process-based analysis of ocean heat uptake in an AOGCM with an eddy-permitting ocean component

About 90 % of the anthropogenic increase in heat stored in the climate system is found in the oceans. Therefore it is relevant to understand the details of ocean heat uptake. Here we present a detailed, process-based analysis of ocean heat uptake (OHU) processes in HiGEM1.2, an atmosphere–ocean gene...

Full description

Saved in:
Bibliographic Details
Published inClimate dynamics Vol. 45; no. 11-12; pp. 3205 - 3226
Main Authors Kuhlbrodt, T., Gregory, J. M., Shaffrey, L. C.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2015
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract About 90 % of the anthropogenic increase in heat stored in the climate system is found in the oceans. Therefore it is relevant to understand the details of ocean heat uptake. Here we present a detailed, process-based analysis of ocean heat uptake (OHU) processes in HiGEM1.2, an atmosphere–ocean general circulation model with an eddy-permitting ocean component of 1/3° resolution. Similarly to various other models, HiGEM1.2 shows that the global heat budget is dominated by a downward advection of heat compensated by upward isopycnal diffusion. Only in the upper tropical ocean do we find the classical balance between downward diapycnal diffusion and upward advection of heat. The upward isopycnal diffusion of heat is located mostly in the Southern Ocean, which thus dominates the global heat budget. We compare the responses to a 4xCO2 forcing and an enhancement of the windstress forcing in the Southern Ocean. This highlights the importance of regional processes for the global ocean heat uptake. These are mainly surface fluxes and convection in the high latitudes, and advection in the Southern Ocean mid-latitudes. Changes in diffusion are less important. In line with the CMIP5 models, HiGEM1.2 shows a band of strong OHU in the mid-latitude Southern Ocean in the 4xCO2 run, which is mostly advective. By contrast, in the high-latitude Southern Ocean regions it is the suppression of convection that leads to OHU. In the enhanced windstress run, convection is strengthened at high Southern latitudes, leading to heat loss, while the magnitude of the OHU in the Southern mid-latitudes is very similar to the 4xCO2 results. Remarkably, there is only very small global OHU in the enhanced windstress run. The wind stress forcing just leads to a redistribution of heat. We relate the ocean changes at high Southern latitudes to the effect of climate change on the Antarctic Circumpolar Current (ACC). It weakens in the 4xCO2 run and strengthens in the wind stress run. The weakening is due to a narrowing of the ACC, caused by an expansion of the Weddell Gyre, and a flattening of the isopycnals, which are explained by a combination of the wind stress forcing and increased precipitation.
AbstractList About 90 % of the anthropogenic increase in heat stored in the climate system is found in the oceans. Therefore it is relevant to understand the details of ocean heat uptake. Here we present a detailed, process-based analysis of ocean heat uptake (OHU) processes in HiGEM1.2, an atmosphere-ocean general circulation model with an eddy-permitting ocean component of 1/3 degree resolution. Similarly to various other models, HiGEM1.2 shows that the global heat budget is dominated by a downward advection of heat compensated by upward isopycnal diffusion. Only in the upper tropical ocean do we find the classical balance between downward diapycnal diffusion and upward advection of heat. The upward isopycnal diffusion of heat is located mostly in the Southern Ocean, which thus dominates the global heat budget. We compare the responses to a 4xCO2 forcing and an enhancement of the windstress forcing in the Southern Ocean. This highlights the importance of regional processes for the global ocean heat uptake. These are mainly surface fluxes and convection in the high latitudes, and advection in the Southern Ocean mid-latitudes. Changes in diffusion are less important. In line with the CMIP5 models, HiGEM1.2 shows a band of strong OHU in the mid-latitude Southern Ocean in the 4xCO2 run, which is mostly advective. By contrast, in the high-latitude Southern Ocean regions it is the suppression of convection that leads to OHU. In the enhanced windstress run, convection is strengthened at high Southern latitudes, leading to heat loss, while the magnitude of the OHU in the Southern mid-latitudes is very similar to the 4xCO2 results. Remarkably, there is only very small global OHU in the enhanced windstress run. The wind stress forcing just leads to a redistribution of heat. We relate the ocean changes at high Southern latitudes to the effect of climate change on the Antarctic Circumpolar Current (ACC). It weakens in the 4xCO2 run and strengthens in the wind stress run. The weakening is due to a narrowing of the ACC, caused by an expansion of the Weddell Gyre, and a flattening of the isopycnals, which are explained by a combination of the wind stress forcing and increased precipitation.
About 90 % of the anthropogenic increase in heat stored in the climate system is found in the oceans. Therefore it is relevant to understand the details of ocean heat uptake. Here we present a detailed, process-based analysis of ocean heat uptake (OHU) processes in HiGEM1.2, an atmosphere-ocean general circulation model with an eddy-permitting ocean component of 1/3° resolution. Similarly to various other models, HiGEM1.2 shows that the global heat budget is dominated by a downward advection of heat compensated by upward isopycnal diffusion. Only in the upper tropical ocean do we find the classical balance between downward diapycnal diffusion and upward advection of heat. The upward isopycnal diffusion of heat is located mostly in the Southern Ocean, which thus dominates the global heat budget. We compare the responses to a 4xCO2 forcing and an enhancement of the windstress forcing in the Southern Ocean. This highlights the importance of regional processes for the global ocean heat uptake. These are mainly surface fluxes and convection in the high latitudes, and advection in the Southern Ocean mid-latitudes. Changes in diffusion are less important. In line with the CMIP5 models, HiGEM1.2 shows a band of strong OHU in the mid-latitude Southern Ocean in the 4xCO2 run, which is mostly advective. By contrast, in the high-latitude Southern Ocean regions it is the suppression of convection that leads to OHU. In the enhanced windstress run, convection is strengthened at high Southern latitudes, leading to heat loss, while the magnitude of the OHU in the Southern mid-latitudes is very similar to the 4xCO2 results. Remarkably, there is only very small global OHU in the enhanced windstress run. The wind stress forcing just leads to a redistribution of heat. We relate the ocean changes at high Southern latitudes to the effect of climate change on the Antarctic Circumpolar Current (ACC). It weakens in the 4xCO2 run and strengthens in the wind stress run. The weakening is due to a narrowing of the ACC, caused by an expansion of the Weddell Gyre, and a flattening of the isopycnals, which are explained by a combination of the wind stress forcing and increased precipitation.
About 90 % of the anthropogenic increase in heat stored in the climate system is found in the oceans. Therefore it is relevant to understand the details of ocean heat uptake. Here we present a detailed, process-based analysis of ocean heat uptake (OHU) processes in HiGEM1.2, an atmosphere–ocean general circulation model with an eddy-permitting ocean component of 1/3° resolution. Similarly to various other models, HiGEM1.2 shows that the global heat budget is dominated by a downward advection of heat compensated by upward isopycnal diffusion. Only in the upper tropical ocean do we find the classical balance between downward diapycnal diffusion and upward advection of heat. The upward isopycnal diffusion of heat is located mostly in the Southern Ocean, which thus dominates the global heat budget. We compare the responses to a 4xCO2 forcing and an enhancement of the windstress forcing in the Southern Ocean. This highlights the importance of regional processes for the global ocean heat uptake. These are mainly surface fluxes and convection in the high latitudes, and advection in the Southern Ocean mid-latitudes. Changes in diffusion are less important. In line with the CMIP5 models, HiGEM1.2 shows a band of strong OHU in the mid-latitude Southern Ocean in the 4xCO2 run, which is mostly advective. By contrast, in the high-latitude Southern Ocean regions it is the suppression of convection that leads to OHU. In the enhanced windstress run, convection is strengthened at high Southern latitudes, leading to heat loss, while the magnitude of the OHU in the Southern mid-latitudes is very similar to the 4xCO2 results. Remarkably, there is only very small global OHU in the enhanced windstress run. The wind stress forcing just leads to a redistribution of heat. We relate the ocean changes at high Southern latitudes to the effect of climate change on the Antarctic Circumpolar Current (ACC). It weakens in the 4xCO2 run and strengthens in the wind stress run. The weakening is due to a narrowing of the ACC, caused by an expansion of the Weddell Gyre, and a flattening of the isopycnals, which are explained by a combination of the wind stress forcing and increased precipitation.
Audience Academic
Author Kuhlbrodt, T.
Shaffrey, L. C.
Gregory, J. M.
Author_xml – sequence: 1
  givenname: T.
  surname: Kuhlbrodt
  fullname: Kuhlbrodt, T.
  email: t.kuhlbrodt@reading.ac.uk
  organization: NCAS, Department of Meteorology, University of Reading
– sequence: 2
  givenname: J. M.
  surname: Gregory
  fullname: Gregory, J. M.
  organization: NCAS, Department of Meteorology, University of Reading, Met Office Hadley Centre
– sequence: 3
  givenname: L. C.
  surname: Shaffrey
  fullname: Shaffrey, L. C.
  organization: NCAS, Department of Meteorology, University of Reading
BookMark eNp9kktv1DAUhS1UJKaFH8CKSEgIFil-5bUcjaBUKqpE6dpynOuMS2IPuY7K_HscpYsOC-SF5aPvXPn4-Jyc-eCBkLeMXjJKq89Iqah5TlmR80LInL4gGyZFUupGnpENbQTNq6IqXpFzxAdKmSwrviHqMAUDiHmrEbpMez0c0WEWbJZ07bM96JjNh6h_QeZ8ArLt7dXue_bo4n45Qdcd8wNMo4vR-f7JZcJ4SBf08TV5afWA8OZpvyD3X7_83H3Lb26vrnfbm9wUnMZcMqDcSMaZbNpCVE1njDWUdxpqU4jWlg3lbdto01USrGRlbS2UphKt1kxYcUE-rnNTnt8zYFSjQwPDoD2EGRWrCsZ5LWWd0Pf_oA9hnlLwhRKypIyLJlGXK9XrAZTzNsRJm7Q6GJ1J2axL-laKNLepeZkMn04MiYnwJ_Z6RlTXdz9O2Q_P2PTEQ9xjGObogsdTkK2gmQLiBDb15UY9HRWjailercWrVLxailc0efjqwcT6HqZn-f5jerearA5K95NDdX_HKSuXn1LVTSn-AmcJuMo
CitedBy_id crossref_primary_10_1175_JCLI_D_19_1016_1
crossref_primary_10_1175_JCLI_D_21_0793_1
crossref_primary_10_5670_oceanog_2018_215
crossref_primary_10_1029_2020GL091439
crossref_primary_10_5194_gmd_9_3993_2016
crossref_primary_10_1007_s00382_017_3649_2
crossref_primary_10_1002_2016JC011647
crossref_primary_10_1002_2015JC010928
crossref_primary_10_1007_s00382_023_06986_2
crossref_primary_10_1175_JCLI_D_15_0579_1
crossref_primary_10_1007_s00382_023_06989_z
crossref_primary_10_1016_j_ocemod_2017_11_002
crossref_primary_10_1175_BAMS_D_15_00320_1
crossref_primary_10_1029_2019MS001750
crossref_primary_10_1007_s00382_021_05832_7
crossref_primary_10_1175_JCLI_D_18_0186_1
crossref_primary_10_1175_JCLI_D_19_0478_1
crossref_primary_10_1175_JCLI_D_15_0513_1
crossref_primary_10_1175_JPO_D_18_0098_1
crossref_primary_10_5194_gmd_9_3231_2016
crossref_primary_10_1175_JCLI_D_15_0746_1
crossref_primary_10_1175_JCLI_D_19_0418_1
crossref_primary_10_3389_fmars_2023_1208052
crossref_primary_10_1175_JCLI_D_21_0161_1
crossref_primary_10_1007_s00382_022_06386_y
crossref_primary_10_1029_2019GL082015
crossref_primary_10_1029_2019MS002027
Cites_doi 10.1175/2009JPO4236.1
10.1175/1520-0442-16.9.1352
10.1007/s00382-012-1571-1
10.1175/JCLI-D-11-00312.1
10.1175/JCLI-D-12-00504.1
10.1175/JCLI-D-14-00235.1
10.1175/1520-0442(2003)016<3344:OHUITC>2.0.CO;2
10.1175/2009JCLI3081.1
10.1175/2010JPO4353.1
10.1002/2013GL057706
10.1175/2010JCLI3533.1
10.1029/94RG01872
10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2
10.1029/2012JC008412
10.1175/2008JCLI2239.1
10.1029/2008GL036138
10.1175/1520-0485(2003)033<2341:RSFTAC>2.0.CO;2
10.1016/j.ocemod.2008.12.002
10.1175/JCLI3436.1
10.1175/1520-0485(1998)028<2050:DWRADS>2.0.CO;2
10.1007/s003820000059
10.1029/2012GL054022
10.5194/gmd-7-1069-2014
10.1029/95JC01360
10.1016/S0967-0637(98)00070-3
10.1029/2008JD010405
10.1007/s00382-009-0738-x
10.1007/s00382-008-0486-3
10.1175/2008JCLI2508.1
10.1175/JPO3057.1
10.1175/1520-0485(1998)028<0805:IDIAZC>2.0.CO;2
10.1016/j.ocemod.2013.03.006
10.1175/2010JCLI3625.1
10.1175/1520-0485(1990)020<0722:TROAGO>2.0.CO;2
10.1175/JCLI-D-14-00353.1
10.1002/2013GL058104
10.1029/2011GL048794
10.1029/2012GL052952
10.1029/2010GL045208
10.1029/2012GL054207
10.1029/2011GL047120
10.1029/2005GL025352
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2015
COPYRIGHT 2015 Springer
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2015
– notice: COPYRIGHT 2015 Springer
DBID FBQ
AAYXX
CITATION
ISR
3V.
7TG
7TN
7UA
7XB
88F
88I
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
KL.
L.G
M1Q
M2P
PATMY
PCBAR
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
Q9U
7ST
7U6
DOI 10.1007/s00382-015-2534-0
DatabaseName AGRIS
CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Military Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Military Database
Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
Sustainability Science Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Military Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Military Collection (Alumni Edition)
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
Sustainability Science Abstracts
Environment Abstracts
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional



Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
– sequence: 2
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Oceanography
EISSN 1432-0894
EndPage 3226
ExternalDocumentID 3871437361
A435129826
10_1007_s00382_015_2534_0
US201600147896
Genre Feature
GeographicLocations Antarctic region
Southern Ocean
PS, Antarctic Ocean, Antarctic Circumpolar Current
PSE, South Indian Ocean, Weddell Gyre
PS, Antarctic Ocean
GeographicLocations_xml – name: Antarctic region
– name: Southern Ocean
– name: PS, Antarctic Ocean
– name: PSE, South Indian Ocean, Weddell Gyre
– name: PS, Antarctic Ocean, Antarctic Circumpolar Current
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29B
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2XV
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67M
67Z
6NX
78A
7XC
88I
8FE
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AAMRO
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
AAZAB
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABEOS
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
D1K
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FBQ
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IEP
IFM
IHE
IHW
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
KOW
LAS
LK5
LLZTM
M1Q
M2P
M4Y
M7R
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
Z5O
Z7R
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~02
~8M
~EX
~KM
AAPBV
AACDK
AAEOY
AAHBH
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
7TG
7TN
7UA
7XB
8FK
C1K
F1W
H96
KL.
L.G
PQEST
PQUKI
PRINS
Q9U
7ST
7U6
ID FETCH-LOGICAL-c520t-41e02c412149b5379dccfc02dae8c53bf6902bb9acd74ef4168ffe6c73baa13f3
IEDL.DBID AGYKE
ISSN 0930-7575
IngestDate Fri Aug 16 05:33:11 EDT 2024
Fri Sep 13 00:23:24 EDT 2024
Fri Feb 02 04:15:47 EST 2024
Thu Aug 01 19:32:02 EDT 2024
Tue Aug 20 22:02:38 EDT 2024
Thu Sep 12 16:37:54 EDT 2024
Sat Dec 16 12:02:13 EST 2023
Wed Dec 27 19:08:43 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11-12
Keywords Antarctic Circumpolar Current
Ocean heat uptake
Isopycnal diffusion
Southern Ocean
Process-based analysis
Advection–diffusion balance
Eddy-permitting ocean model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c520t-41e02c412149b5379dccfc02dae8c53bf6902bb9acd74ef4168ffe6c73baa13f3
Notes http://dx.doi.org/10.1007/s00382-015-2534-0
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://centaur.reading.ac.uk/39329/1/Kuhlbrodt_Gregory_Shaffrey_2015.pdf
PQID 1734601239
PQPubID 54165
PageCount 22
ParticipantIDs proquest_miscellaneous_1751228448
proquest_journals_1734601239
gale_infotracacademiconefile_A435129826
gale_incontextgauss_ISR_A435129826
gale_healthsolutions_A435129826
crossref_primary_10_1007_s00382_015_2534_0
springer_journals_10_1007_s00382_015_2534_0
fao_agris_US201600147896
PublicationCentury 2000
PublicationDate 2015-12-01
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Observational, Theoretical and Computational Research on the Climate System
PublicationTitle Climate dynamics
PublicationTitleAbbrev Clim Dyn
PublicationYear 2015
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References Good, Gregory, Lowe (CR14) 2011; 38
Meijers, Shuckburgh, Bruneau, Sallee, Bracegirdle, Wang (CR34) 2012; 117
Munk, Wunsch (CR36) 1998; 45
Yin (CR46) 2012; 39
Cai, Cowan, Godfrey, Wijffels (CR4) 2010; 23
Farneti, Delworth, Rosati, Griffies, Zeng (CR10) 2010; 40
Gent, McWilliams (CR12) 1990; 20
Wolfe, Cessi, McClean, Maltrud (CR45) 2008; 35
Exarchou, Kuhlbrodt, Gregory, Smith (CR9) 2015; 28
Rahmstorf (CR39) 1993; 101
Roberts, Marshall (CR40) 1998; 28
Banks, Gregory (CR1) 2006; 33
Hieronymus, Nycander (CR22) 2013; 67
Sigmond, Reader, Fyfe, Gillett (CR43) 2011; 38
Heuzé, Heywood, Stevens, Ridley (CR21) 2013; 40
Huang, Stone, Sokolov, Kamenkovich (CR23) 2003; 16
Morrison, Saenko, Hogg, Spence (CR35) 2013; 40
Griffies, Gnanadesikan, Pacanowski, Larichev, Dukowicz, Smith (CR19) 1998; 28
Good, Ingram, Lambert, Lowe, Gregory, Webb, Ringer, Wu (CR15) 2012; 39
Pardaens, Gregory, Lowe (CR37) 2011; 36
Peters, Gregg, Sanford (CR38) 1995; 100
Yin, Griffies, Stouffer (CR47) 2010; 23
Downes, Hogg (CR6) 2013; 26
Sen Gupta, Muir, Brown, Phipps, Durack, Monselesan, Wijffels (CR41) 2012; 25
Kirkman, Bitz (CR25) 2011; 24
Large, McWilliams, Doney (CR27) 1994; 32
Eden, Greatbatch (CR8) 2009; 27
Kuhlbrodt, Gregory (CR26) 2012; 39
Huang, Stone, Sokolov, Kamenkovich (CR24) 2003; 16
CR29
Frankcombe, Spence, Hogg, England, Griffies (CR11) 2013; 40
Lee, Nurser, Coward, de Cuevas (CR28) 2007; 37
Wang, Kuhlbrodt, Meredith (CR44) 2011; 116
Manabe, Bryan, Spelman (CR30) 1990; 20
Mazloff, Heimbach, Wunsch (CR32) 2010; 40
Megann, Storkey, Aksenov, Alderson, Calvert, Graham, Hyder, Siddorn, Sinha (CR33) 2014; 7
Gregory (CR17) 2000; 16
Griffies, Winton, Anderson, Benson, Delworth, Dufour, Dunne, Goddard, Morrison, Rosati, Wittenberg, Yin, Zhang (CR20) 2015; 28
Brierley, Collins, Thorpe (CR3) 2010; 34
Dufresne, Bony (CR7) 2008; 21
Church, White, Konikow, Domingues, Cogley, Rignot, Gregory, van den Broeke, Monaghan, Velicogna (CR5) 2011; 38
Gnanadesikan, Slater, Swathi, Vallis (CR13) 2005; 18
Graham, de Boer, Heywood, Chapman, Stevens (CR16) 2012; 117
Bouttes, Gregory, Kuhlbrodt, Suzuki (CR2) 2012; 39
Gregory, Forster (CR18) 2008; 113
Marshall, Radko (CR31) 2003; 33
Shaffrey, Stevens, Norton, Roberts, Vidale, Harle, Jrrar, Stevens, Woodage, Demory, Donners, Clark, Clayton, Cole, Wilson, Connolley, Davies, Iwi, Johns, King, New, Slingo, Slingo, Steenman-Clark, Martin (CR42) 2009; 22
JM Gregory (2534_CR17) 2000; 16
SM Griffies (2534_CR19) 1998; 28
A Sen Gupta (2534_CR41) 2012; 25
2534_CR29
W Munk (2534_CR36) 1998; 45
A Meijers (2534_CR34) 2012; 117
H Peters (2534_CR38) 1995; 100
W Cai (2534_CR4) 2010; 23
S Downes (2534_CR6) 2013; 26
Z Wang (2534_CR44) 2011; 116
JM Gregory (2534_CR18) 2008; 113
JL Dufresne (2534_CR7) 2008; 21
AK Morrison (2534_CR35) 2013; 40
JA Church (2534_CR5) 2011; 38
MJ Roberts (2534_CR40) 1998; 28
B Huang (2534_CR23) 2003; 16
LC Shaffrey (2534_CR42) 2009; 22
C Heuzé (2534_CR21) 2013; 40
J Marshall (2534_CR31) 2003; 33
C Eden (2534_CR8) 2009; 27
MM Lee (2534_CR28) 2007; 37
M Mazloff (2534_CR32) 2010; 40
LM Frankcombe (2534_CR11) 2013; 40
J Yin (2534_CR46) 2012; 39
CM Brierley (2534_CR3) 2010; 34
S Rahmstorf (2534_CR39) 1993; 101
E Exarchou (2534_CR9) 2015; 28
W Large (2534_CR27) 1994; 32
R Farneti (2534_CR10) 2010; 40
P Good (2534_CR14) 2011; 38
N Bouttes (2534_CR2) 2012; 39
CH Kirkman IV (2534_CR25) 2011; 24
A Gnanadesikan (2534_CR13) 2005; 18
PR Gent (2534_CR12) 1990; 20
RM Graham (2534_CR16) 2012; 117
HT Banks (2534_CR1) 2006; 33
AK Pardaens (2534_CR37) 2011; 36
M Sigmond (2534_CR43) 2011; 38
SM Griffies (2534_CR20) 2015; 28
M Hieronymus (2534_CR22) 2013; 67
CL Wolfe (2534_CR45) 2008; 35
T Kuhlbrodt (2534_CR26) 2012; 39
J Yin (2534_CR47) 2010; 23
S Manabe (2534_CR30) 1990; 20
B Huang (2534_CR24) 2003; 16
A Megann (2534_CR33) 2014; 7
P Good (2534_CR15) 2012; 39
References_xml – volume: 39
  start-page: 1
  issue: 23
  year: 2012
  end-page: 2
  ident: CR2
  article-title: The effect of windstress change on future sea level change in the Southern Ocean
  publication-title: Geophys Res Lett
  contributor:
    fullname: Suzuki
– volume: 40
  start-page: 880
  year: 2010
  end-page: 899
  ident: CR32
  article-title: An eddy-permitting Southern Ocean state estimate
  publication-title: J Phys Oceanogr
  doi: 10.1175/2009JPO4236.1
  contributor:
    fullname: Wunsch
– volume: 16
  start-page: 1352
  year: 2003
  end-page: 1363
  ident: CR23
  article-title: The deep-ocean heat uptake in transient climate change
  publication-title: J Clim
  doi: 10.1175/1520-0442-16.9.1352
  contributor:
    fullname: Kamenkovich
– volume: 39
  start-page: 2789
  year: 2012
  end-page: 2803
  ident: CR15
  article-title: A step-response approach for predicting and understanding non-linear precipitation changes
  publication-title: Clim Dyn
  doi: 10.1007/s00382-012-1571-1
  contributor:
    fullname: Wu
– volume: 25
  start-page: 4621
  year: 2012
  end-page: 4640
  ident: CR41
  article-title: Climate drift in the CMIP3 models
  publication-title: J Clim
  doi: 10.1175/JCLI-D-11-00312.1
  contributor:
    fullname: Wijffels
– volume: 26
  start-page: 7198
  year: 2013
  end-page: 7220
  ident: CR6
  article-title: Southern Ocean circulation and eddy compensation in CMIP5 models
  publication-title: J Clim
  doi: 10.1175/JCLI-D-12-00504.1
  contributor:
    fullname: Hogg
– volume: 28
  start-page: 887
  issue: 2
  year: 2015
  end-page: 908
  ident: CR9
  article-title: Ocean heat uptake processes: a model intercomparison
  publication-title: J Clim
  doi: 10.1175/JCLI-D-14-00235.1
  contributor:
    fullname: Smith
– volume: 16
  start-page: 3344
  year: 2003
  end-page: 3356
  ident: CR24
  article-title: Ocean heat uptake in transient climate change: mechanisms and uncertainty due to subgrid-scale eddy mixing
  publication-title: J Clim
  doi: 10.1175/1520-0442(2003)016<3344:OHUITC>2.0.CO;2
  contributor:
    fullname: Kamenkovich
– volume: 117
  start-page: C08018
  year: 2012
  ident: CR16
  article-title: Southern Ocean fronts: controlled by wind or topography?
  publication-title: J Geophys Res
  contributor:
    fullname: Stevens
– volume: 38
  start-page: L01703
  year: 2011
  ident: CR14
  article-title: A step-response simple climate model to reconstruct and interpret AOGCM projections
  publication-title: Geophys Res Lett
  contributor:
    fullname: Lowe
– volume: 39
  start-page: 1
  issue: 17
  year: 2012
  end-page: 2
  ident: CR46
  article-title: Century to multi-century sea level rise projections from CMIP5 models
  publication-title: Geophys Res Lett
  contributor:
    fullname: Yin
– volume: 23
  start-page: 197
  year: 2010
  end-page: 206
  ident: CR4
  article-title: Simulations of processes associated with the fast warming rate of the southern midlatitude ocean
  publication-title: J Clim
  doi: 10.1175/2009JCLI3081.1
  contributor:
    fullname: Wijffels
– volume: 40
  start-page: 1539
  year: 2010
  end-page: 1557
  ident: CR10
  article-title: The role of mesoscale eddies in the rectification of the Southern Ocean response to climate change
  publication-title: J Phys Oceanogr
  doi: 10.1175/2010JPO4353.1
  contributor:
    fullname: Zeng
– volume: 40
  start-page: 5445
  year: 2013
  end-page: 5450
  ident: CR35
  article-title: The role of vertical eddy transport in Southern Ocean heat uptake
  publication-title: Geophys Res Lett
  doi: 10.1002/2013GL057706
  contributor:
    fullname: Spence
– volume: 23
  start-page: 4585
  year: 2010
  end-page: 4607
  ident: CR47
  article-title: Spatial variability of sea level rise in twenty-first century projections
  publication-title: J Clim
  doi: 10.1175/2010JCLI3533.1
  contributor:
    fullname: Stouffer
– ident: CR29
– volume: 32
  start-page: 363
  issue: 4
  year: 1994
  end-page: 403
  ident: CR27
  article-title: Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization
  publication-title: Rev Geophys
  doi: 10.1029/94RG01872
  contributor:
    fullname: Doney
– volume: 20
  start-page: 150
  year: 1990
  end-page: 155
  ident: CR12
  article-title: Isopycnal mixing in ocean circulation models
  publication-title: J Phys Oceanogr
  doi: 10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2
  contributor:
    fullname: McWilliams
– volume: 116
  start-page: C08011
  year: 2011
  ident: CR44
  article-title: On the response of the Antarctic circumpolar current transport to climate change in coupled climate models
  publication-title: J Geophys Res
  contributor:
    fullname: Meredith
– volume: 117
  start-page: C12008
  year: 2012
  ident: CR34
  article-title: Representation of the Antarctic circumpolar current in the CMIP5 climate models and future changes under warming scenarios
  publication-title: J Geophys Res
  doi: 10.1029/2012JC008412
  contributor:
    fullname: Wang
– volume: 21
  start-page: 5135
  issue: 19
  year: 2008
  end-page: 5144
  ident: CR7
  article-title: An assessment of the primary sources of spread of global warming estimates from coupled atmosphere–ocean models
  publication-title: J Clim
  doi: 10.1175/2008JCLI2239.1
  contributor:
    fullname: Bony
– volume: 35
  start-page: L23605
  year: 2008
  ident: CR45
  article-title: Vertical heat transport in eddying ocean models
  publication-title: Geophys Res Lett
  doi: 10.1029/2008GL036138
  contributor:
    fullname: Maltrud
– volume: 33
  start-page: 2341
  year: 2003
  end-page: 2354
  ident: CR31
  article-title: Residual-mean solution for the Antarctic circumpolar current and its associated overturning circulation
  publication-title: J Phys Oceanogr
  doi: 10.1175/1520-0485(2003)033<2341:RSFTAC>2.0.CO;2
  contributor:
    fullname: Radko
– volume: 27
  start-page: 98
  year: 2009
  end-page: 106
  ident: CR8
  article-title: A diagnosis of isopycnal mixing by mesoscale eddies
  publication-title: Ocean Model
  doi: 10.1016/j.ocemod.2008.12.002
  contributor:
    fullname: Greatbatch
– volume: 18
  start-page: 2604
  year: 2005
  end-page: 2616
  ident: CR13
  article-title: The energetics of ocean heat transport
  publication-title: J Clim
  doi: 10.1175/JCLI3436.1
  contributor:
    fullname: Vallis
– volume: 39
  start-page: L18608
  year: 2012
  ident: CR26
  article-title: Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change
  publication-title: Geophys Res Lett
  contributor:
    fullname: Gregory
– volume: 28
  start-page: 2050
  year: 1998
  end-page: 2063
  ident: CR40
  article-title: Do we require adiabatic dissipation schemes in eddy-resolving ocean models?
  publication-title: J Phys Oceanogr
  doi: 10.1175/1520-0485(1998)028<2050:DWRADS>2.0.CO;2
  contributor:
    fullname: Marshall
– volume: 33
  start-page: L07608
  year: 2006
  ident: CR1
  article-title: Mechanisms of ocean heat uptake in a coupled climate model and the implications for tracer based predictions of ocean heat uptake
  publication-title: Geophys Res Lett
  contributor:
    fullname: Gregory
– volume: 16
  start-page: 501
  issue: 7
  year: 2000
  end-page: 515
  ident: CR17
  article-title: Vertical heat transports in the ocean and their effect on time-dependent climate change
  publication-title: Clim Dyn
  doi: 10.1007/s003820000059
  contributor:
    fullname: Gregory
– volume: 40
  start-page: 1
  year: 2013
  end-page: 6
  ident: CR11
  article-title: Sea level changes forced by Southern Ocean winds
  publication-title: Geophys Res Lett
  doi: 10.1029/2012GL054022
  contributor:
    fullname: Griffies
– volume: 38
  start-page: L18601
  year: 2011
  ident: CR5
  article-title: Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008
  publication-title: Geophys Res Lett
  contributor:
    fullname: Velicogna
– volume: 101
  start-page: 9
  year: 1993
  end-page: 11
  ident: CR39
  article-title: A fast and complete convection scheme for ocean models
  publication-title: Ocean Model
  contributor:
    fullname: Rahmstorf
– volume: 7
  start-page: 1069
  year: 2014
  end-page: 1092
  ident: CR33
  article-title: GO5.0: the joint NERC—Met Office NEMO global ocean model for use in coupled and forced applications
  publication-title: Geosci Model Dev
  doi: 10.5194/gmd-7-1069-2014
  contributor:
    fullname: Sinha
– volume: 100
  start-page: 18,349
  issue: C9
  year: 1995
  end-page: 18,368
  ident: CR38
  article-title: Detail and scaling of turbulent overturns in the Pacific equatorial undercurrent
  publication-title: J Geophys Res
  doi: 10.1029/95JC01360
  contributor:
    fullname: Sanford
– volume: 45
  start-page: 1977
  year: 1998
  end-page: 2010
  ident: CR36
  article-title: Abyssal recipes II: energetics of tidal and wind mixing
  publication-title: Deep Sea Res I
  doi: 10.1016/S0967-0637(98)00070-3
  contributor:
    fullname: Wunsch
– volume: 113
  start-page: D23105
  year: 2008
  ident: CR18
  article-title: Transient climate response estimated from radiative forcing and observed temperature change
  publication-title: J Geophys Res
  doi: 10.1029/2008JD010405
  contributor:
    fullname: Forster
– volume: 36
  start-page: 2015
  issue: 9–10
  year: 2011
  end-page: 2033
  ident: CR37
  article-title: A model study of factors influencing projected changes in regional sea level over the 21st century
  publication-title: Clim Dyn
  doi: 10.1007/s00382-009-0738-x
  contributor:
    fullname: Lowe
– volume: 34
  start-page: 325
  year: 2010
  end-page: 343
  ident: CR3
  article-title: The impact of perturbations to ocean-model parameters on climate and climate change in a coupled model
  publication-title: Clim Dyn
  doi: 10.1007/s00382-008-0486-3
  contributor:
    fullname: Thorpe
– volume: 22
  start-page: 1861
  year: 2009
  end-page: 1896
  ident: CR42
  article-title: U.K. HiGEM: the new U.K. high-resolution global environment model–Model description and basic evaluation
  publication-title: J Clim
  doi: 10.1175/2008JCLI2508.1
  contributor:
    fullname: Martin
– volume: 40
  start-page: 1
  year: 2013
  end-page: 6
  ident: CR21
  article-title: Southern Ocean bottom water characteristics in CMIP5 models
  publication-title: Geophys Res Lett
  doi: 10.1029/2012GL054022
  contributor:
    fullname: Ridley
– volume: 37
  start-page: 1376
  year: 2007
  end-page: 1393
  ident: CR28
  article-title: Eddy advective and diffusive transports of heat and salt in the Southern Ocean
  publication-title: J Phys Oceanogr
  doi: 10.1175/JPO3057.1
  contributor:
    fullname: de Cuevas
– volume: 38
  start-page: L12601
  year: 2011
  ident: CR43
  article-title: Drivers of past and future Southern Ocean change: stratospheric ozone versus greenhouse gas impacts
  publication-title: Geophys Res Lett
  contributor:
    fullname: Gillett
– volume: 28
  start-page: 805
  year: 1998
  end-page: 830
  ident: CR19
  article-title: Isoneutral diffusion in a z-coordinate ocean model
  publication-title: J Phys Oceanogr
  doi: 10.1175/1520-0485(1998)028<0805:IDIAZC>2.0.CO;2
  contributor:
    fullname: Smith
– volume: 67
  start-page: 28
  year: 2013
  end-page: 38
  ident: CR22
  article-title: The budgdets of heat and salinity in NEMO
  publication-title: Ocean Model.
  doi: 10.1016/j.ocemod.2013.03.006
  contributor:
    fullname: Nycander
– volume: 24
  start-page: 2224
  year: 2011
  end-page: 2237
  ident: CR25
  article-title: The effect of the sea ice freshwater flux on Southern Ocean temperatures in CCSM3: deep-ocean warming and delayed surface warming
  publication-title: J Clim
  doi: 10.1175/2010JCLI3625.1
  contributor:
    fullname: Bitz
– volume: 20
  start-page: 722
  year: 1990
  end-page: 749
  ident: CR30
  article-title: Transient response of a global ocean-atmosphere model to a doubling of atmospheric carbon dioxide
  publication-title: J Phys Oceanogr
  doi: 10.1175/1520-0485(1990)020<0722:TROAGO>2.0.CO;2
  contributor:
    fullname: Spelman
– volume: 28
  start-page: 952
  issue: 3
  year: 2015
  end-page: 977
  ident: CR20
  article-title: Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models
  publication-title: J Clim
  doi: 10.1175/JCLI-D-14-00353.1
  contributor:
    fullname: Zhang
– volume: 117
  start-page: C12008
  year: 2012
  ident: 2534_CR34
  publication-title: J Geophys Res
  doi: 10.1029/2012JC008412
  contributor:
    fullname: A Meijers
– volume: 22
  start-page: 1861
  year: 2009
  ident: 2534_CR42
  publication-title: J Clim
  doi: 10.1175/2008JCLI2508.1
  contributor:
    fullname: LC Shaffrey
– volume: 23
  start-page: 4585
  year: 2010
  ident: 2534_CR47
  publication-title: J Clim
  doi: 10.1175/2010JCLI3533.1
  contributor:
    fullname: J Yin
– volume: 34
  start-page: 325
  year: 2010
  ident: 2534_CR3
  publication-title: Clim Dyn
  doi: 10.1007/s00382-008-0486-3
  contributor:
    fullname: CM Brierley
– volume: 28
  start-page: 887
  issue: 2
  year: 2015
  ident: 2534_CR9
  publication-title: J Clim
  doi: 10.1175/JCLI-D-14-00235.1
  contributor:
    fullname: E Exarchou
– volume: 40
  start-page: 1
  year: 2013
  ident: 2534_CR11
  publication-title: Geophys Res Lett
  doi: 10.1002/2013GL058104
  contributor:
    fullname: LM Frankcombe
– volume: 18
  start-page: 2604
  year: 2005
  ident: 2534_CR13
  publication-title: J Clim
  doi: 10.1175/JCLI3436.1
  contributor:
    fullname: A Gnanadesikan
– volume: 38
  start-page: L18601
  year: 2011
  ident: 2534_CR5
  publication-title: Geophys Res Lett
  doi: 10.1029/2011GL048794
  contributor:
    fullname: JA Church
– volume: 25
  start-page: 4621
  year: 2012
  ident: 2534_CR41
  publication-title: J Clim
  doi: 10.1175/JCLI-D-11-00312.1
  contributor:
    fullname: A Sen Gupta
– volume: 39
  start-page: L18608
  year: 2012
  ident: 2534_CR26
  publication-title: Geophys Res Lett
  doi: 10.1029/2012GL052952
  contributor:
    fullname: T Kuhlbrodt
– volume: 45
  start-page: 1977
  year: 1998
  ident: 2534_CR36
  publication-title: Deep Sea Res I
  doi: 10.1016/S0967-0637(98)00070-3
  contributor:
    fullname: W Munk
– volume: 40
  start-page: 1539
  year: 2010
  ident: 2534_CR10
  publication-title: J Phys Oceanogr
  doi: 10.1175/2010JPO4353.1
  contributor:
    fullname: R Farneti
– volume: 16
  start-page: 3344
  year: 2003
  ident: 2534_CR24
  publication-title: J Clim
  doi: 10.1175/1520-0442(2003)016<3344:OHUITC>2.0.CO;2
  contributor:
    fullname: B Huang
– volume: 39
  start-page: 2789
  year: 2012
  ident: 2534_CR15
  publication-title: Clim Dyn
  doi: 10.1007/s00382-012-1571-1
  contributor:
    fullname: P Good
– volume: 117
  start-page: C08018
  year: 2012
  ident: 2534_CR16
  publication-title: J Geophys Res
  contributor:
    fullname: RM Graham
– volume: 28
  start-page: 952
  issue: 3
  year: 2015
  ident: 2534_CR20
  publication-title: J Clim
  doi: 10.1175/JCLI-D-14-00353.1
  contributor:
    fullname: SM Griffies
– volume: 24
  start-page: 2224
  year: 2011
  ident: 2534_CR25
  publication-title: J Clim
  doi: 10.1175/2010JCLI3625.1
  contributor:
    fullname: CH Kirkman IV
– volume: 116
  start-page: C08011
  year: 2011
  ident: 2534_CR44
  publication-title: J Geophys Res
  contributor:
    fullname: Z Wang
– volume: 67
  start-page: 28
  year: 2013
  ident: 2534_CR22
  publication-title: Ocean Model.
  doi: 10.1016/j.ocemod.2013.03.006
  contributor:
    fullname: M Hieronymus
– volume: 16
  start-page: 1352
  year: 2003
  ident: 2534_CR23
  publication-title: J Clim
  doi: 10.1175/1520-0442-16.9.1352
  contributor:
    fullname: B Huang
– ident: 2534_CR29
– volume: 100
  start-page: 18,349
  issue: C9
  year: 1995
  ident: 2534_CR38
  publication-title: J Geophys Res
  doi: 10.1029/95JC01360
  contributor:
    fullname: H Peters
– volume: 35
  start-page: L23605
  year: 2008
  ident: 2534_CR45
  publication-title: Geophys Res Lett
  doi: 10.1029/2008GL036138
  contributor:
    fullname: CL Wolfe
– volume: 21
  start-page: 5135
  issue: 19
  year: 2008
  ident: 2534_CR7
  publication-title: J Clim
  doi: 10.1175/2008JCLI2239.1
  contributor:
    fullname: JL Dufresne
– volume: 101
  start-page: 9
  year: 1993
  ident: 2534_CR39
  publication-title: Ocean Model
  contributor:
    fullname: S Rahmstorf
– volume: 37
  start-page: 1376
  year: 2007
  ident: 2534_CR28
  publication-title: J Phys Oceanogr
  doi: 10.1175/JPO3057.1
  contributor:
    fullname: MM Lee
– volume: 40
  start-page: 880
  year: 2010
  ident: 2534_CR32
  publication-title: J Phys Oceanogr
  doi: 10.1175/2009JPO4236.1
  contributor:
    fullname: M Mazloff
– volume: 32
  start-page: 363
  issue: 4
  year: 1994
  ident: 2534_CR27
  publication-title: Rev Geophys
  doi: 10.1029/94RG01872
  contributor:
    fullname: W Large
– volume: 28
  start-page: 805
  year: 1998
  ident: 2534_CR19
  publication-title: J Phys Oceanogr
  doi: 10.1175/1520-0485(1998)028<0805:IDIAZC>2.0.CO;2
  contributor:
    fullname: SM Griffies
– volume: 26
  start-page: 7198
  year: 2013
  ident: 2534_CR6
  publication-title: J Clim
  doi: 10.1175/JCLI-D-12-00504.1
  contributor:
    fullname: S Downes
– volume: 38
  start-page: L01703
  year: 2011
  ident: 2534_CR14
  publication-title: Geophys Res Lett
  doi: 10.1029/2010GL045208
  contributor:
    fullname: P Good
– volume: 39
  start-page: 1
  issue: 23
  year: 2012
  ident: 2534_CR2
  publication-title: Geophys Res Lett
  doi: 10.1029/2012GL054207
  contributor:
    fullname: N Bouttes
– volume: 23
  start-page: 197
  year: 2010
  ident: 2534_CR4
  publication-title: J Clim
  doi: 10.1175/2009JCLI3081.1
  contributor:
    fullname: W Cai
– volume: 20
  start-page: 150
  year: 1990
  ident: 2534_CR12
  publication-title: J Phys Oceanogr
  doi: 10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2
  contributor:
    fullname: PR Gent
– volume: 38
  start-page: L12601
  year: 2011
  ident: 2534_CR43
  publication-title: Geophys Res Lett
  doi: 10.1029/2011GL047120
  contributor:
    fullname: M Sigmond
– volume: 113
  start-page: D23105
  year: 2008
  ident: 2534_CR18
  publication-title: J Geophys Res
  doi: 10.1029/2008JD010405
  contributor:
    fullname: JM Gregory
– volume: 7
  start-page: 1069
  year: 2014
  ident: 2534_CR33
  publication-title: Geosci Model Dev
  doi: 10.5194/gmd-7-1069-2014
  contributor:
    fullname: A Megann
– volume: 27
  start-page: 98
  year: 2009
  ident: 2534_CR8
  publication-title: Ocean Model
  doi: 10.1016/j.ocemod.2008.12.002
  contributor:
    fullname: C Eden
– volume: 20
  start-page: 722
  year: 1990
  ident: 2534_CR30
  publication-title: J Phys Oceanogr
  doi: 10.1175/1520-0485(1990)020<0722:TROAGO>2.0.CO;2
  contributor:
    fullname: S Manabe
– volume: 28
  start-page: 2050
  year: 1998
  ident: 2534_CR40
  publication-title: J Phys Oceanogr
  doi: 10.1175/1520-0485(1998)028<2050:DWRADS>2.0.CO;2
  contributor:
    fullname: MJ Roberts
– volume: 16
  start-page: 501
  issue: 7
  year: 2000
  ident: 2534_CR17
  publication-title: Clim Dyn
  doi: 10.1007/s003820000059
  contributor:
    fullname: JM Gregory
– volume: 40
  start-page: 5445
  year: 2013
  ident: 2534_CR35
  publication-title: Geophys Res Lett
  doi: 10.1002/2013GL057706
  contributor:
    fullname: AK Morrison
– volume: 40
  start-page: 1
  year: 2013
  ident: 2534_CR21
  publication-title: Geophys Res Lett
  doi: 10.1029/2012GL054022
  contributor:
    fullname: C Heuzé
– volume: 33
  start-page: 2341
  year: 2003
  ident: 2534_CR31
  publication-title: J Phys Oceanogr
  doi: 10.1175/1520-0485(2003)033<2341:RSFTAC>2.0.CO;2
  contributor:
    fullname: J Marshall
– volume: 33
  start-page: L07608
  year: 2006
  ident: 2534_CR1
  publication-title: Geophys Res Lett
  doi: 10.1029/2005GL025352
  contributor:
    fullname: HT Banks
– volume: 36
  start-page: 2015
  issue: 9–10
  year: 2011
  ident: 2534_CR37
  publication-title: Clim Dyn
  doi: 10.1007/s00382-009-0738-x
  contributor:
    fullname: AK Pardaens
– volume: 39
  start-page: 1
  issue: 17
  year: 2012
  ident: 2534_CR46
  publication-title: Geophys Res Lett
  contributor:
    fullname: J Yin
SSID ssj0014672
Score 2.368667
Snippet About 90 % of the anthropogenic increase in heat stored in the climate system is found in the oceans. Therefore it is relevant to understand the details of...
About 90 % of the anthropogenic increase in heat stored in the climate system is found in the oceans. Therefore it is relevant to understand the details of...
SourceID proquest
gale
crossref
springer
fao
SourceType Aggregation Database
Publisher
StartPage 3205
SubjectTerms Analysis
Atmospheric circulation
Atmospheric models
Climate
Climatology
Earth and Environmental Science
Earth Sciences
Geophysics/Geodesy
Marine
Ocean circulation
Ocean currents
Ocean-atmosphere interaction
Oceanography
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELb6uHBBPNWUFgxCIIGsTew87BNaVi0L0hbUslJvlu3YVQVKtt3sgX_PjDdZWFVwyCHJJFFmxjOfPQ8T8ho3sBaBKwaHZDnPBLO8FMxba4ySUqUWa4dnZ-V0nn-5LC53yHSohcG0ysEmRkNdtw7XyEdZJfISAYAaGYurAK4bfVjcMNw_CuOs_WYau2SfZzkGbPc_npx9O99EFMAgxIiCEimrAKMMEc40NhQVEhMUCsYLkbN0y0ftBtPetdd3AqfRH50-IPd7IEnHa8k_JDu-eUSSGWDg9jYuldM3dPLzGgBpPHtMzJgu1lUBDF1XTU3fj4S2gcJ101A0zHS16MwPT68bIKDjr58mM4qLtXjm6_oXW2D6TMyW7p_CrPS2Aef1hMxPT75PpqzfYIG5gqcdyzOfcpdnwDFlC1Gp2rngUl4bL10hbICpM7dWGVdXuQ_AVhmCL10lQJCZCOIp2WvgAweEgq_N6jJ4YwDRwCzMKlfKWnrrQurBjCTk3cBSvVj30dCbjsmR_xr4r5H_Ok3IATBdmyuwc3p-wbELHkiwkqpMyAuUhF5XiW6Gpx4D7APoApOlhLyKFNjcosHsmSuzWi7154vzLaK3PVFoUZdMX4wAP4P9sLYojwaZ6354L_UfZUzIy81tGJgYbTGNb1dIA28A55_LhLwfdOWvV_zr5w___8Fn5B5HTY0ZNUdkr7td-WPARZ193qv8b6kgB2w
  priority: 102
  providerName: ProQuest
Title process-based analysis of ocean heat uptake in an AOGCM with an eddy-permitting ocean component
URI https://link.springer.com/article/10.1007/s00382-015-2534-0
https://www.proquest.com/docview/1734601239/abstract/
https://search.proquest.com/docview/1751228448
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLe27oKQBgzQAqMYhEACuUqc72NatRugdmij0jhZtmNPU1FStckB_nreS9OIqnDYIYqivDiy_T5-9vswIe_wAGvf8pTBlbCAez5TPPKZUUrKNElSV2Hu8HQWXcyDLzfhzQHh3dZFsRhsPZKNou5y3dCHhVEEIeOhHzBYph-FeCp1jxxl5z--jjvfAYh-4ztIfZfFgEa2vsx_NbJjjQ6tLPc1856LtLE8k0ebbMB1U7AQA04Wg7pSA_17v5zjPTr1mBy3QJRmG855Qg5McUKcKWDoctVstdP3dPTzDgBt83RCHl5qI4u2wvVTIjO63CQZMLSEOZVteRNaWloiKUU9T-tlJReG3hVAQLPL89GU4t4vPpk8_8WWGI3TBF-3X2GQe1mALXxG5pPx99EFa89rYDrkbsUCz7hcBx7MSqpCP05zra12eS5NokNfWViJc6VSqfM4MBagYGKtiXTsA194vvWfk14BPzglFEy3l0fWSAkACRZ1KtVRkidGaesa0EoO-bidN7HclOUQXQHmZlAFDKrAQRWuQ05hZoW8BbUp5tcci-oBm8RJGjnkNU632CSddtIuMkCRgIRg7eWQtw0F1sooMBjnVtbrtfh8fbVD9KElsmW1klq2uQ3QGSyvtUN5tmUs0WqLtfBiP4gQ3KYOedO9BjlH540sTFkjDbQAWCJIHPJpy0x_NfG_zr-4F_VL8oAjNzbxOmekV61q8wpQV6X6IGaT4XDWb8UN7sPx7NtVnxzOefYHHgsjng
link.rule.ids 315,786,790,21416,27957,27958,33779,33780,41116,41558,42185,42627,43840,52146,52269,74659
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdY9wAviE8tbDCDEEggi8TOh_OESrXRwVrQtkp7s2zHniamJLTpA_89d6lbqCZ4yIOTi6Pc2Xe_853PhLzGA6yF5yWDS7KUJ4IZngvmjNG6lLKMDe4dnkzz8Sz9cpldhgW3RUirXOvEXlFXjcU18g9JIdIcAUD5sf3J8NQojK6GIzR2yG4qwFUZkN1PR9PvZ5s4AqiBPo5QipgVgEzWcc24LyMqJKYlZIxnImXxlmXa8bq5raVvhUt7K3T8gNwP8JEOV_J-SO64-hGJJoB8m3m_QE7f0NHNNcDQvvWY6CFtV3sBGBqsiupQhYQ2nsJ9XVNUx3TZdvqHo9c1ENDht8-jCcUlWmy5qvrFWkya6XOkw1uYi97UYLKekNnx0cVozMKxCsxmPO5YmriY2zTh4ByZTBRlZa23Ma-0kzYTxoPDzI0pta2K1HlAbNJ7l9tCgPgS4cVTMqjhA3uEgoVNqtw7rQHHgO9lSpvLSjpjfexAeUTk3Zqlql1Vz1CbOsk9_xXwXyH_VRyRPWC60leg3dTsnGPtO5BgIcs8IocoCbXaG7qZlGoIYA8AC7hIEXnVU2BJixpzZq70crFQJ-dnW0RvA5Fvurm2OmxBgJ_BKlhblAdrmaswqRfqzxCMyMvNY5iOGGPRtWuWSAM9gMlPZUTer8fKX1386-ef_f-Dh-Tu-GJyqk5Ppl_3yT2Oo7bPqTkgg26-dM8BGXXmRRj-vwFY2waf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfYJiFeEJ9atsEMQiCBrCV2PpwnVMrKBrRMG5X2ZtmOPU1MSWjTB_577lK3UE3wkAcnF0e5O9_97DufCXmFB1gLz0sGl2QpTwQzPBfMGaN1KWUZG9w7PJ7kJ9P082V2GfKf5iGtcmUTe0NdNRbXyI-SQqQ5AoDyyIe0iLOPo_ftT4YnSGGkNRynsUV2ijTPQMN3PhxPzs7XMQUwCX1MoRQxKwClrGKccV9SVEhMUcgYz0TK4g0vteV1c9ti3wqd9h5p9IDcD1CSDpayf0juuPoRicaAgptZv1hOX9PhzTVA0r71mOgBbZf7Ahg6r4rqUJGENp7CfV1TNM100Xb6h6PXNRDQwbdPwzHF5Vpsuar6xVpMoOnzpcNbmJfe1OC-npDp6Pj78ISFIxaYzXjcsTRxMbdpwmGiZDJRlJW13sa80k7aTBgPk2duTKltVaTOA3qT3rvcFgJEmQgvnpLtGj6wSyh426TKvdMaMA3Mw0xpc1lJZ6yPHRiSiLxdsVS1y0oaal0zuee_Av4r5L-KI7ILTFf6Ciydml5wrIMHEixkmUfkECWhlvtE1wNUDQD4AXiB6VJEXvYUWN6iRkW50ov5XJ1enG8QvQlEvulm2uqwHQF-BitibVAerGSuwgCfqz_qGJEX68cwNDHeomvXLJAGegD3n8qIvFvpyl9d_Ovn9_7_wUNyFzRffT2dfNkn9zgqbZ9ec0C2u9nCPQOQ1JnnQft_AxOnCtw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+process-based+analysis+of+ocean+heat+uptake+in+an+AOGCM+with+an+eddy-permitting+ocean+component&rft.jtitle=Climate+dynamics&rft.au=Kuhlbrodt%2C+T.&rft.au=Gregory%2C+J.+M.&rft.au=Shaffrey%2C+L.+C.&rft.date=2015-12-01&rft.issn=0930-7575&rft.eissn=1432-0894&rft.volume=45&rft.issue=11-12&rft.spage=3205&rft.epage=3226&rft_id=info:doi/10.1007%2Fs00382-015-2534-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00382_015_2534_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0930-7575&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0930-7575&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0930-7575&client=summon