A Sublogarithmic Approximation for Tollbooth Pricing on Trees
An instance of the tollbooth problem consists of an undirected network and a collection of single-minded customers, each of which is interested in purchasing a fixed path subject to an individual budget constraint. The objective is to assign a per-unit price to each edge in a way that maximizes the...
Saved in:
Published in | Mathematics of operations research Vol. 42; no. 2; pp. 377 - 388 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Linthicum
INFORMS
01.05.2017
Institute for Operations Research and the Management Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An instance of the tollbooth problem consists of an undirected network and a collection of single-minded customers, each of which is interested in purchasing a fixed path subject to an individual budget constraint. The objective is to assign a per-unit price to each edge in a way that maximizes the collective revenue obtained from all customers. The revenue generated by any customer is equal to the overall price of the edges in her desired path, when this cost falls within her budget; otherwise, that customer will not purchase any edge.
Our main result is a deterministic algorithm for the tollbooth problem on trees whose approximation ratio is
O
(log
m
/log log
m
), where
m
denotes the number of edges in the underlying graph. This finding improves on the currently best performance guarantees for trees, and up until recently, also on the best ratio for paths (commonly known as the highway problem). An additional interesting consequence is a computational separation between tollbooth pricing on trees and the original prototype problem of single-minded unlimited supply pricing, under a plausible hardness hypothesis. |
---|---|
AbstractList | An instance of the tollbooth problem consists of an undirected network and a collection of single-minded customers, each of which is interested in purchasing a fixed path subject to an individual budget constraint. The objective is to assign a per-unit price to each edge in a way that maximizes the collective revenue obtained from all customers. The revenue generated by any customer is equal to the overall price of the edges in her desired path, when this cost falls within her budget; otherwise, that customer will not purchase any edge. Our main result is a deterministic algorithm for the tollbooth problem on trees whose approximation ratio is O(log m/log log m), where m denotes the number of edges in the underlying graph. This finding improves on the currently best performance guarantees for trees, and up until recently, also on the best ratio for paths (commonly known as the highway problem). An additional interesting consequence is a computational separation between tollbooth pricing on trees and the original prototype problem of single-minded unlimited supply pricing, under a plausible hardness hypothesis. An instance of the tollbooth problem consists of an undirected network and a collection of single-minded customers, each of which is interested in purchasing a fixed path subject to an individual budget constraint. The objective is to assign a per-unit price to each edge in a way that maximizes the collective revenue obtained from all customers. The revenue generated by any customer is equal to the overall price of the edges in her desired path, when this cost falls within her budget; otherwise, that customer will not purchase any edge. Our main result is a deterministic algorithm for the tollbooth problem on trees whose approximation ratio is O (log m /log log m ), where m denotes the number of edges in the underlying graph. This finding improves on the currently best performance guarantees for trees, and up until recently, also on the best ratio for paths (commonly known as the highway problem). An additional interesting consequence is a computational separation between tollbooth pricing on trees and the original prototype problem of single-minded unlimited supply pricing, under a plausible hardness hypothesis. An instance of the tollbooth problem consists of an undirected network and a collection of single-minded customers, each of which is interested in purchasing a fixed path subject to an individual budget constraint. The objective is to assign a per-unit price to each edge in a way that maximizes the collective revenue obtained from all customers. The revenue generated by any customer is equal to the overall price of the edges in her desired path, when this cost falls within her budget; otherwise, that customer will not purchase any edge. Our main result is a deterministic algorithm for the tollbooth problem on trees whose approximation ratio is O(log m/log log m), where m denotes the number of edges in the underlying graph. This finding improves on the currently best performance guarantees for trees, and up until recently, also on the best ratio for paths (commonly known as the highway problem). An additional interesting consequence is a computational separation between tollbooth pricing on trees and the original prototype problem of single-minded unlimited supply pricing, under a plausible hardness hypothesis. |
Audience | Academic |
Author | Segev, Danny Gamzu, Iftah |
Author_xml | – sequence: 1 givenname: Iftah surname: Gamzu fullname: Gamzu, Iftah – sequence: 2 givenname: Danny surname: Segev fullname: Segev, Danny |
BookMark | eNqFkt1rFDEUxYO04Lb11TdhQBAEZ735mCTz4MNSqhYKil3Bt5DJZmazzEzWJAP1v2-GVerCigQSyP2dm8vJuUBnox8tQi8xLDGR4v3gfVgSwHwJEugztMAV4WXFBD5DC6CclYJXP56jixh3ALgSmC3Qh1VxPzW973RwaTs4U6z2--Af3KCT82PR-lCsfd833qdt8TU448auyIV1sDZeofNW99G--H1eou8fb9bXn8u7L59ur1d3pakIpLK2VDQb3DLOGmEsp0zSjQEjN8Yy2cpaU80wpxY3oqbAJDQMC64rwA0B4PQSvT70zaP9nGxMauenMOYnFQFCJVQ1r5-oTvdWubH1KWgzuGjUitVMMEK5zFR5gursaIPus6Oty9dH_PIEn9fGZrtOCt4cCTKT7EPq9BSjOgbf_hu8vf92zL77i22m6EYb8xZdt03xIDk1tAk-xmBbtQ_5S8MvhUHNaVFzWtScFjWnJQteHQS7mHLhD004FrKm4sm12YAwxP_1ewQ6HsgF |
Cites_doi | 10.4086/toc.2007.v003a009 10.1007/978-3-540-75520-3_43 10.1007/978-3-540-70575-8_66 10.1145/1109557.1109678 10.1080/15427951.2011.604554 10.1109/FOCS.2008.15 10.1007/978-3-642-04645-2_25 10.1002/net.10054 10.1007/978-3-540-75520-3_41 10.1016/j.geb.2010.07.007 10.1007/978-3-642-33090-2_31 10.1002/0471722154 10.1145/1721837.1721851 10.1137/1.9781611973082.53 10.1016/0196-6774(83)90035-4 10.1137/090752353 10.1145/1250910.1250946 10.1007/978-3-540-27836-8_9 10.1145/1150334.1150341 10.1137/060656048 10.1016/j.orl.2008.04.008 10.1007/11534273_37 10.1007/978-3-642-03685-9_16 10.1016/j.orl.2003.11.010 10.1007/978-3-642-14165-2_49 10.1016/j.geb.2006.02.003 10.1137/080740970 10.1145/1486877.1486883 10.1016/j.tcs.2009.10.002 |
ContentType | Journal Article |
Copyright | Copyright 2017, Institute for Operations Research and the Management Sciences COPYRIGHT 2017 Institute for Operations Research and the Management Sciences Copyright Institute for Operations Research and the Management Sciences May 2017 |
Copyright_xml | – notice: Copyright 2017, Institute for Operations Research and the Management Sciences – notice: COPYRIGHT 2017 Institute for Operations Research and the Management Sciences – notice: Copyright Institute for Operations Research and the Management Sciences May 2017 |
DBID | AAYXX CITATION N95 XI7 ISR JQ2 |
DOI | 10.1287/moor.2016.0803 |
DatabaseName | CrossRef Gale Business Insights Business Insights: Essentials Gale In Context: Science ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science Business |
EISSN | 1526-5471 |
EndPage | 388 |
ExternalDocumentID | A494742368 10_1287_moor_2016_0803 26178937 moor.2016.0803 |
Genre | Research Article |
GroupedDBID | 08R 1AW 1OL 29M 3V. 4.4 4S 5GY 7WY 85S 8AL 8AO 8FE 8FG 8FL 8G5 8H 8VB AAKYL AAPBV ABBHK ABEFU ABFLS ABJCF ABPPZ ABUWG ACIWK ACNCT ACYGS ADCOW ADGDI ADMHP ADODI AEILP AELPN AENEX AEUPB AFKRA AFXKK AKVCP ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BDTQF BENPR BES BEZIV BGLVJ BHOJU BKOMP BPHCQ CBXGM CHNMF CS3 CWXUR CZBKB DQDLB DSRWC DWQXO EBA EBE EBO EBR EBS EBU ECEWR ECR ECS EDO EFSUC EJD EMK EPL F20 FEDTE FRNLG GIFXF GNUQQ GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUQSH HCIFZ HECYW HGD HQ6 HVGLF H~9 IAO ICW IEA IGG IOF ISR ITC JAA JBU JMS JPL JSODD JST K6 K60 K6V K7- L6V M0C M0N M2O M7S MBDVC MV1 N95 NIEAY P-O P2P P62 PADUT PQEST PQQKQ PQUKI PRG PRINS PROAC PTHSS QWB RNS RPU RXW SA0 TAE TH9 TN5 TUS U5U WH7 X XFK XHC XI7 Y99 ZL0 ZY4 -~X .4S .DC 18M 2AX AAWTO ABDNZ ABFAN ABKVW ABQDR ABXSQ ABYRZ ABYWD ABYYQ ACGFO ACMTB ACTMH ACVFL AEGXH AELLO AEMOZ AFVYC AHAJD AIAGR AKBRZ BAAKF JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JPPEU K1G K6~ 8H~ AAYXX ABTAH ADACV ADULT CCPQU CITATION IPSME PQBIZ PQBZA WHG XOL ACDIW ACUHF APTMU JQ2 |
ID | FETCH-LOGICAL-c520t-9e37bd1f464b7ce63483dc0c8dce48f89a3a4163e1b7930480b4176a501b20063 |
ISSN | 0364-765X |
IngestDate | Thu Oct 10 17:27:04 EDT 2024 Thu Feb 22 23:34:40 EST 2024 Thu Nov 14 21:02:33 EST 2024 Tue Nov 12 22:53:54 EST 2024 Sat Sep 28 20:55:09 EDT 2024 Thu Aug 01 19:45:42 EDT 2024 Tue Oct 08 14:31:16 EDT 2024 Thu Sep 12 19:18:31 EDT 2024 Fri Feb 02 07:18:41 EST 2024 Tue Jan 05 23:25:51 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c520t-9e37bd1f464b7ce63483dc0c8dce48f89a3a4163e1b7930480b4176a501b20063 |
PQID | 2023805969 |
PQPubID | 37790 |
PageCount | 12 |
ParticipantIDs | gale_incontextgauss_ISR_A494742368 crossref_primary_10_1287_moor_2016_0803 gale_infotracgeneralonefile_A494742368 gale_infotracmisc_A494742368 gale_incontextgauss__A494742368 gale_businessinsightsgauss_A494742368 proquest_journals_2023805969 gale_infotracacademiconefile_A494742368 jstor_primary_26178937 informs_primary_10_1287_moor_2016_0803 |
ProviderPackageCode | Y99 RPU NIEAY |
PublicationCentury | 2000 |
PublicationDate | 2017-05-01 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Linthicum |
PublicationPlace_xml | – name: Linthicum |
PublicationTitle | Mathematics of operations research |
PublicationYear | 2017 |
Publisher | INFORMS Institute for Operations Research and the Management Sciences |
Publisher_xml | – name: INFORMS – name: Institute for Operations Research and the Management Sciences |
References | B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B1 B2 B3 B4 B5 B6 B7 B8 B9 Guruswami V (B26) 2005 Elberfeld M (B17) 2011; 7 |
References_xml | – ident: B12 – ident: B9 – ident: B14 – ident: B10 – ident: B3 – ident: B20 – ident: B1 – ident: B27 – ident: B7 – ident: B5 – ident: B29 – ident: B25 – ident: B23 – ident: B21 – ident: B18 – ident: B16 – ident: B8 – ident: B11 – ident: B13 – ident: B2 – ident: B26 – ident: B4 – ident: B28 – ident: B6 – ident: B24 – ident: B22 – ident: B17 – ident: B15 – ident: B30 – ident: B19 – ident: B4 doi: 10.4086/toc.2007.v003a009 – ident: B24 doi: 10.1007/978-3-540-75520-3_43 – ident: B7 doi: 10.1007/978-3-540-70575-8_66 – ident: B8 doi: 10.1145/1109557.1109678 – volume: 7 start-page: 209 issue: 4 year: 2011 ident: B17 publication-title: Internet Math., Special Issue on Biol. Networks doi: 10.1080/15427951.2011.604554 contributor: fullname: Elberfeld M – ident: B12 doi: 10.1109/FOCS.2008.15 – ident: B16 doi: 10.1007/978-3-642-04645-2_25 – ident: B22 doi: 10.1002/net.10054 – ident: B15 doi: 10.1007/978-3-540-75520-3_41 – ident: B2 doi: 10.1016/j.geb.2010.07.007 – ident: B13 doi: 10.1007/978-3-642-33090-2_31 – ident: B3 doi: 10.1002/0471722154 – ident: B6 doi: 10.1145/1721837.1721851 – ident: B23 doi: 10.1137/1.9781611973082.53 – ident: B19 doi: 10.1016/0196-6774(83)90035-4 – ident: B9 doi: 10.1137/090752353 – ident: B10 doi: 10.1145/1250910.1250946 – ident: B1 doi: 10.1007/978-3-540-27836-8_9 – ident: B28 doi: 10.1145/1150334.1150341 – ident: B14 doi: 10.1137/060656048 – ident: B25 doi: 10.1016/j.orl.2008.04.008 – ident: B27 doi: 10.1007/11534273_37 – ident: B29 doi: 10.1007/978-3-642-03685-9_16 – ident: B18 doi: 10.1016/j.orl.2003.11.010 – ident: B20 doi: 10.1007/978-3-642-14165-2_49 – ident: B21 doi: 10.1016/j.geb.2006.02.003 – start-page: 1164 volume-title: Proc. 16th Annual ACM-SIAM Sympos. Discrete Algorithms, SODA ’07 year: 2005 ident: B26 contributor: fullname: Guruswami V – ident: B11 doi: 10.1137/080740970 – ident: B5 doi: 10.1145/1486877.1486883 – ident: B30 doi: 10.1016/j.tcs.2009.10.002 |
SSID | ssj0015714 |
Score | 2.1790888 |
Snippet | An instance of the tollbooth problem consists of an undirected network and a collection of single-minded customers, each of which is interested in purchasing a... |
SourceID | proquest gale crossref jstor informs |
SourceType | Aggregation Database Publisher |
StartPage | 377 |
SubjectTerms | Algorithms Approximation approximation algorithms balanced decompositions Customers Graph theory highway problem Mathematical analysis Mathematical research Methods Operations research Pricing randomization Revenue segment guessing Studies tollbooth problem Tolls Trees Trees (Graph theory) |
Title | A Sublogarithmic Approximation for Tollbooth Pricing on Trees |
URI | https://www.jstor.org/stable/26178937 https://www.proquest.com/docview/2023805969 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgCMQe-ChMKwyIELCHKaNJnK8HHgraGEiAxFapb5HtOB0PbaokldD-eu5ix4m1iq-XqGovjnt3-fl8vg9CXjGZ-h4VHmxyAAIpK5jL8thzC9DogMlJNJHoGvjyNTqb0c_zcN7nnrTZJQ0_Fldb80r-R6rwHcgVs2T_QbJmUPgCPoN84QoShutfyXh6VG84gBfsd5tLDHJvK4T__LEcRBCCnMGQbi6P1hUeoi_a04FK6tDBrpeTKd7aRnaUa1npEDldDMg4jT-y5dWmBZai6V3J53IBc1cZ6xpctCcBRGPi9tTu0kQn4PS-9U_qYgBNTGcfmdMh0NCxGETUjaNwrlYYDat-5IZUNVvpcJf6A_3yByAaqMYu18DdR_fI6bIssY6rFx2DsRv0y5gJLpzSlOL5c5TcJLd8wB8EvpP3M3O4FMaeriqmJqprecLwb-3BLVtFr9i3VUHbuotfvbaGt4bJxQNyT-8onKlSj4fkhlyNyJ0uoWFE7neNOxzNxRHZHVShfETeTR1bjRxLjRyYiGPUyNFq5MAPrRo9JrPTk4sPZ67uquGK0J80biqDmOdeQSPKYyGjgCZBLiYiyYWkSZGkLGBopUuPA--w5ACnXhyxcOJx9D8Fe2RnVa7kPnE4S1IZJgnjfk4l9bmIw5gmTNIAbo_5mBx2_MvWqnhKhptO4HSGnM6Q0xlyekxeI3sz3XkVLjX6puoF29R11kt0TF62dFi5ZIWhUYrg0_l3i-jFNiKL4lBTFGVTMcF0Lgr8LSyHZlG-sSgXqhj8NsIDixBQWtjjaMX5Iyf2Wr0yZNgyATcV8IBO0TKNQTXcBiY3dtBKn_z--U_J3f6VPyA7TbWRz8Ccbvjz9uX4BcKSy4E |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+sublogarithmic+approximation+for+tollbooth+pricing+on+trees&rft.jtitle=Mathematics+of+operations+research&rft.au=Gamzu%2C+Iftah&rft.au=Segev%2C+Danny&rft.date=2017-05-01&rft.pub=Institute+for+Operations+Research+and+the+Management+Sciences&rft.issn=0364-765X&rft.eissn=1526-5471&rft.volume=42&rft.issue=2&rft.spage=377&rft_id=info:doi/10.1287%2Fmoor.2016.0803&rft.externalDocID=A494742368 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-765X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-765X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-765X&client=summon |