Reactive Oxygen Species, Antioxidant Responses and Implications from a Microbial Modulation Perspective

Plants are exposed to various environmental stresses in their lifespan that threaten their survival. Reactive oxygen species (ROS), the byproducts of aerobic metabolism, are essential signalling molecules in regulating multiple plant developmental processes as well as in reinforcing plant tolerance...

Full description

Saved in:
Bibliographic Details
Published inBiology (Basel, Switzerland) Vol. 11; no. 2; p. 155
Main Authors Zandi, Peiman, Schnug, Ewald
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 18.01.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plants are exposed to various environmental stresses in their lifespan that threaten their survival. Reactive oxygen species (ROS), the byproducts of aerobic metabolism, are essential signalling molecules in regulating multiple plant developmental processes as well as in reinforcing plant tolerance to biotic and abiotic stimuli. However, intensified environmental challenges such as salinity, drought, UV irradiation, and heavy metals usually interfere with natural ROS metabolism and homeostasis, thus aggravating ROS generation excessively and ultimately resulting in oxidative stress. Cellular damage is confined to the degradation of biomolecular structures, including carbohydrates, proteins, lipids, pigments, and DNA. The nature of the double-edged function of ROS as a secondary messenger or harmful oxidant has been attributed to the degree of existing balance between cellular ROS production and ROS removal machinery. The activities of enzyme-based antioxidants, catalase (CAT, EC 1.11.1.6), monodehydroascorbate reductase (MDHAR, E.C.1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1), superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), glutathione reductase (GR, EC 1.6.4.2), and guaiacol peroxidase (GPX, EC 1.11.1.7); and non-enzyme based antioxidant molecules, ascorbate (AA), glutathione (GSH), carotenoids, α-tocopherol, prolines, flavonoids, and phenolics, are indeed parts of the defensive strategies developed by plants to scavenge excess ROS and to maintain cellular redox homeostasis during oxidative stress. This review briefly summarises current knowledge on enzymatic and non-enzymatic antioxidant machinery in plants. Moreover, additional information about the beneficial impact of the microbiome on countering abiotic/biotic stresses in association with roots and plant tissues has also been provided.
AbstractList Plants are exposed to various environmental stresses in their lifespan that threaten their survival. Reactive oxygen species (ROS), the byproducts of aerobic metabolism, are essential signalling molecules in regulating multiple plant developmental processes as well as in reinforcing plant tolerance to biotic and abiotic stimuli. However, intensified environmental challenges such as salinity, drought, UV irradiation, and heavy metals usually interfere with natural ROS metabolism and homeostasis, thus aggravating ROS generation excessively and ultimately resulting in oxidative stress. Cellular damage is confined to the degradation of biomolecular structures, including carbohydrates, proteins, lipids, pigments, and DNA. The nature of the double-edged function of ROS as a secondary messenger or harmful oxidant has been attributed to the degree of existing balance between cellular ROS production and ROS removal machinery. The activities of enzyme-based antioxidants, catalase (CAT, EC 1.11.1.6), monodehydroascorbate reductase (MDHAR, E.C.1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1), superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), glutathione reductase (GR, EC 1.6.4.2), and guaiacol peroxidase (GPX, EC 1.11.1.7); and non-enzyme based antioxidant molecules, ascorbate (AA), glutathione (GSH), carotenoids, α-tocopherol, prolines, flavonoids, and phenolics, are indeed parts of the defensive strategies developed by plants to scavenge excess ROS and to maintain cellular redox homeostasis during oxidative stress. This review briefly summarises current knowledge on enzymatic and non-enzymatic antioxidant machinery in plants. Moreover, additional information about the beneficial impact of the microbiome on countering abiotic/biotic stresses in association with roots and plant tissues has also been provided.
Plants are exposed to various environmental stresses in their lifespan that threaten their survival. Reactive oxygen species (ROS), the byproducts of aerobic metabolism, are essential signalling molecules in regulating multiple plant developmental processes as well as in reinforcing plant tolerance to biotic and abiotic stimuli. However, intensified environmental challenges such as salinity, drought, UV irradiation, and heavy metals usually interfere with natural ROS metabolism and homeostasis, thus aggravating ROS generation excessively and ultimately resulting in oxidative stress. Cellular damage is confined to the degradation of biomolecular structures, including carbohydrates, proteins, lipids, pigments, and DNA. The nature of the double-edged function of ROS as a secondary messenger or harmful oxidant has been attributed to the degree of existing balance between cellular ROS production and ROS removal machinery. The activities of enzyme-based antioxidants, catalase (CAT, EC 1.11.1.6), monodehydroascorbate reductase (MDHAR, E.C.1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1), superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), glutathione reductase (GR, EC 1.6.4.2), and guaiacol peroxidase (GPX, EC 1.11.1.7); and non-enzyme based antioxidant molecules, ascorbate (AA), glutathione (GSH), carotenoids, α-tocopherol, prolines, flavonoids, and phenolics, are indeed parts of the defensive strategies developed by plants to scavenge excess ROS and to maintain cellular redox homeostasis during oxidative stress. This review briefly summarises current knowledge on enzymatic and non-enzymatic antioxidant machinery in plants. Moreover, additional information about the beneficial impact of the microbiome on countering abiotic/biotic stresses in association with roots and plant tissues has also been provided.Plants are exposed to various environmental stresses in their lifespan that threaten their survival. Reactive oxygen species (ROS), the byproducts of aerobic metabolism, are essential signalling molecules in regulating multiple plant developmental processes as well as in reinforcing plant tolerance to biotic and abiotic stimuli. However, intensified environmental challenges such as salinity, drought, UV irradiation, and heavy metals usually interfere with natural ROS metabolism and homeostasis, thus aggravating ROS generation excessively and ultimately resulting in oxidative stress. Cellular damage is confined to the degradation of biomolecular structures, including carbohydrates, proteins, lipids, pigments, and DNA. The nature of the double-edged function of ROS as a secondary messenger or harmful oxidant has been attributed to the degree of existing balance between cellular ROS production and ROS removal machinery. The activities of enzyme-based antioxidants, catalase (CAT, EC 1.11.1.6), monodehydroascorbate reductase (MDHAR, E.C.1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1), superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), glutathione reductase (GR, EC 1.6.4.2), and guaiacol peroxidase (GPX, EC 1.11.1.7); and non-enzyme based antioxidant molecules, ascorbate (AA), glutathione (GSH), carotenoids, α-tocopherol, prolines, flavonoids, and phenolics, are indeed parts of the defensive strategies developed by plants to scavenge excess ROS and to maintain cellular redox homeostasis during oxidative stress. This review briefly summarises current knowledge on enzymatic and non-enzymatic antioxidant machinery in plants. Moreover, additional information about the beneficial impact of the microbiome on countering abiotic/biotic stresses in association with roots and plant tissues has also been provided.
Simple SummaryEnvironmental conditions are subject to unprecedented changes due to recent progressive anthropogenic activities on our planet. Plants, as the frontline of food security, are susceptible to these changes, resulting in the generation of unavoidable byproducts of metabolism (ROS), which eventually affect their productivity. The response of plants to these unfavorable conditions is highly intricate and depends on several factors, among them are the species/genotype tolerance level, intensity, and duration of stress factors. Defensive mechanisms in plant systems, by nature, are concerned primarily with generating enzymatic and non-enzymatic antioxidants. In addition to this, plant-microbe interactions have been found to improve immune systems in plants suffering from drought and salinity stress.AbstractPlants are exposed to various environmental stresses in their lifespan that threaten their survival. Reactive oxygen species (ROS), the byproducts of aerobic metabolism, are essential signalling molecules in regulating multiple plant developmental processes as well as in reinforcing plant tolerance to biotic and abiotic stimuli. However, intensified environmental challenges such as salinity, drought, UV irradiation, and heavy metals usually interfere with natural ROS metabolism and homeostasis, thus aggravating ROS generation excessively and ultimately resulting in oxidative stress. Cellular damage is confined to the degradation of biomolecular structures, including carbohydrates, proteins, lipids, pigments, and DNA. The nature of the double-edged function of ROS as a secondary messenger or harmful oxidant has been attributed to the degree of existing balance between cellular ROS production and ROS removal machinery. The activities of enzyme-based antioxidants, catalase (CAT, EC 1.11.1.6), monodehydroascorbate reductase (MDHAR, E.C.1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1), superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), glutathione reductase (GR, EC 1.6.4.2), and guaiacol peroxidase (GPX, EC 1.11.1.7); and non-enzyme based antioxidant molecules, ascorbate (AA), glutathione (GSH), carotenoids, α-tocopherol, prolines, flavonoids, and phenolics, are indeed parts of the defensive strategies developed by plants to scavenge excess ROS and to maintain cellular redox homeostasis during oxidative stress. This review briefly summarises current knowledge on enzymatic and non-enzymatic antioxidant machinery in plants. Moreover, additional information about the beneficial impact of the microbiome on countering abiotic/biotic stresses in association with roots and plant tissues has also been provided.
Author Schnug, Ewald
Zandi, Peiman
AuthorAffiliation 2 Department of Life Sciences, Institute for Plant Biology, Technical University of Braunschweig, 38106 Braunschweig, Germany
1 International Faculty of Applied Technology, Yibin University, Yibin 644000, China; peiman.zandi@yibinu.edu.cn
AuthorAffiliation_xml – name: 2 Department of Life Sciences, Institute for Plant Biology, Technical University of Braunschweig, 38106 Braunschweig, Germany
– name: 1 International Faculty of Applied Technology, Yibin University, Yibin 644000, China; peiman.zandi@yibinu.edu.cn
Author_xml – sequence: 1
  givenname: Peiman
  orcidid: 0000-0003-3520-3994
  surname: Zandi
  fullname: Zandi, Peiman
– sequence: 2
  givenname: Ewald
  surname: Schnug
  fullname: Schnug, Ewald
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35205022$$D View this record in MEDLINE/PubMed
BookMark eNqNks1rHCEYxqWkNB_Nubci9NJDtvFzHC-FEPqxkJCStmdRx5m6zOpUZ0L2v6-zm4ZkoVAviu_veXh8X4_BQYjBAfAGow-USnRufOxjt8EYEYQ5fwGOCBJyIQQVB0_Oh-A05xUqSyBS0eoVOKScII4IOQLdrdN29HcO3txvOhfg98FZ7_IZvAijj_e-0WGEty4PMWSXoQ4NXK6H3ltdyiHDNsU11PDa2xSN1z28js3Ub4vwm0u52M32r8HLVvfZnT7sJ-Dn508_Lr8urm6-LC8vrha2RBoXGksuBG9poxvrDGOupbyWUla2Fda1tqorVFuDGTZIolZjQ-uKFUWtDW0lPQHLnW8T9UoNya912qiovdpexNQpnUZve6e4bawhgjSWt8wwqrFoZGkKwbyR2ODi9XHnNUxm7UqeMCbdPzN9Xgn-l-rinarrSjI2h3n_YJDi78nlUa19tq7vdXBxyopUrK6ZQJj-B0ppzQnGc6x3e-gqTimUrs4UIUzgihTq7dPwj6n_jr4A5zugDC7n5NpHBCM1_y-197-Kgu8prB-3ky6v9_0_dX8A32zWnQ
CitedBy_id crossref_primary_10_1080_01904167_2024_2422586
crossref_primary_10_1590_1807_1929_agriambi_v28n8e279686
crossref_primary_10_2174_0122106812323520240809090957
crossref_primary_10_3389_fpls_2022_867172
crossref_primary_10_1021_acs_chemrestox_4c00235
crossref_primary_10_1016_j_lfs_2023_122007
crossref_primary_10_2478_fhort_2024_0016
crossref_primary_10_3390_plants13091243
crossref_primary_10_3390_jof10090635
crossref_primary_10_1007_s00210_024_03392_1
crossref_primary_10_29233_sdufeffd_1529867
crossref_primary_10_1007_s12649_024_02589_y
crossref_primary_10_3390_molecules29040865
crossref_primary_10_1016_j_crphar_2024_100199
crossref_primary_10_3390_ijpb15030055
crossref_primary_10_1016_j_dci_2024_105251
crossref_primary_10_1007_s00344_023_11119_4
crossref_primary_10_3390_agronomy14030617
crossref_primary_10_3390_plants12030428
crossref_primary_10_1128_aac_01349_24
crossref_primary_10_1016_j_fbio_2024_105002
crossref_primary_10_1007_s00344_024_11619_x
crossref_primary_10_3390_cells12091341
crossref_primary_10_1007_s10343_024_01070_z
crossref_primary_10_1186_s12870_025_06323_1
crossref_primary_10_3390_foods13172787
crossref_primary_10_1007_s12038_023_00390_y
crossref_primary_10_1149_1945_7111_ad7bef
crossref_primary_10_1002_ardp_202300263
crossref_primary_10_1016_j_plaphy_2023_107936
crossref_primary_10_1007_s00344_024_11548_9
crossref_primary_10_1016_j_scitotenv_2023_161871
crossref_primary_10_1007_s11356_024_34150_8
crossref_primary_10_1016_j_micpath_2024_107253
crossref_primary_10_1016_j_cropro_2025_107182
crossref_primary_10_3390_foods13244116
crossref_primary_10_1016_j_chemosphere_2024_142896
crossref_primary_10_1016_j_ijbiomac_2024_135859
crossref_primary_10_3390_polym16030376
crossref_primary_10_1038_s41598_024_80798_0
crossref_primary_10_1038_s41598_024_83506_0
crossref_primary_10_1186_s12870_024_05340_w
crossref_primary_10_3390_ijms241813794
crossref_primary_10_1016_j_pmpp_2024_102412
crossref_primary_10_1080_14620316_2025_2456723
crossref_primary_10_1007_s12633_024_03094_6
crossref_primary_10_1038_s41598_024_80234_3
crossref_primary_10_3390_toxics10090499
crossref_primary_10_1016_j_chemosphere_2024_141316
crossref_primary_10_1080_15569543_2024_2382989
crossref_primary_10_1016_j_fbio_2025_106117
crossref_primary_10_1038_s41598_023_46696_7
crossref_primary_10_3390_agronomy13020493
crossref_primary_10_5010_JPB_2024_51_033_337
crossref_primary_10_1007_s11240_024_02739_z
crossref_primary_10_1016_j_pmpp_2024_102370
crossref_primary_10_1186_s12870_024_05811_0
crossref_primary_10_1016_j_fochx_2025_102326
crossref_primary_10_1016_j_jhazmat_2024_136971
crossref_primary_10_1007_s12633_024_03215_1
crossref_primary_10_1007_s10534_025_00670_0
crossref_primary_10_1007_s40003_024_00813_8
crossref_primary_10_1007_s44372_025_00155_x
crossref_primary_10_3390_molecules27185823
crossref_primary_10_1186_s40538_024_00689_4
crossref_primary_10_4081_ija_2024_2219
crossref_primary_10_3390_foods13010072
crossref_primary_10_1016_j_plaphy_2023_108006
crossref_primary_10_1080_09670262_2024_2447264
crossref_primary_10_1007_s10725_024_01125_1
crossref_primary_10_1007_s10142_024_01505_w
crossref_primary_10_1016_j_indcrop_2023_117664
crossref_primary_10_1186_s42397_023_00164_9
crossref_primary_10_3389_fmicb_2023_1255921
crossref_primary_10_3390_agriculture13101983
crossref_primary_10_3390_toxics12090653
crossref_primary_10_33003_fjs_2024_0803_2458
crossref_primary_10_1590_s0102_0536_20220201
crossref_primary_10_1007_s40502_024_00799_z
crossref_primary_10_1590_1807_1929_agriambi_v28n1e270704
crossref_primary_10_3390_agronomy13123076
crossref_primary_10_1007_s42161_022_01289_7
crossref_primary_10_3390_plants14030410
crossref_primary_10_1007_s12038_023_00364_0
crossref_primary_10_1016_j_molp_2024_03_003
crossref_primary_10_3389_fmicb_2023_1198131
crossref_primary_10_3390_ijms24043755
crossref_primary_10_1007_s11816_024_00918_0
crossref_primary_10_3390_horticulturae9020172
crossref_primary_10_1039_D4EW00576G
crossref_primary_10_3390_agronomy13061502
crossref_primary_10_3390_plants13060778
crossref_primary_10_1016_j_plaphy_2023_108261
crossref_primary_10_3390_antiox13101223
crossref_primary_10_3390_w16243633
crossref_primary_10_1016_j_heliyon_2023_e22148
crossref_primary_10_1371_journal_pone_0315819
crossref_primary_10_1007_s00792_024_01346_2
crossref_primary_10_1007_s11756_022_01268_4
crossref_primary_10_3389_fpls_2023_1079656
crossref_primary_10_3390_metabo14120711
crossref_primary_10_3390_horticulturae9111196
crossref_primary_10_3390_microorganisms11112654
crossref_primary_10_2478_aoas_2022_0057
crossref_primary_10_3390_medicina60050804
crossref_primary_10_3390_agronomy13071675
crossref_primary_10_1016_j_eti_2024_103673
crossref_primary_10_1016_j_sajb_2025_02_030
crossref_primary_10_1038_s41598_025_92798_9
crossref_primary_10_1016_j_chemosphere_2022_136207
crossref_primary_10_3389_fchem_2024_1414646
crossref_primary_10_3390_su151511768
crossref_primary_10_1007_s11270_025_07875_6
crossref_primary_10_3923_ijbs_2023_01_09
crossref_primary_10_1016_j_micres_2024_127827
crossref_primary_10_1016_j_heliyon_2024_e31544
crossref_primary_10_3390_oxygen2030025
crossref_primary_10_1007_s42729_024_01903_w
crossref_primary_10_31857_S0555109923050185
crossref_primary_10_3390_ijms25074018
crossref_primary_10_30970_sbi_1802_778
crossref_primary_10_3390_jof10050320
crossref_primary_10_3390_ijms241310960
crossref_primary_10_3390_ijms231911773
crossref_primary_10_3390_plants11131620
crossref_primary_10_3390_plants13182630
crossref_primary_10_3390_horticulturae11010047
crossref_primary_10_3390_jof10050329
crossref_primary_10_1007_s10343_023_00890_9
crossref_primary_10_1134_S0003683823050186
crossref_primary_10_1007_s42729_022_01080_8
crossref_primary_10_1186_s12870_024_05496_5
crossref_primary_10_1039_D4NJ05538A
crossref_primary_10_3389_fpls_2023_1104874
crossref_primary_10_1080_21645698_2025_2469942
crossref_primary_10_3390_cells13121035
crossref_primary_10_1002_pmic_202200108
crossref_primary_10_1016_j_jplph_2025_154455
crossref_primary_10_1007_s00344_022_10839_3
crossref_primary_10_3390_ijms25179367
crossref_primary_10_3390_plants13020293
crossref_primary_10_1002_cbdv_202402184
crossref_primary_10_1016_j_ecoenv_2025_117732
crossref_primary_10_1038_s41598_024_64056_x
crossref_primary_10_1007_s10725_022_00956_0
crossref_primary_10_3389_fpls_2025_1540266
crossref_primary_10_3390_plants13202934
crossref_primary_10_1016_j_jhazmat_2024_134875
crossref_primary_10_1186_s12870_024_05511_9
crossref_primary_10_1038_s41598_024_76194_3
crossref_primary_10_1016_j_talanta_2025_127751
crossref_primary_10_3389_fmicb_2023_1210890
crossref_primary_10_3390_ijpb14010026
crossref_primary_10_1038_s41598_024_70164_5
crossref_primary_10_3390_plants13111431
crossref_primary_10_3390_agronomy14091949
crossref_primary_10_1016_j_jhazmat_2024_135968
crossref_primary_10_3389_fpls_2022_881032
crossref_primary_10_1186_s12870_024_05709_x
crossref_primary_10_1134_S102144372360099X
crossref_primary_10_1590_1807_1929_agriambi_v26n10p747_752
crossref_primary_10_3389_fpls_2024_1423625
Cites_doi 10.1007/s00299-008-0643-5
10.1016/j.micres.2015.12.003
10.1111/1462-2920.12439
10.1016/j.plaphy.2019.02.005
10.1007/s11103-015-0301-6
10.5772/60477
10.1016/j.apsoil.2007.12.006
10.3390/ijms21041437
10.1134/S1021443708060071
10.1111/j.1469-8137.2007.02047.x
10.1007/s10535-006-0054-9
10.1094/PHYTO-03-10-0091
10.1016/j.plaphy.2013.10.012
10.1071/FP02144
10.3389/fpls.2020.618835
10.3390/antiox8120641
10.1104/pp.17.00317
10.1186/s40659-018-0197-0
10.1093/jxb/eri039
10.1073/pnas.0407960102
10.1089/ars.2012.5052
10.1111/j.1744-7909.2009.00886.x
10.1016/S0020-1693(00)91627-X
10.1093/pcp/pci246
10.1016/j.sjbs.2021.05.040
10.1104/pp.118.2.637
10.1007/978-3-319-75088-0
10.1105/tpc.105.039404
10.1093/jxb/eri134
10.1111/j.1469-8137.2010.03509.x
10.1104/pp.20.00388
10.1007/BF00028744
10.1111/j.1439-037X.2009.00378.x
10.1007/s10725-009-9418-4
10.1016/S1016-8478(23)13224-9
10.1105/tpc.113.117028
10.3732/ajb.90.9.1400
10.1016/j.phytochem.2004.06.023
10.1016/j.mam.2018.07.002
10.1038/289310a0
10.1093/jxb/erf090
10.1111/j.1365-313X.2007.03266.x
10.1093/jxb/erv089
10.1007/BF00020803
10.1016/j.envexpbot.2018.02.001
10.1186/s40529-014-0054-6
10.3390/ijms22084281
10.1111/j.1744-7909.2010.00921.x
10.1080/09168451.2016.1256759
10.1016/0167-4838(84)90337-6
10.1007/s11356-012-1461-4
10.1186/s12870-019-1707-0
10.1080/07352689409701914
10.1016/0003-9861(85)90167-5
10.1093/pcp/pcv063
10.1016/j.ecoenv.2004.06.010
10.1016/j.envexpbot.2005.03.002
10.1016/j.micres.2019.126388
10.1016/j.scienta.2018.06.069
10.1093/jxb/ers335
10.3390/agronomy3040648
10.1111/j.1399-3054.1991.tb02490.x
10.1105/tpc.106.043992
10.1146/annurev-arplant-042817-040322
10.3389/fpls.2016.00471
10.1016/S2095-3119(13)60279-8
10.1016/j.jff.2020.103917
10.1007/s00299-008-0556-3
10.1007/BF02535334
10.1111/j.1365-3040.2005.01419.x
10.1016/j.rsci.2018.06.002
10.1023/A:1005742916292
10.1007/s00425-006-0417-7
10.1038/s41598-018-27032-w
10.1046/j.1365-313X.1993.03040527.x
10.1073/pnas.0635176100
10.1111/j.0031-9317.2004.00308.x
10.1371/journal.pone.0052565
10.1007/s10725-010-9479-4
10.1016/j.plaphy.2010.01.004
10.1111/j.1365-313X.2007.03305.x
10.1146/annurev.arplant.56.032604.144301
10.1016/j.plaphy.2013.05.032
10.1089/ars.2012.5074
10.1016/j.plaphy.2010.08.016
10.1016/S0031-9422(98)00282-9
10.1016/j.plaphy.2017.11.018
10.1007/s11738-004-0011-1
10.1007/s00299-011-1056-4
10.1016/j.plantsci.2004.04.028
10.3390/antiox6040099
10.1105/tpc.15.00144
10.3389/fpls.2019.01178
10.1016/j.redox.2020.101525
10.1007/s00726-006-0407-x
10.3389/fpls.2019.00800
10.1093/jxb/erq282
10.1016/j.niox.2016.12.010
10.1016/S0300-483X(02)00196-8
10.1104/pp.103.4.1067
10.1016/0167-4781(88)90030-9
10.1104/pp.102.2.691
10.1007/s00709-012-0378-6
10.1089/ars.2018.7601
10.1007/978-94-017-2660-3
10.1242/dev.164376
10.1007/BF00043878
10.1089/ars.2006.8.152
10.1089/ars.2009.2887
10.1007/s10535-014-0390-0
10.3389/fenvs.2014.00053
10.1111/jipb.12649
10.1016/j.plantsci.2004.03.032
10.1007/s00709-015-0755-z
10.1104/pp.107.113613
10.1016/S0021-9258(18)67210-2
10.1016/S1011-1344(96)07470-2
10.1093/jxb/erv084
10.1007/s11540-010-9178-6
10.1016/j.freeradbiomed.2018.03.033
10.1104/pp.89.3.952
10.1038/s41598-020-73489-z
10.3390/ijms21144858
10.1016/S0891-5849(98)00090-2
10.1007/s00425-013-1862-8
10.1104/pp.104.054908
10.1111/j.1365-3040.2009.02041.x
10.3390/ijms13044458
10.1093/jxb/erv099
10.1515/opag-2021-0040
10.1111/tpj.12386
10.1016/j.tplants.2008.10.004
10.1371/journal.pone.0060109
10.21273/JASHS.124.4.330
10.1016/j.jmb.2008.06.083
10.1111/j.1365-3040.1992.tb00988.x
10.1093/jexbot/52.364.2115
10.1111/nph.16086
10.1016/j.bbabio.2011.04.012
10.1016/j.envexpbot.2016.01.008
10.1016/0076-6879(93)14065-Q
10.1080/10715769900301561
10.1016/S0021-9258(17)38813-0
10.1073/pnas.231178298
10.1016/0167-4889(94)90284-4
10.1104/pp.105.3.1015
10.1201/b12954
10.1016/j.plantsci.2012.07.014
10.1007/s00425-020-03414-1
10.1007/s00709-011-0365-3
10.1556/AAgr.57.2009.1.1
10.1093/jxb/ert375
10.1007/s11738-007-0072-z
10.1105/tpc.108.061341
10.1016/S1360-1385(97)01018-2
10.1007/s11738-011-0881-y
10.1074/jbc.M304987200
10.1007/s11274-010-0572-7
10.1104/pp.106.077073
10.2307/3869254
10.1016/0005-2736(81)90572-1
10.1023/A:1001898310321
10.1093/acprof:oso/9780198717478.001.0001
10.1016/j.bbagen.2012.08.003
10.1104/pp.108.117614
10.1016/j.tplants.2009.01.008
10.3389/fpls.2017.00581
10.17221/410-PSE
10.1016/S0981-9428(02)01414-6
10.1016/0014-5793(94)00923-6
10.3389/fpls.2016.01574
10.1016/j.plaphy.2014.05.007
10.1186/s12870-016-0856-7
10.1016/j.plantsci.2020.110604
10.1111/pce.13453
10.1080/09168451.2015.1135042
10.1007/s10535-005-5308-4
10.1016/j.apsoil.2016.04.009
10.1007/s00344-012-9283-7
10.1016/S0168-9452(00)00457-X
10.1016/j.freeradbiomed.2007.03.013
10.1074/jbc.M802601200
10.3389/fpls.2013.00314
10.1017/S0021859609008806
10.1007/s00425-005-0125-8
10.1111/ppl.12583
10.1016/j.scienta.2018.04.068
10.1074/jbc.M307525200
10.1016/j.semcdb.2017.07.013
10.1016/j.plantsci.2005.09.005
10.1111/j.1365-313X.2006.02837.x
10.1016/j.jplph.2011.08.002
10.1016/j.jhazmat.2016.05.032
10.1016/S1360-1385(02)02312-9
10.1016/j.jplph.2007.07.013
10.3390/cells8020086
10.3389/fpls.2016.00230
10.1179/135100008X259141
10.1111/j.1399-3054.1992.tb04728.x
10.1007/BF00014973
10.1016/j.freeradbiomed.2019.02.006
10.1007/s11738-012-1142-4
10.1016/j.envexpbot.2019.06.004
10.1111/j.1365-313X.2004.02105.x
10.1094/MPMI-21-7-0958
10.1016/j.jplph.2011.09.004
10.1016/j.envexpbot.2018.05.003
10.1023/B:GROW.0000014891.35427.7b
10.1089/ars.2009.2842
10.1146/annurev.arplant.59.032607.092945
10.1007/s12298-014-0224-8
10.1016/S0098-8472(03)00063-7
10.1590/1678-4685-GMB-2015-0192
10.1016/j.scienta.2013.08.016
10.1104/pp.112.1.327
10.1104/pp.100.3.1605
10.1271/bbb.90305
10.1016/j.plantsci.2010.01.004
10.1046/j.1365-313X.2003.01715.x
10.1053/plac.2001.0650
10.1002/dvg.1020100405
10.1016/j.jplph.2010.09.003
10.1073/pnas.1016060108
10.1038/s41586-020-2032-3
10.1093/jxb/eraa107
10.3390/antiox8090384
10.1016/j.plaphy.2018.07.036
10.1007/BF00226730
10.1007/s11120-005-8811-8
10.1007/s11738-007-0059-9
10.1089/152308603321223531
10.1104/pp.19.01556
10.3390/microorganisms8060823
10.1104/pp.114.245324
10.1007/s00248-013-0326-9
10.1007/s11738-011-0806-9
10.1111/j.1365-3040.2009.02028.x
10.1093/jxb/erm144
10.1007/s12374-014-0383-8
10.1016/j.plantsci.2003.08.005
10.1111/j.1469-8137.2006.01643.x
10.1104/pp.110.1.125
10.1016/j.envexpbot.2014.11.004
10.1016/j.plaphy.2006.10.020
10.1007/s10725-010-9526-1
10.3389/fphys.2012.00182
10.1016/j.ceca.2017.01.007
10.1071/FP04235
10.1074/jbc.M702831200
10.1080/17429145.2010.535178
10.1111/j.1744-7909.2008.00741.x
10.1016/j.jplph.2016.01.016
10.1007/s004250050699
10.3389/fpls.2011.00103
10.1016/j.jplph.2005.10.002
10.1016/j.plantsci.2003.11.004
10.1016/j.tplants.2008.10.007
10.1016/j.jplph.2006.03.010
10.3389/fpls.2021.683546
10.1073/pnas.92.13.5930
10.1016/j.sjbs.2014.12.001
10.1016/0003-9861(90)90256-X
10.1007/s11816-010-0152-1
10.1007/s10725-018-0420-6
10.1098/rstb.2000.0710
10.1007/BF02524257
10.1111/j.1399-3054.1987.tb09240.x
10.3389/fpls.2020.591911
10.1016/j.isci.2019.05.014
10.1080/15228861003776175
10.1104/pp.108.122119
10.1007/s11738-014-1756-9
10.1007/978-1-4939-7136-7_13
10.1093/pcp/pcp134
10.1016/j.phytochem.2007.06.010
10.1016/j.jplph.2008.12.014
10.1111/j.1399-3054.2006.00611.x
10.1080/17429145.2014.902125
10.3389/fpls.2015.00069
10.1007/s00425-003-1192-3
10.1007/s11738-008-0189-8
10.1093/pcp/pcv203
10.1007/BF02522884
10.1007/s10725-005-0002-2
10.1590/S0100-879X2005000700003
10.5897/AJB2015.14405
10.1104/pp.99.4.1726
10.3389/fpls.2016.00187
10.1104/pp.121.3.1047
10.3389/fpls.2020.00169
10.1038/srep19498
10.1105/tpc.104.026971
10.1146/annurev-arplant-050718-095955
10.3389/fpls.2016.01408
10.1046/j.1365-2249.2003.02104.x
10.1111/tpj.14791
10.4161/psb.5.2.10527
10.1104/pp.106.1.399
10.1007/s00709-010-0210-0
10.1104/pp.15.00293
10.1080/17429145.2010.513484
10.1007/s00425-009-1075-3
10.1007/s10646-012-0945-9
10.1016/j.tplants.2009.11.009
10.1016/j.bbrc.2020.11.006
10.1093/pcp/pcf103
10.4161/psb.6.5.15069
10.5897/AJAR2014.8575
10.1007/s11738-009-0275-6
10.1093/jexbot/53.372.1331
10.1016/S0168-9452(01)00450-2
10.1016/j.bbrc.2017.12.054
10.1093/pcp/pct072
10.1105/tpc.105.033589
10.1016/j.bbabio.2010.11.002
10.1016/j.tplants.2004.08.009
10.1104/pp.106.085506
10.1146/annurev.arplant.50.1.601
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
7QP
7TK
8FD
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M7P
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
7S9
L.6
5PM
DOA
DOI 10.3390/biology11020155
DatabaseName CrossRef
PubMed
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef

PubMed
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journal (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2079-7737
ExternalDocumentID oai_doaj_org_article_5cdcb272dc5f4b43a17d9022215d91b1
PMC8869449
35205022
10_3390_biology11020155
Genre Journal Article
Review
GroupedDBID 2XV
53G
5VS
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
EBD
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
ISR
NPM
7QP
7TK
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
7S9
L.6
5PM
PUEGO
ID FETCH-LOGICAL-c520t-a195775f3dadceb44ef3589996cf7cefc68608cb141b090fa1b386475f8ab3f93
IEDL.DBID M48
ISSN 2079-7737
IngestDate Wed Aug 27 01:29:24 EDT 2025
Thu Aug 21 18:11:25 EDT 2025
Fri Jul 11 12:13:40 EDT 2025
Fri Jul 11 16:21:07 EDT 2025
Fri Jul 25 11:57:37 EDT 2025
Thu Jan 02 22:56:56 EST 2025
Tue Jul 01 01:28:43 EDT 2025
Thu Apr 24 22:52:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords oxidative damage
environmental stress
antioxidants
reactive oxygen species
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c520t-a195775f3dadceb44ef3589996cf7cefc68608cb141b090fa1b386475f8ab3f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3520-3994
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/biology11020155
PMID 35205022
PQID 2632247162
PQPubID 2032427
ParticipantIDs doaj_primary_oai_doaj_org_article_5cdcb272dc5f4b43a17d9022215d91b1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8869449
proquest_miscellaneous_2648847013
proquest_miscellaneous_2633852111
proquest_journals_2632247162
pubmed_primary_35205022
crossref_primary_10_3390_biology11020155
crossref_citationtrail_10_3390_biology11020155
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220118
PublicationDateYYYYMMDD 2022-01-18
PublicationDate_xml – month: 1
  year: 2022
  text: 20220118
  day: 18
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Biology (Basel, Switzerland)
PublicationTitleAlternate Biology (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_257
ref_139
Jiang (ref_173) 2002; 53
Grover (ref_34) 2010; 27
Shrivastava (ref_297) 2014; 22
Kerdnaimongkol (ref_115) 1999; 124
Eltayeb (ref_186) 2007; 225
Niu (ref_284) 2016; 7
ref_99
ref_251
Agati (ref_270) 2012; 196
RoyChoudhury (ref_214) 2012; 66
Krasylenko (ref_46) 2020; 44
Liebler (ref_210) 1986; 261
Ushimaru (ref_201) 2006; 163
Johnson (ref_261) 2007; 282
Ni (ref_93) 1991; 3
Logan (ref_166) 2003; 90
Eising (ref_90) 1990; 278
Farago (ref_224) 1979; 32
Melchior (ref_9) 2018; 63
Kim (ref_204) 2013; 237
Havaux (ref_256) 2013; 79
Lin (ref_68) 2013; 162
Kliebenstein (ref_50) 1998; 118
Rossel (ref_140) 2005; 29
Paul (ref_313) 2008; 59
Tewari (ref_56) 2004; 166
Zhang (ref_125) 2020; 299
ref_241
Shintu (ref_312) 2015; 2
Corpas (ref_95) 1999; 31
ref_124
Redinbaugh (ref_103) 1988; 951
Kankofer (ref_292) 2001; 22
Barczyk (ref_333) 2013; 20
Ivanov (ref_154) 2012; 250
Baxter (ref_22) 2013; 65
Sharma (ref_223) 1998; 49
Almeselmani (ref_348) 2009; 57
Jamdhade (ref_54) 2017; 1631
Gao (ref_326) 2008; 54
Marino (ref_7) 2010; 189
Almeida (ref_114) 2005; 32
Hoque (ref_226) 2007; 164
Azzi (ref_253) 2007; 43
(ref_317) 2008; 30
ref_158
Roychoudhury (ref_338) 2008; 27
Lima (ref_67) 2018; 149
Chevalier (ref_98) 1992; 99
Guo (ref_238) 2006; 12
Sharma (ref_219) 2009; 14
ref_150
Kaur (ref_184) 2011; 2
ref_78
Banik (ref_308) 2016; 126
Guo (ref_168) 2016; 316
Waszczak (ref_274) 2015; 66
Soll (ref_234) 1985; 238
Vardharajula (ref_293) 2011; 6
Pilon (ref_49) 2011; 1807
Wang (ref_290) 2013; 4
Alegre (ref_352) 2000; 210
Bowler (ref_66) 1994; 13
Nath (ref_21) 2016; 7
Lichtenthaler (ref_233) 1981; 641
Gomathi (ref_266) 2011; 3
Farnese (ref_285) 2016; 7
Finnegan (ref_273) 2012; 3
Chen (ref_189) 2006; 142
Esaka (ref_82) 1997; 33
Kleff (ref_91) 1994; 1224
Sharma (ref_152) 2012; 2012
Noshi (ref_194) 2016; 80
ref_260
ref_89
Suzuki (ref_141) 2012; 64
Stephenie (ref_58) 2020; 68
Suzuki (ref_278) 2010; 12
Matringe (ref_244) 2008; 147
Yordanova (ref_57) 2004; 51
Myouga (ref_52) 2008; 20
Szarka (ref_211) 2012; 13
Zhang (ref_323) 2011; 30
Zhang (ref_295) 2016; 7
Mhamdi (ref_101) 2010; 61
Wu (ref_276) 2020; 578
ref_213
Wang (ref_164) 2018; 495
Eltelib (ref_203) 2011; 168
Hu (ref_79) 2016; 39
Das (ref_26) 2014; 2
Rolli (ref_35) 2014; 17
Mullineaux (ref_212) 2005; 86
Chen (ref_198) 2003; 100
(ref_288) 2015; 37
Sairam (ref_345) 1998; 41
Srivastava (ref_156) 2010; 64
(ref_178) 2004; 42
Ivanov (ref_243) 2003; 5
Trebak (ref_282) 2010; 12
Halliwell (ref_250) 2006; 141
Naseem (ref_301) 2014; 9
Yu (ref_172) 2013; 25
Chen (ref_205) 2008; 283
Waszczak (ref_275) 2018; 69
Su (ref_121) 2018; 60
Kaur (ref_349) 2018; 8
DellaPenna (ref_264) 2006; 57
Jahns (ref_263) 2012; 1817
Yi (ref_62) 2016; 194
(ref_195) 2010; 217
Kumar (ref_350) 2011; 34
Vandenabeele (ref_128) 2004; 39
Yin (ref_169) 2017; 161
Corpas (ref_174) 2006; 170
Yin (ref_202) 2009; 231
Rahman (ref_2) 2021; 6
Qayyum (ref_346) 2021; 28
Wong (ref_39) 2008; 21
Fini (ref_269) 2011; 6
Skadsen (ref_85) 1995; 29
Sewelam (ref_5) 2016; 7
Vaidyanathan (ref_339) 2003; 165
Hyun (ref_254) 2010; 5
Saradhi (ref_221) 1997; 38
Delledonne (ref_289) 2001; 98
Roychoudhury (ref_332) 2013; 1
Hoque (ref_228) 2008; 165
Kukreja (ref_319) 2005; 49
DellaPenna (ref_242) 2006; 126
Bhattacharjee (ref_6) 2005; 89
Niak (ref_209) 2004; 26
Walters (ref_305) 2009; 147
Gabara (ref_321) 2007; 30
Sultana (ref_187) 2011; 169
Sandhya (ref_37) 2010; 62
Foyer (ref_13) 2018; 154
Mori (ref_118) 1993; 102
Yang (ref_122) 2018; 42
Asada (ref_149) 1992; 85
Corpas (ref_130) 2017; 68
Harish (ref_304) 2008; 39
Kanwischer (ref_235) 2005; 137
Schultes (ref_109) 1994; 106
Sakihama (ref_271) 2002; 177
Chakraborty (ref_344) 2011; 6
Sakajo (ref_120) 1987; 165
ref_230
Ansary (ref_310) 2012; 3
Wang (ref_306) 2012; 20
ref_353
Palma (ref_123) 2020; 34
Wang (ref_179) 2006; 170
Chutipaijit (ref_342) 2009; 41
Miller (ref_27) 2010; 33
Chin (ref_145) 2019; 16
Chen (ref_146) 2014; 166
Berkholz (ref_160) 2008; 382
Gill (ref_20) 2010; 48
Eastmond (ref_185) 2007; 19
Kasim (ref_40) 2012; 32
Nahar (ref_31) 2018; 25
Chen (ref_225) 2005; 102
Potters (ref_200) 2002; 40
ref_102
Kaul (ref_218) 2008; 34
Havaux (ref_262) 2009; 14
Badawi (ref_327) 2004; 121
Sharma (ref_134) 2004; 167
Floyd (ref_220) 1984; 790
Cui (ref_280) 2019; 134
Davletova (ref_143) 2005; 17
Ju (ref_69) 2018; 130
Kiffin (ref_232) 2006; 8
Young (ref_255) 1991; 83
Batool (ref_294) 2020; 10
Ngumbi (ref_302) 2016; 105
Armada (ref_311) 2013; 67
Szabados (ref_216) 2010; 15
Smirnoff (ref_199) 2018; 122
Appelqvist (ref_231) 1996; 31
Ahsan (ref_3) 2003; 131
Rady (ref_61) 2018; 240
Mishra (ref_155) 2010; 248
Brunner (ref_163) 2018; 86
Li (ref_325) 2013; 12
Wadsworth (ref_104) 1989; 10
ref_16
(ref_88) 1991; 199
Foyer (ref_17) 2005; 17
Yang (ref_303) 2009; 14
Abler (ref_107) 1991; 81
Granlund (ref_138) 2009; 50
Han (ref_208) 2013; 18
Hartmann (ref_43) 2021; 12
Mishra (ref_340) 2011; 250
Havir (ref_117) 1989; 89
Miller (ref_272) 1997; 2
Tuzet (ref_75) 2019; 30
Joo (ref_80) 2014; 57
Berg (ref_36) 2013; 3
Azpilicueta (ref_92) 2008; 13
Pereyra (ref_41) 2006; 44
Mhamdi (ref_18) 2018; 145
Atak (ref_341) 2018; 25
Kadota (ref_8) 2015; 56
Shinozaki (ref_236) 1994; 6
Maeda (ref_252) 2006; 18
Shafi (ref_72) 2015; 87
Karpinski (ref_161) 1997; 9
Guan (ref_106) 1996; 30
Rao (ref_330) 1996; 110
Srivastava (ref_148) 2005; 56
Igamberdiev (ref_248) 2004; 219
Rahantaniaina (ref_188) 2017; 174
Xu (ref_354) 2008; 69
Willekens (ref_84) 1994; 352
Ma (ref_44) 2020; 11
Wang (ref_63) 1993; 13
Isin (ref_94) 1991; 17
Suzuki (ref_111) 1994; 25
(ref_287) 2015; 66
Hempel (ref_283) 2017; 63
Sudhakar (ref_177) 2001; 161
Foyer (ref_48) 2020; 71
Schmidt (ref_119) 2006; 223
Maruta (ref_136) 2016; 57
Gill (ref_176) 2013; 70
Xing (ref_129) 2007; 58
Fryer (ref_247) 1992; 15
Roychoudhury (ref_337) 2011; 34
Asada (ref_151) 1999; 50
DellaPenna (ref_245) 2009; 48
Luna (ref_112) 2005; 56
Fukuzawa (ref_249) 1982; 17
Jha (ref_38) 2014; 20
Trelstad (ref_217) 1981; 289
Parida (ref_147) 2005; 60
Demirel (ref_1) 2020; 11
Frugoli (ref_76) 1996; 112
Yalcinkaya (ref_277) 2019; 165
Kataya (ref_159) 2010; 5
Song (ref_157) 2012; 21
Sharma (ref_335) 2005; 46
Huang (ref_23) 2019; 10
Xia (ref_19) 2015; 66
Dias (ref_70) 2019; 137
Matysik (ref_222) 2002; 82
Basu (ref_336) 2009; 60
Passardi (ref_153) 2004; 65
Mittler (ref_25) 2004; 9
Chew (ref_137) 2003; 278
Morita (ref_96) 1994; 105
Shabankareh (ref_351) 2021; 11
Li (ref_240) 2010; 178
Scandalios (ref_77) 2005; 38
Bafeel (ref_239) 2008; 10
Wu (ref_113) 1995; 108
Rasool (ref_28) 2012; 35
Mafakheri (ref_318) 2010; 4
Noctor (ref_47) 2018; 80
(ref_14) 2016; 57
Marty (ref_170) 2019; 224
Kim (ref_328) 2005; 38
Contreras (ref_32) 2018; 51
Xing (ref_73) 2013; 54
Takshak (ref_322) 2014; 58
Yasar (ref_30) 2008; 55
Bindschedler (ref_15) 2006; 47
Du (ref_81) 2008; 50
Contento (ref_100) 2010; 48
Ding (ref_190) 2020; 71
Maruta (ref_135) 2012; 1820
Pandey (ref_144) 2017; 8
Ono (ref_131) 2020; 534
ref_296
Mastouri (ref_314) 2010; 100
Sales (ref_55) 2013; 73
ref_298
Yogendra (ref_33) 2015; 14
Dimkpa (ref_42) 2009; 32
Lee (ref_108) 2005; 20
Eyidogan (ref_320) 2007; 29
Zou (ref_133) 2015; 27
Pnueli (ref_142) 2003; 34
Drory (ref_86) 1992; 100
ref_182
Chauhan (ref_347) 2015; 252
ref_181
Guan (ref_105) 1993; 3
Rizhsky (ref_74) 2003; 278
Ciacka (ref_279) 2020; 252
Laissue (ref_281) 2017; 8
Aghaei (ref_334) 2009; 51
Meena (ref_116) 2016; 7
Noshi (ref_192) 2017; 81
Yogendra (ref_315) 2014; 9
Alam (ref_97) 2018; 123
Obara (ref_183) 2002; 43
Vurukonda (ref_309) 2016; 184
Boguszewska (ref_71) 2010; 53
Hossain (ref_180) 1985; 260
ref_65
ref_64
Islam (ref_229) 2009; 73
Haldimann (ref_307) 2007; 174
Lindermayr (ref_286) 2015; 167
Lucas (ref_300) 2014; 82
Gleason (ref_12) 2011; 108
Yoshida (ref_193) 2006; 47
Wang (ref_191) 2010; 52
Talbi (ref_29) 2015; 111
ref_291
(ref_258) 1987; 69
Xu (ref_343) 2006; 56
ref_197
Liang (ref_215) 2013; 19
Grace (ref_267) 2000; 355
Kornyeyev (ref_165) 2003; 30
Morgan (ref_53) 2008; 147
Krasylenko (ref_11) 2021; 11
Sumugat (ref_171) 2010; 11
Wang (ref_329) 2004; 167
Guan (ref_83) 1995; 92
Wang (ref_126) 2009; 195
(ref_175) 2001; 160
Malar (ref_331) 2016; 55
Mylona (ref_127) 1998; 25
Niewiadomska (ref_110) 2009; 166
Zlatev (ref_316) 2006; 50
Xu (ref_227) 2008; 28
Mittler (ref_10) 2002; 7
Dowdle (ref_206) 2007; 52
Carlson (ref_299) 2019; 232
Li (ref_265) 2008; 147
Sandalio (ref_324) 2001; 52
ref_45
Li (ref_59) 2018; 238
Terai (ref_207) 2020; 183
Gupta (ref_60) 1993; 103
Do (ref_196) 2016; 6
Bueso (ref_132) 2007; 52
Petrov (ref_24) 2015; 6
Schwarz (ref_237) 1999; 121
Cogdell (ref_259) 1993; 214
Wang (ref_162) 2020; 103
Chen (ref_87) 2012; 169
Jaleel (ref_4) 2009; 31
Michalak (ref_268) 2006; 15
Alscher (ref_51) 2002; 53
Wang (ref_167) 2019; 10
Kagan (ref_246) 2000; 214
References_xml – volume: 28
  start-page: 325
  year: 2008
  ident: ref_227
  article-title: Protective effects of proline against cadmium toxicity in micropropagated hyperaccumulator, Solanum nigrum L.
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-008-0643-5
– volume: 184
  start-page: 13
  year: 2016
  ident: ref_309
  article-title: Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2015.12.003
– volume: 17
  start-page: 316
  year: 2014
  ident: ref_35
  article-title: Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.12439
– volume: 137
  start-page: 121
  year: 2019
  ident: ref_70
  article-title: Lead induces oxidative stress in Pisum sativum plants and changes the levels of phytohormones with antioxidant role
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2019.02.005
– volume: 38
  start-page: 218
  year: 2005
  ident: ref_328
  article-title: Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barley roots under saline stress
  publication-title: J. Biochem. Mol. Biol.
– volume: 87
  start-page: 615
  year: 2015
  ident: ref_72
  article-title: Expression of SOD and APX genes positively regulates secondary cell wall biosynthesis and promotes plant growth and yield in Arabidopsis under salt stress
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-015-0301-6
– ident: ref_150
  doi: 10.5772/60477
– volume: 39
  start-page: 187
  year: 2008
  ident: ref_304
  article-title: Biohardening with Plant Growth Promoting Rhizosphere and Endophytic bacteria induces systemic resistance against Banana bunchy top virus
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2007.12.006
– ident: ref_124
  doi: 10.3390/ijms21041437
– volume: 55
  start-page: 782
  year: 2008
  ident: ref_30
  article-title: Effect of salt stress on antioxidant defense systems, lipid peroxidation, and chlorophyll content in green bean
  publication-title: Russ. J. Plant Physiol.
  doi: 10.1134/S1021443708060071
– volume: 174
  start-page: 799
  year: 2007
  ident: ref_307
  article-title: Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2007.02047.x
– volume: 50
  start-page: 389
  year: 2006
  ident: ref_316
  article-title: Comparison of resistance to drought of three bean cultivars
  publication-title: Biol. Plant.
  doi: 10.1007/s10535-006-0054-9
– volume: 100
  start-page: 1213
  year: 2010
  ident: ref_314
  article-title: Seed Treatment with Trichoderma harzianum Alleviates Biotic, Abiotic, and Physiological Stresses in Germinating Seeds and Seedlings
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-03-10-0091
– volume: 73
  start-page: 326
  year: 2013
  ident: ref_55
  article-title: Superoxide dismutase and ascorbate peroxidase improve the recovery of photosynthesis in sugarcane plants subjected to water deficit and low substrate temperature
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2013.10.012
– volume: 30
  start-page: 101
  year: 2003
  ident: ref_165
  article-title: Elevated chloroplastic glutathione reductase activities decrease chilling-induced photoinhibition by increasing rates of photochemistry, but not thermal energy dissipation, in transgenic cotton
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP02144
– volume: 11
  start-page: 618835
  year: 2021
  ident: ref_11
  article-title: Signaling Toward Reactive Oxygen Species-Scavenging Enzymes in Plants
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.618835
– ident: ref_291
  doi: 10.3390/antiox8120641
– volume: 174
  start-page: 956
  year: 2017
  ident: ref_188
  article-title: Cytosolic and Chloroplastic DHARs Cooperate in Oxidative Stress-Driven Activation of the Salicylic Acid Pathway
  publication-title: Plant Physiol.
  doi: 10.1104/pp.17.00317
– volume: 51
  start-page: 48
  year: 2018
  ident: ref_32
  article-title: Copper stress induces antioxidant responses and accumulation of sugars and phytochelatins in Antarctic Colobanthus quitensis (Kunth) Bartl
  publication-title: Biol. Res.
  doi: 10.1186/s40659-018-0197-0
– volume: 56
  start-page: 417
  year: 2005
  ident: ref_112
  article-title: Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eri039
– volume: 102
  start-page: 3459
  year: 2005
  ident: ref_225
  article-title: From The Cover: Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0407960102
– volume: 18
  start-page: 2106
  year: 2013
  ident: ref_208
  article-title: Functional Analysis of Arabidopsis Mutants Points to Novel Roles for Glutathione in Coupling H2O2 to Activation of Salicylic Acid Accumulation and Signaling
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2012.5052
– volume: 6
  start-page: 251
  year: 1994
  ident: ref_236
  article-title: A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress
  publication-title: Plant Cell
– volume: 51
  start-page: 1095
  year: 2009
  ident: ref_334
  article-title: Potato Responds to Salt Stress by Increased Activity of Antioxidant Enzymes
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/j.1744-7909.2009.00886.x
– volume: 217
  start-page: 455
  year: 2010
  ident: ref_195
  article-title: Short-Term Effects of Arsenate-Induced Toxicity on Growth, Chlorophyll and Carotenoid Contents, and Total Content of Phenolic Compounds of Azolla filiculoides
  publication-title: Water Air Soil Pollut.
– volume: 32
  start-page: L93
  year: 1979
  ident: ref_224
  article-title: Plants which accumulate metals. Part IV. A possible copper-proline complex from the roots of armeria maritima
  publication-title: Inorg. Chim. Acta
  doi: 10.1016/S0020-1693(00)91627-X
– volume: 47
  start-page: 304
  year: 2006
  ident: ref_193
  article-title: Cytosolic Dehydroascorbate Reductase is Important for Ozone Tolerance in Arabidopsisthaliana
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pci246
– volume: 48
  start-page: 301
  year: 2009
  ident: ref_245
  article-title: Biosynthesis, regulation and functions of tocochromanols in plants
  publication-title: Plant Physiol. Biochem.
– volume: 28
  start-page: 5238
  year: 2021
  ident: ref_346
  article-title: Improvement in drought tolerance in bread wheat is related to an improvement in osmolyte production, antioxidant enzyme activities, and gaseous exchange
  publication-title: Saudi J. Biol. Sci.
  doi: 10.1016/j.sjbs.2021.05.040
– volume: 118
  start-page: 637
  year: 1998
  ident: ref_50
  article-title: Superoxide Dismutase in Arabidopsis: An Eclectic Enzyme Family with Disparate Regulation and Protein Localization
  publication-title: Plant Physiol.
  doi: 10.1104/pp.118.2.637
– ident: ref_65
  doi: 10.1007/978-3-319-75088-0
– volume: 18
  start-page: 2710
  year: 2006
  ident: ref_252
  article-title: Tocopherols Play a Crucial Role in Low-Temperature Adaptation and Phloem Loading in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.039404
– volume: 56
  start-page: 1335
  year: 2005
  ident: ref_148
  article-title: Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eri134
– volume: 189
  start-page: 580
  year: 2010
  ident: ref_7
  article-title: A Medicago truncatula NADPH oxidase is involved in symbiotic nodule functioning
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2010.03509.x
– ident: ref_197
  doi: 10.1104/pp.20.00388
– volume: 57
  start-page: 1364
  year: 2016
  ident: ref_14
  article-title: ROS Generation in Peroxisomes and its Role in Cell Signaling
  publication-title: Plant Cell Physiol.
– volume: 66
  start-page: 29
  year: 2012
  ident: ref_214
  article-title: Transgenic plants: Benefits and controversies
  publication-title: J. Bot. Soc. Bengal
– volume: 17
  start-page: 1263
  year: 1991
  ident: ref_94
  article-title: Isolation and characterization of a pea catalase cDNA
  publication-title: Plant Mol. Biol.
  doi: 10.1007/BF00028744
– volume: 195
  start-page: 377
  year: 2009
  ident: ref_126
  article-title: Coronatine Enhances Chilling Tolerance in Cucumber (Cucumis sativus L.) Seedlings by Improving the Antioxidative Defence System
  publication-title: J. Agron. Crop. Sci.
  doi: 10.1111/j.1439-037X.2009.00378.x
– volume: 60
  start-page: 51
  year: 2009
  ident: ref_336
  article-title: Differential antioxidative responses of indica rice cultivars to drought stress
  publication-title: Plant Growth Regul.
  doi: 10.1007/s10725-009-9418-4
– volume: 20
  start-page: 247
  year: 2005
  ident: ref_108
  article-title: Differential expression of three catalase genes in hot pepper (Capsicum annuum L.)
  publication-title: Mol. Cells
  doi: 10.1016/S1016-8478(23)13224-9
– volume: 25
  start-page: 4451
  year: 2013
  ident: ref_172
  article-title: Plastid-Localized Glutathione Reductase2-Regulated Glutathione Redox Status Is Essential for Arabidopsis Root Apical Meristem Maintenance
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.117028
– volume: 90
  start-page: 1400
  year: 2003
  ident: ref_166
  article-title: Transgenic overproduction of glutathione reductase does not protect cotton, Gossypium hirsutum (Malvaceae), from photoinhibition during growth under chilling conditions
  publication-title: Am. J. Bot.
  doi: 10.3732/ajb.90.9.1400
– volume: 65
  start-page: 1879
  year: 2004
  ident: ref_153
  article-title: The class III peroxidase multigenic family in rice and its evolution in land plants
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2004.06.023
– volume: 15
  start-page: 523
  year: 2006
  ident: ref_268
  article-title: Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress
  publication-title: Pol. J. Environ. Stud.
– volume: 63
  start-page: 3
  year: 2018
  ident: ref_9
  article-title: Control of SUMO and Ubiquitin by ROS: Signaling and disease implications
  publication-title: Mol. Asp. Med.
  doi: 10.1016/j.mam.2018.07.002
– volume: 289
  start-page: 310
  year: 1981
  ident: ref_217
  article-title: Nonenzymatic hydroxylations of proline and lysine by reduced oxygen derivatives
  publication-title: Nature
  doi: 10.1038/289310a0
– volume: 8
  start-page: 1
  year: 2017
  ident: ref_281
  article-title: Photosynthesis-dependent H2O2 transfer from chloroplasts to nuclei provides a high-light signalling mechanism
  publication-title: Nat. Commun.
– volume: 53
  start-page: 2401
  year: 2002
  ident: ref_173
  article-title: Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erf090
– volume: 52
  start-page: 673
  year: 2007
  ident: ref_206
  article-title: Two genes in Arabidopsis thaliana encoding GDP-l-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2007.03266.x
– volume: 66
  start-page: 2839
  year: 2015
  ident: ref_19
  article-title: Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv089
– volume: 30
  start-page: 913
  year: 1996
  ident: ref_106
  article-title: Isolation, characterization and expression of the maize Cat2 catalase gene
  publication-title: Plant Mol. Biol.
  doi: 10.1007/BF00020803
– volume: 149
  start-page: 59
  year: 2018
  ident: ref_67
  article-title: Antioxidant protection and PSII regulation mitigate photo-oxidative stress induced by drought followed by high light in cashew plants
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2018.02.001
– volume: 55
  start-page: 54
  year: 2016
  ident: ref_331
  article-title: Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]
  publication-title: Bot. Stud.
  doi: 10.1186/s40529-014-0054-6
– ident: ref_89
  doi: 10.3390/ijms22084281
– volume: 52
  start-page: 400
  year: 2010
  ident: ref_191
  article-title: Increased Vitamin C Content Accompanied by an Enhanced Recycling Pathway Confers Oxidative Stress Tolerance in Arabidopsis
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/j.1744-7909.2010.00921.x
– volume: 81
  start-page: 523
  year: 2017
  ident: ref_192
  article-title: Arabidopsis dehydroascorbate reductase 1 and 2 modulate redox states of ascorbate-glutathione cycle in the cytosol in response to photooxidative stress
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1080/09168451.2016.1256759
– volume: 790
  start-page: 94
  year: 1984
  ident: ref_220
  article-title: Formation of long-lived hydroxyl free radical adducts of proline and hydroxyproline in a fenton reaction
  publication-title: Biochim. Biophys. Acta-Protein Struct. Mol. Enzym.
  doi: 10.1016/0167-4838(84)90337-6
– volume: 20
  start-page: 4920
  year: 2013
  ident: ref_333
  article-title: A comparative study of heavy metal accumulation and antioxidant responses in Vaccinium myrtillus L. leaves in polluted and non-polluted areas
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-012-1461-4
– ident: ref_99
  doi: 10.1186/s12870-019-1707-0
– volume: 13
  start-page: 199
  year: 1994
  ident: ref_66
  article-title: Superoxide Dismutase in Plants
  publication-title: Crit. Rev. Plant Sci.
  doi: 10.1080/07352689409701914
– volume: 238
  start-page: 290
  year: 1985
  ident: ref_234
  article-title: Localization and synthesis of prenylquinones in isolated outer and inner envelope membranes from spinach chloroplasts
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(85)90167-5
– volume: 56
  start-page: 1472
  year: 2015
  ident: ref_8
  article-title: Regulation of the NADPH Oxidase RBOHD During Plant Immunity
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcv063
– volume: 60
  start-page: 324
  year: 2005
  ident: ref_147
  article-title: Salt tolerance and salinity effects on plants: A review
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2004.06.010
– volume: 56
  start-page: 274
  year: 2006
  ident: ref_343
  article-title: Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2005.03.002
– volume: 232
  start-page: 126388
  year: 2019
  ident: ref_299
  article-title: Rhizobacteria-induced systemic tolerance against drought stress in Sorghum bicolor (L.) Moench
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2019.126388
– volume: 240
  start-page: 614
  year: 2018
  ident: ref_61
  article-title: Up-regulation of antioxidative defense systems by glycine betaine foliar application in onion plants confer tolerance to salinity stress
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2018.06.069
– volume: 64
  start-page: 253
  year: 2012
  ident: ref_141
  article-title: Enhanced seed production under prolonged heat stress conditions inArabidopsis thalianaplants deficient in cytosolic ascorbate peroxidase 2
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ers335
– volume: 3
  start-page: 648
  year: 2013
  ident: ref_36
  article-title: Next-Generation Bio-Products Sowing the Seeds of Success for Sustainable Agriculture
  publication-title: Agronomy
  doi: 10.3390/agronomy3040648
– volume: 83
  start-page: 702
  year: 1991
  ident: ref_255
  article-title: The photoprotective role of carotenoids in higher plants
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.1991.tb02490.x
– volume: 19
  start-page: 1376
  year: 2007
  ident: ref_185
  article-title: Monodehyroascorbate reductase4 is Required for Seed Storage Oil Hydrolysis and Postgerminative Growth in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.043992
– volume: 12
  start-page: 468
  year: 2006
  ident: ref_238
  article-title: Overexpression of VTE1 from Arabidopsis resulting in high vitamin E accumu-lation and salt stress tolerance increase in tobacco plant
  publication-title: Chin. J. Appl. Environ. Biol.
– volume: 69
  start-page: 209
  year: 2018
  ident: ref_275
  article-title: Reactive Oxygen Species in Plant Signaling
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-042817-040322
– volume: 7
  start-page: 471
  year: 2016
  ident: ref_285
  article-title: When Bad Guys Become Good Ones: The Key Role of Reactive Oxygen Species and Nitric Oxide in the Plant Responses to Abiotic Stress
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.00471
– volume: 12
  start-page: 610
  year: 2013
  ident: ref_325
  article-title: Effect of Cadmium Stress on the Growth, Antioxidative Enzymes and Lipid Peroxidation in Two Kenaf (Hibiscus cannabinus L.) Plant Seedlings
  publication-title: J. Integr. Agric.
  doi: 10.1016/S2095-3119(13)60279-8
– volume: 10
  start-page: 593
  year: 2008
  ident: ref_239
  article-title: Antioxidants and accumulation of α-tocopherol induce chilling tolerance in Medicago sativa
  publication-title: Int. J. Agric. Biol.
– volume: 68
  start-page: 103917
  year: 2020
  ident: ref_58
  article-title: An insight on superoxide dismutase (SOD) from plants for mammalian health enhancement
  publication-title: J. Funct. Foods
  doi: 10.1016/j.jff.2020.103917
– volume: 27
  start-page: 1395
  year: 2008
  ident: ref_338
  article-title: Comparative physiological and molecular responses of a common aromatic indica rice cultivar to high salinity with non-aromatic indica rice cultivars
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-008-0556-3
– ident: ref_64
– volume: 17
  start-page: 511
  year: 1982
  ident: ref_249
  article-title: Antioxidant activities of tocopherols on Fe2+-ascorbate-induced lipid peroxidation in lecithin liposomes
  publication-title: Lipids
  doi: 10.1007/BF02535334
– volume: 29
  start-page: 269
  year: 2005
  ident: ref_140
  article-title: A mutation affecting ascorbate peroxidase 2 gene expression reveals a link between responses to high light and drought tolerance
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2005.01419.x
– volume: 25
  start-page: 185
  year: 2018
  ident: ref_31
  article-title: Antioxidant Protection Mechanisms Reveal Significant Response in Drought-Induced Oxidative Stress in Some Traditional Rice of Assam, India
  publication-title: Rice Sci.
  doi: 10.1016/j.rsci.2018.06.002
– volume: 33
  start-page: 141
  year: 1997
  ident: ref_82
  article-title: cDNA cloning and differential gene expression of three catalases in pumpkin
  publication-title: Plant Mol. Biol.
  doi: 10.1023/A:1005742916292
– volume: 44
  start-page: 68
  year: 2020
  ident: ref_46
  article-title: In vivo light-sheet microscopy resolves localisation patterns of FSD1, a superoxide dismutase with function in root development and osmoprotection
  publication-title: Plant Cell Environ.
– volume: 225
  start-page: 1255
  year: 2007
  ident: ref_186
  article-title: Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses
  publication-title: Planta
  doi: 10.1007/s00425-006-0417-7
– volume: 8
  start-page: 8735
  year: 2018
  ident: ref_349
  article-title: 28-homobrassinolide regulates antioxidant enzyme activities and gene expression in response to salt- and temperature-induced oxidative stress in Brassica juncea
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-27032-w
– volume: 3
  start-page: 527
  year: 1993
  ident: ref_105
  article-title: Characterization of the catalase antioxidant defense gene Cat1 of maize, and its developmentally regulated expression in transgenic tobacco
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.1993.03040527.x
– volume: 100
  start-page: 3525
  year: 2003
  ident: ref_198
  article-title: Increasing vitamin C content of plants through enhanced ascorbate recycling
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0635176100
– volume: 121
  start-page: 231
  year: 2004
  ident: ref_327
  article-title: Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit
  publication-title: Physiol. Plant.
  doi: 10.1111/j.0031-9317.2004.00308.x
– ident: ref_45
  doi: 10.1371/journal.pone.0052565
– volume: 62
  start-page: 21
  year: 2010
  ident: ref_37
  article-title: Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress
  publication-title: Plant Growth Regul.
  doi: 10.1007/s10725-010-9479-4
– volume: 48
  start-page: 232
  year: 2010
  ident: ref_100
  article-title: Increase in catalase-3 activity as a response to use of alternative catabolic substrates during sucrose starvation
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2010.01.004
– volume: 52
  start-page: 1052
  year: 2007
  ident: ref_132
  article-title: The lithium tolerance of the Arabidopsiscat2mutant reveals a cross-talk between oxidative stress and ethylene
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2007.03305.x
– volume: 57
  start-page: 711
  year: 2006
  ident: ref_264
  article-title: Vitamin synthesis in plants: Tocopherols and Carotenoids
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.56.032604.144301
– volume: 70
  start-page: 204
  year: 2013
  ident: ref_176
  article-title: Glutathione and glutathione reductase: A boon in disguise for plant abiotic stress defense operations
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2013.05.032
– volume: 19
  start-page: 998
  year: 2013
  ident: ref_215
  article-title: Proline Mechanisms of Stress Survival
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2012.5074
– volume: 48
  start-page: 909
  year: 2010
  ident: ref_20
  article-title: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2010.08.016
– volume: 49
  start-page: 1531
  year: 1998
  ident: ref_223
  article-title: In vitro alleviation of heavy metal-induced enzyme inhibition by proline
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(98)00282-9
– volume: 123
  start-page: 54
  year: 2018
  ident: ref_97
  article-title: Comprehensive analysis and transcript profiling of Arabidopsis thaliana and Oryza sativa catalase gene family suggests their specific roles in development and stress responses
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2017.11.018
– volume: 26
  start-page: 1
  year: 2004
  ident: ref_209
  article-title: Ascorbate and ascorbate-dependent enzymes in detached tomato leaves under conditions modulating the ascorbate pool
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-004-0011-1
– volume: 2012
  start-page: 217037
  year: 2012
  ident: ref_152
  article-title: Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions
  publication-title: J. Bot.
– volume: 30
  start-page: 1475
  year: 2011
  ident: ref_323
  article-title: Exogenous application of salicylic acid alleviates cadmium toxicity and reduces hydrogen peroxide accumulation in root apoplasts of Phaseolus aureus and Vicia sativa
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-011-1056-4
– volume: 167
  start-page: 541
  year: 2004
  ident: ref_134
  article-title: Ascorbate peroxidase from rice seedlings: Properties of enzyme isoforms, effects of stresses and protective roles of osmolytes
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2004.04.028
– ident: ref_241
  doi: 10.3390/antiox6040099
– volume: 27
  start-page: 1445
  year: 2015
  ident: ref_133
  article-title: Arabidopsis calcium-dependent protein kinase8 and CATALASE3 Function in Abscisic Acid-Mediated Signaling and H2O2 Homeostasis in Stomatal Guard Cells under Drought Stress
  publication-title: Plant Cell
  doi: 10.1105/tpc.15.00144
– volume: 10
  start-page: 1178
  year: 2019
  ident: ref_167
  article-title: Enhanced Tolerance to Methyl Viologen-Mediated Oxidative Stress via AtGR2 Expression From Chloroplast Genome
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.01178
– volume: 34
  start-page: 101525
  year: 2020
  ident: ref_123
  article-title: Plant catalases as NO and H2S targets
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2020.101525
– volume: 34
  start-page: 315
  year: 2008
  ident: ref_218
  article-title: Free radical scavenging potential of L-proline: Evidence from in vitro assays
  publication-title: Amino Acids
  doi: 10.1007/s00726-006-0407-x
– volume: 10
  start-page: 800
  year: 2019
  ident: ref_23
  article-title: Mechanisms of ROS regulation of plant development and stress responses
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00800
– volume: 61
  start-page: 4197
  year: 2010
  ident: ref_101
  article-title: Catalase function in plants: A focus on Arabidopsis mutants as stress-mimic models
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erq282
– volume: 68
  start-page: 103
  year: 2017
  ident: ref_130
  article-title: Lead-induced stress, which triggers the production of nitric oxide (NO) and superoxide anion (O2−) in Arabidopsis peroxisomes, affects catalase activity
  publication-title: Nitric Oxide
  doi: 10.1016/j.niox.2016.12.010
– volume: 177
  start-page: 67
  year: 2002
  ident: ref_271
  article-title: Plant phenolic antioxidant and prooxidant activities: Phenolics-induced oxidative damage mediated by metals in plants
  publication-title: Toxicology
  doi: 10.1016/S0300-483X(02)00196-8
– volume: 103
  start-page: 1067
  year: 1993
  ident: ref_60
  article-title: Overexpression of Superoxide Dismutase Protects Plants from Oxidative Stress (Induction of Ascorbate Peroxidase in Superoxide Dismutase-Overexpressing Plants)
  publication-title: Plant Physiol.
  doi: 10.1104/pp.103.4.1067
– volume: 951
  start-page: 104
  year: 1988
  ident: ref_103
  article-title: Characterization of catalase transcripts and their differential expression in maize
  publication-title: Biochim. Biophys. Acta-Gene Struct. Expr.
  doi: 10.1016/0167-4781(88)90030-9
– volume: 108
  start-page: 1748
  year: 1995
  ident: ref_113
  article-title: Isolation and characterization of a potato catalase cDNA
  publication-title: Plant Physiol.
– volume: 102
  start-page: 691
  year: 1993
  ident: ref_118
  article-title: cDNA for Catalase from Etiolated Mung Bean (Vigna radiata) Hypocotyls
  publication-title: Plant Physiol.
  doi: 10.1104/pp.102.2.691
– volume: 250
  start-page: 95
  year: 2012
  ident: ref_154
  article-title: Long-term impact of sublethal atrazine perturbs the redox homeostasis in pea (Pisum sativum L.) plants
  publication-title: Protoplasma
  doi: 10.1007/s00709-012-0378-6
– volume: 30
  start-page: 1238
  year: 2019
  ident: ref_75
  article-title: Analyzing the Function of Catalase and the Ascorbate–Glutathione Pathway in H2O2 Processing: Insights from an Experimentally Constrained Kinetic Model
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2018.7601
– ident: ref_260
  doi: 10.1007/978-94-017-2660-3
– volume: 145
  start-page: dev164376
  year: 2018
  ident: ref_18
  article-title: Reactive oxygen species in plant development
  publication-title: Development
  doi: 10.1242/dev.164376
– volume: 25
  start-page: 507
  year: 1994
  ident: ref_111
  article-title: Isolation and characterization of two tightly linked catalase genes from castor bean that are differentially regulated
  publication-title: Plant Mol. Biol.
  doi: 10.1007/BF00043878
– volume: 8
  start-page: 152
  year: 2006
  ident: ref_232
  article-title: Oxidative Stress and Autophagy
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2006.8.152
– volume: 12
  start-page: 323
  year: 2010
  ident: ref_278
  article-title: Protein carbonylation
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2009.2887
– volume: 58
  start-page: 328
  year: 2014
  ident: ref_322
  article-title: Effect of ultraviolet-B radiation on biomass production, lipid peroxidation, reactive oxygen species, and antioxidants in withania somnifera
  publication-title: Biol. Plant.
  doi: 10.1007/s10535-014-0390-0
– volume: 2
  start-page: 53
  year: 2014
  ident: ref_26
  article-title: Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants
  publication-title: Front. Environ. Sci.
  doi: 10.3389/fenvs.2014.00053
– volume: 60
  start-page: 591
  year: 2018
  ident: ref_121
  article-title: The Arabidopsiscatalase triple mutant reveals important roles of catalases and peroxisome-derived signaling in plant development
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/jipb.12649
– volume: 167
  start-page: 671
  year: 2004
  ident: ref_329
  article-title: Transgenic Arabidopsis overexpressing Mn-SOD enhanced salt-tolerance
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2004.03.032
– volume: 252
  start-page: 1241
  year: 2015
  ident: ref_347
  article-title: Wheat cultivars differing in heat tolerance show a differential response to oxidative stress during monocarpic senescence under high temperature stress
  publication-title: Protoplasma
  doi: 10.1007/s00709-015-0755-z
– volume: 147
  start-page: 101
  year: 2008
  ident: ref_53
  article-title: Decrease in Manganese Superoxide Dismutase Leads to Reduced Root Growth and Affects Tricarboxylic Acid Cycle Flux and Mitochondrial Redox Homeostasis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.107.113613
– volume: 261
  start-page: 12114
  year: 1986
  ident: ref_210
  article-title: Antioxidant protection of phospholipid bilayers by alpha-tocopherol. Control of α-tocopherol status and lipid peroxidation by ascorbic acid and glutathione
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)67210-2
– volume: 38
  start-page: 253
  year: 1997
  ident: ref_221
  article-title: Involvement of proline in protecting thylakoid membranes against free radical-induced photodamage
  publication-title: J. Photochem. Photobiol. B Biol.
  doi: 10.1016/S1011-1344(96)07470-2
– volume: 66
  start-page: 2923
  year: 2015
  ident: ref_274
  article-title: Oxidative post-translational modifications of cysteine residues in plant signal transduction
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv084
– volume: 53
  start-page: 373
  year: 2010
  ident: ref_71
  article-title: Drought-Responsive Antioxidant Enzymes in Potato (Solanum tuberosum L.)
  publication-title: Potato Res.
  doi: 10.1007/s11540-010-9178-6
– volume: 122
  start-page: 116
  year: 2018
  ident: ref_199
  article-title: Ascorbic acid metabolism and functions: A comparison of plants and mammals
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2018.03.033
– volume: 89
  start-page: 952
  year: 1989
  ident: ref_117
  article-title: Regulation of Catalase Activity in Leaves of Nicotiana sylvestris by High CO2
  publication-title: Plant Physiol.
  doi: 10.1104/pp.89.3.952
– volume: 10
  start-page: 1
  year: 2020
  ident: ref_294
  article-title: Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-73489-z
– ident: ref_353
  doi: 10.3390/ijms21144858
– volume: 25
  start-page: 576
  year: 1998
  ident: ref_127
  article-title: Modulation of antioxidant responses by arsenic in maize
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/S0891-5849(98)00090-2
– volume: 237
  start-page: 1613
  year: 2013
  ident: ref_204
  article-title: Homologous expression of cytosolic dehydroascorbate reductase increases grain yield and biomass under paddy field conditions in transgenic rice (Oryza sativa L. japonica)
  publication-title: Planta
  doi: 10.1007/s00425-013-1862-8
– volume: 137
  start-page: 713
  year: 2005
  ident: ref_235
  article-title: Alterations in Tocopherol Cyclase Activity in Transgenic and Mutant Plants of Arabidopsis Affect Tocopherol Content, Tocopherol Composition, and Oxidative Stress
  publication-title: Plant Physiol.
  doi: 10.1104/pp.104.054908
– volume: 33
  start-page: 453
  year: 2010
  ident: ref_27
  article-title: Reactive oxygen species homeostasis and signalling during drought and salinity stresses
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2009.02041.x
– volume: 13
  start-page: 4458
  year: 2012
  ident: ref_211
  article-title: The ascorbate-glutathione-α-tocopherol triad in abiotic stress response
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms13044458
– volume: 66
  start-page: 2827
  year: 2015
  ident: ref_287
  article-title: ROS and RNS in plant physiology: An overview
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv099
– volume: 6
  start-page: 549
  year: 2021
  ident: ref_2
  article-title: Morphophysiological changes and reactive oxygen species metabolism in Corchorus olitorius L. under different abiotic stresses
  publication-title: Open Agric.
  doi: 10.1515/opag-2021-0040
– volume: 79
  start-page: 597
  year: 2013
  ident: ref_256
  article-title: Carotenoid oxidation products as stress signals in plants
  publication-title: Plant J.
  doi: 10.1111/tpj.12386
– volume: 14
  start-page: 1
  year: 2009
  ident: ref_303
  article-title: Rhizosphere bacteria help plants tolerate abiotic stress
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2008.10.004
– ident: ref_158
  doi: 10.1371/journal.pone.0060109
– volume: 124
  start-page: 330
  year: 1999
  ident: ref_115
  article-title: Inhibition of Catalase by Antisense RNA Increases Susceptibility to Oxidative Stress and Chilling Injury in Transgenic Tomato Plants
  publication-title: J. Am. Soc. Hortic. Sci.
  doi: 10.21273/JASHS.124.4.330
– volume: 382
  start-page: 371
  year: 2008
  ident: ref_160
  article-title: Catalytic Cycle of Human Glutathione Reductase Near 1 Å Resolution
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2008.06.083
– volume: 15
  start-page: 381
  year: 1992
  ident: ref_247
  article-title: The antioxidant effects of thylakoid Vitamin E (alpha-tocopherol)
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.1992.tb00988.x
– volume: 52
  start-page: 2115
  year: 2001
  ident: ref_324
  article-title: Cadmium-induced changes in the growth and oxidative metabolism of pea plants
  publication-title: J. Exp. Bot.
  doi: 10.1093/jexbot/52.364.2115
– volume: 224
  start-page: 1569
  year: 2019
  ident: ref_170
  article-title: Arabidopsis glutathione reductase 2 is indispensable in plastids, while mitochondrial glutathione is safeguarded by additional reduction and transport systems
  publication-title: New Phytol.
  doi: 10.1111/nph.16086
– volume: 1817
  start-page: 182
  year: 2012
  ident: ref_263
  article-title: The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2011.04.012
– volume: 126
  start-page: 76
  year: 2016
  ident: ref_308
  article-title: Effects of drought acclimation on drought stress resistance in potato (Solanum tuberosum L.) genotypes
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2016.01.008
– volume: 214
  start-page: 185
  year: 1993
  ident: ref_259
  article-title: Functions of carotenoids in photosynthesis
  publication-title: Meth. Enzymol.
  doi: 10.1016/0076-6879(93)14065-Q
– volume: 31
  start-page: 235
  year: 1999
  ident: ref_95
  article-title: Purification of Catalase from Pea Leaf Peroxisomes: Identification of Five Different Isoforms
  publication-title: Free. Radic. Res.
  doi: 10.1080/10715769900301561
– volume: 260
  start-page: 12920
  year: 1985
  ident: ref_180
  article-title: Monodehydroascorbate reductase from cucumber is a flavin adenine dinucleotide enzyme
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)38813-0
– volume: 98
  start-page: 13454
  year: 2001
  ident: ref_289
  article-title: Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.231178298
– volume: 1224
  start-page: 463
  year: 1994
  ident: ref_91
  article-title: Nucleotide and deduced amino acid sequence of a putative higher molecular weight precursor for catalase in sunflower cotyledons
  publication-title: Biochim. Biophys. Acta-Bioenerg.
  doi: 10.1016/0167-4889(94)90284-4
– volume: 105
  start-page: 1015
  year: 1994
  ident: ref_96
  article-title: A cDNA Clone Encoding a Rice Catalase Isozyme
  publication-title: Plant Physiol.
  doi: 10.1104/pp.105.3.1015
– ident: ref_213
  doi: 10.1201/b12954
– volume: 196
  start-page: 67
  year: 2012
  ident: ref_270
  article-title: Flavonoids as antioxidants in plants: Location and functional significance
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2012.07.014
– volume: 252
  start-page: 12
  year: 2020
  ident: ref_279
  article-title: Carbonylation of proteins—An element of plant ageing
  publication-title: Planta
  doi: 10.1007/s00425-020-03414-1
– volume: 250
  start-page: 3
  year: 2011
  ident: ref_340
  article-title: Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and salt-sensitive Indica rice (Oryza sativa L.) seedlings
  publication-title: Protoplasma
  doi: 10.1007/s00709-011-0365-3
– volume: 57
  start-page: 1
  year: 2009
  ident: ref_348
  article-title: High temperature stress tolerance in wheat genotypes: Role of antioxidant defence enzymes
  publication-title: Acta Agron. Hung.
  doi: 10.1556/AAgr.57.2009.1.1
– volume: 65
  start-page: 1229
  year: 2013
  ident: ref_22
  article-title: ROS as key players in plant stress signalling
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ert375
– volume: 30
  start-page: 11
  year: 2007
  ident: ref_321
  article-title: Effect of short- and long-term salinity on the activities of antioxidative enzymes and lipid peroxidation in tomato roots
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-007-0072-z
– volume: 20
  start-page: 3148
  year: 2008
  ident: ref_52
  article-title: A Heterocomplex of Iron Superoxide Dismutases Defends Chloroplast Nucleoids against Oxidative Stress and Is Essential for Chloroplast Development in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.108.061341
– volume: 2
  start-page: 152
  year: 1997
  ident: ref_272
  article-title: Antioxidant properties of phenolic compounds
  publication-title: Trends Plant Sci.
  doi: 10.1016/S1360-1385(97)01018-2
– volume: 34
  start-page: 835
  year: 2011
  ident: ref_337
  article-title: Antioxidants and stress-related metabolites in the seedlings of two indica rice varieties exposed to cadmium chloride toxicity
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-011-0881-y
– volume: 278
  start-page: 38921
  year: 2003
  ident: ref_74
  article-title: The Water-Water Cycle Is Essential for Chloroplast Protection in the Absence of Stress
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M304987200
– volume: 27
  start-page: 1231
  year: 2010
  ident: ref_34
  article-title: Role of microorganisms in adaptation of agriculture crops to abiotic stresses
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1007/s11274-010-0572-7
– volume: 141
  start-page: 312
  year: 2006
  ident: ref_250
  article-title: Reactive Species and Antioxidants. Redox Biology Is a Fundamental Theme of Aerobic Life
  publication-title: Plant Physiol.
  doi: 10.1104/pp.106.077073
– volume: 3
  start-page: 737
  year: 1991
  ident: ref_93
  article-title: Post-Transcriptional Regulation of Catalase Isozyme Expression in Cotton Seeds
  publication-title: Plant Cell
  doi: 10.2307/3869254
– volume: 641
  start-page: 99
  year: 1981
  ident: ref_233
  article-title: Localization of prenylquinones in the envelope of spinach chloroplasts
  publication-title: Biochim. Biophys. Acta-Biomembr.
  doi: 10.1016/0005-2736(81)90572-1
– volume: 41
  start-page: 387
  year: 1998
  ident: ref_345
  article-title: Role of Antioxidant Systems in Wheat Genotypes Tolerance to Water Stress
  publication-title: Biol. Plant.
  doi: 10.1023/A:1001898310321
– ident: ref_251
  doi: 10.1093/acprof:oso/9780198717478.001.0001
– ident: ref_16
– volume: 1820
  start-page: 1901
  year: 2012
  ident: ref_135
  article-title: Cytosolic ascorbate peroxidase 1 protects organelles against oxidative stress by wounding-and jasmonate-induced H2O2 in Arabidopsis plants
  publication-title: Biochim. Biophys. Acta-Gen. Subj.
  doi: 10.1016/j.bbagen.2012.08.003
– volume: 147
  start-page: 764
  year: 2008
  ident: ref_244
  article-title: Tocotrienols, the Unsaturated Forms of Vitamin E, Can Function as Antioxidants and Lipid Protectors in Tobacco Leaves
  publication-title: Plant Physiol.
  doi: 10.1104/pp.108.117614
– volume: 3
  start-page: 67
  year: 2011
  ident: ref_266
  article-title: Comparative lipid peroxidation, leaf membrane thermostability, and antioxidant system in four sugarcane genotypes differing in salt tolerance
  publication-title: Int. J. Plant Physiol. Biochem.
– volume: 20
  start-page: 1097
  year: 2012
  ident: ref_306
  article-title: Enhancement of tomato (Lycopersicon esculentum) tolerance to drought stress by plant-growth-promoting rhizobacterium (PGPR) Bacillus cereus AR156
  publication-title: J. Agric. Biotechnol.
– volume: 14
  start-page: 219
  year: 2009
  ident: ref_262
  article-title: Singlet oxygen in plants: Production, detoxification and signaling
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2009.01.008
– volume: 8
  start-page: 581
  year: 2017
  ident: ref_144
  article-title: Abiotic Stress Tolerance in Plants: Myriad Roles of Ascorbate Peroxidase
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00581
– volume: 54
  start-page: 374
  year: 2008
  ident: ref_326
  article-title: Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedlings
  publication-title: Plant Soil Environ.
  doi: 10.17221/410-PSE
– volume: 40
  start-page: 537
  year: 2002
  ident: ref_200
  article-title: Ascorbate and glutathione: Guardians of the cell cycle, partners in crime?
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/S0981-9428(02)01414-6
– volume: 352
  start-page: 79
  year: 1994
  ident: ref_84
  article-title: Molecular identification of catalases from Nicotiana plumbaginifolia (L.)
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(94)00923-6
– volume: 7
  start-page: 1574
  year: 2016
  ident: ref_21
  article-title: Reactive Oxygen Species Generation-Scavenging and Signaling during Plant-Arbuscular Mycorrhizal and Piriformospora indica Interaction under Stress Condition
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01574
– volume: 82
  start-page: 44
  year: 2014
  ident: ref_300
  article-title: Beneficial rhizobacteria from rice rhizosphere confers high protection against biotic and abiotic stress inducing systemic resistance in rice seedlings
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2014.05.007
– ident: ref_139
  doi: 10.1186/s12870-016-0856-7
– volume: 299
  start-page: 110604
  year: 2020
  ident: ref_125
  article-title: Jasmonic acid promotes leaf senescence through MYC2-mediated repression of CATALASE2 expression in Arabidopsis
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2020.110604
– volume: 42
  start-page: 688
  year: 2018
  ident: ref_122
  article-title: Analysis of catalase mutants underscores the essential role of CATALASE2 for plant growth and day length-dependent oxidative signalling
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.13453
– volume: 80
  start-page: 870
  year: 2016
  ident: ref_194
  article-title: Redox regulation of ascorbate and glutathione by a chloroplastic dehydroascorbate reductase is required for high-light stress tolerance in Arabidopsis
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1080/09168451.2015.1135042
– volume: 49
  start-page: 305
  year: 2005
  ident: ref_319
  article-title: Plant water status, H2O2 scavenging enzymes, ethylene evolution and membrane integrity of Cicer arietinum roots as affected by salinity
  publication-title: Biol. Plant.
  doi: 10.1007/s10535-005-5308-4
– volume: 1
  start-page: 11
  year: 2013
  ident: ref_332
  article-title: Physiological and biochemical responses of mungbean (Vigna radiata L. Wilczek) to varying concentrations of cadmium chloride or sodium chloride
  publication-title: Unique J. Pharm. Biol. Sci.
– ident: ref_296
– volume: 105
  start-page: 109
  year: 2016
  ident: ref_302
  article-title: Bacterial-mediated drought tolerance: Current and future prospects
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2016.04.009
– volume: 32
  start-page: 122
  year: 2012
  ident: ref_40
  article-title: Control of Drought Stress in Wheat Using Plant-Growth-Promoting Bacteria
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-012-9283-7
– volume: 160
  start-page: 723
  year: 2001
  ident: ref_175
  article-title: Ascorbate, glutathione and related enzymes in chloroplasts of tomato leaves infected by Botrytis cinerea
  publication-title: Plant Sci.
  doi: 10.1016/S0168-9452(00)00457-X
– volume: 43
  start-page: 16
  year: 2007
  ident: ref_253
  article-title: Molecular mechanism of α-tocopherol action
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2007.03.013
– volume: 283
  start-page: 21347
  year: 2008
  ident: ref_205
  article-title: Dehydroascorbate Reductase Affects Non-photochemical Quenching and Photosynthetic Performance
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M802601200
– volume: 4
  start-page: 314
  year: 2013
  ident: ref_290
  article-title: Cross-talk of nitric oxide and reactive oxygen species in plant programed cell death
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2013.00314
– volume: 147
  start-page: 523
  year: 2009
  ident: ref_305
  article-title: Practical application of induced resistance to plant diseases: An appraisal of effectiveness under field conditions
  publication-title: J. Agric. Sci.
  doi: 10.1017/S0021859609008806
– volume: 223
  start-page: 835
  year: 2006
  ident: ref_119
  article-title: Mode of translational activation of the catalase (cat1) mRNA of rye leaves (Secale cereale L.) and its control through blue light and reactive oxygen
  publication-title: Planta
  doi: 10.1007/s00425-005-0125-8
– volume: 161
  start-page: 211
  year: 2017
  ident: ref_169
  article-title: High level of reduced glutathione contributes to detoxification of lipid peroxide-derived reactive carbonyl species in transgenic Arabidopsis overexpressing glutathione reductase under aluminum stress
  publication-title: Physiol. Plant.
  doi: 10.1111/ppl.12583
– volume: 238
  start-page: 356
  year: 2018
  ident: ref_59
  article-title: Alleviation of cold damage by exogenous application of melatonin in vegetatively propagated tea plant (Camellia sinensis L. O. Kuntze)
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2018.04.068
– volume: 278
  start-page: 46869
  year: 2003
  ident: ref_137
  article-title: Molecular Definition of the Ascorbate-Glutathione Cycle in Arabidopsis Mitochondria Reveals Dual Targeting of Antioxidant Defenses in Plants
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M307525200
– volume: 80
  start-page: 3
  year: 2018
  ident: ref_47
  article-title: ROS-related redox regulation and signaling in plants
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2017.07.013
– volume: 170
  start-page: 685
  year: 2006
  ident: ref_179
  article-title: Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2005.09.005
– volume: 3
  start-page: 1054
  year: 2012
  ident: ref_310
  article-title: Effect of Pseudomonas fluorescens on proline and phytohormonal status of maize (Zea mays L.) under water deficit stress
  publication-title: Ann. Biol. Res.
– volume: 47
  start-page: 851
  year: 2006
  ident: ref_15
  article-title: Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2006.02837.x
– volume: 169
  start-page: 86
  year: 2012
  ident: ref_87
  article-title: Expression of a cloned sweet potato catalase SPCAT1 alleviates ethephon-mediated leaf senescence and H2O2 elevation
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2011.08.002
– volume: 316
  start-page: 77
  year: 2016
  ident: ref_168
  article-title: Endogenous salicylic acid is required for promoting cadmium tolerance of Arabidopsis by modulating glutathione metabolisms
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.05.032
– volume: 7
  start-page: 405
  year: 2002
  ident: ref_10
  article-title: Oxidative stress, antioxidants and stress tolerance
  publication-title: Trends Plant Sci.
  doi: 10.1016/S1360-1385(02)02312-9
– volume: 165
  start-page: 813
  year: 2008
  ident: ref_228
  article-title: Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2007.07.013
– ident: ref_78
  doi: 10.3390/cells8020086
– volume: 7
  start-page: 230
  year: 2016
  ident: ref_284
  article-title: Hydrogen Peroxide Signaling in Plant Development and Abiotic Responses: Crosstalk with Nitric Oxide and Calcium
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.00230
– volume: 2
  start-page: 17
  year: 2015
  ident: ref_312
  article-title: Phosphate solubilising bacteria (Bacillus polymyxa)—An effective approach to mitigate drought in tomato (Lycopersicon esculentum Mill)
  publication-title: Trop. Plant Res.
– volume: 13
  start-page: 40
  year: 2008
  ident: ref_92
  article-title: Modifications in catalase activity and expression in developing sunflower seedlings under cadmium stress
  publication-title: Redox Rep.
  doi: 10.1179/135100008X259141
– volume: 85
  start-page: 235
  year: 1992
  ident: ref_149
  article-title: Ascorbate peroxidase—A hydrogen peroxide-scavenging enzyme in plants
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.1992.tb04728.x
– volume: 29
  start-page: 1005
  year: 1995
  ident: ref_85
  article-title: Molecular cloning, characterization and expression analysis of two catalase isozyme genes in barley
  publication-title: Plant Mol. Biol.
  doi: 10.1007/BF00014973
– volume: 134
  start-page: 555
  year: 2019
  ident: ref_280
  article-title: Interaction of methyl viologen-induced chloroplast and mitochondrial signalling in Arabidopsis
  publication-title: Free. Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2019.02.006
– volume: 35
  start-page: 1039
  year: 2012
  ident: ref_28
  article-title: Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-012-1142-4
– volume: 165
  start-page: 139
  year: 2019
  ident: ref_277
  article-title: Lipid peroxidation-derived reactive carbonyl species (RCS): Their interaction with ROS and cellular redox during environmental stresses
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2019.06.004
– volume: 39
  start-page: 45
  year: 2004
  ident: ref_128
  article-title: Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2004.02105.x
– volume: 41
  start-page: 2497
  year: 2009
  ident: ref_342
  article-title: Differential accumulations of proline and flavonoids in indica rice varieties against salinity
  publication-title: Pak. J. Bot.
– volume: 21
  start-page: 958
  year: 2008
  ident: ref_39
  article-title: Improvement of Drought Tolerance and Grain Yield in Common Bean by Overexpressing Trehalose-6-Phosphate Synthase in Rhizobia
  publication-title: Mol. Plant-Microbe Interact.
  doi: 10.1094/MPMI-21-7-0958
– volume: 169
  start-page: 311
  year: 2011
  ident: ref_187
  article-title: Overexpression of monodehydroascorbate reductase from a mangrove plant (AeMDHAR) confers salt tolerance on rice
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2011.09.004
– volume: 154
  start-page: 134
  year: 2018
  ident: ref_13
  article-title: Reactive oxygen species, oxidative signaling and the regulation of photosynthesis
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2018.05.003
– volume: 42
  start-page: 69
  year: 2004
  ident: ref_178
  article-title: Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress
  publication-title: Plant Growth Regul.
  doi: 10.1023/B:GROW.0000014891.35427.7b
– volume: 12
  start-page: 657
  year: 2010
  ident: ref_282
  article-title: Interplay Between Calcium and Reactive Oxygen/Nitrogen Species: An Essential Paradigm for Vascular Smooth Muscle Signaling
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2009.2842
– volume: 59
  start-page: 417
  year: 2008
  ident: ref_313
  article-title: Trehalose Metabolism and Signaling
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.59.032607.092945
– volume: 20
  start-page: 201
  year: 2014
  ident: ref_38
  article-title: PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity
  publication-title: Physiol. Mol. Biol. Plants
  doi: 10.1007/s12298-014-0224-8
– volume: 199
  start-page: 211
  year: 1991
  ident: ref_88
  article-title: The C-terminal domain of plant catalases Implications for a glyoxysomal targeting sequence
  publication-title: JBIC J. Biol. Inorg. Chem.
– volume: 51
  start-page: 93
  year: 2004
  ident: ref_57
  article-title: Antioxidative enzymes in barley plants subjected to soil flooding
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/S0098-8472(03)00063-7
– volume: 39
  start-page: 408
  year: 2016
  ident: ref_79
  article-title: The catalase gene family in cucumber: Genome-wide identification and organization
  publication-title: Genet. Mol. Biol.
  doi: 10.1590/1678-4685-GMB-2015-0192
– volume: 162
  start-page: 333
  year: 2013
  ident: ref_68
  article-title: Study of sponge gourd ascorbate peroxidase and winter squash superoxide dismutase under respective flooding and chilling stresses
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2013.08.016
– volume: 112
  start-page: 327
  year: 1996
  ident: ref_76
  article-title: Catalase is encoded by a multigene family in Arabidopsis thaliana (L.) Heynh
  publication-title: Plant Physiol.
  doi: 10.1104/pp.112.1.327
– volume: 100
  start-page: 1605
  year: 1992
  ident: ref_86
  article-title: Molecular cloning and nucleotide sequence of a cDNA encoding catalase from tomato
  publication-title: Plant Physiol.
  doi: 10.1104/pp.100.3.1605
– volume: 73
  start-page: 2320
  year: 2009
  ident: ref_229
  article-title: Proline and Glycinebetaine Confer Cadmium Tolerance on Tobacco Bright Yellow-2 Cells by Increasing Ascorbate-Glutathione Cycle Enzyme Activities
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1271/bbb.90305
– volume: 178
  start-page: 312
  year: 2010
  ident: ref_240
  article-title: Engineering tocopherol biosynthetic pathway in Arabidopsis leaves and its effect on antioxidant metabolism
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2010.01.004
– volume: 34
  start-page: 187
  year: 2003
  ident: ref_142
  article-title: Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)-deficient Arabidopsis plants
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.2003.01715.x
– volume: 22
  start-page: 466
  year: 2001
  ident: ref_292
  article-title: Antioxidative Defence Mechanisms Against Reactive Oxygen Species in Bovine Retained and Not-Retained Placenta: Activity of Glutathione Peroxidase, Glutathione Transferase, Catalase and Superoxide Dismutase
  publication-title: Placenta
  doi: 10.1053/plac.2001.0650
– volume: 10
  start-page: 304
  year: 1989
  ident: ref_104
  article-title: Differential expression of the maize catalase genes during kernel development: The role of steady-state mRNA levels
  publication-title: Dev. Genet.
  doi: 10.1002/dvg.1020100405
– volume: 168
  start-page: 619
  year: 2011
  ident: ref_203
  article-title: Gene expression of monodehydroascorbate reductase and dehydroascorbate reductase during fruit ripening and in response to environmental stresses in acerola (Malpighia glabra)
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2010.09.003
– volume: 108
  start-page: 10768
  year: 2011
  ident: ref_12
  article-title: Mitochondrial complex II has a key role in mitochondrial-derived reactive oxygen species influence on plant stress gene regulation and defense
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1016060108
– volume: 578
  start-page: 577
  year: 2020
  ident: ref_276
  article-title: Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis
  publication-title: Nature
  doi: 10.1038/s41586-020-2032-3
– volume: 71
  start-page: 3405
  year: 2020
  ident: ref_190
  article-title: The pivotal function of dehydroascorbate reductase in glutathione homeostasis in plants
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eraa107
– ident: ref_182
  doi: 10.3390/antiox8090384
– volume: 130
  start-page: 501
  year: 2018
  ident: ref_69
  article-title: Physiological, micro-morphological and metabolomic analysis of grapevine (Vitis vinifera L.) leaf of plants under water stress
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2018.07.036
– volume: 81
  start-page: 635
  year: 1991
  ident: ref_107
  article-title: The CAT-2 null phenotype in maize is likely due to a DNA insertion into the Cat2 gene
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/BF00226730
– volume: 86
  start-page: 459
  year: 2005
  ident: ref_212
  article-title: Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression
  publication-title: Photosynth. Res.
  doi: 10.1007/s11120-005-8811-8
– volume: 29
  start-page: 485
  year: 2007
  ident: ref_320
  article-title: Effect of salinity on antioxidant responses of chickpea seedlings
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-007-0059-9
– volume: 89
  start-page: 1113
  year: 2005
  ident: ref_6
  article-title: Reactive oxygen species and oxidative burst: Roles in stress, senescence and signal
  publication-title: Curr. Sci.
– volume: 11
  start-page: 1
  year: 2021
  ident: ref_351
  article-title: Physiological response and secondary metabolites of three lavender genotypes under water deficit
  publication-title: Sci. Rep.
– volume: 5
  start-page: 43
  year: 2003
  ident: ref_243
  article-title: Participation of Photosynthetic Electron Transport in Production and Scavenging of Reactive Oxygen Species
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/152308603321223531
– volume: 183
  start-page: 112
  year: 2020
  ident: ref_207
  article-title: Dehydroascorbate Reductases and Glutathione Set a Threshold for High-Light–Induced Ascorbate Accumulation
  publication-title: Plant Physiol.
  doi: 10.1104/pp.19.01556
– ident: ref_298
  doi: 10.3390/microorganisms8060823
– volume: 166
  start-page: 370
  year: 2014
  ident: ref_146
  article-title: ASCORBATE PEROXIDASE6 Protects Arabidopsis Desiccating and Germinating Seeds from Stress and Mediates Cross Talk between Reactive Oxygen Species, Abscisic Acid, and Auxin
  publication-title: Plant Physiol.
  doi: 10.1104/pp.114.245324
– volume: 67
  start-page: 410
  year: 2013
  ident: ref_311
  article-title: Differential Activity of Autochthonous Bacteria in Controlling Drought Stress in Native Lavandula and Salvia Plants Species Under Drought Conditions in Natural Arid Soil
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-013-0326-9
– volume: 34
  start-page: 75
  year: 2011
  ident: ref_350
  article-title: Comparative response of maize and rice genotypes to heat stress: Status of oxidative stress and antioxidants
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-011-0806-9
– volume: 32
  start-page: 1682
  year: 2009
  ident: ref_42
  article-title: Plant-rhizobacteria interactions alleviate abiotic stress conditions
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2009.02028.x
– volume: 58
  start-page: 2969
  year: 2007
  ident: ref_129
  article-title: AtMEK1 mediates stress-induced gene expression of CAT1 catalase by triggering H2O2 production in Arabidopsis
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erm144
– volume: 57
  start-page: 375
  year: 2014
  ident: ref_80
  article-title: Rice CatA, CatB, and CatC are involved in environmental stress response, root growth, and photorespiration, respectively
  publication-title: J. Plant Biol.
  doi: 10.1007/s12374-014-0383-8
– volume: 165
  start-page: 1411
  year: 2003
  ident: ref_339
  article-title: Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.)—differential response in salt-tolerant and sensitive varieties
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2003.08.005
– volume: 170
  start-page: 43
  year: 2006
  ident: ref_174
  article-title: Glutathione reductase from pea leaves: Response to abiotic stress and characterization of the peroxisomal isozyme
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2006.01643.x
– volume: 4
  start-page: 580
  year: 2010
  ident: ref_318
  article-title: Effect of drought stress on yield, proline and chlo-rophyll contents in three chickpea cultivars
  publication-title: Aust. J. Crop Sci.
– volume: 110
  start-page: 125
  year: 1996
  ident: ref_330
  article-title: Ultraviolet-B- and Ozone-Induced Biochemical Changes in Antioxidant Enzymes of Arabidopsis thaliana
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.1.125
– volume: 111
  start-page: 114
  year: 2015
  ident: ref_29
  article-title: Drought tolerance in a Saharian plant Oudneya africana: Role of antioxidant defences
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2014.11.004
– volume: 44
  start-page: 873
  year: 2006
  ident: ref_41
  article-title: Root phospholipids in Azospirillum-inoculated wheat seedlings exposed to water stress
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2006.10.020
– volume: 64
  start-page: 1
  year: 2010
  ident: ref_156
  article-title: Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings
  publication-title: Plant Growth Regul.
  doi: 10.1007/s10725-010-9526-1
– volume: 3
  start-page: 182
  year: 2012
  ident: ref_273
  article-title: Arsenic Toxicity: The Effects on Plant Metabolism
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2012.00182
– volume: 63
  start-page: 70
  year: 2017
  ident: ref_283
  article-title: Crosstalk between calcium and reactive oxygen species signaling in cancer
  publication-title: Cell Calcium
  doi: 10.1016/j.ceca.2017.01.007
– volume: 32
  start-page: 707
  year: 2005
  ident: ref_114
  article-title: Effect of hydrogen peroxide on catalase gene expression, isoform activities and levels in leaves of potato sprayed with homobrassinolide and ultrastructural changes in mesophyll cells
  publication-title: Funct. Plant Biol.
  doi: 10.1071/FP04235
– volume: 82
  start-page: 525
  year: 2002
  ident: ref_222
  article-title: Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants
  publication-title: Curr. Sci.
– volume: 13
  start-page: 31
  year: 1993
  ident: ref_63
  article-title: Purification and characterisation of superoxide dismutase from tartary buckwheat leaves
  publication-title: Fagopyrum
– volume: 282
  start-page: 22605
  year: 2007
  ident: ref_261
  article-title: Elevated Zeaxanthin Bound to Oligomeric LHCII Enhances the Resistance of Arabidopsis to Photooxidative Stress by a Lipid-protective, Antioxidant Mechanism
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M702831200
– volume: 6
  start-page: 1
  year: 2011
  ident: ref_293
  article-title: Drought-tolerant plant growth promotingBacillusspp.: Effect on growth, osmolytes, and antioxidant status of maize under drought stress
  publication-title: J. Plant Interact.
  doi: 10.1080/17429145.2010.535178
– volume: 50
  start-page: 1318
  year: 2008
  ident: ref_81
  article-title: Comprehensive Functional Analysis of the Catalase Gene Family in Arabidopsis thaliana
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/j.1744-7909.2008.00741.x
– volume: 194
  start-page: 23
  year: 2016
  ident: ref_62
  article-title: Rapid recovery of photosynthetic rate following soil water deficit and re-watering in cotton plants (Gossypium herbaceum L.) is related to the stability of the photosystems
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2016.01.016
– volume: 210
  start-page: 925
  year: 2000
  ident: ref_352
  article-title: Changes in carotenoids, tocopherols and diterpenes during drought and recovery, and the biological significance of chlorophyll loss in Rosmarinus officinalis plants
  publication-title: Planta
  doi: 10.1007/s004250050699
– volume: 2
  start-page: 103
  year: 2011
  ident: ref_184
  article-title: Defining the Plant Peroxisomal Proteome: From Arabidopsis to Rice
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2011.00103
– volume: 163
  start-page: 1179
  year: 2006
  ident: ref_201
  article-title: Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2005.10.002
– volume: 166
  start-page: 687
  year: 2004
  ident: ref_56
  article-title: Macronutrient deficiencies and differential antioxidant responses—Influence on the activity and expression of superoxide dismutase in maize
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2003.11.004
– volume: 14
  start-page: 43
  year: 2009
  ident: ref_219
  article-title: The relationship between metal toxicity and cellular redox imbalance
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2008.10.007
– volume: 164
  start-page: 553
  year: 2007
  ident: ref_226
  article-title: Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2006.03.010
– volume: 12
  start-page: 683546
  year: 2021
  ident: ref_43
  article-title: Plant Growth Promotion and Induction of Systemic Tolerance to Drought and Salt Stress of Plants by Quorum Sensing Auto-Inducers of the N-acyl-homoserine Lactone Type: Recent Developments
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.683546
– volume: 92
  start-page: 5930
  year: 1995
  ident: ref_83
  article-title: Developmentally related responses of maize catalase genes to salicylic acid
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.92.13.5930
– volume: 22
  start-page: 123
  year: 2014
  ident: ref_297
  article-title: Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation
  publication-title: Saudi J. Biol. Sci.
  doi: 10.1016/j.sjbs.2014.12.001
– volume: 278
  start-page: 258
  year: 1990
  ident: ref_90
  article-title: Biogenesis of catalase in glyoxysomes and leaf-type peroxisomes of sunflower cotyledons
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(90)90256-X
– volume: 5
  start-page: 19
  year: 2010
  ident: ref_254
  article-title: Role of α-tocopherol in cellular signaling: α-tocopherol inhibits stress-induced mitogen-activated protein kinase activation
  publication-title: Plant Biotechnol. Rep.
  doi: 10.1007/s11816-010-0152-1
– volume: 7
  start-page: 1405
  year: 2016
  ident: ref_295
  article-title: Application of Plant-Growth-Promoting Fungi Trichoderma longibrachiatum T6 Enhances Tolerance of Wheat to Salt Stress through Improvement of Antioxidative Defense System and Gene Expression
  publication-title: Front. Plant Sci.
– volume: 86
  start-page: 181
  year: 2018
  ident: ref_163
  article-title: Exogenously applied salicylic acid maintains redox homeostasis in salt-stressed Arabidopsis gr1 mutants expressing cytosolic roGFP1
  publication-title: Plant Growth Regul.
  doi: 10.1007/s10725-018-0420-6
– volume: 355
  start-page: 1499
  year: 2000
  ident: ref_267
  article-title: Energy dissipation and radical scavenging by the plant phenylpropanoid pathway
  publication-title: Philos. Trans. R. Soc. B Biol. Sci.
  doi: 10.1098/rstb.2000.0710
– volume: 214
  start-page: 11
  year: 2000
  ident: ref_246
  article-title: Coenzyme Q and vitamin E need each other as antioxidants
  publication-title: Protoplasma
  doi: 10.1007/BF02524257
– volume: 69
  start-page: 561
  year: 1987
  ident: ref_258
  article-title: The light-harvesting and protective functions of carotenoids in photosynthetic membranes
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.1987.tb09240.x
– volume: 11
  start-page: 591911
  year: 2020
  ident: ref_44
  article-title: Drought and Salinity Stress Responses and Microbe-Induced Tolerance in Plants
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.591911
– volume: 9
  start-page: 627
  year: 1997
  ident: ref_161
  article-title: Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress
  publication-title: Plant Cell
– volume: 16
  start-page: 31
  year: 2019
  ident: ref_145
  article-title: Plant Cytosolic Ascorbate Peroxidase with Dual Catalytic Activity Modulates Abiotic Stress Tolerances
  publication-title: iScience
  doi: 10.1016/j.isci.2019.05.014
– volume: 11
  start-page: 104
  year: 2010
  ident: ref_171
  article-title: Seed Development and Germination in anArabidopsis thalianaLine Antisense to Glutathione Reductase 2
  publication-title: J. New Seeds
  doi: 10.1080/15228861003776175
– volume: 147
  start-page: 1334
  year: 2008
  ident: ref_265
  article-title: The Maize Phytoene Synthase Gene Family: Overlapping Roles for Carotenogenesis in Endosperm, Photomorphogenesis, and Thermal Stress Tolerance
  publication-title: Plant Physiol.
  doi: 10.1104/pp.108.122119
– volume: 37
  start-page: 19
  year: 2015
  ident: ref_288
  article-title: Early and long-term responses of cucumber cells to high cadmium concentration are modulated by nitric oxide and reactive oxygen species
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-014-1756-9
– volume: 1631
  start-page: 221
  year: 2017
  ident: ref_54
  article-title: Zymographic Method for Distinguishing Different Classes of Superoxide Dismutases in Plants
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-7136-7_13
– volume: 50
  start-page: 1898
  year: 2009
  ident: ref_138
  article-title: The TL29 Protein is Lumen Located, Associated with PSII and Not an Ascorbate Peroxidase
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcp134
– volume: 69
  start-page: 38
  year: 2008
  ident: ref_354
  article-title: Impact of solar Ultraviolet-B on the proteome in soybean lines differing in flavonoid contents
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2007.06.010
– volume: 166
  start-page: 1057
  year: 2009
  ident: ref_110
  article-title: Spatial patterns of senescence and development-dependent distribution of reactive oxygen species in tobacco (Nicotiana tabacum) leaves
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2008.12.014
– volume: 126
  start-page: 356
  year: 2006
  ident: ref_242
  article-title: Progress in the dissection and manipulation of plant vitamin E biosynthesis
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.2006.00611.x
– volume: 9
  start-page: 689
  year: 2014
  ident: ref_301
  article-title: Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize
  publication-title: J. Plant Interact.
  doi: 10.1080/17429145.2014.902125
– volume: 6
  start-page: 69
  year: 2015
  ident: ref_24
  article-title: ROS-mediated abiotic stress-induced programmed cell death in plants
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.00069
– volume: 219
  start-page: 95
  year: 2004
  ident: ref_248
  article-title: NADH-dependent metabolism of nitric oxide in alfalfa root cultures expressing barley hemoglobin
  publication-title: Planta
  doi: 10.1007/s00425-003-1192-3
– volume: 30
  start-page: 841
  year: 2008
  ident: ref_317
  article-title: Enhancement of superoxide dismutase activity in the leaves of white clover (Trifolium repens L.) in response to polyethylene glycol-induced water stress
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-008-0189-8
– volume: 57
  start-page: pcv203
  year: 2016
  ident: ref_136
  article-title: Diversity and Evolution of Ascorbate Peroxidase Functions in Chloroplasts: More Than Just a Classical Antioxidant Enzyme?
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcv203
– ident: ref_230
– volume: 31
  start-page: 671
  year: 1996
  ident: ref_231
  article-title: The chemistry and antioxidant properties of tocopherols and tocotrienols
  publication-title: Lipids
  doi: 10.1007/BF02522884
– volume: 46
  start-page: 209
  year: 2005
  ident: ref_335
  article-title: Drought Induces Oxidative Stress and Enhances the Activities of Antioxidant Enzymes in Growing Rice Seedlings
  publication-title: Plant Growth Regul.
  doi: 10.1007/s10725-005-0002-2
– volume: 165
  start-page: 437
  year: 1987
  ident: ref_120
  article-title: Molecular cloning and nucleotide sequence of full-length cDNA for sweet potato catalase mRNA
  publication-title: JBIC J. Biol. Inorg. Chem.
– volume: 38
  start-page: 995
  year: 2005
  ident: ref_77
  article-title: Oxidative stress: Molecular perception and transduction of signals triggering antioxidant gene defenses
  publication-title: Braz. J. Med. Biol. Res.
  doi: 10.1590/S0100-879X2005000700003
– volume: 14
  start-page: 764
  year: 2015
  ident: ref_33
  article-title: Bacterial mediated amelioration of drought stress in drought tolerant and susceptible cultivars of rice (Oryza sativa L.)
  publication-title: Afr. J. Biotechnol.
  doi: 10.5897/AJB2015.14405
– volume: 99
  start-page: 1726
  year: 1992
  ident: ref_98
  article-title: Nucleotide Sequence of a cDNA for Catalase from Arabidopsis thaliana
  publication-title: Plant Physiol.
  doi: 10.1104/pp.99.4.1726
– ident: ref_102
– volume: 7
  start-page: 187
  year: 2016
  ident: ref_5
  article-title: Global Plant Stress Signaling: Reactive Oxygen Species at the Cross-Road
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.00187
– volume: 121
  start-page: 1047
  year: 1999
  ident: ref_237
  article-title: Enhanced Formation of α-Tocopherol and Highly Oxidized Abietane Diterpenes in Water-Stressed Rosemary Plants
  publication-title: Plant Physiol.
  doi: 10.1104/pp.121.3.1047
– ident: ref_257
– volume: 11
  start-page: 169
  year: 2020
  ident: ref_1
  article-title: Physiological, Biochemical, and Transcriptional Responses to Single and Combined Abiotic Stress in Stress-Tolerant and Stress-Sensitive Potato Genotypes
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.00169
– volume: 6
  start-page: 19498
  year: 2016
  ident: ref_196
  article-title: Structural understanding of the recycling of oxidized ascorbate by dehydroascorbate reductase (OsDHAR) from Oryza sativa L. japonica
  publication-title: Sci. Rep.
  doi: 10.1038/srep19498
– volume: 17
  start-page: 268
  year: 2005
  ident: ref_143
  article-title: Cytosolic Ascorbate Peroxidase 1 Is a Central Component of the Reactive Oxygen Gene Network of Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.104.026971
– volume: 71
  start-page: 157
  year: 2020
  ident: ref_48
  article-title: Redox Homeostasis and Signaling in a Higher-CO2World
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-050718-095955
– volume: 7
  start-page: 1408
  year: 2016
  ident: ref_116
  article-title: Comparative Evaluation of Biochemical Changes in Tomato (Lycopersicon esculentum Mill.) Infected by Alternaria alternata and Its Toxic Metabolites (TeA, AOH, and AME)
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01408
– volume: 131
  start-page: 398
  year: 2003
  ident: ref_3
  article-title: Oxygen free radicals and systemic autoimmunity
  publication-title: Clin. Exp. Immunol.
  doi: 10.1046/j.1365-2249.2003.02104.x
– volume: 103
  start-page: 1140
  year: 2020
  ident: ref_162
  article-title: Chloroplasts require glutathione reductase to balance reactive oxygen species and maintain efficient photosynthesis
  publication-title: Plant J.
  doi: 10.1111/tpj.14791
– volume: 5
  start-page: 171
  year: 2010
  ident: ref_159
  article-title: Arabidopsis glutathione reductase 1 is dually targeted to peroxisomes and the cytosol
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.5.2.10527
– volume: 106
  start-page: 399
  year: 1994
  ident: ref_109
  article-title: The Primary Leaf Catalase Gene from Nicotiana tabacum and Nicotiana sylvestris
  publication-title: Plant Physiol.
  doi: 10.1104/pp.106.1.399
– volume: 248
  start-page: 565
  year: 2010
  ident: ref_155
  article-title: Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings
  publication-title: Protoplasma
  doi: 10.1007/s00709-010-0210-0
– volume: 167
  start-page: 1209
  year: 2015
  ident: ref_286
  article-title: Interplay of Reactive Oxygen Species and Nitric Oxide: Nitric Oxide Coordinates Reactive Oxygen Species Homeostasis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.15.00293
– volume: 6
  start-page: 43
  year: 2011
  ident: ref_344
  article-title: High temperature-induced oxidative stress in Lens culinaris, role of antioxidants and amelioration of stress by chemical pre-treatments
  publication-title: J. Plant Interact.
  doi: 10.1080/17429145.2010.513484
– volume: 231
  start-page: 609
  year: 2009
  ident: ref_202
  article-title: Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco
  publication-title: Planta
  doi: 10.1007/s00425-009-1075-3
– volume: 21
  start-page: 1625
  year: 2012
  ident: ref_157
  article-title: Effects of pyrene on antioxidant systems and lipid peroxidation level in mangrove plants, Bruguiera gymnorrhiza
  publication-title: Ecotoxicology
  doi: 10.1007/s10646-012-0945-9
– volume: 15
  start-page: 89
  year: 2010
  ident: ref_216
  article-title: Proline: A multifunctional amino acid
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2009.11.009
– volume: 534
  start-page: 747
  year: 2020
  ident: ref_131
  article-title: CATALASE2 plays a crucial role in long-term heat tolerance of Arabidopsis thaliana
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2020.11.006
– volume: 43
  start-page: 697
  year: 2002
  ident: ref_183
  article-title: The use of multiple transcription starts causes the dual targeting of Arabidopsis putative monodehydroascorbate reductase to both mitochondria and chloroplasts
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcf103
– volume: 6
  start-page: 709
  year: 2011
  ident: ref_269
  article-title: Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.6.5.15069
– volume: 9
  start-page: 1430
  year: 2014
  ident: ref_315
  article-title: Enhance activity of stress related enzymes in rice (Oryza sativa L.) induced by plant growth promoting fungi under drought stress
  publication-title: Afr. J. Agric. Res.
  doi: 10.5897/AJAR2014.8575
– volume: 31
  start-page: 427
  year: 2009
  ident: ref_4
  article-title: Antioxidant defense responses: Physiological plasticity in higher plants under abiotic constraints
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-009-0275-6
– volume: 53
  start-page: 1331
  year: 2002
  ident: ref_51
  article-title: Role of superoxide dismutases (SODs) in controlling oxidative stress in plants
  publication-title: J. Exp. Bot.
  doi: 10.1093/jexbot/53.372.1331
– volume: 161
  start-page: 613
  year: 2001
  ident: ref_177
  article-title: Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity
  publication-title: Plant Sci.
  doi: 10.1016/S0168-9452(01)00450-2
– volume: 495
  start-page: 1851
  year: 2018
  ident: ref_164
  article-title: Molecular cloning and characterization of the glutathione reductase gene from Stipa purpurea
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2017.12.054
– volume: 54
  start-page: 1217
  year: 2013
  ident: ref_73
  article-title: MKK5 Regulates High Light-Induced Gene Expression of Cu/Zn Superoxide Dismutase 1 and 2 in Arabidopsis
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pct072
– volume: 17
  start-page: 1866
  year: 2005
  ident: ref_17
  article-title: Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses
  publication-title: Plant Cell
  doi: 10.1105/tpc.105.033589
– volume: 25
  start-page: 85
  year: 2018
  ident: ref_341
  article-title: Identification of the antioxidant defense genes which may provide enhanced salt tolerance in Oryza sativa L.
  publication-title: Physiol. Mol. Biol. Plants
– volume: 1807
  start-page: 989
  year: 2011
  ident: ref_49
  article-title: The biogenesis and physiological function of chloroplast superoxide dismutases
  publication-title: Biochim. Biophys. Acta Bioenerg.
  doi: 10.1016/j.bbabio.2010.11.002
– volume: 9
  start-page: 490
  year: 2004
  ident: ref_25
  article-title: Reactive oxygen gene network of plants
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2004.08.009
– ident: ref_181
– volume: 142
  start-page: 775
  year: 2006
  ident: ref_189
  article-title: Dehydroascorbate Reductase Affects Leaf Growth, Development, and Function
  publication-title: Plant Physiol.
  doi: 10.1104/pp.106.085506
– volume: 50
  start-page: 601
  year: 1999
  ident: ref_151
  article-title: The water-water cycle in chloroplasts: Scavenging of Active Oxygens and Dissipation of Excess Photons
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.50.1.601
SSID ssj0000702636
Score 2.6184995
SecondaryResourceType review_article
Snippet Plants are exposed to various environmental stresses in their lifespan that threaten their survival. Reactive oxygen species (ROS), the byproducts of aerobic...
Simple SummaryEnvironmental conditions are subject to unprecedented changes due to recent progressive anthropogenic activities on our planet. Plants, as the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 155
SubjectTerms Abiotic stress
alpha-tocopherol
Antioxidants
Apoptosis
ascorbate peroxidase
Ascorbic acid
Biodegradation
Carbohydrates
Carotenoids
Catalase
Chloroplasts
DNA
drought
Environmental conditions
Environmental effects
environmental stress
Enzymes
Flavonoids
Food security
Genes
Genotypes
glutathione
glutathione dehydrogenase (ascorbate)
Glutathione reductase
glutathione-disulfide reductase
Guaiacol
Heavy metals
Homeostasis
Immunological tolerance
L-Ascorbate peroxidase
Life span
Lipids
longevity
metabolism
microbiome
monodehydroascorbate reductase (NADH)
Oxidants
Oxidation
oxidative damage
Oxidative stress
peroxidase
phenolic compounds
Pigments
Plant growth
Reactive oxygen species
Review
Salinity
Salinity effects
second messengers
Superoxide dismutase
ultraviolet radiation
Zinc oxides
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEB-kIHgRv11tJYIHD67dZJNNcqxiqUJVioXelnzqA9lX-l6h_e87k90-3yt-XLwsyyZhk8kk-Q2Z-Q3AK6tj0iJ4Cj-TtZT48E1CIMdj57qIH2Nh-_zcHRzLTyfqZC3VF_mEjfTAo-B2VYjBCy1iUFl62TquoyUrhatouS-GD555a8ZU2YM12hZ0L0lcPi3a9bsTpxGedoJgwsYxVNj6fwcxb3pKrh09-_fg7oQZ2d7Y1_twKw0P4PaYRfLyIXw_Sq7sWuzLxSXqAys55dPiDdsjV8aLWUTpsaPRGTYtmBsi-7jmSM4oxIQ5djgrpEz4p8N5nLJ6sa-_gjEfwfH-h2_vD-opf0IdlGiWteNWaa1yGx0OwEuZcqsMWTgh65By6EzXmOC55L6xTXbct6aT2MI432bbPoatYT6kp8BwF7TOuyx8QshhgnFdoHeRtOUu8wreXouzDxO5OOW4-NmjkUHy72_Iv4LXqwanI6_Gn6u-o_lZVSNC7PIB1aSf1KT_l5pUsH09u_20Shc9cdULSRxaFbxcFeP6oksTN6T5eanTGsQ4nP-tDm6DUiOaruDJqDCr3iLAbRR2pAK9oUobw9ksGWY_Cs-3MZ2V0j77H-N_DncEBW40vOZmG7aWZ-dpB-HU0r8oK-cKp5QhXg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS90wFA_blcFextxnNx0Z7GEP62zSpEmehoriBjq5TPCt5NNdGK3zXkH_-52kudUrzpdSmoSeJCcnvyQnv4PQJyWcF9SaeP2MlYzBw1QegBxxjW4cfHSJ7fOoOThhP075ad5wm2e3yqVNTIba9TbukW9FXnHKIt_Rt_O_ZYwaFU9XcwiNx2gNTLCUE7S2s3d0PB13WUChoWAzcPrUsL7fytxGMOvRCBdWpqPE2n8f1LzrMXlrCtp_jp5l7Ii3h85eR4989wI9GaJJXr9EZ1Ovk_XCP6-uQS9wii3v51_wdnRpvJo5aEU8HZxi_RzrzuHvtxzKcbxqgjU-nCVyJvjTYe9ydC98fHMp8xU62d_7tXtQ5jgKpeW0WpSaKC4ED7XTUAHDmA81l3GlY4OwPthGNpW0hjBiKlUFTUwtGwYlpDZ1UPVrNOn6zr9FGKyh0kYHajxAD2mlbmx8p14oogMp0Ndlc7Y2k4zHWBd_WlhsxPZv77R_gT6PBc4Hfo3_Z92J_TNmi8TY6UN_cdbmcdZy66yhgjrLAzOs1kQ4FRe1hDtFDAi4sezdNo_WeXujWwX6OCbDOIuHJ7rz_WXKU0vAOoQ8lAfMIROAqgv0ZlCYUVoAuhUHQQokVlRppTqrKd3sd-L7lrJRjKl3D4v-Hj2l8WpGRUoiN9BkcXHpNwEwLcyHPCr-AY_WGkY
  priority: 102
  providerName: ProQuest
Title Reactive Oxygen Species, Antioxidant Responses and Implications from a Microbial Modulation Perspective
URI https://www.ncbi.nlm.nih.gov/pubmed/35205022
https://www.proquest.com/docview/2632247162
https://www.proquest.com/docview/2633852111
https://www.proquest.com/docview/2648847013
https://pubmed.ncbi.nlm.nih.gov/PMC8869449
https://doaj.org/article/5cdcb272dc5f4b43a17d9022215d91b1
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFD5sLRt9Gbt23rqgwR72MHeWLFvSwxjtaOkG6UpYoG9GN3eB4rRJCsm_35HspE1J92KMdbEuR9J3bOn7AD4p4bxg1oTjZzzlHC8m8wjkqCt16fChi2yfp-XJkP86L85v5YC6BpxudO2CntRwcrk_v158xwH_LXic6LJ_7eiKcCFjAQE8hm1clkSQM-h3WD9OywLdjSgZyDKhEFXmoqX62ZTHDjxFZJIVGWNrC1bk9d8ERu_vqbyzSB0_h2cduiQHrTm8gEe-eQlPWr3JxSu4GHgd5zfye75AyyFRfd5Pv5CDsOlxPnLYzmTQbpv1U6IbR37e2XJOwmEUokl_FOmb8E39sev0v8jZ7bHN1zA8Pvrz4yTtlBZSi7WcpZqqQoiizp3GChjOfZ0XMvhCthbW17aUZSatoZyaTGW1piaXJccUUpu8Vvkb2GrGjX8LBOdLpY2umfEITqSVurThnnmhqK5pAvvL5qxsR0Me1DAuK3RHQldU97oigc-rBFctA8fDUQ9D_6yiBers-GA8uai6kVgV1lnDBHO2qLnhuabCqeD20sIparCAe8verZbmWAVWe8YD21YCH1fBOBLD7xXd-PFNjJNLREOU_i8OTphcIO5OYLc1mFVplwaXgFgzpbXqrIc0o7-REVzKUnGu3j2Y53vYYeHcRkZTKvdgaza58R8QTc1MD7YPj07PBr34NaIXx8w_Q4UhAA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrRBcEG9SChgJJA6Exo7jxwGhFlrt0u5SrVqpt-BXykpVUrpb0f1T_EbGeWy7FfTWSxQljjKxZ8afnZlvEHqrhPOCWhPSz1jMGBxM4gHIEcc1d3DR1WyfI94_ZN-OsqMV9KfLhQlhlZ1PrB21q2zYI98IvOKUBb6jz6e_4lA1Kvxd7UpoNGqx6-e_Yck2_TT4CuP7jtKd7YMv_bitKhDbjCazWBOVCZEVqdPOesOYL9JMBtxvC2F9YbnkibSGMGISlRSamFRyBk9IbdIikC-By19lKU9oD61ubY_2x4tdHTAgEJQ3HEJpqpKNlksJZlka4MnS9FdXCfgXtL0eoXllytt5gO63WBVvNsr1EK348hG601SvnD9Gx2Ova2-Jv1_MQQ9xXcveTz_gzRBCeTFxMGp43ATh-inWpcODKwHsOKS2YI2Hk5oMCt40rFxbTQzvXyaBPkGHt9LDT1GvrEr_HGHwvkobXVDjAepIKzW34Zx6oYguSIQ-dt2Z25bUPNTWOMlhcRP6P7_W_xF6v3jgtOHz-H_TrTA-i2aBiLu-UJ0d561d55l11lBBnc0KZliqiXAqLKJJ5hQxIOB6N7p56x2m-aUuR-jN4jbYdfhZo0tfnddtUgnYipCb2oD7ZQJQfISeNQqzkBaAdZKBIBESS6q09DnLd8rJz5pfXEquGFNrN4v-Gt3tHwz38r3BaPcFukdDWkhCYiLXUW92du5fAlibmVethWD047aN8i8ZYFfd
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VqUBcEG8MBRYJJA6YeNdr7_qAUEsbNZSGKKJSb-6-XCIhuzSpaP4av44ZP9Kmgt56sSJ7LU92Z2a_sWe-IeRNJp2X3BosPxOhEHAwkQcgx1yqUwcnXc32OUp3D8SXw-RwjfzpamEwrbLzibWjdpXFd-R95BXnAvmO-kWbFjHeHnw6-RViByn80tq102hUZM8vfkP4Nvs43Ia1fsv5YOf7592w7TAQ2oRH81CzLJEyKWKnnfVGCF_EicIYwBbS-sKmKo2UNUwwE2VRoZmJVSrgDqVNXCARE7j_dYlRUY-sb-2MxpPlGx4wJhA6bfiE4jiL-i2vEuy4HKHKylZYdwz4F8y9mq15afsb3CN3W9xKNxtFu0_WfPmA3Go6WS4ekuOJ17XnpN_OF6CTtO5r72fv6SamU55PHawgnTQJuX5Gdeno8FIyO8UyF6rp_rQmhoIn7Veu7SxGxxcFoY_IwY3M8GPSK6vSPyUUPHGmjS648QB7lFU6tfibe5kxXbCAfOimM7ctwTn22fiZQ6CD859fmf-AvFvecNJwe_x_6Bauz3IYknLXJ6rT47y18TyxzhouubNJIYyINZMuw4CaJS5jBgTc6FY3bz3FLL_Q64C8Xl4GG8cPN7r01Vk9JlaAsxi7bgy4YiEB0QfkSaMwS2kBZEcJCBIQuaJKK39n9Uo5_VFzjSuVZkJkz64X_RW5DcaYfx2O9p6TOxwrRCIWMrVBevPTM_8CcNvcvGwNhJKjm7bJv8goXBI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reactive+Oxygen+Species%2C+Antioxidant+Responses+and+Implications+from+a+Microbial+Modulation+Perspective&rft.jtitle=Biology+%28Basel%2C+Switzerland%29&rft.au=Zandi%2C+Peiman&rft.au=Schnug%2C+Ewald&rft.date=2022-01-18&rft.issn=2079-7737&rft.eissn=2079-7737&rft.volume=11&rft.issue=2&rft_id=info:doi/10.3390%2Fbiology11020155&rft_id=info%3Apmid%2F35205022&rft.externalDocID=35205022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-7737&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-7737&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-7737&client=summon