Expanding the clinical application of OPM-MEG using an effective automatic suppression method for the dental brace metal artifact

Optically pumped magnetometer magnetoencephalography (OPM-MEG) holds significant promise for clinical functional brain imaging due to its superior spatiotemporal resolution. However, effectively suppressing metallic artifacts, particularly from devices such as orthodontic braces and vagal nerve stim...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 296; p. 120661
Main Authors Wang, Ruonan, Fu, Kaiwen, Zhao, Ruochen, Wang, Dawei, Yang, Zhimin, Bin, Wei, Gao, Yang, Ning, Xiaolin
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.08.2024
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2024.120661

Cover

Abstract Optically pumped magnetometer magnetoencephalography (OPM-MEG) holds significant promise for clinical functional brain imaging due to its superior spatiotemporal resolution. However, effectively suppressing metallic artifacts, particularly from devices such as orthodontic braces and vagal nerve stimulators remains a major challenge, hindering the wider clinical application of wearable OPM-MEG devices. A comprehensive analysis of metal artifact characteristics from time, frequency, and time–frequency perspectives was conducted for the first time using an OPM-MEG device in clinical medicine. This study focused on patients with metal orthodontics, examining the modulation of metal artifacts by breath and head movement, the incomplete regular sub-Gaussian distribution, and the high absolute power ratio in the 0.5–8 Hz band. The existing metal artifact suppression algorithms applied to SQUID-MEG, such as fast independent component analysis (FastICA), information maximization (Infomax), and algorithms for multiple unknown signal extraction (AMUSE), exhibit limited efficacy. Consequently, this study introduced the second-order blind identification (SOBI) algorithm, which utilized multiple time delays for the component separation of OPM-MEG measurement signals. We modified the time delays of the SOBI method to improve its efficacy in separating artifact components, particularly those in the ultralow frequency range. This approach employs the frequency-domain absolute power ratio, root mean square (RMS) value, and mutual information methods to automate the artifact component screening process. The effectiveness of this method was validated through simulation experiments involving four subjects in both resting and evoked experiments. In addition, the proposed method was also validated by the actual OPM-MEG evoked experiments of three subjects. Comparative analyses were conducted against the FastICA, Infomax, and AMUSE algorithms. Evaluation metrics included normalized mean square error, normalized delta band power error, RMS error, and signal-to-noise ratio, demonstrating that the proposed method provides optimal suppression of metal artifacts. This advancement holds promise for enhancing data quality and expanding the clinical applications of OPM-MEG. [Display omitted] •The atomic magnetometers are getting more and more attention.•The metallic artifacts hinder the clinical application of wearable OPM-MEG.•The proposed method in this article can effectively suppress the dental metal artifact.
AbstractList Optically pumped magnetometer magnetoencephalography (OPM-MEG) holds significant promise for clinical functional brain imaging due to its superior spatiotemporal resolution. However, effectively suppressing metallic artifacts, particularly from devices such as orthodontic braces and vagal nerve stimulators remains a major challenge, hindering the wider clinical application of wearable OPM-MEG devices. A comprehensive analysis of metal artifact characteristics from time, frequency, and time-frequency perspectives was conducted for the first time using an OPM-MEG device in clinical medicine. This study focused on patients with metal orthodontics, examining the modulation of metal artifacts by breath and head movement, the incomplete regular sub-Gaussian distribution, and the high absolute power ratio in the 0.5-8 Hz band. The existing metal artifact suppression algorithms applied to SQUID-MEG, such as fast independent component analysis (FastICA), information maximization (Infomax), and algorithms for multiple unknown signal extraction (AMUSE), exhibit limited efficacy. Consequently, this study introduced the second-order blind identification (SOBI) algorithm, which utilized multiple time delays for the component separation of OPM-MEG measurement signals. We modified the time delays of the SOBI method to improve its efficacy in separating artifact components, particularly those in the ultralow frequency range. This approach employs the frequency-domain absolute power ratio, root mean square (RMS) value, and mutual information methods to automate the artifact component screening process. The effectiveness of this method was validated through simulation experiments involving four subjects in both resting and evoked experiments. In addition, the proposed method was also validated by the actual OPM-MEG evoked experiments of three subjects. Comparative analyses were conducted against the FastICA, Infomax, and AMUSE algorithms. Evaluation metrics included normalized mean square error, normalized delta band power error, RMS error, and signal-to-noise ratio, demonstrating that the proposed method provides optimal suppression of metal artifacts. This advancement holds promise for enhancing data quality and expanding the clinical applications of OPM-MEG.Optically pumped magnetometer magnetoencephalography (OPM-MEG) holds significant promise for clinical functional brain imaging due to its superior spatiotemporal resolution. However, effectively suppressing metallic artifacts, particularly from devices such as orthodontic braces and vagal nerve stimulators remains a major challenge, hindering the wider clinical application of wearable OPM-MEG devices. A comprehensive analysis of metal artifact characteristics from time, frequency, and time-frequency perspectives was conducted for the first time using an OPM-MEG device in clinical medicine. This study focused on patients with metal orthodontics, examining the modulation of metal artifacts by breath and head movement, the incomplete regular sub-Gaussian distribution, and the high absolute power ratio in the 0.5-8 Hz band. The existing metal artifact suppression algorithms applied to SQUID-MEG, such as fast independent component analysis (FastICA), information maximization (Infomax), and algorithms for multiple unknown signal extraction (AMUSE), exhibit limited efficacy. Consequently, this study introduced the second-order blind identification (SOBI) algorithm, which utilized multiple time delays for the component separation of OPM-MEG measurement signals. We modified the time delays of the SOBI method to improve its efficacy in separating artifact components, particularly those in the ultralow frequency range. This approach employs the frequency-domain absolute power ratio, root mean square (RMS) value, and mutual information methods to automate the artifact component screening process. The effectiveness of this method was validated through simulation experiments involving four subjects in both resting and evoked experiments. In addition, the proposed method was also validated by the actual OPM-MEG evoked experiments of three subjects. Comparative analyses were conducted against the FastICA, Infomax, and AMUSE algorithms. Evaluation metrics included normalized mean square error, normalized delta band power error, RMS error, and signal-to-noise ratio, demonstrating that the proposed method provides optimal suppression of metal artifacts. This advancement holds promise for enhancing data quality and expanding the clinical applications of OPM-MEG.
Optically pumped magnetometer magnetoencephalography (OPM-MEG) holds significant promise for clinical functional brain imaging due to its superior spatiotemporal resolution. However, effectively suppressing metallic artifacts, particularly from devices such as orthodontic braces and vagal nerve stimulators remains a major challenge, hindering the wider clinical application of wearable OPM-MEG devices.A comprehensive analysis of metal artifact characteristics from time, frequency, and time–frequency perspectives was conducted for the first time using an OPM-MEG device in clinical medicine. This study focused on patients with metal orthodontics, examining the modulation of metal artifacts by breath and head movement, the incomplete regular sub-Gaussian distribution, and the high absolute power ratio in the 0.5–8 Hz band. The existing metal artifact suppression algorithms applied to SQUID-MEG, such as fast independent component analysis (FastICA), information maximization (Infomax), and algorithms for multiple unknown signal extraction (AMUSE), exhibit limited efficacy. Consequently, this study introduced the second-order blind identification (SOBI) algorithm, which utilized multiple time delays for the component separation of OPM-MEG measurement signals. We modified the time delays of the SOBI method to improve its efficacy in separating artifact components, particularly those in the ultralow frequency range. This approach employs the frequency-domain absolute power ratio, root mean square (RMS) value, and mutual information methods to automate the artifact component screening process.The effectiveness of this method was validated through simulation experiments involving four subjects in both resting and evoked experiments. In addition, the proposed method was also validated by the actual OPM-MEG evoked experiments of three subjects. Comparative analyses were conducted against the FastICA, Infomax, and AMUSE algorithms. Evaluation metrics included normalized mean square error, normalized delta band power error, RMS error, and signal-to-noise ratio, demonstrating that the proposed method provides optimal suppression of metal artifacts. This advancement holds promise for enhancing data quality and expanding the clinical applications of OPM-MEG.
Optically pumped magnetometer magnetoencephalography (OPM-MEG) holds significant promise for clinical functional brain imaging due to its superior spatiotemporal resolution. However, effectively suppressing metallic artifacts, particularly from devices such as orthodontic braces and vagal nerve stimulators remains a major challenge, hindering the wider clinical application of wearable OPM-MEG devices. A comprehensive analysis of metal artifact characteristics from time, frequency, and time–frequency perspectives was conducted for the first time using an OPM-MEG device in clinical medicine. This study focused on patients with metal orthodontics, examining the modulation of metal artifacts by breath and head movement, the incomplete regular sub-Gaussian distribution, and the high absolute power ratio in the 0.5–8 Hz band. The existing metal artifact suppression algorithms applied to SQUID-MEG, such as fast independent component analysis (FastICA), information maximization (Infomax), and algorithms for multiple unknown signal extraction (AMUSE), exhibit limited efficacy. Consequently, this study introduced the second-order blind identification (SOBI) algorithm, which utilized multiple time delays for the component separation of OPM-MEG measurement signals. We modified the time delays of the SOBI method to improve its efficacy in separating artifact components, particularly those in the ultralow frequency range. This approach employs the frequency-domain absolute power ratio, root mean square (RMS) value, and mutual information methods to automate the artifact component screening process. The effectiveness of this method was validated through simulation experiments involving four subjects in both resting and evoked experiments. In addition, the proposed method was also validated by the actual OPM-MEG evoked experiments of three subjects. Comparative analyses were conducted against the FastICA, Infomax, and AMUSE algorithms. Evaluation metrics included normalized mean square error, normalized delta band power error, RMS error, and signal-to-noise ratio, demonstrating that the proposed method provides optimal suppression of metal artifacts. This advancement holds promise for enhancing data quality and expanding the clinical applications of OPM-MEG. [Display omitted] •The atomic magnetometers are getting more and more attention.•The metallic artifacts hinder the clinical application of wearable OPM-MEG.•The proposed method in this article can effectively suppress the dental metal artifact.
ArticleNumber 120661
Author Wang, Dawei
Ning, Xiaolin
Yang, Zhimin
Gao, Yang
Fu, Kaiwen
Bin, Wei
Wang, Ruonan
Zhao, Ruochen
Author_xml – sequence: 1
  givenname: Ruonan
  orcidid: 0000-0002-0018-8213
  surname: Wang
  fullname: Wang, Ruonan
  email: BY1917076@buaa.edu.cn
  organization: School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing 100191, China
– sequence: 2
  givenname: Kaiwen
  surname: Fu
  fullname: Fu, Kaiwen
  email: sy2017512@buaa.edu.cn
  organization: School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing 100191, China
– sequence: 3
  givenname: Ruochen
  surname: Zhao
  fullname: Zhao, Ruochen
  email: zhaoruochen@buaa.edu.cn
  organization: School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing 100191, China
– sequence: 4
  givenname: Dawei
  surname: Wang
  fullname: Wang, Dawei
  email: daweiwangtj@126.com
  organization: Department of Radiology, Qilu Hospital of Shandong University, Jinan 250012, China
– sequence: 5
  givenname: Zhimin
  surname: Yang
  fullname: Yang, Zhimin
  email: yangyoVIP@126.com
  organization: State Key Laboratory of Traditional Chinese Medicine Syndrome/Health Construction Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
– sequence: 6
  givenname: Wei
  surname: Bin
  fullname: Bin, Wei
  email: bincomp@163.com
  organization: State Key Laboratory of Traditional Chinese Medicine Syndrome/Health Construction Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
– sequence: 7
  givenname: Yang
  surname: Gao
  fullname: Gao, Yang
  email: yanggao@buaa.edu.cn
  organization: Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
– sequence: 8
  givenname: Xiaolin
  surname: Ning
  fullname: Ning, Xiaolin
  email: ningxiaolin@buaa.edu.cn
  organization: School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing 100191, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38838840$$D View this record in MEDLINE/PubMed
BookMark eNqNkstu1TAQhiNURC_wCsgSGzY5-BInzg6oDqVSq7KAteU441OHHDvYSdUueXPspi1SV5UseWR_89sz8x8XB847KApE8IZgUn8aNg6W4O1e7WBDMa02hOK6Jq-KI4JbXra8oQc55qwUhLSHxXGMA8a4JZV4UxwyIdKq8FHxd3s7Kddbt0PzNSA9Wme1GpGapjEFs_UOeYOuflyWl9sztMRMKofAGNCzvQGkltnvE6hRXKYpQIw5Zw_zte-R8eFetwc3J9UuKA35Lr8QZmuUnt8Wr40aI7x72E-KX9-2P0-_lxdXZ-enXy5KzSmey5oJjknVk1aThjaEkwqTrjJC1ILopjOGaJ6KrxmrgXapC5gxqnhX8QZ6YOykOF91e68GOYXUvHAnvbLy_sCHncxf0iNIWitetVpTIrqqFULRBhvWAcaq0dCZpPVx1ZqC_7NAnOXeRg3jqBz4JUqGa06bGov87Idn6OCX4FKlmWo5axjN1PsHaun20D9973FQCRAroIOPMYB5QgiW2RNykP89IbMn5OqJlPp1TYXU3RsLQUZtwWnobUgzTOXbl4h8fibyaJXfcPcyiX8jYtig
Cites_doi 10.1148/radiol.212453
10.1109/78.554307
10.1109/72.761722
10.1109/31.76486
10.1016/j.neuroimage.2013.10.027
10.1007/s10548-023-00957-w
10.1097/WNP.0b013e3181c29896
10.1007/978-3-030-00087-5_31
10.1109/TSP.2005.853302
10.1016/j.neuroimage.2011.10.042
10.1016/j.jneumeth.2008.09.035
10.1109/20.250663
10.1371/journal.pone.0262669
10.1016/j.neuroimage.2021.118834
10.1016/j.neuroimage.2022.119084
10.1016/j.clinph.2012.06.013
10.1002/acn3.50995
10.1016/j.neuroimage.2005.06.062
10.1016/j.neuroimage.2004.11.027
10.1016/j.neuroimage.2020.117057
10.1007/978-3-030-00087-5_59
10.1088/1741-2560/13/2/026029
10.1111/psyp.13731
10.1002/hbm.22024
10.1109/10.623056
10.1016/j.tins.2022.05.008
10.1016/j.neuroimage.2018.11.025
10.1016/j.clinph.2012.03.082
10.1088/1741-2560/12/4/046001
10.1002/hbm.21096
10.1016/j.neuroimage.2016.12.048
10.1016/j.neuroimage.2019.05.080
10.1162/neco.1995.7.6.1129
10.1016/j.neuroimage.2020.116804
10.1016/j.neuron.2019.07.001
10.1038/s41598-024-56878-6
10.3389/fnins.2018.00530
10.1016/j.compbiomed.2007.12.001
10.1088/0031-9155/51/7/008
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
2024. The Author(s)
Copyright_xml – notice: 2024 The Author(s)
– notice: Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2024. The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOA
DOI 10.1016/j.neuroimage.2024.120661
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database (ProQuest)
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest One Psychology


PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
ExternalDocumentID oai_doaj_org_article_26a549cc218b4988a270f3be00a7cebf
38838840
10_1016_j_neuroimage_2024_120661
S1053811924001563
Genre Journal Article
GrantInformation_xml – fundername: Joint Funds of the National Natural Science Foundation of China
  grantid: U23A20434
– fundername: Natural Science Foundation of Beijing Municipality, China
  grantid: 4212012
  funderid: http://dx.doi.org/10.13039/501100004826
– fundername: the Hefei National Laboratory, Innovation Program for Quantum Science and Technology
  grantid: 2021ZD0300500
– fundername: Key R & D Program of Shandong Province, China
  grantid: 2022ZLGX03
  funderid: http://dx.doi.org/10.13039/100014103
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
0SF
6I.
AACTN
AAFTH
AAIAV
AFKWA
AJOXV
ALIPV
AMFUW
C45
HMQ
NCXOZ
RIG
SEW
SNS
ZA5
29N
53G
AAQFI
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AGHFR
AGQPQ
AGRNS
AKRLJ
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
R2-
WUQ
XPP
ZMT
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c520t-6385014d19c1727151401b4f88681c7bff1c51096336e2b0950332a5b457ede33
IEDL.DBID AIKHN
ISSN 1053-8119
1095-9572
IngestDate Wed Aug 27 01:30:48 EDT 2025
Thu Sep 04 21:44:22 EDT 2025
Wed Aug 13 10:06:42 EDT 2025
Thu Apr 03 06:56:54 EDT 2025
Tue Jul 01 03:02:29 EDT 2025
Thu Jul 04 08:40:17 EDT 2024
Tue Aug 26 17:21:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Optically pumped magnetometers
Metallic artifacts
Magnetoencephalography
Clinical applications
Artifact suppression
Language English
License This is an open access article under the CC BY-NC license.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c520t-6385014d19c1727151401b4f88681c7bff1c51096336e2b0950332a5b457ede33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0018-8213
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1053811924001563
PMID 38838840
PQID 3069537323
PQPubID 2031077
ParticipantIDs doaj_primary_oai_doaj_org_article_26a549cc218b4988a270f3be00a7cebf
proquest_miscellaneous_3065276083
proquest_journals_3069537323
pubmed_primary_38838840
crossref_primary_10_1016_j_neuroimage_2024_120661
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2024_120661
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2024_120661
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2024
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Safar, Vandewouw, Sato (b31) 2024; 14
Cai, Xu, Velmurugan (b8) 2019; 188
Feys, Corvilain, Aeby (b11) 2022; 304
Zhang (b44) 2014
Migliorelli, Alonso, Romero (b26) 2015; 12
Hill, Devasagayam, Holmes, Boto, Shah, Osborne, Safar, Worcester, Mariani, Dawson, Woolger, Bowtell, Taylor, Brookes (b14) 2022; 253
Song, Cui, Gaa (b34) 2009; 26
Hillebrand, Fazio, Munck (b15) 2013; 124
Liu, Zwart, Gelderen (b22) 2012; 59
Sahonero, Calderón (b32) 2017
Romero, Mañanas, Barbanoj (b30) 2008; 38
Airaksinen, Mkel, Taulu (b2) 2011; 32
Kakisaka, Mosher, Wang (b20) 2013; 124
Tang, Sutherland, Mckinney (b37) 2005; 25
Wang, Wu, Liang, Cao, Xiang, Gao, Ning (b43) 2023; 36
Bell, Sejnowski (b3) 1995; 7
Tong, Liu, Soon (b40) 1991; 38
Boring, Jessen, Wozny (b6) 2019; 199
Marhl, Jodko-Wladzińska, Brühl, Sander, Jazbinšek (b24) 2022; 17
Bommel (b5) 1993; 29
Belouchrani, Abed-Meraim, Cardoso (b4) 1997; 45
Hyvarinen (b16) 1999; 10
Jas, Larson, Engemann (b19) 2018; 12
Sun, Chan, Hsiao (b35) 2021; 58
Van Veen, W., Yuchtman, Suzuki (b41) 1997; 44
Taulu, Simola (b38) 2006; 51
Iivanainen, Stenroos, Parkkonen (b17) 2017; 147
Vivekananda, Mellor, Tierney (b42) 2020; 7
Seymour, Alexander, Mellor, George C. O’Neill, Tim M. Tierney, Gareth R. Barnes, Eleanor A. Maguire (b33) 2022; 247
Medvedovsky, Taulu, Bikmullina (b25) 2009; 177
Taulu, Simola (b39) 2005; 53
Kandemir, Litvak, Florin (b21) 2020; 219
Aine, C.J., Adair, J.C., Knoefel, J.E., et al., Cognitive Decline Associated with Aging, Alzheimer’s Disease, and Cerebrovascular Risk: Advantages of Dynamic Imaging with MEG. In: Magnetoencephalography: From Signals to Dynamic Cortical Networks. 2019, pp. 1099–1119.
Illman, Laaksonen, Liljeström, Jousmäki (b18) 2020; 215
Lma, Sep, Maa (b23) 2021; 243
Migliorelli, Joan (b27) 2016; 13
Tang, Liu, Sutherland (b36) 2005; 28
Gross (b13) 2019; 104
D’Arcy, Bardouille, Newman (b9) 2013; 34
Brookes (b7) 2022; 45
Esch, Dinh, Larson (b10) 2019
Gramfort, Luessi, Larson (b12) 2014; 86
Migliorelli, Romero, Alonso (b28) 2013
Ng, Raveendran (b29) 2024; 2009
Hyvarinen (10.1016/j.neuroimage.2024.120661_b16) 1999; 10
Tong (10.1016/j.neuroimage.2024.120661_b40) 1991; 38
Gross (10.1016/j.neuroimage.2024.120661_b13) 2019; 104
Taulu (10.1016/j.neuroimage.2024.120661_b38) 2006; 51
Esch (10.1016/j.neuroimage.2024.120661_b10) 2019
Wang (10.1016/j.neuroimage.2024.120661_b43) 2023; 36
Tang (10.1016/j.neuroimage.2024.120661_b36) 2005; 28
Romero (10.1016/j.neuroimage.2024.120661_b30) 2008; 38
Zhang (10.1016/j.neuroimage.2024.120661_b44) 2014
Seymour (10.1016/j.neuroimage.2024.120661_b33) 2022; 247
Iivanainen (10.1016/j.neuroimage.2024.120661_b17) 2017; 147
Ng (10.1016/j.neuroimage.2024.120661_b29) 2024; 2009
Bell (10.1016/j.neuroimage.2024.120661_b3) 1995; 7
Song (10.1016/j.neuroimage.2024.120661_b34) 2009; 26
Sun (10.1016/j.neuroimage.2024.120661_b35) 2021; 58
Boring (10.1016/j.neuroimage.2024.120661_b6) 2019; 199
Migliorelli (10.1016/j.neuroimage.2024.120661_b27) 2016; 13
Safar (10.1016/j.neuroimage.2024.120661_b31) 2024; 14
Jas (10.1016/j.neuroimage.2024.120661_b19) 2018; 12
Taulu (10.1016/j.neuroimage.2024.120661_b39) 2005; 53
10.1016/j.neuroimage.2024.120661_b1
Bommel (10.1016/j.neuroimage.2024.120661_b5) 1993; 29
Illman (10.1016/j.neuroimage.2024.120661_b18) 2020; 215
Feys (10.1016/j.neuroimage.2024.120661_b11) 2022; 304
Medvedovsky (10.1016/j.neuroimage.2024.120661_b25) 2009; 177
Migliorelli (10.1016/j.neuroimage.2024.120661_b26) 2015; 12
Van Veen (10.1016/j.neuroimage.2024.120661_b41) 1997; 44
Tang (10.1016/j.neuroimage.2024.120661_b37) 2005; 25
Marhl (10.1016/j.neuroimage.2024.120661_b24) 2022; 17
Hill (10.1016/j.neuroimage.2024.120661_b14) 2022; 253
Cai (10.1016/j.neuroimage.2024.120661_b8) 2019; 188
Vivekananda (10.1016/j.neuroimage.2024.120661_b42) 2020; 7
Belouchrani (10.1016/j.neuroimage.2024.120661_b4) 1997; 45
Brookes (10.1016/j.neuroimage.2024.120661_b7) 2022; 45
Kandemir (10.1016/j.neuroimage.2024.120661_b21) 2020; 219
Gramfort (10.1016/j.neuroimage.2024.120661_b12) 2014; 86
Sahonero (10.1016/j.neuroimage.2024.120661_b32) 2017
Hillebrand (10.1016/j.neuroimage.2024.120661_b15) 2013; 124
Migliorelli (10.1016/j.neuroimage.2024.120661_b28) 2013
Liu (10.1016/j.neuroimage.2024.120661_b22) 2012; 59
Lma (10.1016/j.neuroimage.2024.120661_b23) 2021; 243
Airaksinen (10.1016/j.neuroimage.2024.120661_b2) 2011; 32
Kakisaka (10.1016/j.neuroimage.2024.120661_b20) 2013; 124
D’Arcy (10.1016/j.neuroimage.2024.120661_b9) 2013; 34
References_xml – volume: 12
  year: 2015
  ident: b26
  article-title: Automatic BSS-based filtering of metallic interference in MEG recordings: definition and validation using simulated signals
  publication-title: J. Neural Eng.
– volume: 247
  year: 2022
  ident: b33
  article-title: Interference suppression techniques for OPM-based MEG: Opportunities and challenges
  publication-title: NeuroImage
– year: 2013
  ident: b28
  article-title: Reduction of metallic interference in MEG signals using AMUSE
  publication-title: 2013
– year: 2017
  ident: b32
  article-title: A comparison of SOBI, fastica, JADE and infomax algorithms.
  publication-title: International Multi-conference on Complexity, Informatics and Cybernetics
– volume: 199
  start-page: 366
  year: 2019
  end-page: 374
  ident: b6
  article-title: Quantitatively validating the efficacy of artifact suppression techniques to study the cortical consequences of deep brain stimulation with magnetoencephalography
  publication-title: Neuroimage
– volume: 104
  start-page: 189
  year: 2019
  end-page: 204
  ident: b13
  article-title: Magnetoencephalography in cognitive neuroscience: A primer
  publication-title: Neuron
– volume: 25
  start-page: 539
  year: 2005
  end-page: 553
  ident: b37
  article-title: Validation of SOBI components from high-density EEG
  publication-title: Neuroimage
– volume: 29
  start-page: 1395
  year: 1993
  end-page: 1398
  ident: b5
  article-title: Boundary element solution of biomagnetic problems
  publication-title: IEEE Trans. Magn.
– volume: 147
  start-page: 542
  year: 2017
  end-page: 553
  ident: b17
  article-title: Measuring MEG closer to the brain: Performance of on-scalp sensor arrays
  publication-title: NeuroImage
– volume: 14
  start-page: 6513
  year: 2024
  ident: b31
  article-title: Using optically pumped magnetometers to replicate task-related responses in next generation magnetoencephalography
  publication-title: Sci. Rep.
– volume: 124
  start-page: 1277
  year: 2013
  end-page: 1282
  ident: b20
  article-title: Utility of temporally-extended signal space separation algorithm for magnetic noise from vagal nerve stimulators
  publication-title: Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol.
– volume: 7
  start-page: 1129
  year: 1995
  end-page: 1159
  ident: b3
  article-title: An information-maximization approach to blind separation and blind deconvolution
  publication-title: Neural Comput.
– start-page: 355
  year: 2019
  end-page: 371
  ident: b10
  article-title: MNE: software for acquiring, processing, and visualizing MEG/EEG data
  publication-title: Magnetoencephalography
– volume: 219
  year: 2020
  ident: b21
  article-title: The comparative performance of DBS artifact rejection methods for MEG recordings
  publication-title: NeuroImage
– volume: 51
  start-page: 1759
  year: 2006
  end-page: 1768
  ident: b38
  article-title: Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements
  publication-title: Phys. Med. Biol.
– volume: 7
  start-page: 397
  year: 2020
  end-page: 401
  ident: b42
  article-title: Optically pumped magnetoencephalography in Epilepsy
  publication-title: Ann. Clin. Transl. Neurol.
– year: 2014
  ident: b44
  article-title: Research on EEG Signal Analysis Techniques Based on Blind Source Separetion
– volume: 12
  start-page: 530
  year: 2018
  ident: b19
  article-title: A reproducible MEG/EEG group study with the MNE software: recommendations, quality assessments, and good practices
  publication-title: Front. Neurosci.
– volume: 304
  start-page: 429
  year: 2022
  end-page: 434
  ident: b11
  article-title: On-scalp optically pumped magnetometers versus cryogenic magnetoencephalography for diagnostic evaluation of Epilepsy in school-aged children
  publication-title: Radiology
– volume: 13
  year: 2016
  ident: b27
  article-title: Influence of metallic artifact filtering on MEG signals for source localization during interictal epileptiform activity
  publication-title: J. Neural Eng.
– volume: 59
  start-page: 2073
  year: 2012
  end-page: 2087
  ident: b22
  article-title: Statistical feature extraction for artifact removal from concurrent fMRI-EEG recordings
  publication-title: Neuroimage
– volume: 177
  start-page: 203
  year: 2009
  end-page: 211
  ident: b25
  article-title: Fine tuning the correlation limit of spatio-temporal signal space separation for magnetoencephalography
  publication-title: J. Neurosci. Methods
– volume: 38
  start-page: 499
  year: 1991
  end-page: 509
  ident: b40
  article-title: Indeterminacy and indentifiability of blind indetification
  publication-title: IEEE Trans. Circuits Syst.
– volume: 34
  start-page: 1749
  year: 2013
  end-page: 1760
  ident: b9
  article-title: Spatial MEG laterality maps for language: Clinical applications in epilepsy
  publication-title: Hum. Brain Mapp.
– volume: 253
  year: 2022
  ident: b14
  article-title: Using OPM-MEG in contrasting magnetic environments
  publication-title: NeuroImage
– volume: 17
  year: 2022
  ident: b24
  article-title: Transforming and comparing data between standard SQUID and OPM-MEG systems
  publication-title: PLoS ONE
– volume: 45
  start-page: 621
  year: 2022
  end-page: 634
  ident: b7
  article-title: Magnetoencephalography with optically pumped magnetometers (OPM-MEG): The next generation of functional neuroimaging
  publication-title: Trends Neurosci.
– volume: 243
  year: 2021
  ident: b23
  article-title: Modulation in cortical excitability disrupts information transfer in perceptual-level stimulus processing
  publication-title: NeuroImage
– volume: 188
  start-page: 161
  year: 2019
  end-page: 170
  ident: b8
  article-title: Evaluation of a dual signal subspace projection algorithm in magnetoencephalographic recordings from patients with intractable epilepsy and vagus nerve stimulators
  publication-title: Neuroimage
– volume: 26
  start-page: 392
  year: 2009
  end-page: 400
  ident: b34
  article-title: Signal space separation algorithm and its application on suppressing artifacts caused by vagus nerve stimulation for magnetoencephalography recordings
  publication-title: J. Clin. Neurophysiol.
– volume: 124
  start-page: 107
  year: 2013
  end-page: 113
  ident: b15
  article-title: Feasibility of clinical magnetoencephalography (MEG) functional mapping in the presence of dental artefacts
  publication-title: Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol.
– reference: Aine, C.J., Adair, J.C., Knoefel, J.E., et al., Cognitive Decline Associated with Aging, Alzheimer’s Disease, and Cerebrovascular Risk: Advantages of Dynamic Imaging with MEG. In: Magnetoencephalography: From Signals to Dynamic Cortical Networks. 2019, pp. 1099–1119.
– volume: 2009
  start-page: 56
  year: 2024
  ident: b29
  article-title: Enhanced
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 32
  start-page: 1091
  year: 2011
  end-page: 1099
  ident: b2
  article-title: Effects of DBS on auditory and somatosensory processing in Parkinson’s disease
  publication-title: Hum. Brain Mapp.
– volume: 58
  year: 2021
  ident: b35
  article-title: Validation of SOBI-DANS method for automatic identification of horizontal and vertical eye movement components from EEG
  publication-title: Psychophysiology
– volume: 53
  start-page: 3359
  year: 2005
  end-page: 3372
  ident: b39
  article-title: Applications of the signal space separation method
  publication-title: IEEE Trans. Signal Process.
– volume: 215
  year: 2020
  ident: b18
  article-title: Comparing meg and eeg in detecting the
  publication-title: NeuroImage
– volume: 38
  start-page: 348
  year: 2008
  end-page: 360
  ident: b30
  article-title: A comparative study of automatic techniques for ocular artifact reduction in spontaneous EEG signals based on clinical target variables: a simulation case
  publication-title: Comput. Biol. Med.
– volume: 36
  start-page: 350
  year: 2023
  end-page: 370
  ident: b43
  article-title: Optimization of signal space separation for optically pumped magnetometer in magnetoencephalography
  publication-title: Brain Topogr.
– volume: 10
  start-page: 626
  year: 1999
  end-page: 634
  ident: b16
  article-title: Fast and robust fixed-point algorithms for independent component analysis
  publication-title: IEEE Trans. Neural Netw.
– volume: 44
  start-page: 867
  year: 1997
  end-page: 880
  ident: b41
  article-title: Localization of brain electrical activity via linearly constrained minimum variance spatial filtering
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 45
  start-page: 434
  year: 1997
  end-page: 444
  ident: b4
  article-title: A blind source separation technique using second-order statistics
  publication-title: IEEE Trans. Signal Process.
– volume: 86
  start-page: 446
  year: 2014
  end-page: 460
  ident: b12
  article-title: MNE software for processing MEG and EEG data
  publication-title: NeuroImage
– volume: 28
  start-page: 507
  year: 2005
  end-page: 519
  ident: b36
  article-title: Recovery of correlated neuronal sources from EEG: the good and bad ways of using SOBI
  publication-title: Neuroimage
– volume: 304
  start-page: 429
  issue: 2
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120661_b11
  article-title: On-scalp optically pumped magnetometers versus cryogenic magnetoencephalography for diagnostic evaluation of Epilepsy in school-aged children
  publication-title: Radiology
  doi: 10.1148/radiol.212453
– volume: 45
  start-page: 434
  issue: 2
  year: 1997
  ident: 10.1016/j.neuroimage.2024.120661_b4
  article-title: A blind source separation technique using second-order statistics
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.554307
– volume: 10
  start-page: 626
  issue: 3
  year: 1999
  ident: 10.1016/j.neuroimage.2024.120661_b16
  article-title: Fast and robust fixed-point algorithms for independent component analysis
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.761722
– volume: 38
  start-page: 499
  issue: 5
  year: 1991
  ident: 10.1016/j.neuroimage.2024.120661_b40
  article-title: Indeterminacy and indentifiability of blind indetification
  publication-title: IEEE Trans. Circuits Syst.
  doi: 10.1109/31.76486
– volume: 86
  start-page: 446
  year: 2014
  ident: 10.1016/j.neuroimage.2024.120661_b12
  article-title: MNE software for processing MEG and EEG data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.10.027
– volume: 36
  start-page: 350
  issue: 3
  year: 2023
  ident: 10.1016/j.neuroimage.2024.120661_b43
  article-title: Optimization of signal space separation for optically pumped magnetometer in magnetoencephalography
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-023-00957-w
– year: 2013
  ident: 10.1016/j.neuroimage.2024.120661_b28
  article-title: Reduction of metallic interference in MEG signals using AMUSE
– volume: 26
  start-page: 392
  issue: 6
  year: 2009
  ident: 10.1016/j.neuroimage.2024.120661_b34
  article-title: Signal space separation algorithm and its application on suppressing artifacts caused by vagus nerve stimulation for magnetoencephalography recordings
  publication-title: J. Clin. Neurophysiol.
  doi: 10.1097/WNP.0b013e3181c29896
– year: 2014
  ident: 10.1016/j.neuroimage.2024.120661_b44
– ident: 10.1016/j.neuroimage.2024.120661_b1
  doi: 10.1007/978-3-030-00087-5_31
– volume: 53
  start-page: 3359
  year: 2005
  ident: 10.1016/j.neuroimage.2024.120661_b39
  article-title: Applications of the signal space separation method
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2005.853302
– volume: 59
  start-page: 2073
  issue: 3
  year: 2012
  ident: 10.1016/j.neuroimage.2024.120661_b22
  article-title: Statistical feature extraction for artifact removal from concurrent fMRI-EEG recordings
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.042
– volume: 177
  start-page: 203
  issue: 1
  year: 2009
  ident: 10.1016/j.neuroimage.2024.120661_b25
  article-title: Fine tuning the correlation limit of spatio-temporal signal space separation for magnetoencephalography
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2008.09.035
– volume: 29
  start-page: 1395
  issue: 2
  year: 1993
  ident: 10.1016/j.neuroimage.2024.120661_b5
  article-title: Boundary element solution of biomagnetic problems
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/20.250663
– volume: 17
  issue: 1
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120661_b24
  article-title: Transforming and comparing data between standard SQUID and OPM-MEG systems
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0262669
– volume: 247
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120661_b33
  article-title: Interference suppression techniques for OPM-based MEG: Opportunities and challenges
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2021.118834
– volume: 253
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120661_b14
  article-title: Using OPM-MEG in contrasting magnetic environments
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2022.119084
– volume: 2009
  start-page: 56
  issue: 8
  year: 2024
  ident: 10.1016/j.neuroimage.2024.120661_b29
  article-title: Enhanced μ rhythm extraction using blind source separation and wavelet transform
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 124
  start-page: 107
  issue: 1
  year: 2013
  ident: 10.1016/j.neuroimage.2024.120661_b15
  article-title: Feasibility of clinical magnetoencephalography (MEG) functional mapping in the presence of dental artefacts
  publication-title: Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2012.06.013
– volume: 7
  start-page: 397
  issue: 3
  year: 2020
  ident: 10.1016/j.neuroimage.2024.120661_b42
  article-title: Optically pumped magnetoencephalography in Epilepsy
  publication-title: Ann. Clin. Transl. Neurol.
  doi: 10.1002/acn3.50995
– volume: 28
  start-page: 507
  issue: 2
  year: 2005
  ident: 10.1016/j.neuroimage.2024.120661_b36
  article-title: Recovery of correlated neuronal sources from EEG: the good and bad ways of using SOBI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.06.062
– volume: 25
  start-page: 539
  issue: 2
  year: 2005
  ident: 10.1016/j.neuroimage.2024.120661_b37
  article-title: Validation of SOBI components from high-density EEG
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.11.027
– volume: 219
  year: 2020
  ident: 10.1016/j.neuroimage.2024.120661_b21
  article-title: The comparative performance of DBS artifact rejection methods for MEG recordings
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.117057
– start-page: 355
  year: 2019
  ident: 10.1016/j.neuroimage.2024.120661_b10
  article-title: MNE: software for acquiring, processing, and visualizing MEG/EEG data
  publication-title: Magnetoencephalography
  doi: 10.1007/978-3-030-00087-5_59
– volume: 243
  year: 2021
  ident: 10.1016/j.neuroimage.2024.120661_b23
  article-title: Modulation in cortical excitability disrupts information transfer in perceptual-level stimulus processing
  publication-title: NeuroImage
– volume: 13
  issue: 2
  year: 2016
  ident: 10.1016/j.neuroimage.2024.120661_b27
  article-title: Influence of metallic artifact filtering on MEG signals for source localization during interictal epileptiform activity
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/13/2/026029
– volume: 58
  issue: 2
  year: 2021
  ident: 10.1016/j.neuroimage.2024.120661_b35
  article-title: Validation of SOBI-DANS method for automatic identification of horizontal and vertical eye movement components from EEG
  publication-title: Psychophysiology
  doi: 10.1111/psyp.13731
– volume: 34
  start-page: 1749
  issue: 8
  year: 2013
  ident: 10.1016/j.neuroimage.2024.120661_b9
  article-title: Spatial MEG laterality maps for language: Clinical applications in epilepsy
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22024
– volume: 44
  start-page: 867
  year: 1997
  ident: 10.1016/j.neuroimage.2024.120661_b41
  article-title: Localization of brain electrical activity via linearly constrained minimum variance spatial filtering
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.623056
– volume: 45
  start-page: 621
  year: 2022
  ident: 10.1016/j.neuroimage.2024.120661_b7
  article-title: Magnetoencephalography with optically pumped magnetometers (OPM-MEG): The next generation of functional neuroimaging
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2022.05.008
– year: 2017
  ident: 10.1016/j.neuroimage.2024.120661_b32
  article-title: A comparison of SOBI, fastica, JADE and infomax algorithms.
– volume: 188
  start-page: 161
  year: 2019
  ident: 10.1016/j.neuroimage.2024.120661_b8
  article-title: Evaluation of a dual signal subspace projection algorithm in magnetoencephalographic recordings from patients with intractable epilepsy and vagus nerve stimulators
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.11.025
– volume: 124
  start-page: 1277
  issue: 7
  year: 2013
  ident: 10.1016/j.neuroimage.2024.120661_b20
  article-title: Utility of temporally-extended signal space separation algorithm for magnetic noise from vagal nerve stimulators
  publication-title: Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2012.03.082
– volume: 12
  issue: 4
  year: 2015
  ident: 10.1016/j.neuroimage.2024.120661_b26
  article-title: Automatic BSS-based filtering of metallic interference in MEG recordings: definition and validation using simulated signals
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/12/4/046001
– volume: 32
  start-page: 1091
  issue: 7
  year: 2011
  ident: 10.1016/j.neuroimage.2024.120661_b2
  article-title: Effects of DBS on auditory and somatosensory processing in Parkinson’s disease
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.21096
– volume: 147
  start-page: 542
  year: 2017
  ident: 10.1016/j.neuroimage.2024.120661_b17
  article-title: Measuring MEG closer to the brain: Performance of on-scalp sensor arrays
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.12.048
– volume: 199
  start-page: 366
  year: 2019
  ident: 10.1016/j.neuroimage.2024.120661_b6
  article-title: Quantitatively validating the efficacy of artifact suppression techniques to study the cortical consequences of deep brain stimulation with magnetoencephalography
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.05.080
– volume: 7
  start-page: 1129
  issue: 6
  year: 1995
  ident: 10.1016/j.neuroimage.2024.120661_b3
  article-title: An information-maximization approach to blind separation and blind deconvolution
  publication-title: Neural Comput.
  doi: 10.1162/neco.1995.7.6.1129
– volume: 215
  year: 2020
  ident: 10.1016/j.neuroimage.2024.120661_b18
  article-title: Comparing meg and eeg in detecting the ∼ 20-hz rhythm modulation to tactile and proprioceptive stimulation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.116804
– volume: 104
  start-page: 189
  issue: 2
  year: 2019
  ident: 10.1016/j.neuroimage.2024.120661_b13
  article-title: Magnetoencephalography in cognitive neuroscience: A primer
  publication-title: Neuron
  doi: 10.1016/j.neuron.2019.07.001
– volume: 14
  start-page: 6513
  year: 2024
  ident: 10.1016/j.neuroimage.2024.120661_b31
  article-title: Using optically pumped magnetometers to replicate task-related responses in next generation magnetoencephalography
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-56878-6
– volume: 12
  start-page: 530
  year: 2018
  ident: 10.1016/j.neuroimage.2024.120661_b19
  article-title: A reproducible MEG/EEG group study with the MNE software: recommendations, quality assessments, and good practices
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00530
– volume: 38
  start-page: 348
  issue: 3
  year: 2008
  ident: 10.1016/j.neuroimage.2024.120661_b30
  article-title: A comparative study of automatic techniques for ocular artifact reduction in spontaneous EEG signals based on clinical target variables: a simulation case
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2007.12.001
– volume: 51
  start-page: 1759
  issue: 7
  year: 2006
  ident: 10.1016/j.neuroimage.2024.120661_b38
  article-title: Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/51/7/008
SSID ssj0009148
Score 2.4716825
Snippet Optically pumped magnetometer magnetoencephalography (OPM-MEG) holds significant promise for clinical functional brain imaging due to its superior...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 120661
SubjectTerms Algorithms
Artifact suppression
Clinical applications
Comparative analysis
Magnetoencephalography
Metallic artifacts
Neuroimaging
Optically pumped magnetometers
Orthodontics
Therapeutic applications
Timing
Vagus nerve
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JSxxBFC7EQ_AiJnHpRKUCuXasrqre8KQyZghM9BDBW1FrMGDPoDOQq__c96q6R-cgehDm1Ns83vo93lKEfBeVNMGJOmdN63JptMs1q0KORSfnLffS4ezw5Hc1vpK_rsvrZ0d9YU9YWg-cGHfEKw0pjLUQioxsm0bzmgVhPGO6tt4E9L6sZUMyNazbBZTf9-2kbq64HfLmFmwUckIufxS4xrxYCUZxZ_9KTHoJc8bYc75FNnvQSE8SsR_Jmu8-kQ-Tviz-mTyM_s_SeAoFPEeHaUf6rDpNp4FeXE7yyegnxV73v1R3NDVzgL-jejGfxuWt9H4x63tjO5qOl6aAa-N3XRydpJBfW4_38B-AJJyN2CZX56M_Z-O8P1shtyVn8xzMDiuKrmgtQhiI-5BoGRmapmoKW5sQCgvmCuYpKs8NADEmBNelkWXtnRdih6x3087vEQo-IUigF9yVx25VzR0EuQCu1OM6MZmRYmCymqUVGmroLfunngSjUDAqCSYjpyiN5fO4BDteANVQvWqo11QjI-0gSzVwHjwjfOjmDQQcL9_tsUjCGG98e39QHdX7hHsFyRlwpxZcZOTb8jZYM5ZodOeni_hMyesKcHFGdpPKLXkgmgZ-kn15D958JRtIb2pl3Cfr87uFPwB4NTeH0ZIeASS-I1I
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection (ProQuest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NaxQxFA9aQbwUvx1bJYLX6EyS-aIHqbK1CKseLOwt5LNUcGbt7kKv_c99L8ns2oNSmNNMkgl5eS-_5L33CyFvRSNNcKJlZdc7Jo12TJdNYOh0ct5yLx3mDs-_Nqdn8suiXuQDt1UOq5xsYjTUbrR4Rv4eoG1fi1Zw8WH5m-GtUehdzVdo3CX3InUZzOd20e5IdyuZUuFqwTookCN5UnxX5Iu8-AVaC7tELt9VSGxe3VieIov_jVXqXyg0rkYnD8l-hpH0OMn9Ebnjh8fk_jw7yp-Q69nVMiWsUEB4dMp_pH_5q-kY6LfvczaffaYY_X5O9UBTeAdYQKo36zHSudLVZpmjZQeaLpymgHRjuy4mU1LYcVuP3_AP0CXMlnhKzk5mPz6dsnzbArM1L9cMFBF9jK7qLYIaQAKw9TIydF3TVbY1IVQWFBgUVjSeG4BmpRBc10bWrXdeiGdkbxgH_4JQsBJBQn_BgHmMX9XcwbIXwLh6JBiTBammQVbLRKqhpmizn2onGIWCUUkwBfmI0tiWR1rs-GK8PFdZyxRvNOx3rQXcYmTfdZq3ZRDGl6VurTehIP0kSzWNPNhKaOjiFh042tbN6CShjlvWPpymjspWYqV2c7ogb7afQb_RaaMHP25imZq3DSDlgjxPU247BqLr4JHly_83fkAeYE9S2OIh2VtfbvwrgFJr8zrqyx9wnRw6
  priority: 102
  providerName: ProQuest
Title Expanding the clinical application of OPM-MEG using an effective automatic suppression method for the dental brace metal artifact
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811924001563
https://dx.doi.org/10.1016/j.neuroimage.2024.120661
https://www.ncbi.nlm.nih.gov/pubmed/38838840
https://www.proquest.com/docview/3069537323
https://www.proquest.com/docview/3065276083
https://doaj.org/article/26a549cc218b4988a270f3be00a7cebf
Volume 296
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB4SB0ovJX0rSc0WelUs7a5e5JQEp26L3dA24NuyK-0GFyqZxIacCv3nmX3IqQ-FQMHYWNLKw8zOzDeehwA-sJwr07AiTsqqibmSTSyT3MQ26dTommre2N7h6SyfXPHP82y-A-d9L4wtqwy239t0Z63DkVHg5mi5WIy-IzJAd2MDCNcPzHZhj7Iqzwawd_rpy2T2MHs35b4jLmOxXRAKenyZlxsbufiFyovBIuXHqZ1vnm55KTfMf8tZ_QuMOqd0sQ_PApokp57g57Cj2xfwZBry5S_hz_hu6ftWCAI90rdBkr_S1qQz5OvlNJ6OPxJbBH9NZEt8lQcaQiLXq85NdSW362Uomm2Jf-40QcDr7tu4nkqCgXet7Tn7C0iSbZp4BVcX4x_nkzg8dCGuM5qsYtRHm2ps0qq22AYBAUZgipuyzMu0LpQxaY16jHrLck0VIrSEMSozxbNCN5qx1zBou1a_BYLGwnCkF-2YtmWskjbo_QzaWG3njPEI0p7JYulna4i-6OyneBCMsIIRXjARnFlpbK6307Hdge7mWoTtIWguMeyta4QvildlKWmRGKZ0ksii1spEUPWyFD3n0WTijRaPIOBks3Zroz5y9VG_dUQwFrcCozbkTsEoi-D95jSquc3dyFZ3a3dNRoscAXMEb_yW2_CAlSW-eHLwX6QdwlP7zRc3HsFgdbPW7xBwrdQQdo9_p_hezIthUC78PBvPLr8N3Z8Y9-4jLTc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqVAIuiDdbChgJjgu7tvclhBCFlJQ2oUKt1JvrZ1UkdtMmEXDkD_EbmVnvJvQA6qVSTvtwLM_4m292HibkOc-F9pYXcVJWNhZa2VgluY8x6GSdYU5YrB0eT_LRofh0lB2tkd99LQymVfaY2AK1bQx-I38F1LbKeMEZfzs9i_HUKIyu9kdoBLXYdT-_g8s2e7PzAeT7grHt4cH7UdydKhCbjCXzGBQOY2k2rQwab7B44GJo4csyL1NTaO9TA4oKislzxzRQkIRzpjItssJZhx9AAfLXBVa0Dsj61nCy_2XV5jcVofgu43GZplWXOxQyytoOlaffACfAL2XiZYqt1NMLBrE9N-CCXfwX723t3_YtcrMjrvRd0LTbZM3Vd8i1cReav0t-DX9MQ4kMBU5J-4pL-leEnDaeft4fx-PhR4r59idU1TQklADmUrWYN20DWTpbTLv83JqGI64pcOt2XNuWb1Lw8Y3De_gPMCWsz7hHDq9EEvfJoG5q95BQwCUvYL4AmQ4zZhWzYGg9wLnDlmYiImm_yHIa2njIPr_tq1wJRqJgZBBMRLZQGsvnsRF3e6E5P5HdvpYsV-BhGwNMSYuqLBUrEs-1SxJVGKd9RKpelrJfeUBnGOj0EhN4vXy340OB51zy7c1edWSHSzO52kUReba8DYiCYSJVu2bRPpOxIgduHpEHQeWWa8DLEn4i2fj_4E_J9dHBeE_u7Ux2H5EbOKuQNLlJBvPzhXsMRG6un3S7h5Ljq96wfwD63Vct
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqIlVcEG8WChgJjkt3be9LCCGgCS0lpQcq5Wb8rIrEbmgSAUf-Fr-OGXs3oQdQL5Vy2odjeWa--bzzMCFPeSm0t7xKs7qxqdDKpiorfYpBJ-sMc8Ji7fDksNw7Fu-nxXSD_B5qYTCtcsDEANS2M_iNfAeobVPwijO-4_u0iKPd8avZtxRPkMJI63CcRlSRA_fzO2zf5i_3d0HWzxgbjz693Uv7EwZSU7BskYLyYVzN5o1BRw7eD7YbWvi6LuvcVNr73IDSgpLy0jENdCTjnKlCi6Jy1uHHUID_KxUHVgW2VE2rdcPfXMQyvIKndZ43fRZRzC0LvSpPvwJiwA6Viec5NlXPz7nGcILAOQ_5LwYcPOH4OrnWU1j6OurcDbLh2ptka9IH6W-RX6Mfs1gsQ4Fd0qH2kv4VK6edpx-PJulk9I5i5v0JVS2NqSWAvlQtF11oJUvny1mfqdvSeNg1BZYdxrWhkJPCbt84vIf_AFPCSo3b5PhS5HCHbLZd6-4RCgjlBcwXwNNh7qxiFlyuB2B32NxMJCQfFlnOYkMPOWS6fZFrwUgUjIyCScgblMbqeWzJHS50Zyeyt3DJSgV7bWOAM2nR1LViVea5dlmmKuO0T0gzyFIOKw84DQOdXmACL1bv9swoMp4Lvr09qI7sEWou1_aUkCer24AtGDBSreuW4ZmCVSWw9ITcjSq3WgNe1_AT2f3_D_6YbIGZyg_7hwcPyFWcVMye3Cabi7OlewiMbqEfBdOh5PNl2-ofMU1Z9A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expanding+the+clinical+application+of+OPM-MEG+using+an+effective+automatic+suppression+method+for+the+dental+brace+metal+artifact&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Wang%2C+Ruonan&rft.au=Fu%2C+Kaiwen&rft.au=Zhao%2C+Ruochen&rft.au=Wang%2C+Dawei&rft.date=2024-08-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=296&rft_id=info:doi/10.1016%2Fj.neuroimage.2024.120661&rft.externalDocID=S1053811924001563
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon