Lessons from computer simulations of Ras proteins in solution and in membrane
A great deal has been learned over the last several decades about the function of Ras proteins in solution and membrane environments. While much of this knowledge has been derived from a plethora of experimental techniques, computer simulations have also played a substantial role. Our goal here is t...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1830; no. 11; pp. 5211 - 5218 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.11.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A great deal has been learned over the last several decades about the function of Ras proteins in solution and membrane environments. While much of this knowledge has been derived from a plethora of experimental techniques, computer simulations have also played a substantial role.
Our goal here is to summarize the contribution of molecular simulations to our current understanding of normal and aberrant Ras function. We focus on lessons from molecular dynamics simulations in aqueous and membrane environments.
The central message is that a close interaction between theory and simulation on the one hand and cell-biological, spectroscopic and other experimental approaches on the other has played, and will likely continue to play, a vital role in Ras research.
Atomistic insights emerging from detailed simulations of Ras in solution and in bilayers may be the key to unlock the secret that to date prevented development of selective anti-Ras inhibitors for cancer therapy.
•Contribution of molecular simulations to the study of Ras GTPases•Multi-scale molecular dynamics simulations of Ras in solution and in membrane•Dynamics plays an important role in the biological activity of Ras proteins.•Implications of simulations and protein motion for anti-cancer Ras inhibitors |
---|---|
AbstractList | A great deal has been learned over the last several decades about the function of Ras proteins in solution and membrane environments. While much of this knowledge has been derived from a plethora of experimental techniques, computer simulations have also played a substantial role.
Our goal here is to summarize the contribution of molecular simulations to our current understanding of normal and aberrant Ras function. We focus on lessons from molecular dynamics simulations in aqueous and membrane environments.
The central message is that a close interaction between theory and simulation on the one hand and cell-biological, spectroscopic and other experimental approaches on the other has played, and will likely continue to play, a vital role in Ras research.
Atomistic insights emerging from detailed simulations of Ras in solution and in bilayers may be the key to unlock the secret that to date prevented development of selective anti-Ras inhibitors for cancer therapy. A great deal has been learned over the last several decades about the function of Ras proteins in solution and membrane environments. While much of this knowledge has been derived from a plethora of experimental techniques, computer simulations have also played a substantial role.BACKGROUNDA great deal has been learned over the last several decades about the function of Ras proteins in solution and membrane environments. While much of this knowledge has been derived from a plethora of experimental techniques, computer simulations have also played a substantial role.Our goal here is to summarize the contribution of molecular simulations to our current understanding of normal and aberrant Ras function. We focus on lessons from molecular dynamics simulations in aqueous and membrane environments.SCOPE OF REVIEWOur goal here is to summarize the contribution of molecular simulations to our current understanding of normal and aberrant Ras function. We focus on lessons from molecular dynamics simulations in aqueous and membrane environments.The central message is that a close interaction between theory and simulation on the one hand and cell-biological, spectroscopic and other experimental approaches on the other has played, and will likely continue to play, a vital role in Ras research.MAJOR CONCLUSIONSThe central message is that a close interaction between theory and simulation on the one hand and cell-biological, spectroscopic and other experimental approaches on the other has played, and will likely continue to play, a vital role in Ras research.Atomistic insights emerging from detailed simulations of Ras in solution and in bilayers may be the key to unlock the secret that to date prevented development of selective anti-Ras inhibitors for cancer therapy.GENERAL SIGNIFICANCEAtomistic insights emerging from detailed simulations of Ras in solution and in bilayers may be the key to unlock the secret that to date prevented development of selective anti-Ras inhibitors for cancer therapy. A great deal has been learned over the last several decades about the function of Ras proteins in solution and membrane environments. While much of this knowledge has been derived from a plethora of experimental techniques, computer simulations have also played a substantial role.Our goal here is to summarize the contribution of molecular simulations to our current understanding of normal and aberrant Ras function. We focus on lessons from molecular dynamics simulations in aqueous and membrane environments.The central message is that a close interaction between theory and simulation on the one hand and cell-biological, spectroscopic and other experimental approaches on the other has played, and will likely continue to play, a vital role in Ras research.Atomistic insights emerging from detailed simulations of Ras in solution and in bilayers may be the key to unlock the secret that to date prevented development of selective anti-Ras inhibitors for cancer therapy. BACKGROUND: A great deal has been learned over the last several decades about the function of Ras proteins in solution and membrane environments. While much of this knowledge has been derived from a plethora of experimental techniques, computer simulations have also played a substantial role. SCOPE OF REVIEW: Our goal here is to summarize the contribution of molecular simulations to our current understanding of normal and aberrant Ras function. We focus on lessons from molecular dynamics simulations in aqueous and membrane environments. MAJOR CONCLUSIONS: The central message is that a close interaction between theory and simulation on the one hand and cell-biological, spectroscopic and other experimental approaches on the other has played, and will likely continue to play, a vital role in Ras research. GENERAL SIGNIFICANCE: Atomistic insights emerging from detailed simulations of Ras in solution and in bilayers may be the key to unlock the secret that to date prevented development of selective anti-Ras inhibitors for cancer therapy. A great deal has been learned over the last several decades about the function of Ras proteins in solution and membrane environments. While much of this knowledge has been derived from a plethora of experimental techniques, computer simulations have also played a substantial role. Our goal here is to summarize the contribution of molecular simulations to our current understanding of normal and aberrant Ras function. We focus on lessons from molecular dynamics simulations in aqueous and membrane environments. The central message is that a close interaction between theory and simulation on the one hand and cell-biological, spectroscopic and other experimental approaches on the other has played, and will likely continue to play, a vital role in Ras research. Atomistic insights emerging from detailed simulations of Ras in solution and in bilayers may be the key to unlock the secret that to date prevented development of selective anti-Ras inhibitors for cancer therapy. •Contribution of molecular simulations to the study of Ras GTPases•Multi-scale molecular dynamics simulations of Ras in solution and in membrane•Dynamics plays an important role in the biological activity of Ras proteins.•Implications of simulations and protein motion for anti-cancer Ras inhibitors |
Author | Prakash, Priyanka Gorfe, Alemayehu A. |
Author_xml | – sequence: 1 givenname: Priyanka surname: Prakash fullname: Prakash, Priyanka – sequence: 2 givenname: Alemayehu A. surname: Gorfe fullname: Gorfe, Alemayehu A. email: Alemayehu.G.Abebe@uth.tmc.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23906604$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUU1v1DAQtVAR3Rb-AYIcuSSM7cRJOCChio9Ki5CAni3bGS9eJfZiJ5X49zhsC4UD9cUaz3vPM--dkRMfPBLylEJFgYqX-0prtUNfMaC8grYCVj8gG9q1rOwAxAnZAIe6rKloTslZSnvIp-mbR-SU8R6EgHpDPm4xpeBTYWOYChOmwzJjLJKbllHNbu0EW3xWqTjEMKPLtfNFCuOyNgvlh7WecNJReXxMHlo1Jnxyc5-Tq3dvv158KLef3l9evNmWpmEwl1zXg-5QK65Ub22v-xa7znaiBdYJbJQGBUI1zLZ93ypltQW0CoWhkN9afk5eH3UPi55wMOjnqEZ5iG5S8YcMysm_O959k7twLXnHmlrwLPDiRiCG7wumWU4uGRzHvERYkmSrV13NRXMvlK4owZu2z9Bnd8f6Pc-t3Rnw6ggwMaQU0Urj5l825yndKCnINVu5l8ds5ZqthFbmbDO5_od8q38P7fmRZlWQahddkldfMkCsKzIh6B83MUd27TDKZBx6g4OLaGY5BPf_L34CmZbKgg |
CitedBy_id | crossref_primary_10_1371_journal_pcbi_1004619 crossref_primary_10_1021_bi5011333 crossref_primary_10_3390_genes13020219 crossref_primary_10_1002_anie_201504357 crossref_primary_10_1080_14756366_2016_1260564 crossref_primary_10_3390_ijms20194773 crossref_primary_10_1080_07391102_2023_2238080 crossref_primary_10_1007_s00232_021_00176_z crossref_primary_10_1021_acsomega_8b03308 crossref_primary_10_1016_j_bpj_2016_01_019 crossref_primary_10_1038_srep45829 crossref_primary_10_1080_21541248_2020_1788886 crossref_primary_10_1021_jacs_3c11396 crossref_primary_10_26508_lsa_201900476 crossref_primary_10_1038_srep37012 crossref_primary_10_1093_abbs_gmv100 crossref_primary_10_1080_21541248_2019_1655883 crossref_primary_10_18632_oncotarget_12416 crossref_primary_10_1021_acs_jpcb_9b05796 crossref_primary_10_1080_08927022_2014_895000 crossref_primary_10_3389_fphar_2017_00823 crossref_primary_10_1158_1541_7786_MCR_14_0535 crossref_primary_10_1016_j_sbi_2024_102869 crossref_primary_10_1038_s42003_023_05487_6 crossref_primary_10_1002_ange_201504357 crossref_primary_10_1074_jbc_M114_620724 crossref_primary_10_1016_j_isci_2023_107031 crossref_primary_10_1002_prot_24802 crossref_primary_10_3390_pr9010071 crossref_primary_10_1002_prot_25317 crossref_primary_10_1002_prot_24786 crossref_primary_10_1007_s00249_014_0942_4 crossref_primary_10_1021_acs_jpcb_6b02403 crossref_primary_10_1073_pnas_1509123112 crossref_primary_10_1039_C5CS00911A crossref_primary_10_1371_journal_pcbi_1004469 crossref_primary_10_1016_j_csbj_2019_12_004 crossref_primary_10_1063_5_0080512 crossref_primary_10_1021_jacs_9b03193 crossref_primary_10_1111_cbdd_13519 crossref_primary_10_1021_acs_chemrev_5b00542 crossref_primary_10_1021_jacs_7b06292 crossref_primary_10_4062_biomolther_2022_119 |
Cites_doi | 10.1242/jcs.114.9.1603 10.1016/j.str.2011.03.009 10.1074/jbc.M108423200 10.1021/jm061053f 10.1016/j.cell.2007.05.018 10.1021/ja055779x 10.1128/MCB.12.5.2050 10.1016/j.tibs.2012.07.001 10.1073/pnas.131549798 10.1073/pnas.0401675101 10.1002/anie.200504266 10.1016/j.febslet.2004.11.020 10.1016/j.bpj.2011.11.4005 10.1073/pnas.1116510109 10.1016/j.bbamem.2011.08.021 10.1073/pnas.0903907107 10.1529/biophysj.108.136481 10.1021/ct3007265 10.1021/bi00233a001 10.1111/j.1742-4658.2009.06928.x 10.1021/bi00037a047 10.1006/jmbi.1997.1313 10.1002/(SICI)1097-0134(199707)28:3<434::AID-PROT12>3.0.CO;2-I 10.1146/annurev.bi.56.070187.004023 10.1038/313700a0 10.1529/biophysj.104.058644 10.1073/pnas.192453199 10.1016/j.bpj.2010.09.063 10.1038/nsb0195-36 10.1016/S0006-3495(01)75979-6 10.1016/0022-2836(91)90753-S 10.1016/j.cellsig.2013.05.004 10.1021/ja073949v 10.1016/j.semcdb.2011.09.002 10.1002/prot.20472 10.4161/cc.7.2.5237 10.1074/jbc.M111.227074 10.1038/nrc2109 10.1371/journal.pcbi.1000325 10.1083/jcb.200202009 10.1063/1.1755656 10.1146/annurev-biochem-062708-134043 10.1016/j.bbapap.2004.04.007 10.1074/jbc.M505503200 10.1128/MCB.25.15.6722-6733.2005 10.1038/nsb0997-686 10.1021/ja107532q 10.1128/MCB.24.15.6799-6810.2004 10.1021/bi00136a005 10.1126/science.1062023 10.1371/journal.pcbi.1002394 10.1021/bi000640e 10.1073/pnas.94.22.11905 10.1126/science.277.5324.333 10.1021/ja310496e 10.1529/biophysj.107.104562 10.1021/ja307716z 10.1016/0092-8674(90)90018-A 10.1371/journal.pcbi.1000245 10.1080/07391102.1993.10508009 10.1002/anie.200702379 10.1073/pnas.87.12.4849 10.1016/j.ymeth.2005.05.018 10.1073/pnas.1200773109 10.1038/348125a0 10.1002/(SICI)1097-0134(19980501)31:2<186::AID-PROT8>3.0.CO;2-K 10.1002/prot.20004 10.1021/bi00152a002 10.1002/anie.201204148 10.1074/jbc.M110.204933 10.1038/nature12205 10.1073/pnas.091506998 10.1038/gim.0b013e31822dd91f 10.1021/ja312508w 10.2217/14796694.5.1.105 10.1016/S0959-440X(97)80157-1 10.1016/j.str.2005.01.014 10.1016/j.str.2008.03.009 10.1158/0008-5472.CAN-11-2612 10.1038/nrm1925 10.1074/jbc.M110.125161 10.1371/journal.pcbi.1000922 10.1021/ja046607n 10.1091/mbc.E08-04-0407 10.1073/pnas.0912226107 10.1002/prot.20422 10.1371/journal.pcbi.1001098 10.1021/bi002164y 10.1039/C2FD20086D 10.1073/pnas.0504114102 10.1074/jbc.M110.193854 10.1073/pnas.0807527105 10.1021/bi0488000 10.4161/cc.7.17.6596 10.1074/jbc.M112.424457 10.1016/j.bpj.2012.06.015 10.1038/nrc1097 10.1038/sj.onc.1201284 10.1021/jp056395w 10.1126/stke.2001.96.pe2 10.1073/pnas.1217730110 10.1021/bi00178a008 10.1021/bi801076c 10.1080/07391102.1989.10506518 10.1016/j.str.2009.12.015 10.1073/pnas.052209199 10.1146/annurev-biophys-083012-130257 10.1128/MCB.00884-12 10.1002/prot.21228 10.1016/0092-8674(86)90495-2 10.1021/ja063635s 10.1371/journal.pone.0025711 10.1038/ncb1615 10.1021/ja805110q 10.1073/pnas.1300016110 10.1016/j.bbrc.2008.01.169 10.1016/j.coph.2010.09.002 10.1016/j.str.2005.12.010 10.1016/S0969-2126(00)00532-3 10.1016/j.bbamem.2009.09.023 10.1242/jcs.001404 10.1038/emboj.2008.10 10.1126/science.2406906 10.1038/372276a0 10.1016/j.jmb.2004.07.077 10.1073/pnas.92.5.1709 10.1038/35070050 10.1002/prot.23095 10.1016/j.bpj.2012.08.043 10.1038/nsb0794-476 10.2174/092986710789957832 10.1074/jbc.M502240200 10.1080/07391102.2012.698379 10.1002/prot.20423 10.1093/protein/10.4.381 10.1073/pnas.89.8.3649 10.1002/j.1460-2075.1990.tb07409.x 10.1038/nrm2438 10.1021/ja904314q 10.1186/1472-6807-10-38 10.1073/pnas.1110553109 10.1038/341209a0 10.1021/ja0289245 10.1002/anie.201201358 10.1016/j.bpj.2010.10.031 10.1016/j.bbamcr.2005.06.004 10.1016/j.semcdb.2007.08.003 10.4161/sgtp.1.1.12178 10.1016/j.bpj.2010.08.072 10.1016/S0006-3495(99)77159-6 10.1016/j.bpj.2010.10.020 10.1016/j.febslet.2007.11.026 10.1021/ja051856c 10.1016/j.tcb.2004.02.001 10.1002/prot.1150 |
ContentType | Journal Article |
Copyright | 2013 Elsevier B.V. 2013. 2013 Elsevier B.V. All rights reserved 2013 |
Copyright_xml | – notice: 2013 Elsevier B.V. – notice: 2013. – notice: 2013 Elsevier B.V. All rights reserved 2013 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.bbagen.2013.07.024 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
EndPage | 5218 |
ExternalDocumentID | PMC3825463 23906604 10_1016_j_bbagen_2013_07_024 US201600002661 S0304416513003371 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01GM100078 – fundername: NIGMS NIH HHS grantid: R01 GM100078 – fundername: National Institute of General Medical Sciences : NIGMS grantid: R01 GM100078 || GM |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- ABPIF ABPTK FBQ AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH -~X .55 .GJ AAYJJ ABJNI AFFNX AI. CGR CUY CVF ECM EIF F5P H~9 K-O MVM NPM RIG TWZ UHS VH1 X7M Y6R YYP ZE2 ZGI ~KM 7X8 7S9 EFKBS L.6 5PM |
ID | FETCH-LOGICAL-c520t-3b4db8eba3aa9ff9b97e88f8670286e5ab0a06a52f7997aafbf0efae6c102f773 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 0006-3002 |
