A Sublogarithmic Approximation for Tollbooth Pricing on Trees

An instance of the tollbooth problem consists of an undirected network and a collection of single-minded customers, each of which is interested in purchasing a fixed path subject to an individual budget constraint. The objective is to assign a per-unit price to each edge in a way that maximizes the...

Full description

Saved in:
Bibliographic Details
Published inMathematics of operations research Vol. 42; no. 2; pp. 377 - 388
Main Authors Gamzu, Iftah, Segev, Danny
Format Journal Article
LanguageEnglish
Published Linthicum INFORMS 01.05.2017
Institute for Operations Research and the Management Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An instance of the tollbooth problem consists of an undirected network and a collection of single-minded customers, each of which is interested in purchasing a fixed path subject to an individual budget constraint. The objective is to assign a per-unit price to each edge in a way that maximizes the collective revenue obtained from all customers. The revenue generated by any customer is equal to the overall price of the edges in her desired path, when this cost falls within her budget; otherwise, that customer will not purchase any edge. Our main result is a deterministic algorithm for the tollbooth problem on trees whose approximation ratio is O (log m /log log m ), where m denotes the number of edges in the underlying graph. This finding improves on the currently best performance guarantees for trees, and up until recently, also on the best ratio for paths (commonly known as the highway problem). An additional interesting consequence is a computational separation between tollbooth pricing on trees and the original prototype problem of single-minded unlimited supply pricing, under a plausible hardness hypothesis.
AbstractList An instance of the tollbooth problem consists of an undirected network and a collection of single-minded customers, each of which is interested in purchasing a fixed path subject to an individual budget constraint. The objective is to assign a per-unit price to each edge in a way that maximizes the collective revenue obtained from all customers. The revenue generated by any customer is equal to the overall price of the edges in her desired path, when this cost falls within her budget; otherwise, that customer will not purchase any edge. Our main result is a deterministic algorithm for the tollbooth problem on trees whose approximation ratio is O(log m/log log m), where m denotes the number of edges in the underlying graph. This finding improves on the currently best performance guarantees for trees, and up until recently, also on the best ratio for paths (commonly known as the highway problem). An additional interesting consequence is a computational separation between tollbooth pricing on trees and the original prototype problem of single-minded unlimited supply pricing, under a plausible hardness hypothesis.
An instance of the tollbooth problem consists of an undirected network and a collection of single-minded customers, each of which is interested in purchasing a fixed path subject to an individual budget constraint. The objective is to assign a per-unit price to each edge in a way that maximizes the collective revenue obtained from all customers. The revenue generated by any customer is equal to the overall price of the edges in her desired path, when this cost falls within her budget; otherwise, that customer will not purchase any edge. Our main result is a deterministic algorithm for the tollbooth problem on trees whose approximation ratio is O (log m /log log m ), where m denotes the number of edges in the underlying graph. This finding improves on the currently best performance guarantees for trees, and up until recently, also on the best ratio for paths (commonly known as the highway problem). An additional interesting consequence is a computational separation between tollbooth pricing on trees and the original prototype problem of single-minded unlimited supply pricing, under a plausible hardness hypothesis.
An instance of the tollbooth problem consists of an undirected network and a collection of single-minded customers, each of which is interested in purchasing a fixed path subject to an individual budget constraint. The objective is to assign a per-unit price to each edge in a way that maximizes the collective revenue obtained from all customers. The revenue generated by any customer is equal to the overall price of the edges in her desired path, when this cost falls within her budget; otherwise, that customer will not purchase any edge. Our main result is a deterministic algorithm for the tollbooth problem on trees whose approximation ratio is O(log m/log log m), where m denotes the number of edges in the underlying graph. This finding improves on the currently best performance guarantees for trees, and up until recently, also on the best ratio for paths (commonly known as the highway problem). An additional interesting consequence is a computational separation between tollbooth pricing on trees and the original prototype problem of single-minded unlimited supply pricing, under a plausible hardness hypothesis.
Audience Academic
Author Segev, Danny
Gamzu, Iftah
Author_xml – sequence: 1
  givenname: Iftah
  surname: Gamzu
  fullname: Gamzu, Iftah
– sequence: 2
  givenname: Danny
  surname: Segev
  fullname: Segev, Danny
BookMark eNqFkt1rFDEUxYO04Lb11TdhQBAEZ735mCTz4MNSqhYKil3Bt5DJZmazzEzWJAP1v2-GVerCigQSyP2dm8vJuUBnox8tQi8xLDGR4v3gfVgSwHwJEugztMAV4WXFBD5DC6CclYJXP56jixh3ALgSmC3Qh1VxPzW973RwaTs4U6z2--Af3KCT82PR-lCsfd833qdt8TU448auyIV1sDZeofNW99G--H1eou8fb9bXn8u7L59ur1d3pakIpLK2VDQb3DLOGmEsp0zSjQEjN8Yy2cpaU80wpxY3oqbAJDQMC64rwA0B4PQSvT70zaP9nGxMauenMOYnFQFCJVQ1r5-oTvdWubH1KWgzuGjUitVMMEK5zFR5gursaIPus6Oty9dH_PIEn9fGZrtOCt4cCTKT7EPq9BSjOgbf_hu8vf92zL77i22m6EYb8xZdt03xIDk1tAk-xmBbtQ_5S8MvhUHNaVFzWtScFjWnJQteHQS7mHLhD004FrKm4sm12YAwxP_1ewQ6HsgF
Cites_doi 10.4086/toc.2007.v003a009
10.1007/978-3-540-75520-3_43
10.1007/978-3-540-70575-8_66
10.1145/1109557.1109678
10.1080/15427951.2011.604554
10.1109/FOCS.2008.15
10.1007/978-3-642-04645-2_25
10.1002/net.10054
10.1007/978-3-540-75520-3_41
10.1016/j.geb.2010.07.007
10.1007/978-3-642-33090-2_31
10.1002/0471722154
10.1145/1721837.1721851
10.1137/1.9781611973082.53
10.1016/0196-6774(83)90035-4
10.1137/090752353
10.1145/1250910.1250946
10.1007/978-3-540-27836-8_9
10.1145/1150334.1150341
10.1137/060656048
10.1016/j.orl.2008.04.008
10.1007/11534273_37
10.1007/978-3-642-03685-9_16
10.1016/j.orl.2003.11.010
10.1007/978-3-642-14165-2_49
10.1016/j.geb.2006.02.003
10.1137/080740970
10.1145/1486877.1486883
10.1016/j.tcs.2009.10.002
ContentType Journal Article
Copyright Copyright 2017, Institute for Operations Research and the Management Sciences
COPYRIGHT 2017 Institute for Operations Research and the Management Sciences
Copyright Institute for Operations Research and the Management Sciences May 2017
Copyright_xml – notice: Copyright 2017, Institute for Operations Research and the Management Sciences
– notice: COPYRIGHT 2017 Institute for Operations Research and the Management Sciences
– notice: Copyright Institute for Operations Research and the Management Sciences May 2017
DBID AAYXX
CITATION
N95
XI7
ISR
JQ2
DOI 10.1287/moor.2016.0803
DatabaseName CrossRef
Gale Business Insights
Business Insights: Essentials
Gale In Context: Science
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection


CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1526-5471
EndPage 388
ExternalDocumentID A494742368
10_1287_moor_2016_0803
26178937
moor.2016.0803
Genre Research Article
GroupedDBID 08R
1AW
1OL
29M
3V.
4.4
4S
5GY
7WY
85S
8AL
8AO
8FE
8FG
8FL
8G5
8H
8VB
AAKYL
AAPBV
ABBHK
ABEFU
ABFLS
ABJCF
ABPPZ
ABUWG
ACIWK
ACNCT
ACYGS
ADCOW
ADGDI
ADMHP
ADODI
AEILP
AELPN
AENEX
AEUPB
AFKRA
AFXKK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BDTQF
BENPR
BES
BEZIV
BGLVJ
BHOJU
BKOMP
BPHCQ
CBXGM
CHNMF
CS3
CWXUR
CZBKB
DQDLB
DSRWC
DWQXO
EBA
EBE
EBO
EBR
EBS
EBU
ECEWR
ECR
ECS
EDO
EFSUC
EJD
EMK
EPL
F20
FEDTE
FRNLG
GIFXF
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HECYW
HGD
HQ6
HVGLF
H~9
IAO
ICW
IEA
IGG
IOF
ISR
ITC
JAA
JBU
JMS
JPL
JSODD
JST
K6
K60
K6V
K7-
L6V
M0C
M0N
M2O
M7S
MBDVC
MV1
N95
NIEAY
P-O
P2P
P62
PADUT
PQEST
PQQKQ
PQUKI
PRG
PRINS
PROAC
PTHSS
QWB
RNS
RPU
RXW
SA0
TAE
TH9
TN5
TUS
U5U
WH7
X
XFK
XHC
XI7
Y99
ZL0
ZY4
-~X
.4S
.DC
18M
2AX
AAWTO
ABDNZ
ABFAN
ABKVW
ABQDR
ABXSQ
ABYRZ
ABYWD
ABYYQ
ACGFO
ACMTB
ACTMH
ACVFL
AEGXH
AELLO
AEMOZ
AFVYC
AHAJD
AIAGR
AKBRZ
BAAKF
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JPPEU
K1G
K6~
8H~
AAYXX
ABTAH
ADACV
ADULT
CCPQU
CITATION
IPSME
PQBIZ
PQBZA
WHG
XOL
ACDIW
ACUHF
APTMU
JQ2
ID FETCH-LOGICAL-c520t-9e37bd1f464b7ce63483dc0c8dce48f89a3a4163e1b7930480b4176a501b20063
ISSN 0364-765X
IngestDate Thu Oct 10 17:27:04 EDT 2024
Thu Feb 22 23:34:40 EST 2024
Thu Nov 14 21:02:33 EST 2024
Tue Nov 12 22:53:54 EST 2024
Sat Sep 28 20:55:09 EDT 2024
Thu Aug 01 19:45:42 EDT 2024
Tue Oct 08 14:31:16 EDT 2024
Thu Sep 12 19:18:31 EDT 2024
Fri Feb 02 07:18:41 EST 2024
Tue Jan 05 23:25:51 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c520t-9e37bd1f464b7ce63483dc0c8dce48f89a3a4163e1b7930480b4176a501b20063
PQID 2023805969
PQPubID 37790
PageCount 12
ParticipantIDs gale_incontextgauss_ISR_A494742368
crossref_primary_10_1287_moor_2016_0803
gale_infotracgeneralonefile_A494742368
gale_infotracmisc_A494742368
gale_incontextgauss__A494742368
gale_businessinsightsgauss_A494742368
proquest_journals_2023805969
gale_infotracacademiconefile_A494742368
jstor_primary_26178937
informs_primary_10_1287_moor_2016_0803
ProviderPackageCode Y99
RPU
NIEAY
PublicationCentury 2000
PublicationDate 2017-05-01
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Linthicum
PublicationPlace_xml – name: Linthicum
PublicationTitle Mathematics of operations research
PublicationYear 2017
Publisher INFORMS
Institute for Operations Research and the Management Sciences
Publisher_xml – name: INFORMS
– name: Institute for Operations Research and the Management Sciences
References B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B30
B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B1
B2
B3
B4
B5
B6
B7
B8
B9
Guruswami V (B26) 2005
Elberfeld M (B17) 2011; 7
References_xml – ident: B12
– ident: B9
– ident: B14
– ident: B10
– ident: B3
– ident: B20
– ident: B1
– ident: B27
– ident: B7
– ident: B5
– ident: B29
– ident: B25
– ident: B23
– ident: B21
– ident: B18
– ident: B16
– ident: B8
– ident: B11
– ident: B13
– ident: B2
– ident: B26
– ident: B4
– ident: B28
– ident: B6
– ident: B24
– ident: B22
– ident: B17
– ident: B15
– ident: B30
– ident: B19
– ident: B4
  doi: 10.4086/toc.2007.v003a009
– ident: B24
  doi: 10.1007/978-3-540-75520-3_43
– ident: B7
  doi: 10.1007/978-3-540-70575-8_66
– ident: B8
  doi: 10.1145/1109557.1109678
– volume: 7
  start-page: 209
  issue: 4
  year: 2011
  ident: B17
  publication-title: Internet Math., Special Issue on Biol. Networks
  doi: 10.1080/15427951.2011.604554
  contributor:
    fullname: Elberfeld M
– ident: B12
  doi: 10.1109/FOCS.2008.15
– ident: B16
  doi: 10.1007/978-3-642-04645-2_25
– ident: B22
  doi: 10.1002/net.10054
– ident: B15
  doi: 10.1007/978-3-540-75520-3_41
– ident: B2
  doi: 10.1016/j.geb.2010.07.007
– ident: B13
  doi: 10.1007/978-3-642-33090-2_31
– ident: B3
  doi: 10.1002/0471722154
– ident: B6
  doi: 10.1145/1721837.1721851
– ident: B23
  doi: 10.1137/1.9781611973082.53
– ident: B19
  doi: 10.1016/0196-6774(83)90035-4
– ident: B9
  doi: 10.1137/090752353
– ident: B10
  doi: 10.1145/1250910.1250946
– ident: B1
  doi: 10.1007/978-3-540-27836-8_9
– ident: B28
  doi: 10.1145/1150334.1150341
– ident: B14
  doi: 10.1137/060656048
– ident: B25
  doi: 10.1016/j.orl.2008.04.008
– ident: B27
  doi: 10.1007/11534273_37
– ident: B29
  doi: 10.1007/978-3-642-03685-9_16
– ident: B18
  doi: 10.1016/j.orl.2003.11.010
– ident: B20
  doi: 10.1007/978-3-642-14165-2_49
– ident: B21
  doi: 10.1016/j.geb.2006.02.003
– start-page: 1164
  volume-title: Proc. 16th Annual ACM-SIAM Sympos. Discrete Algorithms, SODA ’07
  year: 2005
  ident: B26
  contributor:
    fullname: Guruswami V
– ident: B11
  doi: 10.1137/080740970
– ident: B5
  doi: 10.1145/1486877.1486883
– ident: B30
  doi: 10.1016/j.tcs.2009.10.002
SSID ssj0015714
Score 2.1790888
Snippet An instance of the tollbooth problem consists of an undirected network and a collection of single-minded customers, each of which is interested in purchasing a...
SourceID proquest
gale
crossref
jstor
informs
SourceType Aggregation Database
Publisher
StartPage 377
SubjectTerms Algorithms
Approximation
approximation algorithms
balanced decompositions
Customers
Graph theory
highway problem
Mathematical analysis
Mathematical research
Methods
Operations research
Pricing
randomization
Revenue
segment guessing
Studies
tollbooth problem
Tolls
Trees
Trees (Graph theory)
Title A Sublogarithmic Approximation for Tollbooth Pricing on Trees
URI https://www.jstor.org/stable/26178937
https://www.proquest.com/docview/2023805969
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgCMQe-ChMKwyIELCHKaNJnK8HHgraGEiAxFapb5HtOB0PbaokldD-eu5ix4m1iq-XqGovjnt3-fl8vg9CXjGZ-h4VHmxyAAIpK5jL8thzC9DogMlJNJHoGvjyNTqb0c_zcN7nnrTZJQ0_Fldb80r-R6rwHcgVs2T_QbJmUPgCPoN84QoShutfyXh6VG84gBfsd5tLDHJvK4T__LEcRBCCnMGQbi6P1hUeoi_a04FK6tDBrpeTKd7aRnaUa1npEDldDMg4jT-y5dWmBZai6V3J53IBc1cZ6xpctCcBRGPi9tTu0kQn4PS-9U_qYgBNTGcfmdMh0NCxGETUjaNwrlYYDat-5IZUNVvpcJf6A_3yByAaqMYu18DdR_fI6bIssY6rFx2DsRv0y5gJLpzSlOL5c5TcJLd8wB8EvpP3M3O4FMaeriqmJqprecLwb-3BLVtFr9i3VUHbuotfvbaGt4bJxQNyT-8onKlSj4fkhlyNyJ0uoWFE7neNOxzNxRHZHVShfETeTR1bjRxLjRyYiGPUyNFq5MAPrRo9JrPTk4sPZ67uquGK0J80biqDmOdeQSPKYyGjgCZBLiYiyYWkSZGkLGBopUuPA--w5ACnXhyxcOJx9D8Fe2RnVa7kPnE4S1IZJgnjfk4l9bmIw5gmTNIAbo_5mBx2_MvWqnhKhptO4HSGnM6Q0xlyekxeI3sz3XkVLjX6puoF29R11kt0TF62dFi5ZIWhUYrg0_l3i-jFNiKL4lBTFGVTMcF0Lgr8LSyHZlG-sSgXqhj8NsIDixBQWtjjaMX5Iyf2Wr0yZNgyATcV8IBO0TKNQTXcBiY3dtBKn_z--U_J3f6VPyA7TbWRz8Ccbvjz9uX4BcKSy4E
link.rule.ids 315,783,787,27936,27937
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+sublogarithmic+approximation+for+tollbooth+pricing+on+trees&rft.jtitle=Mathematics+of+operations+research&rft.au=Gamzu%2C+Iftah&rft.au=Segev%2C+Danny&rft.date=2017-05-01&rft.pub=Institute+for+Operations+Research+and+the+Management+Sciences&rft.issn=0364-765X&rft.eissn=1526-5471&rft.volume=42&rft.issue=2&rft.spage=377&rft_id=info:doi/10.1287%2Fmoor.2016.0803&rft.externalDocID=A494742368
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-765X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-765X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-765X&client=summon