The glucose signaling network in yeast
Most cells possess a sophisticated mechanism for sensing glucose and responding to it appropriately. Glucose sensing and signaling in the budding yeast Saccharomyces cerevisiae represent an important paradigm for understanding how extracellular signals lead to changes in the gene expression program...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1830; no. 11; pp. 5204 - 5210 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.11.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 0304-4165 0006-3002 1872-8006 |
DOI | 10.1016/j.bbagen.2013.07.025 |
Cover
Abstract | Most cells possess a sophisticated mechanism for sensing glucose and responding to it appropriately. Glucose sensing and signaling in the budding yeast Saccharomyces cerevisiae represent an important paradigm for understanding how extracellular signals lead to changes in the gene expression program in eukaryotes.
This review focuses on the yeast glucose sensing and signaling pathways that operate in a highly regulated and cooperative manner to bring about glucose-induction of HXT gene expression.
The yeast cells possess a family of glucose transporters (HXTs), with different kinetic properties. They employ three major glucose signaling pathways—Rgt2/Snf3, AMPK, and cAMP-PKA—to express only those transporters best suited for the amounts of glucose available. We discuss the current understanding of how these pathways are integrated into a regulatory network to ensure efficient uptake and utilization of glucose.
Elucidating the role of multiple glucose signals and pathways involved in glucose uptake and metabolism in yeast may reveal the molecular basis of glucose homeostasis in humans, especially under pathological conditions, such as hyperglycemia in diabetics and the elevated rate of glycolysis observed in many solid tumors.
•The budding yeast S. cerevisiae, like tumor cells, exhibits aerobic glycolysis.•The yeast possesses a family of glucose transporters (HXTs) with different kinetic properties.•Expression of HXT genes is regulated by the crosstalk between glucose signaling pathways. |
---|---|
AbstractList | Most cells possess a sophisticated mechanism for sensing glucose and responding to it appropriately. Glucose sensing and signaling in the budding yeast Saccharomyces cerevisiae represent an important paradigm for understanding how extracellular signals lead to changes in the gene expression program in eukaryotes.
This review focuses on the yeast glucose sensing and signaling pathways that operate in a highly regulated and cooperative manner to bring about glucose-induction of HXT gene expression.
The yeast cells possess a family of glucose transporters (HXTs), with different kinetic properties. They employ three major glucose signaling pathways-Rgt2/Snf3, AMPK, and cAMP-PKA-to express only those transporters best suited for the amounts of glucose available. We discuss the current understanding of how these pathways are integrated into a regulatory network to ensure efficient uptake and utilization of glucose.
Elucidating the role of multiple glucose signals and pathways involved in glucose uptake and metabolism in yeast may reveal the molecular basis of glucose homeostasis in humans, especially under pathological conditions, such as hyperglycemia in diabetics and the elevated rate of glycolysis observed in many solid tumors. Most cells possess a sophisticated mechanism for sensing glucose and responding to it appropriately. Glucose sensing and signaling in the budding yeast Saccharomyces cerevisiae represent an important paradigm for understanding how extracellular signals lead to changes in the gene expression program in eukaryotes.BACKGROUNDMost cells possess a sophisticated mechanism for sensing glucose and responding to it appropriately. Glucose sensing and signaling in the budding yeast Saccharomyces cerevisiae represent an important paradigm for understanding how extracellular signals lead to changes in the gene expression program in eukaryotes.This review focuses on the yeast glucose sensing and signaling pathways that operate in a highly regulated and cooperative manner to bring about glucose-induction of HXT gene expression.SCOPE OF REVIEWThis review focuses on the yeast glucose sensing and signaling pathways that operate in a highly regulated and cooperative manner to bring about glucose-induction of HXT gene expression.The yeast cells possess a family of glucose transporters (HXTs), with different kinetic properties. They employ three major glucose signaling pathways-Rgt2/Snf3, AMPK, and cAMP-PKA-to express only those transporters best suited for the amounts of glucose available. We discuss the current understanding of how these pathways are integrated into a regulatory network to ensure efficient uptake and utilization of glucose.MAJOR CONCLUSIONSThe yeast cells possess a family of glucose transporters (HXTs), with different kinetic properties. They employ three major glucose signaling pathways-Rgt2/Snf3, AMPK, and cAMP-PKA-to express only those transporters best suited for the amounts of glucose available. We discuss the current understanding of how these pathways are integrated into a regulatory network to ensure efficient uptake and utilization of glucose.Elucidating the role of multiple glucose signals and pathways involved in glucose uptake and metabolism in yeast may reveal the molecular basis of glucose homeostasis in humans, especially under pathological conditions, such as hyperglycemia in diabetics and the elevated rate of glycolysis observed in many solid tumors.GENERAL SIGNIFICANCEElucidating the role of multiple glucose signals and pathways involved in glucose uptake and metabolism in yeast may reveal the molecular basis of glucose homeostasis in humans, especially under pathological conditions, such as hyperglycemia in diabetics and the elevated rate of glycolysis observed in many solid tumors. Most cells possess a sophisticated mechanism for sensing glucose and responding to it appropriately. Glucose sensing and signaling in the budding yeast Saccharomyces cerevisiae represent an important paradigm for understanding how extracellular signals lead to changes in the gene expression program in eukaryotes.This review focuses on the yeast glucose sensing and signaling pathways that operate in a highly regulated and cooperative manner to bring about glucose-induction of HXT gene expression.The yeast cells possess a family of glucose transporters (HXTs), with different kinetic properties. They employ three major glucose signaling pathways—Rgt2/Snf3, AMPK, and cAMP-PKA—to express only those transporters best suited for the amounts of glucose available. We discuss the current understanding of how these pathways are integrated into a regulatory network to ensure efficient uptake and utilization of glucose.Elucidating the role of multiple glucose signals and pathways involved in glucose uptake and metabolism in yeast may reveal the molecular basis of glucose homeostasis in humans, especially under pathological conditions, such as hyperglycemia in diabetics and the elevated rate of glycolysis observed in many solid tumors. BACKGROUND: Most cells possess a sophisticated mechanism for sensing glucose and responding to it appropriately. Glucose sensing and signaling in the budding yeast Saccharomyces cerevisiae represent an important paradigm for understanding how extracellular signals lead to changes in the gene expression program in eukaryotes. SCOPE OF REVIEW: This review focuses on the yeast glucose sensing and signaling pathways that operate in a highly regulated and cooperative manner to bring about glucose-induction of HXT gene expression. MAJOR CONCLUSIONS: The yeast cells possess a family of glucose transporters (HXTs), with different kinetic properties. They employ three major glucose signaling pathways—Rgt2/Snf3, AMPK, and cAMP-PKA—to express only those transporters best suited for the amounts of glucose available. We discuss the current understanding of how these pathways are integrated into a regulatory network to ensure efficient uptake and utilization of glucose. GENERAL SIGNIFICANCE: Elucidating the role of multiple glucose signals and pathways involved in glucose uptake and metabolism in yeast may reveal the molecular basis of glucose homeostasis in humans, especially under pathological conditions, such as hyperglycemia in diabetics and the elevated rate of glycolysis observed in many solid tumors. Most cells possess a sophisticated mechanism for sensing glucose and responding to it appropriately. Glucose sensing and signaling in the budding yeast Saccharomyces cerevisiae represent an important paradigm for understanding how extracellular signals lead to changes in the gene expression program in eukaryotes. This review focuses on the yeast glucose sensing and signaling pathways that operate in a highly regulated and cooperative manner to bring about glucose-induction of HXT gene expression. The yeast cells possess a family of glucose transporters (HXTs), with different kinetic properties. They employ three major glucose signaling pathways—Rgt2/Snf3, AMPK, and cAMP-PKA—to express only those transporters best suited for the amounts of glucose available. We discuss the current understanding of how these pathways are integrated into a regulatory network to ensure efficient uptake and utilization of glucose. Elucidating the role of multiple glucose signals and pathways involved in glucose uptake and metabolism in yeast may reveal the molecular basis of glucose homeostasis in humans, especially under pathological conditions, such as hyperglycemia in diabetics and the elevated rate of glycolysis observed in many solid tumors. •The budding yeast S. cerevisiae, like tumor cells, exhibits aerobic glycolysis.•The yeast possesses a family of glucose transporters (HXTs) with different kinetic properties.•Expression of HXT genes is regulated by the crosstalk between glucose signaling pathways. |
Author | Roy, Adhiraj Kim, Jeong-Ho Cho, Kyu Hong Jouandot, David |
AuthorAffiliation | Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, 2300 Eye Street, Washington, DC 20037 b Department of Microbiology, Southern Illinois University Carbondale, 1125 Lincoln Drive, Carbondale, IL 62901 a Department of Biological Sciences, The University of Southern Mississippi, 118 College Dr., Hattiesburg, MS 39406 |
AuthorAffiliation_xml | – name: b Department of Microbiology, Southern Illinois University Carbondale, 1125 Lincoln Drive, Carbondale, IL 62901 – name: Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, 2300 Eye Street, Washington, DC 20037 – name: a Department of Biological Sciences, The University of Southern Mississippi, 118 College Dr., Hattiesburg, MS 39406 |
Author_xml | – sequence: 1 givenname: Jeong-Ho surname: Kim fullname: Kim, Jeong-Ho email: jh_kim@gwu.edu organization: Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, 2300 Eye Street, Washington, DC 20037, USA – sequence: 2 givenname: Adhiraj surname: Roy fullname: Roy, Adhiraj organization: Department of Biochemistry and Molecular Medicine, The George Washington University Medical Center, 2300 Eye Street, Washington, DC 20037, USA – sequence: 3 givenname: David surname: Jouandot fullname: Jouandot, David organization: Department of Biological Sciences, The University of Southern Mississippi, 118 College Dr., Hattiesburg, MS 39406, USA – sequence: 4 givenname: Kyu Hong surname: Cho fullname: Cho, Kyu Hong organization: Department of Microbiology, Southern Illinois University Carbondale, 1125 Lincoln Drive, Carbondale, IL 62901, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23911748$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUU1P3DAUtCpQWWj_QdXmVHFJeLZjO-kBqUL0Q0LiUDhbjvMcvM3a1M5S8e-baKFfB_DlHTwzb97MIdkLMSAhbyhUFKg8WVddZwYMFQPKK1AVMPGCrGijWNkAyD2yAg51WVMpDshhzmuYn2jFS3LAeEupqpsVeX91g8Uwbm3MWGQ_BDP6MBQBp58xfS98KO7R5OkV2XdmzPj6YR6R60_nV2dfyovLz1_PPl6UVjCYSsmFg17ZRrm-F-CwBik6oairoabQtMw6hxIFk0BFC6KhvDGuo9Bb1QnBj8jpTvd2222wtximZEZ9m_zGpHsdjdf__gR_o4d4p7lqBGftLHD8IJDijy3mSW98tjiOJmDcZs2WEBpJgT0LpTWXQnLVLtC3f9v67ecxxxnwYQewKeac0GnrJzP5uLj0o6agl9L0Wu9K00tpGpSeS5vJ9X_kR_1naO92NGeiNkPyWV9_mwFyOZFJCX_SxLmyO49JZ-sxWOx9QjvpPvqnV_wCXmS54g |
CitedBy_id | crossref_primary_10_1128_MCB_00515_14 crossref_primary_10_1016_j_jbc_2024_107665 crossref_primary_10_3389_fpls_2023_1123523 crossref_primary_10_1021_acs_jproteome_1c00139 crossref_primary_10_1111_ede_12217 crossref_primary_10_3390_toxins8020042 crossref_primary_10_1002_bit_27138 crossref_primary_10_1016_j_bbrc_2021_10_015 crossref_primary_10_1080_09168451_2020_1763157 crossref_primary_10_3390_ijms222212410 crossref_primary_10_1111_1567_1364_12157 crossref_primary_10_1093_femsyr_fov107 crossref_primary_10_1002_jbt_70059 crossref_primary_10_1016_j_procbio_2024_11_005 crossref_primary_10_1007_s00294_019_00996_6 crossref_primary_10_1088_2515_7647_ac015d crossref_primary_10_1186_s12864_015_1393_8 crossref_primary_10_15252_msb_20145513 crossref_primary_10_1016_j_abb_2020_108701 crossref_primary_10_1002_bit_27141 crossref_primary_10_1016_j_celrep_2015_12_092 crossref_primary_10_1016_j_jprot_2015_08_003 crossref_primary_10_1091_mbc_E15_07_0499 crossref_primary_10_1007_s00253_023_12907_4 crossref_primary_10_1371_journal_pone_0121985 crossref_primary_10_1111_gtc_70004 crossref_primary_10_1371_journal_ppat_1012791 crossref_primary_10_1016_j_ejcb_2015_10_005 crossref_primary_10_1111_cbdd_14377 crossref_primary_10_1016_j_tim_2017_12_008 crossref_primary_10_1074_jbc_M113_539411 crossref_primary_10_3390_genes12091311 crossref_primary_10_1016_j_rser_2021_111789 crossref_primary_10_1038_s41598_024_54628_2 crossref_primary_10_1093_femsyr_fov072 crossref_primary_10_1111_mmi_13887 crossref_primary_10_1371_journal_pgen_1008037 crossref_primary_10_1111_cmi_12610 crossref_primary_10_1016_j_plaphy_2016_06_023 crossref_primary_10_1111_febs_13019 crossref_primary_10_1371_journal_pgen_1011202 crossref_primary_10_3390_ijms24010398 crossref_primary_10_1016_j_jbc_2022_101593 crossref_primary_10_1002_jctb_7754 crossref_primary_10_1002_jcb_25803 crossref_primary_10_1038_srep45073 crossref_primary_10_1038_s41598_022_05569_1 crossref_primary_10_7554_eLife_75143 crossref_primary_10_1016_j_bbagrm_2019_02_009 crossref_primary_10_1016_j_csbj_2021_03_013 crossref_primary_10_1111_1751_7915_14188 crossref_primary_10_3389_fmicb_2017_00480 crossref_primary_10_1021_acssynbio_7b00463 crossref_primary_10_1002_etc_3314 crossref_primary_10_1371_journal_pgen_1006372 crossref_primary_10_1093_bbb_zbad167 crossref_primary_10_3390_ijms25010304 crossref_primary_10_1007_s00203_024_03901_z crossref_primary_10_1186_s12934_021_01692_2 crossref_primary_10_1093_femsyr_foac012 crossref_primary_10_1093_femsyr_foad029 crossref_primary_10_1016_j_ijfoodmicro_2024_110899 crossref_primary_10_1007_s00294_014_0466_6 crossref_primary_10_1128_mSphere_00080_15 crossref_primary_10_1091_mbc_E15_11_0789 crossref_primary_10_2520_myco_66_45 crossref_primary_10_1016_j_ntm_2025_100070 crossref_primary_10_1016_j_fgb_2017_11_006 crossref_primary_10_1016_j_jbiosc_2017_07_013 crossref_primary_10_1093_intbio_zyaa018 crossref_primary_10_3389_fmicb_2016_01378 crossref_primary_10_3390_microorganisms8010100 crossref_primary_10_3390_ijms19010048 crossref_primary_10_1038_s41598_018_20804_4 crossref_primary_10_18632_oncotarget_7174 crossref_primary_10_1038_s41598_019_43032_w crossref_primary_10_1186_s13068_021_01877_2 crossref_primary_10_1016_j_cbpa_2020_08_005 crossref_primary_10_1080_15476286_2022_2065784 crossref_primary_10_1016_j_bbagen_2021_129881 crossref_primary_10_1021_acs_jafc_5b05892 crossref_primary_10_1007_s00253_025_13408_2 crossref_primary_10_1074_jbc_RA119_009822 crossref_primary_10_1007_s00294_021_01194_z crossref_primary_10_1016_j_bbagen_2014_05_004 crossref_primary_10_1016_j_bioelechem_2015_10_006 crossref_primary_10_1186_s13068_016_0573_3 crossref_primary_10_1371_journal_pone_0116942 crossref_primary_10_1126_science_aba0542 crossref_primary_10_3390_foods14010142 crossref_primary_10_1016_j_fob_2013_12_004 crossref_primary_10_18632_oncotarget_11253 crossref_primary_10_3389_fpls_2015_00851 |
Cites_doi | 10.1074/jbc.273.37.24102 10.1038/nrendo.2011.158 10.1128/MCB.18.11.6273 10.1042/bj0230536 10.1128/MCB.23.15.5208-5216.2003 10.1128/MCB.23.11.3909-3917.2003 10.1016/j.tem.2005.10.003 10.1111/j.1567-1364.2002.tb00084.x 10.1074/jbc.M400609200 10.1016/j.ab.2004.06.045 10.1126/science.123.3191.309 10.1002/j.1460-2075.1990.tb07479.x 10.1074/jbc.M603636200 10.1128/MCB.16.11.6419 10.1128/MCB.19.7.4561 10.1111/j.1432-1033.1997.00324.x 10.1074/jbc.M309753200 10.1016/j.biochi.2008.09.002 10.1093/emboj/17.12.3326 10.1073/pnas.88.19.8597 10.1093/emboj/17.9.2566 10.1126/science.1160809 10.1074/jbc.272.36.22859 10.1371/journal.pone.0019060 10.1074/jbc.M109.032102 10.1046/j.1365-2958.2000.02125.x 10.1073/pnas.95.11.6245 10.1093/emboj/18.20.5577 10.1016/S1097-2765(02)00557-9 10.1093/nar/gkl028 10.1128/EC.3.1.221-231.2004 10.1128/MCB.7.8.2653 10.1091/mbc.E03-03-0135 10.1128/EC.5.1.167-173.2006 10.1042/BST0330247 10.1016/0092-8674(90)90094-U 10.1016/0092-8674(87)90223-6 10.1128/MCB.14.3.1972 10.1128/JB.181.15.4673-4675.1999 10.1091/mbc.E13-01-0047 10.1074/jbc.M208726200 10.1128/JB.182.2.540-542.2000 10.1101/gad.10.10.1247 10.1128/MMBR.70.1.253-282.2006 10.1146/annurev.biochem.67.1.821 10.1128/MMBR.62.2.334-361.1998 10.1016/0168-9525(91)90018-L 10.1177/153303460200100603 10.1111/j.1365-2958.1995.tb02400.x 10.1007/BF00215362 10.1016/0092-8674(85)90305-8 10.1083/jcb.200206120 10.1016/S0968-0004(01)01805-9 10.1091/mbc.7.12.1953 10.1128/MCB.15.3.1564 10.1128/jb.176.24.7423-7429.1994 10.1073/pnas.0305901101 10.1002/yea.1609 10.1128/MCB.01450-09 10.1046/j.1365-2958.2000.01688.x 10.1016/j.ceb.2006.10.005 10.3390/s100606195 10.1046/j.1365-2958.1999.01538.x 10.1073/pnas.93.22.12428 10.1016/S1369-5274(99)80035-6 10.1016/S0960-9822(96)00747-6 10.1101/gad.9.23.2903 10.1146/annurev.biochem.75.103004.142702 10.1111/j.1574-6976.2008.00117.x 10.1074/jbc.275.12.9011 10.1101/gad.10.24.3105 10.1042/BST0330253 10.1038/sj.embor.7400120 10.1101/gad.179275.111 10.1126/science.1120781 10.1016/j.cell.2008.08.021 10.1038/20459 10.1074/jbc.270.49.29083 10.1016/S0014-5793(98)01583-X 10.1038/ng1917 10.1128/EC.2.6.1288-1303.2003 10.1128/MCB.16.12.6707 10.1002/jcb.23253 10.1534/genetics.104.034512 10.1016/j.febslet.2007.06.013 10.1128/EC.00256-06 10.1093/genetics/163.2.507 10.1074/jbc.M212802200 10.1016/S0968-0004(00)01592-9 10.1007/s00294-003-0423-2 10.1146/annurev.bi.56.070187.003031 10.1128/MCB.16.9.4790 10.2741/2854 10.1073/pnas.92.12.5510 10.1101/gad.879301 10.1093/genetics/150.4.1377 10.1073/pnas.1533136100 10.1111/j.1574-6976.1997.tb00346.x 10.1534/genetics.111.135731 10.1128/MCB.20.14.5350-5359.2000 10.1093/emboj/19.12.3016 10.1128/MCB.10.9.4744 10.1074/jbc.M403071200 10.1128/MMBR.63.3.554-569.1999 10.1016/S0092-8674(03)00929-2 10.1073/pnas.070506797 |
ContentType | Journal Article |
Copyright | 2013 Elsevier B.V. 2013. 2013 Elsevier B.V. All rights reserved. 2013 |
Copyright_xml | – notice: 2013 Elsevier B.V. – notice: 2013. – notice: 2013 Elsevier B.V. All rights reserved. 2013 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.bbagen.2013.07.025 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 5210 |
ExternalDocumentID | PMC3785329 23911748 10_1016_j_bbagen_2013_07_025 US201600002660 S0304416513003383 |
Genre | Journal Article Review Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM087470 – fundername: NIGMS NIH HHS grantid: GM087470 – fundername: National Institute of General Medical Sciences : NIGMS grantid: R01 GM087470 || GM |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- ABPIF ABPTK FBQ AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH -~X .55 .GJ AAYJJ ABJNI AFFNX AI. CGR CUY CVF ECM EIF F5P H~9 K-O MVM NPM RIG TWZ UHS VH1 X7M Y6R YYP ZE2 ZGI ~KM 7X8 7S9 EFKBS L.6 5PM |
ID | FETCH-LOGICAL-c520t-635f0d7c87fdd50fe4065b571f40410892cffe6e5260159058138afb10dc7b553 |
IEDL.DBID | AIKHN |
ISSN | 0304-4165 0006-3002 |
IngestDate | Thu Aug 21 18:22:10 EDT 2025 Fri Sep 05 03:47:27 EDT 2025 Thu Sep 04 18:48:18 EDT 2025 Mon Jul 21 05:56:19 EDT 2025 Tue Jul 01 00:22:01 EDT 2025 Thu Apr 24 23:02:27 EDT 2025 Wed Dec 27 18:59:08 EST 2023 Fri Feb 23 02:34:13 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Glucose transporters Yeast Glucose uptake and metabolism Glucose signaling pathways Cancer |
Language | English |
License | 2013. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c520t-635f0d7c87fdd50fe4065b571f40410892cffe6e5260159058138afb10dc7b553 |
Notes | http://dx.doi.org/10.1016/j.bbagen.2013.07.025 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Current address: David Jouandot II, Brother Martin High School, 4401 Elysian Fields Avenue, New Orleans, LA 70122 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3785329 |
PMID | 23911748 |
PQID | 1436563792 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3785329 proquest_miscellaneous_2000086102 proquest_miscellaneous_1436563792 pubmed_primary_23911748 crossref_citationtrail_10_1016_j_bbagen_2013_07_025 crossref_primary_10_1016_j_bbagen_2013_07_025 fao_agris_US201600002660 elsevier_sciencedirect_doi_10_1016_j_bbagen_2013_07_025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-11-01 |
PublicationDateYYYYMMDD | 2013-11-01 |
PublicationDate_xml | – month: 11 year: 2013 text: 2013-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta |
PublicationTitleAlternate | Biochim Biophys Acta |
PublicationYear | 2013 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kaniak, Xue, Macool, Kim, Johnston (bb0065) 2004; 3 Lutfiyya, Iyer, DeRisi, DeVit, Brown, Johnston (bb0480) 1998; 150 Tanaka, Nakafuku, Satoh, Marshall, Gibbs, Matsumoto, Kaziro, Toh-e (bb0450) 1990; 60 Lafuente, Gancedo, Jauniaux, Gancedo (bb0195) 2000; 35 Edelman, Blumenthal, Krebs (bb0465) 1987; 56 Schulte, Wieczorke, Hollenberg, Boles (bb0235) 2000; 182 Warburg (bb0045) 1956; 123 Toda, Uno, Ishikawa, Powers, Kataoka, Broek, Cameron, Broach, Matsumoto, Wigler (bb0445) 1985; 40 Smith, Redd, Johnson (bb0260) 1995; 9 Papamichos-Chronakis, Gligoris, Tzamarias (bb0310) 2004; 5 Versele, de Winde, Thevelein (bb0460) 1999; 18 Tomas-Cobos, Casadome, Mas, Sanz, Posas (bb0205) 2004; 279 Panozzo, Capuano, Fillinger, Felenbok (bb0170) 1997; 272 Vander Heiden, Cantley, Thompson (bb0040) 2009; 324 Shaw (bb0550) 2006; 18 Meijer, Boonstra, Verkleij, Verrips (bb0510) 1998; 273 Wong, Struhl (bb0330) 2011; 25 Diaz-Ruiz, Uribe-Carvajal, Devin, Rigoulet (bb0105) 2009; 1796 Kim, Johnston (bb0405) 2006; 281 Hedbacker, Carlson (bb0085) 2008; 13 Ozcan, Leong, Johnston (bb0165) 1996; 16 Kuchin, Vyas, Kanter, Hong, Carlson (bb0475) 2003; 163 Hubbard, Jiang, Carlson (bb0185) 1994; 14 Hanlon, Rizzo, Tatomer, Lieb, Buck (bb0325) 2011; 6 Palomino, Herrero, Moreno (bb0410) 2006; 34 Busti, Coccetti, Alberghina, Vanoni (bb0020) 2010; 10 Proft, Struhl (bb0300) 2002; 9 Hong, Leiper, Woods, Carling, Carlson (bb0385) 2003; 100 Kim, Polish, Johnston (bb0150) 2003; 23 Santangelo (bb0015) 2006; 70 Wilson, Hawley, Hardie (bb0490) 1996; 6 Varanasi, Klis, Mikesell, Trumbly (bb0250) 1996; 16 Mosley, Lakshmanan, Aryal, Ozcan (bb0180) 2003; 278 Polish, Kim, Johnston (bb0210) 2005; 169 Rolland, De Winde, Lemaire, Boles, Thevelein, Winderickx (bb0425) 2000; 38 Mandelkern, Raines (bb0050) 2002; 1 Pasula, Jouandot, Kim (bb0220) 2007; 581 Colombo, Ma, Cauwenberg, Winderickx, Crauwels, Teunissen, Nauwelaers, de Winde, Gorwa, Colavizza, Thevelein (bb0455) 1998; 17 Wang, Jiang, Rue, Semenza (bb0525) 1995; 92 Nehlin, Ronne (bb0340) 1990; 9 Broach (bb0095) 2012; 192 Maxwell, Wiesener, Chang, Clifford, Vaux, Cockman, Wykoff, Pugh, Maher, Ratcliffe (bb0530) 1999; 399 Gancedo (bb0120) 2008; 32 Buck, Lieb (bb0315) 2006; 38 Alessi, Sakamoto, Bayascas (bb0540) 2006; 75 Feng, Davis (bb0370) 2000; 20 Ludin, Jiang, Carlson (bb0400) 1998; 95 Ozcan, Dover, Rosenwald, Wolfl, Johnston (bb0355) 1996; 93 Malave, Dent (bb0285) 2006; 84 Ozcan, Johnston (bb0005) 1999; 63 Johnston, Kim (bb0070) 2005; 33 Reifenberger, Freidel, Ciriacy (bb0130) 1995; 16 Davie, Edmondson, Coco, Dent (bb0295) 2003; 278 Carlson (bb0075) 1999; 2 Liang, Gaber (bb0135) 1996; 7 Schmidt, McCartney, Zhang, Tillman, Solimeo, Wolfl, Almonte, Watkins (bb0190) 1999; 19 Nath, McCartney, Schmidt (bb0390) 2003; 23 Kim (bb0160) 2009; 91 Cannon, Tatchell (bb0435) 1987; 7 Lakshmanan, Mosley, Ozcan (bb0200) 2003; 44 Jouandot, Roy, Kim (bb0470) 2011; 112 Rolland, Winderickx, Thevelein (bb0100) 2002; 2 Krampe, Stamm, Hollenberg, Boles (bb0145) 1998; 441 Desimone, Laney (bb0320) 2010; 30 Crabtree (bb0055) 1929; 23 Smith, Johnson (bb0280) 2000; 25 Hsu, Sabatini (bb0035) 2008; 134 Inoki, Zhu, Guan (bb0545) 2003; 115 Toda, Cameron, Sass, Zoller, Wigler (bb0440) 1987; 50 Schultz, Marshall-Carlson, Carlson (bb0255) 1990; 10 Moriya, Johnston (bb0215) 2004; 101 Rolland, Winderickx, Thevelein (bb0010) 2001; 26 Hedbacker, Carlson (bb0505) 2006; 5 Thevelein, de Winde (bb0420) 1999; 33 Roy, Shin, Cho, Kim (bb0335) 2013; 24 Jiang, Carlson (bb0395) 1996; 10 Ozcan, Johnston (bb0125) 1995; 15 Kim (bb0155) 2004; 334 Reifenberger, Boles, Ciriacy (bb0115) 1997; 245 Mennella, Klinkenberg, Zitomer (bb0305) 2003; 2 Kolb, Eizirik (bb0030) 2012; 8 Ozcan (bb0090) 2002; 277 Treitel, Kuchin, Carlson (bb0350) 1998; 18 Babu, Deschenes, Robinson (bb0380) 2004; 279 Towle (bb0025) 2005; 16 Maier, Volker, Boles, Fuhrmann (bb0360) 2002; 2 Roth, Feng, Chen, Davis (bb0375) 2002; 159 Kim, Brachet, Moriya, Johnston (bb0240) 2006; 5 Lagunas (bb0060) 1979; 27 Boles, Hollenberg (bb0110) 1997; 21 Hardie, Carling, Carlson (bb0495) 1998; 67 Pasula, Chakraborty, Choi, Kim (bb0225) 2010; 11 Edmondson, Smith, Roth (bb0290) 1996; 10 Ebert, Firth, Ratcliffe (bb0520) 1995; 270 Gancedo (bb0080) 1998; 62 Flick, Spielewoy, Kalashnikova, Guaderrama, Zhu, Chang, Wittenberg (bb0175) 2003; 14 Vincent, Townley, Kuchin, Carlson (bb0500) 2001; 15 Gamo, Lafuente, Gancedo (bb0230) 1994; 176 Jabet, Sprague, VanDemark, Wolberger (bb0265) 2000; 275 Thevelein, Gelade, Holsbeeks, Lagatie, Popova, Rolland, Stolz, Van de Velde, Van Dijck, Vandormael, Van Nuland, Van Roey, Van Zeebroeck, Yan (bb0430) 2005; 33 Griggs, Johnston (bb0345) 1991; 88 Shaw, Lamia, Vasquez, Koo, Bardeesy, Depinho, Montminy, Cantley (bb0535) 2005; 310 Ye, Kruckeberg, Berden, van Dam (bb0515) 1999; 181 Gibson, Boulton, Box, Graham, Lawrence, Linforth, Smart (bb0140) 2008; 25 Ozcan, Dover, Johnston (bb0365) 1998; 17 Smith, Johnson (bb0270) 2000; 97 Lutfiyya, Johnston (bb0485) 1996; 16 Sprague, Redd, Johnson, Wolberger (bb0275) 2000; 19 Broach (bb0415) 1991; 7 Sabina, Johnston (bb0245) 2009; 284 Flick (10.1016/j.bbagen.2013.07.025_bb0175) 2003; 14 Shaw (10.1016/j.bbagen.2013.07.025_bb0535) 2005; 310 Jabet (10.1016/j.bbagen.2013.07.025_bb0265) 2000; 275 Roy (10.1016/j.bbagen.2013.07.025_bb0335) 2013; 24 Ozcan (10.1016/j.bbagen.2013.07.025_bb0090) 2002; 277 Busti (10.1016/j.bbagen.2013.07.025_bb0020) 2010; 10 Panozzo (10.1016/j.bbagen.2013.07.025_bb0170) 1997; 272 Kim (10.1016/j.bbagen.2013.07.025_bb0240) 2006; 5 Smith (10.1016/j.bbagen.2013.07.025_bb0270) 2000; 97 Gamo (10.1016/j.bbagen.2013.07.025_bb0230) 1994; 176 Hanlon (10.1016/j.bbagen.2013.07.025_bb0325) 2011; 6 Thevelein (10.1016/j.bbagen.2013.07.025_bb0420) 1999; 33 Hubbard (10.1016/j.bbagen.2013.07.025_bb0185) 1994; 14 Rolland (10.1016/j.bbagen.2013.07.025_bb0425) 2000; 38 Rolland (10.1016/j.bbagen.2013.07.025_bb0100) 2002; 2 Lakshmanan (10.1016/j.bbagen.2013.07.025_bb0200) 2003; 44 Ye (10.1016/j.bbagen.2013.07.025_bb0515) 1999; 181 Mennella (10.1016/j.bbagen.2013.07.025_bb0305) 2003; 2 Cannon (10.1016/j.bbagen.2013.07.025_bb0435) 1987; 7 Malave (10.1016/j.bbagen.2013.07.025_bb0285) 2006; 84 Davie (10.1016/j.bbagen.2013.07.025_bb0295) 2003; 278 Griggs (10.1016/j.bbagen.2013.07.025_bb0345) 1991; 88 Hardie (10.1016/j.bbagen.2013.07.025_bb0495) 1998; 67 Maier (10.1016/j.bbagen.2013.07.025_bb0360) 2002; 2 Sprague (10.1016/j.bbagen.2013.07.025_bb0275) 2000; 19 Maxwell (10.1016/j.bbagen.2013.07.025_bb0530) 1999; 399 Mosley (10.1016/j.bbagen.2013.07.025_bb0180) 2003; 278 Gancedo (10.1016/j.bbagen.2013.07.025_bb0120) 2008; 32 Vander Heiden (10.1016/j.bbagen.2013.07.025_bb0040) 2009; 324 Shaw (10.1016/j.bbagen.2013.07.025_bb0550) 2006; 18 Ozcan (10.1016/j.bbagen.2013.07.025_bb0005) 1999; 63 Toda (10.1016/j.bbagen.2013.07.025_bb0440) 1987; 50 Varanasi (10.1016/j.bbagen.2013.07.025_bb0250) 1996; 16 Schultz (10.1016/j.bbagen.2013.07.025_bb0255) 1990; 10 Hong (10.1016/j.bbagen.2013.07.025_bb0385) 2003; 100 Nath (10.1016/j.bbagen.2013.07.025_bb0390) 2003; 23 Ozcan (10.1016/j.bbagen.2013.07.025_bb0365) 1998; 17 Diaz-Ruiz (10.1016/j.bbagen.2013.07.025_bb0105) 2009; 1796 Jiang (10.1016/j.bbagen.2013.07.025_bb0395) 1996; 10 Gancedo (10.1016/j.bbagen.2013.07.025_bb0080) 1998; 62 Ozcan (10.1016/j.bbagen.2013.07.025_bb0165) 1996; 16 Babu (10.1016/j.bbagen.2013.07.025_bb0380) 2004; 279 Santangelo (10.1016/j.bbagen.2013.07.025_bb0015) 2006; 70 Gibson (10.1016/j.bbagen.2013.07.025_bb0140) 2008; 25 Thevelein (10.1016/j.bbagen.2013.07.025_bb0430) 2005; 33 Lafuente (10.1016/j.bbagen.2013.07.025_bb0195) 2000; 35 Kim (10.1016/j.bbagen.2013.07.025_bb0150) 2003; 23 Wilson (10.1016/j.bbagen.2013.07.025_bb0490) 1996; 6 Broach (10.1016/j.bbagen.2013.07.025_bb0095) 2012; 192 Smith (10.1016/j.bbagen.2013.07.025_bb0280) 2000; 25 Towle (10.1016/j.bbagen.2013.07.025_bb0025) 2005; 16 Lagunas (10.1016/j.bbagen.2013.07.025_bb0060) 1979; 27 Kaniak (10.1016/j.bbagen.2013.07.025_bb0065) 2004; 3 Vincent (10.1016/j.bbagen.2013.07.025_bb0500) 2001; 15 Ozcan (10.1016/j.bbagen.2013.07.025_bb0125) 1995; 15 Kim (10.1016/j.bbagen.2013.07.025_bb0155) 2004; 334 Mandelkern (10.1016/j.bbagen.2013.07.025_bb0050) 2002; 1 Palomino (10.1016/j.bbagen.2013.07.025_bb0410) 2006; 34 Edmondson (10.1016/j.bbagen.2013.07.025_bb0290) 1996; 10 Tanaka (10.1016/j.bbagen.2013.07.025_bb0450) 1990; 60 Pasula (10.1016/j.bbagen.2013.07.025_bb0225) 2010; 11 Kuchin (10.1016/j.bbagen.2013.07.025_bb0475) 2003; 163 Wong (10.1016/j.bbagen.2013.07.025_bb0330) 2011; 25 Jouandot (10.1016/j.bbagen.2013.07.025_bb0470) 2011; 112 Versele (10.1016/j.bbagen.2013.07.025_bb0460) 1999; 18 Moriya (10.1016/j.bbagen.2013.07.025_bb0215) 2004; 101 Nehlin (10.1016/j.bbagen.2013.07.025_bb0340) 1990; 9 Sabina (10.1016/j.bbagen.2013.07.025_bb0245) 2009; 284 Buck (10.1016/j.bbagen.2013.07.025_bb0315) 2006; 38 Hedbacker (10.1016/j.bbagen.2013.07.025_bb0505) 2006; 5 Ebert (10.1016/j.bbagen.2013.07.025_bb0520) 1995; 270 Crabtree (10.1016/j.bbagen.2013.07.025_bb0055) 1929; 23 Reifenberger (10.1016/j.bbagen.2013.07.025_bb0130) 1995; 16 Meijer (10.1016/j.bbagen.2013.07.025_bb0510) 1998; 273 Desimone (10.1016/j.bbagen.2013.07.025_bb0320) 2010; 30 Lutfiyya (10.1016/j.bbagen.2013.07.025_bb0485) 1996; 16 Kim (10.1016/j.bbagen.2013.07.025_bb0160) 2009; 91 Pasula (10.1016/j.bbagen.2013.07.025_bb0220) 2007; 581 Ozcan (10.1016/j.bbagen.2013.07.025_bb0355) 1996; 93 Edelman (10.1016/j.bbagen.2013.07.025_bb0465) 1987; 56 Rolland (10.1016/j.bbagen.2013.07.025_bb0010) 2001; 26 Kolb (10.1016/j.bbagen.2013.07.025_bb0030) 2012; 8 Kim (10.1016/j.bbagen.2013.07.025_bb0405) 2006; 281 Inoki (10.1016/j.bbagen.2013.07.025_bb0545) 2003; 115 Tomas-Cobos (10.1016/j.bbagen.2013.07.025_bb0205) 2004; 279 Toda (10.1016/j.bbagen.2013.07.025_bb0445) 1985; 40 Feng (10.1016/j.bbagen.2013.07.025_bb0370) 2000; 20 Colombo (10.1016/j.bbagen.2013.07.025_bb0455) 1998; 17 Reifenberger (10.1016/j.bbagen.2013.07.025_bb0115) 1997; 245 Hsu (10.1016/j.bbagen.2013.07.025_bb0035) 2008; 134 Smith (10.1016/j.bbagen.2013.07.025_bb0260) 1995; 9 Warburg (10.1016/j.bbagen.2013.07.025_bb0045) 1956; 123 Schmidt (10.1016/j.bbagen.2013.07.025_bb0190) 1999; 19 Liang (10.1016/j.bbagen.2013.07.025_bb0135) 1996; 7 Hedbacker (10.1016/j.bbagen.2013.07.025_bb0085) 2008; 13 Carlson (10.1016/j.bbagen.2013.07.025_bb0075) 1999; 2 Johnston (10.1016/j.bbagen.2013.07.025_bb0070) 2005; 33 Polish (10.1016/j.bbagen.2013.07.025_bb0210) 2005; 169 Wang (10.1016/j.bbagen.2013.07.025_bb0525) 1995; 92 Ludin (10.1016/j.bbagen.2013.07.025_bb0400) 1998; 95 Lutfiyya (10.1016/j.bbagen.2013.07.025_bb0480) 1998; 150 Roth (10.1016/j.bbagen.2013.07.025_bb0375) 2002; 159 Treitel (10.1016/j.bbagen.2013.07.025_bb0350) 1998; 18 Proft (10.1016/j.bbagen.2013.07.025_bb0300) 2002; 9 Alessi (10.1016/j.bbagen.2013.07.025_bb0540) 2006; 75 Boles (10.1016/j.bbagen.2013.07.025_bb0110) 1997; 21 Schulte (10.1016/j.bbagen.2013.07.025_bb0235) 2000; 182 Papamichos-Chronakis (10.1016/j.bbagen.2013.07.025_bb0310) 2004; 5 Broach (10.1016/j.bbagen.2013.07.025_bb0415) 1991; 7 Krampe (10.1016/j.bbagen.2013.07.025_bb0145) 1998; 441 17981722 - Front Biosci. 2008;13:2408-20 19720826 - J Biol Chem. 2009 Oct 23;284(43):29635-43 12861007 - Mol Cell Biol. 2003 Aug;23(15):5208-16 22964838 - Genetics. 2012 Sep;192(1):73-105 16308421 - Science. 2005 Dec 9;310(5754):1642-6 15031717 - EMBO Rep. 2004 Apr;5(4):368-72 21748783 - J Cell Biochem. 2011 Nov;112(11):3268-75 9278448 - J Biol Chem. 1997 Sep 5;272(36):22859-65 12351652 - J Biol Chem. 2002 Dec 6;277(49):46993-7 17046224 - Curr Opin Cell Biol. 2006 Dec;18(6):598-608 2823100 - Mol Cell Biol. 1987 Aug;7(8):2653-63 10523302 - EMBO J. 1999 Oct 15;18(20):5577-91 12925759 - Mol Biol Cell. 2003 Aug;14(8):3230-41 8985180 - Genes Dev. 1996 Dec 15;10(24):3105-15 16524925 - Microbiol Mol Biol Rev. 2006 Mar;70(1):253-82 2167835 - EMBO J. 1990 Sep;9(9):2891-8 2201901 - Mol Cell Biol. 1990 Sep;10(9):4744-56 11069660 - Mol Microbiol. 2000 Oct;38(2):348-58 9774644 - Mol Cell Biol. 1998 Nov;18(11):6273-80 15105419 - J Biol Chem. 2004 Jun 25;279(26):27138-47 20439496 - Mol Cell Biol. 2010 Jul;30(13):3342-56 7862149 - Mol Cell Biol. 1995 Mar;15(3):1564-72 16744238 - Biochem J. 1929;23(3):536-45 22156212 - Genes Dev. 2011 Dec 1;25(23):2525-39 7651133 - Mol Microbiol. 1995 Apr;16(1):157-67 20205947 - BMC Cell Biol. 2010;11:17 15489524 - Genetics. 2005 Feb;169(2):583-94 8901598 - Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12428-32 18668645 - Yeast. 2008 Aug;25(8):549-62 14651849 - Cell. 2003 Nov 26;115(5):577-90 8943325 - Mol Cell Biol. 1996 Dec;16(12):6707-14 8939604 - Curr Biol. 1996 Nov 1;6(11):1426-34 12527758 - J Biol Chem. 2003 Mar 21;278(12):10322-7 19682552 - Biochim Biophys Acta. 2009 Dec;1796(2):252-65 14755054 - Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1572-7 16400179 - Eukaryot Cell. 2006 Jan;5(1):167-73 8675011 - Genes Dev. 1996 May 15;10(10):1247-59 9727030 - J Biol Chem. 1998 Sep 11;273(37):24102-7 16756488 - Annu Rev Biochem. 2006;75:137-63 7539918 - Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5510-4 16844691 - J Biol Chem. 2006 Sep 8;281(36):26144-9 13298683 - Science. 1956 Feb 24;123(3191):309-14 10476026 - Mol Microbiol. 1999 Sep;33(5):904-18 15667318 - Biochem Soc Trans. 2005 Feb;33(Pt 1):247-52 22219709 - Sensors (Basel). 2010;10(6):6195-240 1848378 - Trends Genet. 1991 Jan;7(1):28-33 12625770 - Technol Cancer Res Treat. 2002 Dec;1(6):423-39 10419970 - J Bacteriol. 1999 Aug;181(15):4673-5 11343924 - Trends Biochem Sci. 2001 May;26(5):310-7 14871952 - Eukaryot Cell. 2004 Feb;3(1):221-31 17071825 - Eukaryot Cell. 2006 Dec;5(12):1950-6 10871883 - Trends Biochem Sci. 2000 Jul;25(7):325-30 15494148 - Anal Biochem. 2004 Nov 15;334(2):401-2 12748292 - Mol Cell Biol. 2003 Jun;23(11):3909-17 8114728 - Mol Cell Biol. 1994 Mar;14(3):1972-8 18775299 - Cell. 2008 Sep 5;134(5):703-7 21552514 - PLoS One. 2011;6(4):e19060 14508605 - Curr Genet. 2003 Oct;44(1):19-25 2956925 - Annu Rev Biochem. 1987;56:567-613 2981630 - Cell. 1985 Jan;40(1):27-36 3036373 - Cell. 1987 Jul 17;50(2):277-87 16528100 - Nucleic Acids Res. 2006;34(5):1427-38 18559076 - FEMS Microbiol Rev. 2008 Jul;32(4):673-704 10759558 - Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):3901-6 17099712 - Nat Genet. 2006 Dec;38(12):1446-51 14525981 - J Biol Chem. 2003 Dec 12;278(50):50158-62 2178777 - Cell. 1990 Mar 9;60(5):803-7 22024974 - Nat Rev Endocrinol. 2012 Mar;8(3):183-92 10477308 - Microbiol Mol Biol Rev. 1999 Sep;63(3):554-69 10353251 - Nature. 1999 May 20;399(6733):271-5 10373505 - Mol Cell Biol. 1999 Jul;19(7):4561-71 9151960 - Eur J Biochem. 1997 Apr 15;245(2):324-33 9564039 - EMBO J. 1998 May 1;17(9):2566-73 12370247 - J Cell Biol. 2002 Oct 14;159(1):23-8 23468525 - Mol Biol Cell. 2013 May;24(9):1493-503 18950675 - Biochimie. 2009 Feb;91(2):300-3 9618445 - Microbiol Mol Biol Rev. 1998 Jun;62(2):334-61 8970157 - Mol Biol Cell. 1996 Dec;7(12):1953-66 12086627 - Mol Cell. 2002 Jun;9(6):1307-17 10856245 - EMBO J. 2000 Jun 15;19(12):3016-27 12618390 - Genetics. 2003 Feb;163(2):507-14 9891967 - FEBS Lett. 1998 Dec 28;441(3):343-7 9832517 - Genetics. 1998 Dec;150(4):1377-91 17586499 - FEBS Lett. 2007 Jul 10;581(17):3230-4 10632886 - Mol Microbiol. 2000 Jan;35(1):161-72 15667319 - Biochem Soc Trans. 2005 Feb;33(Pt 1):253-6 11331606 - Genes Dev. 2001 May 1;15(9):1104-14 14665463 - Eukaryot Cell. 2003 Dec;2(6):1288-303 7498787 - Genes Dev. 1995 Dec 1;9(23):2903-10 1924319 - Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8597-601 10629208 - J Bacteriol. 2000 Jan;182(2):540-2 9628870 - EMBO J. 1998 Jun 15;17(12):3326-41 390364 - Mol Cell Biochem. 1979 Nov 1;27(3):139-46 9759505 - Annu Rev Biochem. 1998;67:821-55 12702270 - FEMS Yeast Res. 2002 Dec;2(4):539-50 10722750 - J Biol Chem. 2000 Mar 24;275(12):9011-8 8756637 - Mol Cell Biol. 1996 Sep;16(9):4790-7 16936817 - Biochem Cell Biol. 2006 Aug;84(4):437-43 15014083 - J Biol Chem. 2004 May 21;279(21):22010-9 10866691 - Mol Cell Biol. 2000 Jul;20(14):5350-9 12847291 - Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8839-43 8002563 - J Bacteriol. 1994 Dec;176(24):7423-9 9299703 - FEMS Microbiol Rev. 1997 Aug;21(1):85-111 8887670 - Mol Cell Biol. 1996 Nov;16(11):6419-26 19460998 - Science. 2009 May 22;324(5930):1029-33 16269245 - Trends Endocrinol Metab. 2005 Dec;16(10):489-94 10322167 - Curr Opin Microbiol. 1999 Apr;2(2):202-7 9600950 - Proc Natl Acad Sci U S A. 1998 May 26;95(11):6245-50 12702307 - FEMS Yeast Res. 2002 May;2(2):183-201 7493931 - J Biol Chem. 1995 Dec 8;270(49):29083-9 |
References_xml | – volume: 182 start-page: 540 year: 2000 end-page: 542 ident: bb0235 article-title: The HTR1 gene is a dominant negative mutant allele of MTH1 and blocks Snf3- and Rgt2-dependent glucose signaling in yeast publication-title: J. Bacteriol. – volume: 9 start-page: 2903 year: 1995 end-page: 2910 ident: bb0260 article-title: The tetratricopeptide repeats of Ssn6 interact with the homeo domain of alpha 2 publication-title: Genes Dev. – volume: 56 start-page: 567 year: 1987 end-page: 613 ident: bb0465 article-title: Protein serine/threonine kinases publication-title: Annu. Rev. Biochem. – volume: 115 start-page: 577 year: 2003 end-page: 590 ident: bb0545 article-title: TSC2 mediates cellular energy response to control cell growth and survival publication-title: Cell – volume: 279 start-page: 27138 year: 2004 end-page: 27147 ident: bb0380 article-title: Akr1p-dependent palmitoylation of Yck2p yeast casein kinase 1 is necessary and sufficient for plasma membrane targeting publication-title: J. Biol. Chem. – volume: 30 start-page: 3342 year: 2010 end-page: 3356 ident: bb0320 article-title: Corepressor-directed preacetylation of histone H3 in promoter chromatin primes rapid transcriptional switching of cell-type-specific genes in yeast publication-title: Mol. Cell. Biol. – volume: 23 start-page: 3909 year: 2003 end-page: 3917 ident: bb0390 article-title: Yeast Pak1 kinase associates with and activates Snf1 publication-title: Mol. Cell. Biol. – volume: 27 start-page: 139 year: 1979 end-page: 146 ident: bb0060 article-title: Energetic irrelevance of aerobiosis for publication-title: Mol. Cell. Biochem. – volume: 18 start-page: 6273 year: 1998 end-page: 6280 ident: bb0350 article-title: Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in publication-title: Mol. Cell. Biol. – volume: 159 start-page: 23 year: 2002 end-page: 28 ident: bb0375 article-title: The yeast DHHC cysteine-rich domain protein Akr1p is a palmitoyl transferase publication-title: J. Cell Biol. – volume: 2 start-page: 183 year: 2002 end-page: 201 ident: bb0100 article-title: Glucose-sensing and -signalling mechanisms in yeast publication-title: FEMS Yeast Res. – volume: 10 start-page: 1247 year: 1996 end-page: 1259 ident: bb0290 article-title: Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4 publication-title: Genes Dev. – volume: 310 start-page: 1642 year: 2005 end-page: 1646 ident: bb0535 article-title: The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin publication-title: Science – volume: 1 start-page: 423 year: 2002 end-page: 439 ident: bb0050 article-title: Positron emission tomography in cancer research and treatment publication-title: Technol. Cancer Res. Treat. – volume: 10 start-page: 4744 year: 1990 end-page: 4756 ident: bb0255 article-title: The N-terminal TPR region is the functional domain of SSN6, a nuclear phosphoprotein of publication-title: Mol. Cell. Biol. – volume: 324 start-page: 1029 year: 2009 end-page: 1033 ident: bb0040 article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation publication-title: Science – volume: 14 start-page: 1972 year: 1994 end-page: 1978 ident: bb0185 article-title: Dosage-dependent modulation of glucose repression by MSN3 (STD1) in publication-title: Mol. Cell. Biol. – volume: 21 start-page: 85 year: 1997 end-page: 111 ident: bb0110 article-title: The molecular genetics of hexose transport in yeasts publication-title: FEMS Microbiol. Rev. – volume: 278 start-page: 50158 year: 2003 end-page: 50162 ident: bb0295 article-title: Tup1–Ssn6 interacts with multiple class I histone deacetylases in vivo publication-title: J. Biol. Chem. – volume: 25 start-page: 325 year: 2000 end-page: 330 ident: bb0280 article-title: Turning genes off by Ssn6–Tup1: a conserved system of transcriptional repression in eukaryotes publication-title: Trends Biochem. Sci. – volume: 92 start-page: 5510 year: 1995 end-page: 5514 ident: bb0525 article-title: Hypoxia-inducible factor 1 is a basic-helix–loop–helix–PAS heterodimer regulated by cellular O publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 123 start-page: 309 year: 1956 end-page: 314 ident: bb0045 article-title: On the origin of cancer cells publication-title: Science – volume: 70 start-page: 253 year: 2006 end-page: 282 ident: bb0015 article-title: Glucose signaling in publication-title: Microbiol. Mol. Biol. Rev. – volume: 25 start-page: 549 year: 2008 end-page: 562 ident: bb0140 article-title: Carbohydrate utilization and the lager yeast transcriptome during brewery fermentation publication-title: Yeast – volume: 50 start-page: 277 year: 1987 end-page: 287 ident: bb0440 article-title: Three different genes in publication-title: Cell – volume: 34 start-page: 1427 year: 2006 end-page: 1438 ident: bb0410 article-title: Tpk3 and Snf1 protein kinases regulate Rgt1 association with publication-title: Nucleic Acids Res. – volume: 84 start-page: 437 year: 2006 end-page: 443 ident: bb0285 article-title: Transcriptional repression by Tup1–Ssn6 publication-title: Biochem. Cell Biol. – volume: 20 start-page: 5350 year: 2000 end-page: 5359 ident: bb0370 article-title: Akr1p and the type I casein kinases act prior to the ubiquitination step of yeast endocytosis: Akr1p is required for kinase localization to the plasma membrane publication-title: Mol. Cell. Biol. – volume: 91 start-page: 300 year: 2009 end-page: 303 ident: bb0160 article-title: DNA-binding properties of the yeast Rgt1 repressor publication-title: Biochimie – volume: 245 start-page: 324 year: 1997 end-page: 333 ident: bb0115 article-title: Kinetic characterization of individual hexose transporters of publication-title: Eur. J. Biochem. – volume: 32 start-page: 673 year: 2008 end-page: 704 ident: bb0120 article-title: The early steps of glucose signalling in yeast publication-title: FEMS Microbiol. Rev. – volume: 2 start-page: 539 year: 2002 end-page: 550 ident: bb0360 article-title: Characterisation of glucose transport in publication-title: FEMS Yeast Res. – volume: 192 start-page: 73 year: 2012 end-page: 105 ident: bb0095 article-title: Nutritional control of growth and development in yeast publication-title: Genetics – volume: 273 start-page: 24102 year: 1998 end-page: 24107 ident: bb0510 article-title: Glucose repression in publication-title: J. Biol. Chem. – volume: 441 start-page: 343 year: 1998 end-page: 347 ident: bb0145 article-title: Catabolite inactivation of the high-affinity hexose transporters Hxt6 and Hxt7 of publication-title: FEBS Lett. – volume: 33 start-page: 247 year: 2005 end-page: 252 ident: bb0070 article-title: Glucose as a hormone: receptor-mediated glucose sensing in the yeast publication-title: Biochem. Soc. Trans. – volume: 176 start-page: 7423 year: 1994 end-page: 7429 ident: bb0230 article-title: The mutation DGT1-1 decreases glucose transport and alleviates carbon catabolite repression in publication-title: J. Bacteriol. – volume: 38 start-page: 1446 year: 2006 end-page: 1451 ident: bb0315 article-title: A chromatin-mediated mechanism for specification of conditional transcription factor targets publication-title: Nat. Genet. – volume: 93 start-page: 12428 year: 1996 end-page: 12432 ident: bb0355 article-title: Two glucose transporters in publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 18 start-page: 5577 year: 1999 end-page: 5591 ident: bb0460 article-title: A novel regulator of G protein signalling in yeast, Rgs2, downregulates glucose-activation of the cAMP pathway through direct inhibition of Gpa2 publication-title: EMBO J. – volume: 6 start-page: 1426 year: 1996 end-page: 1434 ident: bb0490 article-title: Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio publication-title: Curr. Biol. – volume: 88 start-page: 8597 year: 1991 end-page: 8601 ident: bb0345 article-title: Regulated expression of the GAL4 activator gene in yeast provides a sensitive genetic switch for glucose repression publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 284 start-page: 29635 year: 2009 end-page: 29643 ident: bb0245 article-title: Asymmetric signal transduction through paralogs that comprise a genetic switch for sugar sensing in publication-title: J. Biol. Chem. – volume: 23 start-page: 536 year: 1929 end-page: 545 ident: bb0055 article-title: Observations on the carbohydrate metabolism of tumours publication-title: Biochem. J. – volume: 17 start-page: 3326 year: 1998 end-page: 3341 ident: bb0455 article-title: Involvement of distinct G-proteins, Gpa2 and Ras, in glucose- and intracellular acidification-induced cAMP signalling in the yeast publication-title: EMBO J. – volume: 10 start-page: 6195 year: 2010 end-page: 6240 ident: bb0020 article-title: Glucose signaling-mediated coordination of cell growth and cell cycle in publication-title: Sensors – volume: 3 start-page: 221 year: 2004 end-page: 231 ident: bb0065 article-title: Regulatory network connecting two glucose signal transduction pathways in publication-title: Eukaryot. Cell – volume: 270 start-page: 29083 year: 1995 end-page: 29089 ident: bb0520 article-title: Hypoxia and mitochondrial inhibitors regulate expression of glucose transporter-1 via distinct Cis-acting sequences publication-title: J. Biol. Chem. – volume: 18 start-page: 598 year: 2006 end-page: 608 ident: bb0550 article-title: Glucose metabolism and cancer publication-title: Curr. Opin. Cell Biol. – volume: 7 start-page: 2653 year: 1987 end-page: 2663 ident: bb0435 article-title: Characterization of publication-title: Mol. Cell. Biol. – volume: 8 start-page: 183 year: 2012 end-page: 192 ident: bb0030 article-title: Resistance to type 2 diabetes mellitus: a matter of hormesis? publication-title: Nat. Rev. Endocrinol. – volume: 279 start-page: 22010 year: 2004 end-page: 22019 ident: bb0205 article-title: Expression of the HXT1 low affinity glucose transporter requires the coordinated activities of the HOG and glucose signalling pathways publication-title: J. Biol. Chem. – volume: 7 start-page: 28 year: 1991 end-page: 33 ident: bb0415 article-title: RAS genes in publication-title: Trends Genet. – volume: 2 start-page: 1288 year: 2003 end-page: 1303 ident: bb0305 article-title: Recruitment of Tup1–Ssn6 by yeast hypoxic genes and chromatin-independent exclusion of TATA binding protein publication-title: Eukaryot. Cell – volume: 10 start-page: 3105 year: 1996 end-page: 3115 ident: bb0395 article-title: Glucose regulates protein interactions within the yeast SNF1 protein kinase complex publication-title: Genes Dev. – volume: 16 start-page: 4790 year: 1996 end-page: 4797 ident: bb0485 article-title: Two zinc-finger-containing repressors are responsible for glucose repression of SUC2 expression publication-title: Mol. Cell. Biol. – volume: 278 start-page: 10322 year: 2003 end-page: 10327 ident: bb0180 article-title: Glucose-mediated phosphorylation converts the transcription factor Rgt1 from a repressor to an activator publication-title: J. Biol. Chem. – volume: 17 start-page: 2566 year: 1998 end-page: 2573 ident: bb0365 article-title: Glucose sensing and signaling by two glucose receptors in the yeast publication-title: EMBO J. – volume: 75 start-page: 137 year: 2006 end-page: 163 ident: bb0540 article-title: LKB1-dependent signaling pathways publication-title: Annu. Rev. Biochem. – volume: 63 start-page: 554 year: 1999 end-page: 569 ident: bb0005 article-title: Function and regulation of yeast hexose transporters publication-title: Microbiol. Mol. Biol. Rev. – volume: 581 start-page: 3230 year: 2007 end-page: 3234 ident: bb0220 article-title: Biochemical evidence for glucose-independent induction of HXT expression in publication-title: FEBS Lett. – volume: 16 start-page: 6707 year: 1996 end-page: 6714 ident: bb0250 article-title: The Cyc8 (Ssn6)–Tup1 corepressor complex is composed of one Cyc8 and four Tup1 subunits publication-title: Mol. Cell. Biol. – volume: 272 start-page: 22859 year: 1997 end-page: 22865 ident: bb0170 article-title: The zinc binuclear cluster activator AlcR is able to bind to single sites but requires multiple repeated sites for synergistic activation of the alcA gene in publication-title: J. Biol. Chem. – volume: 6 start-page: e19060 year: 2011 ident: bb0325 article-title: The stress response factors Yap6, Cin5, Phd1, and Skn7 direct targeting of the conserved co-repressor Tup1–Ssn6 in publication-title: PLoS One – volume: 33 start-page: 253 year: 2005 end-page: 256 ident: bb0430 article-title: Nutrient sensing systems for rapid activation of the protein kinase A pathway in yeast publication-title: Biochem. Soc. Trans. – volume: 15 start-page: 1104 year: 2001 end-page: 1114 ident: bb0500 article-title: Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism publication-title: Genes Dev. – volume: 150 start-page: 1377 year: 1998 end-page: 1391 ident: bb0480 article-title: Characterization of three related glucose repressors and genes they regulate in publication-title: Genetics – volume: 181 start-page: 4673 year: 1999 end-page: 4675 ident: bb0515 article-title: Growth and glucose repression are controlled by glucose transport in publication-title: J. Bacteriol. – volume: 38 start-page: 348 year: 2000 end-page: 358 ident: bb0425 article-title: Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process publication-title: Mol. Microbiol. – volume: 399 start-page: 271 year: 1999 end-page: 275 ident: bb0530 article-title: The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis publication-title: Nature – volume: 2 start-page: 202 year: 1999 end-page: 207 ident: bb0075 article-title: Glucose repression in yeast publication-title: Curr. Opin. Microbiol. – volume: 5 start-page: 1950 year: 2006 end-page: 1956 ident: bb0505 article-title: Regulation of the nucleocytoplasmic distribution of Snf1–Gal83 protein kinase publication-title: Eukaryot. Cell – volume: 33 start-page: 904 year: 1999 end-page: 918 ident: bb0420 article-title: Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast publication-title: Mol. Microbiol. – volume: 9 start-page: 1307 year: 2002 end-page: 1317 ident: bb0300 article-title: Hog1 kinase converts the Sko1–Cyc8–Tup1 repressor complex into an activator that recruits SAGA and SWI/SNF in response to osmotic stress publication-title: Mol. Cell – volume: 23 start-page: 5208 year: 2003 end-page: 5216 ident: bb0150 article-title: Specificity and regulation of DNA binding by the yeast glucose transporter gene repressor Rgt1 publication-title: Mol. Cell. Biol. – volume: 67 start-page: 821 year: 1998 end-page: 855 ident: bb0495 article-title: The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? publication-title: Annu. Rev. Biochem. – volume: 16 start-page: 6419 year: 1996 end-page: 6426 ident: bb0165 article-title: Rgt1p of publication-title: Mol. Cell. Biol. – volume: 95 start-page: 6245 year: 1998 end-page: 6250 ident: bb0400 article-title: Glucose-regulated interaction of a regulatory subunit of protein phosphatase 1 with the Snf1 protein kinase in publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 163 start-page: 507 year: 2003 end-page: 514 ident: bb0475 article-title: Std1p (Msn3p) positively regulates the Snf1 kinase in publication-title: Genetics – volume: 40 start-page: 27 year: 1985 end-page: 36 ident: bb0445 article-title: In yeast, RAS proteins are controlling elements of adenylate cyclase publication-title: Cell – volume: 19 start-page: 3016 year: 2000 end-page: 3027 ident: bb0275 article-title: Structure of the C-terminal domain of Tup1, a corepressor of transcription in yeast publication-title: EMBO J. – volume: 9 start-page: 2891 year: 1990 end-page: 2898 ident: bb0340 article-title: Yeast MIG1 repressor is related to the mammalian early growth response and Wilms' tumour finger proteins publication-title: EMBO J. – volume: 25 start-page: 2525 year: 2011 end-page: 2539 ident: bb0330 article-title: The Cyc8–Tup1 complex inhibits transcription primarily by masking the activation domain of the recruiting protein publication-title: Genes Dev. – volume: 7 start-page: 1953 year: 1996 end-page: 1966 ident: bb0135 article-title: A novel signal transduction pathway in publication-title: Mol. Biol. Cell – volume: 1796 start-page: 252 year: 2009 end-page: 265 ident: bb0105 article-title: Tumor cell energy metabolism and its common features with yeast metabolism publication-title: Biochim. Biophys. Acta – volume: 19 start-page: 4561 year: 1999 end-page: 4571 ident: bb0190 article-title: Std1 and Mth1 proteins interact with the glucose sensors to control glucose-regulated gene expression in publication-title: Mol. Cell. Biol. – volume: 14 start-page: 3230 year: 2003 end-page: 3241 ident: bb0175 article-title: Grr1-dependent inactivation of Mth1 mediates glucose-induced dissociation of Rgt1 from HXT gene promoters publication-title: Mol. Biol. Cell – volume: 44 start-page: 19 year: 2003 end-page: 25 ident: bb0200 article-title: Repression of transcription by Rgt1 in the absence of glucose requires Std1 and Mth1 publication-title: Curr. Genet. – volume: 13 start-page: 2408 year: 2008 end-page: 2420 ident: bb0085 article-title: SNF1/AMPK pathways in yeast publication-title: Front. Biosci. – volume: 275 start-page: 9011 year: 2000 end-page: 9018 ident: bb0265 article-title: Characterization of the N-terminal domain of the yeast transcriptional repressor Tup1. Proposal for an association model of the repressor complex Tup1 publication-title: J. Biol. Chem. – volume: 334 start-page: 401 year: 2004 end-page: 402 ident: bb0155 article-title: Immobilized DNA-binding assay, an approach for in vitro DNA-binding assay publication-title: Anal. Biochem. – volume: 100 start-page: 8839 year: 2003 end-page: 8843 ident: bb0385 article-title: Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 277 start-page: 46993 year: 2002 end-page: 46997 ident: bb0090 article-title: Two different signals regulate repression and induction of gene expression by glucose publication-title: J. Biol. Chem. – volume: 97 start-page: 3901 year: 2000 end-page: 3906 ident: bb0270 article-title: A sequence resembling a peroxisomal targeting sequence directs the interaction between the tetratricopeptide repeats of Ssn6 and the homeodomain of alpha 2 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 60 start-page: 803 year: 1990 end-page: 807 ident: bb0450 article-title: genes IRA1 and IRA2 encode proteins that may be functionally equivalent to mammalian ras GTPase activating protein publication-title: Cell – volume: 101 start-page: 1572 year: 2004 end-page: 1577 ident: bb0215 article-title: Glucose sensing and signaling in publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 112 start-page: 3268 year: 2011 end-page: 3275 ident: bb0470 article-title: Functional dissection of the glucose signaling pathways that regulate the yeast glucose transporter gene (HXT) repressor Rgt1 publication-title: J. Cell. Biochem. – volume: 16 start-page: 157 year: 1995 end-page: 167 ident: bb0130 article-title: Identification of novel HXT genes in publication-title: Mol. Microbiol. – volume: 26 start-page: 310 year: 2001 end-page: 317 ident: bb0010 article-title: Glucose-sensing mechanisms in eukaryotic cells publication-title: Trends Biochem. Sci. – volume: 11 year: 2010 ident: bb0225 article-title: Role of casein kinase 1 in the glucose sensor-mediated signaling pathway in yeast publication-title: BMC Cell Biol. – volume: 62 start-page: 334 year: 1998 end-page: 361 ident: bb0080 article-title: Yeast carbon catabolite repression publication-title: Microbiol. Mol. Biol. Rev. – volume: 5 start-page: 167 year: 2006 end-page: 173 ident: bb0240 article-title: Integration of transcriptional and posttranslational regulation in a glucose signal transduction pathway in publication-title: Eukaryot. Cell – volume: 15 start-page: 1564 year: 1995 end-page: 1572 ident: bb0125 article-title: Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose publication-title: Mol. Cell. Biol. – volume: 169 start-page: 583 year: 2005 end-page: 594 ident: bb0210 article-title: How the Rgt1 transcription factor of publication-title: Genetics – volume: 16 start-page: 489 year: 2005 end-page: 494 ident: bb0025 article-title: Glucose as a regulator of eukaryotic gene transcription publication-title: Trends Endocrinol. Metab. – volume: 5 start-page: 368 year: 2004 end-page: 372 ident: bb0310 article-title: The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8–Tup1 co-repressor publication-title: EMBO Rep. – volume: 281 start-page: 26144 year: 2006 end-page: 26149 ident: bb0405 article-title: Two glucose-sensing pathways converge on Rgt1 to regulate expression of glucose transporter genes in publication-title: J. Biol. Chem. – volume: 24 start-page: 1493 year: 2013 end-page: 1503 ident: bb0335 article-title: Mth1 regulates the interaction between the Rgt1 repressor and the Ssn6–Tup1 corepressor complex by modulating PKA-dependent phosphorylation of Rgt1 publication-title: Mol. Biol. Cell – volume: 35 start-page: 161 year: 2000 end-page: 172 ident: bb0195 article-title: Mth1 receives the signal given by the glucose sensors Snf3 and Rgt2 in publication-title: Mol. Microbiol. – volume: 134 start-page: 703 year: 2008 end-page: 707 ident: bb0035 article-title: Cancer cell metabolism: Warburg and beyond publication-title: Cell – volume: 273 start-page: 24102 year: 1998 ident: 10.1016/j.bbagen.2013.07.025_bb0510 article-title: Glucose repression in Saccharomyces cerevisiae is related to the glucose concentration rather than the glucose flux publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.37.24102 – volume: 8 start-page: 183 year: 2012 ident: 10.1016/j.bbagen.2013.07.025_bb0030 article-title: Resistance to type 2 diabetes mellitus: a matter of hormesis? publication-title: Nat. Rev. Endocrinol. doi: 10.1038/nrendo.2011.158 – volume: 18 start-page: 6273 year: 1998 ident: 10.1016/j.bbagen.2013.07.025_bb0350 article-title: Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.18.11.6273 – volume: 23 start-page: 536 year: 1929 ident: 10.1016/j.bbagen.2013.07.025_bb0055 article-title: Observations on the carbohydrate metabolism of tumours publication-title: Biochem. J. doi: 10.1042/bj0230536 – volume: 23 start-page: 5208 year: 2003 ident: 10.1016/j.bbagen.2013.07.025_bb0150 article-title: Specificity and regulation of DNA binding by the yeast glucose transporter gene repressor Rgt1 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.23.15.5208-5216.2003 – volume: 23 start-page: 3909 year: 2003 ident: 10.1016/j.bbagen.2013.07.025_bb0390 article-title: Yeast Pak1 kinase associates with and activates Snf1 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.23.11.3909-3917.2003 – volume: 84 start-page: 437 year: 2006 ident: 10.1016/j.bbagen.2013.07.025_bb0285 article-title: Transcriptional repression by Tup1–Ssn6 publication-title: Biochem. Cell Biol. – volume: 16 start-page: 489 year: 2005 ident: 10.1016/j.bbagen.2013.07.025_bb0025 article-title: Glucose as a regulator of eukaryotic gene transcription publication-title: Trends Endocrinol. Metab. doi: 10.1016/j.tem.2005.10.003 – volume: 2 start-page: 183 year: 2002 ident: 10.1016/j.bbagen.2013.07.025_bb0100 article-title: Glucose-sensing and -signalling mechanisms in yeast publication-title: FEMS Yeast Res. doi: 10.1111/j.1567-1364.2002.tb00084.x – volume: 279 start-page: 22010 year: 2004 ident: 10.1016/j.bbagen.2013.07.025_bb0205 article-title: Expression of the HXT1 low affinity glucose transporter requires the coordinated activities of the HOG and glucose signalling pathways publication-title: J. Biol. Chem. doi: 10.1074/jbc.M400609200 – volume: 334 start-page: 401 year: 2004 ident: 10.1016/j.bbagen.2013.07.025_bb0155 article-title: Immobilized DNA-binding assay, an approach for in vitro DNA-binding assay publication-title: Anal. Biochem. doi: 10.1016/j.ab.2004.06.045 – volume: 123 start-page: 309 year: 1956 ident: 10.1016/j.bbagen.2013.07.025_bb0045 article-title: On the origin of cancer cells publication-title: Science doi: 10.1126/science.123.3191.309 – volume: 9 start-page: 2891 year: 1990 ident: 10.1016/j.bbagen.2013.07.025_bb0340 article-title: Yeast MIG1 repressor is related to the mammalian early growth response and Wilms' tumour finger proteins publication-title: EMBO J. doi: 10.1002/j.1460-2075.1990.tb07479.x – volume: 281 start-page: 26144 year: 2006 ident: 10.1016/j.bbagen.2013.07.025_bb0405 article-title: Two glucose-sensing pathways converge on Rgt1 to regulate expression of glucose transporter genes in Saccharomyces cerevisiae publication-title: J. Biol. Chem. doi: 10.1074/jbc.M603636200 – volume: 16 start-page: 6419 year: 1996 ident: 10.1016/j.bbagen.2013.07.025_bb0165 article-title: Rgt1p of Saccharomyces cerevisiae, a key regulator of glucose-induced genes, is both an activator and a repressor of transcription publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.16.11.6419 – volume: 19 start-page: 4561 year: 1999 ident: 10.1016/j.bbagen.2013.07.025_bb0190 article-title: Std1 and Mth1 proteins interact with the glucose sensors to control glucose-regulated gene expression in Saccharomyces cerevisiae publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.19.7.4561 – volume: 245 start-page: 324 year: 1997 ident: 10.1016/j.bbagen.2013.07.025_bb0115 article-title: Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1997.00324.x – volume: 278 start-page: 50158 year: 2003 ident: 10.1016/j.bbagen.2013.07.025_bb0295 article-title: Tup1–Ssn6 interacts with multiple class I histone deacetylases in vivo publication-title: J. Biol. Chem. doi: 10.1074/jbc.M309753200 – volume: 91 start-page: 300 year: 2009 ident: 10.1016/j.bbagen.2013.07.025_bb0160 article-title: DNA-binding properties of the yeast Rgt1 repressor publication-title: Biochimie doi: 10.1016/j.biochi.2008.09.002 – volume: 17 start-page: 3326 year: 1998 ident: 10.1016/j.bbagen.2013.07.025_bb0455 article-title: Involvement of distinct G-proteins, Gpa2 and Ras, in glucose- and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae publication-title: EMBO J. doi: 10.1093/emboj/17.12.3326 – volume: 88 start-page: 8597 year: 1991 ident: 10.1016/j.bbagen.2013.07.025_bb0345 article-title: Regulated expression of the GAL4 activator gene in yeast provides a sensitive genetic switch for glucose repression publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.88.19.8597 – volume: 17 start-page: 2566 year: 1998 ident: 10.1016/j.bbagen.2013.07.025_bb0365 article-title: Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae publication-title: EMBO J. doi: 10.1093/emboj/17.9.2566 – volume: 324 start-page: 1029 year: 2009 ident: 10.1016/j.bbagen.2013.07.025_bb0040 article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation publication-title: Science doi: 10.1126/science.1160809 – volume: 272 start-page: 22859 year: 1997 ident: 10.1016/j.bbagen.2013.07.025_bb0170 article-title: The zinc binuclear cluster activator AlcR is able to bind to single sites but requires multiple repeated sites for synergistic activation of the alcA gene in Aspergillus nidulans publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.36.22859 – volume: 6 start-page: e19060 year: 2011 ident: 10.1016/j.bbagen.2013.07.025_bb0325 article-title: The stress response factors Yap6, Cin5, Phd1, and Skn7 direct targeting of the conserved co-repressor Tup1–Ssn6 in S. cerevisiae publication-title: PLoS One doi: 10.1371/journal.pone.0019060 – volume: 284 start-page: 29635 year: 2009 ident: 10.1016/j.bbagen.2013.07.025_bb0245 article-title: Asymmetric signal transduction through paralogs that comprise a genetic switch for sugar sensing in Saccharomyces cerevisiae publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.032102 – volume: 38 start-page: 348 year: 2000 ident: 10.1016/j.bbagen.2013.07.025_bb0425 article-title: Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2000.02125.x – volume: 95 start-page: 6245 year: 1998 ident: 10.1016/j.bbagen.2013.07.025_bb0400 article-title: Glucose-regulated interaction of a regulatory subunit of protein phosphatase 1 with the Snf1 protein kinase in Saccharomyces cerevisiae publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.95.11.6245 – volume: 18 start-page: 5577 year: 1999 ident: 10.1016/j.bbagen.2013.07.025_bb0460 article-title: A novel regulator of G protein signalling in yeast, Rgs2, downregulates glucose-activation of the cAMP pathway through direct inhibition of Gpa2 publication-title: EMBO J. doi: 10.1093/emboj/18.20.5577 – volume: 9 start-page: 1307 year: 2002 ident: 10.1016/j.bbagen.2013.07.025_bb0300 article-title: Hog1 kinase converts the Sko1–Cyc8–Tup1 repressor complex into an activator that recruits SAGA and SWI/SNF in response to osmotic stress publication-title: Mol. Cell doi: 10.1016/S1097-2765(02)00557-9 – volume: 34 start-page: 1427 year: 2006 ident: 10.1016/j.bbagen.2013.07.025_bb0410 article-title: Tpk3 and Snf1 protein kinases regulate Rgt1 association with Saccharomyces cerevisiae HXK2 promoter publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl028 – volume: 3 start-page: 221 year: 2004 ident: 10.1016/j.bbagen.2013.07.025_bb0065 article-title: Regulatory network connecting two glucose signal transduction pathways in Saccharomyces cerevisiae publication-title: Eukaryot. Cell doi: 10.1128/EC.3.1.221-231.2004 – volume: 7 start-page: 2653 year: 1987 ident: 10.1016/j.bbagen.2013.07.025_bb0435 article-title: Characterization of Saccharomyces cerevisiae genes encoding subunits of cyclic AMP-dependent protein kinase publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.7.8.2653 – volume: 14 start-page: 3230 year: 2003 ident: 10.1016/j.bbagen.2013.07.025_bb0175 article-title: Grr1-dependent inactivation of Mth1 mediates glucose-induced dissociation of Rgt1 from HXT gene promoters publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E03-03-0135 – volume: 5 start-page: 167 year: 2006 ident: 10.1016/j.bbagen.2013.07.025_bb0240 article-title: Integration of transcriptional and posttranslational regulation in a glucose signal transduction pathway in Saccharomyces cerevisiae publication-title: Eukaryot. Cell doi: 10.1128/EC.5.1.167-173.2006 – volume: 33 start-page: 247 year: 2005 ident: 10.1016/j.bbagen.2013.07.025_bb0070 article-title: Glucose as a hormone: receptor-mediated glucose sensing in the yeast Saccharomyces cerevisiae publication-title: Biochem. Soc. Trans. doi: 10.1042/BST0330247 – volume: 60 start-page: 803 year: 1990 ident: 10.1016/j.bbagen.2013.07.025_bb0450 article-title: S. cerevisiae genes IRA1 and IRA2 encode proteins that may be functionally equivalent to mammalian ras GTPase activating protein publication-title: Cell doi: 10.1016/0092-8674(90)90094-U – volume: 50 start-page: 277 year: 1987 ident: 10.1016/j.bbagen.2013.07.025_bb0440 article-title: Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase publication-title: Cell doi: 10.1016/0092-8674(87)90223-6 – volume: 14 start-page: 1972 year: 1994 ident: 10.1016/j.bbagen.2013.07.025_bb0185 article-title: Dosage-dependent modulation of glucose repression by MSN3 (STD1) in Saccharomyces cerevisiae publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.14.3.1972 – volume: 181 start-page: 4673 year: 1999 ident: 10.1016/j.bbagen.2013.07.025_bb0515 article-title: Growth and glucose repression are controlled by glucose transport in Saccharomyces cerevisiae cells containing only one glucose transporter publication-title: J. Bacteriol. doi: 10.1128/JB.181.15.4673-4675.1999 – volume: 24 start-page: 1493 year: 2013 ident: 10.1016/j.bbagen.2013.07.025_bb0335 article-title: Mth1 regulates the interaction between the Rgt1 repressor and the Ssn6–Tup1 corepressor complex by modulating PKA-dependent phosphorylation of Rgt1 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E13-01-0047 – volume: 277 start-page: 46993 year: 2002 ident: 10.1016/j.bbagen.2013.07.025_bb0090 article-title: Two different signals regulate repression and induction of gene expression by glucose publication-title: J. Biol. Chem. doi: 10.1074/jbc.M208726200 – volume: 182 start-page: 540 year: 2000 ident: 10.1016/j.bbagen.2013.07.025_bb0235 article-title: The HTR1 gene is a dominant negative mutant allele of MTH1 and blocks Snf3- and Rgt2-dependent glucose signaling in yeast publication-title: J. Bacteriol. doi: 10.1128/JB.182.2.540-542.2000 – volume: 10 start-page: 1247 year: 1996 ident: 10.1016/j.bbagen.2013.07.025_bb0290 article-title: Repression domain of the yeast global repressor Tup1 interacts directly with histones H3 and H4 publication-title: Genes Dev. doi: 10.1101/gad.10.10.1247 – volume: 70 start-page: 253 year: 2006 ident: 10.1016/j.bbagen.2013.07.025_bb0015 article-title: Glucose signaling in Saccharomyces cerevisiae publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.70.1.253-282.2006 – volume: 67 start-page: 821 year: 1998 ident: 10.1016/j.bbagen.2013.07.025_bb0495 article-title: The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.67.1.821 – volume: 62 start-page: 334 year: 1998 ident: 10.1016/j.bbagen.2013.07.025_bb0080 article-title: Yeast carbon catabolite repression publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.62.2.334-361.1998 – volume: 7 start-page: 28 year: 1991 ident: 10.1016/j.bbagen.2013.07.025_bb0415 article-title: RAS genes in Saccharomyces cerevisiae: signal transduction in search of a pathway publication-title: Trends Genet. doi: 10.1016/0168-9525(91)90018-L – volume: 1796 start-page: 252 year: 2009 ident: 10.1016/j.bbagen.2013.07.025_bb0105 article-title: Tumor cell energy metabolism and its common features with yeast metabolism publication-title: Biochim. Biophys. Acta – volume: 1 start-page: 423 year: 2002 ident: 10.1016/j.bbagen.2013.07.025_bb0050 article-title: Positron emission tomography in cancer research and treatment publication-title: Technol. Cancer Res. Treat. doi: 10.1177/153303460200100603 – volume: 11 issue: 17 year: 2010 ident: 10.1016/j.bbagen.2013.07.025_bb0225 article-title: Role of casein kinase 1 in the glucose sensor-mediated signaling pathway in yeast publication-title: BMC Cell Biol. – volume: 16 start-page: 157 year: 1995 ident: 10.1016/j.bbagen.2013.07.025_bb0130 article-title: Identification of novel HXT genes in Saccharomyces cerevisiae reveals the impact of individual hexose transporters on glycolytic flux publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.1995.tb02400.x – volume: 27 start-page: 139 year: 1979 ident: 10.1016/j.bbagen.2013.07.025_bb0060 article-title: Energetic irrelevance of aerobiosis for S. cerevisiae growing on sugars publication-title: Mol. Cell. Biochem. doi: 10.1007/BF00215362 – volume: 40 start-page: 27 year: 1985 ident: 10.1016/j.bbagen.2013.07.025_bb0445 article-title: In yeast, RAS proteins are controlling elements of adenylate cyclase publication-title: Cell doi: 10.1016/0092-8674(85)90305-8 – volume: 159 start-page: 23 year: 2002 ident: 10.1016/j.bbagen.2013.07.025_bb0375 article-title: The yeast DHHC cysteine-rich domain protein Akr1p is a palmitoyl transferase publication-title: J. Cell Biol. doi: 10.1083/jcb.200206120 – volume: 26 start-page: 310 year: 2001 ident: 10.1016/j.bbagen.2013.07.025_bb0010 article-title: Glucose-sensing mechanisms in eukaryotic cells publication-title: Trends Biochem. Sci. doi: 10.1016/S0968-0004(01)01805-9 – volume: 7 start-page: 1953 year: 1996 ident: 10.1016/j.bbagen.2013.07.025_bb0135 article-title: A novel signal transduction pathway in Saccharomyces cerevisiae defined by Snf3-regulated expression of HXT6 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.7.12.1953 – volume: 15 start-page: 1564 year: 1995 ident: 10.1016/j.bbagen.2013.07.025_bb0125 article-title: Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.15.3.1564 – volume: 176 start-page: 7423 year: 1994 ident: 10.1016/j.bbagen.2013.07.025_bb0230 article-title: The mutation DGT1-1 decreases glucose transport and alleviates carbon catabolite repression in Saccharomyces cerevisiae publication-title: J. Bacteriol. doi: 10.1128/jb.176.24.7423-7429.1994 – volume: 101 start-page: 1572 year: 2004 ident: 10.1016/j.bbagen.2013.07.025_bb0215 article-title: Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0305901101 – volume: 25 start-page: 549 year: 2008 ident: 10.1016/j.bbagen.2013.07.025_bb0140 article-title: Carbohydrate utilization and the lager yeast transcriptome during brewery fermentation publication-title: Yeast doi: 10.1002/yea.1609 – volume: 30 start-page: 3342 year: 2010 ident: 10.1016/j.bbagen.2013.07.025_bb0320 article-title: Corepressor-directed preacetylation of histone H3 in promoter chromatin primes rapid transcriptional switching of cell-type-specific genes in yeast publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01450-09 – volume: 35 start-page: 161 year: 2000 ident: 10.1016/j.bbagen.2013.07.025_bb0195 article-title: Mth1 receives the signal given by the glucose sensors Snf3 and Rgt2 in Saccharomyces cerevisiae publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2000.01688.x – volume: 18 start-page: 598 year: 2006 ident: 10.1016/j.bbagen.2013.07.025_bb0550 article-title: Glucose metabolism and cancer publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2006.10.005 – volume: 10 start-page: 6195 year: 2010 ident: 10.1016/j.bbagen.2013.07.025_bb0020 article-title: Glucose signaling-mediated coordination of cell growth and cell cycle in Saccharomyces cerevisiae publication-title: Sensors doi: 10.3390/s100606195 – volume: 33 start-page: 904 year: 1999 ident: 10.1016/j.bbagen.2013.07.025_bb0420 article-title: Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.1999.01538.x – volume: 93 start-page: 12428 year: 1996 ident: 10.1016/j.bbagen.2013.07.025_bb0355 article-title: Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.93.22.12428 – volume: 2 start-page: 202 year: 1999 ident: 10.1016/j.bbagen.2013.07.025_bb0075 article-title: Glucose repression in yeast publication-title: Curr. Opin. Microbiol. doi: 10.1016/S1369-5274(99)80035-6 – volume: 6 start-page: 1426 year: 1996 ident: 10.1016/j.bbagen.2013.07.025_bb0490 article-title: Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio publication-title: Curr. Biol. doi: 10.1016/S0960-9822(96)00747-6 – volume: 9 start-page: 2903 year: 1995 ident: 10.1016/j.bbagen.2013.07.025_bb0260 article-title: The tetratricopeptide repeats of Ssn6 interact with the homeo domain of alpha 2 publication-title: Genes Dev. doi: 10.1101/gad.9.23.2903 – volume: 75 start-page: 137 year: 2006 ident: 10.1016/j.bbagen.2013.07.025_bb0540 article-title: LKB1-dependent signaling pathways publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.75.103004.142702 – volume: 32 start-page: 673 year: 2008 ident: 10.1016/j.bbagen.2013.07.025_bb0120 article-title: The early steps of glucose signalling in yeast publication-title: FEMS Microbiol. Rev. doi: 10.1111/j.1574-6976.2008.00117.x – volume: 275 start-page: 9011 year: 2000 ident: 10.1016/j.bbagen.2013.07.025_bb0265 article-title: Characterization of the N-terminal domain of the yeast transcriptional repressor Tup1. Proposal for an association model of the repressor complex Tup1×Ssn6 publication-title: J. Biol. Chem. doi: 10.1074/jbc.275.12.9011 – volume: 10 start-page: 3105 year: 1996 ident: 10.1016/j.bbagen.2013.07.025_bb0395 article-title: Glucose regulates protein interactions within the yeast SNF1 protein kinase complex publication-title: Genes Dev. doi: 10.1101/gad.10.24.3105 – volume: 33 start-page: 253 year: 2005 ident: 10.1016/j.bbagen.2013.07.025_bb0430 article-title: Nutrient sensing systems for rapid activation of the protein kinase A pathway in yeast publication-title: Biochem. Soc. Trans. doi: 10.1042/BST0330253 – volume: 5 start-page: 368 year: 2004 ident: 10.1016/j.bbagen.2013.07.025_bb0310 article-title: The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8–Tup1 co-repressor publication-title: EMBO Rep. doi: 10.1038/sj.embor.7400120 – volume: 25 start-page: 2525 year: 2011 ident: 10.1016/j.bbagen.2013.07.025_bb0330 article-title: The Cyc8–Tup1 complex inhibits transcription primarily by masking the activation domain of the recruiting protein publication-title: Genes Dev. doi: 10.1101/gad.179275.111 – volume: 310 start-page: 1642 year: 2005 ident: 10.1016/j.bbagen.2013.07.025_bb0535 article-title: The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin publication-title: Science doi: 10.1126/science.1120781 – volume: 134 start-page: 703 year: 2008 ident: 10.1016/j.bbagen.2013.07.025_bb0035 article-title: Cancer cell metabolism: Warburg and beyond publication-title: Cell doi: 10.1016/j.cell.2008.08.021 – volume: 399 start-page: 271 year: 1999 ident: 10.1016/j.bbagen.2013.07.025_bb0530 article-title: The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis publication-title: Nature doi: 10.1038/20459 – volume: 270 start-page: 29083 year: 1995 ident: 10.1016/j.bbagen.2013.07.025_bb0520 article-title: Hypoxia and mitochondrial inhibitors regulate expression of glucose transporter-1 via distinct Cis-acting sequences publication-title: J. Biol. Chem. doi: 10.1074/jbc.270.49.29083 – volume: 441 start-page: 343 year: 1998 ident: 10.1016/j.bbagen.2013.07.025_bb0145 article-title: Catabolite inactivation of the high-affinity hexose transporters Hxt6 and Hxt7 of Saccharomyces cerevisiae occurs in the vacuole after internalization by endocytosis publication-title: FEBS Lett. doi: 10.1016/S0014-5793(98)01583-X – volume: 2 start-page: 539 year: 2002 ident: 10.1016/j.bbagen.2013.07.025_bb0360 article-title: Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters publication-title: FEMS Yeast Res. – volume: 38 start-page: 1446 year: 2006 ident: 10.1016/j.bbagen.2013.07.025_bb0315 article-title: A chromatin-mediated mechanism for specification of conditional transcription factor targets publication-title: Nat. Genet. doi: 10.1038/ng1917 – volume: 2 start-page: 1288 year: 2003 ident: 10.1016/j.bbagen.2013.07.025_bb0305 article-title: Recruitment of Tup1–Ssn6 by yeast hypoxic genes and chromatin-independent exclusion of TATA binding protein publication-title: Eukaryot. Cell doi: 10.1128/EC.2.6.1288-1303.2003 – volume: 16 start-page: 6707 year: 1996 ident: 10.1016/j.bbagen.2013.07.025_bb0250 article-title: The Cyc8 (Ssn6)–Tup1 corepressor complex is composed of one Cyc8 and four Tup1 subunits publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.16.12.6707 – volume: 112 start-page: 3268 year: 2011 ident: 10.1016/j.bbagen.2013.07.025_bb0470 article-title: Functional dissection of the glucose signaling pathways that regulate the yeast glucose transporter gene (HXT) repressor Rgt1 publication-title: J. Cell. Biochem. doi: 10.1002/jcb.23253 – volume: 169 start-page: 583 year: 2005 ident: 10.1016/j.bbagen.2013.07.025_bb0210 article-title: How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose publication-title: Genetics doi: 10.1534/genetics.104.034512 – volume: 581 start-page: 3230 year: 2007 ident: 10.1016/j.bbagen.2013.07.025_bb0220 article-title: Biochemical evidence for glucose-independent induction of HXT expression in Saccharomyces cerevisiae publication-title: FEBS Lett. doi: 10.1016/j.febslet.2007.06.013 – volume: 5 start-page: 1950 year: 2006 ident: 10.1016/j.bbagen.2013.07.025_bb0505 article-title: Regulation of the nucleocytoplasmic distribution of Snf1–Gal83 protein kinase publication-title: Eukaryot. Cell doi: 10.1128/EC.00256-06 – volume: 163 start-page: 507 year: 2003 ident: 10.1016/j.bbagen.2013.07.025_bb0475 article-title: Std1p (Msn3p) positively regulates the Snf1 kinase in Saccharomyces cerevisiae publication-title: Genetics doi: 10.1093/genetics/163.2.507 – volume: 278 start-page: 10322 year: 2003 ident: 10.1016/j.bbagen.2013.07.025_bb0180 article-title: Glucose-mediated phosphorylation converts the transcription factor Rgt1 from a repressor to an activator publication-title: J. Biol. Chem. doi: 10.1074/jbc.M212802200 – volume: 25 start-page: 325 year: 2000 ident: 10.1016/j.bbagen.2013.07.025_bb0280 article-title: Turning genes off by Ssn6–Tup1: a conserved system of transcriptional repression in eukaryotes publication-title: Trends Biochem. Sci. doi: 10.1016/S0968-0004(00)01592-9 – volume: 44 start-page: 19 year: 2003 ident: 10.1016/j.bbagen.2013.07.025_bb0200 article-title: Repression of transcription by Rgt1 in the absence of glucose requires Std1 and Mth1 publication-title: Curr. Genet. doi: 10.1007/s00294-003-0423-2 – volume: 56 start-page: 567 year: 1987 ident: 10.1016/j.bbagen.2013.07.025_bb0465 article-title: Protein serine/threonine kinases publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.bi.56.070187.003031 – volume: 16 start-page: 4790 year: 1996 ident: 10.1016/j.bbagen.2013.07.025_bb0485 article-title: Two zinc-finger-containing repressors are responsible for glucose repression of SUC2 expression publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.16.9.4790 – volume: 13 start-page: 2408 year: 2008 ident: 10.1016/j.bbagen.2013.07.025_bb0085 article-title: SNF1/AMPK pathways in yeast publication-title: Front. Biosci. doi: 10.2741/2854 – volume: 92 start-page: 5510 year: 1995 ident: 10.1016/j.bbagen.2013.07.025_bb0525 article-title: Hypoxia-inducible factor 1 is a basic-helix–loop–helix–PAS heterodimer regulated by cellular O2 tension publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.92.12.5510 – volume: 15 start-page: 1104 year: 2001 ident: 10.1016/j.bbagen.2013.07.025_bb0500 article-title: Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism publication-title: Genes Dev. doi: 10.1101/gad.879301 – volume: 150 start-page: 1377 year: 1998 ident: 10.1016/j.bbagen.2013.07.025_bb0480 article-title: Characterization of three related glucose repressors and genes they regulate in Saccharomyces cerevisiae publication-title: Genetics doi: 10.1093/genetics/150.4.1377 – volume: 100 start-page: 8839 year: 2003 ident: 10.1016/j.bbagen.2013.07.025_bb0385 article-title: Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1533136100 – volume: 21 start-page: 85 year: 1997 ident: 10.1016/j.bbagen.2013.07.025_bb0110 article-title: The molecular genetics of hexose transport in yeasts publication-title: FEMS Microbiol. Rev. doi: 10.1111/j.1574-6976.1997.tb00346.x – volume: 192 start-page: 73 year: 2012 ident: 10.1016/j.bbagen.2013.07.025_bb0095 article-title: Nutritional control of growth and development in yeast publication-title: Genetics doi: 10.1534/genetics.111.135731 – volume: 20 start-page: 5350 year: 2000 ident: 10.1016/j.bbagen.2013.07.025_bb0370 article-title: Akr1p and the type I casein kinases act prior to the ubiquitination step of yeast endocytosis: Akr1p is required for kinase localization to the plasma membrane publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.20.14.5350-5359.2000 – volume: 19 start-page: 3016 year: 2000 ident: 10.1016/j.bbagen.2013.07.025_bb0275 article-title: Structure of the C-terminal domain of Tup1, a corepressor of transcription in yeast publication-title: EMBO J. doi: 10.1093/emboj/19.12.3016 – volume: 10 start-page: 4744 year: 1990 ident: 10.1016/j.bbagen.2013.07.025_bb0255 article-title: The N-terminal TPR region is the functional domain of SSN6, a nuclear phosphoprotein of Saccharomyces cerevisiae publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.10.9.4744 – volume: 279 start-page: 27138 year: 2004 ident: 10.1016/j.bbagen.2013.07.025_bb0380 article-title: Akr1p-dependent palmitoylation of Yck2p yeast casein kinase 1 is necessary and sufficient for plasma membrane targeting publication-title: J. Biol. Chem. doi: 10.1074/jbc.M403071200 – volume: 63 start-page: 554 year: 1999 ident: 10.1016/j.bbagen.2013.07.025_bb0005 article-title: Function and regulation of yeast hexose transporters publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.63.3.554-569.1999 – volume: 115 start-page: 577 year: 2003 ident: 10.1016/j.bbagen.2013.07.025_bb0545 article-title: TSC2 mediates cellular energy response to control cell growth and survival publication-title: Cell doi: 10.1016/S0092-8674(03)00929-2 – volume: 97 start-page: 3901 year: 2000 ident: 10.1016/j.bbagen.2013.07.025_bb0270 article-title: A sequence resembling a peroxisomal targeting sequence directs the interaction between the tetratricopeptide repeats of Ssn6 and the homeodomain of alpha 2 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.070506797 – reference: 14651849 - Cell. 2003 Nov 26;115(5):577-90 – reference: 10419970 - J Bacteriol. 1999 Aug;181(15):4673-5 – reference: 15667319 - Biochem Soc Trans. 2005 Feb;33(Pt 1):253-6 – reference: 18668645 - Yeast. 2008 Aug;25(8):549-62 – reference: 21552514 - PLoS One. 2011;6(4):e19060 – reference: 1848378 - Trends Genet. 1991 Jan;7(1):28-33 – reference: 22964838 - Genetics. 2012 Sep;192(1):73-105 – reference: 9618445 - Microbiol Mol Biol Rev. 1998 Jun;62(2):334-61 – reference: 10871883 - Trends Biochem Sci. 2000 Jul;25(7):325-30 – reference: 10722750 - J Biol Chem. 2000 Mar 24;275(12):9011-8 – reference: 12702307 - FEMS Yeast Res. 2002 May;2(2):183-201 – reference: 14508605 - Curr Genet. 2003 Oct;44(1):19-25 – reference: 20439496 - Mol Cell Biol. 2010 Jul;30(13):3342-56 – reference: 7651133 - Mol Microbiol. 1995 Apr;16(1):157-67 – reference: 10523302 - EMBO J. 1999 Oct 15;18(20):5577-91 – reference: 9600950 - Proc Natl Acad Sci U S A. 1998 May 26;95(11):6245-50 – reference: 8970157 - Mol Biol Cell. 1996 Dec;7(12):1953-66 – reference: 10353251 - Nature. 1999 May 20;399(6733):271-5 – reference: 12527758 - J Biol Chem. 2003 Mar 21;278(12):10322-7 – reference: 14525981 - J Biol Chem. 2003 Dec 12;278(50):50158-62 – reference: 18559076 - FEMS Microbiol Rev. 2008 Jul;32(4):673-704 – reference: 18775299 - Cell. 2008 Sep 5;134(5):703-7 – reference: 17099712 - Nat Genet. 2006 Dec;38(12):1446-51 – reference: 19460998 - Science. 2009 May 22;324(5930):1029-33 – reference: 16308421 - Science. 2005 Dec 9;310(5754):1642-6 – reference: 9727030 - J Biol Chem. 1998 Sep 11;273(37):24102-7 – reference: 2178777 - Cell. 1990 Mar 9;60(5):803-7 – reference: 22024974 - Nat Rev Endocrinol. 2012 Mar;8(3):183-92 – reference: 7539918 - Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5510-4 – reference: 12625770 - Technol Cancer Res Treat. 2002 Dec;1(6):423-39 – reference: 9151960 - Eur J Biochem. 1997 Apr 15;245(2):324-33 – reference: 16936817 - Biochem Cell Biol. 2006 Aug;84(4):437-43 – reference: 15031717 - EMBO Rep. 2004 Apr;5(4):368-72 – reference: 1924319 - Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8597-601 – reference: 2823100 - Mol Cell Biol. 1987 Aug;7(8):2653-63 – reference: 16744238 - Biochem J. 1929;23(3):536-45 – reference: 19682552 - Biochim Biophys Acta. 2009 Dec;1796(2):252-65 – reference: 10759558 - Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):3901-6 – reference: 23468525 - Mol Biol Cell. 2013 May;24(9):1493-503 – reference: 8002563 - J Bacteriol. 1994 Dec;176(24):7423-9 – reference: 12702270 - FEMS Yeast Res. 2002 Dec;2(4):539-50 – reference: 16756488 - Annu Rev Biochem. 2006;75:137-63 – reference: 12351652 - J Biol Chem. 2002 Dec 6;277(49):46993-7 – reference: 9278448 - J Biol Chem. 1997 Sep 5;272(36):22859-65 – reference: 7493931 - J Biol Chem. 1995 Dec 8;270(49):29083-9 – reference: 9774644 - Mol Cell Biol. 1998 Nov;18(11):6273-80 – reference: 21748783 - J Cell Biochem. 2011 Nov;112(11):3268-75 – reference: 12861007 - Mol Cell Biol. 2003 Aug;23(15):5208-16 – reference: 18950675 - Biochimie. 2009 Feb;91(2):300-3 – reference: 19720826 - J Biol Chem. 2009 Oct 23;284(43):29635-43 – reference: 22156212 - Genes Dev. 2011 Dec 1;25(23):2525-39 – reference: 7862149 - Mol Cell Biol. 1995 Mar;15(3):1564-72 – reference: 15014083 - J Biol Chem. 2004 May 21;279(21):22010-9 – reference: 10629208 - J Bacteriol. 2000 Jan;182(2):540-2 – reference: 8943325 - Mol Cell Biol. 1996 Dec;16(12):6707-14 – reference: 14871952 - Eukaryot Cell. 2004 Feb;3(1):221-31 – reference: 11343924 - Trends Biochem Sci. 2001 May;26(5):310-7 – reference: 15494148 - Anal Biochem. 2004 Nov 15;334(2):401-2 – reference: 11331606 - Genes Dev. 2001 May 1;15(9):1104-14 – reference: 12847291 - Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8839-43 – reference: 22219709 - Sensors (Basel). 2010;10(6):6195-240 – reference: 9564039 - EMBO J. 1998 May 1;17(9):2566-73 – reference: 8756637 - Mol Cell Biol. 1996 Sep;16(9):4790-7 – reference: 8939604 - Curr Biol. 1996 Nov 1;6(11):1426-34 – reference: 11069660 - Mol Microbiol. 2000 Oct;38(2):348-58 – reference: 390364 - Mol Cell Biochem. 1979 Nov 1;27(3):139-46 – reference: 2981630 - Cell. 1985 Jan;40(1):27-36 – reference: 9891967 - FEBS Lett. 1998 Dec 28;441(3):343-7 – reference: 9299703 - FEMS Microbiol Rev. 1997 Aug;21(1):85-111 – reference: 17071825 - Eukaryot Cell. 2006 Dec;5(12):1950-6 – reference: 17046224 - Curr Opin Cell Biol. 2006 Dec;18(6):598-608 – reference: 12370247 - J Cell Biol. 2002 Oct 14;159(1):23-8 – reference: 14665463 - Eukaryot Cell. 2003 Dec;2(6):1288-303 – reference: 20205947 - BMC Cell Biol. 2010;11:17 – reference: 10856245 - EMBO J. 2000 Jun 15;19(12):3016-27 – reference: 15489524 - Genetics. 2005 Feb;169(2):583-94 – reference: 2167835 - EMBO J. 1990 Sep;9(9):2891-8 – reference: 10866691 - Mol Cell Biol. 2000 Jul;20(14):5350-9 – reference: 12618390 - Genetics. 2003 Feb;163(2):507-14 – reference: 16400179 - Eukaryot Cell. 2006 Jan;5(1):167-73 – reference: 10476026 - Mol Microbiol. 1999 Sep;33(5):904-18 – reference: 15105419 - J Biol Chem. 2004 Jun 25;279(26):27138-47 – reference: 2201901 - Mol Cell Biol. 1990 Sep;10(9):4744-56 – reference: 16844691 - J Biol Chem. 2006 Sep 8;281(36):26144-9 – reference: 7498787 - Genes Dev. 1995 Dec 1;9(23):2903-10 – reference: 16269245 - Trends Endocrinol Metab. 2005 Dec;16(10):489-94 – reference: 8887670 - Mol Cell Biol. 1996 Nov;16(11):6419-26 – reference: 8114728 - Mol Cell Biol. 1994 Mar;14(3):1972-8 – reference: 13298683 - Science. 1956 Feb 24;123(3191):309-14 – reference: 10373505 - Mol Cell Biol. 1999 Jul;19(7):4561-71 – reference: 8985180 - Genes Dev. 1996 Dec 15;10(24):3105-15 – reference: 9759505 - Annu Rev Biochem. 1998;67:821-55 – reference: 17586499 - FEBS Lett. 2007 Jul 10;581(17):3230-4 – reference: 16528100 - Nucleic Acids Res. 2006;34(5):1427-38 – reference: 8901598 - Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12428-32 – reference: 15667318 - Biochem Soc Trans. 2005 Feb;33(Pt 1):247-52 – reference: 10322167 - Curr Opin Microbiol. 1999 Apr;2(2):202-7 – reference: 3036373 - Cell. 1987 Jul 17;50(2):277-87 – reference: 10477308 - Microbiol Mol Biol Rev. 1999 Sep;63(3):554-69 – reference: 12086627 - Mol Cell. 2002 Jun;9(6):1307-17 – reference: 17981722 - Front Biosci. 2008;13:2408-20 – reference: 16524925 - Microbiol Mol Biol Rev. 2006 Mar;70(1):253-82 – reference: 8675011 - Genes Dev. 1996 May 15;10(10):1247-59 – reference: 12925759 - Mol Biol Cell. 2003 Aug;14(8):3230-41 – reference: 2956925 - Annu Rev Biochem. 1987;56:567-613 – reference: 9628870 - EMBO J. 1998 Jun 15;17(12):3326-41 – reference: 10632886 - Mol Microbiol. 2000 Jan;35(1):161-72 – reference: 9832517 - Genetics. 1998 Dec;150(4):1377-91 – reference: 14755054 - Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1572-7 – reference: 12748292 - Mol Cell Biol. 2003 Jun;23(11):3909-17 |
SSID | ssj0000595 ssj0025309 |
Score | 2.4208312 |
SecondaryResourceType | review_article |
Snippet | Most cells possess a sophisticated mechanism for sensing glucose and responding to it appropriately. Glucose sensing and signaling in the budding yeast... BACKGROUND: Most cells possess a sophisticated mechanism for sensing glucose and responding to it appropriately. Glucose sensing and signaling in the budding... |
SourceID | pubmedcentral proquest pubmed crossref fao elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5204 |
SubjectTerms | Biological Transport Cancer eukaryotic cells gene expression gene expression regulation glucose Glucose - metabolism Glucose signaling pathways Glucose Transport Proteins, Facilitative - genetics Glucose Transport Proteins, Facilitative - metabolism Glucose transporters Glucose uptake and metabolism glycolysis homeostasis Humans hyperglycemia neoplasms Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Signal Transduction Yeast yeasts |
Title | The glucose signaling network in yeast |
URI | https://dx.doi.org/10.1016/j.bbagen.2013.07.025 https://www.ncbi.nlm.nih.gov/pubmed/23911748 https://www.proquest.com/docview/1436563792 https://www.proquest.com/docview/2000086102 https://pubmed.ncbi.nlm.nih.gov/PMC3785329 |
Volume | 1830 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB6RoKpcKqCPpAW0lRC3bfxYr71HFBUFIjgUIrhZ-7AhFdogCAcu_e2d2UcgCITEabW7Y8kej2c-a14Au3mMRlzwNPQ6ZmHkCk2N3HlIDl8Z-ZQnVfrY8Uk8mkRHF-piBYZtLgyFVTa6v9bplbZuvgwabg5uptPBKTn1EE4ocsjQRasDq0ImserC6v7heHTyqJBV1XyF6EMa0GbQVWFeWYbnlgqhcllV8aSe2S9bqI5PZy_h0OfhlE_s08E6fGqAZbBfz30DVly5CR_qVpMPm_Bx2HZ2-wx7KBtBE6seUABHSjnpQVlHhAfTMnigjj5fYHLw-2w4Cpt-CWGuBJuHiB08K3RutC8KxbxDY60ypbmPWMSZSUTuvYudojJiKmHKcGlSn3FW5DpTSn6FbjkrXQ8CopOGOeNVEvlEGm8UxesbnaJBY6IPsuWRzZti4tTT4tq2UWN_bc1ZS5y1TFvkbB_CxaibupjGG_S6Zb9dEgqL-v6NkT3cLZteoqa0k1NBdfRI-ccx68PPdgst8p38I2npZvd3eAuSiG6lTsTrNKIC2Yg5keZbve2LpaD0cbzgGZz2kkAsCKiU9_KfcnpVlfSWGmGTSL6_e8E_YI3e6izJLejOb-_dNsKlebYDnV__-E5zKOg5_nM-_g-w7BD4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BVQWXilIe29KSShW3sI4fsXOsVqClBS6wEjcrDxsWoSyC5cCF385MnGxZRIXENR5L9tie-aL5ZgbgV5miE-dJHnudsli6SlMj9ySmgK-QPk-yJn3s-CQdjuSfc3W-AIMuF4Zola3tDza9sdbtl36rzf7NeNw_paAewglFARn60VqED1IJTby-vcd_PA_EDyqEEmRM4l3-XEPyKgp8tVQGNRFNDU_qmP26f1r0-eQ1FPqSTPnMOx2swqcWVka_w8o_w4Kr1-BjaDT5sAbLg66v2xfYxZsRtUz1iOgbOWWkR3Xgg0fjOnqgfj7rMDrYPxsM47ZbQlwqzqYxIgfPKl0a7atKMe_QVatC6cRLJhNmMl5671KnqIiYypgyiTC5LxJWlbpQSmzAUj2p3RZEJCcMc8arTPpMGG8UsfWNztGdMd4D0enIlm0pcepocW07ztiVDZq1pFnLtEXN9iCezboJpTTekNed-u3clbBo7d-YuYWnZfMLtJN2dMqpih6Z_jRlPfjZHaFFvVN0JK_d5P4O_4EEYluhM_5_Gd5AbEScKLMZjn22FS7Qb2hpcNlzF2ImQIW850fq8WVT0FtoBE08-_ruDe_A8vDs-MgeHZ78_QYrNBLyJbdhaXp7774jcJoWP5qH8QR5mhAg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+glucose+signaling+network+in+yeast&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Kim%2C+Jeong-Ho&rft.au=Roy%2C+Adhiraj&rft.au=Jouandot%2C+David&rft.au=Cho%2C+Kyu+Hong&rft.date=2013-11-01&rft.issn=0304-4165&rft.volume=1830&rft.issue=11&rft.spage=5204&rft.epage=5210&rft_id=info:doi/10.1016%2Fj.bbagen.2013.07.025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbagen_2013_07_025 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |