Decreased reticuloendothelial system clearance and increased blood half-life and immune cell labeling for nano- and micron-sized superparamagnetic iron-oxide particles upon pre-treatment with Intralipid
Superparamagnetic iron-oxide nanoparticles are useful as contrast agents for anatomical, functional and cellular MRI, drug delivery agents, and diagnostic biosensors. Nanoparticles are generally cleared by the reticuloendothelial system (RES), in particular taken up by Kupffer cells in the liver, li...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1830; no. 6; pp. 3447 - 3453 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.06.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Superparamagnetic iron-oxide nanoparticles are useful as contrast agents for anatomical, functional and cellular MRI, drug delivery agents, and diagnostic biosensors. Nanoparticles are generally cleared by the reticuloendothelial system (RES), in particular taken up by Kupffer cells in the liver, limiting particle bioavailability and in-vivo applications. Strategies that decrease the RES clearance and prolong the circulation residence time of particles can improve the in-vivo targeting efficiency.
Intralipid 20.0%, an FDA approved nutritional supplement, was intravenously administered in rats at the clinical dose (2g/kg) 1h before intravenous injection of ultra-small superparamagnetic iron-oxide (USPIO) or micron-sized paramagnetic iron-oxide (MPIO) particles. Blood half-life, monocyte labeling efficiency, and particle biodistribution were assessed by magnetic resonance relaxometry, flow cytometry, inductively-coupled plasma MS, and histology.
Pre-treatment with Intralipid resulted in a 3.1-fold increase in USPIO blood half-life and a 2-fold increase in USPIO-labeled monocytes. A 2.5-fold increase in MPIO blood half-life and a 5-fold increase in MPIO-labeled monocytes were observed following Intralipid pre-treatment, with a 3.2-fold increase in mean iron content up to 2.60pg Fe/monocyte. With Intralipid, there was a 49.2% and 45.1% reduction in liver uptake vs. untreated controls at 48h for USPIO and MPIO, respectively.
Intralipid pre-treatment significantly decreases initial RES uptake and increases in-vivo circulation and blood monocyte labeling efficiency for nano- and micron-sized superparamagnetic iron-oxide particles.
Our findings can have broad applications for imaging and drug delivery applications, increasing the bioavailability of nano- and micron-sized particles for target sites other than the liver.
[Display omitted]
► Intralipid targets the liver Kupffer cells and blunts nanoparticle clearance. ► Intralipid results in an ~50% decrease in liver uptake of USPIO and MPIO particles. ► Intralipid produces an ~3-fold increase in blood half-life of the particles. ► Intralipid causes a 2 to 5-fold increase in labeling efficiency of blood monocytes. ► Nanoparticles can target more diverse sites or organs, other than the liver. |
---|---|
AbstractList | Superparamagnetic iron-oxide nanoparticles are useful as contrast agents for anatomical, functional and cellular MRI, drug delivery agents, and diagnostic biosensors. Nanoparticles are generally cleared by the reticuloendothelial system (RES), in particular taken up by Kupffer cells in the liver, limiting particle bioavailability and in-vivo applications. Strategies that decrease the RES clearance and prolong the circulation residence time of particles can improve the in-vivo targeting efficiency.
Intralipid 20.0%, an FDA approved nutritional supplement, was intravenously administered in rats at the clinical dose (2g/kg) 1h before intravenous injection of ultra-small superparamagnetic iron-oxide (USPIO) or micron-sized paramagnetic iron-oxide (MPIO) particles. Blood half-life, monocyte labeling efficiency, and particle biodistribution were assessed by magnetic resonance relaxometry, flow cytometry, inductively-coupled plasma MS, and histology.
Pre-treatment with Intralipid resulted in a 3.1-fold increase in USPIO blood half-life and a 2-fold increase in USPIO-labeled monocytes. A 2.5-fold increase in MPIO blood half-life and a 5-fold increase in MPIO-labeled monocytes were observed following Intralipid pre-treatment, with a 3.2-fold increase in mean iron content up to 2.60pg Fe/monocyte. With Intralipid, there was a 49.2% and 45.1% reduction in liver uptake vs. untreated controls at 48h for USPIO and MPIO, respectively.
Intralipid pre-treatment significantly decreases initial RES uptake and increases in-vivo circulation and blood monocyte labeling efficiency for nano- and micron-sized superparamagnetic iron-oxide particles.
Our findings can have broad applications for imaging and drug delivery applications, increasing the bioavailability of nano- and micron-sized particles for target sites other than the liver.
[Display omitted]
► Intralipid targets the liver Kupffer cells and blunts nanoparticle clearance. ► Intralipid results in an ~50% decrease in liver uptake of USPIO and MPIO particles. ► Intralipid produces an ~3-fold increase in blood half-life of the particles. ► Intralipid causes a 2 to 5-fold increase in labeling efficiency of blood monocytes. ► Nanoparticles can target more diverse sites or organs, other than the liver. Superparamagnetic iron-oxide nanoparticles are useful as contrast agents for anatomical, functional and cellular MRI, drug delivery agents, and diagnostic biosensors. Nanoparticles are generally cleared by the reticuloendothelial system (RES), in particular taken up by Kupffer cells in the liver, limiting particle bioavailability and in-vivo applications. Strategies that decrease the RES clearance and prolong the circulation residence time of particles can improve the in-vivo targeting efficiency.Intralipid 20.0%, an FDA approved nutritional supplement, was intravenously administered in rats at the clinical dose (2g/kg) 1h before intravenous injection of ultra-small superparamagnetic iron-oxide (USPIO) or micron-sized paramagnetic iron-oxide (MPIO) particles. Blood half-life, monocyte labeling efficiency, and particle biodistribution were assessed by magnetic resonance relaxometry, flow cytometry, inductively-coupled plasma MS, and histology.Pre-treatment with Intralipid resulted in a 3.1-fold increase in USPIO blood half-life and a 2-fold increase in USPIO-labeled monocytes. A 2.5-fold increase in MPIO blood half-life and a 5-fold increase in MPIO-labeled monocytes were observed following Intralipid pre-treatment, with a 3.2-fold increase in mean iron content up to 2.60pg Fe/monocyte. With Intralipid, there was a 49.2% and 45.1% reduction in liver uptake vs. untreated controls at 48h for USPIO and MPIO, respectively.Intralipid pre-treatment significantly decreases initial RES uptake and increases in-vivo circulation and blood monocyte labeling efficiency for nano- and micron-sized superparamagnetic iron-oxide particles.Our findings can have broad applications for imaging and drug delivery applications, increasing the bioavailability of nano- and micron-sized particles for target sites other than the liver. BACKGROUND: Superparamagnetic iron-oxide nanoparticles are useful as contrast agents for anatomical, functional and cellular MRI, drug delivery agents, and diagnostic biosensors. Nanoparticles are generally cleared by the reticuloendothelial system (RES), in particular taken up by Kupffer cells in the liver, limiting particle bioavailability and in-vivo applications. Strategies that decrease the RES clearance and prolong the circulation residence time of particles can improve the in-vivo targeting efficiency. METHODS: Intralipid 20.0%, an FDA approved nutritional supplement, was intravenously administered in rats at the clinical dose (2g/kg) 1h before intravenous injection of ultra-small superparamagnetic iron-oxide (USPIO) or micron-sized paramagnetic iron-oxide (MPIO) particles. Blood half-life, monocyte labeling efficiency, and particle biodistribution were assessed by magnetic resonance relaxometry, flow cytometry, inductively-coupled plasma MS, and histology. RESULTS: Pre-treatment with Intralipid resulted in a 3.1-fold increase in USPIO blood half-life and a 2-fold increase in USPIO-labeled monocytes. A 2.5-fold increase in MPIO blood half-life and a 5-fold increase in MPIO-labeled monocytes were observed following Intralipid pre-treatment, with a 3.2-fold increase in mean iron content up to 2.60pg Fe/monocyte. With Intralipid, there was a 49.2% and 45.1% reduction in liver uptake vs. untreated controls at 48h for USPIO and MPIO, respectively. CONCLUSIONS: Intralipid pre-treatment significantly decreases initial RES uptake and increases in-vivo circulation and blood monocyte labeling efficiency for nano- and micron-sized superparamagnetic iron-oxide particles. GENERAL SIGNIFICANCE: Our findings can have broad applications for imaging and drug delivery applications, increasing the bioavailability of nano- and micron-sized particles for target sites other than the liver. Superparamagnetic iron-oxide nanoparticles are useful as contrast agents for anatomical, functional and cellular MRI, drug delivery agents, and diagnostic biosensors. Nanoparticles are generally cleared by the reticuloendothelial system (RES), in particular taken up by Kupffer cells in the liver, limiting particle bioavailability and in-vivo applications. Strategies that decrease the RES clearance and prolong the circulation residence time of particles can improve the in-vivo targeting efficiency.BACKGROUNDSuperparamagnetic iron-oxide nanoparticles are useful as contrast agents for anatomical, functional and cellular MRI, drug delivery agents, and diagnostic biosensors. Nanoparticles are generally cleared by the reticuloendothelial system (RES), in particular taken up by Kupffer cells in the liver, limiting particle bioavailability and in-vivo applications. Strategies that decrease the RES clearance and prolong the circulation residence time of particles can improve the in-vivo targeting efficiency.Intralipid 20.0%, an FDA approved nutritional supplement, was intravenously administered in rats at the clinical dose (2g/kg) 1h before intravenous injection of ultra-small superparamagnetic iron-oxide (USPIO) or micron-sized paramagnetic iron-oxide (MPIO) particles. Blood half-life, monocyte labeling efficiency, and particle biodistribution were assessed by magnetic resonance relaxometry, flow cytometry, inductively-coupled plasma MS, and histology.METHODSIntralipid 20.0%, an FDA approved nutritional supplement, was intravenously administered in rats at the clinical dose (2g/kg) 1h before intravenous injection of ultra-small superparamagnetic iron-oxide (USPIO) or micron-sized paramagnetic iron-oxide (MPIO) particles. Blood half-life, monocyte labeling efficiency, and particle biodistribution were assessed by magnetic resonance relaxometry, flow cytometry, inductively-coupled plasma MS, and histology.Pre-treatment with Intralipid resulted in a 3.1-fold increase in USPIO blood half-life and a 2-fold increase in USPIO-labeled monocytes. A 2.5-fold increase in MPIO blood half-life and a 5-fold increase in MPIO-labeled monocytes were observed following Intralipid pre-treatment, with a 3.2-fold increase in mean iron content up to 2.60pg Fe/monocyte. With Intralipid, there was a 49.2% and 45.1% reduction in liver uptake vs. untreated controls at 48h for USPIO and MPIO, respectively.RESULTSPre-treatment with Intralipid resulted in a 3.1-fold increase in USPIO blood half-life and a 2-fold increase in USPIO-labeled monocytes. A 2.5-fold increase in MPIO blood half-life and a 5-fold increase in MPIO-labeled monocytes were observed following Intralipid pre-treatment, with a 3.2-fold increase in mean iron content up to 2.60pg Fe/monocyte. With Intralipid, there was a 49.2% and 45.1% reduction in liver uptake vs. untreated controls at 48h for USPIO and MPIO, respectively.Intralipid pre-treatment significantly decreases initial RES uptake and increases in-vivo circulation and blood monocyte labeling efficiency for nano- and micron-sized superparamagnetic iron-oxide particles.CONCLUSIONSIntralipid pre-treatment significantly decreases initial RES uptake and increases in-vivo circulation and blood monocyte labeling efficiency for nano- and micron-sized superparamagnetic iron-oxide particles.Our findings can have broad applications for imaging and drug delivery applications, increasing the bioavailability of nano- and micron-sized particles for target sites other than the liver.GENERAL SIGNIFICANCEOur findings can have broad applications for imaging and drug delivery applications, increasing the bioavailability of nano- and micron-sized particles for target sites other than the liver. Superparamagnetic iron-oxide nanoparticles are useful as contrast agents for anatomical, functional and cellular MRI, drug delivery agents, and diagnostic biosensors. Nanoparticles are generally cleared by the reticuloendothelial system (RES), in particular taken up by Kupffer cells in the liver, limiting particle bioavailability and in-vivo applications. Strategies that decrease the RES clearance and prolong the circulation residence time of particles can improve the in-vivo targeting efficiency. Intralipid 20.0%, an FDA approved nutritional supplement, was intravenously administered in rats at the clinical dose (2g/kg) 1h before intravenous injection of ultra-small superparamagnetic iron-oxide (USPIO) or micron-sized paramagnetic iron-oxide (MPIO) particles. Blood half-life, monocyte labeling efficiency, and particle biodistribution were assessed by magnetic resonance relaxometry, flow cytometry, inductively-coupled plasma MS, and histology. Pre-treatment with Intralipid resulted in a 3.1-fold increase in USPIO blood half-life and a 2-fold increase in USPIO-labeled monocytes. A 2.5-fold increase in MPIO blood half-life and a 5-fold increase in MPIO-labeled monocytes were observed following Intralipid pre-treatment, with a 3.2-fold increase in mean iron content up to 2.60pg Fe/monocyte. With Intralipid, there was a 49.2% and 45.1% reduction in liver uptake vs. untreated controls at 48h for USPIO and MPIO, respectively. Intralipid pre-treatment significantly decreases initial RES uptake and increases in-vivo circulation and blood monocyte labeling efficiency for nano- and micron-sized superparamagnetic iron-oxide particles. Our findings can have broad applications for imaging and drug delivery applications, increasing the bioavailability of nano- and micron-sized particles for target sites other than the liver. |
Author | Liu, Li Foley, Lesley M. Yeh, Fang-Cheng Prior, Devin E. Li, Wendy F. Barbe, Brent Bain, Daniel J. Hitchens, T. Kevin Ye, Qing Ho, Chien Wu, Yijen |
AuthorAffiliation | b Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA a Pittsburgh NMR Center for Biomedical Research and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA c Department of Geology and Planetary Science, University of Pittsburgh, Pittsburgh, PA |
AuthorAffiliation_xml | – name: c Department of Geology and Planetary Science, University of Pittsburgh, Pittsburgh, PA – name: b Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA – name: a Pittsburgh NMR Center for Biomedical Research and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA |
Author_xml | – sequence: 1 givenname: Li surname: Liu fullname: Liu, Li organization: Pittsburgh NMR Center for Biomedical Research and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA – sequence: 2 givenname: T. Kevin surname: Hitchens fullname: Hitchens, T. Kevin organization: Pittsburgh NMR Center for Biomedical Research and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA – sequence: 3 givenname: Qing surname: Ye fullname: Ye, Qing organization: Pittsburgh NMR Center for Biomedical Research and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA – sequence: 4 givenname: Yijen surname: Wu fullname: Wu, Yijen organization: Pittsburgh NMR Center for Biomedical Research and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA – sequence: 5 givenname: Brent surname: Barbe fullname: Barbe, Brent organization: Pittsburgh NMR Center for Biomedical Research and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA – sequence: 6 givenname: Devin E. surname: Prior fullname: Prior, Devin E. organization: Pittsburgh NMR Center for Biomedical Research and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA – sequence: 7 givenname: Wendy F. surname: Li fullname: Li, Wendy F. organization: Pittsburgh NMR Center for Biomedical Research and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA – sequence: 8 givenname: Fang-Cheng surname: Yeh fullname: Yeh, Fang-Cheng organization: Pittsburgh NMR Center for Biomedical Research