Glycomacropeptide for nutritional management of phenylketonuria: a randomized, controlled, crossover trial

To prevent cognitive impairment, phenylketonuria requires lifelong management of blood phenylalanine (Phe) concentration with a low-Phe diet. The diet restricts intake of Phe from natural proteins in combination with traditional amino acid medical foods (AA-MFs) or glycomacropeptide medical foods (G...

Full description

Saved in:
Bibliographic Details
Published inThe American journal of clinical nutrition Vol. 104; no. 2; pp. 334 - 345
Main Authors Ney, Denise M, Stroup, Bridget M, Clayton, Murray K, Murali, Sangita G, Rice, Gregory M, Rohr, Frances, Levy, Harvey L
Format Journal Article
LanguageEnglish
Published United States American Society for Clinical Nutrition, Inc 01.08.2016
American Society for Nutrition
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To prevent cognitive impairment, phenylketonuria requires lifelong management of blood phenylalanine (Phe) concentration with a low-Phe diet. The diet restricts intake of Phe from natural proteins in combination with traditional amino acid medical foods (AA-MFs) or glycomacropeptide medical foods (GMP-MFs) that contain primarily intact protein and a small amount of Phe. We investigated the efficacy and safety of a low-Phe diet combined with GMP-MFs or AA-MFs providing the same quantity of protein equivalents in free-living subjects with phenylketonuria. This 2-stage, randomized crossover trial included 30 early-treated phenylketonuria subjects (aged 15-49 y), 20 with classical and 10 with variant phenylketonuria. Subjects consumed, in random order for 3 wk each, their usual low-Phe diet combined with AA-MFs or GMP-MFs. The treatments were separated by a 3-wk washout with AA-MFs. Fasting plasma amino acid profiles, blood Phe concentrations, food records, and neuropsychological tests were obtained. The frequency of medical food intake was higher with GMP-MFs than with AA-MFs. Subjects rated GMP-MFs as more acceptable than AA-MFs and noted improved gastrointestinal symptoms and less hunger with GMP-MFs. ANCOVA indicated no significant mean ± SE increase in plasma Phe (62 ± 40 μmol/L, P = 0.136), despite a significant increase in Phe intake from GMP-MFs (88 ± 6 mg Phe/d, P = 0.026). AA-MFs decreased plasma Phe (-85 ± 40 μmol/L, P = 0.044) with stable Phe intake. Blood concentrations of Phe across time were not significantly different (AA-MFs = 444 ± 34 μmol/L, GMP-MFs = 497 ± 34 μmol/L), suggesting similar Phe control. Results of the Behavior Rating Inventory of Executive Function were not significantly different. GMP-MFs provide a safe and acceptable option for the nutritional management of phenylketonuria. The greater acceptability and fewer side effects noted with GMP-MFs than with AA-MFs may enhance dietary adherence for individuals with phenylketonuria. This trial was registered at www.clinicaltrials.gov as NCT01428258.
AbstractList BACKGROUNDTo prevent cognitive impairment, phenylketonuria requires lifelong management of blood phenylalanine (Phe) concentration with a low-Phe diet. The diet restricts intake of Phe from natural proteins in combination with traditional amino acid medical foods (AA-MFs) or glycomacropeptide medical foods (GMP-MFs) that contain primarily intact protein and a small amount of Phe.OBJECTIVEWe investigated the efficacy and safety of a low-Phe diet combined with GMP-MFs or AA-MFs providing the same quantity of protein equivalents in free-living subjects with phenylketonuria.DESIGNThis 2-stage, randomized crossover trial included 30 early-treated phenylketonuria subjects (aged 15-49 y), 20 with classical and 10 with variant phenylketonuria. Subjects consumed, in random order for 3 wk each, their usual low-Phe diet combined with AA-MFs or GMP-MFs. The treatments were separated by a 3-wk washout with AA-MFs. Fasting plasma amino acid profiles, blood Phe concentrations, food records, and neuropsychological tests were obtained.RESULTSThe frequency of medical food intake was higher with GMP-MFs than with AA-MFs. Subjects rated GMP-MFs as more acceptable than AA-MFs and noted improved gastrointestinal symptoms and less hunger with GMP-MFs. ANCOVA indicated no significant mean ± SE increase in plasma Phe (62 ± 40 μmol/L, P = 0.136), despite a significant increase in Phe intake from GMP-MFs (88 ± 6 mg Phe/d, P = 0.026). AA-MFs decreased plasma Phe (-85 ± 40 μmol/L, P = 0.044) with stable Phe intake. Blood concentrations of Phe across time were not significantly different (AA-MFs = 444 ± 34 μmol/L, GMP-MFs = 497 ± 34 μmol/L), suggesting similar Phe control. Results of the Behavior Rating Inventory of Executive Function were not significantly different.CONCLUSIONSGMP-MFs provide a safe and acceptable option for the nutritional management of phenylketonuria. The greater acceptability and fewer side effects noted with GMP-MFs than with AA-MFs may enhance dietary adherence for individuals with phenylketonuria. This trial was registered at www.clinicaltrials.gov as NCT01428258.
Background: To prevent cognitive impairment, phenylketonuria requires lifelong management of blood phenylalanine (Phe) concentration with a low-Phe diet. The diet restricts intake of Phe from natural proteins in combination with traditional amino acid medical foods (AA-MFs) or glycomacropeptide medical foods (GMP-MFs) that contain primarily intact protein and a small amount of Phe. Objective: We investigated the efficacy and safety of a low-Phe diet combined with GMP-MFs or AA-MFs providing the same quantity of protein equivalents in free-living subjects with phenylketonuria. Design: This 2-stage, randomized crossover trial included 30 early-treated phenylketonuria subjects (aged 15–49 y), 20 with classical and 10 with variant phenylketonuria. Subjects consumed, in random order for 3 wk each, their usual low-Phe diet combined with AA-MFs or GMP-MFs. The treatments were separated by a 3-wk washout with AA-MFs. Fasting plasma amino acid profiles, blood Phe concentrations, food records, and neuropsychological tests were obtained. Results: The frequency of medical food intake was higher with GMP-MFs than with AA-MFs. Subjects rated GMP-MFs as more acceptable than AA-MFs and noted improved gastrointestinal symptoms and less hunger with GMP-MFs. ANCOVA indicated no significant mean ± SE increase in plasma Phe (62 ± 40 μmol/L, P = 0.136), despite a significant increase in Phe intake from GMP-MFs (88 ± 6 mg Phe/d, P = 0.026). AA-MFs decreased plasma Phe (−85 ± 40 μmol/L, P = 0.044) with stable Phe intake. Blood concentrations of Phe across time were not significantly different (AA-MFs = 444 ± 34 μmol/L, GMP-MFs = 497 ± 34 μmol/L), suggesting similar Phe control. Results of the Behavior Rating Inventory of Executive Function were not significantly different. Conclusions: GMP-MFs provide a safe and acceptable option for the nutritional management of phenylketonuria. The greater acceptability and fewer side effects noted with GMP-MFs than with AA-MFs may enhance dietary adherence for individuals with phenylketonuria. This trial was registered at www.clinicaltrials.gov as NCT01428258.
Background: To prevent cognitive impairment, phenylketonuria requires lifelong management of blood phenylalanine (Phe) concentration with a low-Phe diet. The diet restricts intake of Phe from natural proteins in combination with traditional amino acid medical foods (AA-MFs) or glycomacropeptide medical foods (GMP-MFs) that contain primarily intact protein and a small amount of Phe. Objective: We investigated the efficacy and safety of a low-Phe diet combined with GMP-MFs or AA-MFs providing the same quantity of protein equivalents in free-living subjects with phenylketonuria. Design: This 2-stage, randomized crossover trial included 30 early-treated phenylketonuria subjects (aged 15–49 y), 20 with classical and 10 with variant phenylketonuria. Subjects consumed, in random order for 3 wk each, their usual low-Phe diet combined with AA-MFs or GMP-MFs. The treatments were separated by a 3-wk washout with AA-MFs. Fasting plasma amino acid profiles, blood Phe concentrations, food records, and neuropsychological tests were obtained. Results: The frequency of medical food intake was higher with GMP-MFs than with AA-MFs. Subjects rated GMP-MFs as more acceptable than AA-MFs and noted improved gastrointestinal symptoms and less hunger with GMP-MFs. ANCOVA indicated no significant mean ± SE increase in plasma Phe (62 ± 40 μmol/L, P = 0.136), despite a significant increase in Phe intake from GMP-MFs (88 ± 6 mg Phe/d, P = 0.026). AA-MFs decreased plasma Phe (−85 ± 40 μmol/L, P = 0.044) with stable Phe intake. Blood concentrations of Phe across time were not significantly different (AA-MFs = 444 ± 34 μmol/L, GMP-MFs = 497 ± 34 μmol/L), suggesting similar Phe control. Results of the Behavior Rating Inventory of Executive Function were not significantly different. Conclusions: GMP-MFs provide a safe and acceptable option for the nutritional management of phenylketonuria. The greater acceptability and fewer side effects noted with GMP-MFs than with AA-MFs may enhance dietary adherence for individuals with phenylketonuria. This trial was registered at www.clinicaltrials.gov as NCT01428258.
To prevent cognitive impairment, phenylketonuria requires lifelong management of blood phenylalanine (Phe) concentration with a low-Phe diet. The diet restricts intake of Phe from natural proteins in combination with traditional amino acid medical foods (AA-MFs) or glycomacropeptide medical foods (GMP-MFs) that contain primarily intact protein and a small amount of Phe. We investigated the efficacy and safety of a low-Phe diet combined with GMP-MFs or AA-MFs providing the same quantity of protein equivalents in free-living subjects with phenylketonuria. This 2-stage, randomized crossover trial included 30 early-treated phenylketonuria subjects (aged 15-49 y), 20 with classical and 10 with variant phenylketonuria. Subjects consumed, in random order for 3 wk each, their usual low-Phe diet combined with AA-MFs or GMP-MFs. The treatments were separated by a 3-wk washout with AA-MFs. Fasting plasma amino acid profiles, blood Phe concentrations, food records, and neuropsychological tests were obtained. The frequency of medical food intake was higher with GMP-MFs than with AA-MFs. Subjects rated GMP-MFs as more acceptable than AA-MFs and noted improved gastrointestinal symptoms and less hunger with GMP-MFs. ANCOVA indicated no significant mean ± SE increase in plasma Phe (62 ± 40 μmol/L, P = 0.136), despite a significant increase in Phe intake from GMP-MFs (88 ± 6 mg Phe/d, P = 0.026). AA-MFs decreased plasma Phe (-85 ± 40 μmol/L, P = 0.044) with stable Phe intake. Blood concentrations of Phe across time were not significantly different (AA-MFs = 444 ± 34 μmol/L, GMP-MFs = 497 ± 34 μmol/L), suggesting similar Phe control. Results of the Behavior Rating Inventory of Executive Function were not significantly different. GMP-MFs provide a safe and acceptable option for the nutritional management of phenylketonuria. The greater acceptability and fewer side effects noted with GMP-MFs than with AA-MFs may enhance dietary adherence for individuals with phenylketonuria. This trial was registered at www.clinicaltrials.gov as NCT01428258.
To prevent cognitive impairment, phenylketonuria requires lifelong management of blood phenylalanine (Phe) concentration with a low-Phe diet. The diet restricts intake of Phe from natural proteins in combination with traditional amino acid medical foods (AA-MFs) or glycomacropeptide medical foods (GMP-MFs) that contain primarily intact protein and a small amount of Phe. We investigated the efficacy and safety of a low-Phe diet combined with GMP-MFs or AA-MFs providing the same quantity of protein equivalents in free-living subjects with phenylketonuria. This 2-stage, randomized crossover trial included 30 early-treated phenylketonuria subjects (aged 15-49 y), 20 with classical and 10 with variant phenylketonuria. Subjects consumed, in random order for 3 wk each, their usual low-Phe diet combined with AA-MFs or GMP-MFs. The treatments were separated by a 3-wk washout with AA-MFs. Fasting plasma amino acid profiles, blood Phe concentrations, food records, and neuropsychological tests were obtained. The frequency of medical food intake was higher with GMP-MFs than with AA-MFs. Subjects rated GMP-MFs as more acceptable than AA-MFs and noted improved gastrointestinal symptoms and less hunger with GMP-MFs. ANCOVA indicated no significant mean ± SE increase in plasma Phe (62 ± 40 ...mol/L, P = 0.136), despite a significant increase in Phe intake from GMP-MFs (88 ± 6 mg Phe/d, P = 0.026). AA-MFs decreased plasma Phe (...85 ± 40 ...mol/L, P = 0.044) with stable Phe intake. Blood concentrations of Phe across time were not significantly different (AA-MFs = 444 ± 34 ...mol/L, GMP-MFs = 497 ± 34 ...mol/L), suggesting similar Phe control. Results of the Behavior Rating Inventory of Executive Function were not significantly different. GMP-MFs provide a safe and acceptable option for the nutritional management of phenylketonuria. The greater acceptability and fewer side effects noted with GMP-MFs than with AA-MFs may enhance dietary adherence for individuals with phenylketonuria. This trial was registered at www.clinicaltrials.gov as NCT01428258. (ProQuest: ... denotes formulae/symbols omitted.)
Author Stroup, Bridget M
Rice, Gregory M
Levy, Harvey L
Rohr, Frances
Ney, Denise M
Clayton, Murray K
Murali, Sangita G
Author_xml – sequence: 1
  givenname: Denise M
  surname: Ney
  fullname: Ney, Denise M
– sequence: 2
  givenname: Bridget M
  surname: Stroup
  fullname: Stroup, Bridget M
– sequence: 3
  givenname: Murray K
  surname: Clayton
  fullname: Clayton, Murray K
– sequence: 4
  givenname: Sangita G
  surname: Murali
  fullname: Murali, Sangita G
– sequence: 5
  givenname: Gregory M
  surname: Rice
  fullname: Rice, Gregory M
– sequence: 6
  givenname: Frances
  surname: Rohr
  fullname: Rohr, Frances
– sequence: 7
  givenname: Harvey L
  surname: Levy
  fullname: Levy, Harvey L
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27413125$$D View this record in MEDLINE/PubMed
BookMark eNqFks1rFTEUxYNU7Gt17U4G3LhwXvP94aIgRatQcKPrkMm70-aZScbMTOH515vXV4sWxFUC-d3DybnnBB2lnAChlwSvmeHizG19WhMi14QJatgTtCKG6ZZRrI7QCmNMW0OkOEYn07TFmFCu5TN0TBUnjFCxQtvLuPN5cL7kEcY5bKDpc2nSMpcwh5xcbAaX3DUMkOYm9814A2kXv8Oc01KCe9e4pri0yUP4CZu3jc9pLjnGu3vJ05RvoTRVzMXn6Gnv4gQv7s9T9O3jh68Xn9qrL5efL95ftV5QPLcKFHScaQad8FQTgaUQSnpQhnjeYcoc4T3XmOtOd1T2ijrdMc48db32wE7R-UF3XLoBNr4aLy7asYTBlZ3NLti_X1K4sdf51nIjaQ2rCry5Fyj5xwLTbIcweYjRJcjLZClRkglpjPkvSjTWsjoltKKvH6HbvJQa8J4iRFGluKrUqz_NP7j-vbEKnB2Au3QL9A8IwXbfCbvvhK2dsIdO1AnxaMKH2e2XW38f4j_nfgGAur1R
CitedBy_id crossref_primary_10_3390_nu16070956
crossref_primary_10_1080_21678707_2019_1633914
crossref_primary_10_1080_21678707_2017_1275565
crossref_primary_10_1111_jhn_13360
crossref_primary_10_1016_j_clnu_2022_02_010
crossref_primary_10_3390_nu11030520
crossref_primary_10_1093_ajcn_nqab400
crossref_primary_10_3390_nu15163580
crossref_primary_10_1016_j_copbio_2016_10_009
crossref_primary_10_1186_s13023_019_1011_y
crossref_primary_10_3390_nu11092252
crossref_primary_10_1016_j_tifs_2025_104896
crossref_primary_10_1016_j_jand_2017_05_020
crossref_primary_10_1155_2017_6859820
crossref_primary_10_1155_2017_1909101
crossref_primary_10_1016_j_gim_2022_12_005
crossref_primary_10_3389_fneur_2019_01040
crossref_primary_10_1590_1678_4685_gmb_2017_0235
crossref_primary_10_3168_jds_2018_14499
crossref_primary_10_1016_j_procbio_2021_03_004
crossref_primary_10_1080_87559129_2022_2122993
crossref_primary_10_1186_s13023_020_01541_2
crossref_primary_10_1002_jimd_12824
crossref_primary_10_5582_irdr_2021_01124
crossref_primary_10_1007_s13760_018_0972_2
crossref_primary_10_3390_children9091353
crossref_primary_10_14814_phy2_14251
crossref_primary_10_3390_nu14040807
crossref_primary_10_1016_j_dib_2017_06_004
crossref_primary_10_3389_fpsyt_2019_00561
crossref_primary_10_4254_wjh_v13_i10_1351
crossref_primary_10_1016_j_ymgme_2019_12_007
crossref_primary_10_1016_j_ymgmr_2017_10_004
crossref_primary_10_1016_j_ymgme_2024_108607
crossref_primary_10_1093_jn_nxx039
crossref_primary_10_1038_ejcn_2017_38
crossref_primary_10_1111_1471_0307_13030
crossref_primary_10_1016_j_foodchem_2021_130285
crossref_primary_10_1017_cts_2019_392
crossref_primary_10_1016_j_ymgme_2017_04_003
crossref_primary_10_3390_nu15163598
crossref_primary_10_1080_21678707_2018_1536541
crossref_primary_10_1016_j_ymgmr_2018_01_004
crossref_primary_10_1016_j_tjnut_2023_03_014
crossref_primary_10_1371_journal_pone_0183430
crossref_primary_10_3390_nu10091179
crossref_primary_10_1155_2018_6352919
crossref_primary_10_3390_nu11030598
crossref_primary_10_1002_jimd_12806
crossref_primary_10_1016_j_clnu_2023_03_007
crossref_primary_10_1016_j_foohum_2023_100208
crossref_primary_10_1111_jhn_12438
crossref_primary_10_3390_nu10111794
crossref_primary_10_3390_nu14194056
crossref_primary_10_1021_acsami_9b05431
crossref_primary_10_1186_s40246_022_00398_9
crossref_primary_10_3390_nu16121833
crossref_primary_10_1186_s13023_021_01721_8
crossref_primary_10_1080_1028415X_2018_1538196
Cites_doi 10.1203/00006450-197711100-00004
10.1152/ajpendo.2000.278.5.E877
10.1002/iub.1150
10.1001/jama.293.1.43
10.1038/gim.2013.157
10.3945/ajcn.2008.27280
10.1007/s10545-014-9735-2
10.1016/j.jand.2012.05.004
10.1016/j.ymgmr.2016.01.001
10.1038/gim.2013.179
10.1097/00005176-200301000-00007
10.1016/j.idairyj.2006.06.012
10.3945/ajcn.115.123281
10.1016/j.ymgme.2007.02.002
10.1152/ajpendo.00647.2011
10.1023/A:1025186217369
10.1515/IJAMH.2004.16.1.41
10.3945/ajcn.113.068775
10.1016/j.ymgme.2010.04.003
10.1373/clinchem.2003.022178
10.1093/ajcn/43.5.795
10.1016/j.ymgme.2013.03.020
10.1016/j.ymgme.2007.06.004
10.1093/jn/138.2.316
10.3945/ajcn.111.024471
10.1111/j.1365-2672.1996.tb04331.x
10.1152/ajpgi.00211.2015
10.1152/physrev.00018.2006
10.1017/S0007114500002233
10.1016/j.ymgme.2007.05.006
10.1016/0005-2736(90)90261-L
10.1093/jn/134.4.996S
10.1007/s10545-008-0952-4
10.1016/j.ymgme.2012.01.006
10.1371/journal.pone.0045165
10.3945/ajcn.115.113357
10.1007/s10545-012-9548-0
ContentType Journal Article
Copyright 2016 American Society for Nutrition.
Copyright American Society for Clinical Nutrition, Inc. Aug 1, 2016
2016 American Society for Nutrition 2016
Copyright_xml – notice: 2016 American Society for Nutrition.
– notice: Copyright American Society for Clinical Nutrition, Inc. Aug 1, 2016
– notice: 2016 American Society for Nutrition 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7T7
7TS
8FD
C1K
FR3
K9.
NAPCQ
P64
7X8
7S9
L.6
5PM
DOI 10.3945/ajcn.116.135293
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Physical Education Index
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
MEDLINE
Nursing & Allied Health Premium
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Diet & Clinical Nutrition
EISSN 1938-3207
EndPage 345
ExternalDocumentID PMC4962165
4149107341
27413125
10_3945_ajcn_116_135293
Genre Randomized Controlled Trial
Journal Article
Comparative Study
GroupedDBID ---
-ET
-~X
..I
.55
.GJ
0R~
1HT
23M
2FS
2WC
3O-
4.4
48X
53G
5GY
5RE
5VS
6J9
85S
8R4
8R5
AABZA
AACZT
AAGQS
AAHBH
AAIKC
AAJQQ
AALRI
AAMNW
AAPGJ
AAPQZ
AAUQX
AAUTI
AAVAP
AAWDT
AAWTL
AAXUO
AAYOK
AAYWO
AAYXX
ABBTP
ABDNZ
ABDPE
ABIME
ABJNI
ABLJU
ABOCM
ABPTD
ABWST
ACFRR
ACGFO
ACGFS
ACGOD
ACNCT
ACPRK
ACPVT
ACUFI
ACUTJ
ACVFH
ADBBV
ADCNI
ADGZP
ADHUB
ADMTO
ADRTK
ADUKH
ADVEK
ADVLN
AEGXH
AENEX
AETBJ
AEUPX
AFFDN
AFFNX
AFFZL
AFJKZ
AFOFC
AFPUW
AFRAH
AFXAL
AGCQF
AGINJ
AGKRT
AGNAY
AGQXC
AGUTN
AHMBA
AI.
AIAGR
AIGII
AITUG
AJEEA
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANFBD
APXCP
AQDSO
AQKUS
BAWUL
BAYMD
BKOMP
BTRTY
C1A
CDBKE
CITATION
DAKXR
DIK
E3Z
EBS
EIHJH
EJD
ENERS
EX3
F5P
F9R
FDB
FECEO
FLUFQ
FOEOM
FOTVD
FQBLK
FRP
GAUVT
GJXCC
GX1
H13
HF~
HZ~
IH2
J5H
KBUDW
KOP
KQ8
KSI
KSN
L7B
LPU
MBLQV
MHKGH
MV1
MVM
N4W
NEJ
NHB
NHCRO
NOMLY
NOYVH
NU-
NVLIB
O9-
ODMLO
OHT
OK1
OVD
P2P
P6G
PCD
PQQKQ
PRG
Q2X
R0Z
RHI
RNS
ROL
SJN
TCN
TEORI
TMA
TNT
TR2
TWZ
UBH
UHB
UKR
VH1
W2D
W8F
WH7
WHG
WOQ
WOW
X7M
XOL
XSW
YBU
YHG
YOJ
YQJ
YR5
YRY
YSK
YV5
YYQ
YZZ
ZCA
ZCG
ZGI
ZUP
ZXP
~KM
A8Z
ABSAR
BCRHZ
CGR
CUY
CVF
ECM
EIF
NPM
RHF
ROX
SV3
VXZ
Z5M
7QP
7T7
7TS
8FD
C1K
EFKBS
FR3
K9.
NAPCQ
P64
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c520t-7e7eb4383eb5c2815065576ce791c4b023a14f48048b8b26f72a8b343c2af8ce3
ISSN 0002-9165
1938-3207
IngestDate Thu Aug 21 18:06:31 EDT 2025
Thu Jul 10 17:59:57 EDT 2025
Fri Jul 11 09:50:52 EDT 2025
Fri Jul 25 03:29:35 EDT 2025
Wed Feb 19 02:24:43 EST 2025
Tue Jul 01 04:03:07 EDT 2025
Thu Apr 24 23:01:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords medical food
inborn errors of amino acid metabolism
phenylalanine
threonine
tyrosine
executive function
sapropterin dihydrochloride
Language English
License 2016 American Society for Nutrition.
This is a free access article, distributed under terms (http://www.nutrition.org/publications/guidelines-and-policies/license/) that permit unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c520t-7e7eb4383eb5c2815065576ce791c4b023a14f48048b8b26f72a8b343c2af8ce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
Supplemental Table 1 is available from the “Online Supporting Material” link in the online posting of the article and from the same link in the online table of contents at http://ajcn.nutrition.org.
Supported by Department of Health and Human Services grant R01 FD003711 from the Food and Drug Administration Office of Orphan Products Development (to DMN) and grant P30-HD-03352, and by the Clinical and Translational Science Award program, through the NIH National Center for Advancing Translational Sciences grant UL1TR000427. Cambrooke Therapeutics Inc. donated the glycomacropeptide medical foods used in this study. This is a free access article, distributed under terms (http://www.nutrition.org/publications/guidelines-and-policies/license/) that permit unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
ORCID 0000-0002-2260-5313
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC4962165
PMID 27413125
PQID 1811727747
PQPubID 41076
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4962165
proquest_miscellaneous_2176356999
proquest_miscellaneous_1808604812
proquest_journals_1811727747
pubmed_primary_27413125
crossref_primary_10_3945_ajcn_116_135293
crossref_citationtrail_10_3945_ajcn_116_135293
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-08-01
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda
PublicationTitle The American journal of clinical nutrition
PublicationTitleAlternate Am J Clin Nutr
PublicationYear 2016
Publisher American Society for Clinical Nutrition, Inc
American Society for Nutrition
Publisher_xml – name: American Society for Clinical Nutrition, Inc
– name: American Society for Nutrition
References Waisbren (10.3945/ajcn.116.135293_bib23) 2007; 92
Manz (10.3945/ajcn.116.135293_bib36) 1977; 11
Sawin (10.3945/ajcn.116.135293_bib38) 2015; 29
van Calcar (10.3945/ajcn.116.135293_bib20) 2009; 89
Hansen (10.3945/ajcn.116.135293_bib9) 2014; 37
Sawin (10.3945/ajcn.116.135293_bib15) 2015; 309
Macleod (10.3945/ajcn.116.135293_bib3) 2010; 68
Chiu (10.3945/ajcn.116.135293_bib40) 2016; 103
de Groot (10.3945/ajcn.116.135293_bib7) 2012; 105
Zhao (10.3945/ajcn.116.135293_bib28) 1986; 43
10.3945/ajcn.116.135293_bib34
Ney (10.3945/ajcn.116.135293_bib25) 2013
Rondanelli (10.3945/ajcn.116.135293_bib47) 2016; 103
Schindeler (10.3945/ajcn.116.135293_bib43) 2007; 91
Sanjurjo (10.3945/ajcn.116.135293_bib32) 2003; 36
Flydal (10.3945/ajcn.116.135293_bib1) 2013; 65
Etzel (10.3945/ajcn.116.135293_bib13) 2004; 134
Smith (10.3945/ajcn.116.135293_bib37) 1996; 81
de Oliveira (10.3945/ajcn.116.135293_bib39) 2016
Darling (10.3945/ajcn.116.135293_bib29) 2000; 278
Solverson (10.3945/ajcn.116.135293_bib8) 2012; 7
Thoma-Worringer (10.3945/ajcn.116.135293_bib17) 2006; 16
Chace (10.3945/ajcn.116.135293_bib31) 2003; 49
Yi (10.3945/ajcn.116.135293_bib22) 2015; 2
Lim (10.3945/ajcn.116.135293_bib14) 2007; 92
Guy (10.3945/ajcn.116.135293_bib24) 2004
van Calcar (10.3945/ajcn.116.135293_bib11) 2012; 112
Ney (10.3945/ajcn.116.135293_bib18) 2008; 138
Walter (10.3945/ajcn.116.135293_bib5) 2004; 16
Schuett (10.3945/ajcn.116.135293_bib26) 2002
MacDonald (10.3945/ajcn.116.135293_bib45) 2003; 26
Vockley (10.3945/ajcn.116.135293_bib2) 2014; 16
Churchward-Venne (10.3945/ajcn.116.135293_bib46) 2014; 99
Brody (10.3945/ajcn.116.135293_bib16) 2000; 84
Stroup (10.3945/ajcn.116.135293_bib30) 2016; 6
Antenor-Dorsey (10.3945/ajcn.116.135293_bib6) 2013; 109
Hennermann (10.3945/ajcn.116.135293_bib10) 2013; 36
Ney (10.3945/ajcn.116.135293_bib27) 2009; 32
Elango (10.3945/ajcn.116.135293_bib35) 2012; 96
Bröer (10.3945/ajcn.116.135293_bib42) 2008; 88
Lindegren (10.3945/ajcn.116.135293_bib33) 2012
Hidalgo (10.3945/ajcn.116.135293_bib44) 1990; 1028
Ney (10.3945/ajcn.116.135293_bib12) 2014; 17
Solverson (10.3945/ajcn.116.135293_bib19) 2012; 302
Dansinger (10.3945/ajcn.116.135293_bib41) 2005; 293
MacLeod (10.3945/ajcn.116.135293_bib21) 2010; 100
Singh (10.3945/ajcn.116.135293_bib4) 2014; 16
References_xml – year: 2002
  ident: 10.3945/ajcn.116.135293_bib26
– volume: 11
  start-page: 1084
  year: 1977
  ident: 10.3945/ajcn.116.135293_bib36
  article-title: Acid-base status in dietary treatment of phenylketonuria
  publication-title: Pediatr Res
  doi: 10.1203/00006450-197711100-00004
– year: 2016
  ident: 10.3945/ajcn.116.135293_bib39
  article-title: Phenylketonuria and gut microbiota: a controlled study based on next generation sequencing
  publication-title: PLoS One
– volume: 278
  start-page: E877
  year: 2000
  ident: 10.3945/ajcn.116.135293_bib29
  article-title: Threonine dehydrogenase is a minor degradative pathway of threonine catabolism in adult humans
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.2000.278.5.E877
– volume: 65
  start-page: 341
  year: 2013
  ident: 10.3945/ajcn.116.135293_bib1
  article-title: Phenylalanine hydroxylase: function, structure, and regulation
  publication-title: IUBMB Life
  doi: 10.1002/iub.1150
– volume: 293
  start-page: 43
  year: 2005
  ident: 10.3945/ajcn.116.135293_bib41
  article-title: Comparison of the Atkins, Ornish, Weight Watchers, and Zone diets for weight loss and heart disease risk reduction: a randomized trial
  publication-title: JAMA
  doi: 10.1001/jama.293.1.43
– volume: 16
  start-page: 188
  year: 2014
  ident: 10.3945/ajcn.116.135293_bib2
  article-title: Phenylalanine hydroxylase deficiency: diagnosis and management guideline
  publication-title: Genet Med
  doi: 10.1038/gim.2013.157
– volume: 89
  start-page: 1068
  year: 2009
  ident: 10.3945/ajcn.116.135293_bib20
  article-title: Improved nutritional management of phenylketonuria by using a diet containing glycomacropeptide compared with amino acids
  publication-title: Am J Clin Nutr
  doi: 10.3945/ajcn.2008.27280
– volume: 17
  start-page: 61
  year: 2014
  ident: 10.3945/ajcn.116.135293_bib12
  article-title: Advances in the nutritional and pharmacological management of phenylketonuria
  publication-title: Curr Opin Clin Nutr Metab Care
– year: 2012
  ident: 10.3945/ajcn.116.135293_bib33
– volume: 37
  start-page: 875
  year: 2014
  ident: 10.3945/ajcn.116.135293_bib9
  article-title: A systematic review of bone mineral density and fractures in phenylketonuria
  publication-title: J Inherit Metab Dis
  doi: 10.1007/s10545-014-9735-2
– volume: 112
  start-page: 1201
  year: 2012
  ident: 10.3945/ajcn.116.135293_bib11
  article-title: Food products made with glycomacropeptide, a low-phenylalanine whey protein, provide a new alternative to amino acid-based medical foods for nutrition management of phenylketonuria
  publication-title: J Acad Nutr Diet
  doi: 10.1016/j.jand.2012.05.004
– volume: 6
  start-page: 21
  year: 2016
  ident: 10.3945/ajcn.116.135293_bib30
  article-title: Clinical relevance of the discrepancy in phenylalanine concentrations analyzed using tandem mass spectrometry compared with ion-exchange chromatography in phenylketonuria
  publication-title: Mol Genet Metab Rep
  doi: 10.1016/j.ymgmr.2016.01.001
– volume: 16
  start-page: 121
  year: 2014
  ident: 10.3945/ajcn.116.135293_bib4
  article-title: Recommendations for the nutrition management of phenylalanine hydroxylase deficiency
  publication-title: Genet Med
  doi: 10.1038/gim.2013.179
– volume: 36
  start-page: 23
  year: 2003
  ident: 10.3945/ajcn.116.135293_bib32
  article-title: Dietary threonine reduces plasma phenylalanine levels in patients with hyperphenylalaninemia
  publication-title: J Pediatr Gastroenterol Nutr
  doi: 10.1097/00005176-200301000-00007
– volume: 16
  start-page: 1324
  year: 2006
  ident: 10.3945/ajcn.116.135293_bib17
  article-title: Health effects and technological features of caseinomacropeptide
  publication-title: Int Dairy J
  doi: 10.1016/j.idairyj.2006.06.012
– volume: 103
  start-page: 341
  year: 2016
  ident: 10.3945/ajcn.116.135293_bib40
  article-title: Comparison of the DASH (Dietary Approaches to Stop Hypertension) diet and a higher-fat DASH diet on blood pressure and lipids and lipoproteins: a randomized controlled trial
  publication-title: Am J Clin Nutr
  doi: 10.3945/ajcn.115.123281
– ident: 10.3945/ajcn.116.135293_bib34
– volume: 68
  start-page: 58
  year: 2010
  ident: 10.3945/ajcn.116.135293_bib3
  article-title: Nutritional management of phenylketonuria
  publication-title: Ann Nestle Eng
– volume: 91
  start-page: 48
  year: 2007
  ident: 10.3945/ajcn.116.135293_bib43
  article-title: The effects of large neutral amino acid supplements in PKU: an MRS and neuropsychological study
  publication-title: Mol Genet Metab
  doi: 10.1016/j.ymgme.2007.02.002
– year: 2013
  ident: 10.3945/ajcn.116.135293_bib25
  article-title: Glycomacropeptide medical foods for nutritional management of phenylketonuria and other metabolic disorders.
  publication-title: Glycomacropeptide medical foods
– volume: 302
  start-page: E885
  year: 2012
  ident: 10.3945/ajcn.116.135293_bib19
  article-title: Glycomacropeptide, a low-phenylalanine protein isolated from cheese whey, supports growth and attenuates metabolic stress in the murine model of phenylketonuria
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.00647.2011
– volume: 26
  start-page: 319
  year: 2003
  ident: 10.3945/ajcn.116.135293_bib45
  article-title: Administration of protein substitute and quality of control in phenylketonuria: a randomized study
  publication-title: J Inherit Metab Dis
  doi: 10.1023/A:1025186217369
– volume: 2
  start-page: CD004731
  year: 2015
  ident: 10.3945/ajcn.116.135293_bib22
  article-title: Protein substitute for children and adults with phenylketonuria
  publication-title: Cochrane Database Syst Rev
– volume: 29
  start-page: 745
  issue: Suppl 1
  year: 2015
  ident: 10.3945/ajcn.116.135293_bib38
  article-title: Metabolomics analysis of phenylketonuria and wild type mice fed casein, amino acid and glycomacropeptide diets
  publication-title: FASEB J
– volume: 16
  start-page: 41
  year: 2004
  ident: 10.3945/ajcn.116.135293_bib5
  article-title: Blood phenylalanine control in adolescents with phenylketonuria
  publication-title: Int J Adolesc Med Health
  doi: 10.1515/IJAMH.2004.16.1.41
– volume: 99
  start-page: 276
  year: 2014
  ident: 10.3945/ajcn.116.135293_bib46
  article-title: Leucine supplementation of a low-protein mixed macronutrient beverage enhances myofibrillar protein synthesis in young men: a double-blind, randomized trial
  publication-title: Am J Clin Nutr
  doi: 10.3945/ajcn.113.068775
– volume: 100
  start-page: 303
  year: 2010
  ident: 10.3945/ajcn.116.135293_bib21
  article-title: Breakfast with glycomacropeptide compared with amino acids suppresses plasma ghrelin levels in individuals with phenylketonuria
  publication-title: Mol Genet Metab
  doi: 10.1016/j.ymgme.2010.04.003
– volume: 49
  start-page: 1797
  year: 2003
  ident: 10.3945/ajcn.116.135293_bib31
  article-title: Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newborns
  publication-title: Clin Chem
  doi: 10.1373/clinchem.2003.022178
– volume: 43
  start-page: 795
  year: 1986
  ident: 10.3945/ajcn.116.135293_bib28
  article-title: Threonine kinetics at graded threonine intakes in young men
  publication-title: Am J Clin Nutr
  doi: 10.1093/ajcn/43.5.795
– volume: 109
  start-page: 125
  year: 2013
  ident: 10.3945/ajcn.116.135293_bib6
  article-title: White matter integrity and executive abilities in individuals with phenylketonuria
  publication-title: Mol Genet Metab
  doi: 10.1016/j.ymgme.2013.03.020
– volume: 92
  start-page: 176
  year: 2007
  ident: 10.3945/ajcn.116.135293_bib14
  article-title: Acceptable low-phenylalanine foods and beverages can be made with glycomacropeptide from cheese whey for individuals with PKU
  publication-title: Mol Genet Metab
  doi: 10.1016/j.ymgme.2007.06.004
– volume: 138
  start-page: 316
  year: 2008
  ident: 10.3945/ajcn.116.135293_bib18
  article-title: Dietary glycomacropeptide supports growth and reduces the concentrations of phenylalanine in plasma and brain in a murine model of phenylketonuria
  publication-title: J Nutr
  doi: 10.1093/jn/138.2.316
– volume: 96
  start-page: 759
  year: 2012
  ident: 10.3945/ajcn.116.135293_bib35
  article-title: Determination of the tolerable upper intake level of leucine in acute dietary studies in young men
  publication-title: Am J Clin Nutr
  doi: 10.3945/ajcn.111.024471
– volume: 81
  start-page: 288
  year: 1996
  ident: 10.3945/ajcn.116.135293_bib37
  article-title: Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism
  publication-title: J Appl Bacteriol
  doi: 10.1111/j.1365-2672.1996.tb04331.x
– volume: 309
  start-page: G590
  year: 2015
  ident: 10.3945/ajcn.116.135293_bib15
  article-title: Glycomacropeptide is a prebiotic that reduces Desulfovibrio bacteria, increases cecal short-chain fatty acids, and is anti-inflammatory in mice
  publication-title: Am J Physiol Gastrointest Liver Physiol
  doi: 10.1152/ajpgi.00211.2015
– volume: 88
  start-page: 249
  year: 2008
  ident: 10.3945/ajcn.116.135293_bib42
  article-title: Amino acid transport across mammalian intestinal and renal epithelia
  publication-title: Physiol Rev
  doi: 10.1152/physrev.00018.2006
– volume: 84
  start-page: S39
  issue: Suppl 1
  year: 2000
  ident: 10.3945/ajcn.116.135293_bib16
  article-title: Biological activities of bovine glycomacropeptide
  publication-title: Br J Nutr
  doi: 10.1017/S0007114500002233
– volume: 92
  start-page: 63
  year: 2007
  ident: 10.3945/ajcn.116.135293_bib23
  article-title: Phenylalanine blood levels and clinical outcomes in phenylketonuria: a systematic literature review and meta-analysis
  publication-title: Mol Genet Metab
  doi: 10.1016/j.ymgme.2007.05.006
– volume: 1028
  start-page: 25
  year: 1990
  ident: 10.3945/ajcn.116.135293_bib44
  article-title: Transport of a large neutral amino acid (phenylalanine) in a human intestinal epithelial cell line: Caco-2
  publication-title: Biochim Biophys Acta
  doi: 10.1016/0005-2736(90)90261-L
– volume: 134
  start-page: 996S
  year: 2004
  ident: 10.3945/ajcn.116.135293_bib13
  article-title: Manufacture and use of dairy protein fractions
  publication-title: J Nutr
  doi: 10.1093/jn/134.4.996S
– year: 2004
  ident: 10.3945/ajcn.116.135293_bib24
– volume: 32
  start-page: 32
  year: 2009
  ident: 10.3945/ajcn.116.135293_bib27
  article-title: Nutritional management of PKU with glycomacropeptide from cheese whey
  publication-title: J Inherit Metab Dis
  doi: 10.1007/s10545-008-0952-4
– volume: 105
  start-page: 566
  year: 2012
  ident: 10.3945/ajcn.116.135293_bib7
  article-title: Relationships between lumbar bone mineral density and biochemical parameters in phenylketonuria patients
  publication-title: Mol Genet Metab
  doi: 10.1016/j.ymgme.2012.01.006
– volume: 7
  start-page: e45165
  year: 2012
  ident: 10.3945/ajcn.116.135293_bib8
  article-title: Low bone strength is a manifestation of phenylketonuria in mice and is attenuated by a glycomacropeptide diet
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0045165
– volume: 103
  start-page: 830
  year: 2016
  ident: 10.3945/ajcn.116.135293_bib47
  article-title: Whey protein, amino acids, and vitamin D supplementation with physical activity increases fat-free mass and strength, functionality, and quality of life and decreases inflammation in sarcopenic elderly
  publication-title: Am J Clin Nutr
  doi: 10.3945/ajcn.115.113357
– volume: 36
  start-page: 747
  year: 2013
  ident: 10.3945/ajcn.116.135293_bib10
  article-title: Chronic kidney disease in adolescent and adult patients with phenylketonuria
  publication-title: J Inherit Metab Dis
  doi: 10.1007/s10545-012-9548-0
SSID ssj0012486
Score 2.456409
Snippet To prevent cognitive impairment, phenylketonuria requires lifelong management of blood phenylalanine (Phe) concentration with a low-Phe diet. The diet...
BACKGROUNDTo prevent cognitive impairment, phenylketonuria requires lifelong management of blood phenylalanine (Phe) concentration with a low-Phe diet. The...
Background: To prevent cognitive impairment, phenylketonuria requires lifelong management of blood phenylalanine (Phe) concentration with a low-Phe diet. The...
Background: To prevent cognitive impairment, phenylketonuria requires lifelong management of blood phenylalanine (Phe) concentration with a low-Phe diet. The...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 334
SubjectTerms Adolescent
Adult
adverse effects
amino acid composition
Amino acids
analysis of covariance
Analysis of Variance
blood
Caseins - chemistry
Caseins - therapeutic use
Clinical trials
cognitive disorders
Cross-Over Studies
Dietary Proteins - chemistry
Dietary Proteins - therapeutic use
Energy and Protein Metabolism
Feeding Behavior
Female
food intake
food records
Foods, Specialized
Gastrointestinal Diseases - etiology
Gastrointestinal Diseases - prevention & control
gastrointestinal system
Humans
Hunger
inventories
Male
medical foods
Metabolism
Middle Aged
Nutrition
Patient Satisfaction
Peptide Fragments - chemistry
Peptide Fragments - therapeutic use
Peptides
phenylalanine
Phenylalanine - administration & dosage
Phenylalanine - blood
phenylketonuria
Phenylketonurias - blood
Phenylketonurias - diet therapy
proteins
Young Adult
Title Glycomacropeptide for nutritional management of phenylketonuria: a randomized, controlled, crossover trial
URI https://www.ncbi.nlm.nih.gov/pubmed/27413125
https://www.proquest.com/docview/1811727747
https://www.proquest.com/docview/1808604812
https://www.proquest.com/docview/2176356999
https://pubmed.ncbi.nlm.nih.gov/PMC4962165
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELeqTUK8IDa-AgMZCSEkyFgc54s3VDYGrOUllfoW2amjdSvp1CUP3f_K_8JdnDhJyxDwEqWxmzi-X-w7--53hLwCJcLBDDi25ytu83AmbQlqhA1TgeN6uFPkYYDzaOyfTvjXqTcdDH52vJbKQh6mN7-NK_kfqcI1kCtGyf6DZM1N4QKcg3zhCBKG41_J-PNiDbcVmIULnVNmmsA7bwj2MTDEeLdUrs3nKl8vLhXoeyU0Twc6w2Q1W_6Y3-hVz9p1fVH_wjkUnTzfVtk9upps3Iak5F3-CRNqaZrRrjfrHXuVz69VL5fysrzSOMPgsaItGi7EunHvL1crsW4XZUdIFzLXa9qYcknUScLqBQzHN-5zRSdmAAezjpvqsGnruGnrlmtoNZaDcqv3xJUeviMYvl2m8-ia8V3nN66BzDqjtavXUTdnETfiSLghLtIcZhQfU4Mwncaxz9c9_p6cTM7Okvh4GvdLK_2Ag_EJxrWLtAq7DKyYyuL_8s1scjFeJSI1L6KZp_Dp7zee3VeatiyhTYfejoYU3yf3atOGftQ43SMDle8T6xP0Nn1Nm66mpqv3yZ1R7djxgFxsQZmCgGgHyrSFMl1mdAPKH6igLZDf0RbGcN6AmFYgfkgmJ8fx8NSu04DYqceOCjtQgZLIqKukl7IQKTE9sJJTFUROyiUoncLhGQ9hLpKhZH4WMBFKl7spE1mYKvcR2cmXuXpCqJd6MxE4GUNSJxl6EVPY8aAGO0oEMrPIYdPPSVpz5GOqlkUCtjIKJkHBgNXsJ1owFnlj_nCl6WFur3rQCC6pv8rrxME4b8AGDyzy0hTDCI_bdiJXyxLrHIU-0jqx2-swpyKaBGvPIo81Fkx7kKDKBTvGIkEPJaYCMsz3S_L5ecU0zyOfQf88_XPTn5G77Xd9QHaKVameg6peyBcV4H8BKm7vRQ
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glycomacropeptide+for+nutritional+management+of+phenylketonuria%3A+a+randomized%2C+controlled%2C+crossover+trial&rft.jtitle=The+American+journal+of+clinical+nutrition&rft.au=Ney%2C+Denise+M&rft.au=Stroup%2C+Bridget+M&rft.au=Clayton%2C+Murray+K&rft.au=Murali%2C+Sangita+G&rft.date=2016-08-01&rft.pub=American+Society+for+Clinical+Nutrition%2C+Inc&rft.issn=0002-9165&rft.eissn=1938-3207&rft.volume=104&rft.issue=2&rft.spage=334&rft_id=info:doi/10.3945%2Fajcn.116.135293&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4149107341
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9165&client=summon