Expanding the clinical application of OPM-MEG using an effective automatic suppression method for the dental brace metal artifact
Optically pumped magnetometer magnetoencephalography (OPM-MEG) holds significant promise for clinical functional brain imaging due to its superior spatiotemporal resolution. However, effectively suppressing metallic artifacts, particularly from devices such as orthodontic braces and vagal nerve stim...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 296; p. 120661 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.08.2024
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2024.120661 |
Cover
Abstract | Optically pumped magnetometer magnetoencephalography (OPM-MEG) holds significant promise for clinical functional brain imaging due to its superior spatiotemporal resolution. However, effectively suppressing metallic artifacts, particularly from devices such as orthodontic braces and vagal nerve stimulators remains a major challenge, hindering the wider clinical application of wearable OPM-MEG devices.
A comprehensive analysis of metal artifact characteristics from time, frequency, and time–frequency perspectives was conducted for the first time using an OPM-MEG device in clinical medicine. This study focused on patients with metal orthodontics, examining the modulation of metal artifacts by breath and head movement, the incomplete regular sub-Gaussian distribution, and the high absolute power ratio in the 0.5–8 Hz band. The existing metal artifact suppression algorithms applied to SQUID-MEG, such as fast independent component analysis (FastICA), information maximization (Infomax), and algorithms for multiple unknown signal extraction (AMUSE), exhibit limited efficacy. Consequently, this study introduced the second-order blind identification (SOBI) algorithm, which utilized multiple time delays for the component separation of OPM-MEG measurement signals. We modified the time delays of the SOBI method to improve its efficacy in separating artifact components, particularly those in the ultralow frequency range. This approach employs the frequency-domain absolute power ratio, root mean square (RMS) value, and mutual information methods to automate the artifact component screening process.
The effectiveness of this method was validated through simulation experiments involving four subjects in both resting and evoked experiments. In addition, the proposed method was also validated by the actual OPM-MEG evoked experiments of three subjects. Comparative analyses were conducted against the FastICA, Infomax, and AMUSE algorithms. Evaluation metrics included normalized mean square error, normalized delta band power error, RMS error, and signal-to-noise ratio, demonstrating that the proposed method provides optimal suppression of metal artifacts. This advancement holds promise for enhancing data quality and expanding the clinical applications of OPM-MEG.
[Display omitted]
•The atomic magnetometers are getting more and more attention.•The metallic artifacts hinder the clinical application of wearable OPM-MEG.•The proposed method in this article can effectively suppress the dental metal artifact. |
---|---|
AbstractList | Optically pumped magnetometer magnetoencephalography (OPM-MEG) holds significant promise for clinical functional brain imaging due to its superior spatiotemporal resolution. However, effectively suppressing metallic artifacts, particularly from devices such as orthodontic braces and vagal nerve stimulators remains a major challenge, hindering the wider clinical application of wearable OPM-MEG devices. A comprehensive analysis of metal artifact characteristics from time, frequency, and time-frequency perspectives was conducted for the first time using an OPM-MEG device in clinical medicine. This study focused on patients with metal orthodontics, examining the modulation of metal artifacts by breath and head movement, the incomplete regular sub-Gaussian distribution, and the high absolute power ratio in the 0.5-8 Hz band. The existing metal artifact suppression algorithms applied to SQUID-MEG, such as fast independent component analysis (FastICA), information maximization (Infomax), and algorithms for multiple unknown signal extraction (AMUSE), exhibit limited efficacy. Consequently, this study introduced the second-order blind identification (SOBI) algorithm, which utilized multiple time delays for the component separation of OPM-MEG measurement signals. We modified the time delays of the SOBI method to improve its efficacy in separating artifact components, particularly those in the ultralow frequency range. This approach employs the frequency-domain absolute power ratio, root mean square (RMS) value, and mutual information methods to automate the artifact component screening process. The effectiveness of this method was validated through simulation experiments involving four subjects in both resting and evoked experiments. In addition, the proposed method was also validated by the actual OPM-MEG evoked experiments of three subjects. Comparative analyses were conducted against the FastICA, Infomax, and AMUSE algorithms. Evaluation metrics included normalized mean square error, normalized delta band power error, RMS error, and signal-to-noise ratio, demonstrating that the proposed method provides optimal suppression of metal artifacts. This advancement holds promise for enhancing data quality and expanding the clinical applications of OPM-MEG.Optically pumped magnetometer magnetoencephalography (OPM-MEG) holds significant promise for clinical functional brain imaging due to its superior spatiotemporal resolution. However, effectively suppressing metallic artifacts, particularly from devices such as orthodontic braces and vagal nerve stimulators remains a major challenge, hindering the wider clinical application of wearable OPM-MEG devices. A comprehensive analysis of metal artifact characteristics from time, frequency, and time-frequency perspectives was conducted for the first time using an OPM-MEG device in clinical medicine. This study focused on patients with metal orthodontics, examining the modulation of metal artifacts by breath and head movement, the incomplete regular sub-Gaussian distribution, and the high absolute power ratio in the 0.5-8 Hz band. The existing metal artifact suppression algorithms applied to SQUID-MEG, such as fast independent component analysis (FastICA), information maximization (Infomax), and algorithms for multiple unknown signal extraction (AMUSE), exhibit limited efficacy. Consequently, this study introduced the second-order blind identification (SOBI) algorithm, which utilized multiple time delays for the component separation of OPM-MEG measurement signals. We modified the time delays of the SOBI method to improve its efficacy in separating artifact components, particularly those in the ultralow frequency range. This approach employs the frequency-domain absolute power ratio, root mean square (RMS) value, and mutual information methods to automate the artifact component screening process. The effectiveness of this method was validated through simulation experiments involving four subjects in both resting and evoked experiments. In addition, the proposed method was also validated by the actual OPM-MEG evoked experiments of three subjects. Comparative analyses were conducted against the FastICA, Infomax, and AMUSE algorithms. Evaluation metrics included normalized mean square error, normalized delta band power error, RMS error, and signal-to-noise ratio, demonstrating that the proposed method provides optimal suppression of metal artifacts. This advancement holds promise for enhancing data quality and expanding the clinical applications of OPM-MEG. Optically pumped magnetometer magnetoencephalography (OPM-MEG) holds significant promise for clinical functional brain imaging due to its superior spatiotemporal resolution. However, effectively suppressing metallic artifacts, particularly from devices such as orthodontic braces and vagal nerve stimulators remains a major challenge, hindering the wider clinical application of wearable OPM-MEG devices.A comprehensive analysis of metal artifact characteristics from time, frequency, and time–frequency perspectives was conducted for the first time using an OPM-MEG device in clinical medicine. This study focused on patients with metal orthodontics, examining the modulation of metal artifacts by breath and head movement, the incomplete regular sub-Gaussian distribution, and the high absolute power ratio in the 0.5–8 Hz band. The existing metal artifact suppression algorithms applied to SQUID-MEG, such as fast independent component analysis (FastICA), information maximization (Infomax), and algorithms for multiple unknown signal extraction (AMUSE), exhibit limited efficacy. Consequently, this study introduced the second-order blind identification (SOBI) algorithm, which utilized multiple time delays for the component separation of OPM-MEG measurement signals. We modified the time delays of the SOBI method to improve its efficacy in separating artifact components, particularly those in the ultralow frequency range. This approach employs the frequency-domain absolute power ratio, root mean square (RMS) value, and mutual information methods to automate the artifact component screening process.The effectiveness of this method was validated through simulation experiments involving four subjects in both resting and evoked experiments. In addition, the proposed method was also validated by the actual OPM-MEG evoked experiments of three subjects. Comparative analyses were conducted against the FastICA, Infomax, and AMUSE algorithms. Evaluation metrics included normalized mean square error, normalized delta band power error, RMS error, and signal-to-noise ratio, demonstrating that the proposed method provides optimal suppression of metal artifacts. This advancement holds promise for enhancing data quality and expanding the clinical applications of OPM-MEG. Optically pumped magnetometer magnetoencephalography (OPM-MEG) holds significant promise for clinical functional brain imaging due to its superior spatiotemporal resolution. However, effectively suppressing metallic artifacts, particularly from devices such as orthodontic braces and vagal nerve stimulators remains a major challenge, hindering the wider clinical application of wearable OPM-MEG devices. A comprehensive analysis of metal artifact characteristics from time, frequency, and time–frequency perspectives was conducted for the first time using an OPM-MEG device in clinical medicine. This study focused on patients with metal orthodontics, examining the modulation of metal artifacts by breath and head movement, the incomplete regular sub-Gaussian distribution, and the high absolute power ratio in the 0.5–8 Hz band. The existing metal artifact suppression algorithms applied to SQUID-MEG, such as fast independent component analysis (FastICA), information maximization (Infomax), and algorithms for multiple unknown signal extraction (AMUSE), exhibit limited efficacy. Consequently, this study introduced the second-order blind identification (SOBI) algorithm, which utilized multiple time delays for the component separation of OPM-MEG measurement signals. We modified the time delays of the SOBI method to improve its efficacy in separating artifact components, particularly those in the ultralow frequency range. This approach employs the frequency-domain absolute power ratio, root mean square (RMS) value, and mutual information methods to automate the artifact component screening process. The effectiveness of this method was validated through simulation experiments involving four subjects in both resting and evoked experiments. In addition, the proposed method was also validated by the actual OPM-MEG evoked experiments of three subjects. Comparative analyses were conducted against the FastICA, Infomax, and AMUSE algorithms. Evaluation metrics included normalized mean square error, normalized delta band power error, RMS error, and signal-to-noise ratio, demonstrating that the proposed method provides optimal suppression of metal artifacts. This advancement holds promise for enhancing data quality and expanding the clinical applications of OPM-MEG. [Display omitted] •The atomic magnetometers are getting more and more attention.•The metallic artifacts hinder the clinical application of wearable OPM-MEG.•The proposed method in this article can effectively suppress the dental metal artifact. |
ArticleNumber | 120661 |
Author | Wang, Dawei Ning, Xiaolin Yang, Zhimin Gao, Yang Fu, Kaiwen Bin, Wei Wang, Ruonan Zhao, Ruochen |
Author_xml | – sequence: 1 givenname: Ruonan orcidid: 0000-0002-0018-8213 surname: Wang fullname: Wang, Ruonan email: BY1917076@buaa.edu.cn organization: School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing 100191, China – sequence: 2 givenname: Kaiwen surname: Fu fullname: Fu, Kaiwen email: sy2017512@buaa.edu.cn organization: School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing 100191, China – sequence: 3 givenname: Ruochen surname: Zhao fullname: Zhao, Ruochen email: zhaoruochen@buaa.edu.cn organization: School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing 100191, China – sequence: 4 givenname: Dawei surname: Wang fullname: Wang, Dawei email: daweiwangtj@126.com organization: Department of Radiology, Qilu Hospital of Shandong University, Jinan 250012, China – sequence: 5 givenname: Zhimin surname: Yang fullname: Yang, Zhimin email: yangyoVIP@126.com organization: State Key Laboratory of Traditional Chinese Medicine Syndrome/Health Construction Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China – sequence: 6 givenname: Wei surname: Bin fullname: Bin, Wei email: bincomp@163.com organization: State Key Laboratory of Traditional Chinese Medicine Syndrome/Health Construction Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China – sequence: 7 givenname: Yang surname: Gao fullname: Gao, Yang email: yanggao@buaa.edu.cn organization: Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China – sequence: 8 givenname: Xiaolin surname: Ning fullname: Ning, Xiaolin email: ningxiaolin@buaa.edu.cn organization: School of Instrumentation Science and Optoelectronic Engineering, Beihang University, Beijing 100191, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38838840$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstu1TAQhiNURC_wCsgSGzY5-BInzg6oDqVSq7KAteU441OHHDvYSdUueXPspi1SV5UseWR_89sz8x8XB847KApE8IZgUn8aNg6W4O1e7WBDMa02hOK6Jq-KI4JbXra8oQc55qwUhLSHxXGMA8a4JZV4UxwyIdKq8FHxd3s7Kddbt0PzNSA9Wme1GpGapjEFs_UOeYOuflyWl9sztMRMKofAGNCzvQGkltnvE6hRXKYpQIw5Zw_zte-R8eFetwc3J9UuKA35Lr8QZmuUnt8Wr40aI7x72E-KX9-2P0-_lxdXZ-enXy5KzSmey5oJjknVk1aThjaEkwqTrjJC1ILopjOGaJ6KrxmrgXapC5gxqnhX8QZ6YOykOF91e68GOYXUvHAnvbLy_sCHncxf0iNIWitetVpTIrqqFULRBhvWAcaq0dCZpPVx1ZqC_7NAnOXeRg3jqBz4JUqGa06bGov87Idn6OCX4FKlmWo5axjN1PsHaun20D9973FQCRAroIOPMYB5QgiW2RNykP89IbMn5OqJlPp1TYXU3RsLQUZtwWnobUgzTOXbl4h8fibyaJXfcPcyiX8jYtig |
Cites_doi | 10.1148/radiol.212453 10.1109/78.554307 10.1109/72.761722 10.1109/31.76486 10.1016/j.neuroimage.2013.10.027 10.1007/s10548-023-00957-w 10.1097/WNP.0b013e3181c29896 10.1007/978-3-030-00087-5_31 10.1109/TSP.2005.853302 10.1016/j.neuroimage.2011.10.042 10.1016/j.jneumeth.2008.09.035 10.1109/20.250663 10.1371/journal.pone.0262669 10.1016/j.neuroimage.2021.118834 10.1016/j.neuroimage.2022.119084 10.1016/j.clinph.2012.06.013 10.1002/acn3.50995 10.1016/j.neuroimage.2005.06.062 10.1016/j.neuroimage.2004.11.027 10.1016/j.neuroimage.2020.117057 10.1007/978-3-030-00087-5_59 10.1088/1741-2560/13/2/026029 10.1111/psyp.13731 10.1002/hbm.22024 10.1109/10.623056 10.1016/j.tins.2022.05.008 10.1016/j.neuroimage.2018.11.025 10.1016/j.clinph.2012.03.082 10.1088/1741-2560/12/4/046001 10.1002/hbm.21096 10.1016/j.neuroimage.2016.12.048 10.1016/j.neuroimage.2019.05.080 10.1162/neco.1995.7.6.1129 10.1016/j.neuroimage.2020.116804 10.1016/j.neuron.2019.07.001 10.1038/s41598-024-56878-6 10.3389/fnins.2018.00530 10.1016/j.compbiomed.2007.12.001 10.1088/0031-9155/51/7/008 |
ContentType | Journal Article |
Copyright | 2024 The Author(s) Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. 2024. The Author(s) |
Copyright_xml | – notice: 2024 The Author(s) – notice: Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2024. The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 DOA |
DOI | 10.1016/j.neuroimage.2024.120661 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database (ProQuest) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest One Psychology PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
ExternalDocumentID | oai_doaj_org_article_26a549cc218b4988a270f3be00a7cebf 38838840 10_1016_j_neuroimage_2024_120661 S1053811924001563 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Joint Funds of the National Natural Science Foundation of China grantid: U23A20434 – fundername: Natural Science Foundation of Beijing Municipality, China grantid: 4212012 funderid: http://dx.doi.org/10.13039/501100004826 – fundername: the Hefei National Laboratory, Innovation Program for Quantum Science and Technology grantid: 2021ZD0300500 – fundername: Key R & D Program of Shandong Province, China grantid: 2022ZLGX03 funderid: http://dx.doi.org/10.13039/100014103 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 0SF 6I. AACTN AAFTH AAIAV AFKWA AJOXV ALIPV AMFUW C45 HMQ NCXOZ RIG SEW SNS ZA5 29N 53G AAQFI AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADXHL AGHFR AGQPQ AGRNS AKRLJ ASPBG AVWKF AZFZN CAG CITATION COF EJD FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ R2- WUQ XPP ZMT NPM 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c520t-6385014d19c1727151401b4f88681c7bff1c51096336e2b0950332a5b457ede33 |
IEDL.DBID | AIKHN |
ISSN | 1053-8119 1095-9572 |
IngestDate | Wed Aug 27 01:30:48 EDT 2025 Thu Sep 04 21:44:22 EDT 2025 Wed Aug 13 10:06:42 EDT 2025 Thu Apr 03 06:56:54 EDT 2025 Tue Jul 01 03:02:29 EDT 2025 Thu Jul 04 08:40:17 EDT 2024 Tue Aug 26 17:21:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Optically pumped magnetometers Metallic artifacts Magnetoencephalography Clinical applications Artifact suppression |
Language | English |
License | This is an open access article under the CC BY-NC license. Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c520t-6385014d19c1727151401b4f88681c7bff1c51096336e2b0950332a5b457ede33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0018-8213 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1053811924001563 |
PMID | 38838840 |
PQID | 3069537323 |
PQPubID | 2031077 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_26a549cc218b4988a270f3be00a7cebf proquest_miscellaneous_3065276083 proquest_journals_3069537323 pubmed_primary_38838840 crossref_primary_10_1016_j_neuroimage_2024_120661 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2024_120661 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2024_120661 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2024 |
Publisher | Elsevier Inc Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
References | Safar, Vandewouw, Sato (b31) 2024; 14 Cai, Xu, Velmurugan (b8) 2019; 188 Feys, Corvilain, Aeby (b11) 2022; 304 Zhang (b44) 2014 Migliorelli, Alonso, Romero (b26) 2015; 12 Hill, Devasagayam, Holmes, Boto, Shah, Osborne, Safar, Worcester, Mariani, Dawson, Woolger, Bowtell, Taylor, Brookes (b14) 2022; 253 Song, Cui, Gaa (b34) 2009; 26 Hillebrand, Fazio, Munck (b15) 2013; 124 Liu, Zwart, Gelderen (b22) 2012; 59 Sahonero, Calderón (b32) 2017 Romero, Mañanas, Barbanoj (b30) 2008; 38 Airaksinen, Mkel, Taulu (b2) 2011; 32 Kakisaka, Mosher, Wang (b20) 2013; 124 Tang, Sutherland, Mckinney (b37) 2005; 25 Wang, Wu, Liang, Cao, Xiang, Gao, Ning (b43) 2023; 36 Bell, Sejnowski (b3) 1995; 7 Tong, Liu, Soon (b40) 1991; 38 Boring, Jessen, Wozny (b6) 2019; 199 Marhl, Jodko-Wladzińska, Brühl, Sander, Jazbinšek (b24) 2022; 17 Bommel (b5) 1993; 29 Belouchrani, Abed-Meraim, Cardoso (b4) 1997; 45 Hyvarinen (b16) 1999; 10 Jas, Larson, Engemann (b19) 2018; 12 Sun, Chan, Hsiao (b35) 2021; 58 Van Veen, W., Yuchtman, Suzuki (b41) 1997; 44 Taulu, Simola (b38) 2006; 51 Iivanainen, Stenroos, Parkkonen (b17) 2017; 147 Vivekananda, Mellor, Tierney (b42) 2020; 7 Seymour, Alexander, Mellor, George C. O’Neill, Tim M. Tierney, Gareth R. Barnes, Eleanor A. Maguire (b33) 2022; 247 Medvedovsky, Taulu, Bikmullina (b25) 2009; 177 Taulu, Simola (b39) 2005; 53 Kandemir, Litvak, Florin (b21) 2020; 219 Aine, C.J., Adair, J.C., Knoefel, J.E., et al., Cognitive Decline Associated with Aging, Alzheimer’s Disease, and Cerebrovascular Risk: Advantages of Dynamic Imaging with MEG. In: Magnetoencephalography: From Signals to Dynamic Cortical Networks. 2019, pp. 1099–1119. Illman, Laaksonen, Liljeström, Jousmäki (b18) 2020; 215 Lma, Sep, Maa (b23) 2021; 243 Migliorelli, Joan (b27) 2016; 13 Tang, Liu, Sutherland (b36) 2005; 28 Gross (b13) 2019; 104 D’Arcy, Bardouille, Newman (b9) 2013; 34 Brookes (b7) 2022; 45 Esch, Dinh, Larson (b10) 2019 Gramfort, Luessi, Larson (b12) 2014; 86 Migliorelli, Romero, Alonso (b28) 2013 Ng, Raveendran (b29) 2024; 2009 Hyvarinen (10.1016/j.neuroimage.2024.120661_b16) 1999; 10 Tong (10.1016/j.neuroimage.2024.120661_b40) 1991; 38 Gross (10.1016/j.neuroimage.2024.120661_b13) 2019; 104 Taulu (10.1016/j.neuroimage.2024.120661_b38) 2006; 51 Esch (10.1016/j.neuroimage.2024.120661_b10) 2019 Wang (10.1016/j.neuroimage.2024.120661_b43) 2023; 36 Tang (10.1016/j.neuroimage.2024.120661_b36) 2005; 28 Romero (10.1016/j.neuroimage.2024.120661_b30) 2008; 38 Zhang (10.1016/j.neuroimage.2024.120661_b44) 2014 Seymour (10.1016/j.neuroimage.2024.120661_b33) 2022; 247 Iivanainen (10.1016/j.neuroimage.2024.120661_b17) 2017; 147 Ng (10.1016/j.neuroimage.2024.120661_b29) 2024; 2009 Bell (10.1016/j.neuroimage.2024.120661_b3) 1995; 7 Song (10.1016/j.neuroimage.2024.120661_b34) 2009; 26 Sun (10.1016/j.neuroimage.2024.120661_b35) 2021; 58 Boring (10.1016/j.neuroimage.2024.120661_b6) 2019; 199 Migliorelli (10.1016/j.neuroimage.2024.120661_b27) 2016; 13 Safar (10.1016/j.neuroimage.2024.120661_b31) 2024; 14 Jas (10.1016/j.neuroimage.2024.120661_b19) 2018; 12 Taulu (10.1016/j.neuroimage.2024.120661_b39) 2005; 53 10.1016/j.neuroimage.2024.120661_b1 Bommel (10.1016/j.neuroimage.2024.120661_b5) 1993; 29 Illman (10.1016/j.neuroimage.2024.120661_b18) 2020; 215 Feys (10.1016/j.neuroimage.2024.120661_b11) 2022; 304 Medvedovsky (10.1016/j.neuroimage.2024.120661_b25) 2009; 177 Migliorelli (10.1016/j.neuroimage.2024.120661_b26) 2015; 12 Van Veen (10.1016/j.neuroimage.2024.120661_b41) 1997; 44 Tang (10.1016/j.neuroimage.2024.120661_b37) 2005; 25 Marhl (10.1016/j.neuroimage.2024.120661_b24) 2022; 17 Hill (10.1016/j.neuroimage.2024.120661_b14) 2022; 253 Cai (10.1016/j.neuroimage.2024.120661_b8) 2019; 188 Vivekananda (10.1016/j.neuroimage.2024.120661_b42) 2020; 7 Belouchrani (10.1016/j.neuroimage.2024.120661_b4) 1997; 45 Brookes (10.1016/j.neuroimage.2024.120661_b7) 2022; 45 Kandemir (10.1016/j.neuroimage.2024.120661_b21) 2020; 219 Gramfort (10.1016/j.neuroimage.2024.120661_b12) 2014; 86 Sahonero (10.1016/j.neuroimage.2024.120661_b32) 2017 Hillebrand (10.1016/j.neuroimage.2024.120661_b15) 2013; 124 Migliorelli (10.1016/j.neuroimage.2024.120661_b28) 2013 Liu (10.1016/j.neuroimage.2024.120661_b22) 2012; 59 Lma (10.1016/j.neuroimage.2024.120661_b23) 2021; 243 Airaksinen (10.1016/j.neuroimage.2024.120661_b2) 2011; 32 Kakisaka (10.1016/j.neuroimage.2024.120661_b20) 2013; 124 D’Arcy (10.1016/j.neuroimage.2024.120661_b9) 2013; 34 |
References_xml | – volume: 12 year: 2015 ident: b26 article-title: Automatic BSS-based filtering of metallic interference in MEG recordings: definition and validation using simulated signals publication-title: J. Neural Eng. – volume: 247 year: 2022 ident: b33 article-title: Interference suppression techniques for OPM-based MEG: Opportunities and challenges publication-title: NeuroImage – year: 2013 ident: b28 article-title: Reduction of metallic interference in MEG signals using AMUSE publication-title: 2013 – year: 2017 ident: b32 article-title: A comparison of SOBI, fastica, JADE and infomax algorithms. publication-title: International Multi-conference on Complexity, Informatics and Cybernetics – volume: 199 start-page: 366 year: 2019 end-page: 374 ident: b6 article-title: Quantitatively validating the efficacy of artifact suppression techniques to study the cortical consequences of deep brain stimulation with magnetoencephalography publication-title: Neuroimage – volume: 104 start-page: 189 year: 2019 end-page: 204 ident: b13 article-title: Magnetoencephalography in cognitive neuroscience: A primer publication-title: Neuron – volume: 25 start-page: 539 year: 2005 end-page: 553 ident: b37 article-title: Validation of SOBI components from high-density EEG publication-title: Neuroimage – volume: 29 start-page: 1395 year: 1993 end-page: 1398 ident: b5 article-title: Boundary element solution of biomagnetic problems publication-title: IEEE Trans. Magn. – volume: 147 start-page: 542 year: 2017 end-page: 553 ident: b17 article-title: Measuring MEG closer to the brain: Performance of on-scalp sensor arrays publication-title: NeuroImage – volume: 14 start-page: 6513 year: 2024 ident: b31 article-title: Using optically pumped magnetometers to replicate task-related responses in next generation magnetoencephalography publication-title: Sci. Rep. – volume: 124 start-page: 1277 year: 2013 end-page: 1282 ident: b20 article-title: Utility of temporally-extended signal space separation algorithm for magnetic noise from vagal nerve stimulators publication-title: Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. – volume: 7 start-page: 1129 year: 1995 end-page: 1159 ident: b3 article-title: An information-maximization approach to blind separation and blind deconvolution publication-title: Neural Comput. – start-page: 355 year: 2019 end-page: 371 ident: b10 article-title: MNE: software for acquiring, processing, and visualizing MEG/EEG data publication-title: Magnetoencephalography – volume: 219 year: 2020 ident: b21 article-title: The comparative performance of DBS artifact rejection methods for MEG recordings publication-title: NeuroImage – volume: 51 start-page: 1759 year: 2006 end-page: 1768 ident: b38 article-title: Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements publication-title: Phys. Med. Biol. – volume: 7 start-page: 397 year: 2020 end-page: 401 ident: b42 article-title: Optically pumped magnetoencephalography in Epilepsy publication-title: Ann. Clin. Transl. Neurol. – year: 2014 ident: b44 article-title: Research on EEG Signal Analysis Techniques Based on Blind Source Separetion – volume: 12 start-page: 530 year: 2018 ident: b19 article-title: A reproducible MEG/EEG group study with the MNE software: recommendations, quality assessments, and good practices publication-title: Front. Neurosci. – volume: 304 start-page: 429 year: 2022 end-page: 434 ident: b11 article-title: On-scalp optically pumped magnetometers versus cryogenic magnetoencephalography for diagnostic evaluation of Epilepsy in school-aged children publication-title: Radiology – volume: 13 year: 2016 ident: b27 article-title: Influence of metallic artifact filtering on MEG signals for source localization during interictal epileptiform activity publication-title: J. Neural Eng. – volume: 59 start-page: 2073 year: 2012 end-page: 2087 ident: b22 article-title: Statistical feature extraction for artifact removal from concurrent fMRI-EEG recordings publication-title: Neuroimage – volume: 177 start-page: 203 year: 2009 end-page: 211 ident: b25 article-title: Fine tuning the correlation limit of spatio-temporal signal space separation for magnetoencephalography publication-title: J. Neurosci. Methods – volume: 38 start-page: 499 year: 1991 end-page: 509 ident: b40 article-title: Indeterminacy and indentifiability of blind indetification publication-title: IEEE Trans. Circuits Syst. – volume: 34 start-page: 1749 year: 2013 end-page: 1760 ident: b9 article-title: Spatial MEG laterality maps for language: Clinical applications in epilepsy publication-title: Hum. Brain Mapp. – volume: 253 year: 2022 ident: b14 article-title: Using OPM-MEG in contrasting magnetic environments publication-title: NeuroImage – volume: 17 year: 2022 ident: b24 article-title: Transforming and comparing data between standard SQUID and OPM-MEG systems publication-title: PLoS ONE – volume: 45 start-page: 621 year: 2022 end-page: 634 ident: b7 article-title: Magnetoencephalography with optically pumped magnetometers (OPM-MEG): The next generation of functional neuroimaging publication-title: Trends Neurosci. – volume: 243 year: 2021 ident: b23 article-title: Modulation in cortical excitability disrupts information transfer in perceptual-level stimulus processing publication-title: NeuroImage – volume: 188 start-page: 161 year: 2019 end-page: 170 ident: b8 article-title: Evaluation of a dual signal subspace projection algorithm in magnetoencephalographic recordings from patients with intractable epilepsy and vagus nerve stimulators publication-title: Neuroimage – volume: 26 start-page: 392 year: 2009 end-page: 400 ident: b34 article-title: Signal space separation algorithm and its application on suppressing artifacts caused by vagus nerve stimulation for magnetoencephalography recordings publication-title: J. Clin. Neurophysiol. – volume: 124 start-page: 107 year: 2013 end-page: 113 ident: b15 article-title: Feasibility of clinical magnetoencephalography (MEG) functional mapping in the presence of dental artefacts publication-title: Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. – reference: Aine, C.J., Adair, J.C., Knoefel, J.E., et al., Cognitive Decline Associated with Aging, Alzheimer’s Disease, and Cerebrovascular Risk: Advantages of Dynamic Imaging with MEG. In: Magnetoencephalography: From Signals to Dynamic Cortical Networks. 2019, pp. 1099–1119. – volume: 2009 start-page: 56 year: 2024 ident: b29 article-title: Enhanced publication-title: IEEE Trans. Biomed. Eng. – volume: 32 start-page: 1091 year: 2011 end-page: 1099 ident: b2 article-title: Effects of DBS on auditory and somatosensory processing in Parkinson’s disease publication-title: Hum. Brain Mapp. – volume: 58 year: 2021 ident: b35 article-title: Validation of SOBI-DANS method for automatic identification of horizontal and vertical eye movement components from EEG publication-title: Psychophysiology – volume: 53 start-page: 3359 year: 2005 end-page: 3372 ident: b39 article-title: Applications of the signal space separation method publication-title: IEEE Trans. Signal Process. – volume: 215 year: 2020 ident: b18 article-title: Comparing meg and eeg in detecting the publication-title: NeuroImage – volume: 38 start-page: 348 year: 2008 end-page: 360 ident: b30 article-title: A comparative study of automatic techniques for ocular artifact reduction in spontaneous EEG signals based on clinical target variables: a simulation case publication-title: Comput. Biol. Med. – volume: 36 start-page: 350 year: 2023 end-page: 370 ident: b43 article-title: Optimization of signal space separation for optically pumped magnetometer in magnetoencephalography publication-title: Brain Topogr. – volume: 10 start-page: 626 year: 1999 end-page: 634 ident: b16 article-title: Fast and robust fixed-point algorithms for independent component analysis publication-title: IEEE Trans. Neural Netw. – volume: 44 start-page: 867 year: 1997 end-page: 880 ident: b41 article-title: Localization of brain electrical activity via linearly constrained minimum variance spatial filtering publication-title: IEEE Trans. Biomed. Eng. – volume: 45 start-page: 434 year: 1997 end-page: 444 ident: b4 article-title: A blind source separation technique using second-order statistics publication-title: IEEE Trans. Signal Process. – volume: 86 start-page: 446 year: 2014 end-page: 460 ident: b12 article-title: MNE software for processing MEG and EEG data publication-title: NeuroImage – volume: 28 start-page: 507 year: 2005 end-page: 519 ident: b36 article-title: Recovery of correlated neuronal sources from EEG: the good and bad ways of using SOBI publication-title: Neuroimage – volume: 304 start-page: 429 issue: 2 year: 2022 ident: 10.1016/j.neuroimage.2024.120661_b11 article-title: On-scalp optically pumped magnetometers versus cryogenic magnetoencephalography for diagnostic evaluation of Epilepsy in school-aged children publication-title: Radiology doi: 10.1148/radiol.212453 – volume: 45 start-page: 434 issue: 2 year: 1997 ident: 10.1016/j.neuroimage.2024.120661_b4 article-title: A blind source separation technique using second-order statistics publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.554307 – volume: 10 start-page: 626 issue: 3 year: 1999 ident: 10.1016/j.neuroimage.2024.120661_b16 article-title: Fast and robust fixed-point algorithms for independent component analysis publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.761722 – volume: 38 start-page: 499 issue: 5 year: 1991 ident: 10.1016/j.neuroimage.2024.120661_b40 article-title: Indeterminacy and indentifiability of blind indetification publication-title: IEEE Trans. Circuits Syst. doi: 10.1109/31.76486 – volume: 86 start-page: 446 year: 2014 ident: 10.1016/j.neuroimage.2024.120661_b12 article-title: MNE software for processing MEG and EEG data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.10.027 – volume: 36 start-page: 350 issue: 3 year: 2023 ident: 10.1016/j.neuroimage.2024.120661_b43 article-title: Optimization of signal space separation for optically pumped magnetometer in magnetoencephalography publication-title: Brain Topogr. doi: 10.1007/s10548-023-00957-w – year: 2013 ident: 10.1016/j.neuroimage.2024.120661_b28 article-title: Reduction of metallic interference in MEG signals using AMUSE – volume: 26 start-page: 392 issue: 6 year: 2009 ident: 10.1016/j.neuroimage.2024.120661_b34 article-title: Signal space separation algorithm and its application on suppressing artifacts caused by vagus nerve stimulation for magnetoencephalography recordings publication-title: J. Clin. Neurophysiol. doi: 10.1097/WNP.0b013e3181c29896 – year: 2014 ident: 10.1016/j.neuroimage.2024.120661_b44 – ident: 10.1016/j.neuroimage.2024.120661_b1 doi: 10.1007/978-3-030-00087-5_31 – volume: 53 start-page: 3359 year: 2005 ident: 10.1016/j.neuroimage.2024.120661_b39 article-title: Applications of the signal space separation method publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2005.853302 – volume: 59 start-page: 2073 issue: 3 year: 2012 ident: 10.1016/j.neuroimage.2024.120661_b22 article-title: Statistical feature extraction for artifact removal from concurrent fMRI-EEG recordings publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.10.042 – volume: 177 start-page: 203 issue: 1 year: 2009 ident: 10.1016/j.neuroimage.2024.120661_b25 article-title: Fine tuning the correlation limit of spatio-temporal signal space separation for magnetoencephalography publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2008.09.035 – volume: 29 start-page: 1395 issue: 2 year: 1993 ident: 10.1016/j.neuroimage.2024.120661_b5 article-title: Boundary element solution of biomagnetic problems publication-title: IEEE Trans. Magn. doi: 10.1109/20.250663 – volume: 17 issue: 1 year: 2022 ident: 10.1016/j.neuroimage.2024.120661_b24 article-title: Transforming and comparing data between standard SQUID and OPM-MEG systems publication-title: PLoS ONE doi: 10.1371/journal.pone.0262669 – volume: 247 year: 2022 ident: 10.1016/j.neuroimage.2024.120661_b33 article-title: Interference suppression techniques for OPM-based MEG: Opportunities and challenges publication-title: NeuroImage doi: 10.1016/j.neuroimage.2021.118834 – volume: 253 year: 2022 ident: 10.1016/j.neuroimage.2024.120661_b14 article-title: Using OPM-MEG in contrasting magnetic environments publication-title: NeuroImage doi: 10.1016/j.neuroimage.2022.119084 – volume: 2009 start-page: 56 issue: 8 year: 2024 ident: 10.1016/j.neuroimage.2024.120661_b29 article-title: Enhanced μ rhythm extraction using blind source separation and wavelet transform publication-title: IEEE Trans. Biomed. Eng. – volume: 124 start-page: 107 issue: 1 year: 2013 ident: 10.1016/j.neuroimage.2024.120661_b15 article-title: Feasibility of clinical magnetoencephalography (MEG) functional mapping in the presence of dental artefacts publication-title: Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. doi: 10.1016/j.clinph.2012.06.013 – volume: 7 start-page: 397 issue: 3 year: 2020 ident: 10.1016/j.neuroimage.2024.120661_b42 article-title: Optically pumped magnetoencephalography in Epilepsy publication-title: Ann. Clin. Transl. Neurol. doi: 10.1002/acn3.50995 – volume: 28 start-page: 507 issue: 2 year: 2005 ident: 10.1016/j.neuroimage.2024.120661_b36 article-title: Recovery of correlated neuronal sources from EEG: the good and bad ways of using SOBI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.06.062 – volume: 25 start-page: 539 issue: 2 year: 2005 ident: 10.1016/j.neuroimage.2024.120661_b37 article-title: Validation of SOBI components from high-density EEG publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.11.027 – volume: 219 year: 2020 ident: 10.1016/j.neuroimage.2024.120661_b21 article-title: The comparative performance of DBS artifact rejection methods for MEG recordings publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.117057 – start-page: 355 year: 2019 ident: 10.1016/j.neuroimage.2024.120661_b10 article-title: MNE: software for acquiring, processing, and visualizing MEG/EEG data publication-title: Magnetoencephalography doi: 10.1007/978-3-030-00087-5_59 – volume: 243 year: 2021 ident: 10.1016/j.neuroimage.2024.120661_b23 article-title: Modulation in cortical excitability disrupts information transfer in perceptual-level stimulus processing publication-title: NeuroImage – volume: 13 issue: 2 year: 2016 ident: 10.1016/j.neuroimage.2024.120661_b27 article-title: Influence of metallic artifact filtering on MEG signals for source localization during interictal epileptiform activity publication-title: J. Neural Eng. doi: 10.1088/1741-2560/13/2/026029 – volume: 58 issue: 2 year: 2021 ident: 10.1016/j.neuroimage.2024.120661_b35 article-title: Validation of SOBI-DANS method for automatic identification of horizontal and vertical eye movement components from EEG publication-title: Psychophysiology doi: 10.1111/psyp.13731 – volume: 34 start-page: 1749 issue: 8 year: 2013 ident: 10.1016/j.neuroimage.2024.120661_b9 article-title: Spatial MEG laterality maps for language: Clinical applications in epilepsy publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22024 – volume: 44 start-page: 867 year: 1997 ident: 10.1016/j.neuroimage.2024.120661_b41 article-title: Localization of brain electrical activity via linearly constrained minimum variance spatial filtering publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.623056 – volume: 45 start-page: 621 year: 2022 ident: 10.1016/j.neuroimage.2024.120661_b7 article-title: Magnetoencephalography with optically pumped magnetometers (OPM-MEG): The next generation of functional neuroimaging publication-title: Trends Neurosci. doi: 10.1016/j.tins.2022.05.008 – year: 2017 ident: 10.1016/j.neuroimage.2024.120661_b32 article-title: A comparison of SOBI, fastica, JADE and infomax algorithms. – volume: 188 start-page: 161 year: 2019 ident: 10.1016/j.neuroimage.2024.120661_b8 article-title: Evaluation of a dual signal subspace projection algorithm in magnetoencephalographic recordings from patients with intractable epilepsy and vagus nerve stimulators publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.11.025 – volume: 124 start-page: 1277 issue: 7 year: 2013 ident: 10.1016/j.neuroimage.2024.120661_b20 article-title: Utility of temporally-extended signal space separation algorithm for magnetic noise from vagal nerve stimulators publication-title: Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. doi: 10.1016/j.clinph.2012.03.082 – volume: 12 issue: 4 year: 2015 ident: 10.1016/j.neuroimage.2024.120661_b26 article-title: Automatic BSS-based filtering of metallic interference in MEG recordings: definition and validation using simulated signals publication-title: J. Neural Eng. doi: 10.1088/1741-2560/12/4/046001 – volume: 32 start-page: 1091 issue: 7 year: 2011 ident: 10.1016/j.neuroimage.2024.120661_b2 article-title: Effects of DBS on auditory and somatosensory processing in Parkinson’s disease publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.21096 – volume: 147 start-page: 542 year: 2017 ident: 10.1016/j.neuroimage.2024.120661_b17 article-title: Measuring MEG closer to the brain: Performance of on-scalp sensor arrays publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.12.048 – volume: 199 start-page: 366 year: 2019 ident: 10.1016/j.neuroimage.2024.120661_b6 article-title: Quantitatively validating the efficacy of artifact suppression techniques to study the cortical consequences of deep brain stimulation with magnetoencephalography publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.05.080 – volume: 7 start-page: 1129 issue: 6 year: 1995 ident: 10.1016/j.neuroimage.2024.120661_b3 article-title: An information-maximization approach to blind separation and blind deconvolution publication-title: Neural Comput. doi: 10.1162/neco.1995.7.6.1129 – volume: 215 year: 2020 ident: 10.1016/j.neuroimage.2024.120661_b18 article-title: Comparing meg and eeg in detecting the ∼ 20-hz rhythm modulation to tactile and proprioceptive stimulation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.116804 – volume: 104 start-page: 189 issue: 2 year: 2019 ident: 10.1016/j.neuroimage.2024.120661_b13 article-title: Magnetoencephalography in cognitive neuroscience: A primer publication-title: Neuron doi: 10.1016/j.neuron.2019.07.001 – volume: 14 start-page: 6513 year: 2024 ident: 10.1016/j.neuroimage.2024.120661_b31 article-title: Using optically pumped magnetometers to replicate task-related responses in next generation magnetoencephalography publication-title: Sci. Rep. doi: 10.1038/s41598-024-56878-6 – volume: 12 start-page: 530 year: 2018 ident: 10.1016/j.neuroimage.2024.120661_b19 article-title: A reproducible MEG/EEG group study with the MNE software: recommendations, quality assessments, and good practices publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00530 – volume: 38 start-page: 348 issue: 3 year: 2008 ident: 10.1016/j.neuroimage.2024.120661_b30 article-title: A comparative study of automatic techniques for ocular artifact reduction in spontaneous EEG signals based on clinical target variables: a simulation case publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2007.12.001 – volume: 51 start-page: 1759 issue: 7 year: 2006 ident: 10.1016/j.neuroimage.2024.120661_b38 article-title: Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/51/7/008 |
SSID | ssj0009148 |
Score | 2.4716825 |
Snippet | Optically pumped magnetometer magnetoencephalography (OPM-MEG) holds significant promise for clinical functional brain imaging due to its superior... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 120661 |
SubjectTerms | Algorithms Artifact suppression Clinical applications Comparative analysis Magnetoencephalography Metallic artifacts Neuroimaging Optically pumped magnetometers Orthodontics Therapeutic applications Timing Vagus nerve |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JSxxBFC7EQ_AiJnHpRKUCuXasrqre8KQyZghM9BDBW1FrMGDPoDOQq__c96q6R-cgehDm1Ns83vo93lKEfBeVNMGJOmdN63JptMs1q0KORSfnLffS4ezw5Hc1vpK_rsvrZ0d9YU9YWg-cGHfEKw0pjLUQioxsm0bzmgVhPGO6tt4E9L6sZUMyNazbBZTf9-2kbq64HfLmFmwUckIufxS4xrxYCUZxZ_9KTHoJc8bYc75FNnvQSE8SsR_Jmu8-kQ-Tviz-mTyM_s_SeAoFPEeHaUf6rDpNp4FeXE7yyegnxV73v1R3NDVzgL-jejGfxuWt9H4x63tjO5qOl6aAa-N3XRydpJBfW4_38B-AJJyN2CZX56M_Z-O8P1shtyVn8xzMDiuKrmgtQhiI-5BoGRmapmoKW5sQCgvmCuYpKs8NADEmBNelkWXtnRdih6x3087vEQo-IUigF9yVx25VzR0EuQCu1OM6MZmRYmCymqUVGmroLfunngSjUDAqCSYjpyiN5fO4BDteANVQvWqo11QjI-0gSzVwHjwjfOjmDQQcL9_tsUjCGG98e39QHdX7hHsFyRlwpxZcZOTb8jZYM5ZodOeni_hMyesKcHFGdpPKLXkgmgZ-kn15D958JRtIb2pl3Cfr87uFPwB4NTeH0ZIeASS-I1I priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection (ProQuest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NaxQxFA9aQbwUvx1bJYLX6EyS-aIHqbK1CKseLOwt5LNUcGbt7kKv_c99L8ns2oNSmNNMkgl5eS-_5L33CyFvRSNNcKJlZdc7Jo12TJdNYOh0ct5yLx3mDs-_Nqdn8suiXuQDt1UOq5xsYjTUbrR4Rv4eoG1fi1Zw8WH5m-GtUehdzVdo3CX3InUZzOd20e5IdyuZUuFqwTookCN5UnxX5Iu8-AVaC7tELt9VSGxe3VieIov_jVXqXyg0rkYnD8l-hpH0OMn9Ebnjh8fk_jw7yp-Q69nVMiWsUEB4dMp_pH_5q-kY6LfvczaffaYY_X5O9UBTeAdYQKo36zHSudLVZpmjZQeaLpymgHRjuy4mU1LYcVuP3_AP0CXMlnhKzk5mPz6dsnzbArM1L9cMFBF9jK7qLYIaQAKw9TIydF3TVbY1IVQWFBgUVjSeG4BmpRBc10bWrXdeiGdkbxgH_4JQsBJBQn_BgHmMX9XcwbIXwLh6JBiTBammQVbLRKqhpmizn2onGIWCUUkwBfmI0tiWR1rs-GK8PFdZyxRvNOx3rQXcYmTfdZq3ZRDGl6VurTehIP0kSzWNPNhKaOjiFh042tbN6CShjlvWPpymjspWYqV2c7ogb7afQb_RaaMHP25imZq3DSDlgjxPU247BqLr4JHly_83fkAeYE9S2OIh2VtfbvwrgFJr8zrqyx9wnRw6 priority: 102 providerName: ProQuest |
Title | Expanding the clinical application of OPM-MEG using an effective automatic suppression method for the dental brace metal artifact |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811924001563 https://dx.doi.org/10.1016/j.neuroimage.2024.120661 https://www.ncbi.nlm.nih.gov/pubmed/38838840 https://www.proquest.com/docview/3069537323 https://www.proquest.com/docview/3065276083 https://doaj.org/article/26a549cc218b4988a270f3be00a7cebf |
Volume | 296 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB4SB0ovJX0rSc0WelUs7a5e5JQEp26L3dA24NuyK-0GFyqZxIacCv3nmX3IqQ-FQMHYWNLKw8zOzDeehwA-sJwr07AiTsqqibmSTSyT3MQ26dTommre2N7h6SyfXPHP82y-A-d9L4wtqwy239t0Z63DkVHg5mi5WIy-IzJAd2MDCNcPzHZhj7Iqzwawd_rpy2T2MHs35b4jLmOxXRAKenyZlxsbufiFyovBIuXHqZ1vnm55KTfMf8tZ_QuMOqd0sQ_PApokp57g57Cj2xfwZBry5S_hz_hu6ftWCAI90rdBkr_S1qQz5OvlNJ6OPxJbBH9NZEt8lQcaQiLXq85NdSW362Uomm2Jf-40QcDr7tu4nkqCgXet7Tn7C0iSbZp4BVcX4x_nkzg8dCGuM5qsYtRHm2ps0qq22AYBAUZgipuyzMu0LpQxaY16jHrLck0VIrSEMSozxbNCN5qx1zBou1a_BYLGwnCkF-2YtmWskjbo_QzaWG3njPEI0p7JYulna4i-6OyneBCMsIIRXjARnFlpbK6307Hdge7mWoTtIWguMeyta4QvildlKWmRGKZ0ksii1spEUPWyFD3n0WTijRaPIOBks3Zroz5y9VG_dUQwFrcCozbkTsEoi-D95jSquc3dyFZ3a3dNRoscAXMEb_yW2_CAlSW-eHLwX6QdwlP7zRc3HsFgdbPW7xBwrdQQdo9_p_hezIthUC78PBvPLr8N3Z8Y9-4jLTc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqVAIuiDdbChgJjgu7tvclhBCFlJQ2oUKt1JvrZ1UkdtMmEXDkD_EbmVnvJvQA6qVSTvtwLM_4m292HibkOc-F9pYXcVJWNhZa2VgluY8x6GSdYU5YrB0eT_LRofh0lB2tkd99LQymVfaY2AK1bQx-I38F1LbKeMEZfzs9i_HUKIyu9kdoBLXYdT-_g8s2e7PzAeT7grHt4cH7UdydKhCbjCXzGBQOY2k2rQwab7B44GJo4csyL1NTaO9TA4oKislzxzRQkIRzpjItssJZhx9AAfLXBVa0Dsj61nCy_2XV5jcVofgu43GZplWXOxQyytoOlaffACfAL2XiZYqt1NMLBrE9N-CCXfwX723t3_YtcrMjrvRd0LTbZM3Vd8i1cReav0t-DX9MQ4kMBU5J-4pL-leEnDaeft4fx-PhR4r59idU1TQklADmUrWYN20DWTpbTLv83JqGI64pcOt2XNuWb1Lw8Y3De_gPMCWsz7hHDq9EEvfJoG5q95BQwCUvYL4AmQ4zZhWzYGg9wLnDlmYiImm_yHIa2njIPr_tq1wJRqJgZBBMRLZQGsvnsRF3e6E5P5HdvpYsV-BhGwNMSYuqLBUrEs-1SxJVGKd9RKpelrJfeUBnGOj0EhN4vXy340OB51zy7c1edWSHSzO52kUReba8DYiCYSJVu2bRPpOxIgduHpEHQeWWa8DLEn4i2fj_4E_J9dHBeE_u7Ux2H5EbOKuQNLlJBvPzhXsMRG6un3S7h5Ljq96wfwD63Vct |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqIlVcEG8WChgJjkt3be9LCCGgCS0lpQcq5Wb8rIrEbmgSAUf-Fr-OGXs3oQdQL5Vy2odjeWa--bzzMCFPeSm0t7xKs7qxqdDKpiorfYpBJ-sMc8Ji7fDksNw7Fu-nxXSD_B5qYTCtcsDEANS2M_iNfAeobVPwijO-4_u0iKPd8avZtxRPkMJI63CcRlSRA_fzO2zf5i_3d0HWzxgbjz693Uv7EwZSU7BskYLyYVzN5o1BRw7eD7YbWvi6LuvcVNr73IDSgpLy0jENdCTjnKlCi6Jy1uHHUID_KxUHVgW2VE2rdcPfXMQyvIKndZ43fRZRzC0LvSpPvwJiwA6Viec5NlXPz7nGcILAOQ_5LwYcPOH4OrnWU1j6OurcDbLh2ptka9IH6W-RX6Mfs1gsQ4Fd0qH2kv4VK6edpx-PJulk9I5i5v0JVS2NqSWAvlQtF11oJUvny1mfqdvSeNg1BZYdxrWhkJPCbt84vIf_AFPCSo3b5PhS5HCHbLZd6-4RCgjlBcwXwNNh7qxiFlyuB2B32NxMJCQfFlnOYkMPOWS6fZFrwUgUjIyCScgblMbqeWzJHS50Zyeyt3DJSgV7bWOAM2nR1LViVea5dlmmKuO0T0gzyFIOKw84DQOdXmACL1bv9swoMp4Lvr09qI7sEWou1_aUkCer24AtGDBSreuW4ZmCVSWw9ITcjSq3WgNe1_AT2f3_D_6YbIGZyg_7hwcPyFWcVMye3Cabi7OlewiMbqEfBdOh5PNl2-ofMU1Z9A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expanding+the+clinical+application+of+OPM-MEG+using+an+effective+automatic+suppression+method+for+the+dental+brace+metal+artifact&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Wang%2C+Ruonan&rft.au=Fu%2C+Kaiwen&rft.au=Zhao%2C+Ruochen&rft.au=Wang%2C+Dawei&rft.date=2024-08-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=296&rft_id=info:doi/10.1016%2Fj.neuroimage.2024.120661&rft.externalDocID=S1053811924001563 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |