MPTCP-meLearning: A Multi-Expert Learning-Based MPTCP Extension to Enhance Multipathing Robustness against Network Attacks

With multiple network interfaces are being widely equipped in modern mobile devices, the Multipath TCP (MPTCP) is increasingly becoming the preferred transport technique since it can uses multiple network interfaces simultaneously to spread the data across multiple network paths for throughput impro...

Full description

Saved in:
Bibliographic Details
Published inIEICE Transactions on Information and Systems Vol. E104.D; no. 11; pp. 1795 - 1804
Main Authors CAO, Yuanlong, JI, Ruiwen, JI, Lejun, SHAO, Xun, LEI, Gang, WANG, Hao
Format Journal Article
LanguageEnglish
Published Tokyo The Institute of Electronics, Information and Communication Engineers 01.11.2021
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With multiple network interfaces are being widely equipped in modern mobile devices, the Multipath TCP (MPTCP) is increasingly becoming the preferred transport technique since it can uses multiple network interfaces simultaneously to spread the data across multiple network paths for throughput improvement. However, the MPTCP performance can be seriously affected by the use of a poor-performing path in multipath transmission, especially in the presence of network attacks, in which an MPTCP path would abrupt and frequent become underperforming caused by attacks. In this paper, we propose a multi-expert Learning-based MPTCP variant, called MPTCP-meLearning, to enhance MPTCP performance robustness against network attacks. MPTCP-meLearning introduces a new kind of predictor to possibly achieve better quality prediction accuracy for each of multiple paths, by leveraging a group of representative formula-based predictors. MPTCP-meLearning includes a novel mechanism to intelligently manage multiple paths in order to possibly mitigate the out-of-order reception and receive buffer blocking problems. Experimental results demonstrate that MPTCP-meLearning can achieve better transmission performance and quality of service than the baseline MPTCP scheme.
AbstractList With multiple network interfaces are being widely equipped in modern mobile devices, the Multipath TCP (MPTCP) is increasingly becoming the preferred transport technique since it can uses multiple network interfaces simultaneously to spread the data across multiple network paths for throughput improvement. However, the MPTCP performance can be seriously affected by the use of a poor-performing path in multipath transmission, especially in the presence of network attacks, in which an MPTCP path would abrupt and frequent become underperforming caused by attacks. In this paper, we propose a multi-expert Learning-based MPTCP variant, called MPTCP-meLearning, to enhance MPTCP performance robustness against network attacks. MPTCP-meLearning introduces a new kind of predictor to possibly achieve better quality prediction accuracy for each of multiple paths, by leveraging a group of representative formula-based predictors. MPTCP-meLearning includes a novel mechanism to intelligently manage multiple paths in order to possibly mitigate the out-of-order reception and receive buffer blocking problems. Experimental results demonstrate that MPTCP-meLearning can achieve better transmission performance and quality of service than the baseline MPTCP scheme.
ArticleNumber 2021NGP0009
Author WANG, Hao
CAO, Yuanlong
JI, Ruiwen
LEI, Gang
JI, Lejun
SHAO, Xun
Author_xml – sequence: 1
  fullname: CAO, Yuanlong
  organization: School of Software, Jiangxi Normal University
– sequence: 2
  fullname: JI, Ruiwen
  organization: School of Software, Jiangxi Normal University
– sequence: 3
  fullname: JI, Lejun
  organization: School of Software, Jiangxi Normal University
– sequence: 4
  fullname: SHAO, Xun
  organization: School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology
– sequence: 5
  fullname: LEI, Gang
  organization: School of Software, Jiangxi Normal University
– sequence: 6
  fullname: WANG, Hao
  organization: School of Software, Jiangxi Normal University
BookMark eNqFkMFuGjEQhq2KSIWkb9CDpZw39XhtvMuN0G0SiRDUpmfL6_XCAvFSe1DTPH02IdCol55mpPm-Gc0_ID3fekfIZ2AXIDP1BYPxsfH1BWccZldzxlj-gfRBCZlAOoQe6bMchkkmU_6RDGJcMQYZB9knT7fz-8k8eXBTZ4Jv_GJEx_R2t8EmKR63LiA9DJJLE11FX3laPKLrTraeYksLvzTeur22NbjsaPq9LXcRvYuRmoVpfEQ6c_i7DWs6RjR2Hc_ISW020X16q6fk57fifnKdTO-ubibjaWIlZ5hkbpgqUzGhgHFR2gy4lVnV_SKz1EgBAmpQZWXLNOMlY6quFatEyYe2UlKI9JSc7_duQ_tr5yLqVbsLvjupucwhzXNQsqNGe8qGNsbgam0bNNi92KXbbDQw_ZK1PmSt32XdyeIfeRuaBxP-_E_7sddWEc3CHSUTsLEb91cqgAn9VQMcundbjrRdmqCdT58BJk2lOw
CitedBy_id crossref_primary_10_1109_TIFS_2023_3275768
crossref_primary_10_1109_TII_2022_3151093
crossref_primary_10_1155_2022_1237619
crossref_primary_10_3934_mbe_2022138
Cites_doi 10.1109/COMPSAC.2018.10230
10.1145/263932.264023
10.1109/TVT.2016.2543842
10.1109/JSAC.2002.807336
10.1109/TVT.2017.2753398
10.1109/JSYST.2020.2965471
10.1109/INFOCOM.2017.8057011
10.1109/ACCESS.2017.2731899
10.1109/ACCESS.2020.3021475
10.3390/app10010380
10.1109/TNET.2014.2300140
10.1109/COMST.2021.3053615
10.1109/ACCESS.2019.2957434
10.23919/CNSM.2017.8255970
10.1109/INFOCOM.2016.7524600
10.1109/JSTSP.2014.2330332
10.1016/j.comnet.2019.106896
10.1109/ACCESS.2019.2958986
10.1109/LCOMM.2017.2740918
10.1109/TNET.2019.2950908
10.17487/rfc6824
10.1145/285243.285291
10.1109/TMC.2018.2889059
10.1109/TNET.2016.2527759
10.1109/INFOCOM.2014.6848120
10.1145/2535771.2535782
10.1109/ICC.2016.7511342
10.1145/3300061.3345435
10.1109/ICNP.2017.8117547
10.1109/ICPADS47876.2019.00117
10.17487/RFC8684
10.1109/TSMC.2019.2959630
10.1109/TII.2019.2950109
10.1109/TMM.2018.2879748
10.1109/MNET.2018.1800017
10.1109/TNET.2017.2701153
10.1145/3230543.3230556
10.1109/TNET.2019.2923955
ContentType Journal Article
Copyright 2021 The Institute of Electronics, Information and Communication Engineers
Copyright Japan Science and Technology Agency 2021
Copyright_xml – notice: 2021 The Institute of Electronics, Information and Communication Engineers
– notice: Copyright Japan Science and Technology Agency 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1587/transinf.2021NGP0009
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1745-1361
EndPage 1804
ExternalDocumentID 10_1587_transinf_2021NGP0009
article_transinf_E104_D_11_E104_D_2021NGP0009_article_char_en
GroupedDBID -~X
5GY
ABZEH
ACGFS
ADNWM
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
EJD
F5P
ICE
JSF
JSH
KQ8
OK1
P2P
RJT
RZJ
TN5
TQK
ZKX
AAYXX
ABJNI
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c520t-8e637ad0471024bc812c58d853583a54141f17bdcb382b007ff70d4b26cd75443
ISSN 0916-8532
IngestDate Mon Jun 30 03:59:12 EDT 2025
Tue Jul 01 02:28:02 EDT 2025
Thu Apr 24 23:10:33 EDT 2025
Wed Apr 05 14:40:34 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c520t-8e637ad0471024bc812c58d853583a54141f17bdcb382b007ff70d4b26cd75443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.jstage.jst.go.jp/article/transinf/E104.D/11/E104.D_2021NGP0009/_article/-char/en
PQID 2591399175
PQPubID 2048497
PageCount 10
ParticipantIDs proquest_journals_2591399175
crossref_citationtrail_10_1587_transinf_2021NGP0009
crossref_primary_10_1587_transinf_2021NGP0009
jstage_primary_article_transinf_E104_D_11_E104_D_2021NGP0009_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle IEICE Transactions on Information and Systems
PublicationTitleAlternate IEICE Trans. Inf. & Syst.
PublicationYear 2021
Publisher The Institute of Electronics, Information and Communication Engineers
Japan Science and Technology Agency
Publisher_xml – name: The Institute of Electronics, Information and Communication Engineers
– name: Japan Science and Technology Agency
References [2] M.R. Palash and K. Chen, “MPWiFi: Synergizing MPTCP Based Simultaneous Multipath Access and WiFi Network Performance,” IEEE Transactions on Mobile Computing, vol.19, no.1, pp.142-158, 2020. 10.1109/tmc.2018.2889059
[39] C.P. Fu and S.C. Liew, “TCP Veno: TCP Enhancement for Transmission over Wireless Access Networks,” IEEE Journal on Selected Areas in Communications, vol.21, no.2, pp.216-228, 2003. 10.1109/jsac.2002.807336
[12] A. Ford, C. Raiciu, M. Handley, O. Bonaventure, and C. Paasch, “TCP Extensions for Multipath Operation with Multiple Addresses,” IETF RFC 8684, 2020. 10.17487/rfc8684
[9] https://support.huawei.com/enterprise/en/doc/EDOC1000162776/e03f3b43/multipath-connectivity, accessed Jan. 2021.
[42] UC Berkeley, LBL, USC/ISI and Xerox Parc, NS-2 documentation and software, version 2.35.
[35] C.-D. Phung, B.F. Silva, M. Nogueira, and S. Secci, “MPTCP robustness against large-scale man-in-the-middle attacks,” Computer Networks, vol.164, pp.106896.1-106896.14, Dec. 2019. 10.1016/j.comnet.2019.106896
[13] P. Ignaciuk and M. Morawski, “Discrete-Time Sliding-Mode Controllers for MPTCP Networks,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, pp.1-11, 2020. Early Access Article. 10.1109/tsmc.2019.2959630
[25] B.Y.L. Kimura, D.C.C.F. Lima, and A.A.F. Loureiro, “Packet Scheduling in Multipath TCP: Fundamentals, Lessons, and Opportunities,” IEEE Systems Journal, vol.15, no.1, pp.1445-1457, 2020. Early Access Article. 10.1109/jsyst.2020.2965471
[1] G. Cerar, H. Yetgin, M. Mohorčič, and C. Fortuna, “Machine Learning for Wireless Link Quality Estimation: A Survey,” IEEE Communications Surveys & Tutorials, vol.23, no.2, pp.696-728, Jan. 2021. Early Access. 10.1109/comst.2021.3053615
[4] F. Song, Z. Ai, Y. Zhou, I. You, K.-K.R. Choo, and H. Zhang, “Smart Collaborative Automation for Receive Buffer Control in Multipath Industrial Networks,” IEEE Transactions on Industrial Informatics, vol.16, no.2, pp.1385-1394, 2020. 10.1109/tii.2019.2950109
[17] L. Li, K. Xu, T. Li, K. Zheng, C. Peng, D. Wang, X. Wang, M. Shen, and R. Mijumbi, “A measurement study on multi-path TCP with multiple cellular carriers on high speed rails,” Proc. ACM SIGCOMM, pp.161-175, 2018. 10.1145/3230543.3230556
[18] S.K. Saha, S. Aggarwal, R. Pathak, D. Koutsonikolas, and J. Widmer, “MuSher: An Agile Multipath-TCP Scheduler for Dual-Band 802.11ad/ac Wireless LANs,” Proc. ACM MobiCom, pp.1-16, 2019. 10.1145/3300061.3345435
[6] Y. Cao, D. Yu, L. Zeng, Q. Liu, F. Wu, X. Gui, and M. Huang, “Towards Efficient Parallel Multipathing: A Receiver-Centric Cross-Layer Solution to Aid Multipath TCP,” Proc. IEEE ICPADS, pp.1-8, Dec. 2019. 10.1109/icpads47876.2019.00117
[16] H. Sinky, B. Hamdaoui, and M. Guizani, “Seamless Handoffs in Wireless HetNets: Transport-Layer Challenges and Multi-Path TCP Solutions with Cross-Layer Awareness,” IEEE Network, vol.33, no.2, pp.195-201, 2019. 10.1109/mnet.2018.1800017
[36] Y. Cao, J. Chen, Q. Liu, G. Lei, H. Wang, and I. You, “Can Multipath TCP Be Robust to Cyber Attacks with Incomplete Information?” IEEE Access, vol.8, pp.165872-165883, 2020. 10.1109/access.2020.3021475
[22] J. Wu, B. Cheng, M. Wang, and J. Chen, “Quality-Aware Energy Optimization in Wireless Video Communication With Multipath TCP,” IEEE/ACM Transactions on Networking, vol.25, no.5, pp.2701-2718, 2017. 10.1109/tnet.2017.2701153
[32] A. Munir, Z. Qian, Z. Shafiq, A. Liu, and F. Le, “Multipath TCP traffic diversion attacks and countermeasures,” Proc. IEEE ICNP, Oct. 2017. 10.1109/icnp.2017.8117547
[34] M.Z. Shafiq, F. Le, M. Srivatsa, and A.X. Liu, “Cross-path inference attacks on multipath TCP,” Proc. ACM Workshop on Hot Topics in Networks (HotNets), pp.1-7, Nov. 2013. 10.1145/2535771.2535782
[8] https://support.apple.com/lv-lv/HT201373, accessed Dec. 2020.
[23] J. Wu, R. Tan, and M. Wang, “Energy-Efficient Multipath TCP for Quality-Guaranteed Video over Heterogeneous Wireless Networks,” IEEE Transactions on Multimedia, vol.21, no.6, pp.1593-1608, 2019. 10.1109/tmm.2018.2879748
[27] B.Y.L. Kimura, D.C.S.F. Lima, and A.A.F. Loureiro, “Alternative Scheduling Decisions for Multipath TCP,” IEEE Communications Letters, vol.21, no.11, pp.2412-2415, 2017. 10.1109/lcomm.2017.2740918
[33] B.-H. Oh and J. Lee, “Feedback-Based Path Failure Detection and Buffer Blocking Protection for MPTCP,” IEEE/ACM Transactions on Networking, vol.24, no.6, pp.3450-3461, 2016. 10.1109/tnet.2016.2527759
[37] Y. Cao, M. Collotta, S. Xu, L. Huang, X. Tao, and Z. Zhou, “Towards Adaptive Multipath Managing: A Lightweight Path Management Mechanism to Aid Multi-homed Mobile Computing Devices,” Applied Sciences, vol.10, pp.1-18, 2020. 10.3390/app10010380
[21] M. Fukuyama, N. Yamai, S. Ohzahata, and N. Kitagawa, “Throughput Improvement of MPTCP by Selective Bicasting with Cross-Layer Control in Wireless Environment,” Proc. IEEE COMPSAC, pp.204-209, 2018. 10.1109/compsac.2018.10230
[30] G. Noh, H. Park, H. Roh, and W. Lee, “Secure and Lightweight Subflow Establishment of Multipath-TCP,” IEEE Access, vol.7, pp.177438-177448, 2019. 10.1109/access.2019.2957434
[41] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP throughput: A Simple Model and Its Empirical Validation,” ACM SIGCOMM Computer Communication Review, vol.28, no.4, pp.303-314, 1998. 10.1145/285243.285291
[3] Z. Liu, G. Cheung, J. Chakareski, and Y. Ji, “Multiple Description Coding and Recovery of Free Viewpoint Video for Wireless Multi-Path Streaming,” IEEE Journal of Selected Topics in Signal Processing, vol.9, no.1, pp.151-164, 2015. 10.1109/jstsp.2014.2330332
[20] J. Zhao, J. Liu, H. Wang, C. Xu, W. Gong, and C. Xu, “Measurement, Analysis, and Enhancement of Multipath TCP Energy Efficiency for Datacenters,” IEEE/ACM Transactions on Networking, vol.28, no.1, pp.57-70, 2020. 10.1109/tnet.2019.2950908
[31] H.-D.-D. Nguyen, C.-D. Phung, S. Secci, B. Felix, and M. Nogueira, “Can MPTCP secure Internet communications from man-in-the-middle attacks?” Proc. 13th International Conference on Network and Service Management, Nov. 2017. 10.23919/cnsm.2017.8255970
[7] Y. Cao, L. Zeng, Q. Liu, G. Lei, M. Huang, and H. Wang,“Receiver-Assisted Partial-Reliable Multimedia Multipathing Over Multi-Homed Wireless Networks,” IEEE Access, vol.7, pp.177675-177689, 2019. 10.1109/access.2019.2958986
[19] B.Y.L. Kimura, D.C.S.F. Lima, L.A. Villas, and A.A.F. Loureiro, “Interpath Contention in MultiPath TCP Disjoint Paths,” IEEE/ACM Transactions on Networking, vol.27, no.4, pp.1387-1400, 2019. 10.1109/tnet.2019.2923955
[10] https://www.samsung.com/uk/support/mobile-devices/what-is-the-download-booster-and-how-do-i-enable-it-on-my-samsung-galaxy-alpha/, accessed Dec. 2020.
[5] Z. Liu, M. Dong, H. Zhou, X. Wang, Y. Ji, and Y. Tanaka, “Device-to-device assisted video frame recovery for picocell edge users in heterogeneous networks,” Proc. 2016 IEEE International Conference on Communications, May 2016. 10.1109/icc.2016.7511342
[14] Y. Zhang, H. Mekky, Z.-L. Zhang, F. Hao, S. Mukherjee, and T.V. Lakshman, “SAMPO: Online subflow association for multipath TCP with partial flow records,” Proc. IEEE INFOCOM, pp.1-9, April 2016. 10.1109/infocom.2016.7524600
[40] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The Macroscopic Behavior of the TCP Congestion Avoidance Algorithm,” ACM SIGCOMM Computer Communication Review, vol.27, no.3, pp.67-82, 1997. 10.1145/263932.264023
[24] Y. Cui, L. Wang, X. Wang, H. Wang, and Y. Wang, “FMTCP: A Fountain Code-Based Multipath Transmission Control Protocol,” IEEE/ACM Transactions on Networking, vol.23, no.2, pp.465-478, 2015. 10.1109/tnet.2014.2300140
[43] Google Code Project, Multipath-TCP: Implement multipath TCP on NS-2, http://code.google.com/p/multipath-tcp/, accessed: April 2020.
[29] Y. Cao, F. Song, Q. Liu, M. Huang, H. Wang, and I. You, “A LDDoS-Aware Energy-Efficient Multipathing Scheme for Mobile Cloud Computing Systems,” IEEE Access, vol.5, pp.21862-21872, 2017. 10.1109/access.2017.2731899
[26] K. Xue, J. Han, D. Ni, W. Wei, Y. Cai, Q. Xu, and P. Hong, “DPSAF: Forward Prediction Based Dynamic Packet Scheduling and Adjusting With Feedback for Multipath TCP in Lossy Heterogeneous Networks,” IEEE Transactions on Vehicular Technology, vol.67, no.2, pp.1521-1534, 2018. 10.1109/tvt.2017.2753398
[11] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP Extensions for Multipath Operation With Multiple Addresses,” IETF RFC 6824, 2013. 10.17487/rfc6824
[15] K. Xue, J. Han, H. Zhang, K. Chen, and P. Hong, “Migrating Unfairness Among Subflows in MPTCP With Network Coding for Wired-Wireless Networks,” IEEE Transactions on Vehicular Technology, vol.66, no.1, pp.798-809, 2017. 10.1109/tvt.2016.2543842
[28] M. Jadin, G. Tihon, O. Pereira, and O. Bonaventure, “Securing multipath TCP: Design & implementation,” Proc. IEEE INFOCOM, pp.1-9, May 2017. 10.1109/infocom.2017.8057011
[38] Y.-S. Lim, Y.-C. Chen, E.M. Nahum, D. Towsley, and K.-W. Lee, “Cross-layer path management in multi-path transport protocol for mobile devices,” Proc. IEEE INFOCOM, pp.1815-1823, 2014. 10.1109/infocom.2014.6848120
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
1
2
3
4
5
6
7
8
9
40
41
20
42
21
43
References_xml – reference: [26] K. Xue, J. Han, D. Ni, W. Wei, Y. Cai, Q. Xu, and P. Hong, “DPSAF: Forward Prediction Based Dynamic Packet Scheduling and Adjusting With Feedback for Multipath TCP in Lossy Heterogeneous Networks,” IEEE Transactions on Vehicular Technology, vol.67, no.2, pp.1521-1534, 2018. 10.1109/tvt.2017.2753398
– reference: [13] P. Ignaciuk and M. Morawski, “Discrete-Time Sliding-Mode Controllers for MPTCP Networks,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, pp.1-11, 2020. Early Access Article. 10.1109/tsmc.2019.2959630
– reference: [34] M.Z. Shafiq, F. Le, M. Srivatsa, and A.X. Liu, “Cross-path inference attacks on multipath TCP,” Proc. ACM Workshop on Hot Topics in Networks (HotNets), pp.1-7, Nov. 2013. 10.1145/2535771.2535782
– reference: [41] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP throughput: A Simple Model and Its Empirical Validation,” ACM SIGCOMM Computer Communication Review, vol.28, no.4, pp.303-314, 1998. 10.1145/285243.285291
– reference: [31] H.-D.-D. Nguyen, C.-D. Phung, S. Secci, B. Felix, and M. Nogueira, “Can MPTCP secure Internet communications from man-in-the-middle attacks?” Proc. 13th International Conference on Network and Service Management, Nov. 2017. 10.23919/cnsm.2017.8255970
– reference: [2] M.R. Palash and K. Chen, “MPWiFi: Synergizing MPTCP Based Simultaneous Multipath Access and WiFi Network Performance,” IEEE Transactions on Mobile Computing, vol.19, no.1, pp.142-158, 2020. 10.1109/tmc.2018.2889059
– reference: [7] Y. Cao, L. Zeng, Q. Liu, G. Lei, M. Huang, and H. Wang,“Receiver-Assisted Partial-Reliable Multimedia Multipathing Over Multi-Homed Wireless Networks,” IEEE Access, vol.7, pp.177675-177689, 2019. 10.1109/access.2019.2958986
– reference: [28] M. Jadin, G. Tihon, O. Pereira, and O. Bonaventure, “Securing multipath TCP: Design & implementation,” Proc. IEEE INFOCOM, pp.1-9, May 2017. 10.1109/infocom.2017.8057011
– reference: [30] G. Noh, H. Park, H. Roh, and W. Lee, “Secure and Lightweight Subflow Establishment of Multipath-TCP,” IEEE Access, vol.7, pp.177438-177448, 2019. 10.1109/access.2019.2957434
– reference: [10] https://www.samsung.com/uk/support/mobile-devices/what-is-the-download-booster-and-how-do-i-enable-it-on-my-samsung-galaxy-alpha/, accessed Dec. 2020.
– reference: [17] L. Li, K. Xu, T. Li, K. Zheng, C. Peng, D. Wang, X. Wang, M. Shen, and R. Mijumbi, “A measurement study on multi-path TCP with multiple cellular carriers on high speed rails,” Proc. ACM SIGCOMM, pp.161-175, 2018. 10.1145/3230543.3230556
– reference: [3] Z. Liu, G. Cheung, J. Chakareski, and Y. Ji, “Multiple Description Coding and Recovery of Free Viewpoint Video for Wireless Multi-Path Streaming,” IEEE Journal of Selected Topics in Signal Processing, vol.9, no.1, pp.151-164, 2015. 10.1109/jstsp.2014.2330332
– reference: [39] C.P. Fu and S.C. Liew, “TCP Veno: TCP Enhancement for Transmission over Wireless Access Networks,” IEEE Journal on Selected Areas in Communications, vol.21, no.2, pp.216-228, 2003. 10.1109/jsac.2002.807336
– reference: [18] S.K. Saha, S. Aggarwal, R. Pathak, D. Koutsonikolas, and J. Widmer, “MuSher: An Agile Multipath-TCP Scheduler for Dual-Band 802.11ad/ac Wireless LANs,” Proc. ACM MobiCom, pp.1-16, 2019. 10.1145/3300061.3345435
– reference: [21] M. Fukuyama, N. Yamai, S. Ohzahata, and N. Kitagawa, “Throughput Improvement of MPTCP by Selective Bicasting with Cross-Layer Control in Wireless Environment,” Proc. IEEE COMPSAC, pp.204-209, 2018. 10.1109/compsac.2018.10230
– reference: [29] Y. Cao, F. Song, Q. Liu, M. Huang, H. Wang, and I. You, “A LDDoS-Aware Energy-Efficient Multipathing Scheme for Mobile Cloud Computing Systems,” IEEE Access, vol.5, pp.21862-21872, 2017. 10.1109/access.2017.2731899
– reference: [36] Y. Cao, J. Chen, Q. Liu, G. Lei, H. Wang, and I. You, “Can Multipath TCP Be Robust to Cyber Attacks with Incomplete Information?” IEEE Access, vol.8, pp.165872-165883, 2020. 10.1109/access.2020.3021475
– reference: [5] Z. Liu, M. Dong, H. Zhou, X. Wang, Y. Ji, and Y. Tanaka, “Device-to-device assisted video frame recovery for picocell edge users in heterogeneous networks,” Proc. 2016 IEEE International Conference on Communications, May 2016. 10.1109/icc.2016.7511342
– reference: [1] G. Cerar, H. Yetgin, M. Mohorčič, and C. Fortuna, “Machine Learning for Wireless Link Quality Estimation: A Survey,” IEEE Communications Surveys & Tutorials, vol.23, no.2, pp.696-728, Jan. 2021. Early Access. 10.1109/comst.2021.3053615
– reference: [11] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP Extensions for Multipath Operation With Multiple Addresses,” IETF RFC 6824, 2013. 10.17487/rfc6824
– reference: [8] https://support.apple.com/lv-lv/HT201373, accessed Dec. 2020.
– reference: [27] B.Y.L. Kimura, D.C.S.F. Lima, and A.A.F. Loureiro, “Alternative Scheduling Decisions for Multipath TCP,” IEEE Communications Letters, vol.21, no.11, pp.2412-2415, 2017. 10.1109/lcomm.2017.2740918
– reference: [19] B.Y.L. Kimura, D.C.S.F. Lima, L.A. Villas, and A.A.F. Loureiro, “Interpath Contention in MultiPath TCP Disjoint Paths,” IEEE/ACM Transactions on Networking, vol.27, no.4, pp.1387-1400, 2019. 10.1109/tnet.2019.2923955
– reference: [32] A. Munir, Z. Qian, Z. Shafiq, A. Liu, and F. Le, “Multipath TCP traffic diversion attacks and countermeasures,” Proc. IEEE ICNP, Oct. 2017. 10.1109/icnp.2017.8117547
– reference: [43] Google Code Project, Multipath-TCP: Implement multipath TCP on NS-2, http://code.google.com/p/multipath-tcp/, accessed: April 2020.
– reference: [16] H. Sinky, B. Hamdaoui, and M. Guizani, “Seamless Handoffs in Wireless HetNets: Transport-Layer Challenges and Multi-Path TCP Solutions with Cross-Layer Awareness,” IEEE Network, vol.33, no.2, pp.195-201, 2019. 10.1109/mnet.2018.1800017
– reference: [40] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The Macroscopic Behavior of the TCP Congestion Avoidance Algorithm,” ACM SIGCOMM Computer Communication Review, vol.27, no.3, pp.67-82, 1997. 10.1145/263932.264023
– reference: [24] Y. Cui, L. Wang, X. Wang, H. Wang, and Y. Wang, “FMTCP: A Fountain Code-Based Multipath Transmission Control Protocol,” IEEE/ACM Transactions on Networking, vol.23, no.2, pp.465-478, 2015. 10.1109/tnet.2014.2300140
– reference: [15] K. Xue, J. Han, H. Zhang, K. Chen, and P. Hong, “Migrating Unfairness Among Subflows in MPTCP With Network Coding for Wired-Wireless Networks,” IEEE Transactions on Vehicular Technology, vol.66, no.1, pp.798-809, 2017. 10.1109/tvt.2016.2543842
– reference: [35] C.-D. Phung, B.F. Silva, M. Nogueira, and S. Secci, “MPTCP robustness against large-scale man-in-the-middle attacks,” Computer Networks, vol.164, pp.106896.1-106896.14, Dec. 2019. 10.1016/j.comnet.2019.106896
– reference: [6] Y. Cao, D. Yu, L. Zeng, Q. Liu, F. Wu, X. Gui, and M. Huang, “Towards Efficient Parallel Multipathing: A Receiver-Centric Cross-Layer Solution to Aid Multipath TCP,” Proc. IEEE ICPADS, pp.1-8, Dec. 2019. 10.1109/icpads47876.2019.00117
– reference: [33] B.-H. Oh and J. Lee, “Feedback-Based Path Failure Detection and Buffer Blocking Protection for MPTCP,” IEEE/ACM Transactions on Networking, vol.24, no.6, pp.3450-3461, 2016. 10.1109/tnet.2016.2527759
– reference: [14] Y. Zhang, H. Mekky, Z.-L. Zhang, F. Hao, S. Mukherjee, and T.V. Lakshman, “SAMPO: Online subflow association for multipath TCP with partial flow records,” Proc. IEEE INFOCOM, pp.1-9, April 2016. 10.1109/infocom.2016.7524600
– reference: [9] https://support.huawei.com/enterprise/en/doc/EDOC1000162776/e03f3b43/multipath-connectivity, accessed Jan. 2021.
– reference: [12] A. Ford, C. Raiciu, M. Handley, O. Bonaventure, and C. Paasch, “TCP Extensions for Multipath Operation with Multiple Addresses,” IETF RFC 8684, 2020. 10.17487/rfc8684
– reference: [22] J. Wu, B. Cheng, M. Wang, and J. Chen, “Quality-Aware Energy Optimization in Wireless Video Communication With Multipath TCP,” IEEE/ACM Transactions on Networking, vol.25, no.5, pp.2701-2718, 2017. 10.1109/tnet.2017.2701153
– reference: [25] B.Y.L. Kimura, D.C.C.F. Lima, and A.A.F. Loureiro, “Packet Scheduling in Multipath TCP: Fundamentals, Lessons, and Opportunities,” IEEE Systems Journal, vol.15, no.1, pp.1445-1457, 2020. Early Access Article. 10.1109/jsyst.2020.2965471
– reference: [4] F. Song, Z. Ai, Y. Zhou, I. You, K.-K.R. Choo, and H. Zhang, “Smart Collaborative Automation for Receive Buffer Control in Multipath Industrial Networks,” IEEE Transactions on Industrial Informatics, vol.16, no.2, pp.1385-1394, 2020. 10.1109/tii.2019.2950109
– reference: [20] J. Zhao, J. Liu, H. Wang, C. Xu, W. Gong, and C. Xu, “Measurement, Analysis, and Enhancement of Multipath TCP Energy Efficiency for Datacenters,” IEEE/ACM Transactions on Networking, vol.28, no.1, pp.57-70, 2020. 10.1109/tnet.2019.2950908
– reference: [37] Y. Cao, M. Collotta, S. Xu, L. Huang, X. Tao, and Z. Zhou, “Towards Adaptive Multipath Managing: A Lightweight Path Management Mechanism to Aid Multi-homed Mobile Computing Devices,” Applied Sciences, vol.10, pp.1-18, 2020. 10.3390/app10010380
– reference: [42] UC Berkeley, LBL, USC/ISI and Xerox Parc, NS-2 documentation and software, version 2.35.
– reference: [38] Y.-S. Lim, Y.-C. Chen, E.M. Nahum, D. Towsley, and K.-W. Lee, “Cross-layer path management in multi-path transport protocol for mobile devices,” Proc. IEEE INFOCOM, pp.1815-1823, 2014. 10.1109/infocom.2014.6848120
– reference: [23] J. Wu, R. Tan, and M. Wang, “Energy-Efficient Multipath TCP for Quality-Guaranteed Video over Heterogeneous Wireless Networks,” IEEE Transactions on Multimedia, vol.21, no.6, pp.1593-1608, 2019. 10.1109/tmm.2018.2879748
– ident: 43
– ident: 21
  doi: 10.1109/COMPSAC.2018.10230
– ident: 40
  doi: 10.1145/263932.264023
– ident: 15
  doi: 10.1109/TVT.2016.2543842
– ident: 39
  doi: 10.1109/JSAC.2002.807336
– ident: 26
  doi: 10.1109/TVT.2017.2753398
– ident: 10
– ident: 25
  doi: 10.1109/JSYST.2020.2965471
– ident: 28
  doi: 10.1109/INFOCOM.2017.8057011
– ident: 29
  doi: 10.1109/ACCESS.2017.2731899
– ident: 36
  doi: 10.1109/ACCESS.2020.3021475
– ident: 37
  doi: 10.3390/app10010380
– ident: 24
  doi: 10.1109/TNET.2014.2300140
– ident: 1
  doi: 10.1109/COMST.2021.3053615
– ident: 9
– ident: 30
  doi: 10.1109/ACCESS.2019.2957434
– ident: 31
  doi: 10.23919/CNSM.2017.8255970
– ident: 14
  doi: 10.1109/INFOCOM.2016.7524600
– ident: 42
– ident: 3
  doi: 10.1109/JSTSP.2014.2330332
– ident: 35
  doi: 10.1016/j.comnet.2019.106896
– ident: 7
  doi: 10.1109/ACCESS.2019.2958986
– ident: 27
  doi: 10.1109/LCOMM.2017.2740918
– ident: 20
  doi: 10.1109/TNET.2019.2950908
– ident: 11
  doi: 10.17487/rfc6824
– ident: 41
  doi: 10.1145/285243.285291
– ident: 2
  doi: 10.1109/TMC.2018.2889059
– ident: 33
  doi: 10.1109/TNET.2016.2527759
– ident: 38
  doi: 10.1109/INFOCOM.2014.6848120
– ident: 34
  doi: 10.1145/2535771.2535782
– ident: 5
  doi: 10.1109/ICC.2016.7511342
– ident: 18
  doi: 10.1145/3300061.3345435
– ident: 32
  doi: 10.1109/ICNP.2017.8117547
– ident: 6
  doi: 10.1109/ICPADS47876.2019.00117
– ident: 12
  doi: 10.17487/RFC8684
– ident: 13
  doi: 10.1109/TSMC.2019.2959630
– ident: 4
  doi: 10.1109/TII.2019.2950109
– ident: 23
  doi: 10.1109/TMM.2018.2879748
– ident: 8
– ident: 16
  doi: 10.1109/MNET.2018.1800017
– ident: 22
  doi: 10.1109/TNET.2017.2701153
– ident: 17
  doi: 10.1145/3230543.3230556
– ident: 19
  doi: 10.1109/TNET.2019.2923955
SSID ssj0018215
Score 2.293904
Snippet With multiple network interfaces are being widely equipped in modern mobile devices, the Multipath TCP (MPTCP) is increasingly becoming the preferred transport...
SourceID proquest
crossref
jstage
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1795
SubjectTerms Electronic devices
Learning
multipath management
multipath TCP
Multipath transmission
out-of-order data reception
Robustness
throughput prediction
Title MPTCP-meLearning: A Multi-Expert Learning-Based MPTCP Extension to Enhance Multipathing Robustness against Network Attacks
URI https://www.jstage.jst.go.jp/article/transinf/E104.D/11/E104.D_2021NGP0009/_article/-char/en
https://www.proquest.com/docview/2591399175
Volume E104.D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX IEICE Transactions on Information and Systems, 2021/11/01, Vol.E104.D(11), pp.1795-1804
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FwgEOPAoVgYL2wC1yiN8Ot5C6JNCWIFIpN8v2rkOrYiNiC9Sfxy9jZh_29iGgXCxrtbtyPF_m4Z35hpBXReBw5tjcijiSaof4l2Kpa_GI5c64GI9zhtXIh0fB7Nh7v_JXvd4vI2upqbNhfn5tXcn_SBXGQK5YJXsDybabwgDcg3zhChKG6z_J-HCxnC6sr1yRpK5lmbmoqbUEh3Gt-VPX1lswV2wgVgzinyJvHc8JqkFcfhFlA2KZaFCMCXlV1mxqoQbTdXoCPiSWBmMS12BS11iXb3q183g-jbHbhG49Ls4gFCdrrROeNwY5Op56TD4K_d-k5Vml7Cem8syF1JuTH12Rmhw74KdNO_R5Jpev1JD6cOHYqoLP-AJpBxZ4C1IZc6l_Q8-3bFfys2sFHUPIONwzwWgbKhc0im-YbzuS7YyvmAYfP67si1cB40N8oqN3C_QxO1Ooj_8vWcg2bxEjJtgn0bskxi63yG0HQhXUtR8-dSdZkSO7aOgfq8o3YZfX1z3LBffozilECOurboLwfZYPyX0VtNCJROAj0uPlNnmgG4JQZR-2yT2D3fIxOb8Mzzd0Qk1w0ovgpGI-bcFJ64oqcFITnLQDJ1XgpAqcVIHzCTnej5fTmaVafVi574xq1BRumLKRhw6vl-XgduZ-xOCF-ZGbYqt6u7DDjOWZGzlgKcKiCEfMy5wgZ4LCcYdslVXJnxIawCQsTmIhCz0ejNIiRNJND21_4QZZn7j6DSe54sHHdixnyZ-k2ydWu-qb5IH5y_wDKbx2ttIS3WyEdbIHIbi-M5a3s7H2ElRdn-xqCCRKAW0Sx0dO3zEEAM9u-HTPyd3uH7lLturvDX8BznWdvRTo_Q2BHtDe
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MPTCP-meLearning%3A+A+Multi-Expert+Learning-Based+MPTCP+Extension+to+Enhance+Multipathing+Robustness+against+Network+Attacks&rft.jtitle=IEICE+transactions+on+information+and+systems&rft.au=CAO%2C+Yuanlong&rft.au=JI%2C+Ruiwen&rft.au=JI%2C+Lejun&rft.au=SHAO%2C+Xun&rft.date=2021-11-01&rft.issn=0916-8532&rft.eissn=1745-1361&rft.volume=E104.D&rft.issue=11&rft.spage=1795&rft.epage=1804&rft_id=info:doi/10.1587%2Ftransinf.2021NGP0009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1587_transinf_2021NGP0009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-8532&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-8532&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-8532&client=summon