MPTCP-meLearning: A Multi-Expert Learning-Based MPTCP Extension to Enhance Multipathing Robustness against Network Attacks
With multiple network interfaces are being widely equipped in modern mobile devices, the Multipath TCP (MPTCP) is increasingly becoming the preferred transport technique since it can uses multiple network interfaces simultaneously to spread the data across multiple network paths for throughput impro...
Saved in:
Published in | IEICE Transactions on Information and Systems Vol. E104.D; no. 11; pp. 1795 - 1804 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
The Institute of Electronics, Information and Communication Engineers
01.11.2021
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With multiple network interfaces are being widely equipped in modern mobile devices, the Multipath TCP (MPTCP) is increasingly becoming the preferred transport technique since it can uses multiple network interfaces simultaneously to spread the data across multiple network paths for throughput improvement. However, the MPTCP performance can be seriously affected by the use of a poor-performing path in multipath transmission, especially in the presence of network attacks, in which an MPTCP path would abrupt and frequent become underperforming caused by attacks. In this paper, we propose a multi-expert Learning-based MPTCP variant, called MPTCP-meLearning, to enhance MPTCP performance robustness against network attacks. MPTCP-meLearning introduces a new kind of predictor to possibly achieve better quality prediction accuracy for each of multiple paths, by leveraging a group of representative formula-based predictors. MPTCP-meLearning includes a novel mechanism to intelligently manage multiple paths in order to possibly mitigate the out-of-order reception and receive buffer blocking problems. Experimental results demonstrate that MPTCP-meLearning can achieve better transmission performance and quality of service than the baseline MPTCP scheme. |
---|---|
AbstractList | With multiple network interfaces are being widely equipped in modern mobile devices, the Multipath TCP (MPTCP) is increasingly becoming the preferred transport technique since it can uses multiple network interfaces simultaneously to spread the data across multiple network paths for throughput improvement. However, the MPTCP performance can be seriously affected by the use of a poor-performing path in multipath transmission, especially in the presence of network attacks, in which an MPTCP path would abrupt and frequent become underperforming caused by attacks. In this paper, we propose a multi-expert Learning-based MPTCP variant, called MPTCP-meLearning, to enhance MPTCP performance robustness against network attacks. MPTCP-meLearning introduces a new kind of predictor to possibly achieve better quality prediction accuracy for each of multiple paths, by leveraging a group of representative formula-based predictors. MPTCP-meLearning includes a novel mechanism to intelligently manage multiple paths in order to possibly mitigate the out-of-order reception and receive buffer blocking problems. Experimental results demonstrate that MPTCP-meLearning can achieve better transmission performance and quality of service than the baseline MPTCP scheme. |
ArticleNumber | 2021NGP0009 |
Author | WANG, Hao CAO, Yuanlong JI, Ruiwen LEI, Gang JI, Lejun SHAO, Xun |
Author_xml | – sequence: 1 fullname: CAO, Yuanlong organization: School of Software, Jiangxi Normal University – sequence: 2 fullname: JI, Ruiwen organization: School of Software, Jiangxi Normal University – sequence: 3 fullname: JI, Lejun organization: School of Software, Jiangxi Normal University – sequence: 4 fullname: SHAO, Xun organization: School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology – sequence: 5 fullname: LEI, Gang organization: School of Software, Jiangxi Normal University – sequence: 6 fullname: WANG, Hao organization: School of Software, Jiangxi Normal University |
BookMark | eNqFkMFuGjEQhq2KSIWkb9CDpZw39XhtvMuN0G0SiRDUpmfL6_XCAvFSe1DTPH02IdCol55mpPm-Gc0_ID3fekfIZ2AXIDP1BYPxsfH1BWccZldzxlj-gfRBCZlAOoQe6bMchkkmU_6RDGJcMQYZB9knT7fz-8k8eXBTZ4Jv_GJEx_R2t8EmKR63LiA9DJJLE11FX3laPKLrTraeYksLvzTeur22NbjsaPq9LXcRvYuRmoVpfEQ6c_i7DWs6RjR2Hc_ISW020X16q6fk57fifnKdTO-ubibjaWIlZ5hkbpgqUzGhgHFR2gy4lVnV_SKz1EgBAmpQZWXLNOMlY6quFatEyYe2UlKI9JSc7_duQ_tr5yLqVbsLvjupucwhzXNQsqNGe8qGNsbgam0bNNi92KXbbDQw_ZK1PmSt32XdyeIfeRuaBxP-_E_7sddWEc3CHSUTsLEb91cqgAn9VQMcundbjrRdmqCdT58BJk2lOw |
CitedBy_id | crossref_primary_10_1109_TIFS_2023_3275768 crossref_primary_10_1109_TII_2022_3151093 crossref_primary_10_1155_2022_1237619 crossref_primary_10_3934_mbe_2022138 |
Cites_doi | 10.1109/COMPSAC.2018.10230 10.1145/263932.264023 10.1109/TVT.2016.2543842 10.1109/JSAC.2002.807336 10.1109/TVT.2017.2753398 10.1109/JSYST.2020.2965471 10.1109/INFOCOM.2017.8057011 10.1109/ACCESS.2017.2731899 10.1109/ACCESS.2020.3021475 10.3390/app10010380 10.1109/TNET.2014.2300140 10.1109/COMST.2021.3053615 10.1109/ACCESS.2019.2957434 10.23919/CNSM.2017.8255970 10.1109/INFOCOM.2016.7524600 10.1109/JSTSP.2014.2330332 10.1016/j.comnet.2019.106896 10.1109/ACCESS.2019.2958986 10.1109/LCOMM.2017.2740918 10.1109/TNET.2019.2950908 10.17487/rfc6824 10.1145/285243.285291 10.1109/TMC.2018.2889059 10.1109/TNET.2016.2527759 10.1109/INFOCOM.2014.6848120 10.1145/2535771.2535782 10.1109/ICC.2016.7511342 10.1145/3300061.3345435 10.1109/ICNP.2017.8117547 10.1109/ICPADS47876.2019.00117 10.17487/RFC8684 10.1109/TSMC.2019.2959630 10.1109/TII.2019.2950109 10.1109/TMM.2018.2879748 10.1109/MNET.2018.1800017 10.1109/TNET.2017.2701153 10.1145/3230543.3230556 10.1109/TNET.2019.2923955 |
ContentType | Journal Article |
Copyright | 2021 The Institute of Electronics, Information and Communication Engineers Copyright Japan Science and Technology Agency 2021 |
Copyright_xml | – notice: 2021 The Institute of Electronics, Information and Communication Engineers – notice: Copyright Japan Science and Technology Agency 2021 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1587/transinf.2021NGP0009 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1745-1361 |
EndPage | 1804 |
ExternalDocumentID | 10_1587_transinf_2021NGP0009 article_transinf_E104_D_11_E104_D_2021NGP0009_article_char_en |
GroupedDBID | -~X 5GY ABZEH ACGFS ADNWM AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS EJD F5P ICE JSF JSH KQ8 OK1 P2P RJT RZJ TN5 TQK ZKX AAYXX ABJNI CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c520t-8e637ad0471024bc812c58d853583a54141f17bdcb382b007ff70d4b26cd75443 |
ISSN | 0916-8532 |
IngestDate | Mon Jun 30 03:59:12 EDT 2025 Tue Jul 01 02:28:02 EDT 2025 Thu Apr 24 23:10:33 EDT 2025 Wed Apr 05 14:40:34 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c520t-8e637ad0471024bc812c58d853583a54141f17bdcb382b007ff70d4b26cd75443 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/transinf/E104.D/11/E104.D_2021NGP0009/_article/-char/en |
PQID | 2591399175 |
PQPubID | 2048497 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2591399175 crossref_citationtrail_10_1587_transinf_2021NGP0009 crossref_primary_10_1587_transinf_2021NGP0009 jstage_primary_article_transinf_E104_D_11_E104_D_2021NGP0009_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | IEICE Transactions on Information and Systems |
PublicationTitleAlternate | IEICE Trans. Inf. & Syst. |
PublicationYear | 2021 |
Publisher | The Institute of Electronics, Information and Communication Engineers Japan Science and Technology Agency |
Publisher_xml | – name: The Institute of Electronics, Information and Communication Engineers – name: Japan Science and Technology Agency |
References | [2] M.R. Palash and K. Chen, “MPWiFi: Synergizing MPTCP Based Simultaneous Multipath Access and WiFi Network Performance,” IEEE Transactions on Mobile Computing, vol.19, no.1, pp.142-158, 2020. 10.1109/tmc.2018.2889059 [39] C.P. Fu and S.C. Liew, “TCP Veno: TCP Enhancement for Transmission over Wireless Access Networks,” IEEE Journal on Selected Areas in Communications, vol.21, no.2, pp.216-228, 2003. 10.1109/jsac.2002.807336 [12] A. Ford, C. Raiciu, M. Handley, O. Bonaventure, and C. Paasch, “TCP Extensions for Multipath Operation with Multiple Addresses,” IETF RFC 8684, 2020. 10.17487/rfc8684 [9] https://support.huawei.com/enterprise/en/doc/EDOC1000162776/e03f3b43/multipath-connectivity, accessed Jan. 2021. [42] UC Berkeley, LBL, USC/ISI and Xerox Parc, NS-2 documentation and software, version 2.35. [35] C.-D. Phung, B.F. Silva, M. Nogueira, and S. Secci, “MPTCP robustness against large-scale man-in-the-middle attacks,” Computer Networks, vol.164, pp.106896.1-106896.14, Dec. 2019. 10.1016/j.comnet.2019.106896 [13] P. Ignaciuk and M. Morawski, “Discrete-Time Sliding-Mode Controllers for MPTCP Networks,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, pp.1-11, 2020. Early Access Article. 10.1109/tsmc.2019.2959630 [25] B.Y.L. Kimura, D.C.C.F. Lima, and A.A.F. Loureiro, “Packet Scheduling in Multipath TCP: Fundamentals, Lessons, and Opportunities,” IEEE Systems Journal, vol.15, no.1, pp.1445-1457, 2020. Early Access Article. 10.1109/jsyst.2020.2965471 [1] G. Cerar, H. Yetgin, M. Mohorčič, and C. Fortuna, “Machine Learning for Wireless Link Quality Estimation: A Survey,” IEEE Communications Surveys & Tutorials, vol.23, no.2, pp.696-728, Jan. 2021. Early Access. 10.1109/comst.2021.3053615 [4] F. Song, Z. Ai, Y. Zhou, I. You, K.-K.R. Choo, and H. Zhang, “Smart Collaborative Automation for Receive Buffer Control in Multipath Industrial Networks,” IEEE Transactions on Industrial Informatics, vol.16, no.2, pp.1385-1394, 2020. 10.1109/tii.2019.2950109 [17] L. Li, K. Xu, T. Li, K. Zheng, C. Peng, D. Wang, X. Wang, M. Shen, and R. Mijumbi, “A measurement study on multi-path TCP with multiple cellular carriers on high speed rails,” Proc. ACM SIGCOMM, pp.161-175, 2018. 10.1145/3230543.3230556 [18] S.K. Saha, S. Aggarwal, R. Pathak, D. Koutsonikolas, and J. Widmer, “MuSher: An Agile Multipath-TCP Scheduler for Dual-Band 802.11ad/ac Wireless LANs,” Proc. ACM MobiCom, pp.1-16, 2019. 10.1145/3300061.3345435 [6] Y. Cao, D. Yu, L. Zeng, Q. Liu, F. Wu, X. Gui, and M. Huang, “Towards Efficient Parallel Multipathing: A Receiver-Centric Cross-Layer Solution to Aid Multipath TCP,” Proc. IEEE ICPADS, pp.1-8, Dec. 2019. 10.1109/icpads47876.2019.00117 [16] H. Sinky, B. Hamdaoui, and M. Guizani, “Seamless Handoffs in Wireless HetNets: Transport-Layer Challenges and Multi-Path TCP Solutions with Cross-Layer Awareness,” IEEE Network, vol.33, no.2, pp.195-201, 2019. 10.1109/mnet.2018.1800017 [36] Y. Cao, J. Chen, Q. Liu, G. Lei, H. Wang, and I. You, “Can Multipath TCP Be Robust to Cyber Attacks with Incomplete Information?” IEEE Access, vol.8, pp.165872-165883, 2020. 10.1109/access.2020.3021475 [22] J. Wu, B. Cheng, M. Wang, and J. Chen, “Quality-Aware Energy Optimization in Wireless Video Communication With Multipath TCP,” IEEE/ACM Transactions on Networking, vol.25, no.5, pp.2701-2718, 2017. 10.1109/tnet.2017.2701153 [32] A. Munir, Z. Qian, Z. Shafiq, A. Liu, and F. Le, “Multipath TCP traffic diversion attacks and countermeasures,” Proc. IEEE ICNP, Oct. 2017. 10.1109/icnp.2017.8117547 [34] M.Z. Shafiq, F. Le, M. Srivatsa, and A.X. Liu, “Cross-path inference attacks on multipath TCP,” Proc. ACM Workshop on Hot Topics in Networks (HotNets), pp.1-7, Nov. 2013. 10.1145/2535771.2535782 [8] https://support.apple.com/lv-lv/HT201373, accessed Dec. 2020. [23] J. Wu, R. Tan, and M. Wang, “Energy-Efficient Multipath TCP for Quality-Guaranteed Video over Heterogeneous Wireless Networks,” IEEE Transactions on Multimedia, vol.21, no.6, pp.1593-1608, 2019. 10.1109/tmm.2018.2879748 [27] B.Y.L. Kimura, D.C.S.F. Lima, and A.A.F. Loureiro, “Alternative Scheduling Decisions for Multipath TCP,” IEEE Communications Letters, vol.21, no.11, pp.2412-2415, 2017. 10.1109/lcomm.2017.2740918 [33] B.-H. Oh and J. Lee, “Feedback-Based Path Failure Detection and Buffer Blocking Protection for MPTCP,” IEEE/ACM Transactions on Networking, vol.24, no.6, pp.3450-3461, 2016. 10.1109/tnet.2016.2527759 [37] Y. Cao, M. Collotta, S. Xu, L. Huang, X. Tao, and Z. Zhou, “Towards Adaptive Multipath Managing: A Lightweight Path Management Mechanism to Aid Multi-homed Mobile Computing Devices,” Applied Sciences, vol.10, pp.1-18, 2020. 10.3390/app10010380 [21] M. Fukuyama, N. Yamai, S. Ohzahata, and N. Kitagawa, “Throughput Improvement of MPTCP by Selective Bicasting with Cross-Layer Control in Wireless Environment,” Proc. IEEE COMPSAC, pp.204-209, 2018. 10.1109/compsac.2018.10230 [30] G. Noh, H. Park, H. Roh, and W. Lee, “Secure and Lightweight Subflow Establishment of Multipath-TCP,” IEEE Access, vol.7, pp.177438-177448, 2019. 10.1109/access.2019.2957434 [41] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP throughput: A Simple Model and Its Empirical Validation,” ACM SIGCOMM Computer Communication Review, vol.28, no.4, pp.303-314, 1998. 10.1145/285243.285291 [3] Z. Liu, G. Cheung, J. Chakareski, and Y. Ji, “Multiple Description Coding and Recovery of Free Viewpoint Video for Wireless Multi-Path Streaming,” IEEE Journal of Selected Topics in Signal Processing, vol.9, no.1, pp.151-164, 2015. 10.1109/jstsp.2014.2330332 [20] J. Zhao, J. Liu, H. Wang, C. Xu, W. Gong, and C. Xu, “Measurement, Analysis, and Enhancement of Multipath TCP Energy Efficiency for Datacenters,” IEEE/ACM Transactions on Networking, vol.28, no.1, pp.57-70, 2020. 10.1109/tnet.2019.2950908 [31] H.-D.-D. Nguyen, C.-D. Phung, S. Secci, B. Felix, and M. Nogueira, “Can MPTCP secure Internet communications from man-in-the-middle attacks?” Proc. 13th International Conference on Network and Service Management, Nov. 2017. 10.23919/cnsm.2017.8255970 [7] Y. Cao, L. Zeng, Q. Liu, G. Lei, M. Huang, and H. Wang,“Receiver-Assisted Partial-Reliable Multimedia Multipathing Over Multi-Homed Wireless Networks,” IEEE Access, vol.7, pp.177675-177689, 2019. 10.1109/access.2019.2958986 [19] B.Y.L. Kimura, D.C.S.F. Lima, L.A. Villas, and A.A.F. Loureiro, “Interpath Contention in MultiPath TCP Disjoint Paths,” IEEE/ACM Transactions on Networking, vol.27, no.4, pp.1387-1400, 2019. 10.1109/tnet.2019.2923955 [10] https://www.samsung.com/uk/support/mobile-devices/what-is-the-download-booster-and-how-do-i-enable-it-on-my-samsung-galaxy-alpha/, accessed Dec. 2020. [5] Z. Liu, M. Dong, H. Zhou, X. Wang, Y. Ji, and Y. Tanaka, “Device-to-device assisted video frame recovery for picocell edge users in heterogeneous networks,” Proc. 2016 IEEE International Conference on Communications, May 2016. 10.1109/icc.2016.7511342 [14] Y. Zhang, H. Mekky, Z.-L. Zhang, F. Hao, S. Mukherjee, and T.V. Lakshman, “SAMPO: Online subflow association for multipath TCP with partial flow records,” Proc. IEEE INFOCOM, pp.1-9, April 2016. 10.1109/infocom.2016.7524600 [40] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The Macroscopic Behavior of the TCP Congestion Avoidance Algorithm,” ACM SIGCOMM Computer Communication Review, vol.27, no.3, pp.67-82, 1997. 10.1145/263932.264023 [24] Y. Cui, L. Wang, X. Wang, H. Wang, and Y. Wang, “FMTCP: A Fountain Code-Based Multipath Transmission Control Protocol,” IEEE/ACM Transactions on Networking, vol.23, no.2, pp.465-478, 2015. 10.1109/tnet.2014.2300140 [43] Google Code Project, Multipath-TCP: Implement multipath TCP on NS-2, http://code.google.com/p/multipath-tcp/, accessed: April 2020. [29] Y. Cao, F. Song, Q. Liu, M. Huang, H. Wang, and I. You, “A LDDoS-Aware Energy-Efficient Multipathing Scheme for Mobile Cloud Computing Systems,” IEEE Access, vol.5, pp.21862-21872, 2017. 10.1109/access.2017.2731899 [26] K. Xue, J. Han, D. Ni, W. Wei, Y. Cai, Q. Xu, and P. Hong, “DPSAF: Forward Prediction Based Dynamic Packet Scheduling and Adjusting With Feedback for Multipath TCP in Lossy Heterogeneous Networks,” IEEE Transactions on Vehicular Technology, vol.67, no.2, pp.1521-1534, 2018. 10.1109/tvt.2017.2753398 [11] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP Extensions for Multipath Operation With Multiple Addresses,” IETF RFC 6824, 2013. 10.17487/rfc6824 [15] K. Xue, J. Han, H. Zhang, K. Chen, and P. Hong, “Migrating Unfairness Among Subflows in MPTCP With Network Coding for Wired-Wireless Networks,” IEEE Transactions on Vehicular Technology, vol.66, no.1, pp.798-809, 2017. 10.1109/tvt.2016.2543842 [28] M. Jadin, G. Tihon, O. Pereira, and O. Bonaventure, “Securing multipath TCP: Design & implementation,” Proc. IEEE INFOCOM, pp.1-9, May 2017. 10.1109/infocom.2017.8057011 [38] Y.-S. Lim, Y.-C. Chen, E.M. Nahum, D. Towsley, and K.-W. Lee, “Cross-layer path management in multi-path transport protocol for mobile devices,” Proc. IEEE INFOCOM, pp.1815-1823, 2014. 10.1109/infocom.2014.6848120 22 23 24 25 26 27 28 29 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 39 18 19 1 2 3 4 5 6 7 8 9 40 41 20 42 21 43 |
References_xml | – reference: [26] K. Xue, J. Han, D. Ni, W. Wei, Y. Cai, Q. Xu, and P. Hong, “DPSAF: Forward Prediction Based Dynamic Packet Scheduling and Adjusting With Feedback for Multipath TCP in Lossy Heterogeneous Networks,” IEEE Transactions on Vehicular Technology, vol.67, no.2, pp.1521-1534, 2018. 10.1109/tvt.2017.2753398 – reference: [13] P. Ignaciuk and M. Morawski, “Discrete-Time Sliding-Mode Controllers for MPTCP Networks,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, pp.1-11, 2020. Early Access Article. 10.1109/tsmc.2019.2959630 – reference: [34] M.Z. Shafiq, F. Le, M. Srivatsa, and A.X. Liu, “Cross-path inference attacks on multipath TCP,” Proc. ACM Workshop on Hot Topics in Networks (HotNets), pp.1-7, Nov. 2013. 10.1145/2535771.2535782 – reference: [41] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP throughput: A Simple Model and Its Empirical Validation,” ACM SIGCOMM Computer Communication Review, vol.28, no.4, pp.303-314, 1998. 10.1145/285243.285291 – reference: [31] H.-D.-D. Nguyen, C.-D. Phung, S. Secci, B. Felix, and M. Nogueira, “Can MPTCP secure Internet communications from man-in-the-middle attacks?” Proc. 13th International Conference on Network and Service Management, Nov. 2017. 10.23919/cnsm.2017.8255970 – reference: [2] M.R. Palash and K. Chen, “MPWiFi: Synergizing MPTCP Based Simultaneous Multipath Access and WiFi Network Performance,” IEEE Transactions on Mobile Computing, vol.19, no.1, pp.142-158, 2020. 10.1109/tmc.2018.2889059 – reference: [7] Y. Cao, L. Zeng, Q. Liu, G. Lei, M. Huang, and H. Wang,“Receiver-Assisted Partial-Reliable Multimedia Multipathing Over Multi-Homed Wireless Networks,” IEEE Access, vol.7, pp.177675-177689, 2019. 10.1109/access.2019.2958986 – reference: [28] M. Jadin, G. Tihon, O. Pereira, and O. Bonaventure, “Securing multipath TCP: Design & implementation,” Proc. IEEE INFOCOM, pp.1-9, May 2017. 10.1109/infocom.2017.8057011 – reference: [30] G. Noh, H. Park, H. Roh, and W. Lee, “Secure and Lightweight Subflow Establishment of Multipath-TCP,” IEEE Access, vol.7, pp.177438-177448, 2019. 10.1109/access.2019.2957434 – reference: [10] https://www.samsung.com/uk/support/mobile-devices/what-is-the-download-booster-and-how-do-i-enable-it-on-my-samsung-galaxy-alpha/, accessed Dec. 2020. – reference: [17] L. Li, K. Xu, T. Li, K. Zheng, C. Peng, D. Wang, X. Wang, M. Shen, and R. Mijumbi, “A measurement study on multi-path TCP with multiple cellular carriers on high speed rails,” Proc. ACM SIGCOMM, pp.161-175, 2018. 10.1145/3230543.3230556 – reference: [3] Z. Liu, G. Cheung, J. Chakareski, and Y. Ji, “Multiple Description Coding and Recovery of Free Viewpoint Video for Wireless Multi-Path Streaming,” IEEE Journal of Selected Topics in Signal Processing, vol.9, no.1, pp.151-164, 2015. 10.1109/jstsp.2014.2330332 – reference: [39] C.P. Fu and S.C. Liew, “TCP Veno: TCP Enhancement for Transmission over Wireless Access Networks,” IEEE Journal on Selected Areas in Communications, vol.21, no.2, pp.216-228, 2003. 10.1109/jsac.2002.807336 – reference: [18] S.K. Saha, S. Aggarwal, R. Pathak, D. Koutsonikolas, and J. Widmer, “MuSher: An Agile Multipath-TCP Scheduler for Dual-Band 802.11ad/ac Wireless LANs,” Proc. ACM MobiCom, pp.1-16, 2019. 10.1145/3300061.3345435 – reference: [21] M. Fukuyama, N. Yamai, S. Ohzahata, and N. Kitagawa, “Throughput Improvement of MPTCP by Selective Bicasting with Cross-Layer Control in Wireless Environment,” Proc. IEEE COMPSAC, pp.204-209, 2018. 10.1109/compsac.2018.10230 – reference: [29] Y. Cao, F. Song, Q. Liu, M. Huang, H. Wang, and I. You, “A LDDoS-Aware Energy-Efficient Multipathing Scheme for Mobile Cloud Computing Systems,” IEEE Access, vol.5, pp.21862-21872, 2017. 10.1109/access.2017.2731899 – reference: [36] Y. Cao, J. Chen, Q. Liu, G. Lei, H. Wang, and I. You, “Can Multipath TCP Be Robust to Cyber Attacks with Incomplete Information?” IEEE Access, vol.8, pp.165872-165883, 2020. 10.1109/access.2020.3021475 – reference: [5] Z. Liu, M. Dong, H. Zhou, X. Wang, Y. Ji, and Y. Tanaka, “Device-to-device assisted video frame recovery for picocell edge users in heterogeneous networks,” Proc. 2016 IEEE International Conference on Communications, May 2016. 10.1109/icc.2016.7511342 – reference: [1] G. Cerar, H. Yetgin, M. Mohorčič, and C. Fortuna, “Machine Learning for Wireless Link Quality Estimation: A Survey,” IEEE Communications Surveys & Tutorials, vol.23, no.2, pp.696-728, Jan. 2021. Early Access. 10.1109/comst.2021.3053615 – reference: [11] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP Extensions for Multipath Operation With Multiple Addresses,” IETF RFC 6824, 2013. 10.17487/rfc6824 – reference: [8] https://support.apple.com/lv-lv/HT201373, accessed Dec. 2020. – reference: [27] B.Y.L. Kimura, D.C.S.F. Lima, and A.A.F. Loureiro, “Alternative Scheduling Decisions for Multipath TCP,” IEEE Communications Letters, vol.21, no.11, pp.2412-2415, 2017. 10.1109/lcomm.2017.2740918 – reference: [19] B.Y.L. Kimura, D.C.S.F. Lima, L.A. Villas, and A.A.F. Loureiro, “Interpath Contention in MultiPath TCP Disjoint Paths,” IEEE/ACM Transactions on Networking, vol.27, no.4, pp.1387-1400, 2019. 10.1109/tnet.2019.2923955 – reference: [32] A. Munir, Z. Qian, Z. Shafiq, A. Liu, and F. Le, “Multipath TCP traffic diversion attacks and countermeasures,” Proc. IEEE ICNP, Oct. 2017. 10.1109/icnp.2017.8117547 – reference: [43] Google Code Project, Multipath-TCP: Implement multipath TCP on NS-2, http://code.google.com/p/multipath-tcp/, accessed: April 2020. – reference: [16] H. Sinky, B. Hamdaoui, and M. Guizani, “Seamless Handoffs in Wireless HetNets: Transport-Layer Challenges and Multi-Path TCP Solutions with Cross-Layer Awareness,” IEEE Network, vol.33, no.2, pp.195-201, 2019. 10.1109/mnet.2018.1800017 – reference: [40] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The Macroscopic Behavior of the TCP Congestion Avoidance Algorithm,” ACM SIGCOMM Computer Communication Review, vol.27, no.3, pp.67-82, 1997. 10.1145/263932.264023 – reference: [24] Y. Cui, L. Wang, X. Wang, H. Wang, and Y. Wang, “FMTCP: A Fountain Code-Based Multipath Transmission Control Protocol,” IEEE/ACM Transactions on Networking, vol.23, no.2, pp.465-478, 2015. 10.1109/tnet.2014.2300140 – reference: [15] K. Xue, J. Han, H. Zhang, K. Chen, and P. Hong, “Migrating Unfairness Among Subflows in MPTCP With Network Coding for Wired-Wireless Networks,” IEEE Transactions on Vehicular Technology, vol.66, no.1, pp.798-809, 2017. 10.1109/tvt.2016.2543842 – reference: [35] C.-D. Phung, B.F. Silva, M. Nogueira, and S. Secci, “MPTCP robustness against large-scale man-in-the-middle attacks,” Computer Networks, vol.164, pp.106896.1-106896.14, Dec. 2019. 10.1016/j.comnet.2019.106896 – reference: [6] Y. Cao, D. Yu, L. Zeng, Q. Liu, F. Wu, X. Gui, and M. Huang, “Towards Efficient Parallel Multipathing: A Receiver-Centric Cross-Layer Solution to Aid Multipath TCP,” Proc. IEEE ICPADS, pp.1-8, Dec. 2019. 10.1109/icpads47876.2019.00117 – reference: [33] B.-H. Oh and J. Lee, “Feedback-Based Path Failure Detection and Buffer Blocking Protection for MPTCP,” IEEE/ACM Transactions on Networking, vol.24, no.6, pp.3450-3461, 2016. 10.1109/tnet.2016.2527759 – reference: [14] Y. Zhang, H. Mekky, Z.-L. Zhang, F. Hao, S. Mukherjee, and T.V. Lakshman, “SAMPO: Online subflow association for multipath TCP with partial flow records,” Proc. IEEE INFOCOM, pp.1-9, April 2016. 10.1109/infocom.2016.7524600 – reference: [9] https://support.huawei.com/enterprise/en/doc/EDOC1000162776/e03f3b43/multipath-connectivity, accessed Jan. 2021. – reference: [12] A. Ford, C. Raiciu, M. Handley, O. Bonaventure, and C. Paasch, “TCP Extensions for Multipath Operation with Multiple Addresses,” IETF RFC 8684, 2020. 10.17487/rfc8684 – reference: [22] J. Wu, B. Cheng, M. Wang, and J. Chen, “Quality-Aware Energy Optimization in Wireless Video Communication With Multipath TCP,” IEEE/ACM Transactions on Networking, vol.25, no.5, pp.2701-2718, 2017. 10.1109/tnet.2017.2701153 – reference: [25] B.Y.L. Kimura, D.C.C.F. Lima, and A.A.F. Loureiro, “Packet Scheduling in Multipath TCP: Fundamentals, Lessons, and Opportunities,” IEEE Systems Journal, vol.15, no.1, pp.1445-1457, 2020. Early Access Article. 10.1109/jsyst.2020.2965471 – reference: [4] F. Song, Z. Ai, Y. Zhou, I. You, K.-K.R. Choo, and H. Zhang, “Smart Collaborative Automation for Receive Buffer Control in Multipath Industrial Networks,” IEEE Transactions on Industrial Informatics, vol.16, no.2, pp.1385-1394, 2020. 10.1109/tii.2019.2950109 – reference: [20] J. Zhao, J. Liu, H. Wang, C. Xu, W. Gong, and C. Xu, “Measurement, Analysis, and Enhancement of Multipath TCP Energy Efficiency for Datacenters,” IEEE/ACM Transactions on Networking, vol.28, no.1, pp.57-70, 2020. 10.1109/tnet.2019.2950908 – reference: [37] Y. Cao, M. Collotta, S. Xu, L. Huang, X. Tao, and Z. Zhou, “Towards Adaptive Multipath Managing: A Lightweight Path Management Mechanism to Aid Multi-homed Mobile Computing Devices,” Applied Sciences, vol.10, pp.1-18, 2020. 10.3390/app10010380 – reference: [42] UC Berkeley, LBL, USC/ISI and Xerox Parc, NS-2 documentation and software, version 2.35. – reference: [38] Y.-S. Lim, Y.-C. Chen, E.M. Nahum, D. Towsley, and K.-W. Lee, “Cross-layer path management in multi-path transport protocol for mobile devices,” Proc. IEEE INFOCOM, pp.1815-1823, 2014. 10.1109/infocom.2014.6848120 – reference: [23] J. Wu, R. Tan, and M. Wang, “Energy-Efficient Multipath TCP for Quality-Guaranteed Video over Heterogeneous Wireless Networks,” IEEE Transactions on Multimedia, vol.21, no.6, pp.1593-1608, 2019. 10.1109/tmm.2018.2879748 – ident: 43 – ident: 21 doi: 10.1109/COMPSAC.2018.10230 – ident: 40 doi: 10.1145/263932.264023 – ident: 15 doi: 10.1109/TVT.2016.2543842 – ident: 39 doi: 10.1109/JSAC.2002.807336 – ident: 26 doi: 10.1109/TVT.2017.2753398 – ident: 10 – ident: 25 doi: 10.1109/JSYST.2020.2965471 – ident: 28 doi: 10.1109/INFOCOM.2017.8057011 – ident: 29 doi: 10.1109/ACCESS.2017.2731899 – ident: 36 doi: 10.1109/ACCESS.2020.3021475 – ident: 37 doi: 10.3390/app10010380 – ident: 24 doi: 10.1109/TNET.2014.2300140 – ident: 1 doi: 10.1109/COMST.2021.3053615 – ident: 9 – ident: 30 doi: 10.1109/ACCESS.2019.2957434 – ident: 31 doi: 10.23919/CNSM.2017.8255970 – ident: 14 doi: 10.1109/INFOCOM.2016.7524600 – ident: 42 – ident: 3 doi: 10.1109/JSTSP.2014.2330332 – ident: 35 doi: 10.1016/j.comnet.2019.106896 – ident: 7 doi: 10.1109/ACCESS.2019.2958986 – ident: 27 doi: 10.1109/LCOMM.2017.2740918 – ident: 20 doi: 10.1109/TNET.2019.2950908 – ident: 11 doi: 10.17487/rfc6824 – ident: 41 doi: 10.1145/285243.285291 – ident: 2 doi: 10.1109/TMC.2018.2889059 – ident: 33 doi: 10.1109/TNET.2016.2527759 – ident: 38 doi: 10.1109/INFOCOM.2014.6848120 – ident: 34 doi: 10.1145/2535771.2535782 – ident: 5 doi: 10.1109/ICC.2016.7511342 – ident: 18 doi: 10.1145/3300061.3345435 – ident: 32 doi: 10.1109/ICNP.2017.8117547 – ident: 6 doi: 10.1109/ICPADS47876.2019.00117 – ident: 12 doi: 10.17487/RFC8684 – ident: 13 doi: 10.1109/TSMC.2019.2959630 – ident: 4 doi: 10.1109/TII.2019.2950109 – ident: 23 doi: 10.1109/TMM.2018.2879748 – ident: 8 – ident: 16 doi: 10.1109/MNET.2018.1800017 – ident: 22 doi: 10.1109/TNET.2017.2701153 – ident: 17 doi: 10.1145/3230543.3230556 – ident: 19 doi: 10.1109/TNET.2019.2923955 |
SSID | ssj0018215 |
Score | 2.293904 |
Snippet | With multiple network interfaces are being widely equipped in modern mobile devices, the Multipath TCP (MPTCP) is increasingly becoming the preferred transport... |
SourceID | proquest crossref jstage |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1795 |
SubjectTerms | Electronic devices Learning multipath management multipath TCP Multipath transmission out-of-order data reception Robustness throughput prediction |
Title | MPTCP-meLearning: A Multi-Expert Learning-Based MPTCP Extension to Enhance Multipathing Robustness against Network Attacks |
URI | https://www.jstage.jst.go.jp/article/transinf/E104.D/11/E104.D_2021NGP0009/_article/-char/en https://www.proquest.com/docview/2591399175 |
Volume | E104.D |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | IEICE Transactions on Information and Systems, 2021/11/01, Vol.E104.D(11), pp.1795-1804 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FwgEOPAoVgYL2wC1yiN8Ot5C6JNCWIFIpN8v2rkOrYiNiC9Sfxy9jZh_29iGgXCxrtbtyPF_m4Z35hpBXReBw5tjcijiSaof4l2Kpa_GI5c64GI9zhtXIh0fB7Nh7v_JXvd4vI2upqbNhfn5tXcn_SBXGQK5YJXsDybabwgDcg3zhChKG6z_J-HCxnC6sr1yRpK5lmbmoqbUEh3Gt-VPX1lswV2wgVgzinyJvHc8JqkFcfhFlA2KZaFCMCXlV1mxqoQbTdXoCPiSWBmMS12BS11iXb3q183g-jbHbhG49Ls4gFCdrrROeNwY5Op56TD4K_d-k5Vml7Cem8syF1JuTH12Rmhw74KdNO_R5Jpev1JD6cOHYqoLP-AJpBxZ4C1IZc6l_Q8-3bFfys2sFHUPIONwzwWgbKhc0im-YbzuS7YyvmAYfP67si1cB40N8oqN3C_QxO1Ooj_8vWcg2bxEjJtgn0bskxi63yG0HQhXUtR8-dSdZkSO7aOgfq8o3YZfX1z3LBffozilECOurboLwfZYPyX0VtNCJROAj0uPlNnmgG4JQZR-2yT2D3fIxOb8Mzzd0Qk1w0ovgpGI-bcFJ64oqcFITnLQDJ1XgpAqcVIHzCTnej5fTmaVafVi574xq1BRumLKRhw6vl-XgduZ-xOCF-ZGbYqt6u7DDjOWZGzlgKcKiCEfMy5wgZ4LCcYdslVXJnxIawCQsTmIhCz0ejNIiRNJND21_4QZZn7j6DSe54sHHdixnyZ-k2ydWu-qb5IH5y_wDKbx2ttIS3WyEdbIHIbi-M5a3s7H2ElRdn-xqCCRKAW0Sx0dO3zEEAM9u-HTPyd3uH7lLturvDX8BznWdvRTo_Q2BHtDe |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MPTCP-meLearning%3A+A+Multi-Expert+Learning-Based+MPTCP+Extension+to+Enhance+Multipathing+Robustness+against+Network+Attacks&rft.jtitle=IEICE+transactions+on+information+and+systems&rft.au=CAO%2C+Yuanlong&rft.au=JI%2C+Ruiwen&rft.au=JI%2C+Lejun&rft.au=SHAO%2C+Xun&rft.date=2021-11-01&rft.issn=0916-8532&rft.eissn=1745-1361&rft.volume=E104.D&rft.issue=11&rft.spage=1795&rft.epage=1804&rft_id=info:doi/10.1587%2Ftransinf.2021NGP0009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1587_transinf_2021NGP0009 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-8532&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-8532&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-8532&client=summon |