Peptidomic discovery of short open reading frame–encoded peptides in human cells
The human genome contains stretches of DNA sequence with unknown function. Peptidomics coupled to RNA-Seq now reveals a class of short open reading frames in human genomes that are translated into small peptides. The complete extent to which the human genome is translated into polypeptides is of fun...
Saved in:
Published in | Nature chemical biology Vol. 9; no. 1; pp. 59 - 64 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.01.2013
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The human genome contains stretches of DNA sequence with unknown function. Peptidomics coupled to RNA-Seq now reveals a class of short open reading frames in human genomes that are translated into small peptides.
The complete extent to which the human genome is translated into polypeptides is of fundamental importance. We report a peptidomic strategy to detect short open reading frame (sORF)-encoded polypeptides (SEPs) in human cells. We identify 90 SEPs, 86 of which are previously uncharacterized, which is the largest number of human SEPs ever reported. SEP abundances range from 10–1,000 molecules per cell, identical to abundances of known proteins. SEPs arise from sORFs in noncoding RNAs as well as multicistronic mRNAs, and many SEPs initiate with non-AUG start codons, indicating that noncanonical translation may be more widespread in mammals than previously thought. In addition, coding sORFs are present in a small fraction (8 out of 1,866) of long intergenic noncoding RNAs. Together, these results provide strong evidence that the human proteome is more complex than previously appreciated. |
---|---|
AbstractList | The complete extent to which the human genome is translated into polypeptides is of fundamental importance. We report a peptidomic strategy to detect short open reading frame (sORF)-encoded polypeptides (SEPs) in human cells. We identify 90 SEPs, 86 of which are previously uncharacterized, which is the largest number of human SEPs ever reported. SEP abundances range from 10-1,000 molecules per cell, identical to abundances of known proteins. SEPs arise from sORFs in noncoding RNAs as well as multicistronic mRNAs, and many SEPs initiate with non-AUG start codons, indicating that noncanonical translation may be more widespread in mammals than previously thought. In addition, coding sORFs are present in a small fraction (8 out of 1,866) of long intergenic noncoding RNAs. Together, these results provide strong evidence that the human proteome is more complex than previously appreciated. The complete extent to which the human genome is translated into polypeptides is of fundamental importance. We report a peptidomic strategy to detect short open reading frame (sORF)-encoded polypeptides (SEPs) in human cells. We identify 90 SEPs, 86 of which are previously uncharacterized, which is the largest number of human SEPs ever reported. SEP abundances range from 10-1,000 molecules per cell, identical to abundances of known proteins. SEPs arise from sORFs in noncoding RNAs as well as multicistronic mRNAs, and many SEPs initiate with non-AUG start codons, indicating that noncanonical translation may be more widespread in mammals than previously thought. In addition, coding sORFs are present in a small fraction (8 out of 1,866) of long intergenic noncoding RNAs. Together, these results provide strong evidence that the human proteome is more complex than previously appreciated. [PUBLICATION ABSTRACT] The amount of the transcriptome that is translated into polypeptides is of fundamental importance. We developed a peptidomic strategy to detect short ORF (sORF)-encoded polypeptides (SEPs) in human cells. We identified 90 SEPs, 86 of which are novel, the largest number of human SEPs ever reported. SEP abundances range from 10-1000 molecules per cell, identical to known proteins. SEPs arise from sORFs in non-coding RNAs as well as multi-cistronic mRNAs, and many SEPs initiate with non-AUG start codons, indicating that non-canonical translation may be more widespread in mammals than previously thought. In addition, coding sORFs are present in a small fraction (8/1866) of long intergenic non-coding RNAs (lincRNAs). Together, these results provide the strongest evidence to date that the human proteome is more complex than previously appreciated. The complete extent to which the human genome is translated into polypeptides is of fundamental importance. We report a peptidomic strategy to detect short open reading frame (sORF)-encoded polypeptides (SEPs) in human cells. We identify 90 SEPs, 86 of which are previously uncharacterized, which is the largest number of human SEPs ever reported. SEP abundances range from 10-1,000 molecules per cell, identical to abundances of known proteins. SEPs arise from sORFs in noncoding RNAs as well as multicistronic mRNAs, and many SEPs initiate with non-AUG start codons, indicating that noncanonical translation may be more widespread in mammals than previously thought. In addition, coding sORFs are present in a small fraction (8 out of 1,866) of long intergenic noncoding RNAs. Together, these results provide strong evidence that the human proteome is more complex than previously appreciated.The complete extent to which the human genome is translated into polypeptides is of fundamental importance. We report a peptidomic strategy to detect short open reading frame (sORF)-encoded polypeptides (SEPs) in human cells. We identify 90 SEPs, 86 of which are previously uncharacterized, which is the largest number of human SEPs ever reported. SEP abundances range from 10-1,000 molecules per cell, identical to abundances of known proteins. SEPs arise from sORFs in noncoding RNAs as well as multicistronic mRNAs, and many SEPs initiate with non-AUG start codons, indicating that noncanonical translation may be more widespread in mammals than previously thought. In addition, coding sORFs are present in a small fraction (8 out of 1,866) of long intergenic noncoding RNAs. Together, these results provide strong evidence that the human proteome is more complex than previously appreciated. The human genome contains stretches of DNA sequence with unknown function. Peptidomics coupled to RNA-Seq now reveals a class of short open reading frames in human genomes that are translated into small peptides. The complete extent to which the human genome is translated into polypeptides is of fundamental importance. We report a peptidomic strategy to detect short open reading frame (sORF)-encoded polypeptides (SEPs) in human cells. We identify 90 SEPs, 86 of which are previously uncharacterized, which is the largest number of human SEPs ever reported. SEP abundances range from 10–1,000 molecules per cell, identical to abundances of known proteins. SEPs arise from sORFs in noncoding RNAs as well as multicistronic mRNAs, and many SEPs initiate with non-AUG start codons, indicating that noncanonical translation may be more widespread in mammals than previously thought. In addition, coding sORFs are present in a small fraction (8 out of 1,866) of long intergenic noncoding RNAs. Together, these results provide strong evidence that the human proteome is more complex than previously appreciated. |
Author | Saghatelian, Alan Levin, Joshua Z Ma, Jiao Mitchell, Andrew J Schwaid, Adam G Cabili, Moran N Rinn, John L Slavoff, Sarah A Karger, Amir D Budnik, Bogdan A |
AuthorAffiliation | 4 Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA 8 Center of Systems Biology, Mass Spectrometry and Proteomics Lab, Faculty of Arts and Sciences, Harvard University, 52 Oxford St, Northwest Labs, B243.20, Cambridge, Massachusetts 02138, USA 7 Research Computing, Division of Science, Faculty of Arts and Sciences, Harvard University, 38 Oxford St, Room 211A, Cambridge, Massachusetts 02138, USA 1 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA 5 Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA 3 Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA 6 Genome Sequencing & Analysis Program, Broad Institute of MIT and Harvard, 320 Charles Street, Cambridge, Massachusetts 02141, USA 2 Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA |
AuthorAffiliation_xml | – name: 5 Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA – name: 2 Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA – name: 4 Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA – name: 6 Genome Sequencing & Analysis Program, Broad Institute of MIT and Harvard, 320 Charles Street, Cambridge, Massachusetts 02141, USA – name: 7 Research Computing, Division of Science, Faculty of Arts and Sciences, Harvard University, 38 Oxford St, Room 211A, Cambridge, Massachusetts 02138, USA – name: 1 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA – name: 3 Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA – name: 8 Center of Systems Biology, Mass Spectrometry and Proteomics Lab, Faculty of Arts and Sciences, Harvard University, 52 Oxford St, Northwest Labs, B243.20, Cambridge, Massachusetts 02138, USA |
Author_xml | – sequence: 1 givenname: Sarah A surname: Slavoff fullname: Slavoff, Sarah A organization: Department of Chemistry and Chemical Biology, Harvard University – sequence: 2 givenname: Andrew J surname: Mitchell fullname: Mitchell, Andrew J organization: Department of Molecular and Cellular Biology, Harvard University – sequence: 3 givenname: Adam G surname: Schwaid fullname: Schwaid, Adam G organization: Department of Chemistry and Chemical Biology, Harvard University – sequence: 4 givenname: Moran N surname: Cabili fullname: Cabili, Moran N organization: Broad Institute of MIT and Harvard, Department of Systems Biology, Harvard Medical School, Department of Stem Cell and Regenerative Biology, Harvard University – sequence: 5 givenname: Jiao surname: Ma fullname: Ma, Jiao organization: Department of Chemistry and Chemical Biology, Harvard University – sequence: 6 givenname: Joshua Z surname: Levin fullname: Levin, Joshua Z organization: Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard – sequence: 7 givenname: Amir D surname: Karger fullname: Karger, Amir D organization: Division of Science, Research Computing, Faculty of Arts and Sciences, Harvard University – sequence: 8 givenname: Bogdan A surname: Budnik fullname: Budnik, Bogdan A organization: Center of Systems Biology, Mass Spectrometry and Proteomics Laboratory, Faculty of Arts and Sciences, Harvard University – sequence: 9 givenname: John L surname: Rinn fullname: Rinn, John L organization: Broad Institute of MIT and Harvard, Department of Stem Cell and Regenerative Biology, Harvard University – sequence: 10 givenname: Alan surname: Saghatelian fullname: Saghatelian, Alan email: saghatelian@chemistry.harvard.edu organization: Department of Chemistry and Chemical Biology, Harvard University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23160002$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1q3DAUhUVJaX7aZbdFkE02nl5ZI9neBEJIfyDQEtK1kOWrGQVbciU7kF3eoW_YJ6mmkwxpSFe6oO8c7rnnkOz54JGQ9wwWDHj90Zs1Dq0LC8ZKeEUOmBBlsVzKZm83C9gnhyndAHApWf2G7JecSQAoD8jVdxwn14XBGdq5ZMItxjsaLE3rECcaRvQ0ou6cX1Eb9YC_73-hN6HDjo5_pZio83Q9D9pTg32f3pLXVvcJ3z28R-THp4vr8y_F5bfPX8_PLgsjSpiKSlvWGoZVyysQuq6BSYOythJsp61uRa2FhkpX2Fhe21ZX0DVgkSFmA-BH5HTrO87tgJ1BP0XdqzG6Qcc7FbRT__54t1arcKu4LIWsmmxw8mAQw88Z06SGfIEcQXsMc1Ks5A0IUUmR0eNn6E2Yo8_xMlUvOQfRLDP14elGu1Uez52BYguYGFKKaHcIA7WpUz3WqTZ1Zp4_442b9OTCJpDr_6tabFUpu_sVxifLvij4A3V1uGY |
CitedBy_id | crossref_primary_10_1038_s41559_018_0506_6 crossref_primary_10_1007_s13361_019_02270_y crossref_primary_10_1111_mmi_14143 crossref_primary_10_1016_j_mib_2017_09_010 crossref_primary_10_1080_07391102_2024_2335555 crossref_primary_10_1186_s12943_020_1147_3 crossref_primary_10_1073_pnas_1309956110 crossref_primary_10_1039_C8MO00283E crossref_primary_10_1111_cmi_13119 crossref_primary_10_7868_S013234231706001X crossref_primary_10_1002_pmic_202300105 crossref_primary_10_1134_S106816201804009X crossref_primary_10_1186_1741_7007_12_14 crossref_primary_10_3390_cancers13133115 crossref_primary_10_1093_bioinformatics_btac821 crossref_primary_10_1016_j_tibs_2016_05_003 crossref_primary_10_1093_bib_bbae510 crossref_primary_10_1128_mBio_02819_18 crossref_primary_10_1016_j_jprot_2018_02_008 crossref_primary_10_1134_S106816201706005X crossref_primary_10_1080_15476286_2015_1094601 crossref_primary_10_1016_j_bbagrm_2019_194419 crossref_primary_10_1021_acs_jproteome_0c00286 crossref_primary_10_1016_j_cell_2019_10_032 crossref_primary_10_4161_nucl_29577 crossref_primary_10_1101_gr_246462_118 crossref_primary_10_1080_14789450_2017_1394189 crossref_primary_10_3389_fgene_2019_01111 crossref_primary_10_1016_j_cmet_2015_02_009 crossref_primary_10_1093_nargab_lqaa043 crossref_primary_10_1016_j_compbiolchem_2020_107370 crossref_primary_10_1093_gbe_evx136 crossref_primary_10_1016_j_biochi_2015_03_001 crossref_primary_10_1002_1878_0261_13743 crossref_primary_10_1111_cpr_12107 crossref_primary_10_1016_j_canlet_2022_215723 crossref_primary_10_1016_j_ymeth_2013_09_017 crossref_primary_10_1021_acs_jproteome_1c00926 crossref_primary_10_3389_fonc_2020_616717 crossref_primary_10_1172_JCI84419 crossref_primary_10_1002_bies_201400048 crossref_primary_10_3389_fgene_2014_00476 crossref_primary_10_1002_jcsm_12866 crossref_primary_10_1021_jacs_0c09574 crossref_primary_10_1038_s41422_024_01059_3 crossref_primary_10_1021_acs_jproteome_2c00004 crossref_primary_10_1021_acs_jproteome_5b00472 crossref_primary_10_1186_s13059_024_03287_7 crossref_primary_10_1016_j_yexcr_2020_112057 crossref_primary_10_1038_s41587_020_00806_2 crossref_primary_10_1093_dnares_dsw040 crossref_primary_10_1126_science_aad3867 crossref_primary_10_1101_gr_275831_121 crossref_primary_10_1016_j_cell_2013_06_020 crossref_primary_10_1093_nar_gkt952 crossref_primary_10_1016_j_ncrna_2024_10_006 crossref_primary_10_1093_bioinformatics_btw581 crossref_primary_10_3390_cells13191645 crossref_primary_10_1016_j_bpr_2024_100167 crossref_primary_10_1016_j_euprot_2014_02_009 crossref_primary_10_1016_j_yexcr_2020_112229 crossref_primary_10_3724_zdxbyxb_2023_0128 crossref_primary_10_1016_j_euprot_2014_02_006 crossref_primary_10_1038_s41467_021_20911_3 crossref_primary_10_1038_ncomms6429 crossref_primary_10_1002_wrna_1245 crossref_primary_10_2174_1568026620666200722112450 crossref_primary_10_1021_acs_jproteome_0c00254 crossref_primary_10_1111_tpj_13571 crossref_primary_10_1038_nchembio_1964 crossref_primary_10_1016_j_lfs_2018_11_018 crossref_primary_10_1002_slct_202401782 crossref_primary_10_3390_biology13080563 crossref_primary_10_20517_jtgg_2023_14 crossref_primary_10_1038_s41419_020_2232_7 crossref_primary_10_1002_pmic_201600183 crossref_primary_10_1038_nmeth_2321 crossref_primary_10_1021_acs_jproteome_4c00319 crossref_primary_10_1016_j_isci_2022_105547 crossref_primary_10_1007_s11427_019_9580_5 crossref_primary_10_3389_fgene_2020_00095 crossref_primary_10_1134_S1819712421020112 crossref_primary_10_1080_14789450_2019_1571919 crossref_primary_10_7554_eLife_27860 crossref_primary_10_1021_acs_analchem_9b04188 crossref_primary_10_1371_journal_pone_0194518 crossref_primary_10_1002_advs_202408426 crossref_primary_10_1016_j_celrep_2014_05_023 crossref_primary_10_1109_TCBB_2024_3371984 crossref_primary_10_1021_acs_biochem_7b00864 crossref_primary_10_1016_j_canlet_2020_10_002 crossref_primary_10_1002_pmic_201400310 crossref_primary_10_1016_j_molcel_2023_12_003 crossref_primary_10_3390_v14102103 crossref_primary_10_1002_arch_22082 crossref_primary_10_1021_acs_analchem_6b00191 crossref_primary_10_1021_acs_jproteome_7b00419 crossref_primary_10_1016_j_bbadis_2017_03_024 crossref_primary_10_1128_spectrum_02528_23 crossref_primary_10_1186_s12943_020_01188_4 crossref_primary_10_2139_ssrn_3866842 crossref_primary_10_1016_j_celrep_2013_10_041 crossref_primary_10_1134_S0006297924603630 crossref_primary_10_1242_dev_098343 crossref_primary_10_1038_nchembio_1815 crossref_primary_10_1128_spectrum_00826_24 crossref_primary_10_1038_s41420_024_02175_0 crossref_primary_10_3390_biomedicines9060618 crossref_primary_10_1093_nar_gkv1175 crossref_primary_10_1094_MPMI_04_20_0082_TA crossref_primary_10_1016_j_ccell_2015_02_004 crossref_primary_10_1016_j_euprot_2014_02_014 crossref_primary_10_1093_nar_gkw909 crossref_primary_10_1038_s41467_024_46112_2 crossref_primary_10_1155_2020_7182428 crossref_primary_10_1038_nrm_2017_104 crossref_primary_10_1073_pnas_2001897118 crossref_primary_10_1093_narcan_zcae023 crossref_primary_10_1247_csf_18005 crossref_primary_10_1016_j_isci_2024_108972 crossref_primary_10_1016_j_jprot_2020_103965 crossref_primary_10_1016_j_tig_2015_01_001 crossref_primary_10_3390_ncrna6040041 crossref_primary_10_1016_j_molcel_2022_06_035 crossref_primary_10_1038_cr_2014_114 crossref_primary_10_1186_s13059_024_03403_7 crossref_primary_10_3109_10409238_2015_1016215 crossref_primary_10_1093_bib_bby055 crossref_primary_10_1155_2018_5205831 crossref_primary_10_1007_s12035_018_1253_z crossref_primary_10_1186_s13073_015_0142_6 crossref_primary_10_1002_bies_201400103 crossref_primary_10_31857_S0320972521090098 crossref_primary_10_1016_j_tig_2024_12_001 crossref_primary_10_7554_eLife_59303 crossref_primary_10_1016_j_micpath_2018_08_062 crossref_primary_10_1016_j_cell_2016_02_066 crossref_primary_10_1038_s41598_019_47424_w crossref_primary_10_1038_s41467_022_31327_y crossref_primary_10_3389_fcell_2021_687748 crossref_primary_10_1038_nrm4069 crossref_primary_10_1038_s41420_024_02185_y crossref_primary_10_1016_j_bbagrm_2015_07_017 crossref_primary_10_1038_s41467_020_14968_9 crossref_primary_10_1016_j_molcel_2022_06_023 crossref_primary_10_1073_pnas_2021943118 crossref_primary_10_1016_j_isci_2022_103844 crossref_primary_10_1134_S0026893318060031 crossref_primary_10_1134_S0006297921090091 crossref_primary_10_5582_bst_2018_01181 crossref_primary_10_3389_fimmu_2023_1104351 crossref_primary_10_1002_advs_202300314 crossref_primary_10_1021_acs_jproteome_4c00116 crossref_primary_10_1093_jxb_ert295 crossref_primary_10_1016_j_mcpro_2021_100109 crossref_primary_10_1021_acs_biochem_7b00265 crossref_primary_10_1016_j_jprot_2020_103988 crossref_primary_10_1093_nar_gkx1130 crossref_primary_10_1189_jlb_1113599 crossref_primary_10_1186_s12929_022_00802_5 crossref_primary_10_1371_journal_pbio_1002395 crossref_primary_10_1002_cbic_202100534 crossref_primary_10_1101_gr_230938_117 crossref_primary_10_1158_0008_5472_CAN_20_1880 crossref_primary_10_1016_j_gene_2018_11_020 crossref_primary_10_1016_j_tcb_2021_10_010 crossref_primary_10_1186_s12870_015_0468_7 crossref_primary_10_1016_j_molp_2020_05_012 crossref_primary_10_7554_eLife_03528 crossref_primary_10_1007_s40572_016_0092_1 crossref_primary_10_1042_BST20221074 crossref_primary_10_1631_jzus_B1900336 crossref_primary_10_1128_MCB_00528_19 crossref_primary_10_7554_eLife_03523 crossref_primary_10_1038_s41467_020_20841_6 crossref_primary_10_3390_cancers16152660 crossref_primary_10_18632_aging_100943 crossref_primary_10_1016_j_ymthe_2021_03_004 crossref_primary_10_1093_dnares_dsab007 crossref_primary_10_1186_s12864_017_3586_9 crossref_primary_10_1126_sciadv_aaz2059 crossref_primary_10_1021_ja406606j crossref_primary_10_1080_15476286_2016_1218589 crossref_primary_10_1101_gad_302604_117 crossref_primary_10_1038_nsmb_2843 crossref_primary_10_1038_s41576_021_00417_w crossref_primary_10_3389_fgene_2018_00144 crossref_primary_10_1002_pmic_202000084 crossref_primary_10_1038_s41467_018_03311_y crossref_primary_10_1186_gb4172 crossref_primary_10_1128_JVI_02989_13 crossref_primary_10_3389_fpls_2021_695439 crossref_primary_10_1038_s41467_024_53008_8 crossref_primary_10_1038_s42003_021_02759_x crossref_primary_10_1093_nar_gku1310 crossref_primary_10_1038_s41586_018_0794_7 crossref_primary_10_1002_pmic_201400165 crossref_primary_10_1038_nrg3645 crossref_primary_10_1016_j_csbj_2023_10_040 crossref_primary_10_1093_gbe_evx103 crossref_primary_10_1371_journal_pgen_1005721 crossref_primary_10_1021_acs_jproteome_7b00707 crossref_primary_10_1016_j_bbagrm_2015_06_013 crossref_primary_10_1021_jasms_1c00076 crossref_primary_10_1093_database_baaa007 crossref_primary_10_1038_nrg3520 crossref_primary_10_1016_j_gene_2016_04_057 crossref_primary_10_2217_epi_2017_0020 crossref_primary_10_1101_gr_253302_119 crossref_primary_10_3390_biom11111673 crossref_primary_10_1038_nsmb_2942 crossref_primary_10_1134_S1068162017030062 crossref_primary_10_1093_nar_gkaa277 crossref_primary_10_1016_j_tig_2023_10_008 crossref_primary_10_1093_nar_gkx906 crossref_primary_10_1101_cshperspect_a032680 crossref_primary_10_3389_fmolb_2021_634146 crossref_primary_10_1038_s41467_017_01981_8 crossref_primary_10_1172_JCI152911 crossref_primary_10_1093_nar_gkz087 crossref_primary_10_3390_genes8080206 crossref_primary_10_3389_fgene_2014_00164 crossref_primary_10_1134_S1068162018040076 crossref_primary_10_3389_fgene_2023_1089053 crossref_primary_10_1093_nar_gkv1218 crossref_primary_10_1021_acs_jproteome_7b00085 crossref_primary_10_1002_wrna_1845 crossref_primary_10_1038_s41467_021_25785_z crossref_primary_10_1371_journal_pgen_1009585 crossref_primary_10_1016_j_bbagrm_2017_05_002 crossref_primary_10_1016_j_yexcr_2020_111853 crossref_primary_10_1002_pmic_202100211 crossref_primary_10_1016_j_yexcr_2020_111973 crossref_primary_10_1158_2326_6066_CIR_19_0886 crossref_primary_10_1038_s41587_019_0298_5 crossref_primary_10_1002_pmic_201700274 crossref_primary_10_1002_mas_21483 crossref_primary_10_1134_S2634827624600324 crossref_primary_10_7868_S0132342317030071 crossref_primary_10_1016_j_gene_2024_149019 crossref_primary_10_1093_nar_gkz1059 crossref_primary_10_1126_scitranslmed_adk9524 crossref_primary_10_1021_acs_jproteome_9b00039 crossref_primary_10_1021_jacs_1c05386 crossref_primary_10_1038_s41467_018_04112_z crossref_primary_10_1186_s13059_015_0742_x crossref_primary_10_1016_j_mcpro_2022_100264 crossref_primary_10_1093_jb_mvaa143 crossref_primary_10_1128_mBio_01659_20 crossref_primary_10_1146_annurev_genom_090314_024939 crossref_primary_10_15252_embj_2020104763 crossref_primary_10_1016_j_mcpro_2023_100631 crossref_primary_10_1093_nar_gkw991 crossref_primary_10_1186_s12929_024_01047_0 crossref_primary_10_1016_j_tig_2024_11_010 crossref_primary_10_1016_j_biocel_2013_04_020 crossref_primary_10_1042_BST20150170 crossref_primary_10_1101_gad_305250_117 crossref_primary_10_1261_rna_053561_115 crossref_primary_10_3390_ncrna7030044 crossref_primary_10_7717_peerj_12508 crossref_primary_10_1016_j_neo_2018_02_010 crossref_primary_10_1073_pnas_1304124110 crossref_primary_10_1007_s12204_014_1563_x crossref_primary_10_1371_journal_pone_0184119 crossref_primary_10_1093_cvr_cvad044 crossref_primary_10_3390_ncrna10020020 crossref_primary_10_1007_s00018_017_2628_4 crossref_primary_10_4137_BBI_S29435 crossref_primary_10_7554_eLife_66226 crossref_primary_10_1002_pmic_201700058 crossref_primary_10_1021_acs_jproteome_8b00948 crossref_primary_10_1158_2326_6066_CIR_20_0964 crossref_primary_10_1016_j_tibs_2020_10_003 crossref_primary_10_1093_gbe_evae224 crossref_primary_10_1021_acs_jproteome_6b00569 crossref_primary_10_1038_nrm_2017_58 crossref_primary_10_1038_s41598_024_69789_3 crossref_primary_10_1039_D4CB00277F crossref_primary_10_1080_15476286_2016_1172756 crossref_primary_10_1371_journal_pone_0070698 crossref_primary_10_1021_pr500176c crossref_primary_10_1038_nmeth_3144 crossref_primary_10_1074_mcp_RA119_001456 crossref_primary_10_1021_acs_biochem_8b00785 crossref_primary_10_1038_s41419_024_07046_1 crossref_primary_10_1002_jev2_12123 crossref_primary_10_1016_j_isci_2023_106781 crossref_primary_10_1016_j_cbpa_2015_10_023 crossref_primary_10_1093_narcan_zcac034 crossref_primary_10_1007_s42764_021_00040_3 crossref_primary_10_1016_j_mcpro_2022_100480 crossref_primary_10_3389_fonc_2021_616576 crossref_primary_10_1093_nar_gku794 crossref_primary_10_1134_S1022795416020149 crossref_primary_10_3390_molecules25051093 crossref_primary_10_1016_j_sbi_2015_02_017 crossref_primary_10_1002_pmic_201700064 crossref_primary_10_35118_apjmbb_2023_031_3_10 crossref_primary_10_1002_pmic_201400180 crossref_primary_10_1016_j_cell_2019_05_010 crossref_primary_10_1007_s11033_020_05308_7 crossref_primary_10_1074_jbc_C113_533968 crossref_primary_10_3390_cancers14246031 crossref_primary_10_1016_j_fgb_2022_103688 crossref_primary_10_1111_1758_2229_12473 crossref_primary_10_1186_s12935_024_03446_7 crossref_primary_10_1093_bfgp_elae018 crossref_primary_10_1038_s41589_019_0425_0 crossref_primary_10_1021_pr400446z crossref_primary_10_1111_febs_13101 crossref_primary_10_1016_j_biosystems_2015_11_009 crossref_primary_10_1111_febs_15769 crossref_primary_10_15252_embj_201592759 crossref_primary_10_1158_0008_5472_CAN_21_3910 crossref_primary_10_1021_acs_jproteome_8b00761 crossref_primary_10_1093_nar_gkx1114 crossref_primary_10_1016_j_bbagrm_2014_06_006 crossref_primary_10_1016_j_neuron_2015_06_012 crossref_primary_10_1038_s42003_021_02619_8 crossref_primary_10_1016_j_tig_2024_10_012 crossref_primary_10_1186_s13045_024_01591_0 crossref_primary_10_1021_acs_biochem_8b00726 crossref_primary_10_1146_annurev_virology_100114_054854 crossref_primary_10_1016_j_ncrna_2018_08_002 crossref_primary_10_1038_s41589_022_01003_9 crossref_primary_10_1158_1541_7786_MCR_21_0775 crossref_primary_10_1016_j_bbagen_2024_130747 crossref_primary_10_1016_j_gpb_2022_09_008 crossref_primary_10_1371_journal_pone_0147247 crossref_primary_10_1016_j_molonc_2016_06_003 crossref_primary_10_1016_j_jtbi_2016_11_021 crossref_primary_10_1021_acs_jproteome_1c00115 crossref_primary_10_1038_nchembio_2249 crossref_primary_10_1002_ijc_33132 crossref_primary_10_1038_s41587_021_01038_8 crossref_primary_10_1016_j_celrep_2023_113145 crossref_primary_10_3389_fgene_2021_796060 crossref_primary_10_1186_s12935_024_03281_w crossref_primary_10_3389_fgene_2019_00981 crossref_primary_10_1371_journal_pbio_1001933 crossref_primary_10_1093_nar_gky705 crossref_primary_10_1016_j_cclet_2018_04_027 crossref_primary_10_1074_mcp_M116_066662 crossref_primary_10_1155_2015_319861 crossref_primary_10_1002_pmic_201700255 crossref_primary_10_1073_pnas_1317811111 crossref_primary_10_1007_s00253_018_9159_2 crossref_primary_10_1093_jmcb_mjz091 crossref_primary_10_18632_aging_205200 crossref_primary_10_3390_ijms21114182 crossref_primary_10_1093_cvr_cvad112 crossref_primary_10_1128_microbiolspec_MDNA3_0061_2014 crossref_primary_10_3389_fgene_2020_00548 crossref_primary_10_1038_s41467_020_14500_z crossref_primary_10_1126_science_aad4076 crossref_primary_10_1016_j_canlet_2018_02_022 crossref_primary_10_1080_14789450_2021_1914594 crossref_primary_10_1016_j_csbj_2020_11_030 crossref_primary_10_1080_15476286_2017_1279787 crossref_primary_10_1186_s13395_021_00279_0 crossref_primary_10_1074_mcp_M113_027540 crossref_primary_10_1002_cbic_201800715 crossref_primary_10_1186_s12859_018_2550_2 crossref_primary_10_1002_pmic_202100008 crossref_primary_10_3390_ijms22115476 crossref_primary_10_1007_s13258_024_01549_z crossref_primary_10_1016_j_molcel_2021_08_033 crossref_primary_10_1093_nar_gkz734 crossref_primary_10_3390_ijms25063539 crossref_primary_10_1016_j_cmet_2022_12_004 crossref_primary_10_1016_j_trecan_2019_02_011 crossref_primary_10_1038_ncb3052 crossref_primary_10_1152_physiolgenomics_00048_2020 crossref_primary_10_3390_cells10112983 crossref_primary_10_1146_annurev_cellbio_100616_060516 crossref_primary_10_1016_j_ymthe_2024_05_021 crossref_primary_10_1042_BST20160376 crossref_primary_10_1007_s00018_022_04145_0 crossref_primary_10_1101_gr_191122_115 crossref_primary_10_1016_j_yexcr_2017_10_010 crossref_primary_10_1016_j_celrep_2018_12_077 crossref_primary_10_1093_hr_uhac023 crossref_primary_10_3892_ijo_2013_1969 crossref_primary_10_1038_ncomms11663 crossref_primary_10_1038_s41392_019_0092_3 crossref_primary_10_1038_srep09737 crossref_primary_10_1016_j_cell_2013_06_009 crossref_primary_10_1016_j_isci_2025_111884 crossref_primary_10_1093_bib_bbae268 crossref_primary_10_1186_s12859_014_0380_4 crossref_primary_10_1002_pmic_201700219 crossref_primary_10_1186_s12864_024_10948_1 crossref_primary_10_3390_biom13060979 crossref_primary_10_1158_0008_5472_CAN_22_1525 crossref_primary_10_1186_s13059_020_02081_5 crossref_primary_10_3390_ijms23137332 crossref_primary_10_1111_pce_15104 crossref_primary_10_1016_j_stemcr_2020_03_002 crossref_primary_10_1038_nature21036 crossref_primary_10_2139_ssrn_4143786 crossref_primary_10_1016_j_cbpa_2021_102108 crossref_primary_10_1038_nature21034 crossref_primary_10_1038_s42003_021_02007_2 crossref_primary_10_1021_acs_jproteome_1c00889 crossref_primary_10_1016_j_gene_2017_08_020 crossref_primary_10_1002_pmic_202200421 crossref_primary_10_1126_science_aay0262 crossref_primary_10_18632_aging_103534 crossref_primary_10_1038_ncomms10238 crossref_primary_10_1093_nar_gku1060 crossref_primary_10_1093_molbev_msv117 crossref_primary_10_1093_nar_gkt1386 crossref_primary_10_1002_ijc_34282 crossref_primary_10_1016_j_tcb_2017_04_006 crossref_primary_10_1515_ped_2015_0002 crossref_primary_10_1099_mic_0_001268 crossref_primary_10_1002_wrna_1647 crossref_primary_10_1016_j_isci_2023_106757 crossref_primary_10_1016_j_it_2014_07_005 crossref_primary_10_1093_nar_gkab816 crossref_primary_10_1093_bib_bbad352 crossref_primary_10_1177_11769343221108218 crossref_primary_10_1016_j_plantsci_2013_09_006 crossref_primary_10_1038_s41467_019_12816_z crossref_primary_10_1016_j_ymeth_2013_03_019 crossref_primary_10_1016_j_bcp_2016_03_022 crossref_primary_10_3390_jcdd8080084 crossref_primary_10_1016_j_ijdevneu_2016_06_001 crossref_primary_10_18632_oncotarget_24307 crossref_primary_10_1021_acs_jproteome_9b00599 crossref_primary_10_1016_j_mcpro_2024_100860 crossref_primary_10_1016_j_tig_2024_09_002 crossref_primary_10_1089_omi_2021_0158 crossref_primary_10_1177_11779322211045878 crossref_primary_10_1007_s10142_024_01426_8 crossref_primary_10_1093_femsml_uqad001 crossref_primary_10_1038_s41467_024_48615_4 crossref_primary_10_1093_bioinformatics_btaa608 crossref_primary_10_1016_j_neuroscience_2024_05_036 crossref_primary_10_1021_pr401280w crossref_primary_10_1099_jgv_0_000267 crossref_primary_10_1182_blood_2017_06_788695 crossref_primary_10_1002_cpch_77 crossref_primary_10_3390_ijms241310562 crossref_primary_10_1080_14789450_2018_1547194 crossref_primary_10_1002_pro_4708 crossref_primary_10_1016_j_molmed_2014_09_003 crossref_primary_10_1007_s13205_022_03147_w crossref_primary_10_1021_acs_jproteome_7b00375 crossref_primary_10_1111_jgh_16427 crossref_primary_10_3389_fgene_2021_651485 crossref_primary_10_1146_annurev_anchem_071015_041722 crossref_primary_10_1021_acs_biochem_3c00397 crossref_primary_10_1038_s41388_018_0281_5 crossref_primary_10_1111_cpr_12421 crossref_primary_10_1016_j_semcdb_2014_05_015 crossref_primary_10_1021_ja507448y crossref_primary_10_1007_s11427_019_1677_8 crossref_primary_10_1016_j_chempr_2021_09_014 crossref_primary_10_1093_nar_gkx469 crossref_primary_10_1186_1471_2105_15_36 crossref_primary_10_1158_0008_5472_CAN_17_2356 crossref_primary_10_1016_j_brainres_2016_04_003 crossref_primary_10_1186_s12859_020_03805_x crossref_primary_10_1016_j_cbpa_2020_12_002 crossref_primary_10_1038_s41388_022_02271_4 |
Cites_doi | 10.1038/nature10098 10.1021/ac070997p 10.1128/MMBR.00008-11 10.1038/nmeth.1491 10.1038/nature07672 10.1073/pnas.0810916106 10.1021/ac00104a020 10.1038/ncb1595 10.1093/bioinformatics/btp190 10.1111/j.1365-2958.2008.06495.x 10.1016/1044-0305(94)80016-2 10.1074/mcp.M600297-MCP200 10.1016/j.jmb.2004.05.028 10.1073/pnas.0708102104 10.1038/nature07341 10.1038/nchembio.684 10.1016/j.cell.2011.10.002 10.1038/nature06667 10.1038/nbt.1633 10.1021/pr900863u 10.1038/nbt.1621 10.1371/journal.pgen.0020052 10.1093/nar/gkl842 10.1073/pnas.022664799 10.1093/bioinformatics/btp120 10.1038/nature10575 10.1021/pr100037h 10.1371/journal.pbio.0050106 10.1016/0092-8674(86)90762-2 10.1016/0092-8674(86)90609-4 10.1021/ja909524e 10.1021/pr200304u 10.1038/291346a0 10.1074/mcp.M700354-MCP200 10.1038/nchembio.126 10.1073/pnas.0904715106 10.1101/gr.4355406 10.1016/S0168-9525(03)00054-4 10.1105/tpc.002618 10.1094/MPMI-21-5-0576 10.1021/pr020010u 10.1093/nar/gkq1251 10.1038/msb.2011.82 10.1073/pnas.101133498 10.1016/j.cell.2008.06.038 10.1038/nrg2521 10.1101/gad.17446611 10.1016/S0021-9258(17)41806-0 10.1016/0092-8674(87)90618-0 |
ContentType | Journal Article |
Copyright | Springer Nature America, Inc. 2012 Copyright Nature Publishing Group Jan 2013 |
Copyright_xml | – notice: Springer Nature America, Inc. 2012 – notice: Copyright Nature Publishing Group Jan 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7TK 7TM 7U9 7X7 7XB 88A 88E 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. LK8 M0S M1P M2P M7N M7P P64 PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM |
DOI | 10.1038/nchembio.1120 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Central Student MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1552-4469 |
EndPage | 64 |
ExternalDocumentID | PMC3625679 2884111851 23160002 10_1038_nchembio_1120 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: 1F32GM099408-01 – fundername: NIGMS NIH HHS grantid: R01 GM102491 – fundername: NHGRI NIH HHS grantid: 3U54HG003067 – fundername: NIGMS NIH HHS grantid: R01GM102491 – fundername: NIGMS NIH HHS grantid: F32 GM099408 – fundername: NIH HHS grantid: DP2 OD006670 – fundername: NIGMS NIH HHS grantid: T32GM007598 – fundername: NIH HHS grantid: DP2OD002374 – fundername: NIH HHS grantid: DP2OD00667 – fundername: NIH HHS grantid: DP2 OD002374 |
GroupedDBID | --- 0R~ 123 29M 39C 3V. 4.4 53G 5BI 70F 7X7 88A 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACGOD ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFRAH AFSHS AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ BVXVI CCPQU CS3 CZ9 D1I DB5 DU5 DWQXO EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ KB. KC. LK5 LK8 M0L M1P M2P M7P M7R NACWA NNMJJ O9- ODYON P2P PCBAR PDBOC PQQKQ PROAC PSQYO Q2X RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ALPWD ATHPR CITATION PHGZM PHGZT ABFSG ACSTC ADXHL AEZWR AFHIU AHWEU AIXLP CGR CUY CVF ECM EIF NFIDA NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7TK 7TM 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c520t-7af1bc1e7b3705a88016ce68f60fdafab58a5a07a7e9f38fba70d90fe1ee52003 |
IEDL.DBID | 7X7 |
ISSN | 1552-4450 1552-4469 |
IngestDate | Thu Aug 21 14:02:29 EDT 2025 Tue Aug 05 11:19:10 EDT 2025 Fri Jul 25 09:04:10 EDT 2025 Mon Jul 21 06:05:34 EDT 2025 Tue Jul 01 01:27:43 EDT 2025 Thu Apr 24 23:04:17 EDT 2025 Fri Feb 21 02:39:43 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://www.springer.com/tdm Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c520t-7af1bc1e7b3705a88016ce68f60fdafab58a5a07a7e9f38fba70d90fe1ee52003 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC3625679 |
PMID | 23160002 |
PQID | 1284330594 |
PQPubID | 29034 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3625679 proquest_miscellaneous_1239055765 proquest_journals_1284330594 pubmed_primary_23160002 crossref_primary_10_1038_nchembio_1120 crossref_citationtrail_10_1038_nchembio_1120 springer_journals_10_1038_nchembio_1120 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-01-01 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States – name: Cambridge |
PublicationTitle | Nature chemical biology |
PublicationTitleAbbrev | Nat Chem Biol |
PublicationTitleAlternate | Nat Chem Biol |
PublicationYear | 2013 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Kersten (CR32) 2011; 7 Beck (CR36) 2011; 7 Hinnebusch (CR38) 2011; 75 Tinoco, Tagore, Saghatelian (CR20) 2010; 132 Kozak (CR29) 1986; 44 Kondo (CR16) 2007; 9 Oyama (CR19) 2007; 6 Keshishian, Addona, Burgess, Kuhn, Carr (CR33) 2007; 6 Schwanhäusser (CR35) 2011; 473 Hao (CR47) 2010; 9 Dix, Simon, Cravatt (CR30) 2008; 134 Fonslow (CR45) 2011; 10 Trapnell, Pachter, Salzberg (CR50) 2009; 25 CR8 Casson (CR11) 2002; 14 Tran (CR31) 2011; 480 de Godoy (CR34) 2008; 455 Tagore (CR22) 2009; 5 Abastado, Miller, Hinnebusch (CR5) 1991; 3 Hemm, Paul, Schneider, Storz, Rudd (CR18) 2008; 70 Pruitt, Tatusova, Maglott (CR37) 2007; 35 Bendtsen, Nielsen, von Heijne, Brunak (CR39) 2004; 340 Zhang, Hinnebusch (CR3) 2011; 39 Calvo, Pagliarini, Mootha (CR4) 2009; 106 Gleason, Liu, Williamson (CR14) 2008; 21 Frith (CR1) 2006; 2 Hashimoto (CR17) 2001; 98 Alpert (CR46) 2008; 80 Galindo, Pueyo, Fouix, Bishop, Couso (CR15) 2007; 5 Christofk, Vander Heiden, Wu, Asara, Cantley (CR26) 2008; 452 Rohrig, Schmidt, Miklashevichs, Schell, John (CR12) 2002; 99 Wadler, Vanderpool (CR9) 2007; 104 Garber (CR28) 2009; 25 Guttman (CR43) 2010; 28 Svensson, Skold, Svenningsson, Andren (CR21) 2003; 2 Jay, Nomura, Anderson, Khoury (CR10) 1981; 8 Wedekind, Dance, Sowden, Smith (CR40) 2003; 19 Ingolia, Lareau, Weissman (CR2) 2011; 147 Trapnell (CR48) 2010; 28 Eng, McCormack, Yates Iii (CR24) 1994; 5 Khalil (CR44) 2009; 106 Kastenmayer (CR13) 2006; 16 Guttman (CR41) 2009; 458 Parola, Kobilka (CR7) 1994; 269 Swaney, Wenger, Coon (CR23) 2010; 9 Levin (CR49) 2010; 7 Mercer, Dinger, Mattick (CR42) 2009; 10 Cabili (CR27) 2011; 25 Kozak (CR6) 1986; 47 Yates, Eng, McCormack, Schieltz (CR25) 1995; 67 M Guttman (BFnchembio1120_CR43) 2010; 28 MM Dix (BFnchembio1120_CR30) 2008; 134 MR Hemm (BFnchembio1120_CR18) 2008; 70 C Trapnell (BFnchembio1120_CR50) 2009; 25 TR Mercer (BFnchembio1120_CR42) 2009; 10 DM Tagore (BFnchembio1120_CR22) 2009; 5 JC Tran (BFnchembio1120_CR31) 2011; 480 C Trapnell (BFnchembio1120_CR48) 2010; 28 G Jay (BFnchembio1120_CR10) 1981; 8 MC Frith (BFnchembio1120_CR1) 2006; 2 H Keshishian (BFnchembio1120_CR33) 2007; 6 DL Swaney (BFnchembio1120_CR23) 2010; 9 H Rohrig (BFnchembio1120_CR12) 2002; 99 KD Pruitt (BFnchembio1120_CR37) 2007; 35 M Kozak (BFnchembio1120_CR6) 1986; 47 NT Ingolia (BFnchembio1120_CR2) 2011; 147 B Schwanhäusser (BFnchembio1120_CR35) 2011; 473 JK Eng (BFnchembio1120_CR24) 1994; 5 AM Khalil (BFnchembio1120_CR44) 2009; 106 M Guttman (BFnchembio1120_CR41) 2009; 458 AG Hinnebusch (BFnchembio1120_CR38) 2011; 75 SA Casson (BFnchembio1120_CR11) 2002; 14 AL Parola (BFnchembio1120_CR7) 1994; 269 M Oyama (BFnchembio1120_CR19) 2007; 6 AD Tinoco (BFnchembio1120_CR20) 2010; 132 JD Bendtsen (BFnchembio1120_CR39) 2004; 340 MI Galindo (BFnchembio1120_CR15) 2007; 5 LM de Godoy (BFnchembio1120_CR34) 2008; 455 M Kozak (BFnchembio1120_CR29) 1986; 44 JP Kastenmayer (BFnchembio1120_CR13) 2006; 16 CA Gleason (BFnchembio1120_CR14) 2008; 21 T Kondo (BFnchembio1120_CR16) 2007; 9 CS Wadler (BFnchembio1120_CR9) 2007; 104 BFnchembio1120_CR8 JP Abastado (BFnchembio1120_CR5) 1991; 3 RD Kersten (BFnchembio1120_CR32) 2011; 7 M Garber (BFnchembio1120_CR28) 2009; 25 M Svensson (BFnchembio1120_CR21) 2003; 2 F Zhang (BFnchembio1120_CR3) 2011; 39 M Beck (BFnchembio1120_CR36) 2011; 7 HR Christofk (BFnchembio1120_CR26) 2008; 452 BR Fonslow (BFnchembio1120_CR45) 2011; 10 JZ Levin (BFnchembio1120_CR49) 2010; 7 P Hao (BFnchembio1120_CR47) 2010; 9 MN Cabili (BFnchembio1120_CR27) 2011; 25 Y Hashimoto (BFnchembio1120_CR17) 2001; 98 AJ Alpert (BFnchembio1120_CR46) 2008; 80 JR Yates III (BFnchembio1120_CR25) 1995; 67 JE Wedekind (BFnchembio1120_CR40) 2003; 19 SE Calvo (BFnchembio1120_CR4) 2009; 106 17939991 - Mol Cell Proteomics. 2007 Dec;6(12):2212-29 3779834 - Cell. 1986 Nov 21;47(4):481-3 19121005 - Mol Microbiol. 2008 Dec;70(6):1487-501 20450224 - J Proteome Res. 2010 Jul 2;9(7):3520-6 12716136 - J Proteome Res. 2003 Mar-Apr;2(2):213-9 19182780 - Nature. 2009 Mar 12;458(7235):223-7 20178363 - J Am Chem Soc. 2010 Mar 24;132(11):3819-30 18393617 - Mol Plant Microbe Interact. 2008 May;21(5):576-85 1883814 - New Biol. 1991 May;3(5):511-24 24226387 - J Am Soc Mass Spectrom. 1994 Nov;5(11):976-89 16510898 - Genome Res. 2006 Mar;16(3):365-73 3555844 - Cell. 1987 Jun 19;49(6):805-13 18820680 - Nature. 2008 Oct 30;455(7217):1251-4 15223320 - J Mol Biol. 2004 Jul 16;340(4):783-95 20436464 - Nat Biotechnol. 2010 May;28(5):511-5 18337815 - Nature. 2008 Mar 13;452(7184):181-6 20113005 - J Proteome Res. 2010 Mar 5;9(3):1323-9 21983601 - Nat Chem Biol. 2011 Nov;7(11):794-802 16683031 - PLoS Genet. 2006 Apr;2(4):e52 22068332 - Mol Syst Biol. 2011;7:549 22056041 - Cell. 2011 Nov 11;147(4):789-802 17439302 - PLoS Biol. 2007 May;5(5):e106 12172017 - Plant Cell. 2002 Aug;14(8):1705-21 20711195 - Nat Methods. 2010 Sep;7(9):709-15 21890647 - Genes Dev. 2011 Sep 15;25(18):1915-27 17317662 - Mol Cell Proteomics. 2007 Jun;6(6):1000-6 19571010 - Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11667-72 17130148 - Nucleic Acids Res. 2007 Jan;35(Database issue):D61-5 11842184 - Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):1915-20 19188922 - Nat Rev Genet. 2009 Mar;10(3):155-9 21593866 - Nature. 2011 May 19;473(7347):337-42 19289445 - Bioinformatics. 2009 May 1;25(9):1105-11 21227927 - Nucleic Acids Res. 2011 Apr;39(8):3128-40 6262654 - Nature. 1981 May 28;291(5813):346-9 12683974 - Trends Genet. 2003 Apr;19(4):207-16 19372376 - Proc Natl Acad Sci U S A. 2009 May 5;106(18):7507-12 18027909 - Anal Chem. 2008 Jan 1;80(1):62-76 3943125 - Cell. 1986 Jan 31;44(2):283-92 18724940 - Cell. 2008 Aug 22;134(4):679-91 21702434 - J Proteome Res. 2011 Aug 5;10(8):3690-700 17486114 - Nat Cell Biol. 2007 Jun;9(6):660-5 7741214 - Anal Chem. 1995 Apr 15;67(8):1426-36 11371646 - Proc Natl Acad Sci U S A. 2001 May 22;98(11):6336-41 22037311 - Nature. 2011 Dec 8;480(7376):254-8 21885680 - Microbiol Mol Biol Rev. 2011 Sep;75(3):434-67, first page of table of contents 20436462 - Nat Biotechnol. 2010 May;28(5):503-10 8308019 - J Biol Chem. 1994 Feb 11;269(6):4497-505 19478016 - Bioinformatics. 2009 Jun 15;25(12):i54-62 23547289 - Nat Methods. 2013 Jan;10(1):12 18042713 - Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20454-9 19011639 - Nat Chem Biol. 2009 Jan;5(1):23-5 |
References_xml | – volume: 3 start-page: 511 year: 1991 end-page: 524 ident: CR5 article-title: A quantitative model for translational control of the gene of publication-title: New Biol. – volume: 473 start-page: 337 year: 2011 end-page: 342 ident: CR35 article-title: Global quantification of mammalian gene expression control publication-title: Nature doi: 10.1038/nature10098 – volume: 80 start-page: 62 year: 2008 end-page: 76 ident: CR46 article-title: Electrostatic repulsion hydrophilic interaction chromatography for isocratic separation of charged solutes and selective isolation of phosphopeptides publication-title: Anal. Chem. doi: 10.1021/ac070997p – volume: 75 start-page: 434 year: 2011 end-page: 467 ident: CR38 article-title: Molecular mechanism of scanning and start codon selection in eukaryotes publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.00008-11 – volume: 7 start-page: 709 year: 2010 end-page: 715 ident: CR49 article-title: Comprehensive comparative analysis of strand-specific RNA sequencing methods publication-title: Nat. Methods doi: 10.1038/nmeth.1491 – volume: 458 start-page: 223 year: 2009 end-page: 227 ident: CR41 article-title: Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals publication-title: Nature doi: 10.1038/nature07672 – volume: 106 start-page: 7507 year: 2009 end-page: 7512 ident: CR4 article-title: Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0810916106 – volume: 67 start-page: 1426 year: 1995 end-page: 1436 ident: CR25 article-title: Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database publication-title: Anal. Chem. doi: 10.1021/ac00104a020 – ident: CR8 – volume: 9 start-page: 660 year: 2007 end-page: 665 ident: CR16 article-title: Small peptide regulators of actin-based cell morphogenesis encoded by a polycistronic mRNA publication-title: Nat. Cell Biol. doi: 10.1038/ncb1595 – volume: 25 start-page: i54 year: 2009 end-page: i62 ident: CR28 article-title: Identifying novel constrained elements by exploiting biased substitution patterns publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp190 – volume: 70 start-page: 1487 year: 2008 end-page: 1501 ident: CR18 article-title: Small membrane proteins found by comparative genomics and ribosome binding site models publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2008.06495.x – volume: 5 start-page: 976 year: 1994 end-page: 989 ident: CR24 article-title: An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1016/1044-0305(94)80016-2 – volume: 6 start-page: 1000 year: 2007 end-page: 1006 ident: CR19 article-title: Diversity of translation start sites may define increased complexity of the human short ORFeome publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M600297-MCP200 – volume: 340 start-page: 783 year: 2004 end-page: 795 ident: CR39 article-title: Improved prediction of signal peptides: SignalP 3.0 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2004.05.028 – volume: 104 start-page: 20454 year: 2007 end-page: 20459 ident: CR9 article-title: A dual function for a bacterial small RNA: SgrS performs base pairing-dependent regulation and encodes a functional polypeptide publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0708102104 – volume: 455 start-page: 1251 year: 2008 end-page: 1254 ident: CR34 article-title: Comprehensive mass-spectrometry–based proteome quantification of haploid versus diploid yeast publication-title: Nature doi: 10.1038/nature07341 – volume: 7 start-page: 794 year: 2011 end-page: 802 ident: CR32 article-title: A mass spectrometry-guided genome mining approach for natural product peptidogenomics publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.684 – volume: 147 start-page: 789 year: 2011 end-page: 802 ident: CR2 article-title: Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes publication-title: Cell doi: 10.1016/j.cell.2011.10.002 – volume: 452 start-page: 181 year: 2008 end-page: 186 ident: CR26 article-title: Pyruvate kinase M2 is a phosphotyrosine-binding protein publication-title: Nature doi: 10.1038/nature06667 – volume: 28 start-page: 503 year: 2010 end-page: 510 ident: CR43 article-title: reconstruction of cell type–specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1633 – volume: 9 start-page: 1323 year: 2010 end-page: 1329 ident: CR23 article-title: Value of using multiple proteases for large-scale mass spectrometry-based proteomics publication-title: J. Proteome Res. doi: 10.1021/pr900863u – volume: 28 start-page: 511 year: 2010 end-page: 515 ident: CR48 article-title: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1621 – volume: 2 start-page: e52 year: 2006 ident: CR1 article-title: The abundance of short proteins in the mammalian proteome publication-title: PLoS Genet. doi: 10.1371/journal.pgen.0020052 – volume: 35 start-page: D61 year: 2007 end-page: D65 ident: CR37 article-title: NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl842 – volume: 99 start-page: 1915 year: 2002 end-page: 1920 ident: CR12 article-title: Soybean encodes two peptides that bind to sucrose synthase publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.022664799 – volume: 25 start-page: 1915 year: 2011 end-page: 1927 ident: CR27 article-title: Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses publication-title: Genes Dev. – volume: 25 start-page: 1105 year: 2009 end-page: 1111 ident: CR50 article-title: TopHat: discovering splice junctions with RNA-Seq publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp120 – volume: 480 start-page: 254 year: 2011 end-page: 258 ident: CR31 article-title: Mapping intact protein isoforms in discovery mode using top-down proteomics publication-title: Nature doi: 10.1038/nature10575 – volume: 9 start-page: 3520 year: 2010 end-page: 3526 ident: CR47 article-title: Novel application of electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) in shotgun proteomics: comprehensive profiling of rat kidney proteome publication-title: J. Proteome Res. doi: 10.1021/pr100037h – volume: 5 start-page: e106 year: 2007 ident: CR15 article-title: Peptides encoded by short ORFs control development and define a new eukaryotic gene family publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0050106 – volume: 44 start-page: 283 year: 1986 end-page: 292 ident: CR29 article-title: Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes publication-title: Cell doi: 10.1016/0092-8674(86)90762-2 – volume: 47 start-page: 481 year: 1986 end-page: 483 ident: CR6 article-title: Bifunctional messenger RNAs in eukaryotes publication-title: Cell doi: 10.1016/0092-8674(86)90609-4 – volume: 269 start-page: 4497 year: 1994 end-page: 4505 ident: CR7 article-title: The peptide product of a 5′ leader cistron in the β2 adrenergic receptor mRNA inhibits receptor synthesis publication-title: J. Biol. Chem. – volume: 132 start-page: 3819 year: 2010 end-page: 3830 ident: CR20 article-title: Expanding the dipeptidyl peptidase 4-regulated peptidome via an optimized peptidomics platform publication-title: J. Am. Chem. Soc. doi: 10.1021/ja909524e – volume: 10 start-page: 3690 year: 2011 end-page: 3700 ident: CR45 article-title: Improvements in proteomic metrics of low abundance proteins through proteome equalization using ProteoMiner prior to MudPIT publication-title: J. Proteome Res. doi: 10.1021/pr200304u – volume: 8 start-page: 346 year: 1981 end-page: 349 ident: CR10 article-title: Identification of the SV40 agnogene product: a DNA binding protein publication-title: Nature doi: 10.1038/291346a0 – volume: 6 start-page: 2212 year: 2007 end-page: 2229 ident: CR33 article-title: Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M700354-MCP200 – volume: 5 start-page: 23 year: 2009 end-page: 25 ident: CR22 article-title: Peptidase substrates via global peptide profiling publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.126 – volume: 106 start-page: 11667 year: 2009 end-page: 11672 ident: CR44 article-title: Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0904715106 – volume: 16 start-page: 365 year: 2006 end-page: 373 ident: CR13 article-title: Functional genomics of genes with small open reading frames (sORFs) in publication-title: Genome Res. doi: 10.1101/gr.4355406 – volume: 19 start-page: 207 year: 2003 end-page: 216 ident: CR40 article-title: Messenger RNA editing in mammals: new members of the APOBEC family seeking roles in the family business publication-title: Trends Genet. doi: 10.1016/S0168-9525(03)00054-4 – volume: 14 start-page: 1705 year: 2002 end-page: 1721 ident: CR11 article-title: The gene of encodes a predicted peptide required for correct root growth and leaf vascular patterning publication-title: Plant Cell doi: 10.1105/tpc.002618 – volume: 21 start-page: 576 year: 2008 end-page: 585 ident: CR14 article-title: Silencing a candidate nematode effector gene corresponding to the tomato resistance gene leads to acquisition of virulence publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI-21-5-0576 – volume: 2 start-page: 213 year: 2003 end-page: 219 ident: CR21 article-title: Peptidomics-based discovery of novel neuropeptides publication-title: J. Proteome Res. doi: 10.1021/pr020010u – volume: 39 start-page: 3128 year: 2011 end-page: 3140 ident: CR3 article-title: An upstream ORF with non-AUG start codon is translated but dispensable for translational control of GCN4 mRNA publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq1251 – volume: 7 start-page: 549 year: 2011 ident: CR36 article-title: The quantitative proteome of a human cell line publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2011.82 – volume: 98 start-page: 6336 year: 2001 end-page: 6341 ident: CR17 article-title: A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer′s disease genes and Aβ publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.101133498 – volume: 134 start-page: 679 year: 2008 end-page: 691 ident: CR30 article-title: Global mapping of the topography and magnitude of proteolytic events in apoptosis publication-title: Cell doi: 10.1016/j.cell.2008.06.038 – volume: 10 start-page: 155 year: 2009 end-page: 159 ident: CR42 article-title: Long non-coding RNAs: insights into functions publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2521 – volume: 7 start-page: 794 year: 2011 ident: BFnchembio1120_CR32 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.684 – volume: 7 start-page: 549 year: 2011 ident: BFnchembio1120_CR36 publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2011.82 – volume: 340 start-page: 783 year: 2004 ident: BFnchembio1120_CR39 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2004.05.028 – volume: 2 start-page: 213 year: 2003 ident: BFnchembio1120_CR21 publication-title: J. Proteome Res. doi: 10.1021/pr020010u – volume: 28 start-page: 503 year: 2010 ident: BFnchembio1120_CR43 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1633 – volume: 98 start-page: 6336 year: 2001 ident: BFnchembio1120_CR17 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.101133498 – volume: 104 start-page: 20454 year: 2007 ident: BFnchembio1120_CR9 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0708102104 – volume: 9 start-page: 3520 year: 2010 ident: BFnchembio1120_CR47 publication-title: J. Proteome Res. doi: 10.1021/pr100037h – volume: 5 start-page: e106 year: 2007 ident: BFnchembio1120_CR15 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0050106 – volume: 8 start-page: 346 year: 1981 ident: BFnchembio1120_CR10 publication-title: Nature doi: 10.1038/291346a0 – volume: 35 start-page: D61 year: 2007 ident: BFnchembio1120_CR37 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl842 – volume: 147 start-page: 789 year: 2011 ident: BFnchembio1120_CR2 publication-title: Cell doi: 10.1016/j.cell.2011.10.002 – volume: 106 start-page: 7507 year: 2009 ident: BFnchembio1120_CR4 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0810916106 – volume: 99 start-page: 1915 year: 2002 ident: BFnchembio1120_CR12 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.022664799 – volume: 473 start-page: 337 year: 2011 ident: BFnchembio1120_CR35 publication-title: Nature doi: 10.1038/nature10098 – volume: 452 start-page: 181 year: 2008 ident: BFnchembio1120_CR26 publication-title: Nature doi: 10.1038/nature06667 – volume: 25 start-page: 1915 year: 2011 ident: BFnchembio1120_CR27 publication-title: Genes Dev. doi: 10.1101/gad.17446611 – volume: 9 start-page: 1323 year: 2010 ident: BFnchembio1120_CR23 publication-title: J. Proteome Res. doi: 10.1021/pr900863u – volume: 269 start-page: 4497 year: 1994 ident: BFnchembio1120_CR7 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)41806-0 – volume: 21 start-page: 576 year: 2008 ident: BFnchembio1120_CR14 publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI-21-5-0576 – volume: 5 start-page: 23 year: 2009 ident: BFnchembio1120_CR22 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.126 – volume: 25 start-page: i54 year: 2009 ident: BFnchembio1120_CR28 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp190 – volume: 5 start-page: 976 year: 1994 ident: BFnchembio1120_CR24 publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1016/1044-0305(94)80016-2 – volume: 10 start-page: 155 year: 2009 ident: BFnchembio1120_CR42 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2521 – volume: 25 start-page: 1105 year: 2009 ident: BFnchembio1120_CR50 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp120 – volume: 28 start-page: 511 year: 2010 ident: BFnchembio1120_CR48 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1621 – volume: 39 start-page: 3128 year: 2011 ident: BFnchembio1120_CR3 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq1251 – ident: BFnchembio1120_CR8 doi: 10.1016/0092-8674(87)90618-0 – volume: 47 start-page: 481 year: 1986 ident: BFnchembio1120_CR6 publication-title: Cell doi: 10.1016/0092-8674(86)90609-4 – volume: 106 start-page: 11667 year: 2009 ident: BFnchembio1120_CR44 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0904715106 – volume: 6 start-page: 2212 year: 2007 ident: BFnchembio1120_CR33 publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M700354-MCP200 – volume: 80 start-page: 62 year: 2008 ident: BFnchembio1120_CR46 publication-title: Anal. Chem. doi: 10.1021/ac070997p – volume: 67 start-page: 1426 year: 1995 ident: BFnchembio1120_CR25 publication-title: Anal. Chem. doi: 10.1021/ac00104a020 – volume: 44 start-page: 283 year: 1986 ident: BFnchembio1120_CR29 publication-title: Cell doi: 10.1016/0092-8674(86)90762-2 – volume: 7 start-page: 709 year: 2010 ident: BFnchembio1120_CR49 publication-title: Nat. Methods doi: 10.1038/nmeth.1491 – volume: 132 start-page: 3819 year: 2010 ident: BFnchembio1120_CR20 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja909524e – volume: 2 start-page: e52 year: 2006 ident: BFnchembio1120_CR1 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.0020052 – volume: 16 start-page: 365 year: 2006 ident: BFnchembio1120_CR13 publication-title: Genome Res. doi: 10.1101/gr.4355406 – volume: 458 start-page: 223 year: 2009 ident: BFnchembio1120_CR41 publication-title: Nature doi: 10.1038/nature07672 – volume: 10 start-page: 3690 year: 2011 ident: BFnchembio1120_CR45 publication-title: J. Proteome Res. doi: 10.1021/pr200304u – volume: 134 start-page: 679 year: 2008 ident: BFnchembio1120_CR30 publication-title: Cell doi: 10.1016/j.cell.2008.06.038 – volume: 455 start-page: 1251 year: 2008 ident: BFnchembio1120_CR34 publication-title: Nature doi: 10.1038/nature07341 – volume: 480 start-page: 254 year: 2011 ident: BFnchembio1120_CR31 publication-title: Nature doi: 10.1038/nature10575 – volume: 75 start-page: 434 year: 2011 ident: BFnchembio1120_CR38 publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.00008-11 – volume: 9 start-page: 660 year: 2007 ident: BFnchembio1120_CR16 publication-title: Nat. Cell Biol. doi: 10.1038/ncb1595 – volume: 70 start-page: 1487 year: 2008 ident: BFnchembio1120_CR18 publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2008.06495.x – volume: 6 start-page: 1000 year: 2007 ident: BFnchembio1120_CR19 publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M600297-MCP200 – volume: 3 start-page: 511 year: 1991 ident: BFnchembio1120_CR5 publication-title: New Biol. – volume: 14 start-page: 1705 year: 2002 ident: BFnchembio1120_CR11 publication-title: Plant Cell doi: 10.1105/tpc.002618 – volume: 19 start-page: 207 year: 2003 ident: BFnchembio1120_CR40 publication-title: Trends Genet. doi: 10.1016/S0168-9525(03)00054-4 – reference: 19182780 - Nature. 2009 Mar 12;458(7235):223-7 – reference: 19571010 - Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11667-72 – reference: 21227927 - Nucleic Acids Res. 2011 Apr;39(8):3128-40 – reference: 18027909 - Anal Chem. 2008 Jan 1;80(1):62-76 – reference: 8308019 - J Biol Chem. 1994 Feb 11;269(6):4497-505 – reference: 18337815 - Nature. 2008 Mar 13;452(7184):181-6 – reference: 23547289 - Nat Methods. 2013 Jan;10(1):12 – reference: 17486114 - Nat Cell Biol. 2007 Jun;9(6):660-5 – reference: 17439302 - PLoS Biol. 2007 May;5(5):e106 – reference: 21702434 - J Proteome Res. 2011 Aug 5;10(8):3690-700 – reference: 15223320 - J Mol Biol. 2004 Jul 16;340(4):783-95 – reference: 17317662 - Mol Cell Proteomics. 2007 Jun;6(6):1000-6 – reference: 6262654 - Nature. 1981 May 28;291(5813):346-9 – reference: 20113005 - J Proteome Res. 2010 Mar 5;9(3):1323-9 – reference: 1883814 - New Biol. 1991 May;3(5):511-24 – reference: 21983601 - Nat Chem Biol. 2011 Nov;7(11):794-802 – reference: 7741214 - Anal Chem. 1995 Apr 15;67(8):1426-36 – reference: 20178363 - J Am Chem Soc. 2010 Mar 24;132(11):3819-30 – reference: 21890647 - Genes Dev. 2011 Sep 15;25(18):1915-27 – reference: 21593866 - Nature. 2011 May 19;473(7347):337-42 – reference: 11842184 - Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):1915-20 – reference: 17130148 - Nucleic Acids Res. 2007 Jan;35(Database issue):D61-5 – reference: 17939991 - Mol Cell Proteomics. 2007 Dec;6(12):2212-29 – reference: 22056041 - Cell. 2011 Nov 11;147(4):789-802 – reference: 3555844 - Cell. 1987 Jun 19;49(6):805-13 – reference: 20450224 - J Proteome Res. 2010 Jul 2;9(7):3520-6 – reference: 19121005 - Mol Microbiol. 2008 Dec;70(6):1487-501 – reference: 11371646 - Proc Natl Acad Sci U S A. 2001 May 22;98(11):6336-41 – reference: 12172017 - Plant Cell. 2002 Aug;14(8):1705-21 – reference: 21885680 - Microbiol Mol Biol Rev. 2011 Sep;75(3):434-67, first page of table of contents – reference: 20436462 - Nat Biotechnol. 2010 May;28(5):503-10 – reference: 18724940 - Cell. 2008 Aug 22;134(4):679-91 – reference: 18393617 - Mol Plant Microbe Interact. 2008 May;21(5):576-85 – reference: 19011639 - Nat Chem Biol. 2009 Jan;5(1):23-5 – reference: 20711195 - Nat Methods. 2010 Sep;7(9):709-15 – reference: 3779834 - Cell. 1986 Nov 21;47(4):481-3 – reference: 12683974 - Trends Genet. 2003 Apr;19(4):207-16 – reference: 12716136 - J Proteome Res. 2003 Mar-Apr;2(2):213-9 – reference: 19188922 - Nat Rev Genet. 2009 Mar;10(3):155-9 – reference: 3943125 - Cell. 1986 Jan 31;44(2):283-92 – reference: 18042713 - Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20454-9 – reference: 19478016 - Bioinformatics. 2009 Jun 15;25(12):i54-62 – reference: 19372376 - Proc Natl Acad Sci U S A. 2009 May 5;106(18):7507-12 – reference: 20436464 - Nat Biotechnol. 2010 May;28(5):511-5 – reference: 19289445 - Bioinformatics. 2009 May 1;25(9):1105-11 – reference: 18820680 - Nature. 2008 Oct 30;455(7217):1251-4 – reference: 22068332 - Mol Syst Biol. 2011;7:549 – reference: 16510898 - Genome Res. 2006 Mar;16(3):365-73 – reference: 16683031 - PLoS Genet. 2006 Apr;2(4):e52 – reference: 22037311 - Nature. 2011 Dec 8;480(7376):254-8 – reference: 24226387 - J Am Soc Mass Spectrom. 1994 Nov;5(11):976-89 |
SSID | ssj0036618 |
Score | 2.579449 |
Snippet | The human genome contains stretches of DNA sequence with unknown function. Peptidomics coupled to RNA-Seq now reveals a class of short open reading frames in... The complete extent to which the human genome is translated into polypeptides is of fundamental importance. We report a peptidomic strategy to detect short... The amount of the transcriptome that is translated into polypeptides is of fundamental importance. We developed a peptidomic strategy to detect short ORF... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 59 |
SubjectTerms | 631/208/726/1912 631/92/475 Biochemical Engineering Biochemistry Bioorganic Chemistry Cell Biology Cellular biology Chemistry Chemistry/Food Science Codon Humans Mammals Open Reading Frames Peptides Peptides - chemistry Polypeptides Proteome Proteomics RNA, Messenger - genetics |
Title | Peptidomic discovery of short open reading frame–encoded peptides in human cells |
URI | https://link.springer.com/article/10.1038/nchembio.1120 https://www.ncbi.nlm.nih.gov/pubmed/23160002 https://www.proquest.com/docview/1284330594 https://www.proquest.com/docview/1239055765 https://pubmed.ncbi.nlm.nih.gov/PMC3625679 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5Be4ALgpZHSqmMhMoFq87ajpMTKlWXColqhai0t8hOxupKNFma7aH_vh5vElgKXHKIJw_PjO3xeOYbgHeqrqyslOW1MsgVZpI7XXteSGcK4YNNXFBy8tfz7OxCfZnree9w6_qwymFOjBN13VbkIz-ieTTsvXWhPi5_cqoaRaerfQmNh7BN0GWk1WY-brhkWHtiKpzWE66UFj3GppD5URNYcuUWLaXQiM016Z6heT9e8o9D07gWTZ_Ck96IZMdrqT-DB9jswO5xEzbQV7fskMWwzugv34FHJ0NJt12YzSiGpaZEZEbpuBS-ectaz7rLYIUzqqTFrtdR9cxT1BYnmMsaa7aMD2LHFg2LZf0Yefy753AxPf1-csb7kgq80hOx4sb61FUpGieN0DYM3jSrMMt9JnxtvXU6t9oKYw0WXubeWSPqIDNMEQmgSb6AraZt8BUw41O0mFeOAPJRpQ5zk6MNbw5zVribwIeBqWXV441T2YsfZTz3lnk5yKAkGSRwOJIv10Ab_yLcHyRU9uOtK39pRwJvx-bAXWKGbbC9IRpZEOJYphN4uRbo-KVg5Wa0OCRgNkQ9EhAK92ZLs7iMaNzBAtCZKRJ4PyjFb7_1tw7s_b8Dr-HxJJbcIDfPPmytrm_wTTB8Vu4gane45tPPB7D96fR89u0OIMUJoA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXBC2PQAEjQblgNYnjODkgVBWWLX2oh1bqLdjJWF2JJkuzFdo_xW_E4yQLS4Fbr_HEsT2T8dgz8w3Aq6QqtSgTzatEIU8wFdzIyvJcGJWH1tnEOSUnHx6l49Pk85k8W4EfQy4MhVUOOtEr6qop6Y58m_SoO3vLPHk__capahR5V4cSGp1Y7OP8uzuyte_2Pjj-vo7j0ceT3THvqwrwUsbhjCttI1NGqIxQodROfqO0xDSzaWgrbbWRmZY6VFphbkVmjVZh5YaNESJhFAnX7y247QaT02EvG30aNL9we51PvZMy5kkiwx7TMxTZdu1YcGEmDaXshMt74DXD9np85h9OWr_3je7B3d5oZTudlN2HFazXYWOndgf2iznbYj6M1N_Pr8Pa7lBCbgOOjylmpqLEZ0bpvxQuOmeNZe25s_oZVe5il10UP7MUJcYJVrPCik39i9iySc18GUFGHob2AZzeyGI_hNW6qfExMGUj1JiVhgD5MYkMZipD7Xp2OtI9DeDtsKhF2eObU5mNr4X3s4usGHhQEA8C2FqQTztgj38Rbg4cKvr_uy1-SWMALxfNbnVpMXSNzRXRiJwQzlIZwKOOoYsvOas6pc0oALXE6gUBoX4vt9STc4_-7SwOmao8gDeDUPw2rL9N4Mn_J_AC1sYnhwfFwd7R_lO4E_tyH3TFtAmrs8srfOaMrpl57iWdwZeb_rV-AnCJRYw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfGTQJeEGx8FAYECcYL0fUrTfuA0Nh22hicTohJe-uS1tFOYu2x3oTuX-OvI07bg2PA216bNG1sJ7YT-2eAl3FZqKiIFS9jiTzGJOJalIZnkZaZb6xNnFFy8qdxcnAcfzgRJ2vwo8-FobDKfk90G3VZF3RGPqR91PreIouHpguLmOyN3s2-caogRTetfTmNVkSOcPHdum_N28M9y-tXYTja_7J7wLsKA7wQoT_nUplAFwFKHUlfKCvLQVJgkprEN6UySotUCeVLJTEzUWq0kn5pp4ABIuEVRXbcG7AuySsawPr7_fHkc68HIqv5XCKeECGPY-F3CJ9-lA4ry5BzPa0pgcdf1YhXzNyr0Zp_XNk6TTi6C3c6E5bttDJ3D9aw2oDNncq67-cLts1cUKk7rd-AW7t9QblNmEwogqakNGhGycAUPLpgtWHNmfUBGNXxYhdtTD8zFDPGCWSzxJLN3IvYsGnFXFFBRvcNzX04vhZyP4BBVVf4CJg0ASpMC03w_BgHGlOZorIj2x3TPvXgTU_UvOjQzqnoxtfc3bpHad7zICceeLC97D5rYT7-1XGr51DerfYm_yWbHrxYNlvqEjFUhfUl9YkywjtLhAcPW4Yuv2Rt7IRUkwdyhdXLDoQBvtpSTc8cFri1P0QiMw9e90Lx22_9bQKP_z-B53DTLqv84-H46AncDl3tDzpv2oLB_OISn1oLbK6fdaLO4PS6V9dPnAFLHg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Peptidomic+discovery+of+short+open+reading+frame%E2%80%93encoded+peptides+in+human+cells&rft.jtitle=Nature+chemical+biology&rft.au=Slavoff%2C+Sarah+A&rft.au=Mitchell%2C+Andrew+J&rft.au=Schwaid%2C+Adam+G&rft.au=Cabili%2C+Moran+N&rft.date=2013-01-01&rft.pub=Nature+Publishing+Group+US&rft.issn=1552-4450&rft.eissn=1552-4469&rft.volume=9&rft.issue=1&rft.spage=59&rft.epage=64&rft_id=info:doi/10.1038%2Fnchembio.1120&rft.externalDocID=10_1038_nchembio_1120 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4450&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4450&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4450&client=summon |