and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA – sequence: 9 givenname: Lesley M. surname: Foley fullname: Foley, Lesley M. organization: Pittsburgh NMR Center for Biomedical Research and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA – sequence: 10 givenname: Daniel J. surname: Bain fullname: Bain, Daniel J. organization: Department of Geology and Planetary Science, University of Pittsburgh, Pittsburgh, PA, USA – sequence: 11 givenname: Chien surname: Ho fullname: Ho, Chien email: chienho@andrew.cmu.edu organization: Pittsburgh NMR Center for Biomedical Research and Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23396002$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1v1DAQjVAR3Rb-AQIfuWSxHSeb5YCEylelShygZ8uxJ7uzcuxgO4XyE_lVON1t-ThQXyx53nvzPPNOiiPnHRTFU0aXjLLm5W7ZdWoDbskpq5aULSlnD4oFa1e8bCltjooFragoBWvq4-Ikxh3Np17Xj4pjXlXrhlK-KH6-BR1ARTAkQEI9WQ_O-LQFi8qSeB0TDERbUEE5DUQ5Q9DdUjrrvSFbZfvSYn-oDsPkgGiwlljVZR23Ib0PxCnnyxvIgDp4V0b8kTXiNEIYs_ygNm62QHAu-u9ogOT3_GIhkmn0jowBypR7pwFcIt8wbcm5S0FZHNE8Lh72ykZ4crhPi8v3776cfSwvPn04P3tzUeqa01SKDkwlaNOAritmRA3tGrSgtF0BEy2va7bmXa-oqTveilUjulaZdQ8cVr0xpjotXu91x6kbwGi4cSDHgIMK19IrlH9XHG7lxl_JqhF0RZss8OIgEPzXCWKSA8Z5XsqBn6Lk86JakXd0L5RVYjU7bniGPvvT1p2f211ngNgD8vBjDNDfQRiVc6TkTu4jJedIScpkjlSmvfqHpjGphH7-HNr7yM_35F55qTYBo7z8nAHZEJ29N7-nCXllVwhBRo2Qo2YwgE7SePx_i19TYPjf |
CitedBy_id | crossref_primary_10_3390_ijms241310623 crossref_primary_10_3390_ph14090855 crossref_primary_10_1021_acs_nanolett_0c04122 crossref_primary_10_1038_s41551_020_0581_2 crossref_primary_10_1038_s41598_018_23140_9 crossref_primary_10_1007_s11095_018_2348_y crossref_primary_10_1016_j_jconrel_2015_12_016 crossref_primary_10_1021_acsnano_8b07954 crossref_primary_10_1002_advs_202301777 crossref_primary_10_1016_j_biopha_2016_03_018 crossref_primary_10_1002_smll_201906360 crossref_primary_10_1038_s41598_017_16293_6 crossref_primary_10_3389_fimmu_2020_604967 crossref_primary_10_1039_C5NR02402A crossref_primary_10_1039_C8NR03084G crossref_primary_10_1016_j_jconrel_2014_11_018 crossref_primary_10_1016_j_ultrasmedbio_2019_09_009 crossref_primary_10_1016_j_jconrel_2015_09_016 crossref_primary_10_1039_D3TB02471G crossref_primary_10_1016_j_bbagen_2013_10_001 crossref_primary_10_1186_s12951_022_01510_w crossref_primary_10_1148_radiol_2017171603 crossref_primary_10_1080_17425247_2024_2375400 crossref_primary_10_1021_nl504044p crossref_primary_10_1038_srep26271 crossref_primary_10_1049_iet_nbt_2019_0266 crossref_primary_10_1016_j_colsurfb_2023_113731 crossref_primary_10_3390_pharmaceutics16101333 crossref_primary_10_1016_j_mtbio_2022_100208 crossref_primary_10_1038_s41467_024_48838_5 crossref_primary_10_1039_D1CS00574J crossref_primary_10_1007_s00204_023_03511_6 crossref_primary_10_1016_j_jconrel_2020_12_004 crossref_primary_10_1038_s41598_020_59813_7 crossref_primary_10_1039_C5TB01830G crossref_primary_10_1039_D2BM00181K crossref_primary_10_3390_biomedicines11061524 crossref_primary_10_1080_09205063_2021_1971822 crossref_primary_10_1080_03639045_2020_1821055 crossref_primary_10_1038_srep10881 crossref_primary_10_12693_APhysPolA_131_1159 crossref_primary_10_1134_S0965544123050055 crossref_primary_10_1016_j_colsurfa_2024_133675 crossref_primary_10_1016_j_bbagen_2018_12_002 crossref_primary_10_1016_j_biomaterials_2020_120406 crossref_primary_10_1039_C6TB02849G crossref_primary_10_1016_j_mtchem_2022_101144 crossref_primary_10_4236_wjcd_2016_610041 crossref_primary_10_1002_mrm_25120 crossref_primary_10_18632_oncotarget_20162 crossref_primary_10_1002_adfm_202308446 crossref_primary_10_1016_j_colsurfb_2022_112485 crossref_primary_10_1021_acsnano_8b04338 crossref_primary_10_1016_j_biomaterials_2019_119618 crossref_primary_10_1007_s11095_015_1781_4 crossref_primary_10_1155_2015_451405 crossref_primary_10_1016_j_mtchem_2018_04_002 crossref_primary_10_53879_id_52_10_10480 |
Cites_doi | 10.1523/JNEUROSCI.4936-10.2011 10.1007/s00432-006-0076-x 10.1111/j.1349-7006.2003.tb01438.x 10.3109/02652049609026013 10.1517/14712598.8.8.1063 10.1016/j.nano.2012.02.017 10.1016/S1386-6346(03)00261-4 10.1016/j.jcmg.2009.01.013 10.1007/s12410-010-9055-3 10.1016/j.jmmm.2005.01.064 10.1021/nn202833n 10.1161/CIRCULATIONAHA.107.746354 10.1021/ar2000277 10.1186/1743-8977-7-3 10.1111/j.1349-7006.2011.01941.x 10.1002/jlb.36.5.647 10.1016/j.neuroimage.2011.04.063 10.1093/jn/118.8.932 10.1021/mp7001285 10.1046/j.1523-1755.2003.00048.x 10.1021/bc2003499 10.1016/j.neuroimage.2008.07.050 10.1016/j.biomaterials.2011.08.076 10.1016/j.biomaterials.2011.06.026 10.1371/journal.pone.0024374 10.1002/jlb.36.2.123 10.1081/LPR-120004780 10.1038/nm.2666 10.1038/nnano.2011.149 10.1016/S0006-3495(01)76217-0 10.1148/radiol.2253011854 10.1016/j.biomaterials.2008.05.015 10.1073/pnas.0507198103 10.1007/s11095-007-9348-7 10.1038/sj.gt.3300826 10.1007/978-1-60761-901-7_10 10.1016/S0006-3495(99)77182-1 10.1002/mrm.1312 10.1007/s11307-010-0430-x 10.1046/j.1523-1755.2002.00195.x 10.2174/1389201043376535 10.1073/pnas.0403918101 10.1007/s11307-010-0437-3 10.1158/1078-0432.CCR-10-3420 10.1002/nbm.1698 10.2310/7290.2011.00033 10.1161/ATVBAHA.108.165514 10.2174/1381612023395916 10.1097/01.rti.0000213551.16011.76 10.1021/nn202863x 10.1084/jem.117.1.139 10.1016/j.tips.2009.08.004 |
ContentType | Journal Article |
Copyright | 2013 Elsevier B.V. Copyright © 2013 Elsevier B.V. All rights reserved. 2012 Elsevier B.V. All rights reserved. 2012 |
Copyright_xml | – notice: 2013 Elsevier B.V. – notice: Copyright © 2013 Elsevier B.V. All rights reserved. – notice: 2012 Elsevier B.V. All rights reserved. 2012 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.bbagen.2013.01.021 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 3453 |
ExternalDocumentID | PMC3640706 23396002 10_1016_j_bbagen_2013_01_021 US201600013476 S0304416513000342 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01HL-081349 – fundername: NIBIB NIH HHS grantid: P41 EB001977 – fundername: NHLBI NIH HHS grantid: R01 HL081349 – fundername: NIBIB NIH HHS grantid: P41EB-001977 – fundername: National Institute of Biomedical Imaging and Bioengineering : NIBIB grantid: P41 EB001977 || EB – fundername: National Heart, Lung, and Blood Institute : NHLBI grantid: R01 HL081349 || HL |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- ABPIF ABPTK FBQ AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH -~X .55 .GJ AAYJJ ABJNI AFFNX AI. CGR CUY CVF ECM EIF F5P H~9 K-O MVM NPM RIG TWZ UHS VH1 X7M Y6R YYP ZE2 ZGI ~KM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c520t-4bed34066ec531d45e89ec40087e148255192bfa0d5b284764b8ad9fe2e7fddd3 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 0006-3002 |
IngestDate | Thu Aug 21 18:09:25 EDT 2025 Fri Jul 11 10:38:59 EDT 2025 Fri Jul 11 05:46:35 EDT 2025 Thu Apr 03 06:59:14 EDT 2025 Tue Jul 01 00:22:00 EDT 2025 Thu Apr 24 22:54:42 EDT 2025 Wed Dec 27 19:23:17 EST 2023 Fri Feb 23 02:34:15 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | PBS r2 RES Intralipid FDA MRI Blood half-life BN ppm USPIO MPIO RES clearance Nanoparticles FITC PEG ICP-MS Labeling of immune cells |
Language | English |
License | Copyright © 2013 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c520t-4bed34066ec531d45e89ec40087e148255192bfa0d5b284764b8ad9fe2e7fddd3 |
Notes | http://dx.doi.org/10.1016/j.bbagen.2013.01.021 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Devin Elizabeth Prior’s current address: College of Medicine, Ohio State University, Columbus, OH |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3640706 |
PMID | 23396002 |
PQID | 1347255162 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3640706 proquest_miscellaneous_2000084339 proquest_miscellaneous_1347255162 pubmed_primary_23396002 crossref_primary_10_1016_j_bbagen_2013_01_021 crossref_citationtrail_10_1016_j_bbagen_2013_01_021 fao_agris_US201600013476 elsevier_sciencedirect_doi_10_1016_j_bbagen_2013_01_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-06-01 |
PublicationDateYYYYMMDD | 2013-06-01 |
PublicationDate_xml | – month: 06 year: 2013 text: 2013-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta |
PublicationTitleAlternate | Biochim Biophys Acta |