IngestDate | Thu Aug 21 14:06:47 EDT 2025 Sun Aug 24 03:46:29 EDT 2025 Fri Jul 11 00:25:10 EDT 2025 Mon Jul 21 05:56:08 EDT 2025 Thu Apr 24 23:12:29 EDT 2025 Tue Jul 01 00:22:01 EDT 2025 Wed Dec 27 19:22:33 EST 2023 Fri Feb 23 02:34:13 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Molecular dynamics Oncogenic Ras Membrane binding Clustering Protein motion Advanced simulation |
Language | English |
License | 2013. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c520t-3b4db8eba3aa9ff9b97e88f8670286e5ab0a06a52f7997aafbf0efae6c102f773 |
Notes | http://dx.doi.org/10.1016/j.bbagen.2013.07.024 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3825463 |
PMID | 23906604 |
PQID | 1436563579 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3825463 proquest_miscellaneous_2000084365 proquest_miscellaneous_1436563579 pubmed_primary_23906604 crossref_citationtrail_10_1016_j_bbagen_2013_07_024 crossref_primary_10_1016_j_bbagen_2013_07_024 fao_agris_US201600002661 elsevier_sciencedirect_doi_10_1016_j_bbagen_2013_07_024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-11-01 |
PublicationDateYYYYMMDD | 2013-11-01 |
PublicationDate_xml | – month: 11 year: 2013 text: 2013-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta |
PublicationTitleAlternate | Biochim Biophys Acta |
PublicationYear | 2013 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Schafer, Marrink (bb0730) 2010; 99 Baussand, Kleinjung (bb0565) 2013; 9 Harding, Hancock (bb0475) 2008; 7 Schubbert, Shannon, Bollag (bb0100) 2007; 7 Li, Janosi, Gorfe (bb0250) 2012; 134 Schweins, Langen, Warshel (bb0330) 1994; 1 Grant, McCammon, Gorfe (bb0605) 2010; 99 Kar, Keskin, Gursoy, Nussinov (bb0625) 2010; 10 Ensign, Webb (bb0555) 2011; 79 Gorfe, Babakhani, McCammon (bb0205) 2007; 129 Noe, Ille, Smith, Fischer (bb0255) 2005; 59 Prive, Milburn, Tong, de Vos, Yamaizumi, Nishimura, Kim (bb0140) 1992; 89 Brunger, Milburn, Tong, deVos, Jancarik, Yamaizumi, Nishimura, Ohtsuka, Kim (bb0400) 1990; 87 Omerovic, Prior (bb0445) 2009; 276 Ma, Karplus (bb0595) 1997; 94 van der Hoeven, Cho, Ma, Chigurupati, Parton, Hancock (bb0775) 2013; 33 Ford, Skowronek, Boykevisch, Bar-Sagi, Nassar (bb0055) 2005; 280 Grigorenko, Rogov, Nemukhin (bb0305) 2006; 110 Tian, Harding, Inder, Plowman, Parton, Hancock (bb0480) 2007; 9 Domanski, Marrink, Schafer (bb0725) 2012; 1818 Pai, Krengel, Petsko, Goody, Kabsch, Wittinghofer (bb0135) 1990; 9 Liao, Shima, Araki, Ye, Muraoka, Sugimoto, Kawamura, Yamamoto, Tamura, Kataoka (bb0190) 2008; 369 Kobayashi, Saito (bb0530) 2010; 99 Gorfe, Grant, McCammon (bb0210) 2008; 16 Reuther, Tan, Kohler, Nowak, Pampel, Arnold, Kuhlmann, Waldmann, Huster (bb0665) 2006; 45 Spoerner, Wittinghofer, Kalbitzer (bb0050) 2004; 578 Grigorenko, Nemukhin, Shadrina, Topol, Burt (bb0295) 2007; 66 Chen, Lee, Murphy, Carty, Brandt-Rauf, Friedman, Pincus (bb0500) 1989; 6 Hamelberg, Mongan, McCammon (bb0600) 2004; 120 Nussinov, Tsai, Ma (bb0615) 2013; 42 Rohrer, Prisner, Brugmann, Kass, Spoerner, Wittinghofer, Kalbitzer (bb0180) 2001; 40 Gorfe, Hanzal-Bayer, Abankwa, Hancock, McCammon (bb0215) 2007; 50 Kosztin, Bruinsma, O'Lague, Schulten (bb0245) 2002; 99 Gorfe, Pellarin, Caflisch (bb0225) 2004; 126 Cox, Der (bb0090) 2010; 1 Diaz, Wroblowski, Engelborghs (bb0490) 1995; 34 Vogel, Katzka, Waldmann, Arnold, Brown, Huster (bb0660) 2005; 127 Jaumot, Yan, Clyde-Smith, Sluimer, Hancock (bb0385) 2002; 277 Buhrman, Kumar, Cirit, Haugh, Mattos (bb0170) 2011; 286 Wolfman (bb0380) 2001; 2001 Glennon, Villa, Warshel (bb0290) 2000; 39 Bos, Rehmann, Wittinghofer (bb0075) 2007; 129 Grigorenko, Nemukhin, Topol, Cachau, Burt (bb0300) 2005; 60 Foley, Pedersen, Charifson, Darden, Wittinghofer, Pai, Anderson (bb0495) 1992; 31 Grant, Lukman, Hocker, Sayyah, Brown, McCammon, Gorfe (bb0750) 2011; 6 Koera, Nakamura, Nakao, Miyoshi, Toyoshima, Hatta, Otani, Aiba, Katsuki (bb0435) 1997; 15 Gripp, Lin (bb0105) 2012; 14 Krengel, Schlichting, Scherer, Schumann, Frech, John, Kabsch, Pai, Wittinghofer (bb0125) 1990; 62 Sondek, Lambright, Noel, Hamm, Sigler (bb0405) 1994; 372 Quinlan, Settleman (bb0420) 2009; 5 Raimondi, Felline, Portella, Orozco, Fanelli (bb0265) 2013; 31 Pasqualato, Cherfils (bb0160) 2005; 13 Friedman, Devary (bb0520) 2005; 59 de Jong, Lopez, Marrink (bb0735) 2013; 161 Kalbitzer, Spoerner, Ganser, Hozsa, Kremer (bb0070) 2009; 131 Milburn, Tong, deVos, Brunger, Yamaizumi, Nishimura, Kim (bb0130) 1990; 247 Abankwa, Gorfe, Inder, Hancock (bb0465) 2010; 107 Wittinghofer, Vetter (bb0040) 2011; 80 Aran, Prior (bb0455) 2013; 25 Plowman, Muncke, Parton, Hancock (bb0375) 2005; 102 Rotblat, Prior, Muncke, Parton, Kloog, Henis, Hancock (bb0390) 2004; 24 Raimondi, Portella, Orozco, Fanelli (bb0275) 2011; 7 Araki, Shima, Yoshikawa, Muraoka, Ijiri, Nagahara, Shirono, Kataoka, Tamura (bb0545) 2011; 286 Kraulis, Domaille, Campbell-Burk, Van Aken, Laue (bb0145) 1994; 33 Bourne, Sanders, McCormick (bb0025) 1990; 348 Umanoff, Edelmann, Pellicer, Kucherlapati (bb0430) 1995; 92 Resat, Straatsma, Dixon, Miller (bb0570) 2001; 98 Der, Finkel, Cooper (bb0110) 1986; 44 Rosnizeck, Spoerner, Harsch, Kreitner, Filchtinski, Herrmann, Engel, Konig, Kalbitzer (bb0760) 2012; 51 Vogel, Reuther, Roark, Tan, Waldmann, Feller, Huster (bb0645) 2010; 1798 Mello, van Aalten, Findlay (bb0505) 1997; 10 Abankwa, Gorfe, Hancock (bb0685) 2008; 7 Shurkie, Warshel (bb0345) 1991; 55 Ahmadian, Stege, Scheffzek, Wittinghofer (bb0150) 1997; 4 Gorfe, McCammon (bb0220) 2008; 130 Xia, Rudack, Cui, Kotting, Gerwert (bb0350) 2012; 134 Hancock (bb0360) 2006; 7 Plowman, Hancock (bb0425) 2005; 1746 Prior, Hancock (bb0440) 2001; 114 Hall, Bar-Sagi, Nassar (bb0045) 2002; 99 Gorfe (bb0195) 2010; 17 Valencia, Chardin, Wittinghofer, Sander (bb0355) 1991; 30 te Heesen, Gerwert, Schlitter (bb0335) 2007; 581 Prior, Lewis, Mattos (bb0095) 2012; 72 Futatsugi, Tsuda (bb0515) 2001; 81 Janosi, Li, Hancock, Gorfe (bb0240) 2012; 109 Ma, Karplus (bb0640) 1997; 21 Bos (bb0020) 1989; 49 Lukman, Grant, Gorfe, Grant, McCammon (bb0525) 2010; 6 Martin-Garcia, Mendieta-Moreno, Lopez-Vinas, Gomez-Puertas, Mendieta (bb0320) 2012; 102 Gorfe, Babakhani, McCammon (bb0200) 2007; 46 Abankwa, Hanzal-Bayer, Ariotti, Plowman, Gorfe, Parton, McCammon, Hancock (bb0460) 2008; 27 Abankwa, Gorfe, Hancock (bb0470) 2007; 18 Matsumoto, Shima, Muraoka, Araki, Hu, Ijiri, Hirai, Liao, Yoshioka, Kumasaka, Yamamoto, Tamura, Kataoka (bb0535) 2011; 286 Hancock, Prior (bb0450) 2005; 37 Huster, Vogel, Katzka, Scheidt, Binder, Dante, Gutberlet, Zschornig, Waldmann, Arnold (bb0655) 2003; 125 Maurer, Garrenton, Oh, Pitts, Anderson, Skelton, Fauber, Pan, Malek, Stokoe, Ludlam, Bowman, Wu, Giannetti, Starovasnik, Mellman, Jackson, Rudolph, Wang, Fang (bb0395) 2012; 109 Barbacid (bb0015) 1987; 56 O'Connor, Kovrigin (bb0635) 2008; 47 Inder, Harding, Plowman, Philips, Parton, Hancock (bb0365) 2008; 19 Gorfe, Baron, McCammon (bb0675) 2008; 95 Shima, Ijiri, Muraoka, Liao, Ye, Araki, Matsumoto, Yamamoto, Sugimoto, Yoshikawa, Kumasaka, Yamamoto, Tamura, Kataoka (bb0540) 2010; 285 Raimondi, Orozco, Fanelli (bb0270) 2010; 18 Gideon, John, Frech, Lautwein, Clark, Scheffler, Wittinghofer (bb0085) 1992; 12 Zeng, Treutlein, Simonson (bb0280) 1998; 31 Prior, Harding, Yan, Sluimer, Parton, Hancock (bb0745) 2001; 3 Grant, Gorfe, McCammon (bb0585) 2009; 5 Topol, Cachau, Nemukhin, Grigorenko, Burt (bb0340) 2004; 1700 Parton, Hancock (bb0370) 2004; 14 Soares, Miller, Straatsma (bb0575) 2001; 45 Farrar, Ma, Singel, Halkides (bb0580) 2000; 8 Pai, Kabsch, Krengel, Holmes, John, Wittinghofer (bb0415) 1989; 341 Nicolini, Baranski, Schlummer, Palomo, Lumbierres-Burgues, Kahms, Kuhlmann, Sanchez, Gratton, Waldmann, Winter (bb0710) 2006; 128 Risselada, Marrink (bb0720) 2008; 105 Temeles, Gibbs, D'Alonzo, Sigal, Scolnick (bb0080) 1985; 313 Kiel, Aydin, Serrano (bb0560) 2008; 4 Rudack, Xia, Schlitter, Kotting, Gerwert (bb0325) 2012; 103 Hocker, Cho, Chen, Rambahal, Sagineedu, Shaari, Stanslas, Hancock, Gorfe (bb0230) 2013; 110 Shima, Yoshikawa, Ye, Araki, Matsumoto, Liao, Hu, Sugimoto, Ijiri, Takeda, Nishiyama, Sato, Muraoka, Tamura, Osoda, Tsuda, Miyakawa, Fukunishi, Shimada, Kumasaka, Yamamoto, Kataoka (bb0765) 2013; 110 Sun, Burke, Phan, Burns, Olejniczak, Waterson, Lee, Rossanese, Fesik (bb0755) 2012; 51 Futatsugi, Hata, Hoshino, Tsuda (bb0285) 1999; 77 Sprang (bb0030) 1997; 7 Schweins, Geyer, Scheffzek, Warshel, Kalbitzer, Wittinghofer (bb0115) 1995; 2 Niv, Gutman, Kloog, Henis (bb0740) 2002; 157 Vogel, Tan, Waldmann, Feller, Brown, Huster (bb0650) 2007; 93 Tong, de Vos, Milburn, Kim (bb0410) 1991; 217 Guldenhaupt, Rudack, Bachler, Mann, Triola, Waldmann, Kotting, Gerwert (bb0705) 2012; 103 Du, Black, Lecchi, Abramson, Sprang (bb0120) 2004; 101 Zimmermann, Papke, Ismail, Vartak, Chandra, Hoffmann, Hahn, Triola, Wittinghofer, Bastiaens, Waldmann (bb0780) 2013; 497 Scheffzek, Ahmadian, Kabsch, Wiesmüller, Lautwein, Schmitz, Wittinghofer (bb0155) 1997; 277 Allin, Ahmadian, Wittinghofer, Gerwert (bb0175) 2001; 98 Ford, Hornak, Kleinman, Nassar (bb0065) 2006; 14 Klahn, Schlitter, Gerwert (bb0310) 2005; 88 Buhrman, Holzapfel, Fetics, Mattos (bb0165) 2010; 107 Diaz, Wroblowski, Schlitter, Engelborghs (bb0590) 1997; 28 Reuther, Tan, Vogel, Nowak, Arnold, Kuhlmann, Waldmann, Huster (bb0670) 2006; 128 Vetter, Wittinghofer (bb0035) 2001; 294 Karnoub, Weinberg (bb0010) 2008; 9 Prior, Hancock (bb0485) 2012; 23 Klink, Scheidig (bb0630) 2010; 10 Weise, Kapoor, Denter, Nikolaus, Opitz, Koch, Triola, Herrmann, Waldmann, Winter (bb0715) 2011; 133 Roy, Plowman, Rotblat, Prior, Muncke, Grainger, Parton, Henis, Kloog, Hancock (bb0680) 2005; 25 Prakash, Sayyed-Ahmad, Gorfe (bb0260) 2012; 8 K.-J. Cho, Park, Piggott, Salim, Gorfe, Parton, Capon, Lacey, Hancock (bb0770) 2012; 287 Dykes, Friedman, Dykes, Murphy, Brandt-Rauf, Pincus (bb0510) 1993; 11 Langen, Schweins, Warshel (bb0315) 1992; 31 Spoerner, Nuehs, Ganser, Herrmann, Wittinghofer, Kalbitzer (bb0060) 2005; 44 Janosi, Gorfe (bb0235) 2010; 99 Malumbres, Barbacid (bb0005) 2003; 3 Abankwa, Vogel (bb0690) 2007; 120 Ye, Shima, Muraoka, Liao, Okamoto, Yamamoto, Tamura, Yagi, Ueki, Kataoka (bb0550) 2005; 280 Mazhab-Jafari, Marshall, Stathopulos, Kobashigawa, Stambolic, Kay, Inagaki, Ikura (bb0700) 2013; 135 Kapoor, Triola, Vetter, Erlkamp, Waldmann, Winter (bb0695) 2012; 109 Nussinov, Tsai, Xin, Radivojac (bb0620) 2012; 37 Stein, Rueda, Panjkovich, Orozco, Aloy (bb0610) 2011; 19 Iuga, Spoerner, Kalbitzer, Brunner (bb0185) 2004; 342 Lukman (10.1016/j.bbagen.2013.07.024_bb0525) 2010; 6 Topol (10.1016/j.bbagen.2013.07.024_bb0340) 2004; 1700 Li (10.1016/j.bbagen.2013.07.024_bb0250) 2012; 134 Abankwa (10.1016/j.bbagen.2013.07.024_bb0465) 2010; 107 Matsumoto (10.1016/j.bbagen.2013.07.024_bb0535) 2011; 286 Mello (10.1016/j.bbagen.2013.07.024_bb0505) 1997; 10 Friedman (10.1016/j.bbagen.2013.07.024_bb0520) 2005; 59 Sun (10.1016/j.bbagen.2013.07.024_bb0755) 2012; 51 Grigorenko (10.1016/j.bbagen.2013.07.024_bb0295) 2007; 66 Kar (10.1016/j.bbagen.2013.07.024_bb0625) 2010; 10 Pai (10.1016/j.bbagen.2013.07.024_bb0415) 1989; 341 Diaz (10.1016/j.bbagen.2013.07.024_bb0590) 1997; 28 Vetter (10.1016/j.bbagen.2013.07.024_bb0035) 2001; 294 Raimondi (10.1016/j.bbagen.2013.07.024_bb0270) 2010; 18 Nussinov (10.1016/j.bbagen.2013.07.024_bb0620) 2012; 37 Buhrman (10.1016/j.bbagen.2013.07.024_bb0170) 2011; 286 Rohrer (10.1016/j.bbagen.2013.07.024_bb0180) 2001; 40 Ye (10.1016/j.bbagen.2013.07.024_bb0550) 2005; 280 Diaz (10.1016/j.bbagen.2013.07.024_bb0490) 1995; 34 Hancock (10.1016/j.bbagen.2013.07.024_bb0360) 2006; 7 Abankwa (10.1016/j.bbagen.2013.07.024_bb0460) 2008; 27 Rotblat (10.1016/j.bbagen.2013.07.024_bb0390) 2004; 24 Nussinov (10.1016/j.bbagen.2013.07.024_bb0615) 2013; 42 Raimondi (10.1016/j.bbagen.2013.07.024_bb0265) 2013; 31 Sondek (10.1016/j.bbagen.2013.07.024_bb0405) 1994; 372 Ford (10.1016/j.bbagen.2013.07.024_bb0055) 2005; 280 Harding (10.1016/j.bbagen.2013.07.024_bb0475) 2008; 7 Foley (10.1016/j.bbagen.2013.07.024_bb0495) 1992; 31 Barbacid (10.1016/j.bbagen.2013.07.024_bb0015) 1987; 56 Schweins (10.1016/j.bbagen.2013.07.024_bb0115) 1995; 2 Zeng (10.1016/j.bbagen.2013.07.024_bb0280) 1998; 31 Cox (10.1016/j.bbagen.2013.07.024_bb0090) 2010; 1 K.-J. Cho (10.1016/j.bbagen.2013.07.024_bb0770) 2012; 287 Wolfman (10.1016/j.bbagen.2013.07.024_bb0380) 2001; 2001 Aran (10.1016/j.bbagen.2013.07.024_bb0455) 2013; 25 Guldenhaupt (10.1016/j.bbagen.2013.07.024_bb0705) 2012; 103 Janosi (10.1016/j.bbagen.2013.07.024_bb0235) 2010; 99 Ahmadian (10.1016/j.bbagen.2013.07.024_bb0150) 1997; 4 Weise (10.1016/j.bbagen.2013.07.024_bb0715) 2011; 133 Iuga (10.1016/j.bbagen.2013.07.024_bb0185) 2004; 342 Abankwa (10.1016/j.bbagen.2013.07.024_bb0470) 2007; 18 Shima (10.1016/j.bbagen.2013.07.024_bb0540) 2010; 285 Allin (10.1016/j.bbagen.2013.07.024_bb0175) 2001; 98 Reuther (10.1016/j.bbagen.2013.07.024_bb0665) 2006; 45 Omerovic (10.1016/j.bbagen.2013.07.024_bb0445) 2009; 276 Sprang (10.1016/j.bbagen.2013.07.024_bb0030) 1997; 7 O'Connor (10.1016/j.bbagen.2013.07.024_bb0635) 2008; 47 Gorfe (10.1016/j.bbagen.2013.07.024_bb0215) 2007; 50 Vogel (10.1016/j.bbagen.2013.07.024_bb0660) 2005; 127 Tong (10.1016/j.bbagen.2013.07.024_bb0410) 1991; 217 Ensign (10.1016/j.bbagen.2013.07.024_bb0555) 2011; 79 Ma (10.1016/j.bbagen.2013.07.024_bb0640) 1997; 21 te Heesen (10.1016/j.bbagen.2013.07.024_bb0335) 2007; 581 Hocker (10.1016/j.bbagen.2013.07.024_bb0230) 2013; 110 Grant (10.1016/j.bbagen.2013.07.024_bb0585) 2009; 5 Dykes (10.1016/j.bbagen.2013.07.024_bb0510) 1993; 11 Futatsugi (10.1016/j.bbagen.2013.07.024_bb0515) 2001; 81 Hancock (10.1016/j.bbagen.2013.07.024_bb0450) 2005; 37 Huster (10.1016/j.bbagen.2013.07.024_bb0655) 2003; 125 Soares (10.1016/j.bbagen.2013.07.024_bb0575) 2001; 45 Rudack (10.1016/j.bbagen.2013.07.024_bb0325) 2012; 103 Ford (10.1016/j.bbagen.2013.07.024_bb0065) 2006; 14 Milburn (10.1016/j.bbagen.2013.07.024_bb0130) 1990; 247 Klink (10.1016/j.bbagen.2013.07.024_bb0630) 2010; 10 Vogel (10.1016/j.bbagen.2013.07.024_bb0645) 2010; 1798 Mazhab-Jafari (10.1016/j.bbagen.2013.07.024_bb0700) 2013; 135 Shurkie (10.1016/j.bbagen.2013.07.024_bb0345) 1991; 55 Maurer (10.1016/j.bbagen.2013.07.024_bb0395) 2012; 109 Bos (10.1016/j.bbagen.2013.07.024_bb0020) 1989; 49 Domanski (10.1016/j.bbagen.2013.07.024_bb0725) 2012; 1818 Kiel (10.1016/j.bbagen.2013.07.024_bb0560) 2008; 4 Wittinghofer (10.1016/j.bbagen.2013.07.024_bb0040) 2011; 80 Schweins (10.1016/j.bbagen.2013.07.024_bb0330) 1994; 1 Temeles (10.1016/j.bbagen.2013.07.024_bb0080) 1985; 313 Roy (10.1016/j.bbagen.2013.07.024_bb0680) 2005; 25 Grigorenko (10.1016/j.bbagen.2013.07.024_bb0305) 2006; 110 Baussand (10.1016/j.bbagen.2013.07.024_bb0565) 2013; 9 Gorfe (10.1016/j.bbagen.2013.07.024_bb0210) 2008; 16 Malumbres (10.1016/j.bbagen.2013.07.024_bb0005) 2003; 3 Hamelberg (10.1016/j.bbagen.2013.07.024_bb0600) 2004; 120 Niv (10.1016/j.bbagen.2013.07.024_bb0740) 2002; 157 Koera (10.1016/j.bbagen.2013.07.024_bb0435) 1997; 15 Plowman (10.1016/j.bbagen.2013.07.024_bb0375) 2005; 102 Chen (10.1016/j.bbagen.2013.07.024_bb0500) 1989; 6 Araki (10.1016/j.bbagen.2013.07.024_bb0545) 2011; 286 Gorfe (10.1016/j.bbagen.2013.07.024_bb0225) 2004; 126 Raimondi (10.1016/j.bbagen.2013.07.024_bb0275) 2011; 7 Kapoor (10.1016/j.bbagen.2013.07.024_bb0695) 2012; 109 Gripp (10.1016/j.bbagen.2013.07.024_bb0105) 2012; 14 de Jong (10.1016/j.bbagen.2013.07.024_bb0735) 2013; 161 Resat (10.1016/j.bbagen.2013.07.024_bb0570) 2001; 98 Abankwa (10.1016/j.bbagen.2013.07.024_bb0690) 2007; 120 Umanoff (10.1016/j.bbagen.2013.07.024_bb0430) 1995; 92 Schubbert (10.1016/j.bbagen.2013.07.024_bb0100) 2007; 7 Vogel (10.1016/j.bbagen.2013.07.024_bb0650) 2007; 93 Liao (10.1016/j.bbagen.2013.07.024_bb0190) 2008; 369 Prior (10.1016/j.bbagen.2013.07.024_bb0485) 2012; 23 Kalbitzer (10.1016/j.bbagen.2013.07.024_bb0070) 2009; 131 Glennon (10.1016/j.bbagen.2013.07.024_bb0290) 2000; 39 Gorfe (10.1016/j.bbagen.2013.07.024_bb0195) 2010; 17 Bos (10.1016/j.bbagen.2013.07.024_bb0075) 2007; 129 Pasqualato (10.1016/j.bbagen.2013.07.024_bb0160) 2005; 13 Langen (10.1016/j.bbagen.2013.07.024_bb0315) 1992; 31 Du (10.1016/j.bbagen.2013.07.024_bb0120) 2004; 101 Reuther (10.1016/j.bbagen.2013.07.024_bb0670) 2006; 128 Kosztin (10.1016/j.bbagen.2013.07.024_bb0245) 2002; 99 Der (10.1016/j.bbagen.2013.07.024_bb0110) 1986; 44 Noe (10.1016/j.bbagen.2013.07.024_bb0255) 2005; 59 Tian (10.1016/j.bbagen.2013.07.024_bb0480) 2007; 9 Plowman (10.1016/j.bbagen.2013.07.024_bb0425) 2005; 1746 Zimmermann (10.1016/j.bbagen.2013.07.024_bb0780) 2013; 497 Hall (10.1016/j.bbagen.2013.07.024_bb0045) 2002; 99 Kraulis (10.1016/j.bbagen.2013.07.024_bb0145) 1994; 33 Bourne (10.1016/j.bbagen.2013.07.024_bb0025) 1990; 348 Stein (10.1016/j.bbagen.2013.07.024_bb0610) 2011; 19 Valencia (10.1016/j.bbagen.2013.07.024_bb0355) 1991; 30 Brunger (10.1016/j.bbagen.2013.07.024_bb0400) 1990; 87 Gorfe (10.1016/j.bbagen.2013.07.024_bb0200) 2007; 46 Scheffzek (10.1016/j.bbagen.2013.07.024_bb0155) 1997; 277 Gorfe (10.1016/j.bbagen.2013.07.024_bb0675) 2008; 95 Grant (10.1016/j.bbagen.2013.07.024_bb0605) 2010; 99 Spoerner (10.1016/j.bbagen.2013.07.024_bb0060) 2005; 44 Janosi (10.1016/j.bbagen.2013.07.024_bb0240) 2012; 109 Jaumot (10.1016/j.bbagen.2013.07.024_bb0385) 2002; 277 van der Hoeven (10.1016/j.bbagen.2013.07.024_bb0775) 2013; 33 Grant (10.1016/j.bbagen.2013.07.024_bb0750) 2011; 6 Quinlan (10.1016/j.bbagen.2013.07.024_bb0420) 2009; 5 Prior (10.1016/j.bbagen.2013.07.024_bb0745) 2001; 3 Karnoub (10.1016/j.bbagen.2013.07.024_bb0010) 2008; 9 Prior (10.1016/j.bbagen.2013.07.024_bb0095) 2012; 72 Prior (10.1016/j.bbagen.2013.07.024_bb0440) 2001; 114 Gorfe (10.1016/j.bbagen.2013.07.024_bb0205) 2007; 129 Gideon (10.1016/j.bbagen.2013.07.024_bb0085) 1992; 12 Grigorenko (10.1016/j.bbagen.2013.07.024_bb0300) 2005; 60 Rosnizeck (10.1016/j.bbagen.2013.07.024_bb0760) 2012; 51 Buhrman (10.1016/j.bbagen.2013.07.024_bb0165) 2010; 107 Spoerner (10.1016/j.bbagen.2013.07.024_bb0050) 2004; 578 Abankwa (10.1016/j.bbagen.2013.07.024_bb0685) 2008; 7 Pai (10.1016/j.bbagen.2013.07.024_bb0135) 1990; 9 Parton (10.1016/j.bbagen.2013.07.024_bb0370) 2004; 14 Krengel (10.1016/j.bbagen.2013.07.024_bb0125) 1990; 62 Klahn (10.1016/j.bbagen.2013.07.024_bb0310) 2005; 88 Prive (10.1016/j.bbagen.2013.07.024_bb0140) 1992; 89 Farrar (10.1016/j.bbagen.2013.07.024_bb0580) 2000; 8 Kobayashi (10.1016/j.bbagen.2013.07.024_bb0530) 2010; 99 Nicolini (10.1016/j.bbagen.2013.07.024_bb0710) 2006; 128 Shima (10.1016/j.bbagen.2013.07.024_bb0765) 2013; 110 Inder (10.1016/j.bbagen.2013.07.024_bb0365) 2008; 19 Risselada (10.1016/j.bbagen.2013.07.024_bb0720) 2008; 105 Futatsugi (10.1016/j.bbagen.2013.07.024_bb0285) 1999; 77 Schafer (10.1016/j.bbagen.2013.07.024_bb0730) 2010; 99 Ma (10.1016/j.bbagen.2013.07.024_bb0595) 1997; 94 Gorfe (10.1016/j.bbagen.2013.07.024_bb0220) 2008; 130 Xia (10.1016/j.bbagen.2013.07.024_bb0350) 2012; 134 Prakash (10.1016/j.bbagen.2013.07.024_bb0260) 2012; 8 Martin-Garcia (10.1016/j.bbagen.2013.07.024_bb0320) 2012; 102 21686117 - Small GTPases. 2010 Jul;1(1):2-27 20973973 - BMC Struct Biol. 2010;10:38 3919305 - Nature. 1985 Feb 21-27;313(6004):700-3 7878045 - Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1709-13 22562795 - Proc Natl Acad Sci U S A. 2012 May 22;109(21):8097-102 15906320 - Proteins. 2005 Aug 15;60(3):495-503 2196171 - EMBO J. 1990 Aug;9(8):2351-9 9194162 - Protein Eng. 1997 Apr;10(4):381-7 9434906 - Curr Opin Struct Biol. 1997 Dec;7(6):849-56 15805169 - Biophys J. 2005 Jun;88(6):3829-44 18568040 - Nat Rev Mol Cell Biol. 2008 Jul;9(7):517-31 21112297 - Biophys J. 2010 Dec 1;99(11):3726-34 11371635 - Proc Natl Acad Sci U S A. 2001 May 22;98(11):6033-8 21645858 - Structure. 2011 Jun 8;19(6):881-9 1569940 - Mol Cell Biol. 1992 May;12(5):2050-6 21930707 - J Biol Chem. 2011 Nov 11;286(45):39644-53 15878843 - J Biol Chem. 2005 Jul 8;280(27):25697-705 23707528 - Cell Signal. 2013 Sep;25(9):1748-53 17263520 - J Med Chem. 2007 Feb 22;50(4):674-84 18291096 - Biochem Biophys Res Commun. 2008 May 2;369(2):327-32 21748802 - Proteins. 2011 Dec;79(12):3511-24 2199064 - Cell. 1990 Aug 10;62(3):539-48 21112291 - Biophys J. 2010 Dec 1;99(11):3666-74 18771285 - Biochemistry. 2008 Sep 30;47(39):10244-6 17384584 - Nat Rev Cancer. 2007 Apr;7(4):295-308 21098031 - J Biol Chem. 2011 Feb 4;286(5):3323-31 11309191 - J Cell Sci. 2001 May;114(Pt 9):1603-8 21156123 - Biophys J. 2010 Dec 15;99(12):L91-3 22853907 - Biophys J. 2012 Jul 18;103(2):293-302 18761454 - J Am Chem Soc. 2008 Sep 24;130(38):12624-5 23124205 - J Biol Chem. 2012 Dec 21;287(52):43573-84 17557790 - Biophys J. 2007 Oct 15;93(8):2697-712 15778967 - Proteins. 2005 May 15;59(3):534-44 22261753 - Genet Med. 2012 Mar;14(3):285-92 20479006 - J Biol Chem. 2010 Jul 16;285(29):22696-705 10933780 - Biochemistry. 2000 Aug 15;39(32):9641-51 22849539 - J Biomol Struct Dyn. 2013;31(2):142-57 23316125 - J Chem Theory Comput. 2013 Jan 8;9(1):738-749 20884293 - Curr Opin Pharmacol. 2010 Dec;10(6):715-22 15178760 - Proc Natl Acad Sci U S A. 2004 Jun 15;101(24):8858-63 18547521 - Structure. 2008 Jun;16(6):885-96 18022389 - FEBS Lett. 2007 Dec 11;581(29):5677-84 21388959 - J Biol Chem. 2011 Apr 29;286(17):15403-12 11283610 - Nat Cell Biol. 2001 Apr;3(4):368-75 23409921 - J Am Chem Soc. 2013 Mar 6;135(9):3367-70 9219684 - Science. 1997 Jul 18;277(5324):333-8 18621822 - Biophys J. 2008 Oct;95(7):3269-77 23181905 - J Am Chem Soc. 2012 Dec 12;134(49):20041-4 17044712 - J Am Chem Soc. 2006 Oct 25;128(42):13840-6 15994326 - J Biol Chem. 2005 Sep 2;280(35):31267-75 9302992 - Nat Struct Biol. 1997 Sep;4(9):686-9 20223222 - Structure. 2010 Mar 10;18(3):402-14 19300489 - PLoS Comput Biol. 2009 Mar;5(3):e1000325 8129867 - J Biomol Struct Dyn. 1993 Dec;11(3):443-58 2476675 - Nature. 1989 Sep 21;341(6239):209-14 22589270 - Cancer Res. 2012 May 15;72(10):2457-67 22994893 - J Am Chem Soc. 2012 Oct 17;134(41):17278-85 23129805 - Mol Cell Biol. 2013 Jan;33(2):237-51 11689566 - J Biol Chem. 2002 Jan 4;277(1):272-8 7719852 - Nat Struct Biol. 1995 Jan;2(1):36-44 20838576 - PLoS Comput Biol. 2010;6(9). pii: e1000922. doi: 10.1371/journal.pcbi.1000922 17094109 - Proteins. 2007 Feb 1;66(2):456-66 16131204 - J Am Chem Soc. 2005 Sep 7;127(35):12263-72 1899707 - J Mol Biol. 1991 Feb 5;217(3):503-16 19856908 - J Am Chem Soc. 2009 Nov 25;131(46):16714-9 12778136 - Nat Rev Cancer. 2003 Jun;3(6):459-65 21884678 - Biochim Biophys Acta. 2012 Apr;1818(4):984-94 1599919 - Biochemistry. 1992 Jun 2;31(21):4951-9 21675921 - Annu Rev Biochem. 2011;80:943-71 2547513 - Cancer Res. 1989 Sep 1;49(17):4682-9 22566140 - Angew Chem Int Ed Engl. 2012 Jun 18;51(25):6140-3 2191303 - Proc Natl Acad Sci U S A. 1990 Jun;87(12):4849-53 16223883 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15500-5 2406906 - Science. 1990 Feb 23;247(4945):939-45 1390653 - Biochemistry. 1992 Sep 22;31(37):8691-6 19243428 - FEBS J. 2009 Apr;276(7):1817-25 17880077 - J Am Chem Soc. 2007 Oct 10;129(40):12280-6 17886310 - Angew Chem Int Ed Engl. 2007;46(43):8234-7 15837192 - Structure. 2005 Apr;13(4):533-40 16390147 - J Am Chem Soc. 2006 Jan 11;128(1):192-201 11188692 - Structure. 2000 Dec 15;8(12):1279-87 7664067 - Nat Struct Biol. 1994 Jul;1(7):476-84 19941482 - Curr Med Chem. 2010;17(1):1-9 19096503 - PLoS Comput Biol. 2008 Dec;4(12):e1000245 16509742 - J Phys Chem B. 2006 Mar 9;110(9):4407-12 14997535 - Proteins. 2004 Apr 1;55(1):1-10 21924373 - Semin Cell Dev Biol. 2012 Apr;23(2):145-53 18784252 - Mol Biol Cell. 2008 Nov;19(11):4776-84 3304147 - Annu Rev Biochem. 1987;56:779-827 18758236 - Cell Cycle. 2008 Sep 1;7(17):2667-73 17618274 - Nat Cell Biol. 2007 Aug;9(8):905-14 22884395 - Trends Biochem Sci. 2012 Oct;37(10):447-55 10585950 - Biophys J. 1999 Dec;77(6):3287-92 21112273 - Biophys J. 2010 Dec 1;99(11):L87-9 2029511 - Biochemistry. 1991 May 14;30(19):4637-48 11438727 - Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):7754-9 23451894 - Annu Rev Biophys. 2013;42:169-89 21141956 - J Am Chem Soc. 2011 Feb 2;133(4):880-7 22996816 - Angew Chem Int Ed Engl. 2012 Oct 15;51(42):10647-51 16039730 - Biochim Biophys Acta. 2005 Dec 30;1746(3):274-83 22225809 - Biophys J. 2012 Jan 4;102(1):152-7 11721009 - Biophys J. 2001 Dec;81(6):3483-8 15589837 - FEBS Lett. 2004 Dec 17;578(3):305-10 21390270 - PLoS Comput Biol. 2011 Mar;7(3):e1001098 22431598 - Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5299-304 17690305 - J Cell Sci. 2007 Aug 15;120(Pt 16):2953-62 9593192 - Proteins. 1998 May 1;31(2):186-200 15003623 - Trends Cell Biol. 2004 Mar;14(3):141-7 23630290 - Proc Natl Acad Sci U S A. 2013 May 14;110(20):8182-7 23737504 - Proc Natl Acad Sci U S A. 2013 Jun 18;110(25):10201-6 15342254 - J Mol Biol. 2004 Sep 17;342(3):1033-40 16625153 - Nat Rev Mol Cell Biol. 2006 Jun;7(6):456-62 15210132 - Biochim Biophys Acta. 2004 Jul 1;1700(1):125-36 22203965 - Proc Natl Acad Sci U S A. 2012 Jan 10;109(2):460-5 18212529 - Cell Cycle. 2008 Jan 15;7(2):127-34 9342335 - Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):11905-10 19243303 - Future Oncol. 2009 Feb;5(1):105-16 15254246 - Mol Cell Biol. 2004 Aug;24(15):6799-810 20080631 - Proc Natl Acad Sci U S A. 2010 Jan 19;107(3):1130-5 7969474 - Nature. 1994 Nov 17;372(6503):276-9 2686707 - J Biomol Struct Dyn. 1989 Apr;6(5):859-75 17897845 - Semin Cell Dev Biol. 2007 Oct;18(5):599-607 11746677 - Proteins. 2001 Dec 1;45(4):297-312 17540168 - Cell. 2007 Jun 1;129(5):865-77 15548025 - J Am Chem Soc. 2004 Nov 24;126(46):15277-86 23805749 - Faraday Discuss. 2013;161:347-63; discussion 419-59 9223188 - Proteins. 1997 Jul;28(3):434-51 11904419 - Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3575-80 16024806 - Mol Cell Biol. 2005 Aug;25(15):6722-33 12021258 - J Cell Biol. 2002 May 27;157(5):865-72 9398520 - J Mol Biol. 1997 Nov 21;274(1):114-31 16847854 - Angew Chem Int Ed Engl. 2006 Aug 11;45(32):5387-90 11701921 - Science. 2001 Nov 9;294(5545):1299-304 18273062 - EMBO J. 2008 Mar 5;27(5):727-35 7547942 - Biochemistry. 1995 Sep 19;34(37):12038-47 11752674 - Sci STKE. 2001 Aug 21;2001(96):pe2 23698361 - Nature. 2013 May 30;497(7451):638-42 1565661 - Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3649-53 18987307 - Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17367-72 23062351 - Biophys J. 2012 Oct 3;103(7):1585-93 22046245 - PLoS One. 2011;6(10):e25711 12213964 - Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12138-42 8142349 - Biochemistry. 1994 Mar 29;33(12):3515-31 20194776 - Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):4931-6 9294608 - Oncogene. 1997 Sep 4;15(10):1151-9 15268227 - J Chem Phys. 2004 Jun 22;120(24):11919-29 11329253 - Biochemistry. 2001 Feb 20;40(7):1884-9 22359497 - PLoS Comput Biol. 2012;8(2):e1002394 16531227 - Structure. 2006 Mar;14(3):427-36 19819220 - Biochim Biophys Acta. 2010 Feb;1798(2):275-85 15789417 - Proteins. 2005 May 15;59(3):528-33 16288888 - Methods. 2005 Oct;37(2):165-72 15697248 - Biochemistry. 2005 Feb 15;44(6):2225-36 3510078 - Cell. 1986 Jan 17;44(1):167-76 12670227 - J Am Chem Soc. 2003 Apr 9;125(14):4070-9 2122258 - Nature. 1990 Nov 8;348(6297):125-32 |
References_xml | – volume: 93 start-page: 2697 year: 2007 end-page: 2712 ident: bb0650 article-title: Flexibility of ras lipid modifications studied by 2H solid-state NMR and molecular dynamics simulations publication-title: Biophys. J. – volume: 18 start-page: 402 year: 2010 end-page: 414 ident: bb0270 article-title: Deciphering the deformation modes associated with function retention and specialization in members of the Ras superfamily publication-title: Structure – volume: 286 start-page: 15403 year: 2011 end-page: 15412 ident: bb0535 article-title: Critical roles of interactions among switch I-preceding residues and between switch II and its neighboring alpha-helix in conformational dynamics of the GTP-bound Ras family small GTPases publication-title: J. Biol. Chem. – volume: 6 start-page: e25711 year: 2011 ident: bb0750 article-title: Novel allosteric sites on Ras for lead generation publication-title: PLoS One – volume: 21 start-page: 114 year: 1997 end-page: 131 ident: bb0640 article-title: Ligand-induced conformational changes in ras p21: a normal mode and energy minimization analysis publication-title: J. Mol. Biol. – volume: 126 start-page: 15277 year: 2004 end-page: 15286 ident: bb0225 article-title: Membrane localization and flexibility of a lipidated ras peptide studied by molecular dynamics simulations publication-title: J. Am. Chem. Soc. – volume: 16 start-page: 885 year: 2008 end-page: 896 ident: bb0210 article-title: Mapping the nucleotide and isoform-dependent structural and dynamical features of Ras proteins publication-title: Structure – volume: 24 start-page: 6799 year: 2004 end-page: 6810 ident: bb0390 article-title: Three separable domains regulate GTP-dependent association of H-ras with the plasma membrane publication-title: Mol. Cell. Biol. – volume: 33 start-page: 237 year: 2013 end-page: 251 ident: bb0775 article-title: Fendiline inhibits K-Ras plasma membrane localization and blocks K-Ras signal transmission publication-title: Mol. Cell. Biol. – volume: 79 start-page: 3511 year: 2011 end-page: 3524 ident: bb0555 article-title: Factors determining electrostatic fields in molecular dynamics simulations of the Ras/effector interface publication-title: Proteins – volume: 107 start-page: 4931 year: 2010 end-page: 4936 ident: bb0165 article-title: Allosteric modulation of Ras positions Q61 for a direct role in catalysis publication-title: Proc. Natl. Acad. Sci. – volume: 98 start-page: 7754 year: 2001 end-page: 7759 ident: bb0175 article-title: Monitoring the GAP catalyzed H-Ras GTPase reaction at atomic resolution in real time publication-title: Proc. Natl. Acad. Sci. – volume: 37 start-page: 447 year: 2012 end-page: 455 ident: bb0620 article-title: Allosteric post-translational modification codes publication-title: Trends Biochem. Sci. – volume: 217 start-page: 503 year: 1991 end-page: 516 ident: bb0410 article-title: Crystal structures at 2.2 A resolution of the catalytic domains of normal ras protein and an oncogenic mutant complexed with GDP publication-title: J. Mol. Biol. – volume: 578 start-page: 305 year: 2004 end-page: 310 ident: bb0050 article-title: Perturbation of the conformational equilibria in Ras by selective mutations as studied by 31P NMR spectroscopy publication-title: FEBS Lett. – volume: 114 start-page: 1603 year: 2001 end-page: 1608 ident: bb0440 article-title: Compartmentalization of Ras proteins publication-title: J. Cell Sci. – volume: 99 start-page: 3726 year: 2010 end-page: 3734 ident: bb0530 article-title: Relation between the conformational heterogeneity and reaction cycle of Ras: molecular simulation of Ras publication-title: Biophys. J. – volume: 129 start-page: 12280 year: 2007 end-page: 12286 ident: bb0205 article-title: H-ras protein in a bilayer: interaction and structure perturbation publication-title: J. Am. Chem. Soc. – volume: 34 start-page: 12038 year: 1995 end-page: 12047 ident: bb0490 article-title: Molecular dynamics simulation of the solution structures of Ha-ras-p21 GDP and GTP complexes: flexibility, possible hinges, and levers of the conformational transition publication-title: Biochemistry – volume: 80 start-page: 943 year: 2011 end-page: 971 ident: bb0040 article-title: Structure–function relationships of the G domain, a canonical switch motif publication-title: Annu. Rev. Biochem. – volume: 5 start-page: e1000325 year: 2009 ident: bb0585 article-title: Ras conformational switching: simulating nucleotide-dependent conformational transitions with accelerated molecular dynamics publication-title: PLoS Comput. Biol. – volume: 99 start-page: 3575 year: 2002 end-page: 3580 ident: bb0245 article-title: Mechanical force generation by G proteins publication-title: Proc. Natl. Acad. Sci. – volume: 31 start-page: 186 year: 1998 end-page: 200 ident: bb0280 article-title: Conformation of the Ras-binding domain of Raf studied by molecular dynamics and free energy simulations publication-title: Proteins – volume: 341 start-page: 209 year: 1989 end-page: 214 ident: bb0415 article-title: Structure of the guanine-nucleotide-binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation publication-title: Nature – volume: 3 start-page: 368 year: 2001 end-page: 375 ident: bb0745 article-title: GTP-dependent segregation of H-ras from lipid rafts is required for biological activity publication-title: Nat. Cell Biol. – volume: 47 start-page: 10244 year: 2008 end-page: 10246 ident: bb0635 article-title: Global conformational dynamics in ras publication-title: Biochemistry – volume: 1746 start-page: 274 year: 2005 end-page: 283 ident: bb0425 article-title: Ras signaling from plasma membrane and endomembrane microdomains publication-title: Biochim. Biophys. Acta – volume: 157 start-page: 865 year: 2002 end-page: 872 ident: bb0740 article-title: Activated K-Ras and H-Ras display different interactions with saturable nonraft sites at the surface of live cells publication-title: J. Cell Biol. – volume: 10 start-page: 381 year: 1997 end-page: 387 ident: bb0505 article-title: Comparison of ras-p21 bound to GDP and GTP: differences in protein and ligand dynamics publication-title: Protein Eng. – volume: 497 start-page: 638 year: 2013 end-page: 642 ident: bb0780 article-title: Small molecule inhibition of the KRAS–PDEd interaction impairs oncogenic KRAS signalling publication-title: Nature – volume: 40 start-page: 1884 year: 2001 end-page: 1889 ident: bb0180 article-title: Structure of the metal–water complex in Ras publication-title: Biochemistry – volume: 110 start-page: 4407 year: 2006 end-page: 4412 ident: bb0305 article-title: Mechanism of triphosphate hydrolysis in aqueous solution: QM/MM simulations in water clusters publication-title: J. Phys. Chem. B – volume: 247 start-page: 939 year: 1990 end-page: 945 ident: bb0130 article-title: Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins publication-title: Science – volume: 277 start-page: 333 year: 1997 end-page: 339 ident: bb0155 article-title: The Ras–RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants publication-title: Science – volume: 33 start-page: 3515 year: 1994 end-page: 3531 ident: bb0145 article-title: Solution structure and dynamics of Ras p21. GDP determined by heteronuclear three- and four-dimensional NMR spectroscopy publication-title: Biochemistry – volume: 130 start-page: 12624 year: 2008 end-page: 12625 ident: bb0220 article-title: Similar membrane affinity of mono- and Di-S-acylated ras membrane anchors: a new twist in the role of protein lipidation publication-title: J. Am. Chem. Soc. – volume: 313 start-page: 700 year: 1985 end-page: 703 ident: bb0080 article-title: Yeast and mammalian ras proteins have conserved biochemical properties publication-title: Nature – volume: 18 start-page: 599 year: 2007 end-page: 607 ident: bb0470 article-title: Ras nanoclusters: molecular structure and assembly publication-title: Semin. Cell Dev. Biol. – volume: 128 start-page: 192 year: 2006 end-page: 201 ident: bb0710 article-title: Visualizing association of N-ras in lipid microdomains: influence of domain structure and interfacial adsorption publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 456 year: 2006 end-page: 462 ident: bb0360 article-title: Lipid rafts: contentious only from simplistic standpoints publication-title: Nat. Rev. Mol. Cell Biol. – volume: 87 start-page: 4849 year: 1990 end-page: 4853 ident: bb0400 article-title: Crystal structure of an active form of RAS protein, a complex of a GTP analog and the HRAS p21 catalytic domain publication-title: Proc. Natl. Acad. Sci. – volume: 6 year: 2010 ident: bb0525 article-title: The distinct conformational dynamics of K-Ras and H-Ras A59G publication-title: PLoS Comput. Biol. – volume: 99 start-page: L87 year: 2010 end-page: L89 ident: bb0605 article-title: Conformational selection in G-proteins: lessons from Ras and Rho publication-title: Biophys. J. – volume: 102 start-page: 15500 year: 2005 end-page: 15505 ident: bb0375 article-title: H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton publication-title: Proc. Natl. Acad. Sci. – volume: 276 start-page: 1817 year: 2009 end-page: 1825 ident: bb0445 article-title: Compartmentalized signalling: Ras proteins and signalling nanoclusters publication-title: FEBS J. – volume: 89 start-page: 3649 year: 1992 end-page: 3653 ident: bb0140 article-title: X-ray crystal structures of transforming p21 ras mutants suggest a transition-state stabilization mechanism for GTP hydrolysis publication-title: Proc. Natl. Acad. Sci. – volume: 25 start-page: 6722 year: 2005 end-page: 6733 ident: bb0680 article-title: Individual palmitoyl residues serve distinct roles in H-ras trafficking, microlocalization, and signaling publication-title: Mol. Cell. Biol. – volume: 287 start-page: 43573 year: 2012 end-page: 43584 ident: bb0770 article-title: Staurosporines disrupt phosphatidylserine trafficking and mislocalize Ras proteins publication-title: J. Biol. Chem. – volume: 369 start-page: 327 year: 2008 end-page: 332 ident: bb0190 article-title: Two conformational states of Ras GTPase exhibit differential GTP-binding kinetics publication-title: Biochem. Biophys. Res. Commun. – volume: 99 start-page: 12138 year: 2002 end-page: 12142 ident: bb0045 article-title: The structural basis for the transition from Ras-GTP to Ras-GDP publication-title: Proc. Natl. Acad. Sci. – volume: 128 start-page: 13840 year: 2006 end-page: 13846 ident: bb0670 article-title: The lipidated membrane anchor of full length N-Ras protein shows an extensive dynamics as revealed by solid-state NMR spectroscopy publication-title: J. Am. Chem. Soc. – volume: 1818 start-page: 984 year: 2012 end-page: 994 ident: bb0725 article-title: Transmembrane helices can induce domain formation in crowded model membranes publication-title: Biochim. Biophys. Acta – volume: 25 start-page: 1748 year: 2013 end-page: 1753 ident: bb0455 article-title: Compartmentalised Ras signaling differentially contributes to phenotypic outputs publication-title: Cell. Signal. – volume: 14 start-page: 285 year: 2012 end-page: 292 ident: bb0105 article-title: Costello syndrome: a Ras/mitogen activated protein kinase pathway syndrome (rasopathy) resulting from HRAS germline mutations publication-title: Genet. Med. – volume: 28 start-page: 434 year: 1997 end-page: 451 ident: bb0590 article-title: Calculation of pathways for the conformational transition between the GTP- and GDP-bound states of the Ha-ras-p21 protein: calculations with explicit solvent simulations and comparison with calculations in vacuum publication-title: Proteins – volume: 77 start-page: 3287 year: 1999 end-page: 3292 ident: bb0285 article-title: Ab initio study of the role of lysine 16 for the molecular switching mechanism of Ras Protein p21 publication-title: Biophys. J. – volume: 42 start-page: 169 year: 2013 end-page: 189 ident: bb0615 article-title: The underappreciated role of allostery in the cellular network publication-title: Annu. Rev. Biophys. – volume: 120 start-page: 11919 year: 2004 end-page: 11929 ident: bb0600 article-title: Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules publication-title: J. Chem. Phys. – volume: 286 start-page: 39644 year: 2011 end-page: 39653 ident: bb0545 article-title: Solution structure of the state 1 conformer of GTP-bound H-Ras protein and distinct dynamic properties between the state 1 and state 2 conformers publication-title: J. Biol. Chem. – volume: 109 start-page: 8097 year: 2012 end-page: 8102 ident: bb0240 article-title: Organization, dynamics, and segregation of Ras nanoclusters in membrane domains publication-title: Proc. Natl. Acad. Sci. – volume: 15 start-page: 1151 year: 1997 end-page: 1159 ident: bb0435 article-title: K-ras is essential for the development of the mouse embryo publication-title: Oncogene – volume: 294 start-page: 1299 year: 2001 end-page: 1304 ident: bb0035 article-title: The guanine nucleotide-binding switch in three dimensions publication-title: Science – volume: 44 start-page: 167 year: 1986 end-page: 176 ident: bb0110 article-title: Biological and biochemical properties of human rasH genes mutated at codon 61 publication-title: Cell – volume: 59 start-page: 528 year: 2005 end-page: 533 ident: bb0520 article-title: Dissection of the GTPase mechanism of Ras protein by MD analysis of Ras mutants publication-title: Proteins – volume: 4 start-page: e1000245 year: 2008 ident: bb0560 article-title: Association rate constants of ras-effector interactions are evolutionarily conserved publication-title: PLoS Comput. Biol. – volume: 131 start-page: 16714 year: 2009 end-page: 16719 ident: bb0070 article-title: Fundamental link between folding states and functional states of proteins publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 738 year: 2013 end-page: 749 ident: bb0565 article-title: Specific conformational states of Ras GTPase upon effector binding publication-title: J. Chem. Theory Comput. – volume: 92 start-page: 1709 year: 1995 end-page: 1713 ident: bb0430 article-title: The murine N-ras gene is not essential for growth and development publication-title: Proc. Natl. Acad. Sci. – volume: 110 start-page: 10201 year: 2013 end-page: 10206 ident: bb0230 article-title: Andrographolide derivative inhibit guanine nucleotide exchange and abrogate oncogenic Ras function publication-title: Proc. Natl. Acad. Sci. – volume: 581 start-page: 5677 year: 2007 end-page: 5684 ident: bb0335 article-title: Role of the arginine finger in Ras. RasGAP revealed by QM/MM calculations publication-title: FEBS Lett. – volume: 109 start-page: 5299 year: 2012 end-page: 5304 ident: bb0395 article-title: Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity publication-title: Proc. Natl. Acad. Sci. – volume: 2001 start-page: pe2 year: 2001 ident: bb0380 article-title: Ras isoform-specific signaling: location, location, location publication-title: Sci. Signal. – volume: 8 start-page: 1279 year: 2000 end-page: 1287 ident: bb0580 article-title: Structural changes induced in p21Ras upon GAP-334 complexation as probed by ESEEM spectroscopy and molecular-dynamics simulation publication-title: Structure – volume: 1700 start-page: 125 year: 2004 end-page: 136 ident: bb0340 article-title: Quantum chemical modeling of the GTP hydrolysis by the RAS–GAP protein complex publication-title: Biochim. Biophys. Acta – volume: 5 start-page: 105 year: 2009 end-page: 116 ident: bb0420 article-title: Isoform-specific ras functions in development and cancer publication-title: Future Oncol. – volume: 37 start-page: 165 year: 2005 end-page: 172 ident: bb0450 article-title: Electron microscopic imaging of Ras signaling domains publication-title: Methods – volume: 4 start-page: 686 year: 1997 end-page: 689 ident: bb0150 article-title: Confirmation of the arginine-finger hypothesis for the GAP-stimulated GTP-hydrolysis reaction of Ras publication-title: Nat. Struct. Mol. Biol. – volume: 280 start-page: 31267 year: 2005 end-page: 31275 ident: bb0550 article-title: Crystal structure of M-Ras reveals a GTP-bound “off” state conformation of Ras family small GTPases publication-title: J. Biol. Chem. – volume: 98 start-page: 6033 year: 2001 end-page: 6038 ident: bb0570 article-title: The arginine finger of RasGAP helps Gln-61 align the nucleophilic water in GAP-stimulated hydrolysis of GTP publication-title: Proc. Natl. Acad. Sci. – volume: 11 start-page: 443 year: 1993 end-page: 458 ident: bb0510 article-title: Molecular dynamics of the H-ras gene-encoded p21 protein; identification of flexible regions and possible effector domains publication-title: J. Biomol. Struct. Dyn. – volume: 348 start-page: 125 year: 1990 end-page: 132 ident: bb0025 article-title: The GTPase superfamily: a conserved switch for diverse cell functions publication-title: Nature – volume: 19 start-page: 881 year: 2011 end-page: 889 ident: bb0610 article-title: A systematic study of the energetics involved in structural changes upon association and connectivity in protein interaction networks publication-title: Structure – volume: 23 start-page: 145 year: 2012 end-page: 153 ident: bb0485 article-title: Ras trafficking, localization and compartmentalized signalling publication-title: Semin. Cell Dev. Biol. – volume: 110 start-page: 8182 year: 2013 end-page: 8187 ident: bb0765 article-title: In silico discovery of small-molecule Ras inhibitors that display antitumor activity by blocking the Ras–effector interaction publication-title: Proc. Natl. Acad. Sci. – volume: 7 start-page: 2667 year: 2008 end-page: 2673 ident: bb0685 article-title: Mechanisms of Ras membrane organization and signalling: Ras on a rocker publication-title: Cell Cycle – volume: 30 start-page: 4637 year: 1991 end-page: 4648 ident: bb0355 article-title: The ras protein family: evolutionary tree and role of conserved amino acids publication-title: Biochemistry – volume: 45 start-page: 297 year: 2001 end-page: 312 ident: bb0575 article-title: Revisiting the structural flexibility of the complex p21ras-GTP: the catalytic conformation of the molecular switch II publication-title: Proteins Struct. Funct. Bioinf. – volume: 51 start-page: 6140 year: 2012 end-page: 6143 ident: bb0755 article-title: Discovery of small molecules that bind to K-Ras and inhibit Sos-mediated activation publication-title: Angew. Chem. Int. Ed. Engl. – volume: 31 start-page: 4951 year: 1992 end-page: 4959 ident: bb0495 article-title: Simulation of the solution structure of the H-ras p21-GTP complex publication-title: Biochemistry – volume: 127 start-page: 12263 year: 2005 end-page: 12272 ident: bb0660 article-title: Lipid modifications of a Ras peptide exhibit altered packing and mobility versus host membrane as detected by 2H solid-state NMR publication-title: J. Am. Chem. Soc. – volume: 107 start-page: 1130 year: 2010 end-page: 1135 ident: bb0465 article-title: Ras membrane orientation and nanodomain localization generate isoform diversity publication-title: Proc. Natl. Acad. Sci. – volume: 46 start-page: 8234 year: 2007 end-page: 8237 ident: bb0200 article-title: Free energy profile of H-ras membrane anchor upon membrane insertion publication-title: Angew. Chem. Int. Ed. Engl. – volume: 3 start-page: 459 year: 2003 end-page: 465 ident: bb0005 article-title: RAS oncogenes: the first 30 publication-title: Nat. Rev. Cancer – volume: 59 start-page: 534 year: 2005 end-page: 544 ident: bb0255 article-title: Automated computation of low-energy pathways for complex rearrangements in proteins: application to the conformational switch of Ras p21 publication-title: Proteins – volume: 12 start-page: 2050 year: 1992 end-page: 2056 ident: bb0085 article-title: Mutational and kinetic analyses of the GTPase-activating protein (GAP)-p21 interaction: the C-terminal domain of GAP is not sufficient for full activity publication-title: Mol. Cell. Biol. – volume: 1 start-page: 2 year: 2010 end-page: 27 ident: bb0090 article-title: Ras history: the saga continues publication-title: Small GTPases – volume: 45 start-page: 5387 year: 2006 end-page: 5390 ident: bb0665 article-title: Structural model of the membrane-bound C terminus of lipid-modified human N-ras protein publication-title: Angew. Chem. Int. Ed. Engl. – volume: 7 start-page: 849 year: 1997 end-page: 856 ident: bb0030 article-title: G proteins, effectors and GAPs: structure and mechanism publication-title: Curr. Opin. Struct. Biol. – volume: 50 start-page: 674 year: 2007 end-page: 684 ident: bb0215 article-title: Structure and dynamics of the full-length lipid-modified H-Ras protein in a 1,2-dimyristoylglycero-3-phosphocholine bilayer publication-title: J. Med. Chem. – volume: 1 start-page: 476 year: 1994 end-page: 484 ident: bb0330 article-title: Why have mutagenesis studies not located the general base in Ras p21 publication-title: Nat. Struct. Biol. – volume: 129 start-page: 865 year: 2007 end-page: 877 ident: bb0075 article-title: GEFs and GAPs: critical elements in the control of small G proteins publication-title: Cell – volume: 31 start-page: 142 year: 2013 end-page: 157 ident: bb0265 article-title: Light on the structural communication in Ras GTPases publication-title: J. Biomol. Struct. Dyn. – volume: 2 start-page: 36 year: 1995 end-page: 44 ident: bb0115 article-title: Substrate-assisted catalysis as a mechanism for GTP hydrolysis of p21ras and other GTP-binding proteins publication-title: Nat. Struct. Biol. – volume: 44 start-page: 2225 year: 2005 end-page: 2236 ident: bb0060 article-title: Conformational states of Ras complexed with the GTP analogue GppNHp or GppCH2p: implications for the interaction with effector proteins publication-title: Biochemistry – volume: 49 start-page: 4682 year: 1989 end-page: 4689 ident: bb0020 article-title: Ras oncogenes in human cancer: a review publication-title: Cancer Res. – volume: 125 start-page: 4070 year: 2003 end-page: 4079 ident: bb0655 article-title: Membrane insertion of a lipidated ras peptide studied by FTIR, solid-state NMR, and neutron diffraction spectroscopy publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 1 year: 2010 end-page: 9 ident: bb0195 article-title: Mechanisms of allostery and membrane attachment in Ras GTPases: implications for anti-cancer drug discovery publication-title: Curr. Med. Chem. – volume: 277 start-page: 272 year: 2002 end-page: 278 ident: bb0385 article-title: The linker domain of the Ha-Ras hypervariable region regulates interactions with exchange factors, Raf-1 and phosphoinositide 3-kinase publication-title: J. Biol. Chem. – volume: 60 start-page: 495 year: 2005 end-page: 503 ident: bb0300 article-title: QM/MM modeling the Ras–GAP catalyzed hydrolysis of guanosine triphosphate publication-title: Proteins – volume: 7 start-page: e1001098 year: 2011 ident: bb0275 article-title: Nucleotide binding switches the information flow in ras GTPases publication-title: PLoS Comput. Biol. – volume: 99 start-page: 3666 year: 2010 end-page: 3674 ident: bb0235 article-title: Segregation of negatively charged phospholipids by the polycationic and farnesylated membrane anchor of Kras publication-title: Biophys. J. – volume: 99 start-page: L91 year: 2010 end-page: L93 ident: bb0730 article-title: Partitioning of lipids at domain boundaries in model membranes publication-title: Biophys. J. – volume: 134 start-page: 20041 year: 2012 end-page: 20044 ident: bb0350 article-title: Detailed structure of the H2PO4(−)-guanosine diphosphate intermediate in Ras-GAP decoded from FTIR experiments by biomolecular simulations publication-title: J. Am. Chem. Soc. – volume: 109 start-page: 460 year: 2012 end-page: 465 ident: bb0695 article-title: Revealing conformational substates of lipidated N-Ras protein by pressure modulation publication-title: Proc. Natl. Acad. Sci. – volume: 161 start-page: 347 year: 2013 end-page: 363 ident: bb0735 article-title: Molecular view on protein sorting into liquid-ordered membrane domains mediated by gangliosides and lipid anchors publication-title: Faraday Discuss. – volume: 56 start-page: 779 year: 1987 end-page: 827 ident: bb0015 article-title: Ras genes publication-title: Annu. Rev. Biochem. – volume: 9 start-page: 517 year: 2008 end-page: 531 ident: bb0010 article-title: Ras oncogenes: split personalities publication-title: Nat. Rev. Mol. Cell Biol. – volume: 280 start-page: 25697 year: 2005 end-page: 25705 ident: bb0055 article-title: Structure of the G60A mutant of Ras publication-title: J. Biol. Chem. – volume: 66 start-page: 456 year: 2007 end-page: 466 ident: bb0295 article-title: Mechanisms of guanosine triphosphate hydrolysis by Ras and Ras-GAP proteins as rationalized by ab initio QM/MM simulations publication-title: Proteins – volume: 9 start-page: 905 year: 2007 end-page: 914 ident: bb0480 article-title: Plasma membrane nanoswitches generate high-fidelity Ras signal transduction publication-title: Nat. Cell Biol. – volume: 81 start-page: 3483 year: 2001 end-page: 3488 ident: bb0515 article-title: Molecular dynamics simulations of Gly-12– publication-title: Biophys. J. – volume: 9 start-page: 2351 year: 1990 end-page: 2359 ident: bb0135 article-title: Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 publication-title: EMBO J. – volume: 286 start-page: 3323 year: 2011 end-page: 3331 ident: bb0170 article-title: Allosteric modulation of Ras-GTP is linked to signal transduction through RAF kinase publication-title: J. Biol. Chem. – volume: 31 start-page: 8691 year: 1992 end-page: 8696 ident: bb0315 article-title: On the mechanism of guanosine triphosphate hydrolysis in ras p21 proteins publication-title: Biochemistry – volume: 7 start-page: 295 year: 2007 end-page: 308 ident: bb0100 article-title: Hyperactive Ras in developmental disorders and cancer publication-title: Nat. Rev. Cancer – volume: 103 start-page: 1585 year: 2012 end-page: 1593 ident: bb0705 article-title: N-Ras forms dimers at POPC membranes publication-title: Biophys. J. – volume: 342 start-page: 1033 year: 2004 end-page: 1040 ident: bb0185 article-title: Solid-state 31P NMR spectroscopy of microcrystals of the Ras protein and its effector loop mutants: comparison between crystalline and solution state publication-title: J. Mol. Biol. – volume: 1798 start-page: 275 year: 2010 end-page: 285 ident: bb0645 article-title: Backbone conformational flexibility of the lipid modified membrane anchor of the human N-Ras protein investigated by solid-state NMR and molecular dynamics simulation publication-title: Biochim. Biophys. Acta – volume: 95 start-page: 3269 year: 2008 end-page: 3277 ident: bb0675 article-title: Water-membrane partition thermodynamics of an amphiphilic lipopeptide: an enthalpy-driven hydrophobic effect publication-title: Biophys. J. – volume: 105 start-page: 17367 year: 2008 end-page: 17372 ident: bb0720 article-title: The molecular face of lipid rafts in model membranes publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 120 start-page: 2953 year: 2007 end-page: 2962 ident: bb0690 article-title: A FRET map of membrane anchors suggests distinct microdomains of heterotrimeric G proteins publication-title: J. Cell Sci. – volume: 13 start-page: 533 year: 2005 end-page: 540 ident: bb0160 article-title: Crystallographic evidence for substrate-assisted GTP hydrolysis by a small GTP binding protein publication-title: Structure – volume: 8 start-page: e1002394 year: 2012 ident: bb0260 article-title: The role of conserved waters in conformational transitions of Q61H K-ras publication-title: PLoS Comput. Biol. – volume: 10 start-page: 38 year: 2010 ident: bb0630 article-title: New insight into the dynamic properties and the active site architecture of H-Ras p21 revealed by X-ray crystallography at very high resolution publication-title: BMC Struct. Biol. – volume: 62 start-page: 539 year: 1990 end-page: 548 ident: bb0125 article-title: Three-dimensional structures of H-ras p21 mutants: molecular basis for their inability to function as signal switch molecules publication-title: Cell – volume: 103 start-page: 293 year: 2012 end-page: 302 ident: bb0325 article-title: The role of magnesium for geometry and charge in GTP hydrolysis, revealed by quantum mechanics/molecular mechanics simulations publication-title: Biophys. J. – volume: 134 start-page: 17278 year: 2012 end-page: 17285 ident: bb0250 article-title: Formation and domain partitioning of H-ras peptide nanoclusters: effects of peptide concentration and lipid composition publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 141 year: 2004 end-page: 147 ident: bb0370 article-title: Lipid rafts and plasma membrane microorganization: insights from Ras publication-title: Trends Cell Biol. – volume: 6 start-page: 859 year: 1989 end-page: 875 ident: bb0500 article-title: Comparison of the computed structures for the phosphate-binding loop of the p21 protein containing the oncogenic site Gly 12 with the X-ray crystallographic structures for this region in the p21 protein and EFtu. A model for the structure of the p21 protein in its oncogenic form publication-title: J. Biomol. Struct. Dyn. – volume: 135 start-page: 3367 year: 2013 end-page: 3370 ident: bb0700 article-title: Membrane-dependent modulation of the mTOR activator Rheb: NMR observations of a GTPase tethered to a lipid-bilayer nanodisc publication-title: J. Am. Chem. Soc. – volume: 102 start-page: 152 year: 2012 end-page: 157 ident: bb0320 article-title: The Role of Gln61 in HRas GTP hydrolysis: a quantum mechanics/molecular mechanics study publication-title: Biophys. J. – volume: 10 start-page: 715 year: 2010 end-page: 722 ident: bb0625 article-title: Allostery and population shift in drug discovery publication-title: Curr. Opin. Pharmacol. – volume: 27 start-page: 727 year: 2008 end-page: 735 ident: bb0460 article-title: A novel switch region regulates H-ras membrane orientation and signal output publication-title: EMBO J. – volume: 101 start-page: 8858 year: 2004 end-page: 8863 ident: bb0120 article-title: Kinetic isotope effects in Ras-catalyzed GTP hydrolysis: evidence for a loose transition state publication-title: Proc. Natl. Acad. Sci. – volume: 19 start-page: 4776 year: 2008 end-page: 4784 ident: bb0365 article-title: Activation of the MAPK module from different spatial locations generates distinct system outputs publication-title: Mol. Biol. Cell – volume: 14 start-page: 427 year: 2006 end-page: 436 ident: bb0065 article-title: Structure of a transient intermediate for GTP hydrolysis by Ras publication-title: Structure – volume: 372 start-page: 276 year: 1994 end-page: 279 ident: bb0405 article-title: GTPase mechanism of Gproteins from the 1.7-A crystal structure of transducin [alpha] - GDP-AIF-4 publication-title: Nature – volume: 285 start-page: 22696 year: 2010 end-page: 22705 ident: bb0540 article-title: Structural basis for conformational dynamics of GTP-bound Ras protein publication-title: J. Biol. Chem. – volume: 55 start-page: 1 year: 1991 end-page: 10 ident: bb0345 article-title: Why does the Ras switch “break” by oncogenic mutations publication-title: Proteins – volume: 72 start-page: 2457 year: 2012 end-page: 2467 ident: bb0095 article-title: A comprehensive survey of Ras mutations in cancer publication-title: Cancer Res. – volume: 88 start-page: 3829 year: 2005 end-page: 3844 ident: bb0310 article-title: Theoretical IR spectroscopy based on QM/MM calculations provides changes in charge distribution, bond lengths, and bond angles of the GTP ligand induced by the Ras-protein publication-title: Biophys. J. – volume: 51 start-page: 10647 year: 2012 end-page: 10651 ident: bb0760 article-title: Metal-bis(2-picolyl)amine complexes as state 1(T) inhibitors of activated Ras protein publication-title: Angew. Chem. Int. Ed. Engl. – volume: 94 start-page: 11905 year: 1997 end-page: 11910 ident: bb0595 article-title: Molecular switch in signal transduction: reaction paths of the conformational changes in ras p21 publication-title: Proc. Natl. Acad. Sci. – volume: 39 start-page: 9641 year: 2000 end-page: 9651 ident: bb0290 article-title: How does GAP catalyze the GTPase reaction of Ras? A computer simulation study publication-title: Biochemistry – volume: 7 start-page: 127 year: 2008 end-page: 134 ident: bb0475 article-title: Ras nanoclusters: combining digital and analog signaling publication-title: Cell Cycle – volume: 133 start-page: 880 year: 2011 end-page: 887 ident: bb0715 article-title: Membrane-mediated induction and sorting of K-Ras microdomain signaling platforms publication-title: J. Am. Chem. Soc. – volume: 114 start-page: 1603 year: 2001 ident: 10.1016/j.bbagen.2013.07.024_bb0440 article-title: Compartmentalization of Ras proteins publication-title: J. Cell Sci. doi: 10.1242/jcs.114.9.1603 – volume: 19 start-page: 881 year: 2011 ident: 10.1016/j.bbagen.2013.07.024_bb0610 article-title: A systematic study of the energetics involved in structural changes upon association and connectivity in protein interaction networks publication-title: Structure doi: 10.1016/j.str.2011.03.009 – volume: 277 start-page: 272 year: 2002 ident: 10.1016/j.bbagen.2013.07.024_bb0385 article-title: The linker domain of the Ha-Ras hypervariable region regulates interactions with exchange factors, Raf-1 and phosphoinositide 3-kinase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M108423200 – volume: 50 start-page: 674 year: 2007 ident: 10.1016/j.bbagen.2013.07.024_bb0215 article-title: Structure and dynamics of the full-length lipid-modified H-Ras protein in a 1,2-dimyristoylglycero-3-phosphocholine bilayer publication-title: J. Med. Chem. doi: 10.1021/jm061053f – volume: 129 start-page: 865 year: 2007 ident: 10.1016/j.bbagen.2013.07.024_bb0075 article-title: GEFs and GAPs: critical elements in the control of small G proteins publication-title: Cell doi: 10.1016/j.cell.2007.05.018 – volume: 128 start-page: 192 year: 2006 ident: 10.1016/j.bbagen.2013.07.024_bb0710 article-title: Visualizing association of N-ras in lipid microdomains: influence of domain structure and interfacial adsorption publication-title: J. Am. Chem. Soc. doi: 10.1021/ja055779x – volume: 12 start-page: 2050 year: 1992 ident: 10.1016/j.bbagen.2013.07.024_bb0085 article-title: Mutational and kinetic analyses of the GTPase-activating protein (GAP)-p21 interaction: the C-terminal domain of GAP is not sufficient for full activity publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.12.5.2050 – volume: 37 start-page: 447 year: 2012 ident: 10.1016/j.bbagen.2013.07.024_bb0620 article-title: Allosteric post-translational modification codes publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2012.07.001 – volume: 98 start-page: 7754 year: 2001 ident: 10.1016/j.bbagen.2013.07.024_bb0175 article-title: Monitoring the GAP catalyzed H-Ras GTPase reaction at atomic resolution in real time publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.131549798 – volume: 49 start-page: 4682 year: 1989 ident: 10.1016/j.bbagen.2013.07.024_bb0020 article-title: Ras oncogenes in human cancer: a review publication-title: Cancer Res. – volume: 101 start-page: 8858 year: 2004 ident: 10.1016/j.bbagen.2013.07.024_bb0120 article-title: Kinetic isotope effects in Ras-catalyzed GTP hydrolysis: evidence for a loose transition state publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0401675101 – volume: 45 start-page: 5387 year: 2006 ident: 10.1016/j.bbagen.2013.07.024_bb0665 article-title: Structural model of the membrane-bound C terminus of lipid-modified human N-ras protein publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.200504266 – volume: 578 start-page: 305 year: 2004 ident: 10.1016/j.bbagen.2013.07.024_bb0050 article-title: Perturbation of the conformational equilibria in Ras by selective mutations as studied by 31P NMR spectroscopy publication-title: FEBS Lett. doi: 10.1016/j.febslet.2004.11.020 – volume: 102 start-page: 152 year: 2012 ident: 10.1016/j.bbagen.2013.07.024_bb0320 article-title: The Role of Gln61 in HRas GTP hydrolysis: a quantum mechanics/molecular mechanics study publication-title: Biophys. J. doi: 10.1016/j.bpj.2011.11.4005 – volume: 109 start-page: 5299 year: 2012 ident: 10.1016/j.bbagen.2013.07.024_bb0395 article-title: Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1116510109 – volume: 1818 start-page: 984 year: 2012 ident: 10.1016/j.bbagen.2013.07.024_bb0725 article-title: Transmembrane helices can induce domain formation in crowded model membranes publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2011.08.021 – volume: 107 start-page: 1130 year: 2010 ident: 10.1016/j.bbagen.2013.07.024_bb0465 article-title: Ras membrane orientation and nanodomain localization generate isoform diversity publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0903907107 – volume: 95 start-page: 3269 year: 2008 ident: 10.1016/j.bbagen.2013.07.024_bb0675 article-title: Water-membrane partition thermodynamics of an amphiphilic lipopeptide: an enthalpy-driven hydrophobic effect publication-title: Biophys. J. doi: 10.1529/biophysj.108.136481 – volume: 9 start-page: 738 year: 2013 ident: 10.1016/j.bbagen.2013.07.024_bb0565 article-title: Specific conformational states of Ras GTPase upon effector binding publication-title: J. Chem. Theory Comput. doi: 10.1021/ct3007265 – volume: 30 start-page: 4637 year: 1991 ident: 10.1016/j.bbagen.2013.07.024_bb0355 article-title: The ras protein family: evolutionary tree and role of conserved amino acids publication-title: Biochemistry doi: 10.1021/bi00233a001 – volume: 276 start-page: 1817 year: 2009 ident: 10.1016/j.bbagen.2013.07.024_bb0445 article-title: Compartmentalized signalling: Ras proteins and signalling nanoclusters publication-title: FEBS J. doi: 10.1111/j.1742-4658.2009.06928.x – volume: 34 start-page: 12038 year: 1995 ident: 10.1016/j.bbagen.2013.07.024_bb0490 article-title: Molecular dynamics simulation of the solution structures of Ha-ras-p21 GDP and GTP complexes: flexibility, possible hinges, and levers of the conformational transition publication-title: Biochemistry doi: 10.1021/bi00037a047 – volume: 21 start-page: 114 year: 1997 ident: 10.1016/j.bbagen.2013.07.024_bb0640 article-title: Ligand-induced conformational changes in ras p21: a normal mode and energy minimization analysis publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1997.1313 – volume: 28 start-page: 434 year: 1997 ident: 10.1016/j.bbagen.2013.07.024_bb0590 article-title: Calculation of pathways for the conformational transition between the GTP- and GDP-bound states of the Ha-ras-p21 protein: calculations with explicit solvent simulations and comparison with calculations in vacuum publication-title: Proteins doi: 10.1002/(SICI)1097-0134(199707)28:3<434::AID-PROT12>3.0.CO;2-I – volume: 56 start-page: 779 year: 1987 ident: 10.1016/j.bbagen.2013.07.024_bb0015 article-title: Ras genes publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.bi.56.070187.004023 – volume: 313 start-page: 700 year: 1985 ident: 10.1016/j.bbagen.2013.07.024_bb0080 article-title: Yeast and mammalian ras proteins have conserved biochemical properties publication-title: Nature doi: 10.1038/313700a0 – volume: 88 start-page: 3829 year: 2005 ident: 10.1016/j.bbagen.2013.07.024_bb0310 article-title: Theoretical IR spectroscopy based on QM/MM calculations provides changes in charge distribution, bond lengths, and bond angles of the GTP ligand induced by the Ras-protein publication-title: Biophys. J. doi: 10.1529/biophysj.104.058644 – volume: 99 start-page: 12138 year: 2002 ident: 10.1016/j.bbagen.2013.07.024_bb0045 article-title: The structural basis for the transition from Ras-GTP to Ras-GDP publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.192453199 – volume: 99 start-page: 3726 year: 2010 ident: 10.1016/j.bbagen.2013.07.024_bb0530 article-title: Relation between the conformational heterogeneity and reaction cycle of Ras: molecular simulation of Ras publication-title: Biophys. J. doi: 10.1016/j.bpj.2010.09.063 – volume: 2 start-page: 36 year: 1995 ident: 10.1016/j.bbagen.2013.07.024_bb0115 article-title: Substrate-assisted catalysis as a mechanism for GTP hydrolysis of p21ras and other GTP-binding proteins publication-title: Nat. Struct. Biol. doi: 10.1038/nsb0195-36 – volume: 81 start-page: 3483 year: 2001 ident: 10.1016/j.bbagen.2013.07.024_bb0515 article-title: Molecular dynamics simulations of Gly-12–>Val mutant of p21(ras): dynamic inhibition mechanism publication-title: Biophys. J. doi: 10.1016/S0006-3495(01)75979-6 – volume: 217 start-page: 503 year: 1991 ident: 10.1016/j.bbagen.2013.07.024_bb0410 article-title: Crystal structures at 2.2 A resolution of the catalytic domains of normal ras protein and an oncogenic mutant complexed with GDP publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(91)90753-S – volume: 25 start-page: 1748 year: 2013 ident: 10.1016/j.bbagen.2013.07.024_bb0455 article-title: Compartmentalised Ras signaling differentially contributes to phenotypic outputs publication-title: Cell. Signal. doi: 10.1016/j.cellsig.2013.05.004 – volume: 129 start-page: 12280 year: 2007 ident: 10.1016/j.bbagen.2013.07.024_bb0205 article-title: H-ras protein in a bilayer: interaction and structure perturbation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja073949v – volume: 23 start-page: 145 year: 2012 ident: 10.1016/j.bbagen.2013.07.024_bb0485 article-title: Ras trafficking, localization and compartmentalized signalling publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2011.09.002 – volume: 60 start-page: 495 year: 2005 ident: 10.1016/j.bbagen.2013.07.024_bb0300 article-title: QM/MM modeling the Ras–GAP catalyzed hydrolysis of guanosine triphosphate publication-title: Proteins doi: 10.1002/prot.20472 – volume: 7 start-page: 127 year: 2008 ident: 10.1016/j.bbagen.2013.07.024_bb0475 article-title: Ras nanoclusters: combining digital and analog signaling publication-title: Cell Cycle doi: 10.4161/cc.7.2.5237 – volume: 286 start-page: 39644 year: 2011 ident: 10.1016/j.bbagen.2013.07.024_bb0545 article-title: Solution structure of the state 1 conformer of GTP-bound H-Ras protein and distinct dynamic properties between the state 1 and state 2 conformers publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.227074 – volume: 7 start-page: 295 year: 2007 ident: 10.1016/j.bbagen.2013.07.024_bb0100 article-title: Hyperactive Ras in developmental disorders and cancer publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2109 – volume: 5 start-page: e1000325 year: 2009 ident: 10.1016/j.bbagen.2013.07.024_bb0585 article-title: Ras conformational switching: simulating nucleotide-dependent conformational transitions with accelerated molecular dynamics publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000325 – volume: 157 start-page: 865 year: 2002 ident: 10.1016/j.bbagen.2013.07.024_bb0740 article-title: Activated K-Ras and H-Ras display different interactions with saturable nonraft sites at the surface of live cells publication-title: J. Cell Biol. doi: 10.1083/jcb.200202009 – volume: 120 start-page: 11919 year: 2004 ident: 10.1016/j.bbagen.2013.07.024_bb0600 article-title: Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules publication-title: J. Chem. Phys. doi: 10.1063/1.1755656 – volume: 80 start-page: 943 year: 2011 ident: 10.1016/j.bbagen.2013.07.024_bb0040 article-title: Structure–function relationships of the G domain, a canonical switch motif publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-062708-134043 – volume: 1700 start-page: 125 year: 2004 ident: 10.1016/j.bbagen.2013.07.024_bb0340 article-title: Quantum chemical modeling of the GTP hydrolysis by the RAS–GAP protein complex publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbapap.2004.04.007 – volume: 280 start-page: 31267 year: 2005 ident: 10.1016/j.bbagen.2013.07.024_bb0550 article-title: Crystal structure of M-Ras reveals a GTP-bound “off” state conformation of Ras family small GTPases publication-title: J. Biol. Chem. doi: 10.1074/jbc.M505503200 – volume: 25 start-page: 6722 year: 2005 ident: 10.1016/j.bbagen.2013.07.024_bb0680 article-title: Individual palmitoyl residues serve distinct roles in H-ras trafficking, microlocalization, and signaling publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.25.15.6722-6733.2005 – volume: 4 start-page: 686 year: 1997 ident: 10.1016/j.bbagen.2013.07.024_bb0150 article-title: Confirmation of the arginine-finger hypothesis for the GAP-stimulated GTP-hydrolysis reaction of Ras publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsb0997-686 – volume: 133 start-page: 880 year: 2011 ident: 10.1016/j.bbagen.2013.07.024_bb0715 article-title: Membrane-mediated induction and sorting of K-Ras microdomain signaling platforms publication-title: J. Am. Chem. Soc. doi: 10.1021/ja107532q – volume: 24 start-page: 6799 year: 2004 ident: 10.1016/j.bbagen.2013.07.024_bb0390 article-title: Three separable domains regulate GTP-dependent association of H-ras with the plasma membrane publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.24.15.6799-6810.2004 – volume: 31 start-page: 4951 year: 1992 ident: 10.1016/j.bbagen.2013.07.024_bb0495 article-title: Simulation of the solution structure of the H-ras p21-GTP complex publication-title: Biochemistry doi: 10.1021/bi00136a005 – volume: 294 start-page: 1299 year: 2001 ident: 10.1016/j.bbagen.2013.07.024_bb0035 article-title: The guanine nucleotide-binding switch in three dimensions publication-title: Science doi: 10.1126/science.1062023 – volume: 8 start-page: e1002394 year: 2012 ident: 10.1016/j.bbagen.2013.07.024_bb0260 article-title: The role of conserved waters in conformational transitions of Q61H K-ras publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002394 – volume: 39 start-page: 9641 year: 2000 ident: 10.1016/j.bbagen.2013.07.024_bb0290 article-title: How does GAP catalyze the GTPase reaction of Ras? A computer simulation study publication-title: Biochemistry doi: 10.1021/bi000640e – volume: 94 start-page: 11905 year: 1997 ident: 10.1016/j.bbagen.2013.07.024_bb0595 article-title: Molecular switch in signal transduction: reaction paths of the conformational changes in ras p21 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.94.22.11905 – volume: 277 start-page: 333 year: 1997 ident: 10.1016/j.bbagen.2013.07.024_bb0155 article-title: The Ras–RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants publication-title: Science doi: 10.1126/science.277.5324.333 – volume: 134 start-page: 20041 year: 2012 ident: 10.1016/j.bbagen.2013.07.024_bb0350 article-title: Detailed structure of the H2PO4(−)-guanosine diphosphate intermediate in Ras-GAP decoded from FTIR experiments by biomolecular simulations publication-title: J. Am. Chem. Soc. doi: 10.1021/ja310496e – volume: 93 start-page: 2697 year: 2007 ident: 10.1016/j.bbagen.2013.07.024_bb0650 article-title: Flexibility of ras lipid modifications studied by 2H solid-state NMR and molecular dynamics simulations publication-title: Biophys. J. doi: 10.1529/biophysj.107.104562 – volume: 134 start-page: 17278 year: 2012 ident: 10.1016/j.bbagen.2013.07.024_bb0250 article-title: Formation and domain partitioning of H-ras peptide nanoclusters: effects of peptide concentration and lipid composition publication-title: J. Am. Chem. Soc. doi: 10.1021/ja307716z – volume: 62 start-page: 539 year: 1990 ident: 10.1016/j.bbagen.2013.07.024_bb0125 article-title: Three-dimensional structures of H-ras p21 mutants: molecular basis for their inability to function as signal switch molecules publication-title: Cell doi: 10.1016/0092-8674(90)90018-A – volume: 4 start-page: e1000245 year: 2008 ident: 10.1016/j.bbagen.2013.07.024_bb0560 article-title: Association rate constants of ras-effector interactions are evolutionarily conserved publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000245 – volume: 11 start-page: 443 year: 1993 ident: 10.1016/j.bbagen.2013.07.024_bb0510 article-title: Molecular dynamics of the H-ras gene-encoded p21 protein; identification of flexible regions and possible effector domains publication-title: J. Biomol. Struct. Dyn. doi: 10.1080/07391102.1993.10508009 – volume: 46 start-page: 8234 year: 2007 ident: 10.1016/j.bbagen.2013.07.024_bb0200 article-title: Free energy profile of H-ras membrane anchor upon membrane insertion publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.200702379 – volume: 87 start-page: 4849 year: 1990 ident: 10.1016/j.bbagen.2013.07.024_bb0400 article-title: Crystal structure of an active form of RAS protein, a complex of a GTP analog and the HRAS p21 catalytic domain publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.87.12.4849 – volume: 37 start-page: 165 year: 2005 ident: 10.1016/j.bbagen.2013.07.024_bb0450 article-title: Electron microscopic imaging of Ras signaling domains publication-title: Methods doi: 10.1016/j.ymeth.2005.05.018 – volume: 109 start-page: 8097 year: 2012 ident: 10.1016/j.bbagen.2013.07.024_bb0240 article-title: Organization, dynamics, and segregation of Ras nanoclusters in membrane domains publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1200773109 – volume: 348 start-page: 125 year: 1990 ident: 10.1016/j.bbagen.2013.07.024_bb0025 article-title: The GTPase superfamily: a conserved switch for diverse cell functions publication-title: Nature doi: 10.1038/348125a0 – volume: 31 start-page: 186 year: 1998 ident: 10.1016/j.bbagen.2013.07.024_bb0280 article-title: Conformation of the Ras-binding domain of Raf studied by molecular dynamics and free energy simulations publication-title: Proteins doi: 10.1002/(SICI)1097-0134(19980501)31:2<186::AID-PROT8>3.0.CO;2-K – volume: 55 start-page: 1 year: 1991 ident: 10.1016/j.bbagen.2013.07.024_bb0345 article-title: Why does the Ras switch “break” by oncogenic mutations publication-title: Proteins doi: 10.1002/prot.20004 – volume: 31 start-page: 8691 year: 1992 ident: 10.1016/j.bbagen.2013.07.024_bb0315 article-title: On the mechanism of guanosine triphosphate hydrolysis in ras p21 proteins publication-title: Biochemistry doi: 10.1021/bi00152a002 – volume: 51 start-page: 10647 year: 2012 ident: 10.1016/j.bbagen.2013.07.024_bb0760 article-title: Metal-bis(2-picolyl)amine complexes as state 1(T) inhibitors of activated Ras protein publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201204148 – volume: 286 start-page: 15403 year: 2011 ident: 10.1016/j.bbagen.2013.07.024_bb0535 article-title: Critical roles of interactions among switch I-preceding residues and between switch II and its neighboring alpha-helix in conformational dynamics of the GTP-bound Ras family small GTPases publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.204933 – volume: 497 start-page: 638 year: 2013 ident: 10.1016/j.bbagen.2013.07.024_bb0780 article-title: Small molecule inhibition of the KRAS–PDEd interaction impairs oncogenic KRAS signalling publication-title: Nature doi: 10.1038/nature12205 – volume: 98 start-page: 6033 year: 2001 ident: 10.1016/j.bbagen.2013.07.024_bb0570 article-title: The arginine finger of RasGAP helps Gln-61 align the nucleophilic water in GAP-stimulated hydrolysis of GTP publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.091506998 – volume: 14 start-page: 285 year: 2012 ident: 10.1016/j.bbagen.2013.07.024_bb0105 article-title: Costello syndrome: a Ras/mitogen activated protein kinase pathway syndrome (rasopathy) resulting from HRAS germline mutations publication-title: Genet. Med. doi: 10.1038/gim.0b013e31822dd91f – volume: 135 start-page: 3367 year: 2013 ident: 10.1016/j.bbagen.2013.07.024_bb0700 article-title: Membrane-dependent modulation of the mTOR activator Rheb: NMR observations of a GTPase tethered to a lipid-bilayer nanodisc publication-title: J. Am. Chem. Soc. doi: 10.1021/ja312508w – volume: 5 start-page: 105 year: 2009 ident: 10.1016/j.bbagen.2013.07.024_bb0420 article-title: Isoform-specific ras functions in development and cancer publication-title: Future Oncol. doi: 10.2217/14796694.5.1.105 – volume: 7 start-page: 849 year: 1997 ident: 10.1016/j.bbagen.2013.07.024_bb0030 article-title: G proteins, effectors and GAPs: structure and mechanism publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/S0959-440X(97)80157-1 – volume: 13 start-page: 533 year: 2005 ident: 10.1016/j.bbagen.2013.07.024_bb0160 article-title: Crystallographic evidence for substrate-assisted GTP hydrolysis by a small GTP binding protein publication-title: Structure doi: 10.1016/j.str.2005.01.014 – volume: 16 start-page: 885 year: 2008 ident: 10.1016/j.bbagen.2013.07.024_bb0210 article-title: Mapping the nucleotide and isoform-dependent structural and dynamical features of Ras proteins publication-title: Structure doi: 10.1016/j.str.2008.03.009 – volume: 72 start-page: 2457 year: 2012 ident: 10.1016/j.bbagen.2013.07.024_bb0095 article-title: A comprehensive survey of Ras mutations in cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-11-2612 – volume: 7 start-page: 456 year: 2006 ident: 10.1016/j.bbagen.2013.07.024_bb0360 article-title: Lipid rafts: contentious only from simplistic standpoints publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1925 – volume: 285 start-page: 22696 year: 2010 ident: 10.1016/j.bbagen.2013.07.024_bb0540 article-title: Structural basis for conformational dynamics of GTP-bound Ras protein publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.125161 – volume: 6 year: 2010 ident: 10.1016/j.bbagen.2013.07.024_bb0525 article-title: The distinct conformational dynamics of K-Ras and H-Ras A59G publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000922 – volume: 126 start-page: 15277 year: 2004 ident: 10.1016/j.bbagen.2013.07.024_bb0225 article-title: Membrane localization and flexibility of a lipidated ras peptide studied by molecular dynamics simulations publication-title: J. Am. Chem. Soc. doi: 10.1021/ja046607n – volume: 19 start-page: 4776 year: 2008 ident: 10.1016/j.bbagen.2013.07.024_bb0365 article-title: Activation of the MAPK module from different spatial locations generates distinct system outputs publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E08-04-0407 – volume: 107 start-page: 4931 year: 2010 ident: 10.1016/j.bbagen.2013.07.024_bb0165 article-title: Allosteric modulation of Ras positions Q61 for a direct role in catalysis publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0912226107 – volume: 59 start-page: 534 year: 2005 ident: 10.1016/j.bbagen.2013.07.024_bb0255 article-title: Automated computation of low-energy pathways for complex rearrangements in proteins: application to the conformational switch of Ras p21 publication-title: Proteins doi: 10.1002/prot.20422 – volume: 7 start-page: e1001098 year: 2011 ident: 10.1016/j.bbagen.2013.07.024_bb0275 article-title: Nucleotide binding switches the information flow in ras GTPases publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1001098 – volume: 40 start-page: 1884 year: 2001 ident: 10.1016/j.bbagen.2013.07.024_bb0180 article-title: Structure of the metal–water complex in Ras×GDP studied by high-field EPR spectroscopy and 31P NMR spectroscopy publication-title: Biochemistry doi: 10.1021/bi002164y – volume: 161 start-page: 347 year: 2013 ident: 10.1016/j.bbagen.2013.07.024_bb0735 article-title: Molecular view on protein sorting into liquid-ordered membrane domains mediated by gangliosides and lipid anchors publication-title: Faraday Discuss. doi: 10.1039/C2FD20086D – volume: 102 start-page: 15500 year: 2005 ident: 10.1016/j.bbagen.2013.07.024_bb0375 article-title: H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0504114102 – volume: 286 start-page: 3323 year: 2011 ident: 10.1016/j.bbagen.2013.07.024_bb0170 article-title: Allosteric modulation of Ras-GTP is linked to signal transduction through RAF kinase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.193854 – volume: 105 start-page: 17367 year: 2008 ident: 10.1016/j.bbagen.2013.07.024_bb0720 article-title: The molecular face of lipid rafts in model membranes publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0807527105 – volume: 44 start-page: 2225 year: 2005 ident: 10.1016/j.bbagen.2013.07.024_bb0060 article-title: Conformational states of Ras complexed with the GTP analogue GppNHp or GppCH2p: implications for the interaction with effector proteins publication-title: Biochemistry doi: 10.1021/bi0488000 – volume: 7 start-page: 2667 year: 2008 ident: 10.1016/j.bbagen.2013.07.024_bb0685 article-title: Mechanisms of Ras membrane organization and signalling: Ras on a rocker publication-title: Cell Cycle doi: 10.4161/cc.7.17.6596 – volume: 287 start-page: 43573 issue: 52 year: 2012 ident: 10.1016/j.bbagen.2013.07.024_bb0770 article-title: Staurosporines disrupt phosphatidylserine trafficking and mislocalize Ras proteins publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.424457 – volume: 103 start-page: 293 year: 2012 ident: 10.1016/j.bbagen.2013.07.024_bb0325 article-title: The role of magnesium for geometry and charge in GTP hydrolysis, revealed by quantum mechanics/molecular mechanics simulations publication-title: Biophys. J. doi: 10.1016/j.bpj.2012.06.015 – volume: 3 start-page: 459 year: 2003 ident: 10.1016/j.bbagen.2013.07.024_bb0005 article-title: RAS oncogenes: the first 30years publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1097 – volume: 15 start-page: 1151 year: 1997 ident: 10.1016/j.bbagen.2013.07.024_bb0435 article-title: K-ras is essential for the development of the mouse embryo publication-title: Oncogene doi: 10.1038/sj.onc.1201284 – volume: 110 start-page: 4407 year: 2006 ident: 10.1016/j.bbagen.2013.07.024_bb0305 article-title: Mechanism of triphosphate hydrolysis in aqueous solution: QM/MM simulations in water clusters publication-title: J. Phys. Chem. B doi: 10.1021/jp056395w – volume: 2001 start-page: pe2 year: 2001 ident: 10.1016/j.bbagen.2013.07.024_bb0380 article-title: Ras isoform-specific signaling: location, location, location publication-title: Sci. Signal. doi: 10.1126/stke.2001.96.pe2 – volume: 110 start-page: 8182 year: 2013 ident: 10.1016/j.bbagen.2013.07.024_bb0765 article-title: In silico discovery of small-molecule Ras inhibitors that display antitumor activity by blocking the Ras–effector interaction publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1217730110 – volume: 33 start-page: 3515 year: 1994 ident: 10.1016/j.bbagen.2013.07.024_bb0145 article-title: Solution structure and dynamics of Ras p21. GDP determined by heteronuclear three- and four-dimensional NMR spectroscopy publication-title: Biochemistry doi: 10.1021/bi00178a008 – volume: 47 start-page: 10244 year: 2008 ident: 10.1016/j.bbagen.2013.07.024_bb0635 article-title: Global conformational dynamics in ras publication-title: Biochemistry doi: 10.1021/bi801076c – volume: 6 start-page: 859 year: 1989 ident: 10.1016/j.bbagen.2013.07.024_bb0500 publication-title: J. Biomol. Struct. Dyn. doi: 10.1080/07391102.1989.10506518 – volume: 18 start-page: 402 year: 2010 ident: 10.1016/j.bbagen.2013.07.024_bb0270 article-title: Deciphering the deformation modes associated with function retention and specialization in members of the Ras superfamily publication-title: Structure doi: 10.1016/j.str.2009.12.015 – volume: 99 start-page: 3575 year: 2002 ident: 10.1016/j.bbagen.2013.07.024_bb0245 article-title: Mechanical force generation by G proteins publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.052209199 – volume: 42 start-page: 169 year: 2013 ident: 10.1016/j.bbagen.2013.07.024_bb0615 article-title: The underappreciated role of allostery in the cellular network publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev-biophys-083012-130257 – volume: 33 start-page: 237 year: 2013 ident: 10.1016/j.bbagen.2013.07.024_bb0775 article-title: Fendiline inhibits K-Ras plasma membrane localization and blocks K-Ras signal transmission publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00884-12 – volume: 66 start-page: 456 year: 2007 ident: 10.1016/j.bbagen.2013.07.024_bb0295 article-title: Mechanisms of guanosine triphosphate hydrolysis by Ras and Ras-GAP proteins as rationalized by ab initio QM/MM simulations publication-title: Proteins doi: 10.1002/prot.21228 – volume: 44 start-page: 167 year: 1986 ident: 10.1016/j.bbagen.2013.07.024_bb0110 article-title: Biological and biochemical properties of human rasH genes mutated at codon 61 publication-title: Cell doi: 10.1016/0092-8674(86)90495-2 – volume: 128 start-page: 13840 year: 2006 ident: 10.1016/j.bbagen.2013.07.024_bb0670 article-title: The lipidated membrane anchor of full length N-Ras protein shows an extensive dynamics as revealed by solid-state NMR spectroscopy publication-title: J. Am. Chem. Soc. doi: 10.1021/ja063635s – volume: 6 start-page: e25711 year: 2011 ident: 10.1016/j.bbagen.2013.07.024_bb0750 article-title: Novel allosteric sites on Ras for lead generation publication-title: PLoS One doi: 10.1371/journal.pone.0025711 – volume: 9 start-page: 905 year: 2007 ident: 10.1016/j.bbagen.2013.07.024_bb0480 article-title: Plasma membrane nanoswitches generate high-fidelity Ras signal transduction publication-title: Nat. Cell Biol. doi: 10.1038/ncb1615 – volume: 130 start-page: 12624 year: 2008 ident: 10.1016/j.bbagen.2013.07.024_bb0220 article-title: Similar membrane affinity of mono- and Di-S-acylated ras membrane anchors: a new twist in the role of protein lipidation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja805110q – volume: 110 start-page: 10201 year: 2013 ident: 10.1016/j.bbagen.2013.07.024_bb0230 article-title: Andrographolide derivative inhibit guanine nucleotide exchange and abrogate oncogenic Ras function publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1300016110 – volume: 369 start-page: 327 year: 2008 ident: 10.1016/j.bbagen.2013.07.024_bb0190 article-title: Two conformational states of Ras GTPase exhibit differential GTP-binding kinetics publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2008.01.169 – volume: 10 start-page: 715 year: 2010 ident: 10.1016/j.bbagen.2013.07.024_bb0625 article-title: Allostery and population shift in drug discovery publication-title: Curr. Opin. Pharmacol. doi: 10.1016/j.coph.2010.09.002 – volume: 14 start-page: 427 year: 2006 ident: 10.1016/j.bbagen.2013.07.024_bb0065 article-title: Structure of a transient intermediate for GTP hydrolysis by Ras publication-title: Structure doi: 10.1016/j.str.2005.12.010 – volume: 8 start-page: 1279 year: 2000 ident: 10.1016/j.bbagen.2013.07.024_bb0580 article-title: Structural changes induced in p21Ras upon GAP-334 complexation as probed by ESEEM spectroscopy and molecular-dynamics simulation publication-title: Structure doi: 10.1016/S0969-2126(00)00532-3 – volume: 1798 start-page: 275 year: 2010 ident: 10.1016/j.bbagen.2013.07.024_bb0645 article-title: Backbone conformational flexibility of the lipid modified membrane anchor of the human N-Ras protein investigated by solid-state NMR and molecular dynamics simulation publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2009.09.023 – volume: 120 start-page: 2953 year: 2007 ident: 10.1016/j.bbagen.2013.07.024_bb0690 article-title: A FRET map of membrane anchors suggests distinct microdomains of heterotrimeric G proteins publication-title: J. Cell Sci. doi: 10.1242/jcs.001404 – volume: 27 start-page: 727 year: 2008 ident: 10.1016/j.bbagen.2013.07.024_bb0460 article-title: A novel switch region regulates H-ras membrane orientation and signal output publication-title: EMBO J. doi: 10.1038/emboj.2008.10 – volume: 247 start-page: 939 year: 1990 ident: 10.1016/j.bbagen.2013.07.024_bb0130 article-title: Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins publication-title: Science doi: 10.1126/science.2406906 – volume: 372 start-page: 276 year: 1994 ident: 10.1016/j.bbagen.2013.07.024_bb0405 article-title: GTPase mechanism of Gproteins from the 1.7-A crystal structure of transducin [alpha] - GDP-AIF-4 publication-title: Nature doi: 10.1038/372276a0 – volume: 342 start-page: 1033 year: 2004 ident: 10.1016/j.bbagen.2013.07.024_bb0185 article-title: Solid-state 31P NMR spectroscopy of microcrystals of the Ras protein and its effector loop mutants: comparison between crystalline and solution state publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2004.07.077 – volume: 92 start-page: 1709 year: 1995 ident: 10.1016/j.bbagen.2013.07.024_bb0430 article-title: The murine N-ras gene is not essential for growth and development publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.92.5.1709 – volume: 3 start-page: 368 year: 2001 ident: 10.1016/j.bbagen.2013.07.024_bb0745 article-title: GTP-dependent segregation of H-ras from lipid rafts is required for biological activity publication-title: Nat. Cell Biol. doi: 10.1038/35070050 – volume: 79 start-page: 3511 year: 2011 ident: 10.1016/j.bbagen.2013.07.024_bb0555 article-title: Factors determining electrostatic fields in molecular dynamics simulations of the Ras/effector interface publication-title: Proteins doi: 10.1002/prot.23095 – volume: 103 start-page: 1585 year: 2012 ident: 10.1016/j.bbagen.2013.07.024_bb0705 article-title: N-Ras forms dimers at POPC membranes publication-title: Biophys. J. doi: 10.1016/j.bpj.2012.08.043 – volume: 1 start-page: 476 year: 1994 ident: 10.1016/j.bbagen.2013.07.024_bb0330 article-title: Why have mutagenesis studies not located the general base in Ras p21 publication-title: Nat. Struct. Biol. doi: 10.1038/nsb0794-476 – volume: 17 start-page: 1 year: 2010 ident: 10.1016/j.bbagen.2013.07.024_bb0195 article-title: Mechanisms of allostery and membrane attachment in Ras GTPases: implications for anti-cancer drug discovery publication-title: Curr. Med. Chem. doi: 10.2174/092986710789957832 – volume: 280 start-page: 25697 year: 2005 ident: 10.1016/j.bbagen.2013.07.024_bb0055 article-title: Structure of the G60A mutant of Ras publication-title: J. Biol. Chem. doi: 10.1074/jbc.M502240200 – volume: 31 start-page: 142 year: 2013 ident: 10.1016/j.bbagen.2013.07.024_bb0265 article-title: Light on the structural communication in Ras GTPases publication-title: J. Biomol. Struct. Dyn. doi: 10.1080/07391102.2012.698379 – volume: 59 start-page: 528 year: 2005 ident: 10.1016/j.bbagen.2013.07.024_bb0520 article-title: Dissection of the GTPase mechanism of Ras protein by MD analysis of Ras mutants publication-title: Proteins doi: 10.1002/prot.20423 – volume: 10 start-page: 381 year: 1997 ident: 10.1016/j.bbagen.2013.07.024_bb0505 article-title: Comparison of ras-p21 bound to GDP and GTP: differences in protein and ligand dynamics publication-title: Protein Eng. doi: 10.1093/protein/10.4.381 – volume: 89 start-page: 3649 year: 1992 ident: 10.1016/j.bbagen.2013.07.024_bb0140 article-title: X-ray crystal structures of transforming p21 ras mutants suggest a transition-state stabilization mechanism for GTP hydrolysis publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.89.8.3649 – volume: 9 start-page: 2351 year: 1990 ident: 10.1016/j.bbagen.2013.07.024_bb0135 article-title: Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35A resolution: implications for the mechanism of GTP hydrolysis publication-title: EMBO J. doi: 10.1002/j.1460-2075.1990.tb07409.x – volume: 9 start-page: 517 year: 2008 ident: 10.1016/j.bbagen.2013.07.024_bb0010 article-title: Ras oncogenes: split personalities publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2438 – volume: 131 start-page: 16714 year: 2009 ident: 10.1016/j.bbagen.2013.07.024_bb0070 article-title: Fundamental link between folding states and functional states of proteins publication-title: J. Am. Chem. Soc. doi: 10.1021/ja904314q – volume: 10 start-page: 38 year: 2010 ident: 10.1016/j.bbagen.2013.07.024_bb0630 article-title: New insight into the dynamic properties and the active site architecture of H-Ras p21 revealed by X-ray crystallography at very high resolution publication-title: BMC Struct. Biol. doi: 10.1186/1472-6807-10-38 – volume: 109 start-page: 460 year: 2012 ident: 10.1016/j.bbagen.2013.07.024_bb0695 article-title: Revealing conformational substates of lipidated N-Ras protein by pressure modulation publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1110553109 – volume: 341 start-page: 209 year: 1989 ident: 10.1016/j.bbagen.2013.07.024_bb0415 article-title: Structure of the guanine-nucleotide-binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation publication-title: Nature doi: 10.1038/341209a0 – volume: 125 start-page: 4070 year: 2003 ident: 10.1016/j.bbagen.2013.07.024_bb0655 article-title: Membrane insertion of a lipidated ras peptide studied by FTIR, solid-state NMR, and neutron diffraction spectroscopy publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0289245 – volume: 51 start-page: 6140 year: 2012 ident: 10.1016/j.bbagen.2013.07.024_bb0755 article-title: Discovery of small molecules that bind to K-Ras and inhibit Sos-mediated activation publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201201358 – volume: 99 start-page: 3666 year: 2010 ident: 10.1016/j.bbagen.2013.07.024_bb0235 article-title: Segregation of negatively charged phospholipids by the polycationic and farnesylated membrane anchor of Kras publication-title: Biophys. J. doi: 10.1016/j.bpj.2010.10.031 – volume: 1746 start-page: 274 year: 2005 ident: 10.1016/j.bbagen.2013.07.024_bb0425 article-title: Ras signaling from plasma membrane and endomembrane microdomains publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2005.06.004 – volume: 18 start-page: 599 year: 2007 ident: 10.1016/j.bbagen.2013.07.024_bb0470 article-title: Ras nanoclusters: molecular structure and assembly publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2007.08.003 – volume: 1 start-page: 2 year: 2010 ident: 10.1016/j.bbagen.2013.07.024_bb0090 article-title: Ras history: the saga continues publication-title: Small GTPases doi: 10.4161/sgtp.1.1.12178 – volume: 99 start-page: L91 year: 2010 ident: 10.1016/j.bbagen.2013.07.024_bb0730 article-title: Partitioning of lipids at domain boundaries in model membranes publication-title: Biophys. J. doi: 10.1016/j.bpj.2010.08.072 – volume: 77 start-page: 3287 year: 1999 ident: 10.1016/j.bbagen.2013.07.024_bb0285 article-title: Ab initio study of the role of lysine 16 for the molecular switching mechanism of Ras Protein p21 publication-title: Biophys. J. doi: 10.1016/S0006-3495(99)77159-6 – volume: 99 start-page: L87 year: 2010 ident: 10.1016/j.bbagen.2013.07.024_bb0605 article-title: Conformational selection in G-proteins: lessons from Ras and Rho publication-title: Biophys. J. doi: 10.1016/j.bpj.2010.10.020 – volume: 581 start-page: 5677 year: 2007 ident: 10.1016/j.bbagen.2013.07.024_bb0335 article-title: Role of the arginine finger in Ras. RasGAP revealed by QM/MM calculations publication-title: FEBS Lett. doi: 10.1016/j.febslet.2007.11.026 – volume: 127 start-page: 12263 year: 2005 ident: 10.1016/j.bbagen.2013.07.024_bb0660 article-title: Lipid modifications of a Ras peptide exhibit altered packing and mobility versus host membrane as detected by 2H solid-state NMR publication-title: J. Am. Chem. Soc. doi: 10.1021/ja051856c – volume: 14 start-page: 141 year: 2004 ident: 10.1016/j.bbagen.2013.07.024_bb0370 article-title: Lipid rafts and plasma membrane microorganization: insights from Ras publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2004.02.001 – volume: 45 start-page: 297 year: 2001 ident: 10.1016/j.bbagen.2013.07.024_bb0575 article-title: Revisiting the structural flexibility of the complex p21ras-GTP: the catalytic conformation of the molecular switch II publication-title: Proteins Struct. Funct. Bioinf. doi: 10.1002/prot.1150 – reference: 15805169 - Biophys J. 2005 Jun;88(6):3829-44 – reference: 19243303 - Future Oncol. 2009 Feb;5(1):105-16 – reference: 23181905 - J Am Chem Soc. 2012 Dec 12;134(49):20041-4 – reference: 18547521 - Structure. 2008 Jun;16(6):885-96 – reference: 2199064 - Cell. 1990 Aug 10;62(3):539-48 – reference: 2029511 - Biochemistry. 1991 May 14;30(19):4637-48 – reference: 21884678 - Biochim Biophys Acta. 2012 Apr;1818(4):984-94 – reference: 11701921 - Science. 2001 Nov 9;294(5545):1299-304 – reference: 16390147 - J Am Chem Soc. 2006 Jan 11;128(1):192-201 – reference: 21924373 - Semin Cell Dev Biol. 2012 Apr;23(2):145-53 – reference: 11371635 - Proc Natl Acad Sci U S A. 2001 May 22;98(11):6033-8 – reference: 22566140 - Angew Chem Int Ed Engl. 2012 Jun 18;51(25):6140-3 – reference: 16024806 - Mol Cell Biol. 2005 Aug;25(15):6722-33 – reference: 15210132 - Biochim Biophys Acta. 2004 Jul 1;1700(1):125-36 – reference: 16625153 - Nat Rev Mol Cell Biol. 2006 Jun;7(6):456-62 – reference: 20194776 - Proc Natl Acad Sci U S A. 2010 Mar 16;107(11):4931-6 – reference: 16531227 - Structure. 2006 Mar;14(3):427-36 – reference: 15789417 - Proteins. 2005 May 15;59(3):528-33 – reference: 17557790 - Biophys J. 2007 Oct 15;93(8):2697-712 – reference: 15342254 - J Mol Biol. 2004 Sep 17;342(3):1033-40 – reference: 15837192 - Structure. 2005 Apr;13(4):533-40 – reference: 22359497 - PLoS Comput Biol. 2012;8(2):e1002394 – reference: 22849539 - J Biomol Struct Dyn. 2013;31(2):142-57 – reference: 23124205 - J Biol Chem. 2012 Dec 21;287(52):43573-84 – reference: 9294608 - Oncogene. 1997 Sep 4;15(10):1151-9 – reference: 11752674 - Sci STKE. 2001 Aug 21;2001(96):pe2 – reference: 12213964 - Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12138-42 – reference: 9223188 - Proteins. 1997 Jul;28(3):434-51 – reference: 21098031 - J Biol Chem. 2011 Feb 4;286(5):3323-31 – reference: 23805749 - Faraday Discuss. 2013;161:347-63; discussion 419-59 – reference: 1899707 - J Mol Biol. 1991 Feb 5;217(3):503-16 – reference: 11329253 - Biochemistry. 2001 Feb 20;40(7):1884-9 – reference: 16223883 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15500-5 – reference: 21156123 - Biophys J. 2010 Dec 15;99(12):L91-3 – reference: 17540168 - Cell. 2007 Jun 1;129(5):865-77 – reference: 18568040 - Nat Rev Mol Cell Biol. 2008 Jul;9(7):517-31 – reference: 23737504 - Proc Natl Acad Sci U S A. 2013 Jun 18;110(25):10201-6 – reference: 9302992 - Nat Struct Biol. 1997 Sep;4(9):686-9 – reference: 11904419 - Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3575-80 – reference: 9342335 - Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):11905-10 – reference: 23062351 - Biophys J. 2012 Oct 3;103(7):1585-93 – reference: 21930707 - J Biol Chem. 2011 Nov 11;286(45):39644-53 – reference: 20080631 - Proc Natl Acad Sci U S A. 2010 Jan 19;107(3):1130-5 – reference: 11689566 - J Biol Chem. 2002 Jan 4;277(1):272-8 – reference: 22996816 - Angew Chem Int Ed Engl. 2012 Oct 15;51(42):10647-51 – reference: 18273062 - EMBO J. 2008 Mar 5;27(5):727-35 – reference: 2122258 - Nature. 1990 Nov 8;348(6297):125-32 – reference: 23129805 - Mol Cell Biol. 2013 Jan;33(2):237-51 – reference: 22431598 - Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5299-304 – reference: 15906320 - Proteins. 2005 Aug 15;60(3):495-503 – reference: 11438727 - Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):7754-9 – reference: 7547942 - Biochemistry. 1995 Sep 19;34(37):12038-47 – reference: 18987307 - Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17367-72 – reference: 22884395 - Trends Biochem Sci. 2012 Oct;37(10):447-55 – reference: 15254246 - Mol Cell Biol. 2004 Aug;24(15):6799-810 – reference: 15003623 - Trends Cell Biol. 2004 Mar;14(3):141-7 – reference: 2406906 - Science. 1990 Feb 23;247(4945):939-45 – reference: 9194162 - Protein Eng. 1997 Apr;10(4):381-7 – reference: 17886310 - Angew Chem Int Ed Engl. 2007;46(43):8234-7 – reference: 17897845 - Semin Cell Dev Biol. 2007 Oct;18(5):599-607 – reference: 18022389 - FEBS Lett. 2007 Dec 11;581(29):5677-84 – reference: 11188692 - Structure. 2000 Dec 15;8(12):1279-87 – reference: 19856908 - J Am Chem Soc. 2009 Nov 25;131(46):16714-9 – reference: 7664067 - Nat Struct Biol. 1994 Jul;1(7):476-84 – reference: 18291096 - Biochem Biophys Res Commun. 2008 May 2;369(2):327-32 – reference: 9219684 - Science. 1997 Jul 18;277(5324):333-8 – reference: 11309191 - J Cell Sci. 2001 May;114(Pt 9):1603-8 – reference: 21675921 - Annu Rev Biochem. 2011;80:943-71 – reference: 3304147 - Annu Rev Biochem. 1987;56:779-827 – reference: 18621822 - Biophys J. 2008 Oct;95(7):3269-77 – reference: 19096503 - PLoS Comput Biol. 2008 Dec;4(12):e1000245 – reference: 22589270 - Cancer Res. 2012 May 15;72(10):2457-67 – reference: 23451894 - Annu Rev Biophys. 2013;42:169-89 – reference: 16509742 - J Phys Chem B. 2006 Mar 9;110(9):4407-12 – reference: 12021258 - J Cell Biol. 2002 May 27;157(5):865-72 – reference: 16131204 - J Am Chem Soc. 2005 Sep 7;127(35):12263-72 – reference: 8142349 - Biochemistry. 1994 Mar 29;33(12):3515-31 – reference: 15548025 - J Am Chem Soc. 2004 Nov 24;126(46):15277-86 – reference: 15778967 - Proteins. 2005 May 15;59(3):534-44 – reference: 15178760 - Proc Natl Acad Sci U S A. 2004 Jun 15;101(24):8858-63 – reference: 17044712 - J Am Chem Soc. 2006 Oct 25;128(42):13840-6 – reference: 23316125 - J Chem Theory Comput. 2013 Jan 8;9(1):738-749 – reference: 22994893 - J Am Chem Soc. 2012 Oct 17;134(41):17278-85 – reference: 15589837 - FEBS Lett. 2004 Dec 17;578(3):305-10 – reference: 22203965 - Proc Natl Acad Sci U S A. 2012 Jan 10;109(2):460-5 – reference: 3919305 - Nature. 1985 Feb 21-27;313(6004):700-3 – reference: 2476675 - Nature. 1989 Sep 21;341(6239):209-14 – reference: 2196171 - EMBO J. 1990 Aug;9(8):2351-9 – reference: 11283610 - Nat Cell Biol. 2001 Apr;3(4):368-75 – reference: 17690305 - J Cell Sci. 2007 Aug 15;120(Pt 16):2953-62 – reference: 10585950 - Biophys J. 1999 Dec;77(6):3287-92 – reference: 18771285 - Biochemistry. 2008 Sep 30;47(39):10244-6 – reference: 2191303 - Proc Natl Acad Sci U S A. 1990 Jun;87(12):4849-53 – reference: 3510078 - Cell. 1986 Jan 17;44(1):167-76 – reference: 9593192 - Proteins. 1998 May 1;31(2):186-200 – reference: 20479006 - J Biol Chem. 2010 Jul 16;285(29):22696-705 – reference: 15697248 - Biochemistry. 2005 Feb 15;44(6):2225-36 – reference: 17094109 - Proteins. 2007 Feb 1;66(2):456-66 – reference: 21390270 - PLoS Comput Biol. 2011 Mar;7(3):e1001098 – reference: 20223222 - Structure. 2010 Mar 10;18(3):402-14 – reference: 19819220 - Biochim Biophys Acta. 2010 Feb;1798(2):275-85 – reference: 20884293 - Curr Opin Pharmacol. 2010 Dec;10(6):715-22 – reference: 21388959 - J Biol Chem. 2011 Apr 29;286(17):15403-12 – reference: 12670227 - J Am Chem Soc. 2003 Apr 9;125(14):4070-9 – reference: 7719852 - Nat Struct Biol. 1995 Jan;2(1):36-44 – reference: 21645858 - Structure. 2011 Jun 8;19(6):881-9 – reference: 22562795 - Proc Natl Acad Sci U S A. 2012 May 22;109(21):8097-102 – reference: 21112273 - Biophys J. 2010 Dec 1;99(11):L87-9 – reference: 22046245 - PLoS One. 2011;6(10):e25711 – reference: 9434906 - Curr Opin Struct Biol. 1997 Dec;7(6):849-56 – reference: 16039730 - Biochim Biophys Acta. 2005 Dec 30;1746(3):274-83 – reference: 21748802 - Proteins. 2011 Dec;79(12):3511-24 – reference: 22853907 - Biophys J. 2012 Jul 18;103(2):293-302 – reference: 20973973 - BMC Struct Biol. 2010;10:38 – reference: 16847854 - Angew Chem Int Ed Engl. 2006 Aug 11;45(32):5387-90 – reference: 7969474 - Nature. 1994 Nov 17;372(6503):276-9 – reference: 9398520 - J Mol Biol. 1997 Nov 21;274(1):114-31 – reference: 2686707 - J Biomol Struct Dyn. 1989 Apr;6(5):859-75 – reference: 17263520 - J Med Chem. 2007 Feb 22;50(4):674-84 – reference: 1569940 - Mol Cell Biol. 1992 May;12(5):2050-6 – reference: 14997535 - Proteins. 2004 Apr 1;55(1):1-10 – reference: 18761454 - J Am Chem Soc. 2008 Sep 24;130(38):12624-5 – reference: 17384584 - Nat Rev Cancer. 2007 Apr;7(4):295-308 – reference: 18784252 - Mol Biol Cell. 2008 Nov;19(11):4776-84 – reference: 11721009 - Biophys J. 2001 Dec;81(6):3483-8 – reference: 16288888 - Methods. 2005 Oct;37(2):165-72 – reference: 23707528 - Cell Signal. 2013 Sep;25(9):1748-53 – reference: 18758236 - Cell Cycle. 2008 Sep 1;7(17):2667-73 – reference: 1599919 - Biochemistry. 1992 Jun 2;31(21):4951-9 – reference: 8129867 - J Biomol Struct Dyn. 1993 Dec;11(3):443-58 – reference: 2547513 - Cancer Res. 1989 Sep 1;49(17):4682-9 – reference: 21686117 - Small GTPases. 2010 Jul;1(1):2-27 – reference: 23698361 - Nature. 2013 May 30;497(7451):638-42 – reference: 11746677 - Proteins. 2001 Dec 1;45(4):297-312 – reference: 10933780 - Biochemistry. 2000 Aug 15;39(32):9641-51 – reference: 1390653 - Biochemistry. 1992 Sep 22;31(37):8691-6 – reference: 7878045 - Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1709-13 – reference: 21112291 - Biophys J. 2010 Dec 1;99(11):3666-74 – reference: 19941482 - Curr Med Chem. 2010;17(1):1-9 – reference: 15994326 - J Biol Chem. 2005 Sep 2;280(35):31267-75 – reference: 17618274 - Nat Cell Biol. 2007 Aug;9(8):905-14 – reference: 21141956 - J Am Chem Soc. 2011 Feb 2;133(4):880-7 – reference: 20838576 - PLoS Comput Biol. 2010;6(9). pii: e1000922. doi: 10.1371/journal.pcbi.1000922 – reference: 23630290 - Proc Natl Acad Sci U S A. 2013 May 14;110(20):8182-7 – reference: 15878843 - J Biol Chem. 2005 Jul 8;280(27):25697-705 – reference: 22225809 - Biophys J. 2012 Jan 4;102(1):152-7 – reference: 12778136 - Nat Rev Cancer. 2003 Jun;3(6):459-65 – reference: 18212529 - Cell Cycle. 2008 Jan 15;7(2):127-34 – reference: 19300489 - PLoS Comput Biol. 2009 Mar;5(3):e1000325 – reference: 21112297 - Biophys J. 2010 Dec 1;99(11):3726-34 – reference: 1565661 - Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3649-53 – reference: 17880077 - J Am Chem Soc. 2007 Oct 10;129(40):12280-6 – reference: 23409921 - J Am Chem Soc. 2013 Mar 6;135(9):3367-70 – reference: 22261753 - Genet Med. 2012 Mar;14(3):285-92 – reference: 15268227 - J Chem Phys. 2004 Jun 22;120(24):11919-29 – reference: 19243428 - FEBS J. 2009 Apr;276(7):1817-25 |
SSID | ssj0000595 ssj0025309 |
Score | 2.2871222 |
SecondaryResourceType | review_article |
Snippet | A great deal has been learned over the last several decades about the function of Ras proteins in solution and membrane environments. While much of this... BACKGROUND: A great deal has been learned over the last several decades about the function of Ras proteins in solution and membrane environments. While much of... |
SourceID | pubmedcentral proquest pubmed crossref fao elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5211 |
SubjectTerms | Advanced simulation Cell Membrane - metabolism Clustering computer simulation Humans Membrane binding Molecular dynamics Molecular Dynamics Simulation Oncogenic Ras Protein motion proteins ras Proteins - chemistry ras Proteins - metabolism Solutions spectroscopy therapeutics |
Title | Lessons from computer simulations of Ras proteins in solution and in membrane |
URI | https://dx.doi.org/10.1016/j.bbagen.2013.07.024 https://www.ncbi.nlm.nih.gov/pubmed/23906604 https://www.proquest.com/docview/1436563579 https://www.proquest.com/docview/2000084365 https://pubmed.ncbi.nlm.nih.gov/PMC3825463 |
Volume | 1830 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbGEIIXNAZs5cdkJF5DUzuOk8epYiqU7WGjYm_WObEhE02ntXvYC387d3ZSVsQ0iafIySVyfJe7L_Ldd4y9R4haeSUh0Ri7E_J-CYxqSITwslCpBR3Y9o9P8sks-3yuzrfYuK-FobTKzvdHnx68dXdm2K3m8LJphme0qYdwQtGGjJShjjzLNFn5h19_0jxwCiruJGQJSfflcyHHy1r8aIkFdSQDhafI7gpPDzws_gVC_86lvBWcjnbY0w5V8sM48Wdsy7W77FHsM3mzyx6P-7Zuz9nxF_RtaGqcCkt41TV14Mtm3jXyWvKF56ew5IHCocFx0_LeQjm0NY3nbo6_2a17wWZHH7-OJ0nXUyGplEhXibRZbQtnQQKU3pe21K4ofJFrBBq5U2BTSHNQwuuy1ADe-tR5cHmFSMRrLV-y7XbRun3G8ZrydaGtw3UDqQrU7SivBTGe5U7IAZP9UpqqIxynvhc_TZ9ZdmGiAgwpwKTa4IMGLFnfdRkJN-6R172WzIbhGIwJ99y5j0o18B29qZmdCeLaowCBiGXA3vWaNqge2kPBJV1cL_FPSSIClkqXd8uIAMRJcMD2onWsX0XIEkFeStPesJu1ANF9b15pmx-B9lvG3gWv_vuFX7MnNIqVlG_Y9urq2r1FSLWyB-GbOWAPDz9NJyd0nJ5-m_4GjSUgsw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa6FEN3Gbbu0eypAbsKcaTIso9FsCJdkxzWBuhNkGxp9bA4RZMe-u9H2nK2DCsK7GiLMiyRIj9B4keAzwhRi6Ck5RpjNyfvx-2wtFyIIDOVOKsbtv3ZPJ0sRl8v1eUejLtcGLpWGX1_69Mbbx3fDOJsDq6ranBOh3oIJxQdyEhJeeT7xE6lerB_fHo2mf92yKopvkLynDp0GXTNNS_ncN0SEepQNiyeYnRfhHoU7OpfOPTv65R_xKeTZ_A0Akt23P77c9jz9SE8bktN3h3Cwbir7PYCZlN0b2htjHJLWBHrOrB1tYy1vNZsFdg3u2YNi0OFz1XNOiNlti7peemXuNOu_UtYnHy5GE94LKvACyWSDZduVLrMOyutzUPIXa59loUs1Yg1Uq-sS2ySWiWCznNtbXAh8cH6tEAwErSWr6BXr2p_BAzbVCgz7TzOm5UqQ_UO01IQ6VnqheyD7KbSFJFznEpf_DTd5bIfplWAIQWYRBv8UB_4ttd1y7nxgLzutGR2bMdgWHig5xEq1djv6FDN4lwQ3R7FCAQtffjUadqgeugYBad0dbvGzZJEECyVzu-XEQ0WJ8E-vG6tYzsUIXPEeQn99o7dbAWI8Xu3pa6uGuZv2ZYvePPfA_4IB5OL2dRMT-dnb-EJtbSJle-gt7m59e8RYW3ch7iCfgFTOiHB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lessons+from+computer+simulations+of+Ras+proteins+in+solution+and+in+membrane&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Prakash%2C+Priyanka&rft.au=Gorfe%2C+Alemayehu+A.&rft.date=2013-11-01&rft.issn=0304-4165&rft.volume=1830&rft.issue=11&rft.spage=5211&rft.epage=5218&rft_id=info:doi/10.1016%2Fj.bbagen.2013.07.024&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbagen_2013_07_024 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |