Peptidomic discovery of short open reading frame–encoded peptides in human cells

The human genome contains stretches of DNA sequence with unknown function. Peptidomics coupled to RNA-Seq now reveals a class of short open reading frames in human genomes that are translated into small peptides. The complete extent to which the human genome is translated into polypeptides is of fun...

Full description

Saved in:
Bibliographic Details
Published inNature chemical biology Vol. 9; no. 1; pp. 59 - 64
Main Authors Slavoff, Sarah A, Mitchell, Andrew J, Schwaid, Adam G, Cabili, Moran N, Ma, Jiao, Levin, Joshua Z, Karger, Amir D, Budnik, Bogdan A, Rinn, John L, Saghatelian, Alan
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.01.2013
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The human genome contains stretches of DNA sequence with unknown function. Peptidomics coupled to RNA-Seq now reveals a class of short open reading frames in human genomes that are translated into small peptides. The complete extent to which the human genome is translated into polypeptides is of fundamental importance. We report a peptidomic strategy to detect short open reading frame (sORF)-encoded polypeptides (SEPs) in human cells. We identify 90 SEPs, 86 of which are previously uncharacterized, which is the largest number of human SEPs ever reported. SEP abundances range from 10–1,000 molecules per cell, identical to abundances of known proteins. SEPs arise from sORFs in noncoding RNAs as well as multicistronic mRNAs, and many SEPs initiate with non-AUG start codons, indicating that noncanonical translation may be more widespread in mammals than previously thought. In addition, coding sORFs are present in a small fraction (8 out of 1,866) of long intergenic noncoding RNAs. Together, these results provide strong evidence that the human proteome is more complex than previously appreciated.
AbstractList The complete extent to which the human genome is translated into polypeptides is of fundamental importance. We report a peptidomic strategy to detect short open reading frame (sORF)-encoded polypeptides (SEPs) in human cells. We identify 90 SEPs, 86 of which are previously uncharacterized, which is the largest number of human SEPs ever reported. SEP abundances range from 10-1,000 molecules per cell, identical to abundances of known proteins. SEPs arise from sORFs in noncoding RNAs as well as multicistronic mRNAs, and many SEPs initiate with non-AUG start codons, indicating that noncanonical translation may be more widespread in mammals than previously thought. In addition, coding sORFs are present in a small fraction (8 out of 1,866) of long intergenic noncoding RNAs. Together, these results provide strong evidence that the human proteome is more complex than previously appreciated.
The complete extent to which the human genome is translated into polypeptides is of fundamental importance. We report a peptidomic strategy to detect short open reading frame (sORF)-encoded polypeptides (SEPs) in human cells. We identify 90 SEPs, 86 of which are previously uncharacterized, which is the largest number of human SEPs ever reported. SEP abundances range from 10-1,000 molecules per cell, identical to abundances of known proteins. SEPs arise from sORFs in noncoding RNAs as well as multicistronic mRNAs, and many SEPs initiate with non-AUG start codons, indicating that noncanonical translation may be more widespread in mammals than previously thought. In addition, coding sORFs are present in a small fraction (8 out of 1,866) of long intergenic noncoding RNAs. Together, these results provide strong evidence that the human proteome is more complex than previously appreciated. [PUBLICATION ABSTRACT]
The amount of the transcriptome that is translated into polypeptides is of fundamental importance. We developed a peptidomic strategy to detect short ORF (sORF)-encoded polypeptides (SEPs) in human cells. We identified 90 SEPs, 86 of which are novel, the largest number of human SEPs ever reported. SEP abundances range from 10-1000 molecules per cell, identical to known proteins. SEPs arise from sORFs in non-coding RNAs as well as multi-cistronic mRNAs, and many SEPs initiate with non-AUG start codons, indicating that non-canonical translation may be more widespread in mammals than previously thought. In addition, coding sORFs are present in a small fraction (8/1866) of long intergenic non-coding RNAs (lincRNAs). Together, these results provide the strongest evidence to date that the human proteome is more complex than previously appreciated.
The complete extent to which the human genome is translated into polypeptides is of fundamental importance. We report a peptidomic strategy to detect short open reading frame (sORF)-encoded polypeptides (SEPs) in human cells. We identify 90 SEPs, 86 of which are previously uncharacterized, which is the largest number of human SEPs ever reported. SEP abundances range from 10-1,000 molecules per cell, identical to abundances of known proteins. SEPs arise from sORFs in noncoding RNAs as well as multicistronic mRNAs, and many SEPs initiate with non-AUG start codons, indicating that noncanonical translation may be more widespread in mammals than previously thought. In addition, coding sORFs are present in a small fraction (8 out of 1,866) of long intergenic noncoding RNAs. Together, these results provide strong evidence that the human proteome is more complex than previously appreciated.The complete extent to which the human genome is translated into polypeptides is of fundamental importance. We report a peptidomic strategy to detect short open reading frame (sORF)-encoded polypeptides (SEPs) in human cells. We identify 90 SEPs, 86 of which are previously uncharacterized, which is the largest number of human SEPs ever reported. SEP abundances range from 10-1,000 molecules per cell, identical to abundances of known proteins. SEPs arise from sORFs in noncoding RNAs as well as multicistronic mRNAs, and many SEPs initiate with non-AUG start codons, indicating that noncanonical translation may be more widespread in mammals than previously thought. In addition, coding sORFs are present in a small fraction (8 out of 1,866) of long intergenic noncoding RNAs. Together, these results provide strong evidence that the human proteome is more complex than previously appreciated.
The human genome contains stretches of DNA sequence with unknown function. Peptidomics coupled to RNA-Seq now reveals a class of short open reading frames in human genomes that are translated into small peptides. The complete extent to which the human genome is translated into polypeptides is of fundamental importance. We report a peptidomic strategy to detect short open reading frame (sORF)-encoded polypeptides (SEPs) in human cells. We identify 90 SEPs, 86 of which are previously uncharacterized, which is the largest number of human SEPs ever reported. SEP abundances range from 10–1,000 molecules per cell, identical to abundances of known proteins. SEPs arise from sORFs in noncoding RNAs as well as multicistronic mRNAs, and many SEPs initiate with non-AUG start codons, indicating that noncanonical translation may be more widespread in mammals than previously thought. In addition, coding sORFs are present in a small fraction (8 out of 1,866) of long intergenic noncoding RNAs. Together, these results provide strong evidence that the human proteome is more complex than previously appreciated.
Author Saghatelian, Alan
Levin, Joshua Z
Ma, Jiao
Mitchell, Andrew J
Schwaid, Adam G
Cabili, Moran N
Rinn, John L
Slavoff, Sarah A
Karger, Amir D
Budnik, Bogdan A
AuthorAffiliation 4 Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
8 Center of Systems Biology, Mass Spectrometry and Proteomics Lab, Faculty of Arts and Sciences, Harvard University, 52 Oxford St, Northwest Labs, B243.20, Cambridge, Massachusetts 02138, USA
7 Research Computing, Division of Science, Faculty of Arts and Sciences, Harvard University, 38 Oxford St, Room 211A, Cambridge, Massachusetts 02138, USA
1 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
5 Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA
3 Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
6 Genome Sequencing & Analysis Program, Broad Institute of MIT and Harvard, 320 Charles Street, Cambridge, Massachusetts 02141, USA
2 Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
AuthorAffiliation_xml – name: 5 Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA
– name: 2 Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
– name: 4 Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
– name: 6 Genome Sequencing & Analysis Program, Broad Institute of MIT and Harvard, 320 Charles Street, Cambridge, Massachusetts 02141, USA
– name: 7 Research Computing, Division of Science, Faculty of Arts and Sciences, Harvard University, 38 Oxford St, Room 211A, Cambridge, Massachusetts 02138, USA
– name: 1 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
– name: 3 Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
– name: 8 Center of Systems Biology, Mass Spectrometry and Proteomics Lab, Faculty of Arts and Sciences, Harvard University, 52 Oxford St, Northwest Labs, B243.20, Cambridge, Massachusetts 02138, USA
Author_xml – sequence: 1
  givenname: Sarah A
  surname: Slavoff
  fullname: Slavoff, Sarah A
  organization: Department of Chemistry and Chemical Biology, Harvard University
– sequence: 2
  givenname: Andrew J
  surname: Mitchell
  fullname: Mitchell, Andrew J
  organization: Department of Molecular and Cellular Biology, Harvard University
– sequence: 3
  givenname: Adam G
  surname: Schwaid
  fullname: Schwaid, Adam G
  organization: Department of Chemistry and Chemical Biology, Harvard University
– sequence: 4
  givenname: Moran N
  surname: Cabili
  fullname: Cabili, Moran N
  organization: Broad Institute of MIT and Harvard, Department of Systems Biology, Harvard Medical School, Department of Stem Cell and Regenerative Biology, Harvard University
– sequence: 5
  givenname: Jiao
  surname: Ma
  fullname: Ma, Jiao
  organization: Department of Chemistry and Chemical Biology, Harvard University
– sequence: 6
  givenname: Joshua Z
  surname: Levin
  fullname: Levin, Joshua Z
  organization: Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard
– sequence: 7
  givenname: Amir D
  surname: Karger
  fullname: Karger, Amir D
  organization: Division of Science, Research Computing, Faculty of Arts and Sciences, Harvard University
– sequence: 8
  givenname: Bogdan A
  surname: Budnik
  fullname: Budnik, Bogdan A
  organization: Center of Systems Biology, Mass Spectrometry and Proteomics Laboratory, Faculty of Arts and Sciences, Harvard University
– sequence: 9
  givenname: John L
  surname: Rinn
  fullname: Rinn, John L
  organization: Broad Institute of MIT and Harvard, Department of Stem Cell and Regenerative Biology, Harvard University
– sequence: 10
  givenname: Alan
  surname: Saghatelian
  fullname: Saghatelian, Alan
  email: saghatelian@chemistry.harvard.edu
  organization: Department of Chemistry and Chemical Biology, Harvard University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23160002$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1q3DAUhUVJaX7aZbdFkE02nl5ZI9neBEJIfyDQEtK1kOWrGQVbciU7kF3eoW_YJ6mmkwxpSFe6oO8c7rnnkOz54JGQ9wwWDHj90Zs1Dq0LC8ZKeEUOmBBlsVzKZm83C9gnhyndAHApWf2G7JecSQAoD8jVdxwn14XBGdq5ZMItxjsaLE3rECcaRvQ0ou6cX1Eb9YC_73-hN6HDjo5_pZio83Q9D9pTg32f3pLXVvcJ3z28R-THp4vr8y_F5bfPX8_PLgsjSpiKSlvWGoZVyysQuq6BSYOythJsp61uRa2FhkpX2Fhe21ZX0DVgkSFmA-BH5HTrO87tgJ1BP0XdqzG6Qcc7FbRT__54t1arcKu4LIWsmmxw8mAQw88Z06SGfIEcQXsMc1Ks5A0IUUmR0eNn6E2Yo8_xMlUvOQfRLDP14elGu1Uez52BYguYGFKKaHcIA7WpUz3WqTZ1Zp4_442b9OTCJpDr_6tabFUpu_sVxifLvij4A3V1uGY
CitedBy_id crossref_primary_10_1038_s41559_018_0506_6
crossref_primary_10_1007_s13361_019_02270_y
crossref_primary_10_1111_mmi_14143
crossref_primary_10_1016_j_mib_2017_09_010
crossref_primary_10_1080_07391102_2024_2335555
crossref_primary_10_1186_s12943_020_1147_3
crossref_primary_10_1073_pnas_1309956110
crossref_primary_10_1039_C8MO00283E
crossref_primary_10_1111_cmi_13119
crossref_primary_10_7868_S013234231706001X
crossref_primary_10_1002_pmic_202300105
crossref_primary_10_1134_S106816201804009X
crossref_primary_10_1186_1741_7007_12_14
crossref_primary_10_3390_cancers13133115
crossref_primary_10_1093_bioinformatics_btac821
crossref_primary_10_1016_j_tibs_2016_05_003
crossref_primary_10_1093_bib_bbae510
crossref_primary_10_1128_mBio_02819_18
crossref_primary_10_1016_j_jprot_2018_02_008
crossref_primary_10_1134_S106816201706005X
crossref_primary_10_1080_15476286_2015_1094601
crossref_primary_10_1016_j_bbagrm_2019_194419
crossref_primary_10_1021_acs_jproteome_0c00286
crossref_primary_10_1016_j_cell_2019_10_032
crossref_primary_10_4161_nucl_29577
crossref_primary_10_1101_gr_246462_118
crossref_primary_10_1080_14789450_2017_1394189
crossref_primary_10_3389_fgene_2019_01111
crossref_primary_10_1016_j_cmet_2015_02_009
crossref_primary_10_1093_nargab_lqaa043
crossref_primary_10_1016_j_compbiolchem_2020_107370
crossref_primary_10_1093_gbe_evx136
crossref_primary_10_1016_j_biochi_2015_03_001
crossref_primary_10_1002_1878_0261_13743
crossref_primary_10_1111_cpr_12107
crossref_primary_10_1016_j_canlet_2022_215723
crossref_primary_10_1016_j_ymeth_2013_09_017
crossref_primary_10_1021_acs_jproteome_1c00926
crossref_primary_10_3389_fonc_2020_616717
crossref_primary_10_1172_JCI84419
crossref_primary_10_1002_bies_201400048
crossref_primary_10_3389_fgene_2014_00476
crossref_primary_10_1002_jcsm_12866
crossref_primary_10_1021_jacs_0c09574
crossref_primary_10_1038_s41422_024_01059_3
crossref_primary_10_1021_acs_jproteome_2c00004
crossref_primary_10_1021_acs_jproteome_5b00472
crossref_primary_10_1186_s13059_024_03287_7
crossref_primary_10_1016_j_yexcr_2020_112057
crossref_primary_10_1038_s41587_020_00806_2
crossref_primary_10_1093_dnares_dsw040
crossref_primary_10_1126_science_aad3867
crossref_primary_10_1101_gr_275831_121
crossref_primary_10_1016_j_cell_2013_06_020
crossref_primary_10_1093_nar_gkt952
crossref_primary_10_1016_j_ncrna_2024_10_006
crossref_primary_10_1093_bioinformatics_btw581
crossref_primary_10_3390_cells13191645
crossref_primary_10_1016_j_bpr_2024_100167
crossref_primary_10_1016_j_euprot_2014_02_009
crossref_primary_10_1016_j_yexcr_2020_112229
crossref_primary_10_3724_zdxbyxb_2023_0128
crossref_primary_10_1016_j_euprot_2014_02_006
crossref_primary_10_1038_s41467_021_20911_3
crossref_primary_10_1038_ncomms6429
crossref_primary_10_1002_wrna_1245
crossref_primary_10_2174_1568026620666200722112450
crossref_primary_10_1021_acs_jproteome_0c00254
crossref_primary_10_1111_tpj_13571
crossref_primary_10_1038_nchembio_1964
crossref_primary_10_1016_j_lfs_2018_11_018
crossref_primary_10_1002_slct_202401782
crossref_primary_10_3390_biology13080563
crossref_primary_10_20517_jtgg_2023_14
crossref_primary_10_1038_s41419_020_2232_7
crossref_primary_10_1002_pmic_201600183
crossref_primary_10_1038_nmeth_2321
crossref_primary_10_1021_acs_jproteome_4c00319
crossref_primary_10_1016_j_isci_2022_105547
crossref_primary_10_1007_s11427_019_9580_5
crossref_primary_10_3389_fgene_2020_00095
crossref_primary_10_1134_S1819712421020112
crossref_primary_10_1080_14789450_2019_1571919
crossref_primary_10_7554_eLife_27860
crossref_primary_10_1021_acs_analchem_9b04188
crossref_primary_10_1371_journal_pone_0194518
crossref_primary_10_1002_advs_202408426
crossref_primary_10_1016_j_celrep_2014_05_023
crossref_primary_10_1109_TCBB_2024_3371984
crossref_primary_10_1021_acs_biochem_7b00864
crossref_primary_10_1016_j_canlet_2020_10_002
crossref_primary_10_1002_pmic_201400310
crossref_primary_10_1016_j_molcel_2023_12_003
crossref_primary_10_3390_v14102103
crossref_primary_10_1002_arch_22082
crossref_primary_10_1021_acs_analchem_6b00191
crossref_primary_10_1021_acs_jproteome_7b00419
crossref_primary_10_1016_j_bbadis_2017_03_024
crossref_primary_10_1128_spectrum_02528_23
crossref_primary_10_1186_s12943_020_01188_4
crossref_primary_10_2139_ssrn_3866842
crossref_primary_10_1016_j_celrep_2013_10_041
crossref_primary_10_1134_S0006297924603630
crossref_primary_10_1242_dev_098343
crossref_primary_10_1038_nchembio_1815
crossref_primary_10_1128_spectrum_00826_24
crossref_primary_10_1038_s41420_024_02175_0
crossref_primary_10_3390_biomedicines9060618
crossref_primary_10_1093_nar_gkv1175
crossref_primary_10_1094_MPMI_04_20_0082_TA
crossref_primary_10_1016_j_ccell_2015_02_004
crossref_primary_10_1016_j_euprot_2014_02_014
crossref_primary_10_1093_nar_gkw909
crossref_primary_10_1038_s41467_024_46112_2
crossref_primary_10_1155_2020_7182428
crossref_primary_10_1038_nrm_2017_104
crossref_primary_10_1073_pnas_2001897118
crossref_primary_10_1093_narcan_zcae023
crossref_primary_10_1247_csf_18005
crossref_primary_10_1016_j_isci_2024_108972
crossref_primary_10_1016_j_jprot_2020_103965
crossref_primary_10_1016_j_tig_2015_01_001
crossref_primary_10_3390_ncrna6040041
crossref_primary_10_1016_j_molcel_2022_06_035
crossref_primary_10_1038_cr_2014_114
crossref_primary_10_1186_s13059_024_03403_7
crossref_primary_10_3109_10409238_2015_1016215
crossref_primary_10_1093_bib_bby055
crossref_primary_10_1155_2018_5205831
crossref_primary_10_1007_s12035_018_1253_z
crossref_primary_10_1186_s13073_015_0142_6
crossref_primary_10_1002_bies_201400103
crossref_primary_10_31857_S0320972521090098
crossref_primary_10_1016_j_tig_2024_12_001
crossref_primary_10_7554_eLife_59303
crossref_primary_10_1016_j_micpath_2018_08_062
crossref_primary_10_1016_j_cell_2016_02_066
crossref_primary_10_1038_s41598_019_47424_w
crossref_primary_10_1038_s41467_022_31327_y
crossref_primary_10_3389_fcell_2021_687748
crossref_primary_10_1038_nrm4069
crossref_primary_10_1038_s41420_024_02185_y
crossref_primary_10_1016_j_bbagrm_2015_07_017
crossref_primary_10_1038_s41467_020_14968_9
crossref_primary_10_1016_j_molcel_2022_06_023
crossref_primary_10_1073_pnas_2021943118
crossref_primary_10_1016_j_isci_2022_103844
crossref_primary_10_1134_S0026893318060031
crossref_primary_10_1134_S0006297921090091
crossref_primary_10_5582_bst_2018_01181
crossref_primary_10_3389_fimmu_2023_1104351
crossref_primary_10_1002_advs_202300314
crossref_primary_10_1021_acs_jproteome_4c00116
crossref_primary_10_1093_jxb_ert295
crossref_primary_10_1016_j_mcpro_2021_100109
crossref_primary_10_1021_acs_biochem_7b00265
crossref_primary_10_1016_j_jprot_2020_103988
crossref_primary_10_1093_nar_gkx1130
crossref_primary_10_1189_jlb_1113599
crossref_primary_10_1186_s12929_022_00802_5
crossref_primary_10_1371_journal_pbio_1002395
crossref_primary_10_1002_cbic_202100534
crossref_primary_10_1101_gr_230938_117
crossref_primary_10_1158_0008_5472_CAN_20_1880
crossref_primary_10_1016_j_gene_2018_11_020
crossref_primary_10_1016_j_tcb_2021_10_010
crossref_primary_10_1186_s12870_015_0468_7
crossref_primary_10_1016_j_molp_2020_05_012
crossref_primary_10_7554_eLife_03528
crossref_primary_10_1007_s40572_016_0092_1
crossref_primary_10_1042_BST20221074
crossref_primary_10_1631_jzus_B1900336
crossref_primary_10_1128_MCB_00528_19
crossref_primary_10_7554_eLife_03523
crossref_primary_10_1038_s41467_020_20841_6
crossref_primary_10_3390_cancers16152660
crossref_primary_10_18632_aging_100943
crossref_primary_10_1016_j_ymthe_2021_03_004
crossref_primary_10_1093_dnares_dsab007
crossref_primary_10_1186_s12864_017_3586_9
crossref_primary_10_1126_sciadv_aaz2059
crossref_primary_10_1021_ja406606j
crossref_primary_10_1080_15476286_2016_1218589
crossref_primary_10_1101_gad_302604_117
crossref_primary_10_1038_nsmb_2843
crossref_primary_10_1038_s41576_021_00417_w
crossref_primary_10_3389_fgene_2018_00144
crossref_primary_10_1002_pmic_202000084
crossref_primary_10_1038_s41467_018_03311_y
crossref_primary_10_1186_gb4172
crossref_primary_10_1128_JVI_02989_13
crossref_primary_10_3389_fpls_2021_695439
crossref_primary_10_1038_s41467_024_53008_8
crossref_primary_10_1038_s42003_021_02759_x
crossref_primary_10_1093_nar_gku1310
crossref_primary_10_1038_s41586_018_0794_7
crossref_primary_10_1002_pmic_201400165
crossref_primary_10_1038_nrg3645
crossref_primary_10_1016_j_csbj_2023_10_040
crossref_primary_10_1093_gbe_evx103
crossref_primary_10_1371_journal_pgen_1005721
crossref_primary_10_1021_acs_jproteome_7b00707
crossref_primary_10_1016_j_bbagrm_2015_06_013
crossref_primary_10_1021_jasms_1c00076
crossref_primary_10_1093_database_baaa007
crossref_primary_10_1038_nrg3520
crossref_primary_10_1016_j_gene_2016_04_057
crossref_primary_10_2217_epi_2017_0020
crossref_primary_10_1101_gr_253302_119
crossref_primary_10_3390_biom11111673
crossref_primary_10_1038_nsmb_2942
crossref_primary_10_1134_S1068162017030062
crossref_primary_10_1093_nar_gkaa277
crossref_primary_10_1016_j_tig_2023_10_008
crossref_primary_10_1093_nar_gkx906
crossref_primary_10_1101_cshperspect_a032680
crossref_primary_10_3389_fmolb_2021_634146
crossref_primary_10_1038_s41467_017_01981_8
crossref_primary_10_1172_JCI152911
crossref_primary_10_1093_nar_gkz087
crossref_primary_10_3390_genes8080206
crossref_primary_10_3389_fgene_2014_00164
crossref_primary_10_1134_S1068162018040076
crossref_primary_10_3389_fgene_2023_1089053
crossref_primary_10_1093_nar_gkv1218
crossref_primary_10_1021_acs_jproteome_7b00085
crossref_primary_10_1002_wrna_1845
crossref_primary_10_1038_s41467_021_25785_z
crossref_primary_10_1371_journal_pgen_1009585
crossref_primary_10_1016_j_bbagrm_2017_05_002
crossref_primary_10_1016_j_yexcr_2020_111853
crossref_primary_10_1002_pmic_202100211
crossref_primary_10_1016_j_yexcr_2020_111973
crossref_primary_10_1158_2326_6066_CIR_19_0886
crossref_primary_10_1038_s41587_019_0298_5
crossref_primary_10_1002_pmic_201700274
crossref_primary_10_1002_mas_21483
crossref_primary_10_1134_S2634827624600324
crossref_primary_10_7868_S0132342317030071
crossref_primary_10_1016_j_gene_2024_149019
crossref_primary_10_1093_nar_gkz1059
crossref_primary_10_1126_scitranslmed_adk9524
crossref_primary_10_1021_acs_jproteome_9b00039
crossref_primary_10_1021_jacs_1c05386
crossref_primary_10_1038_s41467_018_04112_z
crossref_primary_10_1186_s13059_015_0742_x
crossref_primary_10_1016_j_mcpro_2022_100264
crossref_primary_10_1093_jb_mvaa143
crossref_primary_10_1128_mBio_01659_20
crossref_primary_10_1146_annurev_genom_090314_024939
crossref_primary_10_15252_embj_2020104763
crossref_primary_10_1016_j_mcpro_2023_100631
crossref_primary_10_1093_nar_gkw991
crossref_primary_10_1186_s12929_024_01047_0
crossref_primary_10_1016_j_tig_2024_11_010
crossref_primary_10_1016_j_biocel_2013_04_020
crossref_primary_10_1042_BST20150170
crossref_primary_10_1101_gad_305250_117
crossref_primary_10_1261_rna_053561_115
crossref_primary_10_3390_ncrna7030044
crossref_primary_10_7717_peerj_12508
crossref_primary_10_1016_j_neo_2018_02_010
crossref_primary_10_1073_pnas_1304124110
crossref_primary_10_1007_s12204_014_1563_x
crossref_primary_10_1371_journal_pone_0184119
crossref_primary_10_1093_cvr_cvad044
crossref_primary_10_3390_ncrna10020020
crossref_primary_10_1007_s00018_017_2628_4
crossref_primary_10_4137_BBI_S29435
crossref_primary_10_7554_eLife_66226
crossref_primary_10_1002_pmic_201700058
crossref_primary_10_1021_acs_jproteome_8b00948
crossref_primary_10_1158_2326_6066_CIR_20_0964
crossref_primary_10_1016_j_tibs_2020_10_003
crossref_primary_10_1093_gbe_evae224
crossref_primary_10_1021_acs_jproteome_6b00569
crossref_primary_10_1038_nrm_2017_58
crossref_primary_10_1038_s41598_024_69789_3
crossref_primary_10_1039_D4CB00277F
crossref_primary_10_1080_15476286_2016_1172756
crossref_primary_10_1371_journal_pone_0070698
crossref_primary_10_1021_pr500176c
crossref_primary_10_1038_nmeth_3144
crossref_primary_10_1074_mcp_RA119_001456
crossref_primary_10_1021_acs_biochem_8b00785
crossref_primary_10_1038_s41419_024_07046_1
crossref_primary_10_1002_jev2_12123
crossref_primary_10_1016_j_isci_2023_106781
crossref_primary_10_1016_j_cbpa_2015_10_023
crossref_primary_10_1093_narcan_zcac034
crossref_primary_10_1007_s42764_021_00040_3
crossref_primary_10_1016_j_mcpro_2022_100480
crossref_primary_10_3389_fonc_2021_616576
crossref_primary_10_1093_nar_gku794
crossref_primary_10_1134_S1022795416020149
crossref_primary_10_3390_molecules25051093
crossref_primary_10_1016_j_sbi_2015_02_017
crossref_primary_10_1002_pmic_201700064
crossref_primary_10_35118_apjmbb_2023_031_3_10
crossref_primary_10_1002_pmic_201400180
crossref_primary_10_1016_j_cell_2019_05_010
crossref_primary_10_1007_s11033_020_05308_7
crossref_primary_10_1074_jbc_C113_533968
crossref_primary_10_3390_cancers14246031
crossref_primary_10_1016_j_fgb_2022_103688
crossref_primary_10_1111_1758_2229_12473
crossref_primary_10_1186_s12935_024_03446_7
crossref_primary_10_1093_bfgp_elae018
crossref_primary_10_1038_s41589_019_0425_0
crossref_primary_10_1021_pr400446z
crossref_primary_10_1111_febs_13101
crossref_primary_10_1016_j_biosystems_2015_11_009
crossref_primary_10_1111_febs_15769
crossref_primary_10_15252_embj_201592759
crossref_primary_10_1158_0008_5472_CAN_21_3910
crossref_primary_10_1021_acs_jproteome_8b00761
crossref_primary_10_1093_nar_gkx1114
crossref_primary_10_1016_j_bbagrm_2014_06_006
crossref_primary_10_1016_j_neuron_2015_06_012
crossref_primary_10_1038_s42003_021_02619_8
crossref_primary_10_1016_j_tig_2024_10_012
crossref_primary_10_1186_s13045_024_01591_0
crossref_primary_10_1021_acs_biochem_8b00726
crossref_primary_10_1146_annurev_virology_100114_054854
crossref_primary_10_1016_j_ncrna_2018_08_002
crossref_primary_10_1038_s41589_022_01003_9
crossref_primary_10_1158_1541_7786_MCR_21_0775
crossref_primary_10_1016_j_bbagen_2024_130747
crossref_primary_10_1016_j_gpb_2022_09_008
crossref_primary_10_1371_journal_pone_0147247
crossref_primary_10_1016_j_molonc_2016_06_003
crossref_primary_10_1016_j_jtbi_2016_11_021
crossref_primary_10_1021_acs_jproteome_1c00115
crossref_primary_10_1038_nchembio_2249
crossref_primary_10_1002_ijc_33132
crossref_primary_10_1038_s41587_021_01038_8
crossref_primary_10_1016_j_celrep_2023_113145
crossref_primary_10_3389_fgene_2021_796060
crossref_primary_10_1186_s12935_024_03281_w
crossref_primary_10_3389_fgene_2019_00981
crossref_primary_10_1371_journal_pbio_1001933
crossref_primary_10_1093_nar_gky705
crossref_primary_10_1016_j_cclet_2018_04_027
crossref_primary_10_1074_mcp_M116_066662
crossref_primary_10_1155_2015_319861
crossref_primary_10_1002_pmic_201700255
crossref_primary_10_1073_pnas_1317811111
crossref_primary_10_1007_s00253_018_9159_2
crossref_primary_10_1093_jmcb_mjz091
crossref_primary_10_18632_aging_205200
crossref_primary_10_3390_ijms21114182
crossref_primary_10_1093_cvr_cvad112
crossref_primary_10_1128_microbiolspec_MDNA3_0061_2014
crossref_primary_10_3389_fgene_2020_00548
crossref_primary_10_1038_s41467_020_14500_z
crossref_primary_10_1126_science_aad4076
crossref_primary_10_1016_j_canlet_2018_02_022
crossref_primary_10_1080_14789450_2021_1914594
crossref_primary_10_1016_j_csbj_2020_11_030
crossref_primary_10_1080_15476286_2017_1279787
crossref_primary_10_1186_s13395_021_00279_0
crossref_primary_10_1074_mcp_M113_027540
crossref_primary_10_1002_cbic_201800715
crossref_primary_10_1186_s12859_018_2550_2
crossref_primary_10_1002_pmic_202100008
crossref_primary_10_3390_ijms22115476
crossref_primary_10_1007_s13258_024_01549_z
crossref_primary_10_1016_j_molcel_2021_08_033
crossref_primary_10_1093_nar_gkz734
crossref_primary_10_3390_ijms25063539
crossref_primary_10_1016_j_cmet_2022_12_004
crossref_primary_10_1016_j_trecan_2019_02_011
crossref_primary_10_1038_ncb3052
crossref_primary_10_1152_physiolgenomics_00048_2020
crossref_primary_10_3390_cells10112983
crossref_primary_10_1146_annurev_cellbio_100616_060516
crossref_primary_10_1016_j_ymthe_2024_05_021
crossref_primary_10_1042_BST20160376
crossref_primary_10_1007_s00018_022_04145_0
crossref_primary_10_1101_gr_191122_115
crossref_primary_10_1016_j_yexcr_2017_10_010
crossref_primary_10_1016_j_celrep_2018_12_077
crossref_primary_10_1093_hr_uhac023
crossref_primary_10_3892_ijo_2013_1969
crossref_primary_10_1038_ncomms11663
crossref_primary_10_1038_s41392_019_0092_3
crossref_primary_10_1038_srep09737
crossref_primary_10_1016_j_cell_2013_06_009
crossref_primary_10_1016_j_isci_2025_111884
crossref_primary_10_1093_bib_bbae268
crossref_primary_10_1186_s12859_014_0380_4
crossref_primary_10_1002_pmic_201700219
crossref_primary_10_1186_s12864_024_10948_1
crossref_primary_10_3390_biom13060979
crossref_primary_10_1158_0008_5472_CAN_22_1525
crossref_primary_10_1186_s13059_020_02081_5
crossref_primary_10_3390_ijms23137332
crossref_primary_10_1111_pce_15104
crossref_primary_10_1016_j_stemcr_2020_03_002
crossref_primary_10_1038_nature21036
crossref_primary_10_2139_ssrn_4143786
crossref_primary_10_1016_j_cbpa_2021_102108
crossref_primary_10_1038_nature21034
crossref_primary_10_1038_s42003_021_02007_2
crossref_primary_10_1021_acs_jproteome_1c00889
crossref_primary_10_1016_j_gene_2017_08_020
crossref_primary_10_1002_pmic_202200421
crossref_primary_10_1126_science_aay0262
crossref_primary_10_18632_aging_103534
crossref_primary_10_1038_ncomms10238
crossref_primary_10_1093_nar_gku1060
crossref_primary_10_1093_molbev_msv117
crossref_primary_10_1093_nar_gkt1386
crossref_primary_10_1002_ijc_34282
crossref_primary_10_1016_j_tcb_2017_04_006
crossref_primary_10_1515_ped_2015_0002
crossref_primary_10_1099_mic_0_001268
crossref_primary_10_1002_wrna_1647
crossref_primary_10_1016_j_isci_2023_106757
crossref_primary_10_1016_j_it_2014_07_005
crossref_primary_10_1093_nar_gkab816
crossref_primary_10_1093_bib_bbad352
crossref_primary_10_1177_11769343221108218
crossref_primary_10_1016_j_plantsci_2013_09_006
crossref_primary_10_1038_s41467_019_12816_z
crossref_primary_10_1016_j_ymeth_2013_03_019
crossref_primary_10_1016_j_bcp_2016_03_022
crossref_primary_10_3390_jcdd8080084
crossref_primary_10_1016_j_ijdevneu_2016_06_001
crossref_primary_10_18632_oncotarget_24307
crossref_primary_10_1021_acs_jproteome_9b00599
crossref_primary_10_1016_j_mcpro_2024_100860
crossref_primary_10_1016_j_tig_2024_09_002
crossref_primary_10_1089_omi_2021_0158
crossref_primary_10_1177_11779322211045878
crossref_primary_10_1007_s10142_024_01426_8
crossref_primary_10_1093_femsml_uqad001
crossref_primary_10_1038_s41467_024_48615_4
crossref_primary_10_1093_bioinformatics_btaa608
crossref_primary_10_1016_j_neuroscience_2024_05_036
crossref_primary_10_1021_pr401280w
crossref_primary_10_1099_jgv_0_000267
crossref_primary_10_1182_blood_2017_06_788695
crossref_primary_10_1002_cpch_77
crossref_primary_10_3390_ijms241310562
crossref_primary_10_1080_14789450_2018_1547194
crossref_primary_10_1002_pro_4708
crossref_primary_10_1016_j_molmed_2014_09_003
crossref_primary_10_1007_s13205_022_03147_w
crossref_primary_10_1021_acs_jproteome_7b00375
crossref_primary_10_1111_jgh_16427
crossref_primary_10_3389_fgene_2021_651485
crossref_primary_10_1146_annurev_anchem_071015_041722
crossref_primary_10_1021_acs_biochem_3c00397
crossref_primary_10_1038_s41388_018_0281_5
crossref_primary_10_1111_cpr_12421
crossref_primary_10_1016_j_semcdb_2014_05_015
crossref_primary_10_1021_ja507448y
crossref_primary_10_1007_s11427_019_1677_8
crossref_primary_10_1016_j_chempr_2021_09_014
crossref_primary_10_1093_nar_gkx469
crossref_primary_10_1186_1471_2105_15_36
crossref_primary_10_1158_0008_5472_CAN_17_2356
crossref_primary_10_1016_j_brainres_2016_04_003
crossref_primary_10_1186_s12859_020_03805_x
crossref_primary_10_1016_j_cbpa_2020_12_002
crossref_primary_10_1038_s41388_022_02271_4
Cites_doi 10.1038/nature10098
10.1021/ac070997p
10.1128/MMBR.00008-11
10.1038/nmeth.1491
10.1038/nature07672
10.1073/pnas.0810916106
10.1021/ac00104a020
10.1038/ncb1595
10.1093/bioinformatics/btp190
10.1111/j.1365-2958.2008.06495.x
10.1016/1044-0305(94)80016-2
10.1074/mcp.M600297-MCP200
10.1016/j.jmb.2004.05.028
10.1073/pnas.0708102104
10.1038/nature07341
10.1038/nchembio.684
10.1016/j.cell.2011.10.002
10.1038/nature06667
10.1038/nbt.1633
10.1021/pr900863u
10.1038/nbt.1621
10.1371/journal.pgen.0020052
10.1093/nar/gkl842
10.1073/pnas.022664799
10.1093/bioinformatics/btp120
10.1038/nature10575
10.1021/pr100037h
10.1371/journal.pbio.0050106
10.1016/0092-8674(86)90762-2
10.1016/0092-8674(86)90609-4
10.1021/ja909524e
10.1021/pr200304u
10.1038/291346a0
10.1074/mcp.M700354-MCP200
10.1038/nchembio.126
10.1073/pnas.0904715106
10.1101/gr.4355406
10.1016/S0168-9525(03)00054-4
10.1105/tpc.002618
10.1094/MPMI-21-5-0576
10.1021/pr020010u
10.1093/nar/gkq1251
10.1038/msb.2011.82
10.1073/pnas.101133498
10.1016/j.cell.2008.06.038
10.1038/nrg2521
10.1101/gad.17446611
10.1016/S0021-9258(17)41806-0
10.1016/0092-8674(87)90618-0
ContentType Journal Article
Copyright Springer Nature America, Inc. 2012
Copyright Nature Publishing Group Jan 2013
Copyright_xml – notice: Springer Nature America, Inc. 2012
– notice: Copyright Nature Publishing Group Jan 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7TK
7TM
7U9
7X7
7XB
88A
88E
88I
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
LK8
M0S
M1P
M2P
M7N
M7P
P64
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
DOI 10.1038/nchembio.1120
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest Central Student

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1552-4469
EndPage 64
ExternalDocumentID PMC3625679
2884111851
23160002
10_1038_nchembio_1120
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: 1F32GM099408-01
– fundername: NIGMS NIH HHS
  grantid: R01 GM102491
– fundername: NHGRI NIH HHS
  grantid: 3U54HG003067
– fundername: NIGMS NIH HHS
  grantid: R01GM102491
– fundername: NIGMS NIH HHS
  grantid: F32 GM099408
– fundername: NIH HHS
  grantid: DP2 OD006670
– fundername: NIGMS NIH HHS
  grantid: T32GM007598
– fundername: NIH HHS
  grantid: DP2OD002374
– fundername: NIH HHS
  grantid: DP2OD00667
– fundername: NIH HHS
  grantid: DP2 OD002374
GroupedDBID ---
0R~
123
29M
39C
3V.
4.4
53G
5BI
70F
7X7
88A
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACGOD
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CS3
CZ9
D1I
DB5
DU5
DWQXO
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
KB.
KC.
LK5
LK8
M0L
M1P
M2P
M7P
M7R
NACWA
NNMJJ
O9-
ODYON
P2P
PCBAR
PDBOC
PQQKQ
PROAC
PSQYO
Q2X
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
ABFSG
ACSTC
ADXHL
AEZWR
AFHIU
AHWEU
AIXLP
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7TK
7TM
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c520t-7af1bc1e7b3705a88016ce68f60fdafab58a5a07a7e9f38fba70d90fe1ee52003
IEDL.DBID 7X7
ISSN 1552-4450
1552-4469
IngestDate Thu Aug 21 14:02:29 EDT 2025
Tue Aug 05 11:19:10 EDT 2025
Fri Jul 25 09:04:10 EDT 2025
Mon Jul 21 06:05:34 EDT 2025
Tue Jul 01 01:27:43 EDT 2025
Thu Apr 24 23:04:17 EDT 2025
Fri Feb 21 02:39:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://www.springer.com/tdm
Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c520t-7af1bc1e7b3705a88016ce68f60fdafab58a5a07a7e9f38fba70d90fe1ee52003
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC3625679
PMID 23160002
PQID 1284330594
PQPubID 29034
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3625679
proquest_miscellaneous_1239055765
proquest_journals_1284330594
pubmed_primary_23160002
crossref_primary_10_1038_nchembio_1120
crossref_citationtrail_10_1038_nchembio_1120
springer_journals_10_1038_nchembio_1120
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-01-01
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Cambridge
PublicationTitle Nature chemical biology
PublicationTitleAbbrev Nat Chem Biol
PublicationTitleAlternate Nat Chem Biol
PublicationYear 2013
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Kersten (CR32) 2011; 7
Beck (CR36) 2011; 7
Hinnebusch (CR38) 2011; 75
Tinoco, Tagore, Saghatelian (CR20) 2010; 132
Kozak (CR29) 1986; 44
Kondo (CR16) 2007; 9
Oyama (CR19) 2007; 6
Keshishian, Addona, Burgess, Kuhn, Carr (CR33) 2007; 6
Schwanhäusser (CR35) 2011; 473
Hao (CR47) 2010; 9
Dix, Simon, Cravatt (CR30) 2008; 134
Fonslow (CR45) 2011; 10
Trapnell, Pachter, Salzberg (CR50) 2009; 25
CR8
Casson (CR11) 2002; 14
Tran (CR31) 2011; 480
de Godoy (CR34) 2008; 455
Tagore (CR22) 2009; 5
Abastado, Miller, Hinnebusch (CR5) 1991; 3
Hemm, Paul, Schneider, Storz, Rudd (CR18) 2008; 70
Pruitt, Tatusova, Maglott (CR37) 2007; 35
Bendtsen, Nielsen, von Heijne, Brunak (CR39) 2004; 340
Zhang, Hinnebusch (CR3) 2011; 39
Calvo, Pagliarini, Mootha (CR4) 2009; 106
Gleason, Liu, Williamson (CR14) 2008; 21
Frith (CR1) 2006; 2
Hashimoto (CR17) 2001; 98
Alpert (CR46) 2008; 80
Galindo, Pueyo, Fouix, Bishop, Couso (CR15) 2007; 5
Christofk, Vander Heiden, Wu, Asara, Cantley (CR26) 2008; 452
Rohrig, Schmidt, Miklashevichs, Schell, John (CR12) 2002; 99
Wadler, Vanderpool (CR9) 2007; 104
Garber (CR28) 2009; 25
Guttman (CR43) 2010; 28
Svensson, Skold, Svenningsson, Andren (CR21) 2003; 2
Jay, Nomura, Anderson, Khoury (CR10) 1981; 8
Wedekind, Dance, Sowden, Smith (CR40) 2003; 19
Ingolia, Lareau, Weissman (CR2) 2011; 147
Trapnell (CR48) 2010; 28
Eng, McCormack, Yates Iii (CR24) 1994; 5
Khalil (CR44) 2009; 106
Kastenmayer (CR13) 2006; 16
Guttman (CR41) 2009; 458
Parola, Kobilka (CR7) 1994; 269
Swaney, Wenger, Coon (CR23) 2010; 9
Levin (CR49) 2010; 7
Mercer, Dinger, Mattick (CR42) 2009; 10
Cabili (CR27) 2011; 25
Kozak (CR6) 1986; 47
Yates, Eng, McCormack, Schieltz (CR25) 1995; 67
M Guttman (BFnchembio1120_CR43) 2010; 28
MM Dix (BFnchembio1120_CR30) 2008; 134
MR Hemm (BFnchembio1120_CR18) 2008; 70
C Trapnell (BFnchembio1120_CR50) 2009; 25
TR Mercer (BFnchembio1120_CR42) 2009; 10
DM Tagore (BFnchembio1120_CR22) 2009; 5
JC Tran (BFnchembio1120_CR31) 2011; 480
C Trapnell (BFnchembio1120_CR48) 2010; 28
G Jay (BFnchembio1120_CR10) 1981; 8
MC Frith (BFnchembio1120_CR1) 2006; 2
H Keshishian (BFnchembio1120_CR33) 2007; 6
DL Swaney (BFnchembio1120_CR23) 2010; 9
H Rohrig (BFnchembio1120_CR12) 2002; 99
KD Pruitt (BFnchembio1120_CR37) 2007; 35
M Kozak (BFnchembio1120_CR6) 1986; 47
NT Ingolia (BFnchembio1120_CR2) 2011; 147
B Schwanhäusser (BFnchembio1120_CR35) 2011; 473
JK Eng (BFnchembio1120_CR24) 1994; 5
AM Khalil (BFnchembio1120_CR44) 2009; 106
M Guttman (BFnchembio1120_CR41) 2009; 458
AG Hinnebusch (BFnchembio1120_CR38) 2011; 75
SA Casson (BFnchembio1120_CR11) 2002; 14
AL Parola (BFnchembio1120_CR7) 1994; 269
M Oyama (BFnchembio1120_CR19) 2007; 6
AD Tinoco (BFnchembio1120_CR20) 2010; 132
JD Bendtsen (BFnchembio1120_CR39) 2004; 340
MI Galindo (BFnchembio1120_CR15) 2007; 5
LM de Godoy (BFnchembio1120_CR34) 2008; 455
M Kozak (BFnchembio1120_CR29) 1986; 44
JP Kastenmayer (BFnchembio1120_CR13) 2006; 16
CA Gleason (BFnchembio1120_CR14) 2008; 21
T Kondo (BFnchembio1120_CR16) 2007; 9
CS Wadler (BFnchembio1120_CR9) 2007; 104
BFnchembio1120_CR8
JP Abastado (BFnchembio1120_CR5) 1991; 3
RD Kersten (BFnchembio1120_CR32) 2011; 7
M Garber (BFnchembio1120_CR28) 2009; 25
M Svensson (BFnchembio1120_CR21) 2003; 2
F Zhang (BFnchembio1120_CR3) 2011; 39
M Beck (BFnchembio1120_CR36) 2011; 7
HR Christofk (BFnchembio1120_CR26) 2008; 452
BR Fonslow (BFnchembio1120_CR45) 2011; 10
JZ Levin (BFnchembio1120_CR49) 2010; 7
P Hao (BFnchembio1120_CR47) 2010; 9
MN Cabili (BFnchembio1120_CR27) 2011; 25
Y Hashimoto (BFnchembio1120_CR17) 2001; 98
AJ Alpert (BFnchembio1120_CR46) 2008; 80
JR Yates III (BFnchembio1120_CR25) 1995; 67
JE Wedekind (BFnchembio1120_CR40) 2003; 19
SE Calvo (BFnchembio1120_CR4) 2009; 106
17939991 - Mol Cell Proteomics. 2007 Dec;6(12):2212-29
3779834 - Cell. 1986 Nov 21;47(4):481-3
19121005 - Mol Microbiol. 2008 Dec;70(6):1487-501
20450224 - J Proteome Res. 2010 Jul 2;9(7):3520-6
12716136 - J Proteome Res. 2003 Mar-Apr;2(2):213-9
19182780 - Nature. 2009 Mar 12;458(7235):223-7
20178363 - J Am Chem Soc. 2010 Mar 24;132(11):3819-30
18393617 - Mol Plant Microbe Interact. 2008 May;21(5):576-85
1883814 - New Biol. 1991 May;3(5):511-24
24226387 - J Am Soc Mass Spectrom. 1994 Nov;5(11):976-89
16510898 - Genome Res. 2006 Mar;16(3):365-73
3555844 - Cell. 1987 Jun 19;49(6):805-13
18820680 - Nature. 2008 Oct 30;455(7217):1251-4
15223320 - J Mol Biol. 2004 Jul 16;340(4):783-95
20436464 - Nat Biotechnol. 2010 May;28(5):511-5
18337815 - Nature. 2008 Mar 13;452(7184):181-6
20113005 - J Proteome Res. 2010 Mar 5;9(3):1323-9
21983601 - Nat Chem Biol. 2011 Nov;7(11):794-802
16683031 - PLoS Genet. 2006 Apr;2(4):e52
22068332 - Mol Syst Biol. 2011;7:549
22056041 - Cell. 2011 Nov 11;147(4):789-802
17439302 - PLoS Biol. 2007 May;5(5):e106
12172017 - Plant Cell. 2002 Aug;14(8):1705-21
20711195 - Nat Methods. 2010 Sep;7(9):709-15
21890647 - Genes Dev. 2011 Sep 15;25(18):1915-27
17317662 - Mol Cell Proteomics. 2007 Jun;6(6):1000-6
19571010 - Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11667-72
17130148 - Nucleic Acids Res. 2007 Jan;35(Database issue):D61-5
11842184 - Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):1915-20
19188922 - Nat Rev Genet. 2009 Mar;10(3):155-9
21593866 - Nature. 2011 May 19;473(7347):337-42
19289445 - Bioinformatics. 2009 May 1;25(9):1105-11
21227927 - Nucleic Acids Res. 2011 Apr;39(8):3128-40
6262654 - Nature. 1981 May 28;291(5813):346-9
12683974 - Trends Genet. 2003 Apr;19(4):207-16
19372376 - Proc Natl Acad Sci U S A. 2009 May 5;106(18):7507-12
18027909 - Anal Chem. 2008 Jan 1;80(1):62-76
3943125 - Cell. 1986 Jan 31;44(2):283-92
18724940 - Cell. 2008 Aug 22;134(4):679-91
21702434 - J Proteome Res. 2011 Aug 5;10(8):3690-700
17486114 - Nat Cell Biol. 2007 Jun;9(6):660-5
7741214 - Anal Chem. 1995 Apr 15;67(8):1426-36
11371646 - Proc Natl Acad Sci U S A. 2001 May 22;98(11):6336-41
22037311 - Nature. 2011 Dec 8;480(7376):254-8
21885680 - Microbiol Mol Biol Rev. 2011 Sep;75(3):434-67, first page of table of contents
20436462 - Nat Biotechnol. 2010 May;28(5):503-10
8308019 - J Biol Chem. 1994 Feb 11;269(6):4497-505
19478016 - Bioinformatics. 2009 Jun 15;25(12):i54-62
23547289 - Nat Methods. 2013 Jan;10(1):12
18042713 - Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20454-9
19011639 - Nat Chem Biol. 2009 Jan;5(1):23-5
References_xml – volume: 3
  start-page: 511
  year: 1991
  end-page: 524
  ident: CR5
  article-title: A quantitative model for translational control of the gene of
  publication-title: New Biol.
– volume: 473
  start-page: 337
  year: 2011
  end-page: 342
  ident: CR35
  article-title: Global quantification of mammalian gene expression control
  publication-title: Nature
  doi: 10.1038/nature10098
– volume: 80
  start-page: 62
  year: 2008
  end-page: 76
  ident: CR46
  article-title: Electrostatic repulsion hydrophilic interaction chromatography for isocratic separation of charged solutes and selective isolation of phosphopeptides
  publication-title: Anal. Chem.
  doi: 10.1021/ac070997p
– volume: 75
  start-page: 434
  year: 2011
  end-page: 467
  ident: CR38
  article-title: Molecular mechanism of scanning and start codon selection in eukaryotes
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.00008-11
– volume: 7
  start-page: 709
  year: 2010
  end-page: 715
  ident: CR49
  article-title: Comprehensive comparative analysis of strand-specific RNA sequencing methods
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1491
– volume: 458
  start-page: 223
  year: 2009
  end-page: 227
  ident: CR41
  article-title: Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals
  publication-title: Nature
  doi: 10.1038/nature07672
– volume: 106
  start-page: 7507
  year: 2009
  end-page: 7512
  ident: CR4
  article-title: Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0810916106
– volume: 67
  start-page: 1426
  year: 1995
  end-page: 1436
  ident: CR25
  article-title: Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database
  publication-title: Anal. Chem.
  doi: 10.1021/ac00104a020
– ident: CR8
– volume: 9
  start-page: 660
  year: 2007
  end-page: 665
  ident: CR16
  article-title: Small peptide regulators of actin-based cell morphogenesis encoded by a polycistronic mRNA
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1595
– volume: 25
  start-page: i54
  year: 2009
  end-page: i62
  ident: CR28
  article-title: Identifying novel constrained elements by exploiting biased substitution patterns
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp190
– volume: 70
  start-page: 1487
  year: 2008
  end-page: 1501
  ident: CR18
  article-title: Small membrane proteins found by comparative genomics and ribosome binding site models
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2008.06495.x
– volume: 5
  start-page: 976
  year: 1994
  end-page: 989
  ident: CR24
  article-title: An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1016/1044-0305(94)80016-2
– volume: 6
  start-page: 1000
  year: 2007
  end-page: 1006
  ident: CR19
  article-title: Diversity of translation start sites may define increased complexity of the human short ORFeome
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M600297-MCP200
– volume: 340
  start-page: 783
  year: 2004
  end-page: 795
  ident: CR39
  article-title: Improved prediction of signal peptides: SignalP 3.0
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2004.05.028
– volume: 104
  start-page: 20454
  year: 2007
  end-page: 20459
  ident: CR9
  article-title: A dual function for a bacterial small RNA: SgrS performs base pairing-dependent regulation and encodes a functional polypeptide
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0708102104
– volume: 455
  start-page: 1251
  year: 2008
  end-page: 1254
  ident: CR34
  article-title: Comprehensive mass-spectrometry–based proteome quantification of haploid versus diploid yeast
  publication-title: Nature
  doi: 10.1038/nature07341
– volume: 7
  start-page: 794
  year: 2011
  end-page: 802
  ident: CR32
  article-title: A mass spectrometry-guided genome mining approach for natural product peptidogenomics
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.684
– volume: 147
  start-page: 789
  year: 2011
  end-page: 802
  ident: CR2
  article-title: Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes
  publication-title: Cell
  doi: 10.1016/j.cell.2011.10.002
– volume: 452
  start-page: 181
  year: 2008
  end-page: 186
  ident: CR26
  article-title: Pyruvate kinase M2 is a phosphotyrosine-binding protein
  publication-title: Nature
  doi: 10.1038/nature06667
– volume: 28
  start-page: 503
  year: 2010
  end-page: 510
  ident: CR43
  article-title: reconstruction of cell type–specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1633
– volume: 9
  start-page: 1323
  year: 2010
  end-page: 1329
  ident: CR23
  article-title: Value of using multiple proteases for large-scale mass spectrometry-based proteomics
  publication-title: J. Proteome Res.
  doi: 10.1021/pr900863u
– volume: 28
  start-page: 511
  year: 2010
  end-page: 515
  ident: CR48
  article-title: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1621
– volume: 2
  start-page: e52
  year: 2006
  ident: CR1
  article-title: The abundance of short proteins in the mammalian proteome
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.0020052
– volume: 35
  start-page: D61
  year: 2007
  end-page: D65
  ident: CR37
  article-title: NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl842
– volume: 99
  start-page: 1915
  year: 2002
  end-page: 1920
  ident: CR12
  article-title: Soybean encodes two peptides that bind to sucrose synthase
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.022664799
– volume: 25
  start-page: 1915
  year: 2011
  end-page: 1927
  ident: CR27
  article-title: Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses
  publication-title: Genes Dev.
– volume: 25
  start-page: 1105
  year: 2009
  end-page: 1111
  ident: CR50
  article-title: TopHat: discovering splice junctions with RNA-Seq
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp120
– volume: 480
  start-page: 254
  year: 2011
  end-page: 258
  ident: CR31
  article-title: Mapping intact protein isoforms in discovery mode using top-down proteomics
  publication-title: Nature
  doi: 10.1038/nature10575
– volume: 9
  start-page: 3520
  year: 2010
  end-page: 3526
  ident: CR47
  article-title: Novel application of electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) in shotgun proteomics: comprehensive profiling of rat kidney proteome
  publication-title: J. Proteome Res.
  doi: 10.1021/pr100037h
– volume: 5
  start-page: e106
  year: 2007
  ident: CR15
  article-title: Peptides encoded by short ORFs control development and define a new eukaryotic gene family
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0050106
– volume: 44
  start-page: 283
  year: 1986
  end-page: 292
  ident: CR29
  article-title: Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes
  publication-title: Cell
  doi: 10.1016/0092-8674(86)90762-2
– volume: 47
  start-page: 481
  year: 1986
  end-page: 483
  ident: CR6
  article-title: Bifunctional messenger RNAs in eukaryotes
  publication-title: Cell
  doi: 10.1016/0092-8674(86)90609-4
– volume: 269
  start-page: 4497
  year: 1994
  end-page: 4505
  ident: CR7
  article-title: The peptide product of a 5′ leader cistron in the β2 adrenergic receptor mRNA inhibits receptor synthesis
  publication-title: J. Biol. Chem.
– volume: 132
  start-page: 3819
  year: 2010
  end-page: 3830
  ident: CR20
  article-title: Expanding the dipeptidyl peptidase 4-regulated peptidome via an optimized peptidomics platform
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja909524e
– volume: 10
  start-page: 3690
  year: 2011
  end-page: 3700
  ident: CR45
  article-title: Improvements in proteomic metrics of low abundance proteins through proteome equalization using ProteoMiner prior to MudPIT
  publication-title: J. Proteome Res.
  doi: 10.1021/pr200304u
– volume: 8
  start-page: 346
  year: 1981
  end-page: 349
  ident: CR10
  article-title: Identification of the SV40 agnogene product: a DNA binding protein
  publication-title: Nature
  doi: 10.1038/291346a0
– volume: 6
  start-page: 2212
  year: 2007
  end-page: 2229
  ident: CR33
  article-title: Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M700354-MCP200
– volume: 5
  start-page: 23
  year: 2009
  end-page: 25
  ident: CR22
  article-title: Peptidase substrates via global peptide profiling
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.126
– volume: 106
  start-page: 11667
  year: 2009
  end-page: 11672
  ident: CR44
  article-title: Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0904715106
– volume: 16
  start-page: 365
  year: 2006
  end-page: 373
  ident: CR13
  article-title: Functional genomics of genes with small open reading frames (sORFs) in
  publication-title: Genome Res.
  doi: 10.1101/gr.4355406
– volume: 19
  start-page: 207
  year: 2003
  end-page: 216
  ident: CR40
  article-title: Messenger RNA editing in mammals: new members of the APOBEC family seeking roles in the family business
  publication-title: Trends Genet.
  doi: 10.1016/S0168-9525(03)00054-4
– volume: 14
  start-page: 1705
  year: 2002
  end-page: 1721
  ident: CR11
  article-title: The gene of encodes a predicted peptide required for correct root growth and leaf vascular patterning
  publication-title: Plant Cell
  doi: 10.1105/tpc.002618
– volume: 21
  start-page: 576
  year: 2008
  end-page: 585
  ident: CR14
  article-title: Silencing a candidate nematode effector gene corresponding to the tomato resistance gene leads to acquisition of virulence
  publication-title: Mol. Plant Microbe Interact.
  doi: 10.1094/MPMI-21-5-0576
– volume: 2
  start-page: 213
  year: 2003
  end-page: 219
  ident: CR21
  article-title: Peptidomics-based discovery of novel neuropeptides
  publication-title: J. Proteome Res.
  doi: 10.1021/pr020010u
– volume: 39
  start-page: 3128
  year: 2011
  end-page: 3140
  ident: CR3
  article-title: An upstream ORF with non-AUG start codon is translated but dispensable for translational control of GCN4 mRNA
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq1251
– volume: 7
  start-page: 549
  year: 2011
  ident: CR36
  article-title: The quantitative proteome of a human cell line
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2011.82
– volume: 98
  start-page: 6336
  year: 2001
  end-page: 6341
  ident: CR17
  article-title: A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer′s disease genes and Aβ
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.101133498
– volume: 134
  start-page: 679
  year: 2008
  end-page: 691
  ident: CR30
  article-title: Global mapping of the topography and magnitude of proteolytic events in apoptosis
  publication-title: Cell
  doi: 10.1016/j.cell.2008.06.038
– volume: 10
  start-page: 155
  year: 2009
  end-page: 159
  ident: CR42
  article-title: Long non-coding RNAs: insights into functions
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2521
– volume: 7
  start-page: 794
  year: 2011
  ident: BFnchembio1120_CR32
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.684
– volume: 7
  start-page: 549
  year: 2011
  ident: BFnchembio1120_CR36
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2011.82
– volume: 340
  start-page: 783
  year: 2004
  ident: BFnchembio1120_CR39
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2004.05.028
– volume: 2
  start-page: 213
  year: 2003
  ident: BFnchembio1120_CR21
  publication-title: J. Proteome Res.
  doi: 10.1021/pr020010u
– volume: 28
  start-page: 503
  year: 2010
  ident: BFnchembio1120_CR43
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1633
– volume: 98
  start-page: 6336
  year: 2001
  ident: BFnchembio1120_CR17
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.101133498
– volume: 104
  start-page: 20454
  year: 2007
  ident: BFnchembio1120_CR9
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0708102104
– volume: 9
  start-page: 3520
  year: 2010
  ident: BFnchembio1120_CR47
  publication-title: J. Proteome Res.
  doi: 10.1021/pr100037h
– volume: 5
  start-page: e106
  year: 2007
  ident: BFnchembio1120_CR15
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0050106
– volume: 8
  start-page: 346
  year: 1981
  ident: BFnchembio1120_CR10
  publication-title: Nature
  doi: 10.1038/291346a0
– volume: 35
  start-page: D61
  year: 2007
  ident: BFnchembio1120_CR37
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl842
– volume: 147
  start-page: 789
  year: 2011
  ident: BFnchembio1120_CR2
  publication-title: Cell
  doi: 10.1016/j.cell.2011.10.002
– volume: 106
  start-page: 7507
  year: 2009
  ident: BFnchembio1120_CR4
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0810916106
– volume: 99
  start-page: 1915
  year: 2002
  ident: BFnchembio1120_CR12
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.022664799
– volume: 473
  start-page: 337
  year: 2011
  ident: BFnchembio1120_CR35
  publication-title: Nature
  doi: 10.1038/nature10098
– volume: 452
  start-page: 181
  year: 2008
  ident: BFnchembio1120_CR26
  publication-title: Nature
  doi: 10.1038/nature06667
– volume: 25
  start-page: 1915
  year: 2011
  ident: BFnchembio1120_CR27
  publication-title: Genes Dev.
  doi: 10.1101/gad.17446611
– volume: 9
  start-page: 1323
  year: 2010
  ident: BFnchembio1120_CR23
  publication-title: J. Proteome Res.
  doi: 10.1021/pr900863u
– volume: 269
  start-page: 4497
  year: 1994
  ident: BFnchembio1120_CR7
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)41806-0
– volume: 21
  start-page: 576
  year: 2008
  ident: BFnchembio1120_CR14
  publication-title: Mol. Plant Microbe Interact.
  doi: 10.1094/MPMI-21-5-0576
– volume: 5
  start-page: 23
  year: 2009
  ident: BFnchembio1120_CR22
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.126
– volume: 25
  start-page: i54
  year: 2009
  ident: BFnchembio1120_CR28
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp190
– volume: 5
  start-page: 976
  year: 1994
  ident: BFnchembio1120_CR24
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1016/1044-0305(94)80016-2
– volume: 10
  start-page: 155
  year: 2009
  ident: BFnchembio1120_CR42
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2521
– volume: 25
  start-page: 1105
  year: 2009
  ident: BFnchembio1120_CR50
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp120
– volume: 28
  start-page: 511
  year: 2010
  ident: BFnchembio1120_CR48
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1621
– volume: 39
  start-page: 3128
  year: 2011
  ident: BFnchembio1120_CR3
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq1251
– ident: BFnchembio1120_CR8
  doi: 10.1016/0092-8674(87)90618-0
– volume: 47
  start-page: 481
  year: 1986
  ident: BFnchembio1120_CR6
  publication-title: Cell
  doi: 10.1016/0092-8674(86)90609-4
– volume: 106
  start-page: 11667
  year: 2009
  ident: BFnchembio1120_CR44
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0904715106
– volume: 6
  start-page: 2212
  year: 2007
  ident: BFnchembio1120_CR33
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M700354-MCP200
– volume: 80
  start-page: 62
  year: 2008
  ident: BFnchembio1120_CR46
  publication-title: Anal. Chem.
  doi: 10.1021/ac070997p
– volume: 67
  start-page: 1426
  year: 1995
  ident: BFnchembio1120_CR25
  publication-title: Anal. Chem.
  doi: 10.1021/ac00104a020
– volume: 44
  start-page: 283
  year: 1986
  ident: BFnchembio1120_CR29
  publication-title: Cell
  doi: 10.1016/0092-8674(86)90762-2
– volume: 7
  start-page: 709
  year: 2010
  ident: BFnchembio1120_CR49
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1491
– volume: 132
  start-page: 3819
  year: 2010
  ident: BFnchembio1120_CR20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja909524e
– volume: 2
  start-page: e52
  year: 2006
  ident: BFnchembio1120_CR1
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.0020052
– volume: 16
  start-page: 365
  year: 2006
  ident: BFnchembio1120_CR13
  publication-title: Genome Res.
  doi: 10.1101/gr.4355406
– volume: 458
  start-page: 223
  year: 2009
  ident: BFnchembio1120_CR41
  publication-title: Nature
  doi: 10.1038/nature07672
– volume: 10
  start-page: 3690
  year: 2011
  ident: BFnchembio1120_CR45
  publication-title: J. Proteome Res.
  doi: 10.1021/pr200304u
– volume: 134
  start-page: 679
  year: 2008
  ident: BFnchembio1120_CR30
  publication-title: Cell
  doi: 10.1016/j.cell.2008.06.038
– volume: 455
  start-page: 1251
  year: 2008
  ident: BFnchembio1120_CR34
  publication-title: Nature
  doi: 10.1038/nature07341
– volume: 480
  start-page: 254
  year: 2011
  ident: BFnchembio1120_CR31
  publication-title: Nature
  doi: 10.1038/nature10575
– volume: 75
  start-page: 434
  year: 2011
  ident: BFnchembio1120_CR38
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.00008-11
– volume: 9
  start-page: 660
  year: 2007
  ident: BFnchembio1120_CR16
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1595
– volume: 70
  start-page: 1487
  year: 2008
  ident: BFnchembio1120_CR18
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2008.06495.x
– volume: 6
  start-page: 1000
  year: 2007
  ident: BFnchembio1120_CR19
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M600297-MCP200
– volume: 3
  start-page: 511
  year: 1991
  ident: BFnchembio1120_CR5
  publication-title: New Biol.
– volume: 14
  start-page: 1705
  year: 2002
  ident: BFnchembio1120_CR11
  publication-title: Plant Cell
  doi: 10.1105/tpc.002618
– volume: 19
  start-page: 207
  year: 2003
  ident: BFnchembio1120_CR40
  publication-title: Trends Genet.
  doi: 10.1016/S0168-9525(03)00054-4
– reference: 19182780 - Nature. 2009 Mar 12;458(7235):223-7
– reference: 19571010 - Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11667-72
– reference: 21227927 - Nucleic Acids Res. 2011 Apr;39(8):3128-40
– reference: 18027909 - Anal Chem. 2008 Jan 1;80(1):62-76
– reference: 8308019 - J Biol Chem. 1994 Feb 11;269(6):4497-505
– reference: 18337815 - Nature. 2008 Mar 13;452(7184):181-6
– reference: 23547289 - Nat Methods. 2013 Jan;10(1):12
– reference: 17486114 - Nat Cell Biol. 2007 Jun;9(6):660-5
– reference: 17439302 - PLoS Biol. 2007 May;5(5):e106
– reference: 21702434 - J Proteome Res. 2011 Aug 5;10(8):3690-700
– reference: 15223320 - J Mol Biol. 2004 Jul 16;340(4):783-95
– reference: 17317662 - Mol Cell Proteomics. 2007 Jun;6(6):1000-6
– reference: 6262654 - Nature. 1981 May 28;291(5813):346-9
– reference: 20113005 - J Proteome Res. 2010 Mar 5;9(3):1323-9
– reference: 1883814 - New Biol. 1991 May;3(5):511-24
– reference: 21983601 - Nat Chem Biol. 2011 Nov;7(11):794-802
– reference: 7741214 - Anal Chem. 1995 Apr 15;67(8):1426-36
– reference: 20178363 - J Am Chem Soc. 2010 Mar 24;132(11):3819-30
– reference: 21890647 - Genes Dev. 2011 Sep 15;25(18):1915-27
– reference: 21593866 - Nature. 2011 May 19;473(7347):337-42
– reference: 11842184 - Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):1915-20
– reference: 17130148 - Nucleic Acids Res. 2007 Jan;35(Database issue):D61-5
– reference: 17939991 - Mol Cell Proteomics. 2007 Dec;6(12):2212-29
– reference: 22056041 - Cell. 2011 Nov 11;147(4):789-802
– reference: 3555844 - Cell. 1987 Jun 19;49(6):805-13
– reference: 20450224 - J Proteome Res. 2010 Jul 2;9(7):3520-6
– reference: 19121005 - Mol Microbiol. 2008 Dec;70(6):1487-501
– reference: 11371646 - Proc Natl Acad Sci U S A. 2001 May 22;98(11):6336-41
– reference: 12172017 - Plant Cell. 2002 Aug;14(8):1705-21
– reference: 21885680 - Microbiol Mol Biol Rev. 2011 Sep;75(3):434-67, first page of table of contents
– reference: 20436462 - Nat Biotechnol. 2010 May;28(5):503-10
– reference: 18724940 - Cell. 2008 Aug 22;134(4):679-91
– reference: 18393617 - Mol Plant Microbe Interact. 2008 May;21(5):576-85
– reference: 19011639 - Nat Chem Biol. 2009 Jan;5(1):23-5
– reference: 20711195 - Nat Methods. 2010 Sep;7(9):709-15
– reference: 3779834 - Cell. 1986 Nov 21;47(4):481-3
– reference: 12683974 - Trends Genet. 2003 Apr;19(4):207-16
– reference: 12716136 - J Proteome Res. 2003 Mar-Apr;2(2):213-9
– reference: 19188922 - Nat Rev Genet. 2009 Mar;10(3):155-9
– reference: 3943125 - Cell. 1986 Jan 31;44(2):283-92
– reference: 18042713 - Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20454-9
– reference: 19478016 - Bioinformatics. 2009 Jun 15;25(12):i54-62
– reference: 19372376 - Proc Natl Acad Sci U S A. 2009 May 5;106(18):7507-12
– reference: 20436464 - Nat Biotechnol. 2010 May;28(5):511-5
– reference: 19289445 - Bioinformatics. 2009 May 1;25(9):1105-11
– reference: 18820680 - Nature. 2008 Oct 30;455(7217):1251-4
– reference: 22068332 - Mol Syst Biol. 2011;7:549
– reference: 16510898 - Genome Res. 2006 Mar;16(3):365-73
– reference: 16683031 - PLoS Genet. 2006 Apr;2(4):e52
– reference: 22037311 - Nature. 2011 Dec 8;480(7376):254-8
– reference: 24226387 - J Am Soc Mass Spectrom. 1994 Nov;5(11):976-89
SSID ssj0036618
Score 2.579449
Snippet The human genome contains stretches of DNA sequence with unknown function. Peptidomics coupled to RNA-Seq now reveals a class of short open reading frames in...
The complete extent to which the human genome is translated into polypeptides is of fundamental importance. We report a peptidomic strategy to detect short...
The amount of the transcriptome that is translated into polypeptides is of fundamental importance. We developed a peptidomic strategy to detect short ORF...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 59
SubjectTerms 631/208/726/1912
631/92/475
Biochemical Engineering
Biochemistry
Bioorganic Chemistry
Cell Biology
Cellular biology
Chemistry
Chemistry/Food Science
Codon
Humans
Mammals
Open Reading Frames
Peptides
Peptides - chemistry
Polypeptides
Proteome
Proteomics
RNA, Messenger - genetics
Title Peptidomic discovery of short open reading frame–encoded peptides in human cells
URI https://link.springer.com/article/10.1038/nchembio.1120
https://www.ncbi.nlm.nih.gov/pubmed/23160002
https://www.proquest.com/docview/1284330594
https://www.proquest.com/docview/1239055765
https://pubmed.ncbi.nlm.nih.gov/PMC3625679
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5Be4ALgpZHSqmMhMoFq87ajpMTKlWXColqhai0t8hOxupKNFma7aH_vh5vElgKXHKIJw_PjO3xeOYbgHeqrqyslOW1MsgVZpI7XXteSGcK4YNNXFBy8tfz7OxCfZnree9w6_qwymFOjBN13VbkIz-ieTTsvXWhPi5_cqoaRaerfQmNh7BN0GWk1WY-brhkWHtiKpzWE66UFj3GppD5URNYcuUWLaXQiM016Z6heT9e8o9D07gWTZ_Ck96IZMdrqT-DB9jswO5xEzbQV7fskMWwzugv34FHJ0NJt12YzSiGpaZEZEbpuBS-ectaz7rLYIUzqqTFrtdR9cxT1BYnmMsaa7aMD2LHFg2LZf0Yefy753AxPf1-csb7kgq80hOx4sb61FUpGieN0DYM3jSrMMt9JnxtvXU6t9oKYw0WXubeWSPqIDNMEQmgSb6AraZt8BUw41O0mFeOAPJRpQ5zk6MNbw5zVribwIeBqWXV441T2YsfZTz3lnk5yKAkGSRwOJIv10Ab_yLcHyRU9uOtK39pRwJvx-bAXWKGbbC9IRpZEOJYphN4uRbo-KVg5Wa0OCRgNkQ9EhAK92ZLs7iMaNzBAtCZKRJ4PyjFb7_1tw7s_b8Dr-HxJJbcIDfPPmytrm_wTTB8Vu4gane45tPPB7D96fR89u0OIMUJoA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXBC2PQAEjQblgNYnjODkgVBWWLX2oh1bqLdjJWF2JJkuzFdo_xW_E4yQLS4Fbr_HEsT2T8dgz8w3Aq6QqtSgTzatEIU8wFdzIyvJcGJWH1tnEOSUnHx6l49Pk85k8W4EfQy4MhVUOOtEr6qop6Y58m_SoO3vLPHk__capahR5V4cSGp1Y7OP8uzuyte_2Pjj-vo7j0ceT3THvqwrwUsbhjCttI1NGqIxQodROfqO0xDSzaWgrbbWRmZY6VFphbkVmjVZh5YaNESJhFAnX7y247QaT02EvG30aNL9we51PvZMy5kkiwx7TMxTZdu1YcGEmDaXshMt74DXD9np85h9OWr_3je7B3d5oZTudlN2HFazXYWOndgf2iznbYj6M1N_Pr8Pa7lBCbgOOjylmpqLEZ0bpvxQuOmeNZe25s_oZVe5il10UP7MUJcYJVrPCik39i9iySc18GUFGHob2AZzeyGI_hNW6qfExMGUj1JiVhgD5MYkMZipD7Xp2OtI9DeDtsKhF2eObU5mNr4X3s4usGHhQEA8C2FqQTztgj38Rbg4cKvr_uy1-SWMALxfNbnVpMXSNzRXRiJwQzlIZwKOOoYsvOas6pc0oALXE6gUBoX4vt9STc4_-7SwOmao8gDeDUPw2rL9N4Mn_J_AC1sYnhwfFwd7R_lO4E_tyH3TFtAmrs8srfOaMrpl57iWdwZeb_rV-AnCJRYw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfGTQJeEGx8FAYECcYL0fUrTfuA0Nh22hicTohJe-uS1tFOYu2x3oTuX-OvI07bg2PA216bNG1sJ7YT-2eAl3FZqKiIFS9jiTzGJOJalIZnkZaZb6xNnFFy8qdxcnAcfzgRJ2vwo8-FobDKfk90G3VZF3RGPqR91PreIouHpguLmOyN3s2-caogRTetfTmNVkSOcPHdum_N28M9y-tXYTja_7J7wLsKA7wQoT_nUplAFwFKHUlfKCvLQVJgkprEN6UySotUCeVLJTEzUWq0kn5pp4ABIuEVRXbcG7AuySsawPr7_fHkc68HIqv5XCKeECGPY-F3CJ9-lA4ry5BzPa0pgcdf1YhXzNyr0Zp_XNk6TTi6C3c6E5bttDJ3D9aw2oDNncq67-cLts1cUKk7rd-AW7t9QblNmEwogqakNGhGycAUPLpgtWHNmfUBGNXxYhdtTD8zFDPGCWSzxJLN3IvYsGnFXFFBRvcNzX04vhZyP4BBVVf4CJg0ASpMC03w_BgHGlOZorIj2x3TPvXgTU_UvOjQzqnoxtfc3bpHad7zICceeLC97D5rYT7-1XGr51DerfYm_yWbHrxYNlvqEjFUhfUl9YkywjtLhAcPW4Yuv2Rt7IRUkwdyhdXLDoQBvtpSTc8cFri1P0QiMw9e90Lx22_9bQKP_z-B53DTLqv84-H46AncDl3tDzpv2oLB_OISn1oLbK6fdaLO4PS6V9dPnAFLHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Peptidomic+discovery+of+short+open+reading+frame%E2%80%93encoded+peptides+in+human+cells&rft.jtitle=Nature+chemical+biology&rft.au=Slavoff%2C+Sarah+A&rft.au=Mitchell%2C+Andrew+J&rft.au=Schwaid%2C+Adam+G&rft.au=Cabili%2C+Moran+N&rft.date=2013-01-01&rft.pub=Nature+Publishing+Group+US&rft.issn=1552-4450&rft.eissn=1552-4469&rft.volume=9&rft.issue=1&rft.spage=59&rft.epage=64&rft_id=info:doi/10.1038%2Fnchembio.1120&rft.externalDocID=10_1038_nchembio_1120
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4450&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4450&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4450&client=summon