PublicationYear | 2013 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ye, Yang, Williams, Williams, Pluempitiwiriyawej, Moura, Ho (bb0270) 2002; 61 Wang, Gu, Zhang, Chan, Radovic-Moreno, Shaikh, Farokhzad (bb0065) 2008; 8 Lauterbur, Bernardo, Menonca Dias, Hedges (bb0275) 1986 Okon, Pouliquen, Okon, Kovaleva, Stepanova, Lavit, Kudryavtsev, Jallet (bb0120) 1994; 71 Thorek, Tsourkas (bb0055) 2008; 29 Tu, Ng, Sohi, Palko, House, Jacobs, Louie (bb0140) 2011; 32 Pipy, Gaillard, Derache (bb0240) 1975; 29 Wu, Ye, Ho (bb0130) 2011; 4 Qi, Chan, Ho, Rajapaksa, Friend, Yeo (bb0220) 2011; 5 Romberg, Hennink, Storm (bb0180) 2008; 25 Daldrup-Link, Golovko, Ruffell, Denardo, Castaneda, Ansari, Rao, Tikhomirov, Wendland, Corot, Coussens (bb0145) 2011; 17 Arvizo, Miranda, Moyano, Walden, Giri, Bhattacharya, Robertson, Rotello, Reid, Mukherjee (bb0170) 2011; 6 Ho, Hitchens (bb0005) 2004; 5 Granot, Scheinost, Markakis, Papademetris, Shapiro (bb0040) 2011; 57 bb0195 Bhaskar, Tian, Stoeger, Kreyling, de la Fuente, Grazu, Borm, Estrada, Ntziachristos, Razansky (bb0210) 2010; 7 Miyama, Dua, Schultz, Kosuge, Terashima, Pisani, Dalman, McConnell (bb0155) 2012; 11 Tang, Muller, Graves, Li, Walsh, Young, Sadat, Howarth, Gillard (bb0135) 2009; 29 Wu, Ye, Sato, Foley, Hitchens, Ho (bb0125) 2009; 2 Chouly, Pouliquen, Lucet, Jeune, Jallet (bb0115) 1996; 13 Fraser, Pearson, Bowry, Bell (bb0245) 1984; 36 Malam, Loizidou, Seifalian (bb0205) 2009; 30 van Rooijen, van Kesteren-Hendrikx (bb0250) 2002; 12 Maesaki (bb0175) 2002; 8 Kraitchman, Kedziorek, Bulte (bb0030) 2011; 680 del Frate, Bazzocchi, Mortele, Zuiani, Londero, Como, Zanardi, Ros (bb0075) 2002; 225 Liu, Ye, Wu, Hsieh, Chen, Shen, Wang, Zhang, Hitchens, Ho (bb0045) 2012; 8 Ye, Wu, Foley, Hitchens, Eytan, Shirwan, Ho (bb0010) 2008; 118 Asahina, Izumi, Uchihara, Noguchi, Ueda, Inoue, Nishimura, Tsuchiya, Hamano, Itakura, Himeno, Koike, Miyake (bb0085) 2003; 27 Kievit, Zhang (bb0070) 2011; 44 bb0260 Ito, Tanaka, Kondo, Shinkai, Honda, Matsumoto, Saida, Kobayashi (bb0105) 2003; 94 Jain, Reddy, Morales, Leslie-Pelecky, Labhasetwar (bb0225) 2008; 5 Talelli, Morita, Rijcken, Aben, Lammers, Scheeren, van Nostrum, Storm, Hennink (bb0215) 2011; 22 Schughart, Bischoff, Hadji, Boussif, Perraud, Accart, Rasmussen, Pavirani, van Rooijen, Kolbe (bb0255) 1999; 6 Wu, Ye, Foley, Hitchens, Sato, Williams, Ho (bb0050) 2006; 103 Lacava, Lacava, Da Silva, Silva, Chaves, Azevedo, Pelegrini, Gansau, Buske, Sabolovic, Morais (bb0230) 2001; 80 Prosch, Oschatz, Pertusini, Mostbeck (bb0080) 2006; 21 Murray (bb0235) 1963; 117 Shih, Hsu, Duong, Lin, Chow, Chang (bb0150) 2011; 24 Shapiro, Skrtic, Sharer, Hill, Dunbar, Koretsky (bb0025) 2004; 101 Clement, Schwalbe, Buske, Wagner, Schnabelrauch, Gornert, Kliche, Pachmann, Weitschies, Hoffken (bb0090) 2006; 132 Tang, Hann, Shapiro (bb0285) 2011; 13 Neuberger, Schöpf, Hofmann, Hofmann, von Rechenberg (bb0110) 2005; 293 Yang, Ye, Williams, Sun, Hu, Williams, Moura, Ho (bb0265) 2001; 46 Dodd, Williams, Suhan, Williams, Koretsky, Ho (bb0280) 1999; 76 Jo, Hu, Kobayashi, Lizak, Miyaji, Koretsky, Star (bb0160) 2003; 64 Cho, Cheong, Min, Wu, Lee, Kim, Yang, Kim, Kim, Seong (bb0100) 2011; 6 Beckmann, Gerard, Abramowski, Cannet, Staufenbiel (bb0165) 2011; 31 Vilaro, Llobera (bb0185) 1988; 118 Sumner, Shapiro, Maric, Conroy, Koretsky (bb0035) 2009; 44 Thu, Bryant, Coppola, Jordan, Budde, Lewis, Chaudhry, Ren, Varma, Arbab, Frank (bb0020) 2012; 18 Xu, Aguilar, Yang, Kuang, Duan, Xiong, Wei, Wang (bb0095) 2011; 32 Nugent (bb0190) 1984; 36 Blanco, Hsiao, Mann, Landry, Meric-Bernstam, Ferrari (bb0200) 2011; 102 Chen, Zhang, Ye, Hsieh, Hitchens, Shen, Liu, Wu, Foley, Wang, Ho (bb0015) 2011; 13 Crayton, Tsourkas (bb0060) 2011; 5 Okon (10.1016/j.bbagen.2013.01.021_bb0120) 1994; 71 Sumner (10.1016/j.bbagen.2013.01.021_bb0035) 2009; 44 Chen (10.1016/j.bbagen.2013.01.021_bb0015) 2011; 13 Thu (10.1016/j.bbagen.2013.01.021_bb0020) 2012; 18 Nugent (10.1016/j.bbagen.2013.01.021_bb0190) 1984; 36 Murray (10.1016/j.bbagen.2013.01.021_bb0235) 1963; 117 Fraser (10.1016/j.bbagen.2013.01.021_bb0245) 1984; 36 Pipy (10.1016/j.bbagen.2013.01.021_bb0240) 1975; 29 Talelli (10.1016/j.bbagen.2013.01.021_bb0215) 2011; 22 Wu (10.1016/j.bbagen.2013.01.021_bb0125) 2009; 2 Clement (10.1016/j.bbagen.2013.01.021_bb0090) 2006; 132 Yang (10.1016/j.bbagen.2013.01.021_bb0265) 2001; 46 Jain (10.1016/j.bbagen.2013.01.021_bb0225) 2008; 5 Lacava (10.1016/j.bbagen.2013.01.021_bb0230) 2001; 80 Prosch (10.1016/j.bbagen.2013.01.021_bb0080) 2006; 21 Tang (10.1016/j.bbagen.2013.01.021_bb0135) 2009; 29 Wu (10.1016/j.bbagen.2013.01.021_bb0130) 2011; 4 Beckmann (10.1016/j.bbagen.2013.01.021_bb0165) 2011; 31 van Rooijen (10.1016/j.bbagen.2013.01.021_bb0250) 2002; 12 Dodd (10.1016/j.bbagen.2013.01.021_bb0280) 1999; 76 Tang (10.1016/j.bbagen.2013.01.021_bb0285) 2011; 13 Ito (10.1016/j.bbagen.2013.01.021_bb0105) 2003; 94 Malam (10.1016/j.bbagen.2013.01.021_bb0205) 2009; 30 Granot (10.1016/j.bbagen.2013.01.021_bb0040) 2011; 57 Kievit (10.1016/j.bbagen.2013.01.021_bb0070) 2011; 44 Vilaro (10.1016/j.bbagen.2013.01.021_bb0185) 1988; 118 Miyama (10.1016/j.bbagen.2013.01.021_bb0155) 2012; 11 Romberg (10.1016/j.bbagen.2013.01.021_bb0180) 2008; 25 Shapiro (10.1016/j.bbagen.2013.01.021_bb0025) 2004; 101 Kraitchman (10.1016/j.bbagen.2013.01.021_bb0030) 2011; 680 Ye (10.1016/j.bbagen.2013.01.021_bb0270) 2002; 61 Shih (10.1016/j.bbagen.2013.01.021_bb0150) 2011; 24 Ho (10.1016/j.bbagen.2013.01.021_bb0005) 2004; 5 Neuberger (10.1016/j.bbagen.2013.01.021_bb0110) 2005; 293 Tu (10.1016/j.bbagen.2013.01.021_bb0140) 2011; 32 Crayton (10.1016/j.bbagen.2013.01.021_bb0060) 2011; 5 Liu (10.1016/j.bbagen.2013.01.021_bb0045) 2012; 8 Asahina (10.1016/j.bbagen.2013.01.021_bb0085) 2003; 27 Xu (10.1016/j.bbagen.2013.01.021_bb0095) 2011; 32 Qi (10.1016/j.bbagen.2013.01.021_bb0220) 2011; 5 Schughart (10.1016/j.bbagen.2013.01.021_bb0255) 1999; 6 Ye (10.1016/j.bbagen.2013.01.021_bb0010) 2008; 118 Thorek (10.1016/j.bbagen.2013.01.021_bb0055) 2008; 29 Chouly (10.1016/j.bbagen.2013.01.021_bb0115) 1996; 13 Jo (10.1016/j.bbagen.2013.01.021_bb0160) 2003; 64 Blanco (10.1016/j.bbagen.2013.01.021_bb0200) 2011; 102 del Frate (10.1016/j.bbagen.2013.01.021_bb0075) 2002; 225 Arvizo (10.1016/j.bbagen.2013.01.021_bb0170) 2011; 6 Wu (10.1016/j.bbagen.2013.01.021_bb0050) 2006; 103 Maesaki (10.1016/j.bbagen.2013.01.021_bb0175) 2002; 8 Bhaskar (10.1016/j.bbagen.2013.01.021_bb0210) 2010; 7 Cho (10.1016/j.bbagen.2013.01.021_bb0100) 2011; 6 Wang (10.1016/j.bbagen.2013.01.021_bb0065) 2008; 8 Lauterbur (10.1016/j.bbagen.2013.01.021_bb0275) 1986 Daldrup-Link (10.1016/j.bbagen.2013.01.021_bb0145) 2011; 17 18613759 - Expert Opin Biol Ther. 2008 Aug;8(8):1063-70 22366951 - Nat Med. 2012 Mar;18(3):463-7 19229073 - Arterioscler Thromb Vasc Biol. 2009 Jul;29(7):1001-8 22223366 - NMR Biomed. 2011 Dec;24(10):1353-60 21909083 - Nat Nanotechnol. 2011 Oct;6(10):675-82 15256592 - Proc Natl Acad Sci U S A. 2004 Jul 27;101(30):10901-6 16915072 - J Thorac Imaging. 2006 Aug;21(3):235-7 21359095 - Curr Cardiovasc Imaging Rep. 2011 Feb 1;4(1):50-62 11325747 - Biophys J. 2001 May;80(5):2483-6 7807971 - Lab Invest. 1994 Dec;71(6):895-903 12461259 - Radiology. 2002 Dec;225(3):766-72 21248127 - J Neurosci. 2011 Jan 19;31(3):1023-31 21791632 - Clin Cancer Res. 2011 Sep 1;17(17):5695-704 19520344 - JACC Cardiovasc Imaging. 2009 Jun;2(6):731-41 15579044 - Curr Pharm Biotechnol. 2004 Dec;5(6):551-66 6086798 - J Leukoc Biol. 1984 Aug;36(2):123-32 9876127 - Biophys J. 1999 Jan;76(1 Pt 1):103-9 1241257 - Ann Nutr Aliment. 1975;29(4):271-84 17551809 - Pharm Res. 2008 Jan;25(1):55-71 12604042 - J Liposome Res. 2002 Feb-May;12(1-2):81-94 16432758 - J Cancer Res Clin Oncol. 2006 May;132(5):287-92 21153379 - Methods Mol Biol. 2011;680:141-52 21920599 - Biomaterials. 2011 Dec;32(36):9758-65 21571076 - Neuroimage. 2011 Aug 1;57(3):817-24 18591438 - Circulation. 2008 Jul 8;118(2):149-56 10435095 - Gene Ther. 1999 Mar;6(3):448-53 8860681 - J Microencapsul. 1996 May-Jun;13(3):245-55 18217714 - Mol Pharm. 2008 Mar-Apr;5(2):316-27 21528865 - Acc Chem Res. 2011 Oct 18;44(10):853-62 20862612 - Mol Imaging Biol. 2011 Oct;13(5):825-39 22017211 - Bioconjug Chem. 2011 Dec 21;22(12):2519-30 18722534 - Neuroimage. 2009 Feb 1;44(3):671-8 22035454 - ACS Nano. 2011 Dec 27;5(12):9592-601 20199661 - Part Fibre Toxicol. 2010;7:3 22059733 - ACS Nano. 2011 Dec 27;5(12):9583-91 14585396 - Hepatol Res. 2003 Nov;27(3):196-204 11849467 - Kidney Int. 2002 Mar;61(3):1124-35 12069380 - Curr Pharm Des. 2002;8(6):433-40 6593393 - J Leukoc Biol. 1984 Nov;36(5):647-9 21742374 - Biomaterials. 2011 Oct;32(29):7209-16 19837467 - Trends Pharmacol Sci. 2009 Nov;30(11):592-9 12824927 - Cancer Sci. 2003 Mar;94(3):308-13 16443687 - Proc Natl Acad Sci U S A. 2006 Feb 7;103(6):1852-7 22469240 - Mol Imaging. 2012 Apr;11(2):126-34 18533252 - Biomaterials. 2008 Sep;29(26):3583-90 21447010 - Cancer Sci. 2011 Jul;102(7):1247-52 11746582 - Magn Reson Med. 2001 Dec;46(6):1152-63 3404286 - J Nutr. 1988 Aug;118(8):932-40 20936363 - Mol Imaging Biol. 2011 Oct;13(5):819-24 13936766 - J Exp Med. 1963 Jan 1;117:139-47 12787394 - Kidney Int. 2003 Jul;64(1):43-51 22406186 - Nanomedicine. 2012 Nov;8(8):1345-54 21931696 - PLoS One. 2011;6(9):e24374 |
References_xml | – volume: 8 start-page: 1345 year: 2012 end-page: 1354 ident: bb0045 article-title: Tracking T-cells in vivo with a new nano-sized MRI contrast agent publication-title: Nanomedicine – volume: 27 start-page: 196 year: 2003 end-page: 204 ident: bb0085 article-title: Assessment of Kupffer cells by ferumoxides-enhanced MR imaging is beneficial for diagnosis of hepatocellular carcinoma: comparison of pathological diagnosis and perfusion patterns assessed by CT hepatic arteriography and CT arterioportography publication-title: Hepatol. Res. – volume: 6 start-page: e24374 year: 2011 ident: bb0170 article-title: Modulating pharmacokinetics, tumor uptake and biodistribution by engineered nanoparticles publication-title: PLoS One – volume: 46 start-page: 1152 year: 2001 end-page: 1163 ident: bb0265 article-title: USPIO-enhanced dynamic MRI: evaluation of normal and transplanted rat kidneys publication-title: Magn. Reson. Med. – volume: 5 start-page: 9592 year: 2011 end-page: 9601 ident: bb0060 article-title: pH-titratable superparamagnetic iron oxide for improved nanoparticle accumulation in acidic tumor microenvironments publication-title: ACS Nano – volume: 103 start-page: 1852 year: 2006 end-page: 1857 ident: bb0050 article-title: In situ labeling of immune cells with iron oxide particles: an approach to detect organ rejection by cellular MRI publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 12 start-page: 81 year: 2002 end-page: 94 ident: bb0250 article-title: Clodronate liposomes: perspectives in research and therapeutics publication-title: J. Liposome Res. – volume: 680 start-page: 141 year: 2011 end-page: 152 ident: bb0030 article-title: MR imaging of transplanted stem cells in myocardial infarction publication-title: Methods Mol. Biol. – ident: bb0260 – volume: 132 start-page: 287 year: 2006 end-page: 292 ident: bb0090 article-title: Differential interaction of magnetic nanoparticles with tumor cells and peripheral blood cells publication-title: J. Cancer Res. Clin. Oncol. – volume: 8 start-page: 433 year: 2002 end-page: 440 ident: bb0175 article-title: Drug delivery system of anti-fungal and parasitic agents publication-title: Curr. Pharm. Des. – volume: 117 start-page: 139 year: 1963 end-page: 147 ident: bb0235 article-title: The mechanism of blockade of the reticuloendothelial system publication-title: J. Exp. Med. – volume: 61 start-page: 1124 year: 2002 end-page: 1135 ident: bb0270 article-title: In vivo detection of acute rat renal allograft rejection by MRI with USPIO particles publication-title: Kidney Int. – volume: 225 start-page: 766 year: 2002 end-page: 772 ident: bb0075 article-title: Detection of liver metastases: comparison of gadobenate dimeglumine-enhanced and ferumoxides-enhanced MR imaging examinations publication-title: Radiology – volume: 30 start-page: 592 year: 2009 end-page: 599 ident: bb0205 article-title: Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer publication-title: Trends Pharmacol. Sci. – start-page: 229 year: 1986 end-page: 230 ident: bb0275 article-title: Microscopic NMR imaging of the magnetic field around magnetic particles publication-title: Proceedings of the Society for Magnetic Resonance in Medicine, 5th Annual Meeting – volume: 5 start-page: 9583 year: 2011 end-page: 9591 ident: bb0220 article-title: Template-free synthesis and encapsulation technique for layer-by-layer polymer nanocarrier fabrication publication-title: ACS Nano – volume: 7 start-page: 3 year: 2010 ident: bb0210 article-title: Multifunctional nanocarriers for diagnostics, drug delivery and targeted treatment across blood–brain barrier: perspectives on tracking and neuroimaging publication-title: Part. Fibre Toxicol. – volume: 44 start-page: 853 year: 2011 end-page: 862 ident: bb0070 article-title: Surface engineering of iron oxide nanoparticles for targeted cancer therapy publication-title: Acc. Chem. Res. – volume: 36 start-page: 647 year: 1984 end-page: 649 ident: bb0245 article-title: The intravenous Intralipid tolerance test publication-title: J. Leukoc. Biol. – volume: 6 start-page: 675 year: 2011 end-page: 682 ident: bb0100 article-title: A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy publication-title: Nat. Nanotechnol. – volume: 8 start-page: 1063 year: 2008 end-page: 1070 ident: bb0065 article-title: Biofunctionalized targeted nanoparticles for therapeutic applications publication-title: Expert. Opin. Biol. Ther. – volume: 76 start-page: 103 year: 1999 end-page: 109 ident: bb0280 article-title: Detection of single mammalian cells by high-resolution magnetic resonance imaging publication-title: Biophys. J. – volume: 57 start-page: 817 year: 2011 end-page: 824 ident: bb0040 article-title: Serial monitoring of endogenous neuroblast migration by cellular MRI publication-title: NeuroImage – volume: 11 start-page: 126 year: 2012 end-page: 134 ident: bb0155 article-title: Bioluminescence and magnetic resonance imaging of macrophage homing to experimental abdominal aortic aneurysms publication-title: Mol. Imaging – volume: 44 start-page: 671 year: 2009 end-page: 678 ident: bb0035 article-title: In vivo labeling of adult neural progenitors for MRI with micron sized particles of iron oxide: quantification of labeled cell phenotype publication-title: NeuroImage – volume: 32 start-page: 7209 year: 2011 end-page: 7216 ident: bb0140 article-title: Receptor-targeted iron oxide nanoparticles for molecular MR imaging of inflamed atherosclerotic plaques publication-title: Biomaterials – volume: 21 start-page: 235 year: 2006 end-page: 237 ident: bb0080 article-title: Diagnosis of thoracic splenosis by ferumoxides-enhanced magnetic resonance imaging publication-title: J. Thorac. Imaging – volume: 5 start-page: 551 year: 2004 end-page: 566 ident: bb0005 article-title: A non-invasive approach to detecting organ rejection by MRI: monitoring the accumulation of immune cells at the transplanted organ publication-title: Curr. Pharm. Biotechnol. – volume: 13 start-page: 825 year: 2011 end-page: 839 ident: bb0015 article-title: A new nano-sized iron oxide particle with high sensitivity for cellular magnetic resonance imaging publication-title: Mol. Imaging Biol. – volume: 25 start-page: 55 year: 2008 end-page: 71 ident: bb0180 article-title: Sheddable coatings for long-circulating nanoparticles publication-title: Pharm. Res. – volume: 64 start-page: 43 year: 2003 end-page: 51 ident: bb0160 article-title: Detection of inflammation following renal ischemia by magnetic resonance imaging publication-title: Kidney Int. – volume: 5 start-page: 316 year: 2008 end-page: 327 ident: bb0225 article-title: Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats publication-title: Mol. Pharm. – volume: 22 start-page: 2519 year: 2011 end-page: 2530 ident: bb0215 article-title: Synthesis and characterization of biodegradable and thermosensitive polymeric micelles with covalently bound doxorubicin-glucuronide prodrug via click chemistry publication-title: Bioconjug. Chem. – volume: 13 start-page: 819 year: 2011 end-page: 824 ident: bb0285 article-title: On the use of micron-sized iron oxide particles (MPIOS) to label resting monocytes in bone marrow publication-title: Mol. Imaging Biol. – volume: 94 start-page: 308 year: 2003 end-page: 313 ident: bb0105 article-title: Tumor regression by combined immunotherapy and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma publication-title: Cancer Sci. – volume: 6 start-page: 448 year: 1999 end-page: 453 ident: bb0255 article-title: Effect of liposome-encapsulated clodronate pretreatment on synthetic vector-mediated gene expression in mice publication-title: Gene Ther. – ident: bb0195 – volume: 118 start-page: 149 year: 2008 end-page: 156 ident: bb0010 article-title: Longitudinal tracking of recipient macrophages in a rat chronic cardiac allograft rejection model with noninvasive magnetic resonance imaging using micrometer-sized paramagnetic iron oxide particles publication-title: Circulation – volume: 17 start-page: 5695 year: 2011 end-page: 5704 ident: bb0145 article-title: MRI of tumor-associated macrophages with clinically applicable iron oxide nanoparticles publication-title: Clin. Cancer Res. – volume: 71 start-page: 895 year: 1994 end-page: 903 ident: bb0120 article-title: Biodegradation of magnetite dextran nanoparticles in the rat. A histologic and biophysical study publication-title: Lab. Invest. – volume: 4 start-page: 26 year: 2011 end-page: 50 ident: bb0130 article-title: Cellular and functional imaging of cardiac transplant rejection publication-title: Curr. Cardiovasc. Imaging Rep. – volume: 36 start-page: 123 year: 1984 end-page: 132 ident: bb0190 article-title: Intralipid effects on reticuloendothelial function publication-title: J. Leukoc. Biol. – volume: 18 start-page: 463 year: 2012 end-page: 467 ident: bb0020 article-title: Self-assembling nanocomplexes by combining ferumoxytol, heparin and protamine for cell tracking by magnetic resonance imaging publication-title: Nat. Med. – volume: 293 start-page: 483 year: 2005 end-page: 496 ident: bb0110 article-title: Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system publication-title: J. Magn. Magn. Mater. – volume: 118 start-page: 932 year: 1988 end-page: 940 ident: bb0185 article-title: Uptake and metabolism of Intralipid by rat liver: an electron-microscopic study publication-title: J. Nutr. – volume: 29 start-page: 271 year: 1975 end-page: 284 ident: bb0240 article-title: [Effect of the quality of various vegetable oil emulsions on phagocytotic activity of the reticuloendothelial system in the rat]. Influence de la qualite de diverses emulsions d'huiles vegetales sur l'activite phagocytaire du systeme reticuloendothelial du rat publication-title: Ann. Nutr. Aliment. – volume: 102 start-page: 1247 year: 2011 end-page: 1252 ident: bb0200 article-title: Nanomedicine in cancer therapy: innovative trends and prospects publication-title: Cancer Sci. – volume: 13 start-page: 245 year: 1996 end-page: 255 ident: bb0115 article-title: Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution publication-title: J. Microencapsul. – volume: 32 start-page: 9758 year: 2011 end-page: 9765 ident: bb0095 article-title: Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood publication-title: Biomaterials – volume: 2 start-page: 731 year: 2009 end-page: 741 ident: bb0125 article-title: Noninvasive evaluation of cardiac allograft rejection by cellular and functional cardiac magnetic resonance publication-title: JACC Cardiovasc. Imaging – volume: 29 start-page: 1001 year: 2009 end-page: 1008 ident: bb0135 article-title: Iron oxide particles for atheroma imaging publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 24 start-page: 1353 year: 2011 end-page: 1360 ident: bb0150 article-title: Longitudinal study of tumor-associated macrophages during tumor expansion using MRI publication-title: NMR Biomed. – volume: 29 start-page: 3583 year: 2008 end-page: 3590 ident: bb0055 article-title: Size, charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells publication-title: Biomaterials – volume: 31 start-page: 1023 year: 2011 end-page: 1031 ident: bb0165 article-title: Noninvasive magnetic resonance imaging detection of cerebral amyloid angiopathy-related microvascular alterations using superparamagnetic iron oxide particles in APP transgenic mouse models of Alzheimer's disease: application to passive Abeta immunotherapy publication-title: J. Neurosci. Off. J. Soc. Neurosci. – volume: 101 start-page: 10901 year: 2004 end-page: 10906 ident: bb0025 article-title: MRI detection of single particles for cellular imaging publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 80 start-page: 2483 year: 2001 end-page: 2486 ident: bb0230 article-title: Magnetic resonance of a dextran-coated magnetic fluid intravenously administered in mice publication-title: Biophys. J. – volume: 31 start-page: 1023 year: 2011 ident: 10.1016/j.bbagen.2013.01.021_bb0165 article-title: Noninvasive magnetic resonance imaging detection of cerebral amyloid angiopathy-related microvascular alterations using superparamagnetic iron oxide particles in APP transgenic mouse models of Alzheimer's disease: application to passive Abeta immunotherapy publication-title: J. Neurosci. Off. J. Soc. Neurosci. doi: 10.1523/JNEUROSCI.4936-10.2011 – volume: 132 start-page: 287 year: 2006 ident: 10.1016/j.bbagen.2013.01.021_bb0090 article-title: Differential interaction of magnetic nanoparticles with tumor cells and peripheral blood cells publication-title: J. Cancer Res. Clin. Oncol. doi: 10.1007/s00432-006-0076-x – volume: 94 start-page: 308 year: 2003 ident: 10.1016/j.bbagen.2013.01.021_bb0105 article-title: Tumor regression by combined immunotherapy and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma publication-title: Cancer Sci. doi: 10.1111/j.1349-7006.2003.tb01438.x – volume: 13 start-page: 245 year: 1996 ident: 10.1016/j.bbagen.2013.01.021_bb0115 article-title: Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution publication-title: J. Microencapsul. doi: 10.3109/02652049609026013 – volume: 8 start-page: 1063 year: 2008 ident: 10.1016/j.bbagen.2013.01.021_bb0065 article-title: Biofunctionalized targeted nanoparticles for therapeutic applications publication-title: Expert. Opin. Biol. Ther. doi: 10.1517/14712598.8.8.1063 – volume: 29 start-page: 271 year: 1975 ident: 10.1016/j.bbagen.2013.01.021_bb0240 publication-title: Ann. Nutr. Aliment. – volume: 8 start-page: 1345 year: 2012 ident: 10.1016/j.bbagen.2013.01.021_bb0045 article-title: Tracking T-cells in vivo with a new nano-sized MRI contrast agent publication-title: Nanomedicine doi: 10.1016/j.nano.2012.02.017 – volume: 27 start-page: 196 year: 2003 ident: 10.1016/j.bbagen.2013.01.021_bb0085 article-title: Assessment of Kupffer cells by ferumoxides-enhanced MR imaging is beneficial for diagnosis of hepatocellular carcinoma: comparison of pathological diagnosis and perfusion patterns assessed by CT hepatic arteriography and CT arterioportography publication-title: Hepatol. Res. doi: 10.1016/S1386-6346(03)00261-4 – volume: 2 start-page: 731 year: 2009 ident: 10.1016/j.bbagen.2013.01.021_bb0125 article-title: Noninvasive evaluation of cardiac allograft rejection by cellular and functional cardiac magnetic resonance publication-title: JACC Cardiovasc. Imaging doi: 10.1016/j.jcmg.2009.01.013 – volume: 4 start-page: 26 year: 2011 ident: 10.1016/j.bbagen.2013.01.021_bb0130 article-title: Cellular and functional imaging of cardiac transplant rejection publication-title: Curr. Cardiovasc. Imaging Rep. doi: 10.1007/s12410-010-9055-3 – volume: 293 start-page: 483 year: 2005 ident: 10.1016/j.bbagen.2013.01.021_bb0110 article-title: Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2005.01.064 – volume: 5 start-page: 9583 year: 2011 ident: 10.1016/j.bbagen.2013.01.021_bb0220 article-title: Template-free synthesis and encapsulation technique for layer-by-layer polymer nanocarrier fabrication publication-title: ACS Nano doi: 10.1021/nn202833n – volume: 118 start-page: 149 year: 2008 ident: 10.1016/j.bbagen.2013.01.021_bb0010 article-title: Longitudinal tracking of recipient macrophages in a rat chronic cardiac allograft rejection model with noninvasive magnetic resonance imaging using micrometer-sized paramagnetic iron oxide particles publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.107.746354 – volume: 44 start-page: 853 year: 2011 ident: 10.1016/j.bbagen.2013.01.021_bb0070 article-title: Surface engineering of iron oxide nanoparticles for targeted cancer therapy publication-title: Acc. Chem. Res. doi: 10.1021/ar2000277 – volume: 7 start-page: 3 year: 2010 ident: 10.1016/j.bbagen.2013.01.021_bb0210 article-title: Multifunctional nanocarriers for diagnostics, drug delivery and targeted treatment across blood–brain barrier: perspectives on tracking and neuroimaging publication-title: Part. Fibre Toxicol. doi: 10.1186/1743-8977-7-3 – volume: 71 start-page: 895 year: 1994 ident: 10.1016/j.bbagen.2013.01.021_bb0120 article-title: Biodegradation of magnetite dextran nanoparticles in the rat. A histologic and biophysical study publication-title: Lab. Invest. – volume: 102 start-page: 1247 year: 2011 ident: 10.1016/j.bbagen.2013.01.021_bb0200 article-title: Nanomedicine in cancer therapy: innovative trends and prospects publication-title: Cancer Sci. doi: 10.1111/j.1349-7006.2011.01941.x – volume: 36 start-page: 647 year: 1984 ident: 10.1016/j.bbagen.2013.01.021_bb0245 article-title: The intravenous Intralipid tolerance test publication-title: J. Leukoc. Biol. doi: 10.1002/jlb.36.5.647 – volume: 57 start-page: 817 year: 2011 ident: 10.1016/j.bbagen.2013.01.021_bb0040 article-title: Serial monitoring of endogenous neuroblast migration by cellular MRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.04.063 – volume: 118 start-page: 932 year: 1988 ident: 10.1016/j.bbagen.2013.01.021_bb0185 article-title: Uptake and metabolism of Intralipid by rat liver: an electron-microscopic study publication-title: J. Nutr. doi: 10.1093/jn/118.8.932 – volume: 5 start-page: 316 year: 2008 ident: 10.1016/j.bbagen.2013.01.021_bb0225 article-title: Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats publication-title: Mol. Pharm. doi: 10.1021/mp7001285 – volume: 64 start-page: 43 year: 2003 ident: 10.1016/j.bbagen.2013.01.021_bb0160 article-title: Detection of inflammation following renal ischemia by magnetic resonance imaging publication-title: Kidney Int. doi: 10.1046/j.1523-1755.2003.00048.x – volume: 22 start-page: 2519 year: 2011 ident: 10.1016/j.bbagen.2013.01.021_bb0215 article-title: Synthesis and characterization of biodegradable and thermosensitive polymeric micelles with covalently bound doxorubicin-glucuronide prodrug via click chemistry publication-title: Bioconjug. Chem. doi: 10.1021/bc2003499 – volume: 44 start-page: 671 year: 2009 ident: 10.1016/j.bbagen.2013.01.021_bb0035 article-title: In vivo labeling of adult neural progenitors for MRI with micron sized particles of iron oxide: quantification of labeled cell phenotype publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.07.050 – volume: 32 start-page: 9758 year: 2011 ident: 10.1016/j.bbagen.2013.01.021_bb0095 article-title: Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.08.076 – volume: 32 start-page: 7209 year: 2011 ident: 10.1016/j.bbagen.2013.01.021_bb0140 article-title: Receptor-targeted iron oxide nanoparticles for molecular MR imaging of inflamed atherosclerotic plaques publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.06.026 – volume: 6 start-page: e24374 year: 2011 ident: 10.1016/j.bbagen.2013.01.021_bb0170 article-title: Modulating pharmacokinetics, tumor uptake and biodistribution by engineered nanoparticles publication-title: PLoS One doi: 10.1371/journal.pone.0024374 – volume: 36 start-page: 123 year: 1984 ident: 10.1016/j.bbagen.2013.01.021_bb0190 article-title: Intralipid effects on reticuloendothelial function publication-title: J. Leukoc. Biol. doi: 10.1002/jlb.36.2.123 – volume: 12 start-page: 81 year: 2002 ident: 10.1016/j.bbagen.2013.01.021_bb0250 article-title: Clodronate liposomes: perspectives in research and therapeutics publication-title: J. Liposome Res. doi: 10.1081/LPR-120004780 – volume: 18 start-page: 463 year: 2012 ident: 10.1016/j.bbagen.2013.01.021_bb0020 article-title: Self-assembling nanocomplexes by combining ferumoxytol, heparin and protamine for cell tracking by magnetic resonance imaging publication-title: Nat. Med. doi: 10.1038/nm.2666 – volume: 6 start-page: 675 year: 2011 ident: 10.1016/j.bbagen.2013.01.021_bb0100 article-title: A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.149 – volume: 80 start-page: 2483 year: 2001 ident: 10.1016/j.bbagen.2013.01.021_bb0230 article-title: Magnetic resonance of a dextran-coated magnetic fluid intravenously administered in mice publication-title: Biophys. J. doi: 10.1016/S0006-3495(01)76217-0 – volume: 225 start-page: 766 year: 2002 ident: 10.1016/j.bbagen.2013.01.021_bb0075 article-title: Detection of liver metastases: comparison of gadobenate dimeglumine-enhanced and ferumoxides-enhanced MR imaging examinations publication-title: Radiology doi: 10.1148/radiol.2253011854 – volume: 29 start-page: 3583 year: 2008 ident: 10.1016/j.bbagen.2013.01.021_bb0055 article-title: Size, charge and concentration dependent uptake of iron oxide particles by non-phagocytic cells publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.05.015 – volume: 103 start-page: 1852 year: 2006 ident: 10.1016/j.bbagen.2013.01.021_bb0050 article-title: In situ labeling of immune cells with iron oxide particles: an approach to detect organ rejection by cellular MRI publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0507198103 – volume: 25 start-page: 55 year: 2008 ident: 10.1016/j.bbagen.2013.01.021_bb0180 article-title: Sheddable coatings for long-circulating nanoparticles publication-title: Pharm. Res. doi: 10.1007/s11095-007-9348-7 – volume: 6 start-page: 448 year: 1999 ident: 10.1016/j.bbagen.2013.01.021_bb0255 article-title: Effect of liposome-encapsulated clodronate pretreatment on synthetic vector-mediated gene expression in mice publication-title: Gene Ther. doi: 10.1038/sj.gt.3300826 – volume: 680 start-page: 141 year: 2011 ident: 10.1016/j.bbagen.2013.01.021_bb0030 article-title: MR imaging of transplanted stem cells in myocardial infarction publication-title: Methods Mol. Biol. doi: 10.1007/978-1-60761-901-7_10 – volume: 76 start-page: 103 year: 1999 ident: 10.1016/j.bbagen.2013.01.021_bb0280 article-title: Detection of single mammalian cells by high-resolution magnetic resonance imaging publication-title: Biophys. J. doi: 10.1016/S0006-3495(99)77182-1 – start-page: 229 year: 1986 ident: 10.1016/j.bbagen.2013.01.021_bb0275 article-title: Microscopic NMR imaging of the magnetic field around magnetic particles – volume: 46 start-page: 1152 year: 2001 ident: 10.1016/j.bbagen.2013.01.021_bb0265 article-title: USPIO-enhanced dynamic MRI: evaluation of normal and transplanted rat kidneys publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1312 – volume: 13 start-page: 825 year: 2011 ident: 10.1016/j.bbagen.2013.01.021_bb0015 article-title: A new nano-sized iron oxide particle with high sensitivity for cellular magnetic resonance imaging publication-title: Mol. Imaging Biol. doi: 10.1007/s11307-010-0430-x – volume: 61 start-page: 1124 year: 2002 ident: 10.1016/j.bbagen.2013.01.021_bb0270 article-title: In vivo detection of acute rat renal allograft rejection by MRI with USPIO particles publication-title: Kidney Int. doi: 10.1046/j.1523-1755.2002.00195.x – volume: 5 start-page: 551 year: 2004 ident: 10.1016/j.bbagen.2013.01.021_bb0005 article-title: A non-invasive approach to detecting organ rejection by MRI: monitoring the accumulation of immune cells at the transplanted organ publication-title: Curr. Pharm. Biotechnol. doi: 10.2174/1389201043376535 – volume: 101 start-page: 10901 year: 2004 ident: 10.1016/j.bbagen.2013.01.021_bb0025 article-title: MRI detection of single particles for cellular imaging publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0403918101 – volume: 13 start-page: 819 year: 2011 ident: 10.1016/j.bbagen.2013.01.021_bb0285 article-title: On the use of micron-sized iron oxide particles (MPIOS) to label resting monocytes in bone marrow publication-title: Mol. Imaging Biol. doi: 10.1007/s11307-010-0437-3 – volume: 17 start-page: 5695 year: 2011 ident: 10.1016/j.bbagen.2013.01.021_bb0145 article-title: MRI of tumor-associated macrophages with clinically applicable iron oxide nanoparticles publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-10-3420 – volume: 24 start-page: 1353 year: 2011 ident: 10.1016/j.bbagen.2013.01.021_bb0150 article-title: Longitudinal study of tumor-associated macrophages during tumor expansion using MRI publication-title: NMR Biomed. doi: 10.1002/nbm.1698 – volume: 11 start-page: 126 year: 2012 ident: 10.1016/j.bbagen.2013.01.021_bb0155 article-title: Bioluminescence and magnetic resonance imaging of macrophage homing to experimental abdominal aortic aneurysms publication-title: Mol. Imaging doi: 10.2310/7290.2011.00033 – volume: 29 start-page: 1001 year: 2009 ident: 10.1016/j.bbagen.2013.01.021_bb0135 article-title: Iron oxide particles for atheroma imaging publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.108.165514 – volume: 8 start-page: 433 year: 2002 ident: 10.1016/j.bbagen.2013.01.021_bb0175 article-title: Drug delivery system of anti-fungal and parasitic agents publication-title: Curr. Pharm. Des. doi: 10.2174/1381612023395916 – volume: 21 start-page: 235 year: 2006 ident: 10.1016/j.bbagen.2013.01.021_bb0080 article-title: Diagnosis of thoracic splenosis by ferumoxides-enhanced magnetic resonance imaging publication-title: J. Thorac. Imaging doi: 10.1097/01.rti.0000213551.16011.76 – volume: 5 start-page: 9592 year: 2011 ident: 10.1016/j.bbagen.2013.01.021_bb0060 article-title: pH-titratable superparamagnetic iron oxide for improved nanoparticle accumulation in acidic tumor microenvironments publication-title: ACS Nano doi: 10.1021/nn202863x – volume: 117 start-page: 139 year: 1963 ident: 10.1016/j.bbagen.2013.01.021_bb0235 article-title: The mechanism of blockade of the reticuloendothelial system publication-title: J. Exp. Med. doi: 10.1084/jem.117.1.139 – volume: 30 start-page: 592 year: 2009 ident: 10.1016/j.bbagen.2013.01.021_bb0205 article-title: Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2009.08.004 – reference: 18722534 - Neuroimage. 2009 Feb 1;44(3):671-8 – reference: 18613759 - Expert Opin Biol Ther. 2008 Aug;8(8):1063-70 – reference: 21791632 - Clin Cancer Res. 2011 Sep 1;17(17):5695-704 – reference: 20199661 - Part Fibre Toxicol. 2010;7:3 – reference: 22017211 - Bioconjug Chem. 2011 Dec 21;22(12):2519-30 – reference: 8860681 - J Microencapsul. 1996 May-Jun;13(3):245-55 – reference: 12824927 - Cancer Sci. 2003 Mar;94(3):308-13 – reference: 19837467 - Trends Pharmacol Sci. 2009 Nov;30(11):592-9 – reference: 20862612 - Mol Imaging Biol. 2011 Oct;13(5):825-39 – reference: 19229073 - Arterioscler Thromb Vasc Biol. 2009 Jul;29(7):1001-8 – reference: 12604042 - J Liposome Res. 2002 Feb-May;12(1-2):81-94 – reference: 6593393 - J Leukoc Biol. 1984 Nov;36(5):647-9 – reference: 16443687 - Proc Natl Acad Sci U S A. 2006 Feb 7;103(6):1852-7 – reference: 21920599 - Biomaterials. 2011 Dec;32(36):9758-65 – reference: 10435095 - Gene Ther. 1999 Mar;6(3):448-53 – reference: 21447010 - Cancer Sci. 2011 Jul;102(7):1247-52 – reference: 11325747 - Biophys J. 2001 May;80(5):2483-6 – reference: 21359095 - Curr Cardiovasc Imaging Rep. 2011 Feb 1;4(1):50-62 – reference: 16432758 - J Cancer Res Clin Oncol. 2006 May;132(5):287-92 – reference: 21931696 - PLoS One. 2011;6(9):e24374 – reference: 21248127 - J Neurosci. 2011 Jan 19;31(3):1023-31 – reference: 12787394 - Kidney Int. 2003 Jul;64(1):43-51 – reference: 6086798 - J Leukoc Biol. 1984 Aug;36(2):123-32 – reference: 17551809 - Pharm Res. 2008 Jan;25(1):55-71 – reference: 9876127 - Biophys J. 1999 Jan;76(1 Pt 1):103-9 – reference: 3404286 - J Nutr. 1988 Aug;118(8):932-40 – reference: 14585396 - Hepatol Res. 2003 Nov;27(3):196-204 – reference: 7807971 - Lab Invest. 1994 Dec;71(6):895-903 – reference: 13936766 - J Exp Med. 1963 Jan 1;117:139-47 – reference: 12069380 - Curr Pharm Des. 2002;8(6):433-40 – reference: 22406186 - Nanomedicine. 2012 Nov;8(8):1345-54 – reference: 18591438 - Circulation. 2008 Jul 8;118(2):149-56 – reference: 21153379 - Methods Mol Biol. 2011;680:141-52 – reference: 12461259 - Radiology. 2002 Dec;225(3):766-72 – reference: 22366951 - Nat Med. 2012 Mar;18(3):463-7 – reference: 21742374 - Biomaterials. 2011 Oct;32(29):7209-16 – reference: 11746582 - Magn Reson Med. 2001 Dec;46(6):1152-63 – reference: 11849467 - Kidney Int. 2002 Mar;61(3):1124-35 – reference: 22469240 - Mol Imaging. 2012 Apr;11(2):126-34 – reference: 21528865 - Acc Chem Res. 2011 Oct 18;44(10):853-62 – reference: 16915072 - J Thorac Imaging. 2006 Aug;21(3):235-7 – reference: 15256592 - Proc Natl Acad Sci U S A. 2004 Jul 27;101(30):10901-6 – reference: 22223366 - NMR Biomed. 2011 Dec;24(10):1353-60 – reference: 20936363 - Mol Imaging Biol. 2011 Oct;13(5):819-24 – reference: 15579044 - Curr Pharm Biotechnol. 2004 Dec;5(6):551-66 – reference: 21909083 - Nat Nanotechnol. 2011 Oct;6(10):675-82 – reference: 22035454 - ACS Nano. 2011 Dec 27;5(12):9592-601 – reference: 1241257 - Ann Nutr Aliment. 1975;29(4):271-84 – reference: 19520344 - JACC Cardiovasc Imaging. 2009 Jun;2(6):731-41 – reference: 18217714 - Mol Pharm. 2008 Mar-Apr;5(2):316-27 – reference: 21571076 - Neuroimage. 2011 Aug 1;57(3):817-24 – reference: 22059733 - ACS Nano. 2011 Dec 27;5(12):9583-91 – reference: 18533252 - Biomaterials. 2008 Sep;29(26):3583-90 |
SSID | ssj0000595 ssj0025309 |
Score | 2.3486614 |
Snippet | Superparamagnetic iron-oxide nanoparticles are useful as contrast agents for anatomical, functional and cellular MRI, drug delivery agents, and diagnostic... BACKGROUND: Superparamagnetic iron-oxide nanoparticles are useful as contrast agents for anatomical, functional and cellular MRI, drug delivery agents, and... |
SourceID | pubmedcentral proquest pubmed crossref fao elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3447 |
SubjectTerms | Animals bioavailability Biological Availability biosensors blood circulation Blood half-life Contrast Media - pharmacokinetics Contrast Media - pharmacology drug delivery systems drugs Emulsions - pharmacokinetics Emulsions - pharmacology Fat Emulsions, Intravenous - pharmacokinetics Fat Emulsions, Intravenous - pharmacology Ferric Compounds - pharmacokinetics Ferric Compounds - pharmacology flow cytometry Half-Life hepatocytes histology image analysis Intralipid intravenous injection iron iron oxides Kupffer cells Kupffer Cells - cytology Kupffer Cells - metabolism Labeling of immune cells liver Liver - cytology Liver - metabolism magnetic resonance imaging Magnetite Nanoparticles Male monocytes Nanoparticles Phospholipids - pharmacokinetics Phospholipids - pharmacology pretreatment Rats Rats, Inbred BN RES clearance Soybean Oil - pharmacokinetics Soybean Oil - pharmacology |
Title | Decreased reticuloendothelial system clearance and increased blood half-life and immune cell labeling for nano- and micron-sized superparamagnetic iron-oxide particles upon pre-treatment with Intralipid |
URI | https://dx.doi.org/10.1016/j.bbagen.2013.01.021 https://www.ncbi.nlm.nih.gov/pubmed/23396002 https://www.proquest.com/docview/1347255162 https://www.proquest.com/docview/2000084339 https://pubmed.ncbi.nlm.nih.gov/PMC3640706 |
Volume | 1830 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGEIIXBONj5WMyEq-mieMkzeNUmDoq9sCo2Jtlx_YWlDnR2krAA38gfxV3TlIoYprEU6T4HNm-n-1r7-53hLxOJnAyxknK7ESkTJisZIU2ObMiSTTPIxsLzB3-cJLNFuL9WXq2Q6ZDLgyGVfZnf3emh9O6fzPuV3PcVtX4FJ16YE6k6JBBIjvMYBc5ovzNj99hHmA-pJ0nQTCUHtLnQoyX1rBpkQU1Tjryzvi66-mWU82_jNC_Yyn_uJyOHpD7vVVJD7uBPyQ71u-RO12dyW975O50KOv2iPx8GwzFpTU0JDCu68Z6g3lYNUCRdszOtMRqEggIqryhlR-6hDh3eqFqx-rK9a2YYmIpugAoYCokuFOwhalXvmFB5BLD_jxbVt_hG8t1a6-QcvxSnXscAsVUO9Z8rYyl7RCpR9dt4ykGqWxi4Sn-aUyPwwpUbWUek8XRu0_TGesLOrAy5dGKCW1NAhZEZkvY-kakdlLYUiAtnkU-UrDeCq6dikyq8drMhJ4oUzjLbe6MMckTsusbb_cJzU2kXVHkTnMtXKoKk3DnhMq5jUHnbkSSQY-y7NnOsehGLYewti-y075E7csolqD9EWGbXm3H9nGDfD5ARG6hVsKFdEPPfUCUVOdwlMvFKUeiPzTHYdIj8mqAmQRsoPaUt816KbEZFynj18vw8CsAdloxIk87aG6mwuEt-mFh2Fug3Qgg1_h2i68uAud4gg7fKHv23xN-Tu7xrpIIi-IXZHd1tbYvwZ5b6YOwYQ_I7cPj-ewEn_OPn-e_AEiVT9Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbaIlQuCMqjy9NIXM0mjpNsjmih2kLbS7tSb5Yd221Q6kTdXQk48AP5Vcw4ycIiqkpc43Fkex6eZGa-IeRtMgHLGCcpsxORMmGykhXa5MyKJNE8j2wssHb4-CSbzcWn8_R8i0yHWhhMq-xtf2fTg7Xun4z70xy3VTU-xaAeuBMpBmQQyG6b3BGgvtjG4N2P33ke4D-kXShBMCQf6udCkpfWoLUIgxonHXpnfNP9tO1U8y8v9O9kyj9up4MH5H7vVtL33cofki3r98jdrtHktz2yOx36uj0iPz8ET3FhDQ0VjKu6sd5gIVYNskg7aGdaYjsJlAiqvKGVH6aERHd6qWrH6sr1o1hjYinGACgIVahwp-AMU698wwLJFeb9ebaovsM7FqvWXiPm-JW68LgEirV2rPlaGUvbIVWPrtrGU8xSWSfDU_xrTA_DCVRtZR6T-cHHs-mM9R0dWJnyaMmEtiYBFyKzJei-EamdFLYUiItnEZAU3LeCa6cik2q8NzOhJ8oUznKbO2NM8oTs-MbbfUJzE2lXFLnTXAuXqsIk3Dmhcm5j4LkbkWTgoyx7uHPsulHLIa_ti-y4L5H7MoolcH9E2HpW28F93EKfDyIiN8RWwo10y8x9kCipLsCWy_kpR6Q_9Mdh0yPyZhAzCbKB3FPeNquFxGE8pIzfTMPDZwCoWjEiTzvRXG-Fw1MMxMKyN4R2TYBg45sjvroMoOMJRnyj7Nl_b_g12Z2dHR_Jo8OTz8_JPd61FWFR_ILsLK9X9iU4d0v9KijvL_9xT78 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decreased+reticuloendothelial+system+clearance+and+increased+blood+half-life+and+immune+cell+labeling+for+nano-+and+micron-sized+superparamagnetic+iron-oxide+particles+upon+pre-treatment+with+Intralipid&rft.jtitle=Biochimica+et+biophysica+acta&rft.au=Liu%2C+Li&rft.au=Hitchens%2C+T+Kevin&rft.au=Ye%2C+Qing&rft.au=Wu%2C+Yijen&rft.date=2013-06-01&rft.issn=0006-3002&rft.volume=1830&rft.issue=6&rft.spage=3447&rft_id=info:doi/10.1016%2Fj.bbagen.2013.01.021&rft_id=info%3Apmid%2F23396002&rft.externalDocID=23396002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |