: 10.1556/AAgr.57.2009.1.1 – volume: 65 start-page: 1229 year: 2013 ident: ref_22 article-title: ROS as key players in plant stress signalling publication-title: J. Exp. Bot. doi: 10.1093/jxb/ert375 – volume: 30 start-page: 11 year: 2007 ident: ref_321 article-title: Effect of short- and long-term salinity on the activities of antioxidative enzymes and lipid peroxidation in tomato roots publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-007-0072-z – volume: 20 start-page: 3148 year: 2008 ident: ref_52 article-title: A Heterocomplex of Iron Superoxide Dismutases Defends Chloroplast Nucleoids against Oxidative Stress and Is Essential for Chloroplast Development in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.108.061341 – volume: 2 start-page: 152 year: 1997 ident: ref_272 article-title: Antioxidant properties of phenolic compounds publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(97)01018-2 – volume: 34 start-page: 835 year: 2011 ident: ref_337 article-title: Antioxidants and stress-related metabolites in the seedlings of two indica rice varieties exposed to cadmium chloride toxicity publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-011-0881-y – volume: 278 start-page: 38921 year: 2003 ident: ref_74 article-title: The Water-Water Cycle Is Essential for Chloroplast Protection in the Absence of Stress publication-title: J. Biol. Chem. doi: 10.1074/jbc.M304987200 – volume: 27 start-page: 1231 year: 2010 ident: ref_34 article-title: Role of microorganisms in adaptation of agriculture crops to abiotic stresses publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-010-0572-7 – volume: 141 start-page: 312 year: 2006 ident: ref_250 article-title: Reactive Species and Antioxidants. Redox Biology Is a Fundamental Theme of Aerobic Life publication-title: Plant Physiol. doi: 10.1104/pp.106.077073 – volume: 3 start-page: 737 year: 1991 ident: ref_93 article-title: Post-Transcriptional Regulation of Catalase Isozyme Expression in Cotton Seeds publication-title: Plant Cell doi: 10.2307/3869254 – volume: 641 start-page: 99 year: 1981 ident: ref_233 article-title: Localization of prenylquinones in the envelope of spinach chloroplasts publication-title: Biochim. Biophys. Acta-Biomembr. doi: 10.1016/0005-2736(81)90572-1 – volume: 41 start-page: 387 year: 1998 ident: ref_345 article-title: Role of Antioxidant Systems in Wheat Genotypes Tolerance to Water Stress publication-title: Biol. Plant. doi: 10.1023/A:1001898310321 – ident: ref_251 doi: 10.1093/acprof:oso/9780198717478.001.0001 – ident: ref_16 – volume: 1820 start-page: 1901 year: 2012 ident: ref_135 article-title: Cytosolic ascorbate peroxidase 1 protects organelles against oxidative stress by wounding-and jasmonate-induced H2O2 in Arabidopsis plants publication-title: Biochim. Biophys. Acta-Gen. Subj. doi: 10.1016/j.bbagen.2012.08.003 – volume: 147 start-page: 764 year: 2008 ident: ref_244 article-title: Tocotrienols, the Unsaturated Forms of Vitamin E, Can Function as Antioxidants and Lipid Protectors in Tobacco Leaves publication-title: Plant Physiol. doi: 10.1104/pp.108.117614 – volume: 3 start-page: 67 year: 2011 ident: ref_266 article-title: Comparative lipid peroxidation, leaf membrane thermostability, and antioxidant system in four sugarcane genotypes differing in salt tolerance publication-title: Int. J. Plant Physiol. Biochem. – volume: 20 start-page: 1097 year: 2012 ident: ref_306 article-title: Enhancement of tomato (Lycopersicon esculentum) tolerance to drought stress by plant-growth-promoting rhizobacterium (PGPR) Bacillus cereus AR156 publication-title: J. Agric. Biotechnol. – volume: 14 start-page: 219 year: 2009 ident: ref_262 article-title: Singlet oxygen in plants: Production, detoxification and signaling publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2009.01.008 – volume: 8 start-page: 581 year: 2017 ident: ref_144 article-title: Abiotic Stress Tolerance in Plants: Myriad Roles of Ascorbate Peroxidase publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00581 – volume: 54 start-page: 374 year: 2008 ident: ref_326 article-title: Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedlings publication-title: Plant Soil Environ. doi: 10.17221/410-PSE – volume: 40 start-page: 537 year: 2002 ident: ref_200 article-title: Ascorbate and glutathione: Guardians of the cell cycle, partners in crime? publication-title: Plant Physiol. Biochem. doi: 10.1016/S0981-9428(02)01414-6 – volume: 352 start-page: 79 year: 1994 ident: ref_84 article-title: Molecular identification of catalases from Nicotiana plumbaginifolia (L.) publication-title: FEBS Lett. doi: 10.1016/0014-5793(94)00923-6 – volume: 7 start-page: 1574 year: 2016 ident: ref_21 article-title: Reactive Oxygen Species Generation-Scavenging and Signaling during Plant-Arbuscular Mycorrhizal and Piriformospora indica Interaction under Stress Condition publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01574 – volume: 82 start-page: 44 year: 2014 ident: ref_300 article-title: Beneficial rhizobacteria from rice rhizosphere confers high protection against biotic and abiotic stress inducing systemic resistance in rice seedlings publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2014.05.007 – ident: ref_139 doi: 10.1186/s12870-016-0856-7 – volume: 299 start-page: 110604 year: 2020 ident: ref_125 article-title: Jasmonic acid promotes leaf senescence through MYC2-mediated repression of CATALASE2 expression in Arabidopsis publication-title: Plant Sci. doi: 10.1016/j.plantsci.2020.110604 – volume: 42 start-page: 688 year: 2018 ident: ref_122 article-title: Analysis of catalase mutants underscores the essential role of CATALASE2 for plant growth and day length-dependent oxidative signalling publication-title: Plant Cell Environ. doi: 10.1111/pce.13453 – volume: 80 start-page: 870 year: 2016 ident: ref_194 article-title: Redox regulation of ascorbate and glutathione by a chloroplastic dehydroascorbate reductase is required for high-light stress tolerance in Arabidopsis publication-title: Biosci. Biotechnol. Biochem. doi: 10.1080/09168451.2015.1135042 – volume: 49 start-page: 305 year: 2005 ident: ref_319 article-title: Plant water status, H2O2 scavenging enzymes, ethylene evolution and membrane integrity of Cicer arietinum roots as affected by salinity publication-title: Biol. Plant. doi: 10.1007/s10535-005-5308-4 – volume: 1 start-page: 11 year: 2013 ident: ref_332 article-title: Physiological and biochemical responses of mungbean (Vigna radiata L. Wilczek) to varying concentrations of cadmium chloride or sodium chloride publication-title: Unique J. Pharm. Biol. Sci. – ident: ref_296 – volume: 105 start-page: 109 year: 2016 ident: ref_302 article-title: Bacterial-mediated drought tolerance: Current and future prospects publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2016.04.009 – volume: 32 start-page: 122 year: 2012 ident: ref_40 article-title: Control of Drought Stress in Wheat Using Plant-Growth-Promoting Bacteria publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-012-9283-7 – volume: 160 start-page: 723 year: 2001 ident: ref_175 article-title: Ascorbate, glutathione and related enzymes in chloroplasts of tomato leaves infected by Botrytis cinerea publication-title: Plant Sci. doi: 10.1016/S0168-9452(00)00457-X – volume: 43 start-page: 16 year: 2007 ident: ref_253 article-title: Molecular mechanism of α-tocopherol action publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2007.03.013 – volume: 283 start-page: 21347 year: 2008 ident: ref_205 article-title: Dehydroascorbate Reductase Affects Non-photochemical Quenching and Photosynthetic Performance publication-title: J. Biol. Chem. doi: 10.1074/jbc.M802601200 – volume: 4 start-page: 314 year: 2013 ident: ref_290 article-title: Cross-talk of nitric oxide and reactive oxygen species in plant programed cell death publication-title: Front. Plant Sci. doi: 10.3389/fpls.2013.00314 – volume: 147 start-page: 523 year: 2009 ident: ref_305 article-title: Practical application of induced resistance to plant diseases: An appraisal of effectiveness under field conditions publication-title: J. Agric. Sci. doi: 10.1017/S0021859609008806 – volume: 223 start-page: 835 year: 2006 ident: ref_119 article-title: Mode of translational activation of the catalase (cat1) mRNA of rye leaves (Secale cereale L.) and its control through blue light and reactive oxygen publication-title: Planta doi: 10.1007/s00425-005-0125-8 – volume: 161 start-page: 211 year: 2017 ident: ref_169 article-title: High level of reduced glutathione contributes to detoxification of lipid peroxide-derived reactive carbonyl species in transgenic Arabidopsis overexpressing glutathione reductase under aluminum stress publication-title: Physiol. Plant. doi: 10.1111/ppl.12583 – volume: 238 start-page: 356 year: 2018 ident: ref_59 article-title: Alleviation of cold damage by exogenous application of melatonin in vegetatively propagated tea plant (Camellia sinensis L. O. Kuntze) publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2018.04.068 – volume: 278 start-page: 46869 year: 2003 ident: ref_137 article-title: Molecular Definition of the Ascorbate-Glutathione Cycle in Arabidopsis Mitochondria Reveals Dual Targeting of Antioxidant Defenses in Plants publication-title: J. Biol. Chem. doi: 10.1074/jbc.M307525200 – volume: 80 start-page: 3 year: 2018 ident: ref_47 article-title: ROS-related redox regulation and signaling in plants publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2017.07.013 – volume: 170 start-page: 685 year: 2006 ident: ref_179 article-title: Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants publication-title: Plant Sci. doi: 10.1016/j.plantsci.2005.09.005 – volume: 3 start-page: 1054 year: 2012 ident: ref_310 article-title: Effect of Pseudomonas fluorescens on proline and phytohormonal status of maize (Zea mays L.) under water deficit stress publication-title: Ann. Biol. Res. – volume: 47 start-page: 851 year: 2006 ident: ref_15 article-title: Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance publication-title: Plant J. doi: 10.1111/j.1365-313X.2006.02837.x – volume: 169 start-page: 86 year: 2012 ident: ref_87 article-title: Expression of a cloned sweet potato catalase SPCAT1 alleviates ethephon-mediated leaf senescence and H2O2 elevation publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2011.08.002 – volume: 316 start-page: 77 year: 2016 ident: ref_168 article-title: Endogenous salicylic acid is required for promoting cadmium tolerance of Arabidopsis by modulating glutathione metabolisms publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.05.032 – volume: 7 start-page: 405 year: 2002 ident: ref_10 article-title: Oxidative stress, antioxidants and stress tolerance publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(02)02312-9 – volume: 165 start-page: 813 year: 2008 ident: ref_228 article-title: Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2007.07.013 – ident: ref_78 doi: 10.3390/cells8020086 – volume: 7 start-page: 230 year: 2016 ident: ref_284 article-title: Hydrogen Peroxide Signaling in Plant Development and Abiotic Responses: Crosstalk with Nitric Oxide and Calcium publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00230 – volume: 2 start-page: 17 year: 2015 ident: ref_312 article-title: Phosphate solubilising bacteria (Bacillus polymyxa)—An effective approach to mitigate drought in tomato (Lycopersicon esculentum Mill) publication-title: Trop. Plant Res. – volume: 13 start-page: 40 year: 2008 ident: ref_92 article-title: Modifications in catalase activity and expression in developing sunflower seedlings under cadmium stress publication-title: Redox Rep. doi: 10.1179/135100008X259141 – volume: 85 start-page: 235 year: 1992 ident: ref_149 article-title: Ascorbate peroxidase—A hydrogen peroxide-scavenging enzyme in plants publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.1992.tb04728.x – volume: 29 start-page: 1005 year: 1995 ident: ref_85 article-title: Molecular cloning, characterization and expression analysis of two catalase isozyme genes in barley publication-title: Plant Mol. Biol. doi: 10.1007/BF00014973 – volume: 134 start-page: 555 year: 2019 ident: ref_280 article-title: Interaction of methyl viologen-induced chloroplast and mitochondrial signalling in Arabidopsis publication-title: Free. Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2019.02.006 – volume: 35 start-page: 1039 year: 2012 ident: ref_28 article-title: Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-012-1142-4 – volume: 165 start-page: 139 year: 2019 ident: ref_277 article-title: Lipid peroxidation-derived reactive carbonyl species (RCS): Their interaction with ROS and cellular redox during environmental stresses publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2019.06.004 – volume: 39 start-page: 45 year: 2004 ident: ref_128 article-title: Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana publication-title: Plant J. doi: 10.1111/j.1365-313X.2004.02105.x – volume: 41 start-page: 2497 year: 2009 ident: ref_342 article-title: Differential accumulations of proline and flavonoids in indica rice varieties against salinity publication-title: Pak. J. Bot. – volume: 21 start-page: 958 year: 2008 ident: ref_39 article-title: Improvement of Drought Tolerance and Grain Yield in Common Bean by Overexpressing Trehalose-6-Phosphate Synthase in Rhizobia publication-title: Mol. Plant-Microbe Interact. doi: 10.1094/MPMI-21-7-0958 – volume: 169 start-page: 311 year: 2011 ident: ref_187 article-title: Overexpression of monodehydroascorbate reductase from a mangrove plant (AeMDHAR) confers salt tolerance on rice publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2011.09.004 – volume: 154 start-page: 134 year: 2018 ident: ref_13 article-title: Reactive oxygen species, oxidative signaling and the regulation of photosynthesis publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2018.05.003 – volume: 42 start-page: 69 year: 2004 ident: ref_178 article-title: Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress publication-title: Plant Growth Regul. doi: 10.1023/B:GROW.0000014891.35427.7b – volume: 12 start-page: 657 year: 2010 ident: ref_282 article-title: Interplay Between Calcium and Reactive Oxygen/Nitrogen Species: An Essential Paradigm for Vascular Smooth Muscle Signaling publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2009.2842 – volume: 59 start-page: 417 year: 2008 ident: ref_313 article-title: Trehalose Metabolism and Signaling publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.59.032607.092945 – volume: 20 start-page: 201 year: 2014 ident: ref_38 article-title: PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity publication-title: Physiol. Mol. Biol. Plants doi: 10.1007/s12298-014-0224-8 – volume: 199 start-page: 211 year: 1991 ident: ref_88 article-title: The C-terminal domain of plant catalases Implications for a glyoxysomal targeting sequence publication-title: JBIC J. Biol. Inorg. Chem. – volume: 51 start-page: 93 year: 2004 ident: ref_57 article-title: Antioxidative enzymes in barley plants subjected to soil flooding publication-title: Environ. Exp. Bot. doi: 10.1016/S0098-8472(03)00063-7 – volume: 39 start-page: 408 year: 2016 ident: ref_79 article-title: The catalase gene family in cucumber: Genome-wide identification and organization publication-title: Genet. Mol. Biol. doi: 10.1590/1678-4685-GMB-2015-0192 – volume: 162 start-page: 333 year: 2013 ident: ref_68 article-title: Study of sponge gourd ascorbate peroxidase and winter squash superoxide dismutase under respective flooding and chilling stresses publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2013.08.016 – volume: 112 start-page: 327 year: 1996 ident: ref_76 article-title: Catalase is encoded by a multigene family in Arabidopsis thaliana (L.) Heynh publication-title: Plant Physiol. doi: 10.1104/pp.112.1.327 – volume: 100 start-page: 1605 year: 1992 ident: ref_86 article-title: Molecular cloning and nucleotide sequence of a cDNA encoding catalase from tomato publication-title: Plant Physiol. doi: 10.1104/pp.100.3.1605 – volume: 73 start-page: 2320 year: 2009 ident: ref_229 article-title: Proline and Glycinebetaine Confer Cadmium Tolerance on Tobacco Bright Yellow-2 Cells by Increasing Ascorbate-Glutathione Cycle Enzyme Activities publication-title: Biosci. Biotechnol. Biochem. doi: 10.1271/bbb.90305 – volume: 178 start-page: 312 year: 2010 ident: ref_240 article-title: Engineering tocopherol biosynthetic pathway in Arabidopsis leaves and its effect on antioxidant metabolism publication-title: Plant Sci. doi: 10.1016/j.plantsci.2010.01.004 – volume: 34 start-page: 187 year: 2003 ident: ref_142 article-title: Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)-deficient Arabidopsis plants publication-title: Plant J. doi: 10.1046/j.1365-313X.2003.01715.x – volume: 22 start-page: 466 year: 2001 ident: ref_292 article-title: Antioxidative Defence Mechanisms Against Reactive Oxygen Species in Bovine Retained and Not-Retained Placenta: Activity of Glutathione Peroxidase, Glutathione Transferase, Catalase and Superoxide Dismutase publication-title: Placenta doi: 10.1053/plac.2001.0650 – volume: 10 start-page: 304 year: 1989 ident: ref_104 article-title: Differential expression of the maize catalase genes during kernel development: The role of steady-state mRNA levels publication-title: Dev. Genet. doi: 10.1002/dvg.1020100405 – volume: 168 start-page: 619 year: 2011 ident: ref_203 article-title: Gene expression of monodehydroascorbate reductase and dehydroascorbate reductase during fruit ripening and in response to environmental stresses in acerola (Malpighia glabra) publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2010.09.003 – volume: 108 start-page: 10768 year: 2011 ident: ref_12 article-title: Mitochondrial complex II has a key role in mitochondrial-derived reactive oxygen species influence on plant stress gene regulation and defense publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1016060108 – volume: 578 start-page: 577 year: 2020 ident: ref_276 article-title: Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis publication-title: Nature doi: 10.1038/s41586-020-2032-3 – volume: 71 start-page: 3405 year: 2020 ident: ref_190 article-title: The pivotal function of dehydroascorbate reductase in glutathione homeostasis in plants publication-title: J. Exp. Bot. doi: 10.1093/jxb/eraa107 – ident: ref_182 doi: 10.3390/antiox8090384 – volume: 130 start-page: 501 year: 2018 ident: ref_69 article-title: Physiological, micro-morphological and metabolomic analysis of grapevine (Vitis vinifera L.) leaf of plants under water stress publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2018.07.036 – volume: 81 start-page: 635 year: 1991 ident: ref_107 article-title: The CAT-2 null phenotype in maize is likely due to a DNA insertion into the Cat2 gene publication-title: Theor. Appl. Genet. doi: 10.1007/BF00226730 – volume: 86 start-page: 459 year: 2005 ident: ref_212 article-title: Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression publication-title: Photosynth. Res. doi: 10.1007/s11120-005-8811-8 – volume: 29 start-page: 485 year: 2007 ident: ref_320 article-title: Effect of salinity on antioxidant responses of chickpea seedlings publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-007-0059-9 – volume: 89 start-page: 1113 year: 2005 ident: ref_6 article-title: Reactive oxygen species and oxidative burst: Roles in stress, senescence and signal publication-title: Curr. Sci. – volume: 11 start-page: 1 year: 2021 ident: ref_351 article-title: Physiological response and secondary metabolites of three lavender genotypes under water deficit publication-title: Sci. Rep. – volume: 5 start-page: 43 year: 2003 ident: ref_243 article-title: Participation of Photosynthetic Electron Transport in Production and Scavenging of Reactive Oxygen Species publication-title: Antioxid. Redox Signal. doi: 10.1089/152308603321223531 – volume: 183 start-page: 112 year: 2020 ident: ref_207 article-title: Dehydroascorbate Reductases and Glutathione Set a Threshold for High-Light–Induced Ascorbate Accumulation publication-title: Plant Physiol. doi: 10.1104/pp.19.01556 – ident: ref_298 doi: 10.3390/microorganisms8060823 – volume: 166 start-page: 370 year: 2014 ident: ref_146 article-title: ASCORBATE PEROXIDASE6 Protects Arabidopsis Desiccating and Germinating Seeds from Stress and Mediates Cross Talk between Reactive Oxygen Species, Abscisic Acid, and Auxin publication-title: Plant Physiol. doi: 10.1104/pp.114.245324 – volume: 67 start-page: 410 year: 2013 ident: ref_311 article-title: Differential Activity of Autochthonous Bacteria in Controlling Drought Stress in Native Lavandula and Salvia Plants Species Under Drought Conditions in Natural Arid Soil publication-title: Microb. Ecol. doi: 10.1007/s00248-013-0326-9 – volume: 34 start-page: 75 year: 2011 ident: ref_350 article-title: Comparative response of maize and rice genotypes to heat stress: Status of oxidative stress and antioxidants publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-011-0806-9 – volume: 32 start-page: 1682 year: 2009 ident: ref_42 article-title: Plant-rhizobacteria interactions alleviate abiotic stress conditions publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2009.02028.x – volume: 58 start-page: 2969 year: 2007 ident: ref_129 article-title: AtMEK1 mediates stress-induced gene expression of CAT1 catalase by triggering H2O2 production in Arabidopsis publication-title: J. Exp. Bot. doi: 10.1093/jxb/erm144 – volume: 57 start-page: 375 year: 2014 ident: ref_80 article-title: Rice CatA, CatB, and CatC are involved in environmental stress response, root growth, and photorespiration, respectively publication-title: J. Plant Biol. doi: 10.1007/s12374-014-0383-8 – volume: 165 start-page: 1411 year: 2003 ident: ref_339 article-title: Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.)—differential response in salt-tolerant and sensitive varieties publication-title: Plant Sci. doi: 10.1016/j.plantsci.2003.08.005 – volume: 170 start-page: 43 year: 2006 ident: ref_174 article-title: Glutathione reductase from pea leaves: Response to abiotic stress and characterization of the peroxisomal isozyme publication-title: New Phytol. doi: 10.1111/j.1469-8137.2006.01643.x – volume: 4 start-page: 580 year: 2010 ident: ref_318 article-title: Effect of drought stress on yield, proline and chlo-rophyll contents in three chickpea cultivars publication-title: Aust. J. Crop Sci. – volume: 110 start-page: 125 year: 1996 ident: ref_330 article-title: Ultraviolet-B- and Ozone-Induced Biochemical Changes in Antioxidant Enzymes of Arabidopsis thaliana publication-title: Plant Physiol. doi: 10.1104/pp.110.1.125 – volume: 111 start-page: 114 year: 2015 ident: ref_29 article-title: Drought tolerance in a Saharian plant Oudneya africana: Role of antioxidant defences publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2014.11.004 – volume: 44 start-page: 873 year: 2006 ident: ref_41 article-title: Root phospholipids in Azospirillum-inoculated wheat seedlings exposed to water stress publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2006.10.020 – volume: 64 start-page: 1 year: 2010 ident: ref_156 article-title: Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings publication-title: Plant Growth Regul. doi: 10.1007/s10725-010-9526-1 – volume: 3 start-page: 182 year: 2012 ident: ref_273 article-title: Arsenic Toxicity: The Effects on Plant Metabolism publication-title: Front. Physiol. doi: 10.3389/fphys.2012.00182 – volume: 63 start-page: 70 year: 2017 ident: ref_283 article-title: Crosstalk between calcium and reactive oxygen species signaling in cancer publication-title: Cell Calcium doi: 10.1016/j.ceca.2017.01.007 – volume: 32 start-page: 707 year: 2005 ident: ref_114 article-title: Effect of hydrogen peroxide on catalase gene expression, isoform activities and levels in leaves of potato sprayed with homobrassinolide and ultrastructural changes in mesophyll cells publication-title: Funct. Plant Biol. doi: 10.1071/FP04235 – volume: 82 start-page: 525 year: 2002 ident: ref_222 article-title: Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants publication-title: Curr. Sci. – volume: 13 start-page: 31 year: 1993 ident: ref_63 article-title: Purification and characterisation of superoxide dismutase from tartary buckwheat leaves publication-title: Fagopyrum – volume: 282 start-page: 22605 year: 2007 ident: ref_261 article-title: Elevated Zeaxanthin Bound to Oligomeric LHCII Enhances the Resistance of Arabidopsis to Photooxidative Stress by a Lipid-protective, Antioxidant Mechanism publication-title: J. Biol. Chem. doi: 10.1074/jbc.M702831200 – volume: 6 start-page: 1 year: 2011 ident: ref_293 article-title: Drought-tolerant plant growth promotingBacillusspp.: Effect on growth, osmolytes, and antioxidant status of maize under drought stress publication-title: J. Plant Interact. doi: 10.1080/17429145.2010.535178 – volume: 50 start-page: 1318 year: 2008 ident: ref_81 article-title: Comprehensive Functional Analysis of the Catalase Gene Family in Arabidopsis thaliana publication-title: J. Integr. Plant Biol. doi: 10.1111/j.1744-7909.2008.00741.x – volume: 194 start-page: 23 year: 2016 ident: ref_62 article-title: Rapid recovery of photosynthetic rate following soil water deficit and re-watering in cotton plants (Gossypium herbaceum L.) is related to the stability of the photosystems publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2016.01.016 – volume: 210 start-page: 925 year: 2000 ident: ref_352 article-title: Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus officinalis plants publication-title: Planta doi: 10.1007/s004250050699 – volume: 2 start-page: 103 year: 2011 ident: ref_184 article-title: Defining the Plant Peroxisomal Proteome: From Arabidopsis to Rice publication-title: Front. Plant Sci. doi: 10.3389/fpls.2011.00103 – volume: 163 start-page: 1179 year: 2006 ident: ref_201 article-title: Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2005.10.002 – volume: 166 start-page: 687 year: 2004 ident: ref_56 article-title: Macronutrient deficiencies and differential antioxidant responses—Influence on the activity and expression of superoxide dismutase in maize publication-title: Plant Sci. doi: 10.1016/j.plantsci.2003.11.004 – volume: 14 start-page: 43 year: 2009 ident: ref_219 article-title: The relationship between metal toxicity and cellular redox imbalance publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2008.10.007 – volume: 164 start-page: 553 year: 2007 ident: ref_226 article-title: Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2006.03.010 – volume: 12 start-page: 683546 year: 2021 ident: ref_43 article-title: Plant Growth Promotion and Induction of Systemic Tolerance to Drought and Salt Stress of Plants by Quorum Sensing Auto-Inducers of the N-acyl-homoserine Lactone Type: Recent Developments publication-title: Front. Plant Sci. doi: 10.3389/fpls.2021.683546 – volume: 92 start-page: 5930 year: 1995 ident: ref_83 article-title: Developmentally related responses of maize catalase genes to salicylic acid publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.92.13.5930 – volume: 22 start-page: 123 year: 2014 ident: ref_297 article-title: Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation publication-title: Saudi J. Biol. Sci. doi: 10.1016/j.sjbs.2014.12.001 – volume: 278 start-page: 258 year: 1990 ident: ref_90 article-title: Biogenesis of catalase in glyoxysomes and leaf-type peroxisomes of sunflower cotyledons publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(90)90256-X – volume: 5 start-page: 19 year: 2010 ident: ref_254 article-title: Role of α-tocopherol in cellular signaling: α-tocopherol inhibits stress-induced mitogen-activated protein kinase activation publication-title: Plant Biotechnol. Rep. doi: 10.1007/s11816-010-0152-1 – volume: 7 start-page: 1405 year: 2016 ident: ref_295 article-title: Application of Plant-Growth-Promoting Fungi Trichoderma longibrachiatum T6 Enhances Tolerance of Wheat to Salt Stress through Improvement of Antioxidative Defense System and Gene Expression publication-title: Front. Plant Sci. – volume: 86 start-page: 181 year: 2018 ident: ref_163 article-title: Exogenously applied salicylic acid maintains redox homeostasis in salt-stressed Arabidopsis gr1 mutants expressing cytosolic roGFP1 publication-title: Plant Growth Regul. doi: 10.1007/s10725-018-0420-6 – volume: 355 start-page: 1499 year: 2000 ident: ref_267 article-title: Energy dissipation and radical scavenging by the plant phenylpropanoid pathway publication-title: Philos. Trans. R. Soc. B Biol. Sci. doi: 10.1098/rstb.2000.0710 – volume: 214 start-page: 11 year: 2000 ident: ref_246 article-title: Coenzyme Q and vitamin E need each other as antioxidants publication-title: Protoplasma doi: 10.1007/BF02524257 – volume: 69 start-page: 561 year: 1987 ident: ref_258 article-title: The light-harvesting and protective functions of carotenoids in photosynthetic membranes publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.1987.tb09240.x – volume: 11 start-page: 591911 year: 2020 ident: ref_44 article-title: Drought and Salinity Stress Responses and Microbe-Induced Tolerance in Plants publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.591911 – volume: 9 start-page: 627 year: 1997 ident: ref_161 article-title: Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress publication-title: Plant Cell – volume: 16 start-page: 31 year: 2019 ident: ref_145 article-title: Plant Cytosolic Ascorbate Peroxidase with Dual Catalytic Activity Modulates Abiotic Stress Tolerances publication-title: iScience doi: 10.1016/j.isci.2019.05.014 – volume: 11 start-page: 104 year: 2010 ident: ref_171 article-title: Seed Development and Germination in anArabidopsis thalianaLine Antisense to Glutathione Reductase 2 publication-title: J. New Seeds doi: 10.1080/15228861003776175 – volume: 147 start-page: 1334 year: 2008 ident: ref_265 article-title: The Maize Phytoene Synthase Gene Family: Overlapping Roles for Carotenogenesis in Endosperm, Photomorphogenesis, and Thermal Stress Tolerance publication-title: Plant Physiol. doi: 10.1104/pp.108.122119 – volume: 37 start-page: 19 year: 2015 ident: ref_288 article-title: Early and long-term responses of cucumber cells to high cadmium concentration are modulated by nitric oxide and reactive oxygen species publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-014-1756-9 – volume: 1631 start-page: 221 year: 2017 ident: ref_54 article-title: Zymographic Method for Distinguishing Different Classes of Superoxide Dismutases in Plants publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-7136-7_13 – volume: 50 start-page: 1898 year: 2009 ident: ref_138 article-title: The TL29 Protein is Lumen Located, Associated with PSII and Not an Ascorbate Peroxidase publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcp134 – volume: 69 start-page: 38 year: 2008 ident: ref_354 article-title: Impact of solar Ultraviolet-B on the proteome in soybean lines differing in flavonoid contents publication-title: Phytochemistry doi: 10.1016/j.phytochem.2007.06.010 – volume: 166 start-page: 1057 year: 2009 ident: ref_110 article-title: Spatial patterns of senescence and development-dependent distribution of reactive oxygen species in tobacco (Nicotiana tabacum) leaves publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2008.12.014 – volume: 126 start-page: 356 year: 2006 ident: ref_242 article-title: Progress in the dissection and manipulation of plant vitamin E biosynthesis publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.2006.00611.x – volume: 9 start-page: 689 year: 2014 ident: ref_301 article-title: Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize publication-title: J. Plant Interact. doi: 10.1080/17429145.2014.902125 – volume: 6 start-page: 69 year: 2015 ident: ref_24 article-title: ROS-mediated abiotic stress-induced programmed cell death in plants publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00069 – volume: 219 start-page: 95 year: 2004 ident: ref_248 article-title: NADH-dependent metabolism of nitric oxide in alfalfa root cultures expressing barley hemoglobin publication-title: Planta doi: 10.1007/s00425-003-1192-3 – volume: 30 start-page: 841 year: 2008 ident: ref_317 article-title: Enhancement of superoxide dismutase activity in the leaves of white clover (Trifolium repens L.) in response to polyethylene glycol-induced water stress publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-008-0189-8 – volume: 57 start-page: pcv203 year: 2016 ident: ref_136 article-title: Diversity and Evolution of Ascorbate Peroxidase Functions in Chloroplasts: More Than Just a Classical Antioxidant Enzyme? publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcv203 – ident: ref_230 – volume: 31 start-page: 671 year: 1996 ident: ref_231 article-title: The chemistry and antioxidant properties of tocopherols and tocotrienols publication-title: Lipids doi: 10.1007/BF02522884 – volume: 46 start-page: 209 year: 2005 ident: ref_335 article-title: Drought Induces Oxidative Stress and Enhances the Activities of Antioxidant Enzymes in Growing Rice Seedlings publication-title: Plant Growth Regul. doi: 10.1007/s10725-005-0002-2 – volume: 165 start-page: 437 year: 1987 ident: ref_120 article-title: Molecular cloning and nucleotide sequence of full-length cDNA for sweet potato catalase mRNA publication-title: JBIC J. Biol. Inorg. Chem. – volume: 38 start-page: 995 year: 2005 ident: ref_77 article-title: Oxidative stress: Molecular perception and transduction of signals triggering antioxidant gene defenses publication-title: Braz. J. Med. Biol. Res. doi: 10.1590/S0100-879X2005000700003 – volume: 14 start-page: 764 year: 2015 ident: ref_33 article-title: Bacterial mediated amelioration of drought stress in drought tolerant and susceptible cultivars of rice (Oryza sativa L.) publication-title: Afr. J. Biotechnol. doi: 10.5897/AJB2015.14405 – volume: 99 start-page: 1726 year: 1992 ident: ref_98 article-title: Nucleotide Sequence of a cDNA for Catalase from Arabidopsis thaliana publication-title: Plant Physiol. doi: 10.1104/pp.99.4.1726 – ident: ref_102 – volume: 7 start-page: 187 year: 2016 ident: ref_5 article-title: Global Plant Stress Signaling: Reactive Oxygen Species at the Cross-Road publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00187 – volume: 121 start-page: 1047 year: 1999 ident: ref_237 article-title: Enhanced Formation of α-Tocopherol and Highly Oxidized Abietane Diterpenes in Water-Stressed Rosemary Plants publication-title: Plant Physiol. doi: 10.1104/pp.121.3.1047 – ident: ref_257 – volume: 11 start-page: 169 year: 2020 ident: ref_1 article-title: Physiological, Biochemical, and Transcriptional Responses to Single and Combined Abiotic Stress in Stress-Tolerant and Stress-Sensitive Potato Genotypes publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.00169 – volume: 6 start-page: 19498 year: 2016 ident: ref_196 article-title: Structural understanding of the recycling of oxidized ascorbate by dehydroascorbate reductase (OsDHAR) from Oryza sativa L. japonica publication-title: Sci. Rep. doi: 10.1038/srep19498 – volume: 17 start-page: 268 year: 2005 ident: ref_143 article-title: Cytosolic Ascorbate Peroxidase 1 Is a Central Component of the Reactive Oxygen Gene Network of Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.104.026971 – volume: 71 start-page: 157 year: 2020 ident: ref_48 article-title: Redox Homeostasis and Signaling in a Higher-CO2World publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-050718-095955 – volume: 7 start-page: 1408 year: 2016 ident: ref_116 article-title: Comparative Evaluation of Biochemical Changes in Tomato (Lycopersicon esculentum Mill.) Infected by Alternaria alternata and Its Toxic Metabolites (TeA, AOH, and AME) publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01408 – volume: 131 start-page: 398 year: 2003 ident: ref_3 article-title: Oxygen free radicals and systemic autoimmunity publication-title: Clin. Exp. Immunol. doi: 10.1046/j.1365-2249.2003.02104.x – volume: 103 start-page: 1140 year: 2020 ident: ref_162 article-title: Chloroplasts require glutathione reductase to balance reactive oxygen species and maintain efficient photosynthesis publication-title: Plant J. doi: 10.1111/tpj.14791 – volume: 5 start-page: 171 year: 2010 ident: ref_159 article-title: Arabidopsis glutathione reductase 1 is dually targeted to peroxisomes and the cytosol publication-title: Plant Signal. Behav. doi: 10.4161/psb.5.2.10527 – volume: 106 start-page: 399 year: 1994 ident: ref_109 article-title: The Primary Leaf Catalase Gene from Nicotiana tabacum and Nicotiana sylvestris publication-title: Plant Physiol. doi: 10.1104/pp.106.1.399 – volume: 248 start-page: 565 year: 2010 ident: ref_155 article-title: Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings publication-title: Protoplasma doi: 10.1007/s00709-010-0210-0 – volume: 167 start-page: 1209 year: 2015 ident: ref_286 article-title: Interplay of Reactive Oxygen Species and Nitric Oxide: Nitric Oxide Coordinates Reactive Oxygen Species Homeostasis publication-title: Plant Physiol. doi: 10.1104/pp.15.00293 – volume: 6 start-page: 43 year: 2011 ident: ref_344 article-title: High temperature-induced oxidative stress in Lens culinaris, role of antioxidants and amelioration of stress by chemical pre-treatments publication-title: J. Plant Interact. doi: 10.1080/17429145.2010.513484 – volume: 231 start-page: 609 year: 2009 ident: ref_202 article-title: Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco publication-title: Planta doi: 10.1007/s00425-009-1075-3 – volume: 21 start-page: 1625 year: 2012 ident: ref_157 article-title: Effects of pyrene on antioxidant systems and lipid peroxidation level in mangrove plants, Bruguiera gymnorrhiza publication-title: Ecotoxicology doi: 10.1007/s10646-012-0945-9 – volume: 15 start-page: 89 year: 2010 ident: ref_216 article-title: Proline: A multifunctional amino acid publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2009.11.009 – volume: 534 start-page: 747 year: 2020 ident: ref_131 article-title: CATALASE2 plays a crucial role in long-term heat tolerance of Arabidopsis thaliana publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2020.11.006 – volume: 43 start-page: 697 year: 2002 ident: ref_183 article-title: The use of multiple transcription starts causes the dual targeting of Arabidopsis putative monodehydroascorbate reductase to both mitochondria and chloroplasts publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcf103 – volume: 6 start-page: 709 year: 2011 ident: ref_269 article-title: Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants publication-title: Plant Signal. Behav. doi: 10.4161/psb.6.5.15069 – volume: 9 start-page: 1430 year: 2014 ident: ref_315 article-title: Enhance activity of stress related enzymes in rice (Oryza sativa L.) induced by plant growth promoting fungi under drought stress publication-title: Afr. J. Agric. Res. doi: 10.5897/AJAR2014.8575 – volume: 31 start-page: 427 year: 2009 ident: ref_4 article-title: Antioxidant defense responses: Physiological plasticity in higher plants under abiotic constraints publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-009-0275-6 – volume: 53 start-page: 1331 year: 2002 ident: ref_51 article-title: Role of superoxide dismutases (SODs) in controlling oxidative stress in plants publication-title: J. Exp. Bot. doi: 10.1093/jexbot/53.372.1331 – volume: 161 start-page: 613 year: 2001 ident: ref_177 article-title: Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity publication-title: Plant Sci. doi: 10.1016/S0168-9452(01)00450-2 – volume: 495 start-page: 1851 year: 2018 ident: ref_164 article-title: Molecular cloning and characterization of the glutathione reductase gene from Stipa purpurea publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2017.12.054 – volume: 54 start-page: 1217 year: 2013 ident: ref_73 article-title: MKK5 Regulates High Light-Induced Gene Expression of Cu/Zn Superoxide Dismutase 1 and 2 in Arabidopsis publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pct072 – volume: 17 start-page: 1866 year: 2005 ident: ref_17 article-title: Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses publication-title: Plant Cell doi: 10.1105/tpc.105.033589 – volume: 25 start-page: 85 year: 2018 ident: ref_341 article-title: Identification of the antioxidant defense genes which may provide enhanced salt tolerance in Oryza sativa L. publication-title: Physiol. Mol. Biol. Plants – volume: 1807 start-page: 989 year: 2011 ident: ref_49 article-title: The biogenesis and physiological function of chloroplast superoxide dismutases publication-title: Biochim. Biophys. Acta Bioenerg. doi: 10.1016/j.bbabio.2010.11.002 – volume: 9 start-page: 490 year: 2004 ident: ref_25 article-title: Reactive oxygen gene network of plants publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2004.08.009 – ident: ref_181 – volume: 142 start-page: 775 year: 2006 ident: ref_189 article-title: Dehydroascorbate Reductase Affects Leaf Growth, Development, and Function publication-title: Plant Physiol. doi: 10.1104/pp.106.085506 – volume: 50 start-page: 601 year: 1999 ident: ref_151 article-title: The water-water cycle in chloroplasts: Scavenging of Active Oxygens and Dissipation of Excess Photons publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.50.1.601 |
SSID | ssj0000702636 |
Score | 2.6184995 |
SecondaryResourceType | review_article |
Snippet | Plants are exposed to various environmental stresses in their lifespan that threaten their survival. Reactive oxygen species (ROS), the byproducts of aerobic... Simple SummaryEnvironmental conditions are subject to unprecedented changes due to recent progressive anthropogenic activities on our planet. Plants, as the... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 155 |
SubjectTerms | Abiotic stress alpha-tocopherol Antioxidants Apoptosis ascorbate peroxidase Ascorbic acid Biodegradation Carbohydrates Carotenoids Catalase Chloroplasts DNA drought Environmental conditions Environmental effects environmental stress Enzymes Flavonoids Food security Genes Genotypes glutathione glutathione dehydrogenase (ascorbate) Glutathione reductase glutathione-disulfide reductase Guaiacol Heavy metals Homeostasis Immunological tolerance L-Ascorbate peroxidase Life span Lipids longevity metabolism microbiome monodehydroascorbate reductase (NADH) Oxidants Oxidation oxidative damage Oxidative stress peroxidase phenolic compounds Pigments Plant growth Reactive oxygen species Review Salinity Salinity effects second messengers Superoxide dismutase ultraviolet radiation Zinc oxides |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEB-kIHgRv11tJYIHD67dZJNNcqxiqUJVioXelnzqA9lX-l6h_e87k90-3yt-XLwsyyZhk8kk-Q2Z-Q3AK6tj0iJ4Cj-TtZT48E1CIMdj57qIH2Nh-_zcHRzLTyfqZC3VF_mEjfTAo-B2VYjBCy1iUFl62TquoyUrhatouS-GD555a8ZU2YM12hZ0L0lcPi3a9bsTpxGedoJgwsYxVNj6fwcxb3pKrh09-_fg7oQZ2d7Y1_twKw0P4PaYRfLyIXw_Sq7sWuzLxSXqAys55dPiDdsjV8aLWUTpsaPRGTYtmBsi-7jmSM4oxIQ5djgrpEz4p8N5nLJ6sa-_gjEfwfH-h2_vD-opf0IdlGiWteNWaa1yGx0OwEuZcqsMWTgh65By6EzXmOC55L6xTXbct6aT2MI432bbPoatYT6kp8BwF7TOuyx8QshhgnFdoHeRtOUu8wreXouzDxO5OOW4-NmjkUHy72_Iv4LXqwanI6_Gn6u-o_lZVSNC7PIB1aSf1KT_l5pUsH09u_20Shc9cdULSRxaFbxcFeP6oksTN6T5eanTGsQ4nP-tDm6DUiOaruDJqDCr3iLAbRR2pAK9oUobw9ksGWY_Cs-3MZ2V0j77H-N_DncEBW40vOZmG7aWZ-dpB-HU0r8oK-cKp5QhXg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS90wFA_blcFextxnNx0Z7GEP62zSpEmehoriBjq5TPCt5NNdGK3zXkH_-52kudUrzpdSmoSeJCcnvyQnv4PQJyWcF9SaeP2MlYzBw1QegBxxjW4cfHSJ7fOoOThhP075ad5wm2e3yqVNTIba9TbukW9FXnHKIt_Rt_O_ZYwaFU9XcwiNx2gNTLCUE7S2s3d0PB13WUChoWAzcPrUsL7fytxGMOvRCBdWpqPE2n8f1LzrMXlrCtp_jp5l7Ii3h85eR4989wI9GaJJXr9EZ1Ovk_XCP6-uQS9wii3v51_wdnRpvJo5aEU8HZxi_RzrzuHvtxzKcbxqgjU-nCVyJvjTYe9ydC98fHMp8xU62d_7tXtQ5jgKpeW0WpSaKC4ED7XTUAHDmA81l3GlY4OwPthGNpW0hjBiKlUFTUwtGwYlpDZ1UPVrNOn6zr9FGKyh0kYHajxAD2mlbmx8p14oogMp0Ndlc7Y2k4zHWBd_WlhsxPZv77R_gT6PBc4Hfo3_Z92J_TNmi8TY6UN_cdbmcdZy66yhgjrLAzOs1kQ4FRe1hDtFDAi4sezdNo_WeXujWwX6OCbDOIuHJ7rz_WXKU0vAOoQ8lAfMIROAqgv0ZlCYUVoAuhUHQQokVlRppTqrKd3sd-L7lrJRjKl3D4v-Hj2l8WpGRUoiN9BkcXHpNwEwLcyHPCr-AY_WGkY priority: 102 providerName: ProQuest |
Title | Reactive Oxygen Species, Antioxidant Responses and Implications from a Microbial Modulation Perspective |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35205022 https://www.proquest.com/docview/2632247162 https://www.proquest.com/docview/2633852111 https://www.proquest.com/docview/2648847013 https://pubmed.ncbi.nlm.nih.gov/PMC8869449 https://doaj.org/article/5cdcb272dc5f4b43a17d9022215d91b1 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFD5sLRt9Gbt23rqgwR72MHeWLFvSwxjtaOkG6UpYoG9GN3eB4rRJCsm_35HspE1J92KMdbEuR9J3bOn7AD4p4bxg1oTjZzzlHC8m8wjkqCt16fChi2yfp-XJkP86L85v5YC6BpxudO2CntRwcrk_v158xwH_LXic6LJ_7eiKcCFjAQE8hm1clkSQM-h3WD9OywLdjSgZyDKhEFXmoqX62ZTHDjxFZJIVGWNrC1bk9d8ERu_vqbyzSB0_h2cduiQHrTm8gEe-eQlPWr3JxSu4GHgd5zfye75AyyFRfd5Pv5CDsOlxPnLYzmTQbpv1U6IbR37e2XJOwmEUokl_FOmb8E39sev0v8jZ7bHN1zA8Pvrz4yTtlBZSi7WcpZqqQoiizp3GChjOfZ0XMvhCthbW17aUZSatoZyaTGW1piaXJccUUpu8Vvkb2GrGjX8LBOdLpY2umfEITqSVurThnnmhqK5pAvvL5qxsR0Me1DAuK3RHQldU97oigc-rBFctA8fDUQ9D_6yiBers-GA8uai6kVgV1lnDBHO2qLnhuabCqeD20sIparCAe8verZbmWAVWe8YD21YCH1fBOBLD7xXd-PFNjJNLREOU_i8OTphcIO5OYLc1mFVplwaXgFgzpbXqrIc0o7-REVzKUnGu3j2Y53vYYeHcRkZTKvdgaza58R8QTc1MD7YPj07PBr34NaIXx8w_Q4UhAA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrRBcEG9SChgJJA6Exo7jxwGhFlrt0u5SrVqpt-BXykpVUrpb0f1T_EbGeWy7FfTWSxQljjKxZ8afnZlvEHqrhPOCWhPSz1jMGBxM4gHIEcc1d3DR1WyfI94_ZN-OsqMV9KfLhQlhlZ1PrB21q2zYI98IvOKUBb6jz6e_4lA1Kvxd7UpoNGqx6-e_Yck2_TT4CuP7jtKd7YMv_bitKhDbjCazWBOVCZEVqdPOesOYL9JMBtxvC2F9YbnkibSGMGISlRSamFRyBk9IbdIikC-By19lKU9oD61ubY_2x4tdHTAgEJQ3HEJpqpKNlksJZlka4MnS9FdXCfgXtL0eoXllytt5gO63WBVvNsr1EK348hG601SvnD9Gx2Ova2-Jv1_MQQ9xXcveTz_gzRBCeTFxMGp43ATh-inWpcODKwHsOKS2YI2Hk5oMCt40rFxbTQzvXyaBPkGHt9LDT1GvrEr_HGHwvkobXVDjAepIKzW34Zx6oYguSIQ-dt2Z25bUPNTWOMlhcRP6P7_W_xF6v3jgtOHz-H_TrTA-i2aBiLu-UJ0d561d55l11lBBnc0KZliqiXAqLKJJ5hQxIOB6N7p56x2m-aUuR-jN4jbYdfhZo0tfnddtUgnYipCb2oD7ZQJQfISeNQqzkBaAdZKBIBESS6q09DnLd8rJz5pfXEquGFNrN4v-Gt3tHwz38r3BaPcFukdDWkhCYiLXUW92du5fAlibmVethWD047aN8i8ZYFfd |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VqUBcEG8MBRYJJA6YeNdr7_qAUEsbNZSGKKJSb-6-XCIhuzSpaP4av44ZP9Kmgt56sSJ7LU92Z2a_sWe-IeRNJp2X3BosPxOhEHAwkQcgx1yqUwcnXc32OUp3D8SXw-RwjfzpamEwrbLzibWjdpXFd-R95BXnAvmO-kWbFjHeHnw6-RViByn80tq102hUZM8vfkP4Nvs43Ia1fsv5YOf7592w7TAQ2oRH81CzLJEyKWKnnfVGCF_EicIYwBbS-sKmKo2UNUwwE2VRoZmJVSrgDqVNXCARE7j_dYlRUY-sb-2MxpPlGx4wJhA6bfiE4jiL-i2vEuy4HKHKylZYdwz4F8y9mq15afsb3CN3W9xKNxtFu0_WfPmA3Go6WS4ekuOJ17XnpN_OF6CTtO5r72fv6SamU55PHawgnTQJuX5Gdeno8FIyO8UyF6rp_rQmhoIn7Veu7SxGxxcFoY_IwY3M8GPSK6vSPyUUPHGmjS648QB7lFU6tfibe5kxXbCAfOimM7ctwTn22fiZQ6CD859fmf-AvFvecNJwe_x_6Bauz3IYknLXJ6rT47y18TyxzhouubNJIYyINZMuw4CaJS5jBgTc6FY3bz3FLL_Q64C8Xl4GG8cPN7r01Vk9JlaAsxi7bgy4YiEB0QfkSaMwS2kBZEcJCBIQuaJKK39n9Uo5_VFzjSuVZkJkz64X_RW5DcaYfx2O9p6TOxwrRCIWMrVBevPTM_8CcNvcvGwNhJKjm7bJv8goXBI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reactive+Oxygen+Species%2C+Antioxidant+Responses+and+Implications+from+a+Microbial+Modulation+Perspective&rft.jtitle=Biology+%28Basel%2C+Switzerland%29&rft.au=Zandi%2C+Peiman&rft.au=Schnug%2C+Ewald&rft.date=2022-01-18&rft.issn=2079-7737&rft.eissn=2079-7737&rft.volume=11&rft.issue=2&rft_id=info:doi/10.3390%2Fbiology11020155&rft_id=info%3Apmid%2F35205022&rft.externalDocID=35205022 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-7737&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-7737&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-7737&client=summon |