First Report on Mitochondrial Gene Rearrangement in Non-Biting Midges, Revealing a Synapomorphy in Stenochironomus Kieffer (Diptera: Chironomidae)
(1) Background: Gene rearrangement of mitochondrial genome, especially those with phylogenetic signals, has long fascinated evolutionary biologists. The synapomorphic gene rearrangements have been identified across multiple orders and at many different taxonomic levels, supporting the monophyletic o...
Saved in:
Published in | Insects (Basel, Switzerland) Vol. 13; no. 2; p. 115 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
21.01.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | (1) Background: Gene rearrangement of mitochondrial genome, especially those with phylogenetic signals, has long fascinated evolutionary biologists. The synapomorphic gene rearrangements have been identified across multiple orders and at many different taxonomic levels, supporting the monophyletic or systematic relationships of related lineages. However, mitochondrial gene rearrangement has never been observed in the non-biting midges (Diptera: Chironomidae); (2) methods: in this study, the complete mitogenomes of seven Stenochironomus species were sequenced and analyzed for the first time; (3) results: each mitogenome of Stenochironomus contains 37 typical genes and a control region. The whole mitogenomes of Stenochironomus species exhibit a higher A+T bias than other published chironomid species. The gene order rearranges from trnI-trnQ-trnM to trnI-trnM-trnQ in all the seven mitogenomes of Stenochironomus, which might be act as a synapomorphy of the genus, supporting the monophyletic of Stenochironomus species. In addition, another derived gene cluster: trnA-trnG-ND3-trnR exists in Stenochironomus tobaduodecimus. The derived gene orders described above are the first case of mitochondrial gene rearrangement in Chironomidae. Coupled with published data, phylogenetic relationships were reconstructed within Chironominae, and strongly supported the monophyly of Stenochironomus; (4) conclusions: our study provides new insights into the mitochondrial gene order of Chironomidae, and provides a valuable resource for understanding the synapomorphic gene rearrangements. |
---|---|
AbstractList | (1) Background: Gene rearrangement of mitochondrial genome, especially those with phylogenetic signals, has long fascinated evolutionary biologists. The synapomorphic gene rearrangements have been identified across multiple orders and at many different taxonomic levels, supporting the monophyletic or systematic relationships of related lineages. However, mitochondrial gene rearrangement has never been observed in the non-biting midges (Diptera: Chironomidae); (2) methods: in this study, the complete mitogenomes of seven Stenochironomus species were sequenced and analyzed for the first time; (3) results: each mitogenome of Stenochironomus contains 37 typical genes and a control region. The whole mitogenomes of Stenochironomus species exhibit a higher A+T bias than other published chironomid species. The gene order rearranges from trnI-trnQ-trnM to trnI-trnM-trnQ in all the seven mitogenomes of Stenochironomus, which might be act as a synapomorphy of the genus, supporting the monophyletic of Stenochironomus species. In addition, another derived gene cluster: trnA-trnG-ND3-trnR exists in Stenochironomus tobaduodecimus. The derived gene orders described above are the first case of mitochondrial gene rearrangement in Chironomidae. Coupled with published data, phylogenetic relationships were reconstructed within Chironominae, and strongly supported the monophyly of Stenochironomus; (4) conclusions: our study provides new insights into the mitochondrial gene order of Chironomidae, and provides a valuable resource for understanding the synapomorphic gene rearrangements.(1) Background: Gene rearrangement of mitochondrial genome, especially those with phylogenetic signals, has long fascinated evolutionary biologists. The synapomorphic gene rearrangements have been identified across multiple orders and at many different taxonomic levels, supporting the monophyletic or systematic relationships of related lineages. However, mitochondrial gene rearrangement has never been observed in the non-biting midges (Diptera: Chironomidae); (2) methods: in this study, the complete mitogenomes of seven Stenochironomus species were sequenced and analyzed for the first time; (3) results: each mitogenome of Stenochironomus contains 37 typical genes and a control region. The whole mitogenomes of Stenochironomus species exhibit a higher A+T bias than other published chironomid species. The gene order rearranges from trnI-trnQ-trnM to trnI-trnM-trnQ in all the seven mitogenomes of Stenochironomus, which might be act as a synapomorphy of the genus, supporting the monophyletic of Stenochironomus species. In addition, another derived gene cluster: trnA-trnG-ND3-trnR exists in Stenochironomus tobaduodecimus. The derived gene orders described above are the first case of mitochondrial gene rearrangement in Chironomidae. Coupled with published data, phylogenetic relationships were reconstructed within Chironominae, and strongly supported the monophyly of Stenochironomus; (4) conclusions: our study provides new insights into the mitochondrial gene order of Chironomidae, and provides a valuable resource for understanding the synapomorphic gene rearrangements. Simple SummaryGene rearrangement is an additional type of data to support relationships of taxa, with rearrangement synapomorphies identified across multiple orders and at many different taxonomic levels. The concept to use mitochondrial gene rearrangements as phylogenetic markers has been proposed since the mid-1980s, the synapomorphic gene rearrangements have been identified from many lineages. However, mitochondrial gene rearrangement has never been observed in the non-biting midges (Diptera: Chironomidae). Here, seven new mitogenomes of the genus Stenochironomus were sequenced and analyzed. Coupled with published data, phylogenetic analyses were performed within Chironominae. The present study showed that mitogenomes of Stenochironomus are showing a higher A+T bias than other chironomid species. A synapomorphic gene rearrangement that the gene order rearranges from trnI-trnQ-trnM to trnI-trnM-trnQ was identified within Stenochironomus, which is the first instance of mitochondrial gene rearrangement discovered in the Chironomidae. The monophyly of the genus Stenochironomus was strongly supported by mitogenomes. Our study provides new insights into the mitochondrial gene order of Chironomidae, and provides a valuable resource for understanding synapomorphic gene rearrangements.Abstract(1) Background: Gene rearrangement of mitochondrial genome, especially those with phylogenetic signals, has long fascinated evolutionary biologists. The synapomorphic gene rearrangements have been identified across multiple orders and at many different taxonomic levels, supporting the monophyletic or systematic relationships of related lineages. However, mitochondrial gene rearrangement has never been observed in the non-biting midges (Diptera: Chironomidae); (2) methods: in this study, the complete mitogenomes of seven Stenochironomus species were sequenced and analyzed for the first time; (3) results: each mitogenome of Stenochironomus contains 37 typical genes and a control region. The whole mitogenomes of Stenochironomus species exhibit a higher A+T bias than other published chironomid species. The gene order rearranges from trnI-trnQ-trnM to trnI-trnM-trnQ in all the seven mitogenomes of Stenochironomus, which might be act as a synapomorphy of the genus, supporting the monophyletic of Stenochironomus species. In addition, another derived gene cluster: trnA-trnG-ND3-trnR exists in Stenochironomus tobaduodecimus. The derived gene orders described above are the first case of mitochondrial gene rearrangement in Chironomidae. Coupled with published data, phylogenetic relationships were reconstructed within Chironominae, and strongly supported the monophyly of Stenochironomus; (4) conclusions: our study provides new insights into the mitochondrial gene order of Chironomidae, and provides a valuable resource for understanding the synapomorphic gene rearrangements. (1) Background: Gene rearrangement of mitochondrial genome, especially those with phylogenetic signals, has long fascinated evolutionary biologists. The synapomorphic gene rearrangements have been identified across multiple orders and at many different taxonomic levels, supporting the monophyletic or systematic relationships of related lineages. However, mitochondrial gene rearrangement has never been observed in the non-biting midges (Diptera: Chironomidae); (2) methods: in this study, the complete mitogenomes of seven Stenochironomus species were sequenced and analyzed for the first time; (3) results: each mitogenome of Stenochironomus contains 37 typical genes and a control region. The whole mitogenomes of Stenochironomus species exhibit a higher A+T bias than other published chironomid species. The gene order rearranges from trnI-trnQ-trnM to trnI-trnM-trnQ in all the seven mitogenomes of Stenochironomus, which might be act as a synapomorphy of the genus, supporting the monophyletic of Stenochironomus species. In addition, another derived gene cluster: trnA-trnG-ND3-trnR exists in Stenochironomus tobaduodecimus. The derived gene orders described above are the first case of mitochondrial gene rearrangement in Chironomidae. Coupled with published data, phylogenetic relationships were reconstructed within Chironominae, and strongly supported the monophyly of Stenochironomus; (4) conclusions: our study provides new insights into the mitochondrial gene order of Chironomidae, and provides a valuable resource for understanding the synapomorphic gene rearrangements. |
Author | Zheng, Chen-Guang Wang, Yang Zhao, Yan-Min Bu, Wen-Jun Wang, Xin-Hua Lin, Xiao-Long Liu, Zheng |
AuthorAffiliation | 3 State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; zhaoym@craes.org.cn 1 College of Life Sciences, Nankai University, Tianjin 300071, China; chenguangzheng@nankai.edu.cn (C.-G.Z.); wenjunbu@nankai.edu.cn (W.-J.B.); xhwang@nankai.edu.cn (X.-H.W.) 2 Geological Museum of China, Beijing 100083, China; armylan@163.com 4 Department of Plant Protection, College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300392, China; wy18822300279@163.com |
AuthorAffiliation_xml | – name: 4 Department of Plant Protection, College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300392, China; wy18822300279@163.com – name: 1 College of Life Sciences, Nankai University, Tianjin 300071, China; chenguangzheng@nankai.edu.cn (C.-G.Z.); wenjunbu@nankai.edu.cn (W.-J.B.); xhwang@nankai.edu.cn (X.-H.W.) – name: 3 State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; zhaoym@craes.org.cn – name: 2 Geological Museum of China, Beijing 100083, China; armylan@163.com |
Author_xml | – sequence: 1 givenname: Chen-Guang surname: Zheng fullname: Zheng, Chen-Guang – sequence: 2 givenname: Zheng surname: Liu fullname: Liu, Zheng – sequence: 3 givenname: Yan-Min surname: Zhao fullname: Zhao, Yan-Min – sequence: 4 givenname: Yang surname: Wang fullname: Wang, Yang – sequence: 5 givenname: Wen-Jun surname: Bu fullname: Bu, Wen-Jun – sequence: 6 givenname: Xin-Hua surname: Wang fullname: Wang, Xin-Hua – sequence: 7 givenname: Xiao-Long orcidid: 0000-0001-6544-6204 surname: Lin fullname: Lin, Xiao-Long |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35206689$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1vEzEQhleoiH7QMze0EpdWItQf--HtAQkCLRUFJApna9aeTRzt2ovtVMrf4BfjNKFqIyHhi62ZZ16_M5rDbM86i1n2gpI3nDfkzNiAKgbKCSOUlk-yA0bqclIUJdl78N7PjkNYkHQqymglnmX7vGSkqkRzkP2-MD7E_DuOzsfc2fyLiU7NndXeQJ9fosWUBO_BznBAG3Nj86_OTt6baOws4XqG4XVibhH6dQTym5WF0Q3Oj_PVGr-JaJOm8c66YRnyzwa7Dn1-8sGMET2c59Nt0mjA0-fZ0w76gMfb-yj7efHxx_TT5Prb5dX03fVEJfdxUkNVNByaktaVJpoJAkzopqu7BnRbYgtpAFoTXmrRFQJVi0BYg1gyUIQ2_Ci72uhqBws5ejOAX0kHRt4FnJ9J8NGoHqWosUENINJXRUFU06m24tgqxmsglCSttxutcdkOqFUalIf-kejjjDVzOXO3Uog6NcCTwMlWwLtfSwxRDiYo7Huw6JZBsqqipKgYLf8DTdtRpA5pQl_toAu39DZN9Y4ihAq-Nv_yofl713-3JAFnG0B5F4LH7h6hRK5XUe6sYqoodyqUiRCNW3dv-n_W_QH7H-Y9 |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2023_128997 crossref_primary_10_1080_23802359_2022_2131369 crossref_primary_10_1016_j_gene_2023_147603 crossref_primary_10_3390_insects15090646 crossref_primary_10_1002_ece3_8957 crossref_primary_10_3390_insects14030238 crossref_primary_10_1002_arch_22067 crossref_primary_10_3390_insects13121164 crossref_primary_10_1002_arch_22051 crossref_primary_10_3390_insects13121101 crossref_primary_10_1080_23802359_2023_2246597 crossref_primary_10_3390_insects13110998 crossref_primary_10_3390_insects16020174 crossref_primary_10_1080_23802359_2025_2482275 crossref_primary_10_3956_2023_99_4_217 crossref_primary_10_3390_d17020096 crossref_primary_10_3390_insects15100752 |
Cites_doi | 10.1080/23802359.2021.1975511 10.1093/sysbio/syy032 10.7717/peerj.4595 10.1093/molbev/msu300 10.1080/23802359.2021.1945977 10.3390/ijms17060951 10.1093/nar/gkn179 10.1073/pnas.76.4.1967 10.1016/S0169-5347(00)01967-4 10.1016/j.ympev.2008.07.004 10.1093/molbev/msx248 10.1016/j.gene.2021.145564 10.1093/bioinformatics/bts199 10.1016/j.gene.2012.09.103 10.3109/19401736.2015.1115849 10.1080/23802359.2021.1970638 10.1016/j.ijbiomac.2020.01.249 10.1016/j.mito.2020.02.004 10.1007/s00239-007-9042-8 10.1111/syen.12504 10.1016/j.ympev.2013.02.019 10.1016/j.gene.2020.144540 10.11646/zootaxa.3238.1.2 10.1093/gbe/evr131 10.1111/syen.12489 10.1007/s10452-021-09884-z 10.1093/bioinformatics/btu170 10.1146/annurev-ento-011613-162007 10.1016/S0169-5347(99)01660-2 10.1186/s12864-015-1672-4 10.1093/molbev/msy096 10.1111/zsc.12516 10.1016/j.ympev.2018.02.028 10.1111/j.1096-0031.2010.00329.x 10.1899/0887-3593(2006)25[216:DPBISA]2.0.CO;2 10.1093/sysbio/sys029 10.1016/j.gene.2008.07.037 10.1371/journal.pone.0023008 10.1016/j.ygeno.2018.03.016 10.1016/j.gene.2020.145312 10.1093/bioinformatics/bts174 10.1186/1471-2148-4-25 10.1007/s11033-009-9934-3 10.1038/srep25634 10.1093/gbe/evp027 10.1007/978-1-4684-4988-4_2 10.1093/molbev/msz051 10.1007/s10452-015-9510-y 10.1016/j.gene.2021.145719 10.1016/j.gene.2021.145467 10.7717/peerj.11294 10.1098/rspb.2017.1223 10.1080/23802359.2021.2022544 10.1111/syen.12357 10.3109/19401736.2014.987257 10.1080/23802359.2021.1970634 10.1111/1748-5967.12501 10.1093/nar/27.8.1767 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION NPM 3V. 7SS 7X2 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M0K M7P PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY 7X8 7S9 L.6 5PM DOA |
DOI | 10.3390/insects13020115 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Entomology Abstracts (Full archive) Agricultural Science Collection ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Agriculture Science Database Biological Science Database (ProQuest) Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Agricultural Science Database AGRICOLA PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
EISSN | 2075-4450 |
ExternalDocumentID | oai_doaj_org_article_87e9edaa876d440c9fcb63ebc237a010 PMC8875173 35206689 10_3390_insects13020115 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 31900344, 41502021 – fundername: National Natural Science Foundation of China grantid: 31900344 – fundername: Outstanding Young Talent Funding Project of the High-level Scientific and Technological Innovation Talent Training Project of the Ministry of Natural Resources of China grantid: 12110600000018003910 – fundername: China Postdoctoral Science Foundation grantid: 2018M640227 |
GroupedDBID | 53G 5VS 7X2 7XC 8FE 8FH AADQD AAFWJ AAHBH AAYXX ABDBF ACUHS AEUYN AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ATCPS BBNVY BENPR BHPHI CCPQU CITATION EAD EAP EPL ESX GROUPED_DOAJ HCIFZ HYE IAO ITC KQ8 LK8 M0K M48 M7P MODMG M~E OK1 PATMY PGMZT PHGZM PHGZT PIMPY PROAC PYCSY RPM TUS NPM 3V. 7SS 8FK ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c520t-7a6493a95176d0d280a28d9f7f9adb5eba075dd035d8f48ecbea029ee52ac0193 |
IEDL.DBID | M48 |
ISSN | 2075-4450 |
IngestDate | Wed Aug 27 01:04:08 EDT 2025 Thu Aug 21 18:33:40 EDT 2025 Thu Jul 10 18:47:14 EDT 2025 Fri Jul 11 10:57:12 EDT 2025 Fri Jul 25 12:08:46 EDT 2025 Thu Jan 02 22:56:57 EST 2025 Thu Apr 24 23:11:49 EDT 2025 Tue Jul 01 00:15:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | mitochondrial genome phylogeny gene rearrangement chironomid |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c520t-7a6493a95176d0d280a28d9f7f9adb5eba075dd035d8f48ecbea029ee52ac0193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6544-6204 |
OpenAccessLink | https://doaj.org/article/87e9edaa876d440c9fcb63ebc237a010 |
PMID | 35206689 |
PQID | 2633001830 |
PQPubID | 2032383 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_87e9edaa876d440c9fcb63ebc237a010 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8875173 proquest_miscellaneous_2661046215 proquest_miscellaneous_2633940191 proquest_journals_2633001830 pubmed_primary_35206689 crossref_primary_10_3390_insects13020115 crossref_citationtrail_10_3390_insects13020115 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220121 |
PublicationDateYYYYMMDD | 2022-01-21 |
PublicationDate_xml | – month: 1 year: 2022 text: 20220121 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Insects (Basel, Switzerland) |
PublicationTitleAlternate | Insects |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Kieran (ref_8) 2020; 740 Rokas (ref_10) 2000; 15 Li (ref_55) 2020; 149 Cheng (ref_19) 2021; 51 Beckenbach (ref_28) 2009; 1 ref_58 ref_57 Cameron (ref_1) 2014; 59 Lorenz (ref_56) 2021; 46 Zhang (ref_16) 2021; 777 ref_59 Boore (ref_4) 1999; 27 Curole (ref_6) 1999; 14 Wantzen (ref_39) 2006; 25 Sweet (ref_13) 2021; 768 Manchola (ref_9) 2021; 46 Hu (ref_20) 2010; 37 Jiang (ref_37) 2022; 7 Ye (ref_21) 2016; 6 Zhang (ref_15) 2008; 424 Ronquist (ref_51) 2012; 61 Park (ref_42) 2021; 6 Rozas (ref_48) 2017; 34 ref_26 Martins (ref_41) 2021; 55 Zhang (ref_11) 2020; 52 Koroiva (ref_40) 2015; 49 Vaidya (ref_49) 2011; 27 Lin (ref_32) 2022; 51 Liu (ref_60) 2019; 44 Nelson (ref_27) 2012; 511 Deviatiiarov (ref_31) 2017; 28 Kumar (ref_47) 2018; 35 Kong (ref_35) 2021; 6 Brown (ref_5) 1979; 76 Dietrich (ref_14) 2016; 27 Wang (ref_29) 2021; 783 Leavitt (ref_24) 2013; 67 Zheng (ref_33) 2021; 9 ref_38 Neto (ref_54) 2019; 111 Du (ref_7) 2019; 36 Hiki (ref_36) 2021; 6 Kearse (ref_45) 2012; 28 Grant (ref_46) 2008; 36 Shi (ref_17) 2012; 3238 Lei (ref_34) 2021; 6 Zhang (ref_22) 2018; 6 Cameron (ref_25) 2007; 65 Lanfear (ref_50) 2017; 34 Zheng (ref_12) 2018; 124 Li (ref_18) 2017; 284 Rambaut (ref_52) 2018; 67 Beckenbach (ref_30) 2012; 4 Bolger (ref_43) 2014; 30 ref_3 Cameron (ref_2) 2021; 791 Nguyen (ref_53) 2015; 32 Peng (ref_44) 2012; 28 Fenn (ref_23) 2008; 49 |
References_xml | – volume: 6 start-page: 2995 year: 2021 ident: ref_36 article-title: The complete mitochondrial genome of the non-biting midge Chironomus yoshimatsui (Diptera: Chironomidae) publication-title: Mitochondrial DNA Part. B doi: 10.1080/23802359.2021.1975511 – volume: 67 start-page: 901 year: 2018 ident: ref_52 article-title: Posterior summarization in Bayesian phylogenetics using Tracer 1.7 publication-title: Syst. Biol. doi: 10.1093/sysbio/syy032 – volume: 6 start-page: e4595 year: 2018 ident: ref_22 article-title: Gene characteristics of the complete mitochondrial genomes of Paratoxodera polyacantha and Toxodera hauseri (Mantodea: Toxoderidae) publication-title: Peer J. doi: 10.7717/peerj.4595 – volume: 32 start-page: 268 year: 2015 ident: ref_53 article-title: IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msu300 – volume: 6 start-page: 2212 year: 2021 ident: ref_34 article-title: The complete mitochondrial genome of a non-biting midge Polypedilum unifascium (Tokunaga, 1938) (Diptera: Chironomidae) publication-title: Mitochondrial DNA Part. B doi: 10.1080/23802359.2021.1945977 – ident: ref_59 doi: 10.3390/ijms17060951 – volume: 36 start-page: 181 year: 2008 ident: ref_46 article-title: The CGView Server: A comparative genomics tool for circular genomes publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn179 – volume: 76 start-page: 1967 year: 1979 ident: ref_5 article-title: Rapid evolution of animal mitochondrial DNA publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.76.4.1967 – volume: 15 start-page: 454 year: 2000 ident: ref_10 article-title: Rare genomic changes as a tool for phylogenetics publication-title: Trends Ecol. Evol. doi: 10.1016/S0169-5347(00)01967-4 – volume: 49 start-page: 59 year: 2008 ident: ref_23 article-title: A preliminary mitochondrial genome phylogeny of Orthoptera (Insecta) and approaches to maximizing phylogenetic signal found within mitochondrial genome data publication-title: Mol. Phylogenet. Evol. doi: 10.1016/j.ympev.2008.07.004 – volume: 34 start-page: 3299 year: 2017 ident: ref_48 article-title: DnaSP 6: DNA sequence polymorphism analysis of large data sets publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msx248 – volume: 783 start-page: 145564 year: 2021 ident: ref_29 article-title: Mitogenomes provide insights into the phylogeny of Mycetophilidae (Diptera: Sciaroidea) publication-title: Gene doi: 10.1016/j.gene.2021.145564 – volume: 28 start-page: 1647 year: 2012 ident: ref_45 article-title: Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts199 – volume: 511 start-page: 131 year: 2012 ident: ref_27 article-title: Beyond barcoding: A mitochondrial genomics approach to molecular phylogenetics and diagnostics of blowflies (Diptera: Calliphoridae) publication-title: Gene doi: 10.1016/j.gene.2012.09.103 – volume: 28 start-page: 218 year: 2017 ident: ref_31 article-title: The complete mitochondrial genome of an anhydrobiotic midge Polypedilum vanderplanki (Chironomidae, Diptera) publication-title: Mitochondrial DNA Part. A doi: 10.3109/19401736.2015.1115849 – volume: 6 start-page: 2845 year: 2021 ident: ref_35 article-title: First report of the complete mitogenome of Microchironomus tabarui Sasa, 1987 (Diptera, Chironomidae) from Hebei Province, China publication-title: Mitochondrial DNA Part. B doi: 10.1080/23802359.2021.1970638 – volume: 149 start-page: 371 year: 2020 ident: ref_55 article-title: Evolutionary insights into bot flies (Insecta: Diptera: Oestridae) from comparative analysis of the mitochondrial genomes publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2020.01.249 – volume: 52 start-page: 20 year: 2020 ident: ref_11 article-title: qMGR: A new approach for quantifying mitochondrial genome rearrangement publication-title: Mitochondrion doi: 10.1016/j.mito.2020.02.004 – volume: 65 start-page: 589 year: 2007 ident: ref_25 article-title: The mitochondrial genome of the screamer louse Bothriometopus (Phthiraptera: Ischnocera): Effects of extensive gene rearrangements on the evolution of the genome publication-title: J. Mol. Evol. doi: 10.1007/s00239-007-9042-8 – volume: 46 start-page: 938 year: 2021 ident: ref_9 article-title: Mitochondrial genomes within bark lice (Insecta: Psocodea: Psocomorpha) reveal novel gene rearrangements containing phylogenetic signal publication-title: Syst. Entomol. doi: 10.1111/syen.12504 – volume: 67 start-page: 494 year: 2013 ident: ref_24 article-title: Searching for the optimal data partitioning strategy in mitochondrial phylogenomics: A phylogeny of Acridoidea (Insecta: Orthoptera: Caelifera) as a case study publication-title: Mol. Phylogenet. Evol. doi: 10.1016/j.ympev.2013.02.019 – ident: ref_38 – volume: 740 start-page: 144540 year: 2020 ident: ref_8 article-title: Mitochondrial, metagenomic, and phylogenetic analysis of the ground beetle Harpalus pensylvanicus (Coleoptera: Carabidae) publication-title: Gene doi: 10.1016/j.gene.2020.144540 – volume: 3238 start-page: 23 year: 2012 ident: ref_17 article-title: The complete mitochondrial genome of the flat bug Aradacanthia heissi (Hemiptera: Aradidae) publication-title: Zootaxa doi: 10.11646/zootaxa.3238.1.2 – volume: 4 start-page: 89 year: 2012 ident: ref_30 article-title: Mitochondrial genome sequences of Nematocera (lower Diptera): Evidence of rearrangement following a complete genome duplication in a winter crane fly publication-title: Genome Biol. Evol. doi: 10.1093/gbe/evr131 – volume: 46 start-page: 798 year: 2021 ident: ref_56 article-title: Phylogeny and temporal diversification of mosquitoes (Diptera: Culicidae) with an emphasis on the Neotropical fauna publication-title: Syst. Entomol. doi: 10.1111/syen.12489 – volume: 55 start-page: 1081 year: 2021 ident: ref_41 article-title: Anthropogenic impacts influence the functional traits of Chironomidae (Diptera) assemblages in a neotropical savanna river basin publication-title: Aquat. Ecol. doi: 10.1007/s10452-021-09884-z – volume: 30 start-page: 2114 year: 2014 ident: ref_43 article-title: Trimmomatic: A flexible trimmer for Illumina sequence data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu170 – volume: 59 start-page: 95 year: 2014 ident: ref_1 article-title: Insect mitochondrial genomics: Implications for evolution and phylogeny publication-title: Annu. Rev. Entomol. doi: 10.1146/annurev-ento-011613-162007 – volume: 14 start-page: 394 year: 1999 ident: ref_6 article-title: Mitogenomics: Digging deeper with complete mitochondrial genomes publication-title: Trends Ecol. Evol. doi: 10.1016/S0169-5347(99)01660-2 – ident: ref_26 doi: 10.1186/s12864-015-1672-4 – volume: 35 start-page: 1547 year: 2018 ident: ref_47 article-title: MEGA X: Molecular evolutionary genetics analysis across computing platforms publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msy096 – volume: 51 start-page: 119 year: 2022 ident: ref_32 article-title: Mitogenomes provide new insights into the evolutionary history of Prodiamesinae (Diptera: Chironomidae) publication-title: Zool. Scr. doi: 10.1111/zsc.12516 – volume: 124 start-page: 1 year: 2018 ident: ref_12 article-title: Gene arrangement and sequence of mitochondrial genomes yield insights into the phylogeny and evolution of bees and sphecid wasps (Hymenoptera: Apoidea) publication-title: Mol. Phylogenet. Evol. doi: 10.1016/j.ympev.2018.02.028 – volume: 27 start-page: 171 year: 2011 ident: ref_49 article-title: SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information publication-title: Cladistics doi: 10.1111/j.1096-0031.2010.00329.x – volume: 25 start-page: 216 year: 2006 ident: ref_39 article-title: Detritus processing by invertebrate shredders: A neotropical–temperate comparison publication-title: J. North. Am. Benthol. Soc. doi: 10.1899/0887-3593(2006)25[216:DPBISA]2.0.CO;2 – volume: 61 start-page: 539 year: 2012 ident: ref_51 article-title: MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space publication-title: Syst. Biol. doi: 10.1093/sysbio/sys029 – volume: 424 start-page: 18 year: 2008 ident: ref_15 article-title: The complete mitochondrial genome of Parafronurus youi (Insecta: Ephemeroptera) and phylogenetic position of the Ephemeroptera publication-title: Gene doi: 10.1016/j.gene.2008.07.037 – ident: ref_58 doi: 10.1371/journal.pone.0023008 – volume: 111 start-page: 607 year: 2019 ident: ref_54 article-title: Description and phylogeny of the mitochondrial genome of Sabethes chloropterus, Sabethes glaucodaemon and Sabethes belisarioi (Diptera: Culicidae) publication-title: Genomics doi: 10.1016/j.ygeno.2018.03.016 – volume: 768 start-page: 145312 year: 2021 ident: ref_13 article-title: Structure, gene order, and nucleotide composition of mitochondrial genomes in parasitic lice from Amblycera publication-title: Gene doi: 10.1016/j.gene.2020.145312 – volume: 28 start-page: 1420 year: 2012 ident: ref_44 article-title: IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts174 – ident: ref_57 doi: 10.1186/1471-2148-4-25 – volume: 37 start-page: 3431 year: 2010 ident: ref_20 article-title: The complete mitochondrial genome of the yellow coaster, Acraea issoria (Lepidoptera: Nymphalidae: Heliconiinae: Acraeini): Sequence, gene organization and a unique tRNA translocation event publication-title: Mol. Biol. Rep. doi: 10.1007/s11033-009-9934-3 – volume: 6 start-page: 25634 year: 2016 ident: ref_21 article-title: Mitochondrial genomes of praying mantises (Dictyoptera, Mantodea): Rearrangement, duplication, and reassignment of tRNA genes publication-title: Sci. Rep. doi: 10.1038/srep25634 – volume: 1 start-page: 278 year: 2009 ident: ref_28 article-title: Evolution of the mitochondrial genomes of gall midges (Diptera: Cecidomyiidae): Rearrangement and severe truncation of tRNA genes publication-title: Genome Biol. Evol. doi: 10.1093/gbe/evp027 – ident: ref_3 doi: 10.1007/978-1-4684-4988-4_2 – volume: 36 start-page: 1187 year: 2019 ident: ref_7 article-title: Mitochondrial genomics reveals shared phylogeographic patterns and demographic history among three periodical cicada species groups publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msz051 – volume: 34 start-page: 772 year: 2017 ident: ref_50 article-title: PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses publication-title: Mol. Biol. Evol. – volume: 49 start-page: 115 year: 2015 ident: ref_40 article-title: The effect of riparian deforestation on macroinvertebrates associated with submerged woody debris publication-title: Aquat. Ecol. doi: 10.1007/s10452-015-9510-y – volume: 791 start-page: 145719 year: 2021 ident: ref_2 article-title: How are the mitochondrial genomes reorganized in Hexapoda? Differential evolution and the first report of convergences within Hexapoda publication-title: Gene doi: 10.1016/j.gene.2021.145719 – volume: 777 start-page: 145467 year: 2021 ident: ref_16 article-title: Complete mitochondrial genomes of Epeorus carinatus and E. dayongensis (Ephemeroptera: Heptageniidae): Genomic comparison and phylogenetic inference publication-title: Gene doi: 10.1016/j.gene.2021.145467 – volume: 9 start-page: e11294 year: 2021 ident: ref_33 article-title: First complete mitogenomes of Diamesinae, Orthocladiinae, Prodiamesinae, Tanypodinae (Diptera: Chironomidae) and their implication in phylogenetics publication-title: Peer J. doi: 10.7717/peerj.11294 – volume: 284 start-page: 20171223 year: 2017 ident: ref_18 article-title: Mitochondrial phylogenomics of Hemiptera reveals adaptive innovations driving the diversification of true bugs publication-title: Proc. R. Soc. B Biol. Sci. doi: 10.1098/rspb.2017.1223 – volume: 7 start-page: 215 year: 2022 ident: ref_37 article-title: First report of the complete mitogenome of Tanypus punctipennis Meigen, 1818 (Diptera, Chironomidae) from Hebei Province, China publication-title: Mitochondrial DNA Part. B doi: 10.1080/23802359.2021.2022544 – volume: 44 start-page: 810 year: 2019 ident: ref_60 article-title: Higher-level phylogeny and evolutionary history of Pentatomomorpha (Hemiptera: Heteroptera) inferred from mitochondrial genome sequences publication-title: Syst. Entomol. doi: 10.1111/syen.12357 – volume: 27 start-page: 3903 year: 2016 ident: ref_14 article-title: The complete mitogenomes of six higher termite species reconstructed from metagenomic datasets (Cornitermes sp., Cubitermes ugandensis, Microcerotermes parvus, Nasutitermes corniger, Neocapritermes taracua, and Termes hospes) publication-title: Mitochondrial DNA Part. A doi: 10.3109/19401736.2014.987257 – volume: 6 start-page: 2843 year: 2021 ident: ref_42 article-title: Complete mitochondrial genome of Chironomus flaviplumus (Diptera: Chironomidae) collected in Korea publication-title: Mitochondrial DNA Part. B doi: 10.1080/23802359.2021.1970634 – volume: 51 start-page: 287 year: 2021 ident: ref_19 article-title: Characterization of mitochondrial genomes of three new species: Leptocimbex praiaformis, L. clavicornis, and L. yanniae (Hymenoptera: Cimbicidae) publication-title: Entomol. Res. doi: 10.1111/1748-5967.12501 – volume: 27 start-page: 1767 year: 1999 ident: ref_4 article-title: Animal mitochondrial genomes publication-title: Nucleic Acids Res. doi: 10.1093/nar/27.8.1767 |
SSID | ssj0000612168 |
Score | 2.3261244 |
Snippet | (1) Background: Gene rearrangement of mitochondrial genome, especially those with phylogenetic signals, has long fascinated evolutionary biologists. The... Simple SummaryGene rearrangement is an additional type of data to support relationships of taxa, with rearrangement synapomorphies identified across multiple... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 115 |
SubjectTerms | Bias Biting Ceratopogonidae chironomid Chironomidae Chironominae Diptera Gene order Gene rearrangement Genes Genomes Life sciences Mitochondria mitochondrial genes mitochondrial genome monophyly multigene family Phylogenetics Phylogeny Species Stenochironomus Synapomorphy Taxonomy Transfer RNA tRNA |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDcLBRmJQ5EITWznYW60sKpA7aVUqrhEY3siIlGnyu4i8Tf4xcwk6Wq34nHhmpldOZ4Z-5t45rMQL32ljcuVSTKPPjGutIk1OBRTobVlWjjgRuHjk-LozHw8z883rvrimrCRHnicuP2qRIsBgKI2GJN623hXaHRe6RKm5ira8zaSqXENzlRWVCOXj6a8fr-NCy6P4HM6RkFb29DA1v87iHm9UnJj65nfEbcnzCjfjWO9K25gvCdufumGL-L3xc95SxBOjlBadlEeU5TSqhYDO5dkYmkSQt9zHwF_DJRtlCddTA5arnkmdSZ6eE063wk18hOQpz8iXHYXHVuB1U8JWtN_ck9cd7FayE8tF4L0cu89rTnYw1t5OAnbAPjqgTibf_h8eJRMVy0kPlfpMimhMFYDwS2a5jSoKgVVBduUjYXgcnRA0CKEVOehakyF3iGkyiLmCjyhRP1Q7MQu4mMhG06JnAdrm9QYbxx4b5oKDaAntzUz8eZq5ms_8ZDzdRjfaspH2FT1NVPNxN76B5cjBcefVQ_YlGs15s4eHpBH1ZNH1f_yqJnYvXKEegroRa0KrfkCQ03iF2sxhSKfr0DEbjXqWMpXbfY3nYJP1RWP9dHoW-vREhamqavsTJRbXrf1OtuS2H4dKMFpqyDT6Sf_4_2filuKezzSLFHZrthZ9it8Rshr6Z4PQfYL5w4ybg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagFRIXxJuUgozEoUiEOo7zMBfElq4qUFeIUqniEvkViNQ6S3YXib_BL2Ym8Qa2gl7jSeR4Xt-Mx2NCnpsyFTrjIk6MM7HQhYylcH0xlZOyYLlWeFD4eJYfnYr3Z9lZSLgtQlnl2ib2htq2BnPk-zyHyJuBALI38-8x3hqFu6vhCo3rZBtMcAnB1_bkcPbx05hlQQee5OXQ0yeF-H6_8Qssk8D9OkRDG-6o79r_L6h5uWLyLxc0vU1uBexI3w7MvkOuOX-X3PjS9pnxe-TXtAEoRwdITVtPj0Fbwbp5i0JGscE0DKquw_MEmBSkjaez1seTBmufgRwbPrwEmh-AHvGJoic_vZq3Fy1yA8lPAGLDN_FsXHuxWtAPDRaEdHTvHdge16nX9CAMNla5F_fJ6fTw88FRHK5ciE3G2TIuVC5kqgB2FblllpdM8dLKuqilsjpzWgHEsJalmS1rUTqjnWJcOpdxZQAtpg_Ilm-9e0RojaGRNkrKmglhhFbGiLp0QjkD4isi8mq98pUJ_cjxWozzCuISZFV1iVUR2RtfmA-tOP5POkFWjmTYQ7t_0HZfq6CSVVk46axS4A-sEMzI2ug8ddrwtFAQpkZkdy0IVVDsRfVHDCPybBwGlcR9FuVduxpoJMStMrmKJsfddY5zfTjI1jhbwMSwdKWMSLEhdRu_sznim299a3BwGcC6dOfqqT8mNzme4mBJzJNdsrXsVu4JYKulfhoU6DenXypd priority: 102 providerName: ProQuest |
Title | First Report on Mitochondrial Gene Rearrangement in Non-Biting Midges, Revealing a Synapomorphy in Stenochironomus Kieffer (Diptera: Chironomidae) |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35206689 https://www.proquest.com/docview/2633001830 https://www.proquest.com/docview/2633940191 https://www.proquest.com/docview/2661046215 https://pubmed.ncbi.nlm.nih.gov/PMC8875173 https://doaj.org/article/87e9edaa876d440c9fcb63ebc237a010 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3raxQxEA_aIvhFfHtajwh-qODWbJJ9RBDxao-i3CHWg-KXJa_VhTZbt3di_w3_Ymd2906vnOLXzWzIZmZ2fpPMg5CnNhfSJFxGsfU2kiZTkZK-DabySmUsNRoThSfT9HAm3x0nx7_bAfUbeL7RtcN-UrPmZO_Ht4vXoPCv0OMEl_1FFc4x8gGv4BDgXCXbYJYy1NJJj_W733LM4zY1joOZjKRMWFfqZ9Mca1aqLea_CYFeDqT8wzKNb5IbPaSkbzoZuEWu-HCbXPtctwfmd8jPcQUIj3ZIm9aBTkCJ4buDQ9mjWHcaBnXTYJoBnhXSKtBpHaJRhSHRQI51IJ4DzXcAlfhE06OLoM_q0xqZhORHgLxhTkyZq08X5_R9hXEiDd19C78k3-iXdL8frJz2z-6S2fjg0_5h1HdiiGzC2TzKdCqV0IDGstQxx3Omee5UmZVKO5N4o2FLnWMicXkpc2-N14wr7xOuLYBIcY9shTr4B4SW6DEZq5UqmZRWGm2tLHMvtbcg1XJA9pY7X9i-TDl2yzgpwF1BVhWXWDUgu6sXzroKHX8nHSErV2RYWrt9UDdfil5TizzzyjutwUw4KZlVpTWp8MZykWnwXgdkZykIxVJcC54Kgf0NBQw_WQ2DpuL1iw6-XnQ0CtxZFf-LJsVLd45rvd_J1mq1AJVh63I1INma1K19zvpIqL62FcPBkgDrxMP_WNsjcp1jhgeLIx7vkK15s_CPAXfNzZBsjw6mHz4O23OLYatdvwDtNzNq |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwELZGJwRfEO8UBhgJpCER5jjOi5EQotuqjq4VYps08SX4LRCJJSVtQfsb_BB-I3dJWugE-7av8SVyfOe75-x7IeSpSQKhQy483zjjCR1LTwpXB1M5KWMWaYWJwqNxNDgS747D4zXya5ELg2GVC51YK2pbGjwj3-IReN4MBJC9mXzzsGsU3q4uWmg0YjF0pz_AZZu-3tsB_j7jvL97uD3w2q4Cngk5m3mxioQMFCCLOLLM8oQpnliZxZlUVodOK7Ci1rIgtEkmEme0U4xL50KuDACiAL57iayLAFyZDlnv7Y7ff1ie6iBg8KOkqSEUBJJt5cUUwzLwfhDR14r5q7sE_Avano3Q_Mvk9a-Tay1WpW8b4bpB1lxxk1z-WNYn8bfIz34O0JE2EJ6WBR2BdgBtWlgUaooFrWFQVRXmL-AhJM0LOi4Lr5djrDWQY4GJF0DzHdAqPlH04LRQk_KkRO4j-QFAevgm5uKVJ_MpHeYYgFLRzR3Qda5Sr-h2O5hb5Z7fJkcXwow7pFOUhbtHaIaumDZKyowJYYRWxogscUI5A9tFdMnLxcqnpq1_jm04vqbgByGr0jOs6pLN5QuTpvTH_0l7yMolGdbsrh-U1ee0VQFpEjvprFJgf6wQzMjM6Chw2vAgVuAWd8nGQhDSVpFM0z9i3yVPlsOgAvBeRxWunDc0Evxk6Z9HE-FtPse53m1kazlbwOCwdInsknhF6lZ-Z3WkyL_UpcjBRAHrgvvnT_0xuTI4HO2n-3vj4QNylWMGCfM97m-Qzqyau4eA62b6UbuZKPl00fv3N9yKaB4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6VVCBeEDeBAosEUpEwWa_XxyIhRJpGLaFRRVup4sXsZbBE7eAkoP4Nfg6_jhnbCaSCvvXVO7E2nuub3TkIeWqSQOiQC883znhCx9KTwtXJVE7KmEVaYaHw3jjaORLvjsPjNfJrUQuDaZULm1gbalsaPCPv8QgibwYCyHpZmxaxPxi-mXzzcIIU3rQuxmk0IjJypz8gfJu-3h0Ar59xPtw-3Nrx2gkDngk5m3mxioQMFKCMOLLM8oQpnliZxZlUVodOK_Co1rIgtEkmEme0U4xL50KuDICjAN57iazHEBWxDlnvb4_3PyxPeBA8-FHS9BMKAsl6eTHFFA28K0QktuIK64kB_4K5Z7M1_3J_w-vkWotb6dtG0G6QNVfcJJc_lvWp_C3yc5gDjKQNnKdlQffAUoBlLSwKOMXm1rCoqgprGfBAkuYFHZeF188x7xrIsdnEC6D5DsgVnyh6cFqoSXlSoiQg-QHAe3gn1uWVJ_MpHeWYjFLRzQHYPVepV3SrXcytcs9vk6MLYcYd0inKwt0jNMOwTBslZcaEMEIrY0SWOKGcAdURXfJy8eVT0_ZCx5EcX1OIiZBV6RlWdcnm8geTpg3I_0n7yMolGfbvrh-U1ee0NQdpEjvprFLgi6wQzMjM6Chw2vAgVhAid8nGQhDS1qhM0z8q0CVPlstgDvCORxWunDc0EmJm6Z9HE-HNPse93m1ka7lbwOPw6RLZJfGK1K38ndWVIv9StyUHdwWsC-6fv_XH5Arobfp-dzx6QK5yLCZhvsf9DdKZVXP3ECDeTD9qdYmSTxetvr8BQc1sUw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=First+Report+on+Mitochondrial+Gene+Rearrangement+in+Non-Biting+Midges%2C+Revealing+a+Synapomorphy+in+Stenochironomus+Kieffer+%28Diptera%3A+Chironomidae%29&rft.jtitle=Insects+%28Basel%2C+Switzerland%29&rft.au=Zheng%2C+Chen-Guang&rft.au=Liu%2C+Zheng&rft.au=Zhao%2C+Yan-Min&rft.au=Wang%2C+Yang&rft.date=2022-01-21&rft.issn=2075-4450&rft.eissn=2075-4450&rft.volume=13&rft.issue=2&rft_id=info:doi/10.3390%2Finsects13020115&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4450&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4450&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4450&client=summon |