The glucose signaling network in yeast

Most cells possess a sophisticated mechanism for sensing glucose and responding to it appropriately. Glucose sensing and signaling in the budding yeast Saccharomyces cerevisiae represent an important paradigm for understanding how extracellular signals lead to changes in the gene expression program...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta Vol. 1830; no. 11; pp. 5204 - 5210
Main Authors Kim, Jeong-Ho, Roy, Adhiraj, Jouandot, David, Cho, Kyu Hong
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.11.2013
Subjects
Online AccessGet full text
ISSN0304-4165
0006-3002
1872-8006
DOI10.1016/j.bbagen.2013.07.025

Cover

Abstract Most cells possess a sophisticated mechanism for sensing glucose and responding to it appropriately. Glucose sensing and signaling in the budding yeast Saccharomyces cerevisiae represent an important paradigm for understanding how extracellular signals lead to changes in the gene expression program in eukaryotes. This review focuses on the yeast glucose sensing and signaling pathways that operate in a highly regulated and cooperative manner to bring about glucose-induction of HXT gene expression. The yeast cells possess a family of glucose transporters (HXTs), with different kinetic properties. They employ three major glucose signaling pathways—Rgt2/Snf3, AMPK, and cAMP-PKA—to express only those transporters best suited for the amounts of glucose available. We discuss the current understanding of how these pathways are integrated into a regulatory network to ensure efficient uptake and utilization of glucose. Elucidating the role of multiple glucose signals and pathways involved in glucose uptake and metabolism in yeast may reveal the molecular basis of glucose homeostasis in humans, especially under pathological conditions, such as hyperglycemia in diabetics and the elevated rate of glycolysis observed in many solid tumors. •The budding yeast S. cerevisiae, like tumor cells, exhibits aerobic glycolysis.•The yeast possesses a family of glucose transporters (HXTs) with different kinetic properties.•Expression of HXT genes is regulated by the crosstalk between glucose signaling pathways.
AbstractList Most cells possess a sophisticated mechanism for sensing glucose and responding to it appropriately. Glucose sensing and signaling in the budding yeast Saccharomyces cerevisiae represent an important paradigm for understanding how extracellular signals lead to changes in the gene expression program in eukaryotes. This review focuses on the yeast glucose sensing and signaling pathways that operate in a highly regulated and cooperative manner to bring about glucose-induction of HXT gene expression. The yeast cells possess a family of glucose transporters (HXTs), with different kinetic properties. They employ three major glucose signaling pathways-Rgt2/Snf3, AMPK, and cAMP-PKA-to express only those transporters best suited for the amounts of glucose available. We discuss the current understanding of how these pathways are integrated into a regulatory network to ensure efficient uptake and utilization of glucose. Elucidating the role of multiple glucose signals and pathways involved in glucose uptake and metabolism in yeast may reveal the molecular basis of glucose homeostasis in humans, especially under pathological conditions, such as hyperglycemia in diabetics and the elevated rate of glycolysis observed in many solid tumors.
Most cells possess a sophisticated mechanism for sensing glucose and responding to it appropriately. Glucose sensing and signaling in the budding yeast Saccharomyces cerevisiae represent an important paradigm for understanding how extracellular signals lead to changes in the gene expression program in eukaryotes.BACKGROUNDMost cells possess a sophisticated mechanism for sensing glucose and responding to it appropriately. Glucose sensing and signaling in the budding yeast Saccharomyces cerevisiae represent an important paradigm for understanding how extracellular signals lead to changes in the gene expression program in eukaryotes.This review focuses on the yeast glucose sensing and signaling pathways that operate in a highly regulated and cooperative manner to bring about glucose-induction of HXT gene expression.SCOPE OF REVIEWThis review focuses on the yeast glucose sensing and signaling pathways that operate in a highly regulated and cooperative manner to bring about glucose-induction of HXT gene expression.The yeast cells possess a family of glucose transporters (HXTs), with different kinetic properties. They employ three major glucose signaling pathways-Rgt2/Snf3, AMPK, and cAMP-PKA-to express only those transporters best suited for the amounts of glucose available. We discuss the current understanding of how these pathways are integrated into a regulatory network to ensure efficient uptake and utilization of glucose.MAJOR CONCLUSIONSThe yeast cells possess a family of glucose transporters (HXTs), with different kinetic properties. They employ three major glucose signaling pathways-Rgt2/Snf3, AMPK, and cAMP-PKA-to express only those transporters best suited for the amounts of glucose available. We discuss the current understanding of how these pathways are integrated into a regulatory network to ensure efficient uptake and utilization of glucose.Elucidating the role of multiple glucose signals and pathways involved in glucose uptake and metabolism in yeast may reveal the molecular basis of glucose homeostasis in humans, especially under pathological conditions, such as hyperglycemia in diabetics and the elevated rate of glycolysis observed in many solid tumors.GENERAL SIGNIFICANCEElucidating the role of multiple glucose signals and pathways involved in glucose uptake and metabolism in yeast may reveal the molecular basis of glucose homeostasis in humans, especially under pathological conditions, such as hyperglycemia in diabetics and the elevated rate of glycolysis observed in many solid tumors.
Most cells possess a sophisticated mechanism for sensing glucose and responding to it appropriately. Glucose sensing and signaling in the budding yeast Saccharomyces cerevisiae represent an important paradigm for understanding how extracellular signals lead to changes in the gene expression program in eukaryotes.This review focuses on the yeast glucose sensing and signaling pathways that operate in a highly regulated and cooperative manner to bring about glucose-induction of HXT gene expression.The yeast cells possess a family of glucose transporters (HXTs), with different kinetic properties. They employ three major glucose signaling pathways—Rgt2/Snf3, AMPK, and cAMP-PKA—to express only those transporters best suited for the amounts of glucose available. We discuss the current understanding of how these pathways are integrated into a regulatory network to ensure efficient uptake and utilization of glucose.Elucidating the role of multiple glucose signals and pathways involved in glucose uptake and metabolism in yeast may reveal the molecular basis of glucose homeostasis in humans, especially under pathological conditions, such as hyperglycemia in diabetics and the elevated rate of glycolysis observed in many solid tumors.
BACKGROUND: Most cells possess a sophisticated mechanism for sensing glucose and responding to it appropriately. Glucose sensing and signaling in the budding yeast Saccharomyces cerevisiae represent an important paradigm for understanding how extracellular signals lead to changes in the gene expression program in eukaryotes. SCOPE OF REVIEW: This review focuses on the yeast glucose sensing and signaling pathways that operate in a highly regulated and cooperative manner to bring about glucose-induction of HXT gene expression. MAJOR CONCLUSIONS: The yeast cells possess a family of glucose transporters (HXTs), with different kinetic properties. They employ three major glucose signaling pathways—Rgt2/Snf3, AMPK, and cAMP-PKA—to express only those transporters best suited for the amounts of glucose available. We discuss the current understanding of how these pathways are integrated into a regulatory network to ensure efficient uptake and utilization of glucose. GENERAL SIGNIFICANCE: Elucidating the role of multiple glucose signals and pathways involved in glucose uptake and metabolism in yeast may reveal the molecular basis of glucose homeostasis in humans, especially under pathological conditions, such as hyperglycemia in diabetics and the elevated rate of glycolysis observed in many solid tumors.
Most cells possess a sophisticated mechanism for sensing glucose and responding to it appropriately. Glucose sensing and signaling in the budding yeast Saccharomyces cerevisiae represent an important paradigm for understanding how extracellular signals lead to changes in the gene expression program in eukaryotes. This review focuses on the yeast glucose sensing and signaling pathways that operate in a highly regulated and cooperative manner to bring about glucose-induction of HXT gene expression. The yeast cells possess a family of glucose transporters (HXTs), with different kinetic properties. They employ three major glucose signaling pathways—Rgt2/Snf3, AMPK, and cAMP-PKA—to express only those transporters best suited for the amounts of glucose available. We discuss the current understanding of how these pathways are integrated into a regulatory network to ensure efficient uptake and utilization of glucose. Elucidating the role of multiple glucose signals and pathways involved in glucose uptake and metabolism in yeast may reveal the molecular basis of glucose homeostasis in humans, especially under pathological conditions, such as hyperglycemia in diabetics and the elevated rate of glycolysis observed in many solid tumors. •The budding yeast S. cerevisiae, like tumor cells, exhibits aerobic glycolysis.•The yeast possesses a family of glucose transporters (HXTs) with different kinetic properties.•Expression of HXT genes is regulated by the crosstalk between glucose signaling pathways.
Author Roy, Adhiraj
Kim, Jeong-Ho
Cho, Kyu Hong
Jouandot, David
AuthorAffiliation Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, 2300 Eye Street, Washington, DC 20037
b Department of Microbiology, Southern Illinois University Carbondale, 1125 Lincoln Drive, Carbondale, IL 62901
a Department of Biological Sciences, The University of Southern Mississippi, 118 College Dr., Hattiesburg, MS 39406
AuthorAffiliation_xml – name: b Department of Microbiology, Southern Illinois University Carbondale, 1125 Lincoln Drive, Carbondale, IL 62901
– name: Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, 2300 Eye Street, Washington, DC 20037
– name: a Department of Biological Sciences, The University of Southern Mississippi, 118 College Dr., Hattiesburg, MS 39406
Author_xml – sequence: 1
  givenname: Jeong-Ho
  surname: Kim
  fullname: Kim, Jeong-Ho
  email: jh_kim@gwu.edu
  organization: Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, 2300 Eye Street, Washington, DC 20037, USA
– sequence: 2
  givenname: Adhiraj
  surname: Roy
  fullname: Roy, Adhiraj
  organization: Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, 2300 Eye Street, Washington, DC 20037, USA
– sequence: 3
  givenname: David
  surname: Jouandot
  fullname: Jouandot, David
  organization: Department of Biological Sciences, The University of Southern Mississippi, 118 College Dr., Hattiesburg, MS 39406, USA
– sequence: 4
  givenname: Kyu Hong
  surname: Cho
  fullname: Cho, Kyu Hong
  organization: Department of Microbiology, Southern Illinois University Carbondale, 1125 Lincoln Drive, Carbondale, IL 62901, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23911748$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1P3DAUtCpQWWj_QdXmVHFJeLZjO-kBqUL0Q0LiUDhbjvMcvM3a1M5S8e-baKFfB_DlHTwzb97MIdkLMSAhbyhUFKg8WVddZwYMFQPKK1AVMPGCrGijWNkAyD2yAg51WVMpDshhzmuYn2jFS3LAeEupqpsVeX91g8Uwbm3MWGQ_BDP6MBQBp58xfS98KO7R5OkV2XdmzPj6YR6R60_nV2dfyovLz1_PPl6UVjCYSsmFg17ZRrm-F-CwBik6oairoabQtMw6hxIFk0BFC6KhvDGuo9Bb1QnBj8jpTvd2222wtximZEZ9m_zGpHsdjdf__gR_o4d4p7lqBGftLHD8IJDijy3mSW98tjiOJmDcZs2WEBpJgT0LpTWXQnLVLtC3f9v67ecxxxnwYQewKeac0GnrJzP5uLj0o6agl9L0Wu9K00tpGpSeS5vJ9X_kR_1naO92NGeiNkPyWV9_mwFyOZFJCX_SxLmyO49JZ-sxWOx9QjvpPvqnV_wCXmS54g
CitedBy_id crossref_primary_10_1128_MCB_00515_14
crossref_primary_10_1016_j_jbc_2024_107665
crossref_primary_10_3389_fpls_2023_1123523
crossref_primary_10_1021_acs_jproteome_1c00139
crossref_primary_10_1111_ede_12217
crossref_primary_10_3390_toxins8020042
crossref_primary_10_1002_bit_27138
crossref_primary_10_1016_j_bbrc_2021_10_015
crossref_primary_10_1080_09168451_2020_1763157
crossref_primary_10_3390_ijms222212410
crossref_primary_10_1111_1567_1364_12157
crossref_primary_10_1093_femsyr_fov107
crossref_primary_10_1002_jbt_70059
crossref_primary_10_1016_j_procbio_2024_11_005
crossref_primary_10_1007_s00294_019_00996_6
crossref_primary_10_1088_2515_7647_ac015d
crossref_primary_10_1186_s12864_015_1393_8
crossref_primary_10_15252_msb_20145513
crossref_primary_10_1016_j_abb_2020_108701
crossref_primary_10_1002_bit_27141
crossref_primary_10_1016_j_celrep_2015_12_092
crossref_primary_10_1016_j_jprot_2015_08_003
crossref_primary_10_1091_mbc_E15_07_0499
crossref_primary_10_1007_s00253_023_12907_4
crossref_primary_10_1371_journal_pone_0121985
crossref_primary_10_1111_gtc_70004
crossref_primary_10_1371_journal_ppat_1012791
crossref_primary_10_1016_j_ejcb_2015_10_005
crossref_primary_10_1111_cbdd_14377
crossref_primary_10_1016_j_tim_2017_12_008
crossref_primary_10_1074_jbc_M113_539411
crossref_primary_10_3390_genes12091311
crossref_primary_10_1016_j_rser_2021_111789
crossref_primary_10_1038_s41598_024_54628_2
crossref_primary_10_1093_femsyr_fov072
crossref_primary_10_1111_mmi_13887
crossref_primary_10_1371_journal_pgen_1008037
crossref_primary_10_1111_cmi_12610
crossref_primary_10_1016_j_plaphy_2016_06_023
crossref_primary_10_1111_febs_13019
crossref_primary_10_1371_journal_pgen_1011202
crossref_primary_10_3390_ijms24010398
crossref_primary_10_1016_j_jbc_2022_101593
crossref_primary_10_1002_jctb_7754
crossref_primary_10_1002_jcb_25803
crossref_primary_10_1038_srep45073
crossref_primary_10_1038_s41598_022_05569_1
crossref_primary_10_7554_eLife_75143
crossref_primary_10_1016_j_bbagrm_2019_02_009
crossref_primary_10_1016_j_csbj_2021_03_013
crossref_primary_10_1111_1751_7915_14188
crossref_primary_10_3389_fmicb_2017_00480
crossref_primary_10_1021_acssynbio_7b00463
crossref_primary_10_1002_etc_3314
crossref_primary_10_1371_journal_pgen_1006372
crossref_primary_10_1093_bbb_zbad167
crossref_primary_10_3390_ijms25010304
crossref_primary_10_1007_s00203_024_03901_z
crossref_primary_10_1186_s12934_021_01692_2
crossref_primary_10_1093_femsyr_foac012
crossref_primary_10_1093_femsyr_foad029
crossref_primary_10_1016_j_ijfoodmicro_2024_110899
crossref_primary_10_1007_s00294_014_0466_6
crossref_primary_10_1128_mSphere_00080_15
crossref_primary_10_1091_mbc_E15_11_0789
crossref_primary_10_2520_myco_66_45
crossref_primary_10_1016_j_ntm_2025_100070
crossref_primary_10_1016_j_fgb_2017_11_006
crossref_primary_10_1016_j_jbiosc_2017_07_013
crossref_primary_10_1093_intbio_zyaa018
crossref_primary_10_3389_fmicb_2016_01378
crossref_primary_10_3390_microorganisms8010100
crossref_primary_10_3390_ijms19010048
crossref_primary_10_1038_s41598_018_20804_4
crossref_primary_10_18632_oncotarget_7174
crossref_primary_10_1038_s41598_019_43032_w
crossref_primary_10_1186_s13068_021_01877_2
crossref_primary_10_1016_j_cbpa_2020_08_005
crossref_primary_10_1080_15476286_2022_2065784
crossref_primary_10_1016_j_bbagen_2021_129881
crossref_primary_10_1021_acs_jafc_5b05892
crossref_primary_10_1007_s00253_025_13408_2
crossref_primary_10_1074_jbc_RA119_009822
crossref_primary_10_1007_s00294_021_01194_z
crossref_primary_10_1016_j_bbagen_2014_05_004
crossref_primary_10_1016_j_bioelechem_2015_10_006
crossref_primary_10_1186_s13068_016_0573_3
crossref_primary_10_1371_journal_pone_0116942
crossref_primary_10_1126_science_aba0542
crossref_primary_10_3390_foods14010142
crossref_primary_10_1016_j_fob_2013_12_004
crossref_primary_10_18632_oncotarget_11253
crossref_primary_10_3389_fpls_2015_00851
Cites_doi 10.1074/jbc.273.37.24102
10.1038/nrendo.2011.158
10.1128/MCB.18.11.6273
10.1042/bj0230536
10.1128/MCB.23.15.5208-5216.2003
10.1128/MCB.23.11.3909-3917.2003
10.1016/j.tem.2005.10.003
10.1111/j.1567-1364.2002.tb00084.x
10.1074/jbc.M400609200
10.1016/j.ab.2004.06.045
10.1126/science.123.3191.309
10.1002/j.1460-2075.1990.tb07479.x
10.1074/jbc.M603636200
10.1128/MCB.16.11.6419
10.1128/MCB.19.7.4561
10.1111/j.1432-1033.1997.00324.x
10.1074/jbc.M309753200
10.1016/j.biochi.2008.09.002
10.1093/emboj/17.12.3326
10.1073/pnas.88.19.8597
10.1093/emboj/17.9.2566
10.1126/science.1160809
10.1074/jbc.272.36.22859
10.1371/journal.pone.0019060
10.1074/jbc.M109.032102
10.1046/j.1365-2958.2000.02125.x
10.1073/pnas.95.11.6245
10.1093/emboj/18.20.5577
10.1016/S1097-2765(02)00557-9
10.1093/nar/gkl028
10.1128/EC.3.1.221-231.2004
10.1128/MCB.7.8.2653
10.1091/mbc.E03-03-0135
10.1128/EC.5.1.167-173.2006
10.1042/BST0330247
10.1016/0092-8674(90)90094-U
10.1016/0092-8674(87)90223-6
10.1128/MCB.14.3.1972
10.1128/JB.181.15.4673-4675.1999
10.1091/mbc.E13-01-0047
10.1074/jbc.M208726200
10.1128/JB.182.2.540-542.2000
10.1101/gad.10.10.1247
10.1128/MMBR.70.1.253-282.2006
10.1146/annurev.biochem.67.1.821
10.1128/MMBR.62.2.334-361.1998
10.1016/0168-9525(91)90018-L
10.1177/153303460200100603
10.1111/j.1365-2958.1995.tb02400.x
10.1007/BF00215362
10.1016/0092-8674(85)90305-8
10.1083/jcb.200206120
10.1016/S0968-0004(01)01805-9
10.1091/mbc.7.12.1953
10.1128/MCB.15.3.1564
10.1128/jb.176.24.7423-7429.1994
10.1073/pnas.0305901101
10.1002/yea.1609
10.1128/MCB.01450-09
10.1046/j.1365-2958.2000.01688.x
10.1016/j.ceb.2006.10.005
10.3390/s100606195
10.1046/j.1365-2958.1999.01538.x
10.1073/pnas.93.22.12428
10.1016/S1369-5274(99)80035-6
10.1016/S0960-9822(96)00747-6
10.1101/gad.9.23.2903
10.1146/annurev.biochem.75.103004.142702
10.1111/j.1574-6976.2008.00117.x
10.1074/jbc.275.12.9011
10.1101/gad.10.24.3105
10.1042/BST0330253
10.1038/sj.embor.7400120
10.1101/gad.179275.111
10.1126/science.1120781
10.1016/j.cell.2008.08.021
10.1038/20459
10.1074/jbc.270.49.29083
10.1016/S0014-5793(98)01583-X
10.1038/ng1917
10.1128/EC.2.6.1288-1303.2003
10.1128/MCB.16.12.6707
10.1002/jcb.23253
10.1534/genetics.104.034512
10.1016/j.febslet.2007.06.013
10.1128/EC.00256-06
10.1093/genetics/163.2.507
10.1074/jbc.M212802200
10.1016/S0968-0004(00)01592-9
10.1007/s00294-003-0423-2
10.1146/annurev.bi.56.070187.003031
10.1128/MCB.16.9.4790
10.2741/2854
10.1073/pnas.92.12.5510
10.1101/gad.879301
10.1093/genetics/150.4.1377
10.1073/pnas.1533136100
10.1111/j.1574-6976.1997.tb00346.x
10.1534/genetics.111.135731
10.1128/MCB.20.14.5350-5359.2000
10.1093/emboj/19.12.3016
10.1128/MCB.10.9.4744
10.1074/jbc.M403071200
10.1128/MMBR.63.3.554-569.1999
10.1016/S0092-8674(03)00929-2
10.1073/pnas.070506797
ContentType Journal Article
Copyright 2013 Elsevier B.V.
2013.
2013 Elsevier B.V. All rights reserved. 2013
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: 2013.
– notice: 2013 Elsevier B.V. All rights reserved. 2013
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1016/j.bbagen.2013.07.025
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
AGRICOLA


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
EndPage 5210
ExternalDocumentID PMC3785329
23911748
10_1016_j_bbagen_2013_07_025
US201600002660
S0304416513003383
Genre Journal Article
Review
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM087470
– fundername: NIGMS NIH HHS
  grantid: GM087470
– fundername: National Institute of General Medical Sciences : NIGMS
  grantid: R01 GM087470 || GM
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
ABPIF
ABPTK
FBQ
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
-~X
.55
.GJ
AAYJJ
ABJNI
AFFNX
AI.
CGR
CUY
CVF
ECM
EIF
F5P
H~9
K-O
MVM
NPM
RIG
TWZ
UHS
VH1
X7M
Y6R
YYP
ZE2
ZGI
~KM
7X8
7S9
EFKBS
L.6
5PM
ID FETCH-LOGICAL-c520t-635f0d7c87fdd50fe4065b571f40410892cffe6e5260159058138afb10dc7b553
IEDL.DBID AIKHN
ISSN 0304-4165
0006-3002
IngestDate Thu Aug 21 18:22:10 EDT 2025
Fri Sep 05 03:47:27 EDT 2025
Thu Sep 04 18:48:18 EDT 2025
Mon Jul 21 05:56:19 EDT 2025
Tue Jul 01 00:22:01 EDT 2025
Thu Apr 24 23:02:27 EDT 2025
Wed Dec 27 18:59:08 EST 2023
Fri Feb 23 02:34:13 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Glucose transporters
Yeast
Glucose uptake and metabolism
Glucose signaling pathways
Cancer
Language English
License 2013.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c520t-635f0d7c87fdd50fe4065b571f40410892cffe6e5260159058138afb10dc7b553
Notes http://dx.doi.org/10.1016/j.bbagen.2013.07.025
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Current address: David Jouandot II, Brother Martin High School, 4401 Elysian Fields Avenue, New Orleans, LA 70122
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3785329
PMID 23911748
PQID 1436563792
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3785329
proquest_miscellaneous_2000086102
proquest_miscellaneous_1436563792
pubmed_primary_23911748
crossref_citationtrail_10_1016_j_bbagen_2013_07_025
crossref_primary_10_1016_j_bbagen_2013_07_025
fao_agris_US201600002660
elsevier_sciencedirect_doi_10_1016_j_bbagen_2013_07_025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-11-01
PublicationDateYYYYMMDD 2013-11-01
PublicationDate_xml – month: 11
  year: 2013
  text: 2013-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta
PublicationTitleAlternate Biochim Biophys Acta
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kaniak, Xue, Macool, Kim, Johnston (bb0065) 2004; 3
Lutfiyya, Iyer, DeRisi, DeVit, Brown, Johnston (bb0480) 1998; 150
Tanaka, Nakafuku, Satoh, Marshall, Gibbs, Matsumoto, Kaziro, Toh-e (bb0450) 1990; 60
Lafuente, Gancedo, Jauniaux, Gancedo (bb0195) 2000; 35
Edelman, Blumenthal, Krebs (bb0465) 1987; 56
Schulte, Wieczorke, Hollenberg, Boles (bb0235) 2000; 182
Warburg (bb0045) 1956; 123
Toda, Uno, Ishikawa, Powers, Kataoka, Broek, Cameron, Broach, Matsumoto, Wigler (bb0445) 1985; 40
Smith, Redd, Johnson (bb0260) 1995; 9
Papamichos-Chronakis, Gligoris, Tzamarias (bb0310) 2004; 5
Versele, de Winde, Thevelein (bb0460) 1999; 18
Tomas-Cobos, Casadome, Mas, Sanz, Posas (bb0205) 2004; 279
Panozzo, Capuano, Fillinger, Felenbok (bb0170) 1997; 272
Vander Heiden, Cantley, Thompson (bb0040) 2009; 324
Shaw (bb0550) 2006; 18
Meijer, Boonstra, Verkleij, Verrips (bb0510) 1998; 273
Wong, Struhl (bb0330) 2011; 25
Diaz-Ruiz, Uribe-Carvajal, Devin, Rigoulet (bb0105) 2009; 1796
Kim, Johnston (bb0405) 2006; 281
Hedbacker, Carlson (bb0085) 2008; 13
Ozcan, Leong, Johnston (bb0165) 1996; 16
Kuchin, Vyas, Kanter, Hong, Carlson (bb0475) 2003; 163
Hubbard, Jiang, Carlson (bb0185) 1994; 14
Hanlon, Rizzo, Tatomer, Lieb, Buck (bb0325) 2011; 6
Palomino, Herrero, Moreno (bb0410) 2006; 34
Busti, Coccetti, Alberghina, Vanoni (bb0020) 2010; 10
Proft, Struhl (bb0300) 2002; 9
Hong, Leiper, Woods, Carling, Carlson (bb0385) 2003; 100
Kim, Polish, Johnston (bb0150) 2003; 23
Santangelo (bb0015) 2006; 70
Wilson, Hawley, Hardie (bb0490) 1996; 6
Varanasi, Klis, Mikesell, Trumbly (bb0250) 1996; 16
Mosley, Lakshmanan, Aryal, Ozcan (bb0180) 2003; 278
Polish, Kim, Johnston (bb0210) 2005; 169
Rolland, De Winde, Lemaire, Boles, Thevelein, Winderickx (bb0425) 2000; 38
Mandelkern, Raines (bb0050) 2002; 1
Pasula, Jouandot, Kim (bb0220) 2007; 581
Colombo, Ma, Cauwenberg, Winderickx, Crauwels, Teunissen, Nauwelaers, de Winde, Gorwa, Colavizza, Thevelein (bb0455) 1998; 17
Wang, Jiang, Rue, Semenza (bb0525) 1995; 92
Nehlin, Ronne (bb0340) 1990; 9
Broach (bb0095) 2012; 192
Maxwell, Wiesener, Chang, Clifford, Vaux, Cockman, Wykoff, Pugh, Maher, Ratcliffe (bb0530) 1999; 399
Gancedo (bb0120) 2008; 32
Buck, Lieb (bb0315) 2006; 38
Alessi, Sakamoto, Bayascas (bb0540) 2006; 75
Feng, Davis (bb0370) 2000; 20
Ludin, Jiang, Carlson (bb0400) 1998; 95
Ozcan, Dover, Rosenwald, Wolfl, Johnston (bb0355) 1996; 93
Malave, Dent (bb0285) 2006; 84
Ozcan, Johnston (bb0005) 1999; 63
Johnston, Kim (bb0070) 2005; 33
Reifenberger, Freidel, Ciriacy (bb0130) 1995; 16
Davie, Edmondson, Coco, Dent (bb0295) 2003; 278
Carlson (bb0075) 1999; 2
Liang, Gaber (bb0135) 1996; 7
Schmidt, McCartney, Zhang, Tillman, Solimeo, Wolfl, Almonte, Watkins (bb0190) 1999; 19
Nath, McCartney, Schmidt (bb0390) 2003; 23
Kim (bb0160) 2009; 91
Cannon, Tatchell (bb0435) 1987; 7
Lakshmanan, Mosley, Ozcan (bb0200) 2003; 44
Jouandot, Roy, Kim (bb0470) 2011; 112
Rolland, Winderickx, Thevelein (bb0100) 2002; 2
Krampe, Stamm, Hollenberg, Boles (bb0145) 1998; 441
Desimone, Laney (bb0320) 2010; 30
Crabtree (bb0055) 1929; 23
Smith, Johnson (bb0280) 2000; 25
Hsu, Sabatini (bb0035) 2008; 134
Inoki, Zhu, Guan (bb0545) 2003; 115
Toda, Cameron, Sass, Zoller, Wigler (bb0440) 1987; 50
Schultz, Marshall-Carlson, Carlson (bb0255) 1990; 10
Moriya, Johnston (bb0215) 2004; 101
Rolland, Winderickx, Thevelein (bb0010) 2001; 26
Hedbacker, Carlson (bb0505) 2006; 5
Thevelein, de Winde (bb0420) 1999; 33
Roy, Shin, Cho, Kim (bb0335) 2013; 24
Jiang, Carlson (bb0395) 1996; 10
Ozcan, Johnston (bb0125) 1995; 15
Kim (bb0155) 2004; 334
Reifenberger, Boles, Ciriacy (bb0115) 1997; 245
Mennella, Klinkenberg, Zitomer (bb0305) 2003; 2
Kolb, Eizirik (bb0030) 2012; 8
Ozcan (bb0090) 2002; 277
Treitel, Kuchin, Carlson (bb0350) 1998; 18
Babu, Deschenes, Robinson (bb0380) 2004; 279
Towle (bb0025) 2005; 16
Maier, Volker, Boles, Fuhrmann (bb0360) 2002; 2
Roth, Feng, Chen, Davis (bb0375) 2002; 159
Kim, Brachet, Moriya, Johnston (bb0240) 2006; 5
Lagunas (bb0060) 1979; 27
Boles, Hollenberg (bb0110) 1997; 21
Hardie, Carling, Carlson (bb0495) 1998; 67
Pasula, Chakraborty, Choi, Kim (bb0225) 2010; 11
Edmondson, Smith, Roth (bb0290) 1996; 10
Ebert, Firth, Ratcliffe (bb0520) 1995; 270
Gancedo (bb0080) 1998; 62
Flick, Spielewoy, Kalashnikova, Guaderrama, Zhu, Chang, Wittenberg (bb0175) 2003; 14
Vincent, Townley, Kuchin, Carlson (bb0500) 2001; 15
Gamo, Lafuente, Gancedo (bb0230) 1994; 176
Jabet, Sprague, VanDemark, Wolberger (bb0265) 2000; 275
Thevelein, Gelade, Holsbeeks, Lagatie, Popova, Rolland, Stolz, Van de Velde, Van Dijck, Vandormael, Van Nuland, Van Roey, Van Zeebroeck, Yan (bb0430) 2005; 33
Griggs, Johnston (bb0345) 1991; 88
Shaw, Lamia, Vasquez, Koo, Bardeesy, Depinho, Montminy, Cantley (bb0535) 2005; 310
Ye, Kruckeberg, Berden, van Dam (bb0515) 1999; 181
Gibson, Boulton, Box, Graham, Lawrence, Linforth, Smart (bb0140) 2008; 25
Ozcan, Dover, Johnston (bb0365) 1998; 17
Smith, Johnson (bb0270) 2000; 97
Lutfiyya, Johnston (bb0485) 1996; 16
Sprague, Redd, Johnson, Wolberger (bb0275) 2000; 19
Broach (bb0415) 1991; 7
Sabina, Johnston (bb0245) 2009; 284
Flick (10.1016/j.bbagen.2013.07.025_bb0175) 2003; 14
Shaw (10.1016/j.bbagen.2013.07.025_bb0535) 2005; 310
Jabet (10.1016/j.bbagen.2013.07.025_bb0265) 2000; 275
Roy (10.1016/j.bbagen.2013.07.025_bb0335) 2013; 24
Ozcan (10.1016/j.bbagen.2013.07.025_bb0090) 2002; 277
Busti (10.1016/j.bbagen.2013.07.025_bb0020) 2010; 10
Panozzo (10.1016/j.bbagen.2013.07.025_bb0170) 1997; 272
Kim (10.1016/j.bbagen.2013.07.025_bb0240) 2006; 5
Smith (10.1016/j.bbagen.2013.07.025_bb0270) 2000; 97
Gamo (10.1016/j.bbagen.2013.07.025_bb0230) 1994; 176
Hanlon (10.1016/j.bbagen.2013.07.025_bb0325) 2011; 6
Thevelein (10.1016/j.bbagen.2013.07.025_bb0420) 1999; 33
Hubbard (10.1016/j.bbagen.2013.07.025_bb0185) 1994; 14
Rolland (10.1016/j.bbagen.2013.07.025_bb0425) 2000; 38
Rolland (10.1016/j.bbagen.2013.07.025_bb0100) 2002; 2
Lakshmanan (10.1016/j.bbagen.2013.07.025_bb0200) 2003; 44
Ye (10.1016/j.bbagen.2013.07.025_bb0515) 1999; 181
Mennella (10.1016/j.bbagen.2013.07.025_bb0305) 2003; 2
Cannon (10.1016/j.bbagen.2013.07.025_bb0435) 1987; 7
Malave (10.1016/j.bbagen.2013.07.025_bb0285) 2006; 84
Davie (10.1016/j.bbagen.2013.07.025_bb0295) 2003; 278
Griggs (10.1016/j.bbagen.2013.07.025_bb0345) 1991; 88
Hardie (10.1016/j.bbagen.2013.07.025_bb0495) 1998; 67
Maier (10.1016/j.bbagen.2013.07.025_bb0360) 2002; 2
Sprague (10.1016/j.bbagen.2013.07.025_bb0275) 2000; 19
Maxwell (10.1016/j.bbagen.2013.07.025_bb0530) 1999; 399
Mosley (10.1016/j.bbagen.2013.07.025_bb0180) 2003; 278
Gancedo (10.1016/j.bbagen.2013.07.025_bb0120) 2008; 32
Vander Heiden (10.1016/j.bbagen.2013.07.025_bb0040) 2009; 324
Shaw (10.1016/j.bbagen.2013.07.025_bb0550) 2006; 18
Ozcan (10.1016/j.bbagen.2013.07.025_bb0005) 1999; 63
Toda (10.1016/j.bbagen.2013.07.025_bb0440) 1987; 50
Varanasi (10.1016/j.bbagen.2013.07.025_bb0250) 1996; 16
Schultz (10.1016/j.bbagen.2013.07.025_bb0255) 1990; 10
Hong (10.1016/j.bbagen.2013.07.025_bb0385) 2003; 100
Nath (10.1016/j.bbagen.2013.07.025_bb0390) 2003; 23
Ozcan (10.1016/j.bbagen.2013.07.025_bb0365) 1998; 17
Diaz-Ruiz (10.1016/j.bbagen.2013.07.025_bb0105) 2009; 1796
Jiang (10.1016/j.bbagen.2013.07.025_bb0395) 1996; 10
Gancedo (10.1016/j.bbagen.2013.07.025_bb0080) 1998; 62
Ozcan (10.1016/j.bbagen.2013.07.025_bb0165) 1996; 16
Babu (10.1016/j.bbagen.2013.07.025_bb0380) 2004; 279
Santangelo (10.1016/j.bbagen.2013.07.025_bb0015) 2006; 70
Gibson (10.1016/j.bbagen.2013.07.025_bb0140) 2008; 25
Thevelein (10.1016/j.bbagen.2013.07.025_bb0430) 2005; 33
Lafuente (10.1016/j.bbagen.2013.07.025_bb0195) 2000; 35
Kim (10.1016/j.bbagen.2013.07.025_bb0150) 2003; 23
Wilson (10.1016/j.bbagen.2013.07.025_bb0490) 1996; 6
Broach (10.1016/j.bbagen.2013.07.025_bb0095) 2012; 192
Smith (10.1016/j.bbagen.2013.07.025_bb0280) 2000; 25
Towle (10.1016/j.bbagen.2013.07.025_bb0025) 2005; 16
Lagunas (10.1016/j.bbagen.2013.07.025_bb0060) 1979; 27
Kaniak (10.1016/j.bbagen.2013.07.025_bb0065) 2004; 3
Vincent (10.1016/j.bbagen.2013.07.025_bb0500) 2001; 15
Ozcan (10.1016/j.bbagen.2013.07.025_bb0125) 1995; 15
Kim (10.1016/j.bbagen.2013.07.025_bb0155) 2004; 334
Mandelkern (10.1016/j.bbagen.2013.07.025_bb0050) 2002; 1
Palomino (10.1016/j.bbagen.2013.07.025_bb0410) 2006; 34
Edmondson (10.1016/j.bbagen.2013.07.025_bb0290) 1996; 10
Tanaka (10.1016/j.bbagen.2013.07.025_bb0450) 1990; 60
Pasula (10.1016/j.bbagen.2013.07.025_bb0225) 2010; 11
Kuchin (10.1016/j.bbagen.2013.07.025_bb0475) 2003; 163
Wong (10.1016/j.bbagen.2013.07.025_bb0330) 2011; 25
Jouandot (10.1016/j.bbagen.2013.07.025_bb0470) 2011; 112
Versele (10.1016/j.bbagen.2013.07.025_bb0460) 1999; 18
Moriya (10.1016/j.bbagen.2013.07.025_bb0215) 2004; 101
Nehlin (10.1016/j.bbagen.2013.07.025_bb0340) 1990; 9
Sabina (10.1016/j.bbagen.2013.07.025_bb0245) 2009; 284
Buck (10.1016/j.bbagen.2013.07.025_bb0315) 2006; 38
Hedbacker (10.1016/j.bbagen.2013.07.025_bb0505) 2006; 5
Ebert (10.1016/j.bbagen.2013.07.025_bb0520) 1995; 270
Crabtree (10.1016/j.bbagen.2013.07.025_bb0055) 1929; 23
Reifenberger (10.1016/j.bbagen.2013.07.025_bb0130) 1995; 16
Meijer (10.1016/j.bbagen.2013.07.025_bb0510) 1998; 273
Desimone (10.1016/j.bbagen.2013.07.025_bb0320) 2010; 30
Lutfiyya (10.1016/j.bbagen.2013.07.025_bb0485) 1996; 16
Kim (10.1016/j.bbagen.2013.07.025_bb0160) 2009; 91
Pasula (10.1016/j.bbagen.2013.07.025_bb0220) 2007; 581
Ozcan (10.1016/j.bbagen.2013.07.025_bb0355) 1996; 93
Edelman (10.1016/j.bbagen.2013.07.025_bb0465) 1987; 56
Rolland (10.1016/j.bbagen.2013.07.025_bb0010) 2001; 26
Kolb (10.1016/j.bbagen.2013.07.025_bb0030) 2012; 8
Kim (10.1016/j.bbagen.2013.07.025_bb0405) 2006; 281
Inoki (10.1016/j.bbagen.2013.07.025_bb0545) 2003; 115
Tomas-Cobos (10.1016/j.bbagen.2013.07.025_bb0205) 2004; 279
Toda (10.1016/j.bbagen.2013.07.025_bb0445) 1985; 40
Feng (10.1016/j.bbagen.2013.07.025_bb0370) 2000; 20
Colombo (10.1016/j.bbagen.2013.07.025_bb0455) 1998; 17
Reifenberger (10.1016/j.bbagen.2013.07.025_bb0115) 1997; 245
Hsu (10.1016/j.bbagen.2013.07.025_bb0035) 2008; 134
Smith (10.1016/j.bbagen.2013.07.025_bb0260) 1995; 9
Warburg (10.1016/j.bbagen.2013.07.025_bb0045) 1956; 123
Schmidt (10.1016/j.bbagen.2013.07.025_bb0190) 1999; 19
Liang (10.1016/j.bbagen.2013.07.025_bb0135) 1996; 7
Hedbacker (10.1016/j.bbagen.2013.07.025_bb0085) 2008; 13
Carlson (10.1016/j.bbagen.2013.07.025_bb0075) 1999; 2
Johnston (10.1016/j.bbagen.2013.07.025_bb0070) 2005; 33
Polish (10.1016/j.bbagen.2013.07.025_bb0210) 2005; 169
Wang (10.1016/j.bbagen.2013.07.025_bb0525) 1995; 92
Ludin (10.1016/j.bbagen.2013.07.025_bb0400) 1998; 95
Lutfiyya (10.1016/j.bbagen.2013.07.025_bb0480) 1998; 150
Roth (10.1016/j.bbagen.2013.07.025_bb0375) 2002; 159
Treitel (10.1016/j.bbagen.2013.07.025_bb0350) 1998; 18
Proft (10.1016/j.bbagen.2013.07.025_bb0300) 2002; 9
Alessi (10.1016/j.bbagen.2013.07.025_bb0540) 2006; 75
Boles (10.1016/j.bbagen.2013.07.025_bb0110) 1997; 21
Schulte (10.1016/j.bbagen.2013.07.025_bb0235) 2000; 182
Papamichos-Chronakis (10.1016/j.bbagen.2013.07.025_bb0310) 2004; 5
Broach (10.1016/j.bbagen.2013.07.025_bb0415) 1991; 7
Krampe (10.1016/j.bbagen.2013.07.025_bb0145) 1998; 441
17981722 - Front Biosci. 2008;13:2408-20
19720826 - J Biol Chem. 2009 Oct 23;284(43):29635-43
12861007 - Mol Cell Biol. 2003 Aug;23(15):5208-16
22964838 - Genetics. 2012 Sep;192(1):73-105
16308421 - Science. 2005 Dec 9;310(5754):1642-6
15031717 - EMBO Rep. 2004 Apr;5(4):368-72
21748783 - J Cell Biochem. 2011 Nov;112(11):3268-75
9278448 - J Biol Chem. 1997 Sep 5;272(36):22859-65
12351652 - J Biol Chem. 2002 Dec 6;277(49):46993-7
17046224 - Curr Opin Cell Biol. 2006 Dec;18(6):598-608
2823100 - Mol Cell Biol. 1987 Aug;7(8):2653-63
10523302 - EMBO J. 1999 Oct 15;18(20):5577-91
12925759 - Mol Biol Cell. 2003 Aug;14(8):3230-41
8985180 - Genes Dev. 1996 Dec 15;10(24):3105-15
16524925 - Microbiol Mol Biol Rev. 2006 Mar;70(1):253-82
2167835 - EMBO J. 1990 Sep;9(9):2891-8
2201901 - Mol Cell Biol. 1990 Sep;10(9):4744-56
11069660 - Mol Microbiol. 2000 Oct;38(2):348-58
9774644 - Mol Cell Biol. 1998 Nov;18(11):6273-80
15105419 - J Biol Chem. 2004 Jun 25;279(26):27138-47
20439496 - Mol Cell Biol. 2010 Jul;30(13):3342-56
7862149 - Mol Cell Biol. 1995 Mar;15(3):1564-72
16744238 - Biochem J. 1929;23(3):536-45
22156212 - Genes Dev. 2011 Dec 1;25(23):2525-39
7651133 - Mol Microbiol. 1995 Apr;16(1):157-67
20205947 - BMC Cell Biol. 2010;11:17
15489524 - Genetics. 2005 Feb;169(2):583-94
8901598 - Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12428-32
18668645 - Yeast. 2008 Aug;25(8):549-62
14651849 - Cell. 2003 Nov 26;115(5):577-90
8943325 - Mol Cell Biol. 1996 Dec;16(12):6707-14
8939604 - Curr Biol. 1996 Nov 1;6(11):1426-34
12527758 - J Biol Chem. 2003 Mar 21;278(12):10322-7
19682552 - Biochim Biophys Acta. 2009 Dec;1796(2):252-65
14755054 - Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1572-7
16400179 - Eukaryot Cell. 2006 Jan;5(1):167-73
8675011 - Genes Dev. 1996 May 15;10(10):1247-59
9727030 - J Biol Chem. 1998 Sep 11;273(37):24102-7
16756488 - Annu Rev Biochem. 2006;75:137-63
7539918 - Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5510-4
16844691 - J Biol Chem. 2006 Sep 8;281(36):26144-9
13298683 - Science. 1956 Feb 24;123(3191):309-14
10476026 - Mol Microbiol. 1999 Sep;33(5):904-18
15667318 - Biochem Soc Trans. 2005 Feb;33(Pt 1):247-52
22219709 - Sensors (Basel). 2010;10(6):6195-240
1848378 - Trends Genet. 1991 Jan;7(1):28-33
12625770 - Technol Cancer Res Treat. 2002 Dec;1(6):423-39
10419970 - J Bacteriol. 1999 Aug;181(15):4673-5
11343924 - Trends Biochem Sci. 2001 May;26(5):310-7
14871952 - Eukaryot Cell. 2004 Feb;3(1):221-31
17071825 - Eukaryot Cell. 2006 Dec;5(12):1950-6
10871883 - Trends Biochem Sci. 2000 Jul;25(7):325-30
15494148 - Anal Biochem. 2004 Nov 15;334(2):401-2
12748292 - Mol Cell Biol. 2003 Jun;23(11):3909-17
8114728 - Mol Cell Biol. 1994 Mar;14(3):1972-8
18775299 - Cell. 2008 Sep 5;134(5):703-7
21552514 - PLoS One. 2011;6(4):e19060
14508605 - Curr Genet. 2003 Oct;44(1):19-25
2956925 - Annu Rev Biochem. 1987;56:567-613
2981630 - Cell. 1985 Jan;40(1):27-36
3036373 - Cell. 1987 Jul 17;50(2):277-87
16528100 - Nucleic Acids Res. 2006;34(5):1427-38
18559076 - FEMS Microbiol Rev. 2008 Jul;32(4):673-704
10759558 - Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):3901-6
17099712 - Nat Genet. 2006 Dec;38(12):1446-51
14525981 - J Biol Chem. 2003 Dec 12;278(50):50158-62
2178777 - Cell. 1990 Mar 9;60(5):803-7
22024974 - Nat Rev Endocrinol. 2012 Mar;8(3):183-92
10477308 - Microbiol Mol Biol Rev. 1999 Sep;63(3):554-69
10353251 - Nature. 1999 May 20;399(6733):271-5
10373505 - Mol Cell Biol. 1999 Jul;19(7):4561-71
9151960 - Eur J Biochem. 1997 Apr 15;245(2):324-33
9564039 - EMBO J. 1998 May 1;17(9):2566-73
12370247 - J Cell Biol. 2002 Oct 14;159(1):23-8
23468525 - Mol Biol Cell. 2013 May;24(9):1493-503
18950675 - Biochimie. 2009 Feb;91(2):300-3
9618445 - Microbiol Mol Biol Rev. 1998 Jun;62(2):334-61
8970157 - Mol Biol Cell. 1996 Dec;7(12):1953-66
12086627 - Mol Cell. 2002 Jun;9(6):1307-17
10856245 - EMBO J. 2000 Jun 15;19(12):3016-27
12618390 - Genetics. 2003 Feb;163(2):507-14
9891967 - FEBS Lett. 1998 Dec 28;441(3):343-7
9832517 - Genetics. 1998 Dec;150(4):1377-91
17586499 - FEBS Lett. 2007 Jul 10;581(17):3230-4
10632886 - Mol Microbiol. 2000 Jan;35(1):161-72
15667319 - Biochem Soc Trans. 2005 Feb;33(Pt 1):253-6
11331606 - Genes Dev. 2001 May 1;15(9):1104-14
14665463 - Eukaryot Cell. 2003 Dec;2(6):1288-303
7498787 - Genes Dev. 1995 Dec 1;9(23):2903-10
1924319 - Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8597-601
10629208 - J Bacteriol. 2000 Jan;182(2):540-2
9628870 - EMBO J. 1998 Jun 15;17(12):3326-41
390364 - Mol Cell Biochem. 1979 Nov 1;27(3):139-46
9759505 - Annu Rev Biochem. 1998;67:821-55
12702270 - FEMS Yeast Res. 2002 Dec;2(4):539-50
10722750 - J Biol Chem. 2000 Mar 24;275(12):9011-8
8756637 - Mol Cell Biol. 1996 Sep;16(9):4790-7
16936817 - Biochem Cell Biol. 2006 Aug;84(4):437-43
15014083 - J Biol Chem. 2004 May 21;279(21):22010-9
10866691 - Mol Cell Biol. 2000 Jul;20(14):5350-9
12847291 - Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8839-43
8002563 - J Bacteriol. 1994 Dec;176(24):7423-9
9299703 - FEMS Microbiol Rev. 1997 Aug;21(1):85-111
8887670 - Mol Cell Biol. 1996 Nov;16(11):6419-26
19460998 - Science. 2009 May 22;324(5930):1029-33
16269245 - Trends Endocrinol Metab. 2005 Dec;16(10):489-94
10322167 - Curr Opin Microbiol. 1999 Apr;2(2):202-7
9600950 - Proc Natl Acad Sci U S A. 1998 May 26;95(11):6245-50
12702307 - FEMS Yeast Res. 2002 May;2(2):183-201
7493931 - J Biol Chem. 1995 Dec 8;270(49):29083-9
References_xml – volume: 182
  start-page: 540
  year: 2000
  end-page: 542
  ident: bb0235
  article-title: The HTR1 gene is a dominant negative mutant allele of MTH1 and blocks Snf3- and Rgt2-dependent glucose signaling in yeast
  publication-title: J. Bacteriol.
– volume: 9
  start-page: 2903
  year: 1995
  end-page: 2910
  ident: bb0260
  article-title: The tetratricopeptide repeats of Ssn6 interact with the homeo domain of alpha 2
  publication-title: Genes Dev.
– volume: 56
  start-page: 567
  year: 1987
  end-page: 613
  ident: bb0465
  article-title: Protein serine/threonine kinases
  publication-title: Annu. Rev. Biochem.
– volume: 115
  start-page: 577
  year: 2003
  end-page: 590
  ident: bb0545
  article-title: TSC2 mediates cellular energy response to control cell growth and survival
  publication-title: Cell
– volume: 279
  start-page: 27138
  year: 2004
  end-page: 27147
  ident: bb0380
  article-title: Akr1p-dependent palmitoylation of Yck2p yeast casein kinase 1 is necessary and sufficient for plasma membrane targeting
  publication-title: J. Biol. Chem.
– volume: 30
  start-page: 3342
  year: 2010
  end-page: 3356
  ident: bb0320
  article-title: Corepressor-directed preacetylation of histone H3 in promoter chromatin primes rapid transcriptional switching of cell-type-specific genes in yeast
  publication-title: Mol. Cell. Biol.
– volume: 23
  start-page: 3909
  year: 2003
  end-page: 3917
  ident: bb0390
  article-title: Yeast Pak1 kinase associates with and activates Snf1
  publication-title: Mol. Cell. Biol.
– volume: 27
  start-page: 139
  year: 1979
  end-page: 146
  ident: bb0060
  article-title: Energetic irrelevance of aerobiosis for
  publication-title: Mol. Cell. Biochem.
– volume: 18
  start-page: 6273
  year: 1998
  end-page: 6280
  ident: bb0350
  article-title: Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in
  publication-title: Mol. Cell. Biol.
– volume: 159
  start-page: 23
  year: 2002
  end-page: 28
  ident: bb0375
  article-title: The yeast DHHC cysteine-rich domain protein Akr1p is a palmitoyl transferase
  publication-title: J. Cell Biol.
– volume: 2
  start-page: 183
  year: 2002
  end-page: 201
  ident: bb0100
  article-title: Glucose-sensing and -signalling mechanisms in yeast
  publication-title: FEMS Yeast Res.
– volume: 10
  start-page: 1247
  year: 1996
  end-page: 1259
  ident: bb0290
  article-title: Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4
  publication-title: Genes Dev.
– volume: 310
  start-page: 1642
  year: 2005
  end-page: 1646
  ident: bb0535
  article-title: The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin
  publication-title: Science
– volume: 1
  start-page: 423
  year: 2002
  end-page: 439
  ident: bb0050
  article-title: Positron emission tomography in cancer research and treatment
  publication-title: Technol. Cancer Res. Treat.
– volume: 10
  start-page: 4744
  year: 1990
  end-page: 4756
  ident: bb0255
  article-title: The N-terminal TPR region is the functional domain of SSN6, a nuclear phosphoprotein of
  publication-title: Mol. Cell. Biol.
– volume: 324
  start-page: 1029
  year: 2009
  end-page: 1033
  ident: bb0040
  article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation
  publication-title: Science
– volume: 14
  start-page: 1972
  year: 1994
  end-page: 1978
  ident: bb0185
  article-title: Dosage-dependent modulation of glucose repression by MSN3 (STD1) in
  publication-title: Mol. Cell. Biol.
– volume: 21
  start-page: 85
  year: 1997
  end-page: 111
  ident: bb0110
  article-title: The molecular genetics of hexose transport in yeasts
  publication-title: FEMS Microbiol. Rev.
– volume: 278
  start-page: 50158
  year: 2003
  end-page: 50162
  ident: bb0295
  article-title: Tup1–Ssn6 interacts with multiple class I histone deacetylases in vivo
  publication-title: J. Biol. Chem.
– volume: 25
  start-page: 325
  year: 2000
  end-page: 330
  ident: bb0280
  article-title: Turning genes off by Ssn6–Tup1: a conserved system of transcriptional repression in eukaryotes
  publication-title: Trends Biochem. Sci.
– volume: 92
  start-page: 5510
  year: 1995
  end-page: 5514
  ident: bb0525
  article-title: Hypoxia-inducible factor 1 is a basic-helix–loop–helix–PAS heterodimer regulated by cellular O
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 123
  start-page: 309
  year: 1956
  end-page: 314
  ident: bb0045
  article-title: On the origin of cancer cells
  publication-title: Science
– volume: 70
  start-page: 253
  year: 2006
  end-page: 282
  ident: bb0015
  article-title: Glucose signaling in
  publication-title: Microbiol. Mol. Biol. Rev.
– volume: 25
  start-page: 549
  year: 2008
  end-page: 562
  ident: bb0140
  article-title: Carbohydrate utilization and the lager yeast transcriptome during brewery fermentation
  publication-title: Yeast
– volume: 50
  start-page: 277
  year: 1987
  end-page: 287
  ident: bb0440
  article-title: Three different genes in
  publication-title: Cell
– volume: 34
  start-page: 1427
  year: 2006
  end-page: 1438
  ident: bb0410
  article-title: Tpk3 and Snf1 protein kinases regulate Rgt1 association with
  publication-title: Nucleic Acids Res.
– volume: 84
  start-page: 437
  year: 2006
  end-page: 443
  ident: bb0285
  article-title: Transcriptional repression by Tup1–Ssn6
  publication-title: Biochem. Cell Biol.
– volume: 20
  start-page: 5350
  year: 2000
  end-page: 5359
  ident: bb0370
  article-title: Akr1p and the type I casein kinases act prior to the ubiquitination step of yeast endocytosis: Akr1p is required for kinase localization to the plasma membrane
  publication-title: Mol. Cell. Biol.
– volume: 91
  start-page: 300
  year: 2009
  end-page: 303
  ident: bb0160
  article-title: DNA-binding properties of the yeast Rgt1 repressor
  publication-title: Biochimie
– volume: 245
  start-page: 324
  year: 1997
  end-page: 333
  ident: bb0115
  article-title: Kinetic characterization of individual hexose transporters of
  publication-title: Eur. J. Biochem.
– volume: 32
  start-page: 673
  year: 2008
  end-page: 704
  ident: bb0120
  article-title: The early steps of glucose signalling in yeast
  publication-title: FEMS Microbiol. Rev.
– volume: 2
  start-page: 539
  year: 2002
  end-page: 550
  ident: bb0360
  article-title: Characterisation of glucose transport in
  publication-title: FEMS Yeast Res.
– volume: 192
  start-page: 73
  year: 2012
  end-page: 105
  ident: bb0095
  article-title: Nutritional control of growth and development in yeast
  publication-title: Genetics
– volume: 273
  start-page: 24102
  year: 1998
  end-page: 24107
  ident: bb0510
  article-title: Glucose repression in
  publication-title: J. Biol. Chem.
– volume: 441
  start-page: 343
  year: 1998
  end-page: 347
  ident: bb0145
  article-title: Catabolite inactivation of the high-affinity hexose transporters Hxt6 and Hxt7 of
  publication-title: FEBS Lett.
– volume: 33
  start-page: 247
  year: 2005
  end-page: 252
  ident: bb0070
  article-title: Glucose as a hormone: receptor-mediated glucose sensing in the yeast
  publication-title: Biochem. Soc. Trans.
– volume: 176
  start-page: 7423
  year: 1994
  end-page: 7429
  ident: bb0230
  article-title: The mutation DGT1-1 decreases glucose transport and alleviates carbon catabolite repression in
  publication-title: J. Bacteriol.
– volume: 38
  start-page: 1446
  year: 2006
  end-page: 1451
  ident: bb0315
  article-title: A chromatin-mediated mechanism for specification of conditional transcription factor targets
  publication-title: Nat. Genet.
– volume: 93
  start-page: 12428
  year: 1996
  end-page: 12432
  ident: bb0355
  article-title: Two glucose transporters in
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 18
  start-page: 5577
  year: 1999
  end-page: 5591
  ident: bb0460
  article-title: A novel regulator of G protein signalling in yeast, Rgs2, downregulates glucose-activation of the cAMP pathway through direct inhibition of Gpa2
  publication-title: EMBO J.
– volume: 6
  start-page: 1426
  year: 1996
  end-page: 1434
  ident: bb0490
  article-title: Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio
  publication-title: Curr. Biol.
– volume: 88
  start-page: 8597
  year: 1991
  end-page: 8601
  ident: bb0345
  article-title: Regulated expression of the GAL4 activator gene in yeast provides a sensitive genetic switch for glucose repression
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 284
  start-page: 29635
  year: 2009
  end-page: 29643
  ident: bb0245
  article-title: Asymmetric signal transduction through paralogs that comprise a genetic switch for sugar sensing in
  publication-title: J. Biol. Chem.
– volume: 23
  start-page: 536
  year: 1929
  end-page: 545
  ident: bb0055
  article-title: Observations on the carbohydrate metabolism of tumours
  publication-title: Biochem. J.
– volume: 17
  start-page: 3326
  year: 1998
  end-page: 3341
  ident: bb0455
  article-title: Involvement of distinct G-proteins, Gpa2 and Ras, in glucose- and intracellular acidification-induced cAMP signalling in the yeast
  publication-title: EMBO J.
– volume: 10
  start-page: 6195
  year: 2010
  end-page: 6240
  ident: bb0020
  article-title: Glucose signaling-mediated coordination of cell growth and cell cycle in
  publication-title: Sensors
– volume: 3
  start-page: 221
  year: 2004
  end-page: 231
  ident: bb0065
  article-title: Regulatory network connecting two glucose signal transduction pathways in
  publication-title: Eukaryot. Cell
– volume: 270
  start-page: 29083
  year: 1995
  end-page: 29089
  ident: bb0520
  article-title: Hypoxia and mitochondrial inhibitors regulate expression of glucose transporter-1 via distinct Cis-acting sequences
  publication-title: J. Biol. Chem.
– volume: 18
  start-page: 598
  year: 2006
  end-page: 608
  ident: bb0550
  article-title: Glucose metabolism and cancer
  publication-title: Curr. Opin. Cell Biol.
– volume: 7
  start-page: 2653
  year: 1987
  end-page: 2663
  ident: bb0435
  article-title: Characterization of
  publication-title: Mol. Cell. Biol.
– volume: 8
  start-page: 183
  year: 2012
  end-page: 192
  ident: bb0030
  article-title: Resistance to type 2 diabetes mellitus: a matter of hormesis?
  publication-title: Nat. Rev. Endocrinol.
– volume: 279
  start-page: 22010
  year: 2004
  end-page: 22019
  ident: bb0205
  article-title: Expression of the HXT1 low affinity glucose transporter requires the coordinated activities of the HOG and glucose signalling pathways
  publication-title: J. Biol. Chem.
– volume: 7
  start-page: 28
  year: 1991
  end-page: 33
  ident: bb0415
  article-title: RAS genes in
  publication-title: Trends Genet.
– volume: 2
  start-page: 1288
  year: 2003
  end-page: 1303
  ident: bb0305
  article-title: Recruitment of Tup1–Ssn6 by yeast hypoxic genes and chromatin-independent exclusion of TATA binding protein
  publication-title: Eukaryot. Cell
– volume: 10
  start-page: 3105
  year: 1996
  end-page: 3115
  ident: bb0395
  article-title: Glucose regulates protein interactions within the yeast SNF1 protein kinase complex
  publication-title: Genes Dev.
– volume: 16
  start-page: 4790
  year: 1996
  end-page: 4797
  ident: bb0485
  article-title: Two zinc-finger-containing repressors are responsible for glucose repression of SUC2 expression
  publication-title: Mol. Cell. Biol.
– volume: 278
  start-page: 10322
  year: 2003
  end-page: 10327
  ident: bb0180
  article-title: Glucose-mediated phosphorylation converts the transcription factor Rgt1 from a repressor to an activator
  publication-title: J. Biol. Chem.
– volume: 17
  start-page: 2566
  year: 1998
  end-page: 2573
  ident: bb0365
  article-title: Glucose sensing and signaling by two glucose receptors in the yeast
  publication-title: EMBO J.
– volume: 75
  start-page: 137
  year: 2006
  end-page: 163
  ident: bb0540
  article-title: LKB1-dependent signaling pathways
  publication-title: Annu. Rev. Biochem.
– volume: 63
  start-page: 554
  year: 1999
  end-page: 569
  ident: bb0005
  article-title: Function and regulation of yeast hexose transporters
  publication-title: Microbiol. Mol. Biol. Rev.
– volume: 581
  start-page: 3230
  year: 2007
  end-page: 3234
  ident: bb0220
  article-title: Biochemical evidence for glucose-independent induction of HXT expression in
  publication-title: FEBS Lett.
– volume: 16
  start-page: 6707
  year: 1996
  end-page: 6714
  ident: bb0250
  article-title: The Cyc8 (Ssn6)–Tup1 corepressor complex is composed of one Cyc8 and four Tup1 subunits
  publication-title: Mol. Cell. Biol.
– volume: 272
  start-page: 22859
  year: 1997
  end-page: 22865
  ident: bb0170
  article-title: The zinc binuclear cluster activator AlcR is able to bind to single sites but requires multiple repeated sites for synergistic activation of the alcA gene in
  publication-title: J. Biol. Chem.
– volume: 6
  start-page: e19060
  year: 2011
  ident: bb0325
  article-title: The stress response factors Yap6, Cin5, Phd1, and Skn7 direct targeting of the conserved co-repressor Tup1–Ssn6 in
  publication-title: PLoS One
– volume: 33
  start-page: 253
  year: 2005
  end-page: 256
  ident: bb0430
  article-title: Nutrient sensing systems for rapid activation of the protein kinase A pathway in yeast
  publication-title: Biochem. Soc. Trans.
– volume: 15
  start-page: 1104
  year: 2001
  end-page: 1114
  ident: bb0500
  article-title: Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism
  publication-title: Genes Dev.
– volume: 150
  start-page: 1377
  year: 1998
  end-page: 1391
  ident: bb0480
  article-title: Characterization of three related glucose repressors and genes they regulate in
  publication-title: Genetics
– volume: 181
  start-page: 4673
  year: 1999
  end-page: 4675
  ident: bb0515
  article-title: Growth and glucose repression are controlled by glucose transport in
  publication-title: J. Bacteriol.
– volume: 38
  start-page: 348
  year: 2000
  end-page: 358
  ident: bb0425
  article-title: Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process
  publication-title: Mol. Microbiol.
– volume: 399
  start-page: 271
  year: 1999
  end-page: 275
  ident: bb0530
  article-title: The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis
  publication-title: Nature
– volume: 2
  start-page: 202
  year: 1999
  end-page: 207
  ident: bb0075
  article-title: Glucose repression in yeast
  publication-title: Curr. Opin. Microbiol.
– volume: 5
  start-page: 1950
  year: 2006
  end-page: 1956
  ident: bb0505
  article-title: Regulation of the nucleocytoplasmic distribution of Snf1–Gal83 protein kinase
  publication-title: Eukaryot. Cell
– volume: 33
  start-page: 904
  year: 1999
  end-page: 918
  ident: bb0420
  article-title: Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast
  publication-title: Mol. Microbiol.
– volume: 9
  start-page: 1307
  year: 2002
  end-page: 1317
  ident: bb0300
  article-title: Hog1 kinase converts the Sko1–Cyc8–Tup1 repressor complex into an activator that recruits SAGA and SWI/SNF in response to osmotic stress
  publication-title: Mol. Cell
– volume: 23
  start-page: 5208
  year: 2003
  end-page: 5216
  ident: bb0150
  article-title: Specificity and regulation of DNA binding by the yeast glucose transporter gene repressor Rgt1
  publication-title: Mol. Cell. Biol.
– volume: 67
  start-page: 821
  year: 1998
  end-page: 855
  ident: bb0495
  article-title: The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell?
  publication-title: Annu. Rev. Biochem.
– volume: 16
  start-page: 6419
  year: 1996
  end-page: 6426
  ident: bb0165
  article-title: Rgt1p of
  publication-title: Mol. Cell. Biol.
– volume: 95
  start-page: 6245
  year: 1998
  end-page: 6250
  ident: bb0400
  article-title: Glucose-regulated interaction of a regulatory subunit of protein phosphatase 1 with the Snf1 protein kinase in
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 163
  start-page: 507
  year: 2003
  end-page: 514
  ident: bb0475
  article-title: Std1p (Msn3p) positively regulates the Snf1 kinase in
  publication-title: Genetics
– volume: 40
  start-page: 27
  year: 1985
  end-page: 36
  ident: bb0445
  article-title: In yeast, RAS proteins are controlling elements of adenylate cyclase
  publication-title: Cell
– volume: 19
  start-page: 3016
  year: 2000
  end-page: 3027
  ident: bb0275
  article-title: Structure of the C-terminal domain of Tup1, a corepressor of transcription in yeast
  publication-title: EMBO J.
– volume: 9
  start-page: 2891
  year: 1990
  end-page: 2898
  ident: bb0340
  article-title: Yeast MIG1 repressor is related to the mammalian early growth response and Wilms' tumour finger proteins
  publication-title: EMBO J.
– volume: 25
  start-page: 2525
  year: 2011
  end-page: 2539
  ident: bb0330
  article-title: The Cyc8–Tup1 complex inhibits transcription primarily by masking the activation domain of the recruiting protein
  publication-title: Genes Dev.
– volume: 7
  start-page: 1953
  year: 1996
  end-page: 1966
  ident: bb0135
  article-title: A novel signal transduction pathway in
  publication-title: Mol. Biol. Cell
– volume: 1796
  start-page: 252
  year: 2009
  end-page: 265
  ident: bb0105
  article-title: Tumor cell energy metabolism and its common features with yeast metabolism
  publication-title: Biochim. Biophys. Acta
– volume: 19
  start-page: 4561
  year: 1999
  end-page: 4571
  ident: bb0190
  article-title: Std1 and Mth1 proteins interact with the glucose sensors to control glucose-regulated gene expression in
  publication-title: Mol. Cell. Biol.
– volume: 14
  start-page: 3230
  year: 2003
  end-page: 3241
  ident: bb0175
  article-title: Grr1-dependent inactivation of Mth1 mediates glucose-induced dissociation of Rgt1 from HXT gene promoters
  publication-title: Mol. Biol. Cell
– volume: 44
  start-page: 19
  year: 2003
  end-page: 25
  ident: bb0200
  article-title: Repression of transcription by Rgt1 in the absence of glucose requires Std1 and Mth1
  publication-title: Curr. Genet.
– volume: 13
  start-page: 2408
  year: 2008
  end-page: 2420
  ident: bb0085
  article-title: SNF1/AMPK pathways in yeast
  publication-title: Front. Biosci.
– volume: 275
  start-page: 9011
  year: 2000
  end-page: 9018
  ident: bb0265
  article-title: Characterization of the N-terminal domain of the yeast transcriptional repressor Tup1. Proposal for an association model of the repressor complex Tup1
  publication-title: J. Biol. Chem.
– volume: 334
  start-page: 401
  year: 2004
  end-page: 402
  ident: bb0155
  article-title: Immobilized DNA-binding assay, an approach for in vitro DNA-binding assay
  publication-title: Anal. Biochem.
– volume: 100
  start-page: 8839
  year: 2003
  end-page: 8843
  ident: bb0385
  article-title: Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 277
  start-page: 46993
  year: 2002
  end-page: 46997
  ident: bb0090
  article-title: Two different signals regulate repression and induction of gene expression by glucose
  publication-title: J. Biol. Chem.
– volume: 97
  start-page: 3901
  year: 2000
  end-page: 3906
  ident: bb0270
  article-title: A sequence resembling a peroxisomal targeting sequence directs the interaction between the tetratricopeptide repeats of Ssn6 and the homeodomain of alpha 2
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 60
  start-page: 803
  year: 1990
  end-page: 807
  ident: bb0450
  article-title: genes IRA1 and IRA2 encode proteins that may be functionally equivalent to mammalian ras GTPase activating protein
  publication-title: Cell
– volume: 101
  start-page: 1572
  year: 2004
  end-page: 1577
  ident: bb0215
  article-title: Glucose sensing and signaling in
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 112
  start-page: 3268
  year: 2011
  end-page: 3275
  ident: bb0470
  article-title: Functional dissection of the glucose signaling pathways that regulate the yeast glucose transporter gene (HXT) repressor Rgt1
  publication-title: J. Cell. Biochem.
– volume: 16
  start-page: 157
  year: 1995
  end-page: 167
  ident: bb0130
  article-title: Identification of novel HXT genes in
  publication-title: Mol. Microbiol.
– volume: 26
  start-page: 310
  year: 2001
  end-page: 317
  ident: bb0010
  article-title: Glucose-sensing mechanisms in eukaryotic cells
  publication-title: Trends Biochem. Sci.
– volume: 11
  year: 2010
  ident: bb0225
  article-title: Role of casein kinase 1 in the glucose sensor-mediated signaling pathway in yeast
  publication-title: BMC Cell Biol.
– volume: 62
  start-page: 334
  year: 1998
  end-page: 361
  ident: bb0080
  article-title: Yeast carbon catabolite repression
  publication-title: Microbiol. Mol. Biol. Rev.
– volume: 5
  start-page: 167
  year: 2006
  end-page: 173
  ident: bb0240
  article-title: Integration of transcriptional and posttranslational regulation in a glucose signal transduction pathway in
  publication-title: Eukaryot. Cell
– volume: 15
  start-page: 1564
  year: 1995
  end-page: 1572
  ident: bb0125
  article-title: Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose
  publication-title: Mol. Cell. Biol.
– volume: 169
  start-page: 583
  year: 2005
  end-page: 594
  ident: bb0210
  article-title: How the Rgt1 transcription factor of
  publication-title: Genetics
– volume: 16
  start-page: 489
  year: 2005
  end-page: 494
  ident: bb0025
  article-title: Glucose as a regulator of eukaryotic gene transcription
  publication-title: Trends Endocrinol. Metab.
– volume: 5
  start-page: 368
  year: 2004
  end-page: 372
  ident: bb0310
  article-title: The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8–Tup1 co-repressor
  publication-title: EMBO Rep.
– volume: 281
  start-page: 26144
  year: 2006
  end-page: 26149
  ident: bb0405
  article-title: Two glucose-sensing pathways converge on Rgt1 to regulate expression of glucose transporter genes in
  publication-title: J. Biol. Chem.
– volume: 24
  start-page: 1493
  year: 2013
  end-page: 1503
  ident: bb0335
  article-title: Mth1 regulates the interaction between the Rgt1 repressor and the Ssn6–Tup1 corepressor complex by modulating PKA-dependent phosphorylation of Rgt1
  publication-title: Mol. Biol. Cell
– volume: 35
  start-page: 161
  year: 2000
  end-page: 172
  ident: bb0195
  article-title: Mth1 receives the signal given by the glucose sensors Snf3 and Rgt2 in
  publication-title: Mol. Microbiol.
– volume: 134
  start-page: 703
  year: 2008
  end-page: 707
  ident: bb0035
  article-title: Cancer cell metabolism: Warburg and beyond
  publication-title: Cell
– volume: 273
  start-page: 24102
  year: 1998
  ident: 10.1016/j.bbagen.2013.07.025_bb0510
  article-title: Glucose repression in Saccharomyces cerevisiae is related to the glucose concentration rather than the glucose flux
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.37.24102
– volume: 8
  start-page: 183
  year: 2012
  ident: 10.1016/j.bbagen.2013.07.025_bb0030
  article-title: Resistance to type 2 diabetes mellitus: a matter of hormesis?
  publication-title: Nat. Rev. Endocrinol.
  doi: 10.1038/nrendo.2011.158
– volume: 18
  start-page: 6273
  year: 1998
  ident: 10.1016/j.bbagen.2013.07.025_bb0350
  article-title: Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.18.11.6273
– volume: 23
  start-page: 536
  year: 1929
  ident: 10.1016/j.bbagen.2013.07.025_bb0055
  article-title: Observations on the carbohydrate metabolism of tumours
  publication-title: Biochem. J.
  doi: 10.1042/bj0230536
– volume: 23
  start-page: 5208
  year: 2003
  ident: 10.1016/j.bbagen.2013.07.025_bb0150
  article-title: Specificity and regulation of DNA binding by the yeast glucose transporter gene repressor Rgt1
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.23.15.5208-5216.2003
– volume: 23
  start-page: 3909
  year: 2003
  ident: 10.1016/j.bbagen.2013.07.025_bb0390
  article-title: Yeast Pak1 kinase associates with and activates Snf1
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.23.11.3909-3917.2003
– volume: 84
  start-page: 437
  year: 2006
  ident: 10.1016/j.bbagen.2013.07.025_bb0285
  article-title: Transcriptional repression by Tup1–Ssn6
  publication-title: Biochem. Cell Biol.
– volume: 16
  start-page: 489
  year: 2005
  ident: 10.1016/j.bbagen.2013.07.025_bb0025
  article-title: Glucose as a regulator of eukaryotic gene transcription
  publication-title: Trends Endocrinol. Metab.
  doi: 10.1016/j.tem.2005.10.003
– volume: 2
  start-page: 183
  year: 2002
  ident: 10.1016/j.bbagen.2013.07.025_bb0100
  article-title: Glucose-sensing and -signalling mechanisms in yeast
  publication-title: FEMS Yeast Res.
  doi: 10.1111/j.1567-1364.2002.tb00084.x
– volume: 279
  start-page: 22010
  year: 2004
  ident: 10.1016/j.bbagen.2013.07.025_bb0205
  article-title: Expression of the HXT1 low affinity glucose transporter requires the coordinated activities of the HOG and glucose signalling pathways
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M400609200
– volume: 334
  start-page: 401
  year: 2004
  ident: 10.1016/j.bbagen.2013.07.025_bb0155
  article-title: Immobilized DNA-binding assay, an approach for in vitro DNA-binding assay
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2004.06.045
– volume: 123
  start-page: 309
  year: 1956
  ident: 10.1016/j.bbagen.2013.07.025_bb0045
  article-title: On the origin of cancer cells
  publication-title: Science
  doi: 10.1126/science.123.3191.309
– volume: 9
  start-page: 2891
  year: 1990
  ident: 10.1016/j.bbagen.2013.07.025_bb0340
  article-title: Yeast MIG1 repressor is related to the mammalian early growth response and Wilms' tumour finger proteins
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1990.tb07479.x
– volume: 281
  start-page: 26144
  year: 2006
  ident: 10.1016/j.bbagen.2013.07.025_bb0405
  article-title: Two glucose-sensing pathways converge on Rgt1 to regulate expression of glucose transporter genes in Saccharomyces cerevisiae
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M603636200
– volume: 16
  start-page: 6419
  year: 1996
  ident: 10.1016/j.bbagen.2013.07.025_bb0165
  article-title: Rgt1p of Saccharomyces cerevisiae, a key regulator of glucose-induced genes, is both an activator and a repressor of transcription
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.16.11.6419
– volume: 19
  start-page: 4561
  year: 1999
  ident: 10.1016/j.bbagen.2013.07.025_bb0190
  article-title: Std1 and Mth1 proteins interact with the glucose sensors to control glucose-regulated gene expression in Saccharomyces cerevisiae
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.19.7.4561
– volume: 245
  start-page: 324
  year: 1997
  ident: 10.1016/j.bbagen.2013.07.025_bb0115
  article-title: Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1997.00324.x
– volume: 278
  start-page: 50158
  year: 2003
  ident: 10.1016/j.bbagen.2013.07.025_bb0295
  article-title: Tup1–Ssn6 interacts with multiple class I histone deacetylases in vivo
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M309753200
– volume: 91
  start-page: 300
  year: 2009
  ident: 10.1016/j.bbagen.2013.07.025_bb0160
  article-title: DNA-binding properties of the yeast Rgt1 repressor
  publication-title: Biochimie
  doi: 10.1016/j.biochi.2008.09.002
– volume: 17
  start-page: 3326
  year: 1998
  ident: 10.1016/j.bbagen.2013.07.025_bb0455
  article-title: Involvement of distinct G-proteins, Gpa2 and Ras, in glucose- and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae
  publication-title: EMBO J.
  doi: 10.1093/emboj/17.12.3326
– volume: 88
  start-page: 8597
  year: 1991
  ident: 10.1016/j.bbagen.2013.07.025_bb0345
  article-title: Regulated expression of the GAL4 activator gene in yeast provides a sensitive genetic switch for glucose repression
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.88.19.8597
– volume: 17
  start-page: 2566
  year: 1998
  ident: 10.1016/j.bbagen.2013.07.025_bb0365
  article-title: Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae
  publication-title: EMBO J.
  doi: 10.1093/emboj/17.9.2566
– volume: 324
  start-page: 1029
  year: 2009
  ident: 10.1016/j.bbagen.2013.07.025_bb0040
  article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation
  publication-title: Science
  doi: 10.1126/science.1160809
– volume: 272
  start-page: 22859
  year: 1997
  ident: 10.1016/j.bbagen.2013.07.025_bb0170
  article-title: The zinc binuclear cluster activator AlcR is able to bind to single sites but requires multiple repeated sites for synergistic activation of the alcA gene in Aspergillus nidulans
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.36.22859
– volume: 6
  start-page: e19060
  year: 2011
  ident: 10.1016/j.bbagen.2013.07.025_bb0325
  article-title: The stress response factors Yap6, Cin5, Phd1, and Skn7 direct targeting of the conserved co-repressor Tup1–Ssn6 in S. cerevisiae
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0019060
– volume: 284
  start-page: 29635
  year: 2009
  ident: 10.1016/j.bbagen.2013.07.025_bb0245
  article-title: Asymmetric signal transduction through paralogs that comprise a genetic switch for sugar sensing in Saccharomyces cerevisiae
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.032102
– volume: 38
  start-page: 348
  year: 2000
  ident: 10.1016/j.bbagen.2013.07.025_bb0425
  article-title: Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2000.02125.x
– volume: 95
  start-page: 6245
  year: 1998
  ident: 10.1016/j.bbagen.2013.07.025_bb0400
  article-title: Glucose-regulated interaction of a regulatory subunit of protein phosphatase 1 with the Snf1 protein kinase in Saccharomyces cerevisiae
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.95.11.6245
– volume: 18
  start-page: 5577
  year: 1999
  ident: 10.1016/j.bbagen.2013.07.025_bb0460
  article-title: A novel regulator of G protein signalling in yeast, Rgs2, downregulates glucose-activation of the cAMP pathway through direct inhibition of Gpa2
  publication-title: EMBO J.
  doi: 10.1093/emboj/18.20.5577
– volume: 9
  start-page: 1307
  year: 2002
  ident: 10.1016/j.bbagen.2013.07.025_bb0300
  article-title: Hog1 kinase converts the Sko1–Cyc8–Tup1 repressor complex into an activator that recruits SAGA and SWI/SNF in response to osmotic stress
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(02)00557-9
– volume: 34
  start-page: 1427
  year: 2006
  ident: 10.1016/j.bbagen.2013.07.025_bb0410
  article-title: Tpk3 and Snf1 protein kinases regulate Rgt1 association with Saccharomyces cerevisiae HXK2 promoter
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl028
– volume: 3
  start-page: 221
  year: 2004
  ident: 10.1016/j.bbagen.2013.07.025_bb0065
  article-title: Regulatory network connecting two glucose signal transduction pathways in Saccharomyces cerevisiae
  publication-title: Eukaryot. Cell
  doi: 10.1128/EC.3.1.221-231.2004
– volume: 7
  start-page: 2653
  year: 1987
  ident: 10.1016/j.bbagen.2013.07.025_bb0435
  article-title: Characterization of Saccharomyces cerevisiae genes encoding subunits of cyclic AMP-dependent protein kinase
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.7.8.2653
– volume: 14
  start-page: 3230
  year: 2003
  ident: 10.1016/j.bbagen.2013.07.025_bb0175
  article-title: Grr1-dependent inactivation of Mth1 mediates glucose-induced dissociation of Rgt1 from HXT gene promoters
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E03-03-0135
– volume: 5
  start-page: 167
  year: 2006
  ident: 10.1016/j.bbagen.2013.07.025_bb0240
  article-title: Integration of transcriptional and posttranslational regulation in a glucose signal transduction pathway in Saccharomyces cerevisiae
  publication-title: Eukaryot. Cell
  doi: 10.1128/EC.5.1.167-173.2006
– volume: 33
  start-page: 247
  year: 2005
  ident: 10.1016/j.bbagen.2013.07.025_bb0070
  article-title: Glucose as a hormone: receptor-mediated glucose sensing in the yeast Saccharomyces cerevisiae
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST0330247
– volume: 60
  start-page: 803
  year: 1990
  ident: 10.1016/j.bbagen.2013.07.025_bb0450
  article-title: S. cerevisiae genes IRA1 and IRA2 encode proteins that may be functionally equivalent to mammalian ras GTPase activating protein
  publication-title: Cell
  doi: 10.1016/0092-8674(90)90094-U
– volume: 50
  start-page: 277
  year: 1987
  ident: 10.1016/j.bbagen.2013.07.025_bb0440
  article-title: Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase
  publication-title: Cell
  doi: 10.1016/0092-8674(87)90223-6
– volume: 14
  start-page: 1972
  year: 1994
  ident: 10.1016/j.bbagen.2013.07.025_bb0185
  article-title: Dosage-dependent modulation of glucose repression by MSN3 (STD1) in Saccharomyces cerevisiae
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.14.3.1972
– volume: 181
  start-page: 4673
  year: 1999
  ident: 10.1016/j.bbagen.2013.07.025_bb0515
  article-title: Growth and glucose repression are controlled by glucose transport in Saccharomyces cerevisiae cells containing only one glucose transporter
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.181.15.4673-4675.1999
– volume: 24
  start-page: 1493
  year: 2013
  ident: 10.1016/j.bbagen.2013.07.025_bb0335
  article-title: Mth1 regulates the interaction between the Rgt1 repressor and the Ssn6–Tup1 corepressor complex by modulating PKA-dependent phosphorylation of Rgt1
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E13-01-0047
– volume: 277
  start-page: 46993
  year: 2002
  ident: 10.1016/j.bbagen.2013.07.025_bb0090
  article-title: Two different signals regulate repression and induction of gene expression by glucose
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M208726200
– volume: 182
  start-page: 540
  year: 2000
  ident: 10.1016/j.bbagen.2013.07.025_bb0235
  article-title: The HTR1 gene is a dominant negative mutant allele of MTH1 and blocks Snf3- and Rgt2-dependent glucose signaling in yeast
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.182.2.540-542.2000
– volume: 10
  start-page: 1247
  year: 1996
  ident: 10.1016/j.bbagen.2013.07.025_bb0290
  article-title: Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4
  publication-title: Genes Dev.
  doi: 10.1101/gad.10.10.1247
– volume: 70
  start-page: 253
  year: 2006
  ident: 10.1016/j.bbagen.2013.07.025_bb0015
  article-title: Glucose signaling in Saccharomyces cerevisiae
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.70.1.253-282.2006
– volume: 67
  start-page: 821
  year: 1998
  ident: 10.1016/j.bbagen.2013.07.025_bb0495
  article-title: The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell?
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.67.1.821
– volume: 62
  start-page: 334
  year: 1998
  ident: 10.1016/j.bbagen.2013.07.025_bb0080
  article-title: Yeast carbon catabolite repression
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.62.2.334-361.1998
– volume: 7
  start-page: 28
  year: 1991
  ident: 10.1016/j.bbagen.2013.07.025_bb0415
  article-title: RAS genes in Saccharomyces cerevisiae: signal transduction in search of a pathway
  publication-title: Trends Genet.
  doi: 10.1016/0168-9525(91)90018-L
– volume: 1796
  start-page: 252
  year: 2009
  ident: 10.1016/j.bbagen.2013.07.025_bb0105
  article-title: Tumor cell energy metabolism and its common features with yeast metabolism
  publication-title: Biochim. Biophys. Acta
– volume: 1
  start-page: 423
  year: 2002
  ident: 10.1016/j.bbagen.2013.07.025_bb0050
  article-title: Positron emission tomography in cancer research and treatment
  publication-title: Technol. Cancer Res. Treat.
  doi: 10.1177/153303460200100603
– volume: 11
  issue: 17
  year: 2010
  ident: 10.1016/j.bbagen.2013.07.025_bb0225
  article-title: Role of casein kinase 1 in the glucose sensor-mediated signaling pathway in yeast
  publication-title: BMC Cell Biol.
– volume: 16
  start-page: 157
  year: 1995
  ident: 10.1016/j.bbagen.2013.07.025_bb0130
  article-title: Identification of novel HXT genes in Saccharomyces cerevisiae reveals the impact of individual hexose transporters on glycolytic flux
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.1995.tb02400.x
– volume: 27
  start-page: 139
  year: 1979
  ident: 10.1016/j.bbagen.2013.07.025_bb0060
  article-title: Energetic irrelevance of aerobiosis for S. cerevisiae growing on sugars
  publication-title: Mol. Cell. Biochem.
  doi: 10.1007/BF00215362
– volume: 40
  start-page: 27
  year: 1985
  ident: 10.1016/j.bbagen.2013.07.025_bb0445
  article-title: In yeast, RAS proteins are controlling elements of adenylate cyclase
  publication-title: Cell
  doi: 10.1016/0092-8674(85)90305-8
– volume: 159
  start-page: 23
  year: 2002
  ident: 10.1016/j.bbagen.2013.07.025_bb0375
  article-title: The yeast DHHC cysteine-rich domain protein Akr1p is a palmitoyl transferase
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200206120
– volume: 26
  start-page: 310
  year: 2001
  ident: 10.1016/j.bbagen.2013.07.025_bb0010
  article-title: Glucose-sensing mechanisms in eukaryotic cells
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/S0968-0004(01)01805-9
– volume: 7
  start-page: 1953
  year: 1996
  ident: 10.1016/j.bbagen.2013.07.025_bb0135
  article-title: A novel signal transduction pathway in Saccharomyces cerevisiae defined by Snf3-regulated expression of HXT6
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.7.12.1953
– volume: 15
  start-page: 1564
  year: 1995
  ident: 10.1016/j.bbagen.2013.07.025_bb0125
  article-title: Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.15.3.1564
– volume: 176
  start-page: 7423
  year: 1994
  ident: 10.1016/j.bbagen.2013.07.025_bb0230
  article-title: The mutation DGT1-1 decreases glucose transport and alleviates carbon catabolite repression in Saccharomyces cerevisiae
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.176.24.7423-7429.1994
– volume: 101
  start-page: 1572
  year: 2004
  ident: 10.1016/j.bbagen.2013.07.025_bb0215
  article-title: Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0305901101
– volume: 25
  start-page: 549
  year: 2008
  ident: 10.1016/j.bbagen.2013.07.025_bb0140
  article-title: Carbohydrate utilization and the lager yeast transcriptome during brewery fermentation
  publication-title: Yeast
  doi: 10.1002/yea.1609
– volume: 30
  start-page: 3342
  year: 2010
  ident: 10.1016/j.bbagen.2013.07.025_bb0320
  article-title: Corepressor-directed preacetylation of histone H3 in promoter chromatin primes rapid transcriptional switching of cell-type-specific genes in yeast
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01450-09
– volume: 35
  start-page: 161
  year: 2000
  ident: 10.1016/j.bbagen.2013.07.025_bb0195
  article-title: Mth1 receives the signal given by the glucose sensors Snf3 and Rgt2 in Saccharomyces cerevisiae
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2000.01688.x
– volume: 18
  start-page: 598
  year: 2006
  ident: 10.1016/j.bbagen.2013.07.025_bb0550
  article-title: Glucose metabolism and cancer
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2006.10.005
– volume: 10
  start-page: 6195
  year: 2010
  ident: 10.1016/j.bbagen.2013.07.025_bb0020
  article-title: Glucose signaling-mediated coordination of cell growth and cell cycle in Saccharomyces cerevisiae
  publication-title: Sensors
  doi: 10.3390/s100606195
– volume: 33
  start-page: 904
  year: 1999
  ident: 10.1016/j.bbagen.2013.07.025_bb0420
  article-title: Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.1999.01538.x
– volume: 93
  start-page: 12428
  year: 1996
  ident: 10.1016/j.bbagen.2013.07.025_bb0355
  article-title: Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.93.22.12428
– volume: 2
  start-page: 202
  year: 1999
  ident: 10.1016/j.bbagen.2013.07.025_bb0075
  article-title: Glucose repression in yeast
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/S1369-5274(99)80035-6
– volume: 6
  start-page: 1426
  year: 1996
  ident: 10.1016/j.bbagen.2013.07.025_bb0490
  article-title: Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(96)00747-6
– volume: 9
  start-page: 2903
  year: 1995
  ident: 10.1016/j.bbagen.2013.07.025_bb0260
  article-title: The tetratricopeptide repeats of Ssn6 interact with the homeo domain of alpha 2
  publication-title: Genes Dev.
  doi: 10.1101/gad.9.23.2903
– volume: 75
  start-page: 137
  year: 2006
  ident: 10.1016/j.bbagen.2013.07.025_bb0540
  article-title: LKB1-dependent signaling pathways
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.75.103004.142702
– volume: 32
  start-page: 673
  year: 2008
  ident: 10.1016/j.bbagen.2013.07.025_bb0120
  article-title: The early steps of glucose signalling in yeast
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-6976.2008.00117.x
– volume: 275
  start-page: 9011
  year: 2000
  ident: 10.1016/j.bbagen.2013.07.025_bb0265
  article-title: Characterization of the N-terminal domain of the yeast transcriptional repressor Tup1. Proposal for an association model of the repressor complex Tup1×Ssn6
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.275.12.9011
– volume: 10
  start-page: 3105
  year: 1996
  ident: 10.1016/j.bbagen.2013.07.025_bb0395
  article-title: Glucose regulates protein interactions within the yeast SNF1 protein kinase complex
  publication-title: Genes Dev.
  doi: 10.1101/gad.10.24.3105
– volume: 33
  start-page: 253
  year: 2005
  ident: 10.1016/j.bbagen.2013.07.025_bb0430
  article-title: Nutrient sensing systems for rapid activation of the protein kinase A pathway in yeast
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST0330253
– volume: 5
  start-page: 368
  year: 2004
  ident: 10.1016/j.bbagen.2013.07.025_bb0310
  article-title: The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8–Tup1 co-repressor
  publication-title: EMBO Rep.
  doi: 10.1038/sj.embor.7400120
– volume: 25
  start-page: 2525
  year: 2011
  ident: 10.1016/j.bbagen.2013.07.025_bb0330
  article-title: The Cyc8–Tup1 complex inhibits transcription primarily by masking the activation domain of the recruiting protein
  publication-title: Genes Dev.
  doi: 10.1101/gad.179275.111
– volume: 310
  start-page: 1642
  year: 2005
  ident: 10.1016/j.bbagen.2013.07.025_bb0535
  article-title: The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin
  publication-title: Science
  doi: 10.1126/science.1120781
– volume: 134
  start-page: 703
  year: 2008
  ident: 10.1016/j.bbagen.2013.07.025_bb0035
  article-title: Cancer cell metabolism: Warburg and beyond
  publication-title: Cell
  doi: 10.1016/j.cell.2008.08.021
– volume: 399
  start-page: 271
  year: 1999
  ident: 10.1016/j.bbagen.2013.07.025_bb0530
  article-title: The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis
  publication-title: Nature
  doi: 10.1038/20459
– volume: 270
  start-page: 29083
  year: 1995
  ident: 10.1016/j.bbagen.2013.07.025_bb0520
  article-title: Hypoxia and mitochondrial inhibitors regulate expression of glucose transporter-1 via distinct Cis-acting sequences
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.270.49.29083
– volume: 441
  start-page: 343
  year: 1998
  ident: 10.1016/j.bbagen.2013.07.025_bb0145
  article-title: Catabolite inactivation of the high-affinity hexose transporters Hxt6 and Hxt7 of Saccharomyces cerevisiae occurs in the vacuole after internalization by endocytosis
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(98)01583-X
– volume: 2
  start-page: 539
  year: 2002
  ident: 10.1016/j.bbagen.2013.07.025_bb0360
  article-title: Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters
  publication-title: FEMS Yeast Res.
– volume: 38
  start-page: 1446
  year: 2006
  ident: 10.1016/j.bbagen.2013.07.025_bb0315
  article-title: A chromatin-mediated mechanism for specification of conditional transcription factor targets
  publication-title: Nat. Genet.
  doi: 10.1038/ng1917
– volume: 2
  start-page: 1288
  year: 2003
  ident: 10.1016/j.bbagen.2013.07.025_bb0305
  article-title: Recruitment of Tup1–Ssn6 by yeast hypoxic genes and chromatin-independent exclusion of TATA binding protein
  publication-title: Eukaryot. Cell
  doi: 10.1128/EC.2.6.1288-1303.2003
– volume: 16
  start-page: 6707
  year: 1996
  ident: 10.1016/j.bbagen.2013.07.025_bb0250
  article-title: The Cyc8 (Ssn6)–Tup1 corepressor complex is composed of one Cyc8 and four Tup1 subunits
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.16.12.6707
– volume: 112
  start-page: 3268
  year: 2011
  ident: 10.1016/j.bbagen.2013.07.025_bb0470
  article-title: Functional dissection of the glucose signaling pathways that regulate the yeast glucose transporter gene (HXT) repressor Rgt1
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.23253
– volume: 169
  start-page: 583
  year: 2005
  ident: 10.1016/j.bbagen.2013.07.025_bb0210
  article-title: How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose
  publication-title: Genetics
  doi: 10.1534/genetics.104.034512
– volume: 581
  start-page: 3230
  year: 2007
  ident: 10.1016/j.bbagen.2013.07.025_bb0220
  article-title: Biochemical evidence for glucose-independent induction of HXT expression in Saccharomyces cerevisiae
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2007.06.013
– volume: 5
  start-page: 1950
  year: 2006
  ident: 10.1016/j.bbagen.2013.07.025_bb0505
  article-title: Regulation of the nucleocytoplasmic distribution of Snf1–Gal83 protein kinase
  publication-title: Eukaryot. Cell
  doi: 10.1128/EC.00256-06
– volume: 163
  start-page: 507
  year: 2003
  ident: 10.1016/j.bbagen.2013.07.025_bb0475
  article-title: Std1p (Msn3p) positively regulates the Snf1 kinase in Saccharomyces cerevisiae
  publication-title: Genetics
  doi: 10.1093/genetics/163.2.507
– volume: 278
  start-page: 10322
  year: 2003
  ident: 10.1016/j.bbagen.2013.07.025_bb0180
  article-title: Glucose-mediated phosphorylation converts the transcription factor Rgt1 from a repressor to an activator
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M212802200
– volume: 25
  start-page: 325
  year: 2000
  ident: 10.1016/j.bbagen.2013.07.025_bb0280
  article-title: Turning genes off by Ssn6–Tup1: a conserved system of transcriptional repression in eukaryotes
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/S0968-0004(00)01592-9
– volume: 44
  start-page: 19
  year: 2003
  ident: 10.1016/j.bbagen.2013.07.025_bb0200
  article-title: Repression of transcription by Rgt1 in the absence of glucose requires Std1 and Mth1
  publication-title: Curr. Genet.
  doi: 10.1007/s00294-003-0423-2
– volume: 56
  start-page: 567
  year: 1987
  ident: 10.1016/j.bbagen.2013.07.025_bb0465
  article-title: Protein serine/threonine kinases
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.bi.56.070187.003031
– volume: 16
  start-page: 4790
  year: 1996
  ident: 10.1016/j.bbagen.2013.07.025_bb0485
  article-title: Two zinc-finger-containing repressors are responsible for glucose repression of SUC2 expression
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.16.9.4790
– volume: 13
  start-page: 2408
  year: 2008
  ident: 10.1016/j.bbagen.2013.07.025_bb0085
  article-title: SNF1/AMPK pathways in yeast
  publication-title: Front. Biosci.
  doi: 10.2741/2854
– volume: 92
  start-page: 5510
  year: 1995
  ident: 10.1016/j.bbagen.2013.07.025_bb0525
  article-title: Hypoxia-inducible factor 1 is a basic-helix–loop–helix–PAS heterodimer regulated by cellular O2 tension
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.92.12.5510
– volume: 15
  start-page: 1104
  year: 2001
  ident: 10.1016/j.bbagen.2013.07.025_bb0500
  article-title: Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism
  publication-title: Genes Dev.
  doi: 10.1101/gad.879301
– volume: 150
  start-page: 1377
  year: 1998
  ident: 10.1016/j.bbagen.2013.07.025_bb0480
  article-title: Characterization of three related glucose repressors and genes they regulate in Saccharomyces cerevisiae
  publication-title: Genetics
  doi: 10.1093/genetics/150.4.1377
– volume: 100
  start-page: 8839
  year: 2003
  ident: 10.1016/j.bbagen.2013.07.025_bb0385
  article-title: Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1533136100
– volume: 21
  start-page: 85
  year: 1997
  ident: 10.1016/j.bbagen.2013.07.025_bb0110
  article-title: The molecular genetics of hexose transport in yeasts
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1111/j.1574-6976.1997.tb00346.x
– volume: 192
  start-page: 73
  year: 2012
  ident: 10.1016/j.bbagen.2013.07.025_bb0095
  article-title: Nutritional control of growth and development in yeast
  publication-title: Genetics
  doi: 10.1534/genetics.111.135731
– volume: 20
  start-page: 5350
  year: 2000
  ident: 10.1016/j.bbagen.2013.07.025_bb0370
  article-title: Akr1p and the type I casein kinases act prior to the ubiquitination step of yeast endocytosis: Akr1p is required for kinase localization to the plasma membrane
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.20.14.5350-5359.2000
– volume: 19
  start-page: 3016
  year: 2000
  ident: 10.1016/j.bbagen.2013.07.025_bb0275
  article-title: Structure of the C-terminal domain of Tup1, a corepressor of transcription in yeast
  publication-title: EMBO J.
  doi: 10.1093/emboj/19.12.3016
– volume: 10
  start-page: 4744
  year: 1990
  ident: 10.1016/j.bbagen.2013.07.025_bb0255
  article-title: The N-terminal TPR region is the functional domain of SSN6, a nuclear phosphoprotein of Saccharomyces cerevisiae
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.10.9.4744
– volume: 279
  start-page: 27138
  year: 2004
  ident: 10.1016/j.bbagen.2013.07.025_bb0380
  article-title: Akr1p-dependent palmitoylation of Yck2p yeast casein kinase 1 is necessary and sufficient for plasma membrane targeting
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M403071200
– volume: 63
  start-page: 554
  year: 1999
  ident: 10.1016/j.bbagen.2013.07.025_bb0005
  article-title: Function and regulation of yeast hexose transporters
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.63.3.554-569.1999
– volume: 115
  start-page: 577
  year: 2003
  ident: 10.1016/j.bbagen.2013.07.025_bb0545
  article-title: TSC2 mediates cellular energy response to control cell growth and survival
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00929-2
– volume: 97
  start-page: 3901
  year: 2000
  ident: 10.1016/j.bbagen.2013.07.025_bb0270
  article-title: A sequence resembling a peroxisomal targeting sequence directs the interaction between the tetratricopeptide repeats of Ssn6 and the homeodomain of alpha 2
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.070506797
– reference: 14651849 - Cell. 2003 Nov 26;115(5):577-90
– reference: 10419970 - J Bacteriol. 1999 Aug;181(15):4673-5
– reference: 15667319 - Biochem Soc Trans. 2005 Feb;33(Pt 1):253-6
– reference: 18668645 - Yeast. 2008 Aug;25(8):549-62
– reference: 21552514 - PLoS One. 2011;6(4):e19060
– reference: 1848378 - Trends Genet. 1991 Jan;7(1):28-33
– reference: 22964838 - Genetics. 2012 Sep;192(1):73-105
– reference: 9618445 - Microbiol Mol Biol Rev. 1998 Jun;62(2):334-61
– reference: 10871883 - Trends Biochem Sci. 2000 Jul;25(7):325-30
– reference: 10722750 - J Biol Chem. 2000 Mar 24;275(12):9011-8
– reference: 12702307 - FEMS Yeast Res. 2002 May;2(2):183-201
– reference: 14508605 - Curr Genet. 2003 Oct;44(1):19-25
– reference: 20439496 - Mol Cell Biol. 2010 Jul;30(13):3342-56
– reference: 7651133 - Mol Microbiol. 1995 Apr;16(1):157-67
– reference: 10523302 - EMBO J. 1999 Oct 15;18(20):5577-91
– reference: 9600950 - Proc Natl Acad Sci U S A. 1998 May 26;95(11):6245-50
– reference: 8970157 - Mol Biol Cell. 1996 Dec;7(12):1953-66
– reference: 10353251 - Nature. 1999 May 20;399(6733):271-5
– reference: 12527758 - J Biol Chem. 2003 Mar 21;278(12):10322-7
– reference: 14525981 - J Biol Chem. 2003 Dec 12;278(50):50158-62
– reference: 18559076 - FEMS Microbiol Rev. 2008 Jul;32(4):673-704
– reference: 18775299 - Cell. 2008 Sep 5;134(5):703-7
– reference: 17099712 - Nat Genet. 2006 Dec;38(12):1446-51
– reference: 19460998 - Science. 2009 May 22;324(5930):1029-33
– reference: 16308421 - Science. 2005 Dec 9;310(5754):1642-6
– reference: 9727030 - J Biol Chem. 1998 Sep 11;273(37):24102-7
– reference: 2178777 - Cell. 1990 Mar 9;60(5):803-7
– reference: 22024974 - Nat Rev Endocrinol. 2012 Mar;8(3):183-92
– reference: 7539918 - Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5510-4
– reference: 12625770 - Technol Cancer Res Treat. 2002 Dec;1(6):423-39
– reference: 9151960 - Eur J Biochem. 1997 Apr 15;245(2):324-33
– reference: 16936817 - Biochem Cell Biol. 2006 Aug;84(4):437-43
– reference: 15031717 - EMBO Rep. 2004 Apr;5(4):368-72
– reference: 1924319 - Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8597-601
– reference: 2823100 - Mol Cell Biol. 1987 Aug;7(8):2653-63
– reference: 16744238 - Biochem J. 1929;23(3):536-45
– reference: 19682552 - Biochim Biophys Acta. 2009 Dec;1796(2):252-65
– reference: 10759558 - Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):3901-6
– reference: 23468525 - Mol Biol Cell. 2013 May;24(9):1493-503
– reference: 8002563 - J Bacteriol. 1994 Dec;176(24):7423-9
– reference: 12702270 - FEMS Yeast Res. 2002 Dec;2(4):539-50
– reference: 16756488 - Annu Rev Biochem. 2006;75:137-63
– reference: 12351652 - J Biol Chem. 2002 Dec 6;277(49):46993-7
– reference: 9278448 - J Biol Chem. 1997 Sep 5;272(36):22859-65
– reference: 7493931 - J Biol Chem. 1995 Dec 8;270(49):29083-9
– reference: 9774644 - Mol Cell Biol. 1998 Nov;18(11):6273-80
– reference: 21748783 - J Cell Biochem. 2011 Nov;112(11):3268-75
– reference: 12861007 - Mol Cell Biol. 2003 Aug;23(15):5208-16
– reference: 18950675 - Biochimie. 2009 Feb;91(2):300-3
– reference: 19720826 - J Biol Chem. 2009 Oct 23;284(43):29635-43
– reference: 22156212 - Genes Dev. 2011 Dec 1;25(23):2525-39
– reference: 7862149 - Mol Cell Biol. 1995 Mar;15(3):1564-72
– reference: 15014083 - J Biol Chem. 2004 May 21;279(21):22010-9
– reference: 10629208 - J Bacteriol. 2000 Jan;182(2):540-2
– reference: 8943325 - Mol Cell Biol. 1996 Dec;16(12):6707-14
– reference: 14871952 - Eukaryot Cell. 2004 Feb;3(1):221-31
– reference: 11343924 - Trends Biochem Sci. 2001 May;26(5):310-7
– reference: 15494148 - Anal Biochem. 2004 Nov 15;334(2):401-2
– reference: 11331606 - Genes Dev. 2001 May 1;15(9):1104-14
– reference: 12847291 - Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8839-43
– reference: 22219709 - Sensors (Basel). 2010;10(6):6195-240
– reference: 9564039 - EMBO J. 1998 May 1;17(9):2566-73
– reference: 8756637 - Mol Cell Biol. 1996 Sep;16(9):4790-7
– reference: 8939604 - Curr Biol. 1996 Nov 1;6(11):1426-34
– reference: 11069660 - Mol Microbiol. 2000 Oct;38(2):348-58
– reference: 390364 - Mol Cell Biochem. 1979 Nov 1;27(3):139-46
– reference: 2981630 - Cell. 1985 Jan;40(1):27-36
– reference: 9891967 - FEBS Lett. 1998 Dec 28;441(3):343-7
– reference: 9299703 - FEMS Microbiol Rev. 1997 Aug;21(1):85-111
– reference: 17071825 - Eukaryot Cell. 2006 Dec;5(12):1950-6
– reference: 17046224 - Curr Opin Cell Biol. 2006 Dec;18(6):598-608
– reference: 12370247 - J Cell Biol. 2002 Oct 14;159(1):23-8
– reference: 14665463 - Eukaryot Cell. 2003 Dec;2(6):1288-303
– reference: 20205947 - BMC Cell Biol. 2010;11:17
– reference: 10856245 - EMBO J. 2000 Jun 15;19(12):3016-27
– reference: 15489524 - Genetics. 2005 Feb;169(2):583-94
– reference: 2167835 - EMBO J. 1990 Sep;9(9):2891-8
– reference: 10866691 - Mol Cell Biol. 2000 Jul;20(14):5350-9
– reference: 12618390 - Genetics. 2003 Feb;163(2):507-14
– reference: 16400179 - Eukaryot Cell. 2006 Jan;5(1):167-73
– reference: 10476026 - Mol Microbiol. 1999 Sep;33(5):904-18
– reference: 15105419 - J Biol Chem. 2004 Jun 25;279(26):27138-47
– reference: 2201901 - Mol Cell Biol. 1990 Sep;10(9):4744-56
– reference: 16844691 - J Biol Chem. 2006 Sep 8;281(36):26144-9
– reference: 7498787 - Genes Dev. 1995 Dec 1;9(23):2903-10
– reference: 16269245 - Trends Endocrinol Metab. 2005 Dec;16(10):489-94
– reference: 8887670 - Mol Cell Biol. 1996 Nov;16(11):6419-26
– reference: 8114728 - Mol Cell Biol. 1994 Mar;14(3):1972-8
– reference: 13298683 - Science. 1956 Feb 24;123(3191):309-14
– reference: 10373505 - Mol Cell Biol. 1999 Jul;19(7):4561-71
– reference: 8985180 - Genes Dev. 1996 Dec 15;10(24):3105-15
– reference: 9759505 - Annu Rev Biochem. 1998;67:821-55
– reference: 17586499 - FEBS Lett. 2007 Jul 10;581(17):3230-4
– reference: 16528100 - Nucleic Acids Res. 2006;34(5):1427-38
– reference: 8901598 - Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12428-32
– reference: 15667318 - Biochem Soc Trans. 2005 Feb;33(Pt 1):247-52
– reference: 10322167 - Curr Opin Microbiol. 1999 Apr;2(2):202-7
– reference: 3036373 - Cell. 1987 Jul 17;50(2):277-87
– reference: 10477308 - Microbiol Mol Biol Rev. 1999 Sep;63(3):554-69
– reference: 12086627 - Mol Cell. 2002 Jun;9(6):1307-17
– reference: 17981722 - Front Biosci. 2008;13:2408-20
– reference: 16524925 - Microbiol Mol Biol Rev. 2006 Mar;70(1):253-82
– reference: 8675011 - Genes Dev. 1996 May 15;10(10):1247-59
– reference: 12925759 - Mol Biol Cell. 2003 Aug;14(8):3230-41
– reference: 2956925 - Annu Rev Biochem. 1987;56:567-613
– reference: 9628870 - EMBO J. 1998 Jun 15;17(12):3326-41
– reference: 10632886 - Mol Microbiol. 2000 Jan;35(1):161-72
– reference: 9832517 - Genetics. 1998 Dec;150(4):1377-91
– reference: 14755054 - Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1572-7
– reference: 12748292 - Mol Cell Biol. 2003 Jun;23(11):3909-17
SSID ssj0000595
ssj0025309
Score 2.4208312
SecondaryResourceType review_article
Snippet Most cells possess a sophisticated mechanism for sensing glucose and responding to it appropriately. Glucose sensing and signaling in the budding yeast...
BACKGROUND: Most cells possess a sophisticated mechanism for sensing glucose and responding to it appropriately. Glucose sensing and signaling in the budding...
SourceID pubmedcentral
proquest
pubmed
crossref
fao
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5204
SubjectTerms Biological Transport
Cancer
eukaryotic cells
gene expression
gene expression regulation
glucose
Glucose - metabolism
Glucose signaling pathways
Glucose Transport Proteins, Facilitative - genetics
Glucose Transport Proteins, Facilitative - metabolism
Glucose transporters
Glucose uptake and metabolism
glycolysis
homeostasis
Humans
hyperglycemia
neoplasms
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Signal Transduction
Yeast
yeasts
Title The glucose signaling network in yeast
URI https://dx.doi.org/10.1016/j.bbagen.2013.07.025
https://www.ncbi.nlm.nih.gov/pubmed/23911748
https://www.proquest.com/docview/1436563792
https://www.proquest.com/docview/2000086102
https://pubmed.ncbi.nlm.nih.gov/PMC3785329
Volume 1830
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB6RoKpcKqCPpAW0lRC3bfxYr71HFBUFIjgUIrhZ-7AhFdogCAcu_e2d2UcgCITEabW7Y8kej2c-a14Au3mMRlzwNPQ6ZmHkCk2N3HlIDl8Z-ZQnVfrY8Uk8mkRHF-piBYZtLgyFVTa6v9bplbZuvgwabg5uptPBKTn1EE4ocsjQRasDq0ImserC6v7heHTyqJBV1XyF6EMa0GbQVWFeWYbnlgqhcllV8aSe2S9bqI5PZy_h0OfhlE_s08E6fGqAZbBfz30DVly5CR_qVpMPm_Bx2HZ2-wx7KBtBE6seUABHSjnpQVlHhAfTMnigjj5fYHLw-2w4Cpt-CWGuBJuHiB08K3RutC8KxbxDY60ypbmPWMSZSUTuvYudojJiKmHKcGlSn3FW5DpTSn6FbjkrXQ8CopOGOeNVEvlEGm8UxesbnaJBY6IPsuWRzZti4tTT4tq2UWN_bc1ZS5y1TFvkbB_CxaibupjGG_S6Zb9dEgqL-v6NkT3cLZteoqa0k1NBdfRI-ccx68PPdgst8p38I2npZvd3eAuSiG6lTsTrNKIC2Yg5keZbve2LpaD0cbzgGZz2kkAsCKiU9_KfcnpVlfSWGmGTSL6_e8E_YI3e6izJLejOb-_dNsKlebYDnV__-E5zKOg5_nM-_g-w7BD4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BVQWXilIe29KSShW3sI4fsXOsVqClBS6wEjcrDxsWoSyC5cCF385MnGxZRIXENR5L9tie-aL5ZgbgV5miE-dJHnudsli6SlMj9ySmgK-QPk-yJn3s-CQdjuSfc3W-AIMuF4Zola3tDza9sdbtl36rzf7NeNw_paAewglFARn60VqED1IJTby-vcd_PA_EDyqEEmRM4l3-XEPyKgp8tVQGNRFNDU_qmP26f1r0-eQ1FPqSTPnMOx2swqcWVka_w8o_w4Kr1-BjaDT5sAbLg66v2xfYxZsRtUz1iOgbOWWkR3Xgg0fjOnqgfj7rMDrYPxsM47ZbQlwqzqYxIgfPKl0a7atKMe_QVatC6cRLJhNmMl5671KnqIiYypgyiTC5LxJWlbpQSmzAUj2p3RZEJCcMc8arTPpMGG8UsfWNztGdMd4D0enIlm0pcepocW07ztiVDZq1pFnLtEXN9iCezboJpTTekNed-u3clbBo7d-YuYWnZfMLtJN2dMqpih6Z_jRlPfjZHaFFvVN0JK_d5P4O_4EEYluhM_5_Gd5AbEScKLMZjn22FS7Qb2hpcNlzF2ImQIW850fq8WVT0FtoBE08-_ruDe_A8vDs-MgeHZ78_QYrNBLyJbdhaXp7774jcJoWP5qH8QR5mhAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+glucose+signaling+network+in+yeast&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Kim%2C+Jeong-Ho&rft.au=Roy%2C+Adhiraj&rft.au=Jouandot%2C+David&rft.au=Cho%2C+Kyu+Hong&rft.date=2013-11-01&rft.issn=0304-4165&rft.volume=1830&rft.issue=11&rft.spage=5204&rft.epage=5210&rft_id=info:doi/10.1016%2Fj.bbagen.2013.07.025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbagen_2013_07_025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon